Science.gov

Sample records for aortic enos expression

  1. Reversal of SIN-1-induced eNOS dysfunction by the spin trap, DMPO, in bovine aortic endothelial cells via eNOS phosphorylation

    PubMed Central

    Das, Amlan; Gopalakrishnan, Bhavani; Druhan, Lawrence J; Wang, Tse-Yao; De Pascali, Francesco; Rockenbauer, Antal; Racoma, Ira; Varadharaj, Saradhadevi; Zweier, Jay L; Cardounel, Arturo J; Villamena, Frederick A

    2014-01-01

    Background and Purpose Nitric oxide (NO) derived from eNOS is mostly responsible for the maintenance of vascular homeostasis and its decreased bioavailability is characteristic of reactive oxygen species (ROS)-induced endothelial dysfunction (ED). Because 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a commonly used spin trap, can control intracellular nitroso-redox balance by scavenging ROS and donating NO, it was employed as a cardioprotective agent against ED but the mechanism of its protection is still not clear. This study elucidated the mechanism of protection by DMPO against SIN-1-induced oxidative injury to bovine aortic endothelial cells (BAEC). Experimental Approach BAEC were treated with SIN-1, as a source of peroxynitrite anion (ONOO−), and then incubated with DMPO. Cytotoxicity following SIN-1 alone and cytoprotection by adding DMPO was assessed by MTT assay. Levels of ROS and NO generation from HEK293 cells transfected with wild-type and mutant eNOS cDNAs, tetrahydrobiopterin bioavailability, eNOS activity, eNOS and Akt kinase phosphorylation were measured. Key Results Post-treatment of cells with DMPO attenuated SIN-1-mediated cytotoxicity and ROS generation, restoration of NO levels via increased in eNOS activity and phospho-eNOS levels. Treatment with DMPO alone significantly increased NO levels and induced phosphorylation of eNOS Ser1179 via Akt kinase. Transfection studies with wild-type and mutant human eNOS confirmed the dual role of eNOS as a producer of superoxide anion (O2−) with SIN-1 treatment, and a producer of NO in the presence of DMPO. Conclusion and Implications Post-treatment with DMPO of oxidatively challenged cells reversed eNOS dysfunction and could have pharmacological implications in the treatment of cardiovascular diseases. PMID:24405159

  2. Chinese medicine Tongxinluo modulates vascular endothelial function by inducing eNOS expression via the PI-3K/Akt/HIF-dependent signaling pathway.

    PubMed

    Liang, Jun Qing; Wu, Kun; Jia, Zhen Hua; Liu, Chang; Ding, Jin; Huang, Shan Na; Yin, Pei Pei; Wu, Xiang Chun; Wei, Cong; Wu, Yi Ling; Wang, Hong Yang

    2011-01-27

    To investigate the molecular mechanisms whereby the Chinese medicinal compound Tongxinluo improves vascular endothelial function through studying the induction of endothelial nitric oxide synthase (eNOS) and its upstream signaling pathway. Hyperhomocysteinemia was induced in Wistar rats by a methionine-rich diet followed by Tongxinluo treatment. The aorta ring was isolated for measuring vascular dilation of aorta and eNOS expression. Human umbilical vein endothelial cells (HUVECs) were transfected with AP-1, NF-κB, HRE or eNOS reporter plasmid followed by Tongxinluo exposure. Expression of the reporter genes was measured by luciferase assay. The level of eNOS was studied by western blot and the nitric oxide content was measured using the nitrate reductase method. HUVECs were also transiently transfected with the dominant negative mutant of HIF-1, PI-3K or Akt to explore the role of HIF and PI-3K/Akt pathway in eNOS induction by Tongxinluo. Tongxinluo could significantly up-regulate the expression of eNOS in the aortic tissue and improve the endothelium-dependent vasodilation of the aorta ring. Additionally, Tongxinluo at various doses could significantly enhance the expression of HRE and eNOS reporter gene as well as up-regulate the protein level of eNOS. Meanwhile, Tongxinluo caused a dose-dependent increase in the NO content in the supernatant of HUVECs. Suppression of HIF-1 activation by DN-HIF or inhibition of PI-3K/Akt pathway by ΔP85 or DN-Akt both attenuated HRE reporter gene activation and eNOS induction by Tongxinluo. Tongxinluo, a compound Chinese traditional medicine, up-regulates the expression of eNOS via the PI-3K/Akt/HIF-dependent signaling pathway, thus improving the endothelium-dependent vasodilation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling

    PubMed Central

    Förstermann, Ulrich; Li, Huige

    2011-01-01

    Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553

  4. Identification of chicken eNOS gene and differential expression in highland versus lowland chicken breeds.

    PubMed

    Peng, J F; Ling, Y; Gou, W Y; Zhang, H; Wu, C X

    2012-09-01

    Nitric oxide (NO), an endothelium-derived relaxing factor, is synthesized from l-arginine by endothelial nitric oxide synthase (eNOS) in the endothelium. The objective of the present study was to preliminarily illuminate the expression of the eNOS gene in hypoxic adaptation of chicken embryonic development. The eNOS expression profiles between the Tibet and Shouguang chickens incubated under both normoxic and hypoxic conditions were detected by TaqMan real-time PCR. In this study, the chicken eNOS gene was found by both in silico cloning and RACE approaches. From the eNOS gene, we obtained a 3,310-bp mRNA sequence and a 10,666-bp DNA sequence and discovered that it was located on chicken chromosome 2 and had 7 unique transcripts. eNOS mRNA was detected in abundant amounts in some chick embryo organs (i.e., heart, liver, chorio-allantoic membrane, and lung), and expressed stably with the lowest levels in the brain. We observed that when exposed to hypoxia (13% O(2)) different embryo organ tissues had various sensitivities to hypoxia as determined by their eNOS expression profiles. Compared with the Shouguang chicken, the eNOS expression in the Tibet chicken was higher in the lung and liver, lower in the heart, and similar in the brain. In chorio-allantoic membranes, eNOS expression was higher in the Shouguang chicken than the Tibet chicken under hypoxic conditions, but not markedly different under normoxic conditions. The differences of eNOS expression between the 2 breeds may be relative to the hypoxic adaptation ability in Tibet chickens during embryonic development. This work will provide reference for future studies on the role of eNOS in hypoxic adaptation and response.

  5. Arsenic, cadmium and neuron specific enolase (ENO2, γ-enolase) expression in breast cancer

    PubMed Central

    2011-01-01

    Background Neuron specific enolase (ENO2, γ-enolase) has been used as a biomarker to help identify neuroendocrine differentiation in breast cancer. The goal of the present study was to determine if ENO2 expression in the breast epithelial cell is influenced by the environmental pollutants, arsenite and cadmium. Acute and chronic exposure of MCF-10A cells to As+3 and Cd+2 sufficient to allow colony formation in soft agar, was used to determine if ENO2 expression was altered by these pollutants. Results It was shown that both As+3 and Cd+2 exposure caused significant increases in ENO2 expression under conditions of both acute and chronic exposure. In contrast, ENO1, the major glycolytic enolase in non-muscle and neuronal cells, was largely unaffected by exposure to either As+3 or Cd+2. Localization studies showed that ENO2 in the MCF-10A cells transformed by As+3 or Cd+2 had both a cytoplasmic and nuclear localization. In contrast, ENO1 was localized to the cytoplasm. ENO2 localized to the cytoplasm was found to co-localized with ENO1. Conclusion The results are the first to show that ENO2 expression in breast epithelial cells is induced by acute and chronic exposure to As+3 or Cd+2. The findings also suggest a possible link between As+3 and Cd+2 exposure and neuroendocrine differentiation in tumors. Overall, the results suggest that ENO2 might be developed as a biomarker indicating acute and/or chronic environmental exposure of the breast epithelial cell to As+3 and Cd+2. PMID:22098917

  6. PGE1 analog alprostadil induces VEGF and eNOS expression in endothelial cells.

    PubMed

    Haider, Dominik G; Bucek, Robert A; Giurgea, Aura G; Maurer, Gerald; Glogar, Helmut; Minar, Erich; Wolzt, Michael; Mehrabi, Mohammad R; Baghestanian, Mehrdad

    2005-11-01

    Endothelial nitric oxide synthase (eNOS), VEGF, and hypoxia-inducible factor 1-alpha (HIF-1alpha) are important regulators of endothelial function, which plays a role in the pathophysiology of heart failure (HF). PGE1 analog treatment in patients with HF elicits beneficial hemodynamic effects, but the precise mechanisms have not been investigated. We have investigated the effects of the PGE1 analog alprostadil on eNOS, VEGF, and HIF-1alpha expression in human umbilical vein endothelial cells (HUVEC) using RT-PCR and immunoblotting under normoxic and hypoxic conditions. In addition, we studied protein expression by immunohistochemical staining in explanted hearts from patients with end-stage HF, treated or untreated with systemic alprostadil. Alprostadil causes an upregulation of eNOS and VEGF protein and mRNA expression in HUVEC and decreases HIF-1alpha. Hypoxia potently increased eNOS, VEGF, and HIF-1alpha synthesis. The alprostadil-induced upregulation of eNOS and VEGF was prevented by inhibition of MAPKs with PD-98056 or U-0126. Consistently, the expression of eNOS and VEGF was increased, and HIF-1alpha was reduced in failing hearts treated with alprostadil. The potent effects of alprostadil on endothelial VEGF and eNOS synthesis may be useful for patients with HF where endothelial dysfunction is involved in the disease process.

  7. Molecular characterisation and expression profiling of the ENO1 gene in the ovarian follicle of the Sichuan white goose.

    PubMed

    Kang, Bo; Jiang, Dong Mei; Bai, Lin; He, Hui; Ma, Rong

    2014-01-01

    The ENO1 gene encodes a multifunctional enzyme that has been identified as a key component of the glycolytic pathway. Our previous studies demonstrated that ENO1 gene expression was higher in the ovaries of laying geese compared with prelaying geese. However, the molecular characterisation and expression profiling of the ENO1 gene in geese tissues and ovarian follicles remain to be determined. In this study, ENO1 cDNA (1,445 bp long) of the Sichuan white goose was cloned and characterised. The ORF of ENO1 cDNA is 1,305 bp in length and encodes a 434 amino acid protein with a molecular weight of 47.27 kDa. ENO1 expression in all of the examined tissues was the highest in spleen and the lowest in breast muscle. High expression of ENO1 appeared in the kidney, liver, adrenal gland, and retina. With increasing follicle growth, ENO1 gene expression began to decrease from the small white follicle to F5, which was followed by a sharp increase in expression in F4 and then a gradual decrease in expression from F3 to F1. Furthermore, in the postovulatory follicles (POF), the levels of ENO1 gene expression decreased gradually from POF1 to POF4. In conclusion, the ENO1 transcript was widely distributed in various tissues of the Sichuan white goose, but ENO1 expression was tissue-specific. Furthermore, the results of the ENO1 expression profiling of ovarian follicles suggest that ENO1 may play an important dual role in the progress of follicular development, where ENO1 acts as a glycolytic enzyme and also mediates apoptosis.

  8. Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Schrage, W. G.; Rush, J. W.; Ray, C. A.; Price, E. M.; Hasser, E. M.; Laughlin, M. H.

    2001-01-01

    We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.

  9. Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Schrage, W. G.; Rush, J. W.; Ray, C. A.; Price, E. M.; Hasser, E. M.; Laughlin, M. H.

    2001-01-01

    We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.

  10. PGC-1α dictates endothelial function through regulation of eNOS expression

    PubMed Central

    Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.

    2016-01-01

    Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955

  11. Inducible and endothelial nitric oxide synthase expression during development of transplant arteriosclerosis in rat aortic grafts.

    PubMed Central

    Akyürek, L. M.; Fellström, B. C.; Yan, Z. Q.; Hansson, G. K.; Funa, K.; Larsson, E.

    1996-01-01

    In the vascular system, distinct isoforms of nitric oxide synthase (NOS) generate nitric oxide (NO), which acts as a biological messenger. Its role in the development of transplant arteriosclerosis (TA) is still unclear. To investigate whether NO is involved in TA, we studied the expression of NOS isoforms, inducible NOS (iNOS) and endothelial NOS (eNOS), by immunohistochemistry and in situ hybridization during the first two post-transplantation months and their relation with cold ischemia (1 to 24 hours) and reperfusion injury using an aortic transplantation model in the rat. We found an increased iNOS expression in the intima and adventitia and a decreased expression in the media, whereas eNOS expression was not significantly altered during the development of TA. Co-localization studies suggested that iNOS-positive cells were vascular smooth muscle cells, monocyte-derived macrophages, and endothelial cells. Prolonged ischemic storage time resulted in an increase in eNOS expression in the neointima. In situ hybridization showed iNOS mRNA expression by vascular cells in the neointima and media. NO produced by iNOS and eNOS may be involved, at least in part, in the pathogenesis of TA in aortic grafts. Additional studies are needed to confirm the modulatory mechanism of NO during the development of TA. Images Figure 3 Figure 4 Figure 6 PMID:8952533

  12. Altered Endometrial Expression of Endothelial Nitric oxide Synthase (eNOS) in women with Unexplained Recurrent Miscarriage and Infertility

    PubMed Central

    Najafi, Tohid; Novin, Marefat Ghaffari; Ghazi, Reza; Khorram, Omid

    2012-01-01

    Background Endothelial nitric oxide synthase (eNOS) has diverse roles in the female reproductive system including a role in blastocyst implantation. Aberrant expression of eNOS could therefore be significant in the pathogenesis of disorders of implantation Materials and Methods eNOS protein and mRNA levels in the endometrium of women with recurrent miscarriages, unexplained infertility, and a control group was determined by compartmental quantitative immunohistochemistry and real time RT-PCR Results eNOS was immunolocalized to all layers of the endometrium and the vascular endothelium. eNOS protein expression was higher in glandular epithelium (P=0.004) and luminal epithelium (P=0.002) but not vascular endothelium and stroma (P=0.14) in women with recurrent miscarriage. Similarly, in women with unexplained infertility eNOS expression was significantly higher (P<0.03) in luminal epithelium but not in any other compartments compared with the control group. The levels of mRNA expression as determined by real time RT-PCR confirmed the protein data demonstrating higher eNOS mRNA expression In the endometrium of women with recurrent miscarriage and unexplained infertility compared with controls Conclusion Increased expression of eNOS in glandular and luminal epithelium of the endometrium in women with recurrent miscarriages and unexplained infertility suggests a detrimental effect of excess nitric oxide in endometrial receptivity and implantation PMID:22877939

  13. Effect of Exercise Training on Enos Expression, NO Production and Oxygen Metabolism in Human Placenta

    PubMed Central

    Ramírez-Vélez, Robinson; Bustamante, Juanita; Czerniczyniec, Analia; Aguilar de Plata, Ana C.; Lores-Arnaiz, Silvia

    2013-01-01

    Objective To determine the effects of combined aerobic and resistance exercise training during the second half of pregnancy on endothelial NOS expression (eNOS), nitric oxide (NO) production and oxygen metabolism in human placenta. Methods The study included 20 nulliparous in gestational week 16–20, attending prenatal care at three tertiary hospitals in Colombia who were randomly assigned into one of two groups: The exercise group (n = 10) took part in an exercise session three times a week for 12 weeks which consisted of: aerobic exercise at an intensity of 55–75% of their maximum heart rate for 60 min and 25 mins. Resistance exercise included 5 exercise groups circuit training (50 repetitions of each) using barbells (1–3 kg/exercise) and low-to-medium resistance bands. The control group (n = 10) undertook their usual physical activity. Mitochondrial and cytosol fractions were isolated from human placental tissue by differential centrifugation. A spectrophotometric assay was used to measure NO production in cytosolic samples from placental tissue and Western Blot technique to determine eNOS expression. Mitochondrial superoxide levels and hydrogen peroxide were measured to determine oxygen metabolism. Results Combined aerobic and resistance exercise training during pregnancy leads to a 2-fold increase in eNOS expression and 4-fold increase in NO production in placental cytosol (p = 0.05). Mitochondrial superoxide levels and hydrogen peroxide production rate were decreased by 8% and 37% respectively in the placental mitochondria of exercising women (p = 0.05). Conclusion Regular exercise training during the second half of pregnancy increases eNOS expression and NO production and decreases reactive oxygen species generation in human placenta. Collectively, these data demonstrate that chronic exercise increases eNOS/NO production, presumably by increasing endothelial shear stress. This adaptation may contribute to the beneficial effects of

  14. miR-222 contributes to sex-dimorphic cardiac eNOS expression via ets-1.

    PubMed

    Evangelista, Alicia M; Deschamps, Anne M; Liu, Delong; Raghavachari, Nalini; Murphy, Elizabeth

    2013-06-17

    It is well recognized that there is sex-dimorphic expression of mRNA and protein in the heart; however, the underlying mechanism is poorly understood. Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiac function, and the expression levels of eNOS differ between male and female hearts. The aim of this study was to examine whether expression of specific microRNA (miRNA, miR) in males and females contributes to changes in the expression of eNOS. miRNA was extracted from the myocardium of male and female C57BL/6 mice and subjected to an Affymetrix miRNA array. Decreased expression of miR-222 was discovered in females and confirmed by qRT-PCR from whole heart or isolated cardiomyocytes. The transcription factor V-ets erythroblastosis virus E26 oncogene homolog-1 (ets-1) was identified as a potential target of miR-222 using TargetScan, and fivefold increased ets-1 protein expression in females was confirmed by Western blot. Targeting of ets-1 by miR-222 was determined in HEK293 cells overexpressing luciferase under regulation of either the ets-1 3'-UTR, a null 3'-UTR control, or a scrambled ets-1 3'-UTR and treated with a small molecule miR-222 mimic or inhibitor. Additionally qRT-PCR confirmed that mRNA levels of the ets-1 transcriptional target, eNOS, were 25% higher in females. Compared with untreated myocyte controls, 50% inhibition of eNOS expression was achieved by treatment with a miR-222 mimic, compared with a 25% increase due to miR-222 inhibitor. Our findings indicate that sex-dependent miR-222 regulation alters the expression of the cardiac regulatory protein eNOS.

  15. Histone deacetylase inhibitors promote eNOS expression in vascular smooth muscle cells and suppress hypoxia-induced cell growth.

    PubMed

    Tan, Xiaoling; Feng, Lan; Huang, Xiaoyong; Yang, Yidong; Yang, Chengzhong; Gao, Yuqi

    2017-03-07

    Hypoxia stimulates excessive growth of vascular smooth muscle cells (VSMCs) contributing to vascular remodelling. Recent studies have shown that histone deacetylase inhibitors (HDIs) suppress VSMC proliferation and activate eNOS expression. However, the effects of HDI on hypoxia-induced VSMC growth and the role of activated eNOS in VSMCs are unclear. Using an EdU incorporation assay and flow cytometry analysis, we found that the HDIs, butyrate (Bur) and suberoylanilide hydroxamic acid (SAHA) significantly suppressed the proliferation of hypoxic VSMC lines and induced apoptosis. Remarkable induction of cleaved caspase 3, p21 expression and reduction of PCNA expression were also observed. Increased eNOS expression and enhanced NO secretion by hypoxic VSMC lines were detected using Bur or SAHA treatment. Knockdown of eNOS by siRNA transfection or exposure of hypoxic VSMCs to NO scavengers weakened the effects of Bur and SAHA on the growth of hypoxic VSMCs. In animal experiments, administration of Bur to Wistar rats exposed to hypobaric hypoxia for 28 days ameliorated the thickness and collagen deposition in pulmonary artery walls. Although the mean pulmonary arterial pressure (mPAP) was not obviously decreased with Bur in hypoxic rats, right ventricle hypertrophy index (RVHI) was decreased and the oxygen partial pressure of arterial blood was elevated. Furthermore, cell viability was decreased and eNOS and cleaved caspase 3 were induced in HDI-treated rat pulmonary arterial SMCs. These findings imply that HDIs prevent hypoxia-induced VSMC growth, in correlation with activated eNOS expression and activity in hypoxic VSMCs.

  16. Decreased expression of fibulin-4 in aortic wall of aortic dissection.

    PubMed

    Huawei, P; Qian, C; Chuan, T; Lei, L; Laing, W; Wenlong, X; Wenzhi, L

    2014-02-01

    In this research, we will examine the expression of Fibulin-4 in aortic wall to find out its role in aortic dissection development. The samples of aortic wall were obtained from 10 patients operated for acute ascending aortic dissection and five patients for chronic ascending aortic dissection. Another 15 pieces of samples from patients who had coronary artery bypass were as controls. The aortic samples were stained with aldehyde magenta dyeing to evaluate the arrangement of elastic fibers. The Fibulin-4 protein and mRNA expression were both determined by Western blot and realtime quantitative polymerase chain reaction. Compared with the control group, both in acute and chronic ascending aortic dissection, elastic fiber fragments increased and the expression of fibulin-4 protein significantly decreased (P= 0.045 < 0.05). The level of fibulin-4 mRNA decreased in acute ascending aortic dissection (P= 0.034 < 0.05), while it increased in chronic ascending aortic dissection (P=0.004 < 0.05). The increased amounts of elastic fiber fragments were negatively correlated with the expression of fibulin-4 mRNA in acute ascending aortic dissection. In conclusion, in aortic wall of ascending aortic dissection, the expression of fibulin-4 protein decreased and the expression of fibulin-4 mRNA was abnormal. Fibulin-4 may play an important role in the pathogenesis of aortic dissection.

  17. Effects of hyperbaric oxygen therapy in enhancing expressions of e-NOS, TNF-α and VEGF in wound healing

    NASA Astrophysics Data System (ADS)

    Susilo, Imam; Devi, Anita; Purwandhono, Azham; Hadi Warsito, Sunaryo

    2017-05-01

    Wound healing is a physiological process that occurs progressively through overlapping phases. Tissue oxygenation is an important part of the complex regulation for wound healing. Hyperbaric Oxygen (HBO) therapy is a method of increasing oxygen delivery to tissues. The therapy improves tissue oxygenation and stimulates the formation of H2O2 as a secondary messenger for Tumour Necrosis Factor alpha (TNF α), e-NOS, VEGF and Nuclear Factor Kappa Beta phosphorylation (NF-Kb) which play an important role in the rapid transcription of a wide variety of genes in response to extracellular stimuli. This study aims to determine the effects of Hyperbaric Oxygen therapy in enhancing the expressions of e-NOS, TNF-α, VEGF and wound healing. This study is an animal study with a ‘randomized control group of pre-test and post test design’ on 28 Wistar rats. Randomly, the rats were divided into 4 groups with 7 rats in each group. The HBO treatment group 1 received 5 sessions of HBO 2.4 ATA in 3 × 30 minutes; the HBO treatment group 2 received 10 sessions of HBO 2.4 ATA in 3 × 30 minutes; and each of the control groups were without HBO. Each of the 28 male rats were given a full thickness excisional wound of 1 × 1cm. Examinations of e-NOS, TNF-α, VEGF expressions and wound healing were performed on day-0 (pre-HBO) and day-5 HBO or on day-0 (pre-HBO) and day-10 HBO. The resultsshowthat the Hyperbaric Oxygen therapy can improve e-NOS (p=0.02), TNF-α (p= 0.02), VEGF expression (p=0.02) and wound healing (p=0.002) significantly in the provision of HBO 2.4 ATA for 3 × 30 minutes in 5 sessions over 5 consecutive days. While the 10 sessions of HBO 2.4 ATA for 3 × 30 minutes over 10 consecutive days only increase e-NOS (p=0.02), TNF-α (p=0.04), VEGF expression significantly (p=0.03) but do not improve wound healing significantly (p=0.3) compared with no HBO. The study concludes that HBO can improve the expressions of e-NOS, TNF-α, VEGF and wound healing in the provision of HBO

  18. Mesenchymal Stem Cells with eNOS Over-Expression Enhance Cardiac Repair in Rats with Myocardial Infarction.

    PubMed

    Chen, Leilei; Zhang, Yuan; Tao, Liangliang; Yang, Zhijian; Wang, Liansheng

    2017-02-01

    Transplantation of mesenchymal stem cells (MSCs) is a promising therapeutic option for patients with acute myocardial infarction. We show here that the ectopic overexpression of endothelial nitric oxide synthases (eNOS), an endothelial form of NOS, could enhance the ability of MSCs in treating ischemic heart damage after the occlusion of the coronary artery. Adenoviral delivery of human eNOS gene into mouse bone marrow-derived MSCs (BM-MSCs) conferred resistance to oxygen glucose deprivation (OGD)-induced cell death in vitro, and elevated the bioavailability of nitric oxide when injected into the myocardium in vivo. In a rat model of acute myocardial infarction, the transplantation of eNOS-overexpressing BM-MSCs significantly reduced myocardial infarct size, corrected hemodynamic parameters and increased capillary density. We also found that the synergistic effects were consistently better than either treatment alone. These findings reveal a positive role of elevated eNOS expression in cardiac repair, and suggest the combination of eNOS and MSC transplant therapy as a potential approach for treating myocardial infarction.

  19. Ketamine upregulates eNOS expression in human astroglial A172 cells: Possible role in its antidepressive properties.

    PubMed

    Yuhas, Yael; Ashkenazi, Shai; Berent, Eva; Weizman, Abraham

    2017-04-15

    Ketamine is a potent anti-depressive agent. Nitric oxide plays an essential role in neuronal transmission and cerebral blood flow and has been implicated in the pathophysiology of major depressive disorder as well as cardiovascular functioning. We investigated the effect of ketamine on eNOS expression in human A172 astroglial cells. Ketamine (50-500μM) increased eNOS expression at 4-24h in a concentration-dependent manner. This effect was mediated by NMDA receptor, Akt inhibition and ERK1/2 activation and was synergistically augmented by rapamycin. The combined effect on the vascular, immune and neuronal systems may be relevant to the rapid antidepressive effect of ketamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.

    PubMed

    Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin

    2016-08-01

    Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p < 0.05). Kidneys of exercising rats had no change in irisin or eNOS expression but their iNOS expression had increased (p < 0.001). HPD-E group has not been observed to cause kidney damage and not have a significant effect on rat kidney irisin, eNOS, or iNOS expression. Localization of irisin, eNOS, and iNOS staining in kidney is highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies.

  1. Resveratrol Prevented Lipopolysaccharide-Induced Endothelial Dysfunction in Rat Thoracic Aorta Through Increased eNOS Expression

    PubMed Central

    Uğurel, Seda Sultan; Kuşçu, Nilay; Özenci, Çiler Çelik; Dalaklıoğlu, Selvinaz; Taşatargil, Arda

    2016-01-01

    Background: The cardiovascular benefits of Resveratrol (RVT) have been well established by previous experimental and clinical studies. Aims: The goal of this study was to test the effectiveness of RVT administration on the impaired endothelial function induced by lipopolysaccharide (LPS), and to elucidate the role of endothelial nitric oxide synthase (eNOS)/Sirtuin 1 (SIRT1) pathway. Study Design: Animal experiment. Methods: Endotoxemia was induced by intraperitoneal injection of 10 mg/kg LPS, and the thoracic aorta was isolated six hours later. RVT was injected intraperitoneally 15 minutes before LPS administration. Six hours after LPS injection, potassium chloride (KCl), phenylephrine (Phe), acetylcholine (ACh), and sodium nitroprusside (SNP) were used to examine to vascular reactivity and endothelial function. eNOS, phospho-eNOS (p-eNOS) (Ser 1177), and SIRT1 expressions in thoracic aorta were evaluated by Western blot. Results: LPS administration significantly inhibited the relaxation response induced by ACh, while the relaxation to SNP was not significantly altered. Phe- and KCl-induced contractile responses in the thoracic aorta significantly decreased in LPS-injected group. eNOS and p-eNOS expression decreased significantly in arteries obtained from LPS group rats. The impaired vasoreactivity as well as decreased expressions of eNOS, p-eNOS, and SIRT1 in vessels from LPS-injected rats were improved by RVT treatment. Conclusion: The endothelium-dependent vasodilatation of the thoracic aorta was significantly inhibited by LPS administration, and RVT treatment may improve vascular endothelial function. The protective effect of RVT might be associated with increased eNOS expression and activity. PMID:27403381

  2. Effect of exercise training on eNOS expression, NO production and oxygen metabolism in human placenta.

    PubMed

    Ramírez-Vélez, Robinson; Bustamante, Juanita; Czerniczyniec, Analia; Aguilar de Plata, Ana C; Lores-Arnaiz, Silvia

    2013-01-01

    To determine the effects of combined aerobic and resistance exercise training during the second half of pregnancy on endothelial NOS expression (eNOS), nitric oxide (NO) production and oxygen metabolism in human placenta. The study included 20 nulliparous in gestational week 16-20, attending prenatal care at three tertiary hospitals in Colombia who were randomly assigned into one of two groups: The exercise group (n = 10) took part in an exercise session three times a week for 12 weeks which consisted of: aerobic exercise at an intensity of 55-75% of their maximum heart rate for 60 min and 25 mins. Resistance exercise included 5 exercise groups circuit training (50 repetitions of each) using barbells (1-3 kg/exercise) and low-to-medium resistance bands. The control group (n = 10) undertook their usual physical activity. Mitochondrial and cytosol fractions were isolated from human placental tissue by differential centrifugation. A spectrophotometric assay was used to measure NO production in cytosolic samples from placental tissue and Western Blot technique to determine eNOS expression. Mitochondrial superoxide levels and hydrogen peroxide were measured to determine oxygen metabolism. Combined aerobic and resistance exercise training during pregnancy leads to a 2-fold increase in eNOS expression and 4-fold increase in NO production in placental cytosol (p = 0.05). Mitochondrial superoxide levels and hydrogen peroxide production rate were decreased by 8% and 37% respectively in the placental mitochondria of exercising women (p = 0.05). Regular exercise training during the second half of pregnancy increases eNOS expression and NO production and decreases reactive oxygen species generation in human placenta. Collectively, these data demonstrate that chronic exercise increases eNOS/NO production, presumably by increasing endothelial shear stress. This adaptation may contribute to the beneficial effects of exercise on the vascular and antioxidant system and in turn

  3. Significant negative correlations between capillary expressed eNOS and Alzheimer lesion burden.

    PubMed

    Jeynes, Brian; Provias, John

    2009-10-09

    Nitric oxide [NO] is known to have vasoregulatory, neuroprotective and blood-brain barrier (BBB) related transport functions in the human CNS. Altered NO levels are suspected of contributing to neurodegenerative disorders, including Alzheimer's disease (AD). NO is produced as a result of the activity of one or more of three isoforms of nitrogen oxide synthase (NOS). In this study we compared Alzheimer and normative comparison brain samples, from temporal and calcarine cortices, with respect to the interactive correlation between eNOS, iNOS and nNOS isoform positive capillaries and the presence of neurofibrillary tangles (NFTs) and senile plaques (SPs). Cortical samples were taken from the superior temporal and calcarine cortices of 10 confirmed AD and 10 non-demented comparison group (CG) brains. Contiguous coronal sections were stained using immunohistochemistry techniques to stain for tau protein, beta amyloid (A beta) n-termini ([40 and 42]), eNOS, iNOS and nNOS. The densities of NFTs, SPs, and eNOS, iNOS and nNOS positive capillaries were recorded. Non-parametric statistical analyses were applied to the data. Our results demonstrate a significant negative correlation between the presence of eNOS positive capillaries and NFTs and SPs in both cortices in AD brains. Our results support the view that eNOS activity should be targeted for further investigation, and that factors involved in the regulation of NO production may be amenable to therapeutic intervention.

  4. High salt medium activates RhoA/ROCK and downregulates eNOS expression via the upregulation of ADMA.

    PubMed

    Cao, Yu; Fang, Yuan; Mu, Jianjun; Liu, Xiaohong

    2016-07-01

    Endothelial dysfunction has an important role in the development and progression of salt-sensitive hypertension. Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS), has been demonstrated to be involved in the pathophysiological processes of endothelial dysfunction and salt‑sensitive hypertension. However, it is currently unclear how high salt intake may induce these processes. The present study investigated the effects of high salt medium on ADMA, endothelial NOS (eNOS) and the Ras homolog gene family, member A (RhoA)/Rho-associated protein kinase (ROCK) pathway in the EA.hy926 umbilical vein cell line. The results demonstrated that high salt medium significantly increased the concentration of ADMA, the expression of protein arginine methyltransferase 1 (PRMT‑1) and RhoA, and the activity of ROCK, and downregulated the expression of eNOS. Knockdown of PRMT-1 with small interfering RNA (siRNA) significantly abrogated the aforementioned effects. These results indicated that ADMA has a key role in high salt‑mediated activation of the RhoA/ROCK pathway and inhibition of eNOS biosynthesis. siRNA‑PRMT‑1 may be considered a novel remedy for the treatment of endothelial dysfunction.

  5. Melatonin and vitamin C ameliorate alcohol-induced oxidative stress and eNOS expression in rat kidney.

    PubMed

    Sönmez, Mehmet Fatih; Narin, Figen; Akkuş, Derya; Türkmen, Ayşegül Burçin

    2012-01-01

    The aim of this study was to investigate the preventive effects of melatonin and vitamin C as antioxidants on renal injury in chronic alcohol consumption. A total of 24 adult male Wistar rats weighing 200-250 g were used in the study. Rats were divided into four equal groups. Group I (control): rats were not fed on alcohol; Group II: rats were fed on alcohol; Group III: rats were fed on alcohol and 40 mg/kg vitamin C; and Group IV: rats were fed on alcohol and 4 mg/kg melatonin. Light microscopic examination revealed atrophic renal corpuscles, dilatation and congestion of the peritubular vessels, and renal corpuscles with obscure Bowman's space and a few foamy-appearing tubules due to alcohol consumption were observed. Expression of endothelial nitric oxide synthase (eNOS) was localized to glomerulus, distal, and collector tubules. eNOS staining decreased in alcohol treatment group and melatonin and vitamin C encore increased expression pattern of eNOS. Alcohol consumption increased malondialdehyde (MDA) level and superoxide dismutase (SOD) and catalase (CAT) activities significantly in the alcohol consumption groups compared with that in the control group, while in melatonin give group just MDA level was decreased statistically significant and SOD and CAT activities were also decreased numerically compared with the alcohol consumption groups. These results indicated that chronic alcohol consumption caused renal damage by increased lipid peroxidation and melatonin and vitamin C administration produced in some degree protection against alcohol-induced damage.

  6. Investigation of gene expression and serum levels of PIN1 and eNOS with high blood pressure in patients with Alzheimer disease.

    PubMed

    Azimi, Mina; Nikanfar, Masoud; Khakikhatibi, Fatemeh; Rahbarghazi, Reza; Nourazarian, Seyed Manuchehr; Biray Avci, Cigir; Nourazarian, Alireza

    2017-09-01

    According to evidence, Alzheimer's disease is known as one of the most serious neurodegenerative diseases, for which hypertension has been observed to be a key risk factor. Therefore, this study aims to examine the relationship between the PIN1 and eNOS genes expression, as well as serum levels and hypertension in Alzheimer's disease sufferers. Blood samples were obtained from subjects who were divided into four groups: the control group, normotensive Alzheimer's patients, the Alzheimer's sufferers group with hypertension, and the healthy group with only hypertension, considering the inhibition of confounding factors. Thereafter, eNOS and PIN1 genes expression along with serum levels were studied. Based on the obtained results, a statistically significant correlation didn't exist between serum level of PIN1 and the systolic and diastolic blood pressure, between serum level of eNOS and diastolic blood pressure in the norm tension Alzheimer's disease patients, between serum levels of PIN1, eNOS and systolic blood pressure, and between serum eNOS and systolic and diastolic blood pressure in the patients with hypertension (p<0.05). According to the results obtained from this study, measuring the serum levels of eNOS and Pin1 may contribute to the prognosis, prevention, and monitoring of hypertension and also to the reduction of death rates from cardiovascular diseases in Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. NADPH Oxidase 4 Promotes Endothelial Angiogenesis Through eNOS Activation

    PubMed Central

    Craige, Siobhan M.; Kai, Chen; Pei, Yongmei; Chunying, Li; Xiaoyun, Huang; Christine, Chen; Shibata, Rei; Sato, Kaori; Walsh, Kenneth; Keaney, John F.

    2013-01-01

    Background Reactive Oxygen Species (ROS) serve signaling functions in the vasculature, and hypoxia has been associated with increased ROS production. NADPH oxidase 4 (Nox4) is an ROS-producing enzyme that is highly expressed in the endothelium, yet its specific role is unknown. We sought to determine the role of Nox4 in the endothelial response to hypoxia. Methods and Results Hypoxia induced Nox4 expression both in vitro and in vivo and overexpression of Nox4 was sufficient to promote endothelial proliferation, migration, and tube formation. To determine the in vivo relevance of our observations, we generated transgenic mice with endothelial-specific Nox4 overexpression using the VE-cadherin promoter (VECad-Nox4 mice). In vivo, the VECad-Nox4 mice had accelerated recovery from hind limb ischemia and enhanced aortic capillary sprouting. Because endothelial nitric oxide synthase (eNOS) is involved in endothelial angiogenic responses and eNOS is activated by ROS, we probed the effect of Nox4 on eNOS. In cultured ECs overexpressing Nox4 we observed a significant increase in eNOS protein expression and activity. To causally address the link between eNOS and Nox4 we crossed our transgenic Nox4 mice with eNOS-/- mice. Aorta from these mice did not demonstrate enhanced aortic sprouting and VECad-Nox4 mice on the eNOS-/- background did not demonstrate enhanced recovery from hind limb ischemia. Conclusions Collectively, we demonstrate that augmented endothelial Nox4 expression promotes angiogenesis and recovery from hypoxia in an eNOS-dependent manner. PMID:21788590

  8. Cigarette Smoke Extract Changes Expression of Endothelial Nitric Oxide Synthase (eNOS) and p16(INK4a) and is Related to Endothelial Progenitor Cell Dysfunction.

    PubMed

    He, Zhihui; Chen, Yan; Hou, Can; He, Wenfang; Chen, Ping

    2017-07-02

    BACKGROUND Endothelial dysfunction is an important pathophysiologic feature in many smoke-related diseases. Endothelial progenitor cells (EPCs) are the precursors of endothelial cells and play a fundamental role in the maintenance of endothelial integrity and function. Endothelial nitric oxide synthase (eNOS) is the dominant NOS isoform in the vasculature and plays a central role in the maintenance of endothelial homeostasis. p16(INK4a) is a cyclin-dependent kinase inhibitor and could be regarded as a major dominant senescence gene. The present study aimed to determine whether the expression of eNOS and p16(INK4a) in EPCs is related to EPCs function and the possible epigenetic mechanism, if any. MATERIAL AND METHODS We investigated EPCs capacity for proliferation, adhesion, and secretion, and the expression of eNOS and p16(INK4a) in EPCs which were altered by cigarette smoke extract (CSE) in vitro. Furthermore, Decitabine (Dec), an agent of demethylation, was used to examine whether it could alter the changes induced by CSE. RESULTS The present study demonstrated that EPCs altered by CSE in vitro displayed decreased capacities of proliferation, adhesion, and secretion, which was accompanied by decreased eNOS expression and increased p16(INK4a) expression in EPCs. Furthermore, Dec could alleviate the changes in the expression of eNOS and p16(INK4a), and protect against the EPCs dysfunction caused by CSE. CONCLUSIONS The decreased eNOS expression and increased p16(INK4a) expression was associated with dysfunction of EPCs caused by CSE. The mechanism of methylation, one of the most common epigenetic mechanism, may be involved in the EPCs dysfunction caused by CSE.

  9. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS.

    PubMed

    Wang, Weiye; Ha, Chang Hoon; Jhun, Bong Sook; Wong, Chelsea; Jain, Mukesh K; Jin, Zheng-Gen

    2010-04-08

    Fluid shear stress generated by steady laminar blood flow protects vessels from atherosclerosis. Krüppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS) are fluid shear stress-responsive genes and key mediators in flow anti-inflammatory and antiatherosclerotic actions. However, the molecular mechanisms underlying flow induction of KLF2 and eNOS remain largely unknown. Here, we show a novel role of histone deacetylase 5 (HDAC5) in flow-mediated KLF2 and eNOS expression. We found for the first time that fluid shear stress stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a calcium/calmodulin-dependent pathway. Consequently, flow induced the dissociation of HDAC5 and myocyte enhancer factor-2 (MEF2) and enhanced MEF2 transcriptional activity, which leads to expression of KLF2 and eNOS. Adenoviral overexpression of a HDAC5 phosphorylation-defective mutant (Ser259/Ser498 were replaced by Ala259/Ala498, HDAC5-S/A), which shows resistance to flow-induced nuclear export, suppressed flow-mediated MEF2 transcriptional activity and expression of KLF2 and eNOS. Importantly, HDAC5-S/A attenuated the flow-inhibitory effect on monocyte adhesion to endothelial cells. Taken together, our results reveal that phosphorylation-dependent derepression of HDAC5 mediates flow-induced KLF2 and eNOS expression as well as flow anti-inflammation, and suggest that HDAC5 could be a potential therapeutic target for the prevention of atherosclerosis.

  10. Chronic aerobic exercise associated to dietary modification improve endothelial function and eNOS expression in high fat fed hamsters.

    PubMed

    Boa, Beatriz C S; Souza, Maria das Graças C; Leite, Richard D; da Silva, Simone V; Barja-Fidalgo, Thereza Christina; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete

    2014-01-01

    Obesity is epidemic in the western world and central adipose tissue deposition points to increased cardiovascular morbidity and mortality, independently of any association between obesity and other cardiovascular risk factors. Physical exercise has been used as non-pharmacological treatment to significantly reverse/attenuate obesity comorbidities. In this study we have investigated effects of exercise and/or dietary modification on microcirculatory function, body composition, serum glucose, iNOS and eNOS expression on 120 male hamsters treated for 12 weeks with high fat chow (HF, n = 30) starting on the 21st day of birth. From week 12 to 20, animals were randomly separated in HF (no treatment change), return to standard chow (HFSC, n = 30), high fat chow associated to an aerobic exercise training program (AET) (HFEX, n = 30) and return to standard chow+AET (HFSCEX, n = 30). Microvascular reactivity in response to acetylcholine and sodium nitroprusside and macromolecular permeability increase induced by 30 minutes ischemia followed by reperfusion were assessed on the cheek pouch preparation. Total body fat and aorta eNOS and iNOS expression by immunoblotting assay were evaluated on the experimental day. Compared to HFSC and HFSCEX groups, HF and HFEX ones presented increased visceral fat [(mean±SEM) (HF)4.9±1.5 g and (HFEX)4.7±0.9 g vs. (HFSC)*3.0±0.7 g and (HFSCEX)*1.9±0.4 g/100 g BW]; impaired endothelial-dependent vasodilatation [Ach 10(-8) M (HF)87.9±2.7%; (HFSC)*116.7±5.9%; (HFEX)*109.1±4.6%; (HFSCEX)*105±2.8%; Ach10(-6) M (HF)95.3±3.1%; (HFSC)*126±6.2%; (HFEX)*122.5±2.8%; (HFSCEX)*118.1±4.3% and Ach10(-4) M (HF)109.5±4.8%; (HFSC)*149.6±6.6%; (HFEX)*143.5±5.4% and (HFSCEX)*139.4±5.2%], macromolecular permeability increase after ischemia/reperfusion [(HF)40.5±4.2; (HFSC)*19.0±1.6; (HFEX)*18.6±2.1 and (HFSCEX)* 21.5±3.7 leaks/cm2), decreased eNOS expression, increased leptin and glycaemic levels. Endothelial

  11. Mesenchymal Stem Cells Expressing eNOS and a Cav1 Mutant Inhibit Vascular Smooth Muscle Cell Proliferation in a Rat Model of Pulmonary Hypertension.

    PubMed

    Chen, Haiying; Yang, Hongli; Yue, Hongmei; Strappe, Pádraig Michael; Xia, Peng; Pan, Li; Zhang, Yingxin; Chai, Shoudong; Chen, Shuangfeng; Ma, Longle; Wang, Lexin

    2017-05-01

    This study aimed to investigate the effect of bone marrow derived mesenchymal stem cells (rBMSCs) transduced with lentiviral vectors expressing endothelial nitric oxide synthase (eNOS) and/or a mutant caveolin-1(F92A-Cav1), on the pulmonary haemodynamics and structure in a rat model of pulmonary arterial hypertension (PAH). Pulmonary arterial hypertension was induced with monocrotaline (MCT) in 60 adult male Wistar rats prior to delivery of lentiviral vector transduced rBMSCs expressing Cav1, eNOS and/or F92A-Cav1. Changes in pulmonary haemodynamics, right ventricular hypertrophy index (RVHI), and serum nitric oxide (NO) were evaluated. Ultrastructure changes in lung tissues were observed by transmission electron microscopy. Expression of Kruppel-like factor 4 (KLF4), p53, P21, eNOS, and alpha-smooth muscle actin were evaluated by real time PCR, western blotting or immunohistochemistry. Treatment of PAH rats with gene modified rBMSCs (eNOS +/- Cav1 F92A) decreased right ventricular systolic pressure and improved pulmonary haemodynamics. The protein of alpha-smooth muscle actin expression was decreased whilst KLF4, p53, P21, eNOS expression, and serum NO concentration was elevated. The survival rate of rats in the treatment groups was also improved, after 35 days of observation. Intravenous delivery of rBMSCs expressing eNOS/F92A-Cav1 to PAH rats inhibits pulmonary vascular smooth muscle cell proliferation, and improves pulmonary haemodynamics, vascular remodelling and short-term survival. Activation of KLF4-p53 signalling pathway may be involved in these beneficial effects. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  12. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency

    PubMed Central

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-01-01

    Objective(s): High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Materials and Methods: Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. Results: UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. Conclusion: This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance. PMID:27114795

  13. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease

    PubMed Central

    Moran, Corey S.; Schreurs, Charlotte; Lindeman, Jan H. N.; Walker, Philip J.; Nataatmadja, Maria; West, Malcolm; Holdt, Lesca M.; Hinterseher, Irene; Pilarsky, Christian; Golledge, Jonathan

    2015-01-01

    Abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) represent common causes of morbidity and mortality in elderly populations which were previously believed to have common aetiologies. The aim of this study was to assess the gene expression in human AAA and AOD. We performed microarrays using aortic specimen obtained from 20 patients with small AAAs (≤ 55mm), 29 patients with large AAAs (> 55mm), 9 AOD patients, and 10 control aortic specimens obtained from organ donors. Some differentially expressed genes were validated by quantitative-PCR (qRT-PCR)/immunohistochemistry. We identified 840 and 1,014 differentially expressed genes in small and large AAAs, respectively. Immune-related pathways including cytokine-cytokine receptor interaction and T-cell-receptor signalling were upregulated in both small and large AAAs. Examples of validated genes included CTLA4 (2.01-fold upregulated in small AAA, P = 0.002), NKTR (2.37-and 2.66-fold upregulated in small and large AAA with P = 0.041 and P = 0.015, respectively), and CD8A (2.57-fold upregulated in large AAA, P = 0.004). 1,765 differentially expressed genes were identified in AOD. Pathways upregulated in AOD included metabolic and oxidative phosphorylation categories. The UCP2 gene was downregulated in AOD (3.73-fold downregulated, validated P = 0.017). In conclusion, the AAA and AOD transcriptomes were very different suggesting that AAA and AOD have distinct pathogenic mechanisms. PMID:25944698

  14. Antenatal Maternally-Administered Phosphodiesterase Type 5 Inhibitors Normalize eNOS Expression in the Fetal Lamb Model of Congenital Diaphragmatic Hernia

    PubMed Central

    Shue, Eveline H; Schecter, Samuel C.; Gong, Wenhui; Etemadi, Mozziyar; Johengen, Michael; Iqbal, Corey; Derderian, S. Christopher; Oishi, Peter; Fineman, Jeffrey R.; Miniati, Doug

    2013-01-01

    Purpose Pulmonary hypertension (pHTN), a main determinant of survival in congenital diaphragmatic hernia (CDH), results from in utero vascular remodeling. Phosphodiesterase type 5 (PDE5) inhibitors have never been used antenatally to treat pHTN. The purpose of this study is to determine if antenatal PDE5 inhibitors can prevent pHTN in the fetal lamb model of CDH. Methods CDH were created in pregnant ewes. Postoperatively, pregnant ewes received oral placebo or tadalafil, a PDE5 inhibitor, until delivery. Near term gestation, lambs underwent resuscitations, and lung tissue was snap frozen for protein analysis. Results Mean cGMP levels were 0.53±0.11 in placebo-treated fetal lambs and 1.73±0.21 in tadalafil-treated fetal lambs (p=0.002). Normalized expression of eNOS was 82±12% in Normal-Placebo, 61±5% in CDH-Placebo, 116±6% in Normal-Tadalafil, and 86±8% in CDH-Tadalafil lambs. Normalized expression of β-sGC was 105±15% in Normal-Placebo, 82±3% in CDH-Placebo, 158±16% in Normal-Tadalafil, and 86±8% in CDH-Tadalafil lambs. Endothelial NOS and β-sGC were significantly decreased in CDH (p = 0.0007 and 0.01 for eNOS and β-sGC, respectively), and tadalafil significantly increased eNOS expression (p = 0.0002). Conclusions PDE5 inhibitors can cross the placental barrier. β-sGC and eNOS are downregulated in fetal lambs with CDH. Antenatal PDE5 inhibitors normalize eNOS and may prevent in utero vascular remodeling in CDH. PMID:24439578

  15. Clinical Implication of Aortic Wall Biopsy in Aortic Valve Disease with Bicuspid Valve Pathology

    PubMed Central

    Kim, Yong Han; Kim, Ji Seong; Choi, Jae-Woong; Chang, Hyoung Woo; Na, Kwon Joong; Kim, Jun Sung; Kim, Kyung-Hwan

    2016-01-01

    Background Although unique aortic pathology related to bicuspid aortic valve (BAV) has been previously reported, clinical implications of BAV to aortopathy risk have yet to be investigated. We looked for potential differences in matrix protein expressions in the aortic wall in BAV patients. Methods Aorta specimens were obtained from 31 patients: BAV group (n=27), tricuspid aortic valve (TAV) group (n=4). The BAV group was categorized into three subgroups: left coronary sinus-right coronary sinus (R+L group; n=13, 42%), right coronary sinus-non-coronary sinus (R+N group; n=8, 26%), and anteroposterior (AP group; n=6, 19%). We analyzed the expression of endothelial nitric oxide synthase (eNOS), matrix metalloproteinase (MMP)-9, and tissue inhibitor of matrix metalloproteinase (TIMP)-2. Results Based on the mean value of the control group, BAV group showed decreased expression of eNOS in 72.7% of patients, increased MMP-9 in 82.3%, and decreased TIMP in 79.2%. There was a higher tendency for aortopathy in the BAV group: eNOS (BAV:TAV)= 53%±7%:57%±11%, MMP-9 (BAV:TAV)=48%±10%:38%±1%. The AP group showed lower expression of eNOS than the fusion (R+L, R+N) group did; 48%±5% vs. 55%±7% (p=0.081). Conclusion Not all patients with BAV had expression of aortopathy; however, for patients who had a suspicious form of bicuspid valve, aortic wall biopsy could be valuable to signify the presence of aortopathy. PMID:27965921

  16. Role of reactive oxygen species in the signalling cascade of cyclosporine A-mediated up-regulation of eNOS in vascular endothelial cells

    PubMed Central

    López-Ongil, S; Hernández-Perera, O; Navarro-Antolín, J; Pérez de Lema, G; Rodríguez-Puyol, M; Lamas, S; Rodríguez-Puyol, D

    1998-01-01

    Cyclosporine A (CsA) increases eNOS mRNA expression in bovine cultured aortic endothelial cells (BAEC). As some effects of CsA may be mediated by reactive oxygen species (ROS), present experiments were devoted to test the hypothesis that the CsA-induced eNOS up-regulation could be dependent on an increased synthesis of ROS.CsA induced a dose-dependent increase of ROS synthesis, with the two fluorescent probes used, DHR123 (CsA 1 μM: 305±7% over control) and H2DCFDA (CsA 1 μM: 178±6% over control).Two ROS generating systems, xanthine plus xanthine oxidase (XXO) and glucose oxidase (GO), increased the expression of eNOS mRNA in BAEC, an effect which was maximal after 8 h of incubation (XXO: 168±21% of control values. GO: 208±18% of control values). The ROS-dependent increased eNOS mRNA expression was followed by an increase in eNOS activity.The effect of CsA on eNOS mRNA expression was abrogated by catalase, and superoxide dismutase (SOD). In contrast, the antioxidant PDTC augmented eNOS mRNA expression, both in basal conditions and in the presence of CsA.The potential participation of the transcription factor AP-1 was explored. Electrophoretic mobility shift assays were consistent with an increase in AP-1 DNA-binding activity in BAEC treated with CsA or glucose oxidase.The present results support a role for ROS, particularly superoxide anion and hydrogen peroxide, as mediators of the CsA-induced eNOS mRNA up-regulation. Furthermore, they situate ROS as potential regulators of gene expression in endothelial cells, both in physiological and pathophysiological situations. PMID:9647467

  17. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease.

  18. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression

    PubMed Central

    Azuma, Junya; Wong, Ronald J.; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B.; Deng, Alicia C.; Spin, Joshua M.; Stevenson, David K.; Dalman, Ronald L.; Tsao, Philip S.

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  19. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  20. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  1. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in L-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT₁R Expression.

    PubMed

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-02-29

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in N(ω)-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS.

  2. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    PubMed Central

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-01-01

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS. PMID:26938552

  3. Gene Expression Signature in Peripheral Blood Detects Thoracic Aortic Aneurysm

    PubMed Central

    Shiffman, Dov; Balasubramanian, Sriram; Iakoubova, Olga; Tranquilli, Maryann; Albornoz, Gonzalo; Blake, Julie; Mehmet, Necip N.; Ngadimo, Dewi; Poulter, Karen; Chan, Frances; Samaha, Raymond R.; Elefteriades, John A.

    2007-01-01

    Background Thoracic aortic aneurysm (TAA) is usually asymptomatic and associated with high mortality. Adverse clinical outcome of TAA is preventable by elective surgical repair; however, identifying at-risk individuals is difficult. We hypothesized that gene expression patterns in peripheral blood cells may correlate with TAA disease status. Our goal was to identify a distinct gene expression signature in peripheral blood that may identify individuals at risk for TAA. Methods and Findings Whole genome gene expression profiles from 94 peripheral blood samples (collected from 58 individuals with TAA and 36 controls) were analyzed. Significance Analysis of Microarray (SAM) identified potential signature genes characterizing TAA vs. normal, ascending vs. descending TAA, and sporadic vs. familial TAA. Using a training set containing 36 TAA patients and 25 controls, a 41-gene classification model was constructed for detecting TAA status and an overall accuracy of 78±6% was achieved. Testing this classifier on an independent validation set containing 22 TAA samples and 11 controls yielded an overall classification accuracy of 78%. These 41 classifier genes were further validated by TaqMan® real-time PCR assays. Classification based on the TaqMan® data replicated the microarray results and achieved 80% classification accuracy on the testing set. Conclusions This study identified informative gene expression signatures in peripheral blood cells that can characterize TAA status and subtypes of TAA. Moreover, a 41-gene classifier based on expression signature can identify TAA patients with high accuracy. The transcriptional programs in peripheral blood leading to the identification of these markers also provide insights into the mechanism of development of aortic aneurysms and highlight potential targets for therapeutic intervention. The classifier genes identified in this study, and validated by TaqMan® real-time PCR, define a set of promising potential diagnostic markers

  4. Endogenous Reference Genes for Gene Expression Studies on Bicuspid Aortic Valve Associated Aortopathy in Humans

    PubMed Central

    Harrison, Oliver J.; Moorjani, Narain; Torrens, Christopher; Ohri, Sunil K.; Cagampang, Felino R.

    2016-01-01

    Bicuspid aortic valve (BAV) disease is the most common congenital cardiac abnormality and predisposes patients to life-threatening aortic complications including aortic aneurysm. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most commonly used methods to investigate underlying molecular mechanisms involved in aortopathy. The accuracy of the gene expression data is dependent on normalization by appropriate housekeeping (HK) genes, whose expression should remain constant regardless of aortic valve morphology, aortic diameter and other factors associated with aortopathy. Here, we identified an appropriate set of HK genes to be used as endogenous reference for quantifying gene expression in ascending aortic tissue using a spin column-based RNA extraction method. Ascending aortic biopsies were collected intra-operatively from patients undergoing aortic valve and/or ascending aortic surgery. These patients had BAV or tricuspid aortic valve (TAV), and the aortas were either dilated (≥4.5cm) or undilated. The cohort had an even distribution of gender, valve disease and hypertension. The expression stability of 12 reference genes were investigated (ATP5B, ACTB, B2M, CYC1, EIF4A2, GAPDH, SDHA, RPL13A, TOP1, UBC, YWHAZ, and 18S) using geNorm software. The most stable HK genes were found to be GAPDH, UBC and ACTB. Both GAPDH and UBC demonstrated relative stability regardless of valve morphology, aortic diameter, gender and age. The expression of B2M and SDHA were found to be the least stable HK genes. We propose the use of GAPDH, UBC and ACTB as reference genes for gene expression studies of BAV aortopathy using ascending aortic tissue. PMID:27727313

  5. Endogenous Reference Genes for Gene Expression Studies on Bicuspid Aortic Valve Associated Aortopathy in Humans.

    PubMed

    Harrison, Oliver J; Moorjani, Narain; Torrens, Christopher; Ohri, Sunil K; Cagampang, Felino R

    2016-01-01

    Bicuspid aortic valve (BAV) disease is the most common congenital cardiac abnormality and predisposes patients to life-threatening aortic complications including aortic aneurysm. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most commonly used methods to investigate underlying molecular mechanisms involved in aortopathy. The accuracy of the gene expression data is dependent on normalization by appropriate housekeeping (HK) genes, whose expression should remain constant regardless of aortic valve morphology, aortic diameter and other factors associated with aortopathy. Here, we identified an appropriate set of HK genes to be used as endogenous reference for quantifying gene expression in ascending aortic tissue using a spin column-based RNA extraction method. Ascending aortic biopsies were collected intra-operatively from patients undergoing aortic valve and/or ascending aortic surgery. These patients had BAV or tricuspid aortic valve (TAV), and the aortas were either dilated (≥4.5cm) or undilated. The cohort had an even distribution of gender, valve disease and hypertension. The expression stability of 12 reference genes were investigated (ATP5B, ACTB, B2M, CYC1, EIF4A2, GAPDH, SDHA, RPL13A, TOP1, UBC, YWHAZ, and 18S) using geNorm software. The most stable HK genes were found to be GAPDH, UBC and ACTB. Both GAPDH and UBC demonstrated relative stability regardless of valve morphology, aortic diameter, gender and age. The expression of B2M and SDHA were found to be the least stable HK genes. We propose the use of GAPDH, UBC and ACTB as reference genes for gene expression studies of BAV aortopathy using ascending aortic tissue.

  6. Biomechanics and gene expression in abdominal aortic aneurysm.

    PubMed

    Reeps, Christian; Kehl, Sebastian; Tanios, Fadwa; Biehler, Jonas; Pelisek, Jaroslav; Wall, Wolfgang A; Eckstein, Hans-Henning; Gee, Michael W

    2014-12-01

    The aim of the study was to detect inter-relations between the mechanical conditions and material properties of abdominal aortic aneurysm (AAA) wall and the underlying local gene expression of destabilizing inflammatory, proteolytic, and structural factors. During open surgery, 51 tissue samples from 31 AAA patients were harvested. Gene expression of collagen types I and III, inflammatory factors CD45 and MSR1, proteolytic enzymes matrix metalloproteinases 2 and 9, and tissue inhibitor of matrix metalloproteinase 1 was analyzed by reverse transcription-polymerase chain reaction. Material properties of corresponding AAA tissue samples were assessed by cyclic sinusoidal and destructive testing. Local mechanical conditions of stress and strain were determined by advanced nonlinear finite element analysis based on patient-specific three-dimensional AAA models derived from preoperative computed tomography data. In the AAA wall, all parameters analyzed were significantly expressed at the messenger RNA level. With respect to mechanical properties of the aneurysmatic wall, expression of collagen III correlated with the stiffness parameter α (r = -0.348; P = .017), and matrix metalloprotease 2 correlated with the stiffness parameter β and wall strength (r = -0.438 and -0.593; P = .005 and P < .001). Furthermore, significant relationships were observed between local AAA diameter and the expression of CD45, MSR1, and tissue inhibitor of matrix metalloproteinase 1 (r = 0.285, 0.551, 0.328; P < .05). However, we found no inter-relation of local calculated wall stresses and strains with gene expression. Our results show for the first time that gene expressions of destabilizing factors within AAA tissue might be correlated to geometric and mechanical properties of the AAA wall. However, we found no influence of local mechanical conditions on gene expression of these factors. Therefore, these preliminary results are still ambiguous. Copyright © 2014 Society for Vascular Surgery

  7. Resveratrol Ameliorates High Glucose and High-Fat/Sucrose Diet-Induced Vascular Hyperpermeability Involving Cav-1/eNOS Regulation

    PubMed Central

    Peng, Xiao lin; Qu, Wei; Wang, Lin zhi; Huang, Bin qing; Ying, Chen jiang; Sun, Xiu fa; Hao, Li ping

    2014-01-01

    Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects of Res on amelioration of endothelial hyperpermeability and the role of caveolin-1 (Cav-1)/endothelial nitric oxide synthase (eNOS) pathway. Adult male Wistar rats were treated with a normal or high-fat/sucrose diet (HFS) with or without Res for 13 weeks. HFS and in vitro treatment with high glucose increased hyperpermeability in rat aorta, heart, liver and kidney and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Application of Res reversed the changes in eNOS and Cav-1 expressions in aorta and heart of rats fed HFS and in BAECs incubated with high glucose. Res stimulated the formation of NO inhibited by high glucose in BAECs. Beta-Cyclodextrin (β-CD), caveolae inhibitor, showed the better beneficial effect than Res alone to up-regulate eNOS phosphorylative levels, while NG-Nitro-77 L-arginine methyl ester (L-NAME), eNOS inhibitor, had no effect on Cav-1 expression. Our studies suggested that HFS and in vitro treatment with high glucose caused endothelial hyperpermeability, which were ameliorated by Res at least involving Cav-1/eNOS regulation. PMID:25419974

  8. Resveratrol ameliorates high glucose and high-fat/sucrose diet-induced vascular hyperpermeability involving Cav-1/eNOS regulation.

    PubMed

    Peng, Xiao Lin; Qu, Wei; Wang, Lin Zhi; Huang, Bin Qing; Ying, Chen Jiang; Sun, Xiu Fa; Hao, Li Ping

    2014-01-01

    Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects of Res on amelioration of endothelial hyperpermeability and the role of caveolin-1 (Cav-1)/endothelial nitric oxide synthase (eNOS) pathway. Adult male Wistar rats were treated with a normal or high-fat/sucrose diet (HFS) with or without Res for 13 weeks. HFS and in vitro treatment with high glucose increased hyperpermeability in rat aorta, heart, liver and kidney and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Application of Res reversed the changes in eNOS and Cav-1 expressions in aorta and heart of rats fed HFS and in BAECs incubated with high glucose. Res stimulated the formation of NO inhibited by high glucose in BAECs. Beta-Cyclodextrin (β-CD), caveolae inhibitor, showed the better beneficial effect than Res alone to up-regulate eNOS phosphorylative levels, while NG-Nitro-77 L-arginine methyl ester (L-NAME), eNOS inhibitor, had no effect on Cav-1 expression. Our studies suggested that HFS and in vitro treatment with high glucose caused endothelial hyperpermeability, which were ameliorated by Res at least involving Cav-1/eNOS regulation.

  9. Endothelial function does not improve with high-intensity continuous exercise training in SHR: implications of eNOS uncoupling.

    PubMed

    Battault, Sylvain; Singh, François; Gayrard, Sandrine; Zoll, Joffrey; Reboul, Cyril; Meyer, Grégory

    2016-02-01

    Exercise training is a well-recognized way to improve vascular endothelial function by increasing nitric oxide (NO) bioavailability. However, in hypertensive subjects, unlike low- and moderate-intensity exercise training, the beneficial effects of continuous high-intensity exercise on endothelial function are not clear, and the underlying mechanisms remain unknown. The aim of this study was to investigate the impact of high-intensity exercise on vascular function, especially on the NO pathway, in spontaneous hypertensive rats (SHR). These effects were studied on WKY, sedentary SHR and SHR that exercised at moderate (SHR-MOD) and high intensity (SHR-HI) on a treadmill (1 h per day; 5 days per week for 6 weeks at 55% and 80% of their maximal aerobic velocity, respectively). Endothelial function and specific NO contributions to acetylcholine-mediated relaxation were evaluated by measuring the aortic ring isometric forces. Endothelial nitric oxide synthase (eNOS) expression and phosphorylation (ser1177) were evaluated by western blotting. The total aortic and eNOS-dependent reactive oxygen species (ROS) production was assessed using electron paramagnetic resonance in aortic tissue. Although the aortas of SHR-HI had increased eNOS levels without alteration of eNOS phosphorylation, high-intensity exercise had no beneficial effect on endothelium-dependent vasorelaxation, unlike moderate exercise. This result was associated with increased eNOS-dependent ROS production in the aortas of SHR-HI. Notably, the use of the recoupling agent BH4 or a thiol-reducing agent blunted eNOS-dependent ROS production in the aortas of SHR-HI. In conclusion, the lack of a positive effect of high-intensity exercise on endothelial function in SHR was mainly explained by redox-dependent eNOS uncoupling, resulting in a switch from NO to O2(-) generation.

  10. MicroRNA Expression Signature in Degenerative Aortic Stenosis

    PubMed Central

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  11. MicroRNA Expression Signature in Degenerative Aortic Stenosis.

    PubMed

    Shi, Jing; Liu, Hui; Wang, Hui; Kong, Xiangqing

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease.

  12. Disruption of tumour-host communication by downregulation of LFA-1 reduces COX-2 and e-NOS expression and inhibits brain metastasis growth

    PubMed Central

    Soto, Manuel Sarmiento; O'Brien, Emma R.; Andreou, Kleopatra; Scrace, Simon F.; Zakaria, Rasheed; Jenkinson, Michael D.; O'Neill, Eric; Sibson, Nicola R.

    2016-01-01

    Over 20% of cancer patients will suffer metastatic spread to the brain, and prognosis remains poor. Communication between tumour cells and host tissue is essential during metastasis, yet little is known of the processes underlying such interactions in the brain. Here we test the hypothesis that cross-talk between tumour cells and host brain cells, through tumour cell leukocyte function associated protein-1 (LFA-1), is critical in metastasis development. Temporal expression of LFA-1 and its major ligand intercellular adhesion molecule-1 (ICAM-1) was determined in two different mouse models of brain metastasis. Marked upregulation of both proteins was found, co-localising with astrocytes, microglia and tumour cells themselves. Silencing of LFA-1 expression in MDA231Br-GFP cells prior to intracerebral injection resulted in > 70% reduction in tumour burden compared to control MDA231Br-GFP cells (p < 0.005, n = 5). Subsequent qRT-PCR analysis of brain tissue revealed significant reductions in COX-2, VEGF and eNOS from host brain tissue, but not tumour cells, in mice injected with LFA-1 knockdown cells (p < 0.0001, n = 5). Finally, expression of both LFA-1 and ICAM-1 was demonstrated in human brain metastasis samples. The results of this study suggest LFA-1 as a new target in brain metastasis therapy and highlight the potential synergy with current anti-COX-2 and anti-NOS therapies. PMID:27447568

  13. Bone Morphogenic Protein 4 Mediates NOX1-Dependent eNOS Uncoupling, Endothelial Dysfunction, and COX2 Induction in Type 2 Diabetes Mellitus.

    PubMed

    Youn, Ji-Youn; Zhou, Jun; Cai, Hua

    2015-08-01

    We have recently shown that angiotensin II-mediated uncoupling of endothelial nitric oxide synthase (eNOS) contributes to endothelial dysfunction in streptozotocin-induced type 1 diabetes mellitus. However, it has remained unclear whether and how eNOS uncoupling occurs in type 2 diabetes mellitus (T2DM) and the consequences of such in regulating vascular function. Here we investigated a role of bone morphogenic protein (BMP)-4 in mediating eNOS uncoupling, endothelial dysfunction, and inflammation in db/db mice. Circulating levels of BMP4 were markedly elevated in db/db mice but not in mice with type 1 diabetes mellitus, in which angiotensin II levels were significantly increased. Infusion of BMP4 antagonist noggin into db/db mice (15 μg/kg/day, 4 weeks) abolished eNOS uncoupling activity while restoring tetrahydrobiopterin (H(4)B) bioavailability. The impaired endothelium-dependent vasorelaxation in db/db aortas was significantly improved by noggin infusion. Exposure of aortic endothelial cells to BMP4 (50 ng/mL, 24 hours) resulted in eNOS uncoupling, which was attenuated by H(4)B precursor sepiapterin or small interfering RNA silencing nicotinamide adenine dinucleotide phosphate oxidase isoform 1 (NOX1). Interestingly, BMP4-dependent NOX1 up-regulation was abrogated by sepiapterin, implicating a NOX1-uncoupled eNOS-NOX1 feed-forward loop. BMP4 induction of cyclooxygenase 2 (COX2) expression and vascular cell adhesion protein 1 was found in db/db mice. Consistently, COX2 was up-regulated by BMP4 in endothelial cells, which was attenuated by sepiapterin, implicating an upstream role of eNOS uncoupling in COX2-mediated inflammatory activation. Taken together, our data for the first time reveal a novel role of BMP4 in inducing NOX1-dependent eNOS uncoupling in T2DM, which may promote development of novel therapeutics restoring endothelial function in T2DM.

  14. Androgen Receptor (AR) Promotes Abdominal Aortic Aneurysm (AAA) Development via Modulating Inflammatory IL1α and TGFβ1 Expression

    PubMed Central

    Huang, Chiung-Kuei; Luo, Jie; Lai, Kuo-Pao; Wang, Ronghao; Pang, Haiyan; Chang, Eugene; Yan, Chen; Sparks, Janet; Lee, Soo Ok; Cho, Joshua; Chang, Chawnshang

    2015-01-01

    Gender difference is a risk factor for abdominal aortic aneurism formation yet the reason for male predominance remains unclear. Androgen and the androgen receptor influence the male gender difference, indicating that androgen receptor signaling may affect abdominal aortic aneurism development. Using angiotensin II induced abdominal aortic aneurism in apolipoprotein E null mouse models (82.4% abdominal aortic aneurism incidence), we found that mice lacking androgen receptor failed to develop abdominal aortic aneurism and aorta had dramatically reduced macrophages infiltration and intact elastic fibers. These findings suggested that androgen receptor expression in endothelial cells, macrophages or smooth muscle cells might play a role in abdominal aortic aneurism development. Selective knockout of androgen receptor in each of these cell types further demonstrated that mice lacking androgen receptor in macrophages (20% abdominal aortic aneurism incidence) or smooth muscle cells (12.5% abdominal aortic aneurism incidence), but not in endothelial cells (71.4% abdominal aortic aneurism incidence) had suppressed abdominal aortic aneurism development. Mechanism dissection showed that androgen receptor functioned through modulation of interleukin 1α and transforming growth factor β1 signals and by targeting androgen receptor with androgen receptor degradation enhancer ASC-J9® led to significant suppression of abdominal aortic aneurism development. These results demonstrate the underlying mechanism by which androgen receptor influences abdominal aortic aneurism development through interleukin 1α and transforming growth factor β1, and provides a potential new therapy to suppress/prevent abdominal aortic aneurism by targeting androgen receptor with ASC-J9®. PMID:26324502

  15. Alteration of cardiac ACE2/Mas expression and cardiac remodelling in rats with aortic constriction.

    PubMed

    Zhang, Yanling; Li, Bing; Wang, Bingxiangi; Zhang, Jingjun; Wu, Junyan; Morgan, Trefor

    2014-12-31

    The recent discovery of the new components of the renin-angiotensin system (RAS) suggests the importance of the maintenance of cardiovascular structure and functions. To assess the role of the angiotensin-converting enzyme 2 (ACE2)-Mas receptor axis in the regulation of cardiac structure and function, the present work investigated the expression of ACE2 and Mas receptor in the heart in the cardiac remodeling that occurs in aortic constricted rats. Partial abdominal aortic ligation was carried out in Sprague-Dawley rats. Angiotensin AT1 receptor blockade and ACE inhibition were achieved by losartan and enalapril treatment, respectively. Results showed that aortic constriction increased left ventricular hypertrophy, fibrosis, mean arterial pressure (MAP), plasma renin activity (PRA) and cardiac ACE levels, but decreased the expression of cardiac ACE2 and Mas receptor. Losartan treatment significantly decreased MAP, left ventricle hypertrophy (LVH), fibrosis, and increased cardiac ACE2 and Mas expression. Enalapril also improved the cardiac parameters with a rise in cardiac ACE2, but did not change the Mas level. In conclusion, aortic constriction results in cardiac hypertrophy, fibrosis and a rise of cardiac ACE expression. Both AT1 receptor blocker and ACE inhibitor play a cardioprotective role in aortic constriction. However, AT1 receptor blocker particularly promotes cardiac ACE2 and Mas receptor levels. ACE inhibitor is associated with the inhibition of ACE and normalization of cardiac ACE2 activity.

  16. A nonintrinsic regional basis for increased infrarenal aortic MMP-9 expression and activity.

    PubMed

    Ailawadi, Gorav; Knipp, Brian S; Lu, Guanyi; Roelofs, Karen J; Ford, John W; Hannawa, Kevin K; Bishop, Keith; Thanaporn, Porama; Henke, Peter K; Stanley, James C; Upchurch, Gilbert R

    2003-05-01

    This investigation was undertaken to determine whether intrinsic or regional factors at different anatomic sites of the aorta affect expression and activity of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Aortas from Sprague-Dawley rats (n = 22) were divided into arch, descending thoracic, and infrarenal abdominal segments. Specimens were stimulated with interleukin-1beta (IL-1beta) (2 ng/mL) for 72 hours. In separate experiments, syngeneic aortic segments were transplanted from the thoracic or abdominal aortas of donor rats into the infrarenal aortic position of recipient rats (n = 12 each). At 4 weeks, aortas from rats who had received transplants were harvested, sectioned into arch, thoracic, and transplanted thoracic or transplanted abdominal segments, and stimulated with IL-1beta. Reverse transcriptase polymerase chain reaction, zymography, and reverse zymography were performed to assess MMP-9, MMP-2, and TIMP-1 in all aortic segments. Differences were assessed with analysis of variance (ANOVA) and post-hoc Tukey test. In control rats, abdominal segments had significantly higher MMP-9 expression compared with arch and thoracic segments (P <.002). Total MMP-9 activity was also higher in abdominal segments (P <.02). In rats who received transplants, transplanted thoracic (P <.004) and transplanted abdominal (P <.05) segments demonstrated upregulation of MMP-9 expression, compared with control arch and thoracic segments. Zymography documented increased total MMP-9 activity in transplanted thoracic (P <.03) and transplanted abdominal (P <.04) segments versus arch and thoracic segments. No significant difference in MMP-9 expression was found between control abdominal, transplanted thoracic, or transplanted abdominal segments. No significant differences in MMP-2 or TIMP-1 expression or activity were demonstrated in either control or transplanted segments. These data demonstrate that variations in aortic MMP-9 expression and

  17. Long-term high-fat consumption leads to downregulation of Akt phosphorylation of eNOS at Ser1177 and upregulation of Sirtuin-1 expression in rat cavernous tissue.

    PubMed

    Tomada, I; Negrão, R; Almeida, H; Neves, D

    2014-04-01

    Long-term consumption of high-fat diets negatively interferes with metabolic status and promotes endothelial dysfunction and inflammation. In the cavernous tissue, these outcomes become conspicuous in the elderly and strongly affect penile erection, a vascular process highly dependent on local nitric oxide bioavailability. Although epidemiological data links erectile dysfunction to nutritional patterns, the underlying molecular mechanisms remain unclear. Therefore, we investigated the effects of long-term high-fat diet on endothelial nitric oxide synthase (eNOS)-Sirtuin-1 axis and Akt/eNOS phosphorylation in the cavernous tissue of Sprague-Dawley rats, and compared with energy-restricted animals. We demonstrated that high-fat diet intake led to a noteworthy decrease in eNOS phosphorylation at Ser1177 residue through the Akt pathway, which seems to be compensated by upregulation of phosphorylation at Ser615, but without an increment in nitric oxide production. These results are accompanied by an increase of systemic inflammatory markers and upregulation of the inducible NOS and of the deacetylase Sirtuin-1 in the cavernous tissue to levels apparently detrimental to cells and to metabolic homeostasis. Conversely, in long-term energy-restricted animals, the rate of phosphorylation of eNOS at Ser1177 diminished, but the activation of the enzyme increased through phosphorylation of eNOS at Ser615, resulting in an enhancement in nitric oxide bioavailability. Taken together, our results demonstrate that long-term nutritional conditions override the influence of age on the eNOS expression and activation in rat cavernous tissue.

  18. RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing.

    PubMed

    Guauque-Olarte, Sandra; Droit, Arnaud; Tremblay-Marchand, Joël; Gaudreault, Nathalie; Kalavrouziotis, Dimitri; Dagenais, Francois; Seidman, Jonathan G; Body, Simon C; Pibarot, Philippe; Mathieu, Patrick; Bossé, Yohan

    2016-10-01

    The molecular mechanisms leading to premature development of aortic valve stenosis (AS) in individuals with a bicuspid aortic valve are unknown. The objective of this study was to identify genes differentially expressed between calcified bicuspid aortic valves (BAVc) and tricuspid valves with (TAVc) and without (TAVn) AS using RNA sequencing (RNA-Seq). We collected 10 human BAVc and nine TAVc from men who underwent primary aortic valve replacement. Eight TAVn were obtained from men who underwent heart transplantation. mRNA levels were measured by RNA-Seq and compared between valve groups. Two genes were upregulated, and none were downregulated in BAVc compared with TAVc, suggesting a similar gene expression response to AS in individuals with bicuspid and tricuspid valves. There were 462 genes upregulated and 282 downregulated in BAVc compared with TAVn. In TAVc compared with TAVn, 329 genes were up- and 170 were downregulated. A total of 273 upregulated and 147 downregulated genes were concordantly altered between BAVc vs. TAVn and TAVc vs. TAVn, which represent 56 and 84% of significant genes in the first and second comparisons, respectively. This indicates that extra genes and pathways were altered in BAVc. Shared pathways between calcified (BAVc and TAVc) and normal (TAVn) aortic valves were also more extensively altered in BAVc. The top pathway enriched for genes differentially expressed in calcified compared with normal valves was fibrosis, which support the remodeling process as a therapeutic target. These findings are relevant to understand the molecular basis of AS in patients with bicuspid and tricuspid valves.

  19. Angiotensin receptor blockers are associated with reduced fibrosis and interleukin-6 expression in calcific aortic valve disease.

    PubMed

    Côté, Nancy; Mahmut, Ablajan; Fournier, Dominique; Boulanger, Marie-Chloé; Couture, Christian; Després, Jean-Pierre; Trahan, Sylvain; Bossé, Yohan; Pagé, Sylvain; Pibarot, Philippe; Mathieu, Patrick

    2014-01-01

    Calcific aortic valve disease (CAVD) is a chronic disorder characterized by the mineralization of the aortic valve and involving fibrosis. In this work we sought to determine if the fibrotic component of the remodeling process of CAVD was related to the use of angiotensin-converting enzyme inhibitors (ACEi) and/or angiotensin receptor blockers (ARBs). In 477 patients with CAVD, the aortic valve was examined by histology. A semiquantitative score of fibrosis was generated and associations with clinical/cardiometabolic variables examined. In a subset of 103 patients the aortic valve was available to study the infiltration by inflammatory cells and expression of interleukin-6 (IL-6) by quantitative real-time PCR. The fibrosis score of the aortic valve was independently related to the hemodynamic severity of CAVD measured by echocardiography. The fibrotic score of the aortic valve was also related to the expression of IL-6. The use of ARBs but not of ACEi was associated with a lower fibrosis score of the aortic valve even after correction for covariates. In addition, patients under ARBs had lower aortic valve inflammation and expression of IL-6. These findings suggest that ARBs may alter the fibrotic process of the aortic valve in CAVD, possibly by lowering tissue inflammation. Copyright © 2013 S. Karger AG, Basel.

  20. Elevated expression levels of lysyl oxidases protect against aortic aneurysm progression in Marfan syndrome.

    PubMed

    Busnadiego, O; Gorbenko Del Blanco, D; González-Santamaría, J; Habashi, J P; Calderon, J F; Sandoval, P; Bedja, D; Guinea-Viniegra, J; Lopez-Cabrera, M; Rosell-Garcia, T; Snabel, J M; Hanemaaijer, R; Forteza, A; Dietz, H C; Egea, G; Rodriguez-Pascual, F

    2015-08-01

    Patients with Marfan syndrome (MFS) are at high risk of life-threatening aortic dissections. The condition is caused by mutations in the gene encoding fibrillin-1, an essential component in the formation of elastic fibers. While experimental findings in animal models of the disease have shown the involvement of transforming growth factor-β (TGF-β)- and angiotensin II-dependent pathways, alterations in the vascular extracellular matrix (ECM) may also play a role in the onset and progression of the aortic disease. Lysyl oxidases (LOX) are extracellular enzymes, which initiates the formation of covalent cross-linking of collagens and elastin, thereby contributing to the maturation of the ECM. Here we have explored the role of LOX in the formation of aortic aneurysms in MFS. We show that aortic tissue from MFS patients and MFS mouse model (Fbn1(C1039G/+)) displayed enhanced expression of the members of the LOX family, LOX and LOX-like 1 (LOXL1), and this is associated with the formation of mature collagen fibers. Administration of a LOX inhibitor for 8weeks blocked collagen accumulation and aggravated elastic fiber impairment, and these effects correlated with the induction of a strong and rapidly progressing aortic dilatation, and with premature death in the more severe MFS mouse model, Fbn1(mgR/mgR), without any significant effect on wild type animals. This detrimental effect occurred preferentially in the ascending portion of the aorta, with little or no involvement of the aortic root, and was associated to an overactivation of both canonical and non-canonical TGF-β signaling pathways. The blockade of angiotensin II type I receptor with losartan restored TGF-β signaling activation, normalized elastic fiber impairment and prevented the aortic dilatation induced by LOX inhibition in Fbn1(C1039G/+) mice. Our data indicate that LOX enzymes and LOX-mediated collagen accumulation play a critical protective role in aneurysm formation in MFS.

  1. Diesel Particulate Exposed Macrophages Alter Endothelial Cell Expression of eNOS, iNOS, MCP1, and Glutathione Synthesis Genes

    PubMed Central

    Weldy, Chad S.; Wilkerson, Hui-Wen; Larson, Timothy V.; Stewart, James A.; Kavanagh, Terrance J.

    2011-01-01

    There is considerable debate regarding inhaled diesel exhaust particulate (DEP) causing impairments in vascular reactivity. Although there is evidence that inhaled particles can translocate from the lung into the systemic circulation, it has been suggested that inflammatory factors produced in the lung following macrophage particle engulfment also pass into the circulation. To investigate these differing hypotheses, we used in vitro systems to model each exposure. By using a direct exposure system and a macrophage-endothelial cell co-culture model, we compared the effects of direct DEP exposure and exposure to inflammatory factors produced by DEP-treated macrophages, on endothelial cell mRNA levels for eNOS, iNOS, endothelin-1, and endothelin-converting-enzyme-1. As markers of oxidative stress, we measured the effects of DEP treatment on glutathione (GSH) synthesis genes and on total GSH. In addition, we analyzed the effect of DEP treatment on monocyte chemo-attractant protein-1. Direct DEP exposure increased endothelial GCLC and GCLM as well as total GSH in addition to increased eNOS, iNOS and Mcp1 mRNA. Alternatively, inflammatory factors released from DEP-exposed macrophages markedly up-regulated endothelial iNOS and Mcp1 while modestly down-regulating eNOS. These data support both direct exposure to DEP and the release of inflammatory cytokines as explanations for DEP-induced impairments in vascular reactivity. PMID:21920430

  2. Expression of alphaVbeta3 integrin in the chick embryo aortic endothelium.

    PubMed

    Corbel, Catherine

    2002-09-01

    The integrin chain alphaV, expressed in association with beta3, by cells of the megakaryocytic/thrombocytic and endothelial lineages is thought to play an important role in angiogenesis. alphaVbeta3 expression by endothelial cells is not constitutive but induced by various stimuli in avian and human models. Here the developmental pattern of alphaVbeta3 expression was analysed in the chick embryo by immunocytochemistry, using a specific monoclonal antibody. On day 2 of development alphaVbeta3 expression was restricted to rare cells in the blood stream, in the embryo proper and in the yolk sac blood islands. AlphaVbeta3 expression by endothelial cells became detectable on day 3 and was restricted to the dorsal aorta. Interestingly it was absent from the intra-aortic hemopoietic clusters (E3.5) which, as we have showed previously, express the alphaIIbbeta3 integrin and display progenitor potentialities. However the endothelium underlying intra-embryonic hemopoietic clusters expressed this integrin. In contrast E6-7 para-aortic hemopoietic foci contained numerous alphaVbeta3 positive cells. Both alphaVbeta3 and alphaIIbbeta3 were expressed in these latter hemopoietic sites, while alphaVbeta3 was still selectively expressed by the aortic endothelium until E6. Thereafter, at E7 the pulmonary artery also expressed it. Since alphaIIbbeta3 is expressed by avian and murine multilineage hemopoietic progenitors, we then studied the hemopoietic potentialities of alphaVbeta3/alphaIIbeta3 double positive cells from embryonic bone marrow differentiating in vitro in erythro-myeloid conditions. Thrombocytic, erythroid and myeloid progenitor potentialities were found within the cell population expressing both beta3 integrins.

  3. Silicic acid in drinking water prevents age-related alterations in the endothelium-dependent vascular relaxation modulating eNOS and AQP1 expression in experimental mice: an immunohistochemical study.

    PubMed

    Buffoli, Barbara; Foglio, Eleonora; Borsani, Elisa; Exley, Christopher; Rezzani, Rita; Rodella, Luigi Fabrizio

    2013-06-01

    The maintenance of endothelial integrity is of great importance in coping with age-related vascular alterations. Endothelium-derived nitric oxide is one of the various vasoactive substances able to regulate vascular tone and homeostasis, and whose decrease is known to be related with senescence in endothelial cells. There are reports on the efficacy of silicon, especially as silicic acid, in protecting vascular integrity during age-related vascular diseases. The aim of this study was to evaluate the ability of supplementation of silicic acid in drinking water in the maintenance of vascular health in a mouse model of early physiological aging. In particular, we evaluated the relationship between Si supplementation and endothelial nitric oxide synthase (eNOS) expression, taking into account also the aquaporin-1 (AQP-1) isoform that, as recently reported, seems to be involved in nitric oxide transport across cell membranes. Our results showed that silicic acid supplementation increased both eNOS and AQP-1 expression, suggesting that silicic acid modulation of endothelial nitric oxide synthase and aquaporin-1 could represent a potential strategy against age-related vascular senescence. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Gene expression profiling of acute type A aortic dissection combined with in vitroassessment†.

    PubMed

    Kimura, Naoyuki; Futamura, Kyoko; Arakawa, Mamoru; Okada, Naoko; Emrich, Fabian; Okamura, Homare; Sato, Tetsuya; Shudo, Yasuhiro; Koyano, Tiffany K; Yamaguchi, Atsushi; Adachi, Hideo; Matsuda, Akio; Kawahito, Koji; Matsumoto, Kenji; Fischbein, Michael P

    2017-04-11

    The mechanisms underlying aortic dissection remain to be fully elucidated. We aimed to identify key molecules driving dissection through gene expression profiling achieved by microarray analysis and subsequent in vitro experiments using human aortic endothelial cells (HAECs) and aortic vascular smooth muscle cells (AoSMCs). Total RNA, including microRNA (miRNA), was isolated from the intima-media layer of dissected ascending aorta obtained intraoperatively from acute type A aortic dissection (ATAAD) patients without familial thoracic aortic disease ( n  = 8) and that of non-dissected ascending aorta obtained from transplant donors ( n  = 9). Gene expression profiling was performed with mRNA and miRNA microarrays, and results were confirmed by quantitative polymerase chain reaction (qPCR). Target genes and miRNA were identified by gene ontology analysis and a literature search. To reproduce the in silico results, HAECs and AoSMCs were stimulated in vitro by upstream cytokines, and expression of target genes was assessed by qPCR. Microarray analysis revealed 1536 genes (3.6%, 1536/42 545 probes) and 41 miRNAs (3.0%, 41/1368 probes) that were differentially expressed in the ATAAD group (versus donor group). The top 15 related pathways included regulation of inflammatory response, growth factor activity and extracellular matrix. Gene ontology analysis identified JAK2 (regulation of inflammatory response), PDGFA, TGFB1, VEGFA (growth factor activity) and TIMP3 , TIMP4, SERPINE1 (extracellular matrix) as the target genes and miR-21-5p, a TIMP3 repressor, as target miRNA that interacts with the target genes. Validation qPCR confirmed the altered expression of all 7 target genes and miR-21-5p in dissected aorta specimens (all genes, P  < 0.05). Ingenuity pathway analysis showed TNF-α and TGF-β to be upstream cytokines for the target genes. In vitro experiments showed these cytokines inhibit TIMP3 expression ( P  < 0.05) and enhance VEGFA expression ( P

  5. p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols.

    PubMed

    Anter, Elad; Chen, Kai; Shapira, Oz M; Karas, Richard H; Keaney, John F

    2005-05-27

    Black tea has been shown to improve endothelial function in patients with coronary artery disease and recent data indicate the polyphenol fraction of black tea enhances endothelial nitric oxide synthase (eNOS) activity through p38 MAP kinase (p38 MAPK) activation. Because the mechanisms for this phenomenon are not yet clear, we sought to elucidate the signaling events in response to black tea polyphenols. Bovine aortic endothelial cells (BAECs) exposed to black tea polyphenols demonstrated eNOS activation that was inhibited by the estrogen receptor (ER) antagonist ICI 182,780, and siRNA-mediated silencing of ER expression. Consistent with this observation, black tea polyphenols induced time-dependent phosphorylation of ERalpha on Ser-118 that was inhibited by ICI 182,780. Phosphorylation of ERalpha on Ser-118 was due to p38 MAP kinase (p38 MAPK) as, it was inhibited by SB203580 and overexpression of dominant-negative p38alpha MAPK. Conversely, constitutively active MKK6 induced p38 MAPK activation that recapitulated the effects of polyphenols by inducing ERalpha phosphorylation and downstream activation of Akt, and eNOS. The key role of ERalpha Ser-118 phosphorylation was confirmed in eNOS-transfected COS-7 cells, as polyphenol-induced eNOS activation required cotransfection with ERalpha subject to phosphorylation at Ser-118. This residue appeared critical for functional association of ERalpha with p38 MAPK as ERalpha with Ser-118 mutated to alanine could not form a complex with p38 MAPK. These findings suggest p38 MAP kinase-mediated eNOS activation requires ERalpha and these data uncover a new mechanism of ERalpha activation that has broad implications for NO bioactivity and endothelial cell phenotype.

  6. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms.

    PubMed Central

    Curci, J A; Liao, S; Huffman, M D; Shapiro, S D; Thompson, R W

    1998-01-01

    Elastolytic matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of abdominal aortic aneurysms (AAA), a disorder characterized by chronic aortic wall inflammation and destruction of medial elastin. The purpose of this study was to determine if human macrophage elastase (HME; MMP-12) might participate in this disease. By reverse transcription-polymerase chain reaction, HME mRNA was consistently demonstrated in AAA and atherosclerotic occlusive disease (AOD) tissues (six of six), but in only one of six normal aortas. Immunoreactive proteins corresponding to proHME and two products of extracellular processing were present in seven of seven AAA tissue extracts. Total HME recovered from AAA tissue was sevenfold greater than normal aorta (P < 0.001), and the extracted enzyme exhibited activity in vitro. Production of HME was demonstrated in the media of AAA tissues by in situ hybridization and immunohistochemistry, but HME was not detected within the media of normal or AOD specimens. Importantly, immunoreactive HME was specifically localized to residual elastin fragments within the media of AAA tissue, particularly areas adjacent to nondilated normal aorta. In vitro, the fraction of MMP-12 sequestered by insoluble elastin was two- to fivefold greater than other elastases found in AAA tissue. Therefore, HME is prominently expressed by aneurysm-infiltrating macrophages within the degenerating aortic media of AAA, where it is also bound to residual elastic fiber fragments. Because elastin represents a critical component of aortic wall structure and a matrix substrate for metalloelastases, HME may have a direct and singular role in the pathogenesis of aortic aneurysms. PMID:9835614

  7. Sepsis up-regulates the expression of connexin 40 in rat aortic endothelium.

    PubMed

    Rignault, Stéphanie; Haefliger, Jacques-Antoine; Gasser, Didier; Markert, Michèle; Nicod, Pascal; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2005-06-01

    A distinctive feature of sepsis is a pleiotropic modification of membrane protein expression in the vascular endothelium, associated with diminished endothelium-dependent relaxation (endothelial dysfunction). In cultured endothelial cells, inflammatory stimuli alter expression of connexins (Cx), proteins that make up the gap junctions responsible for intercellular communication. In the present study, we tested whether the polymicrobial sepsis induced by cecal ligation and perforation in the rat alters the expression of the connexins present in the vascular endothelium (i.e., Cx37, Cx40, and Cx43). We also examined a possible association between such changes and endothelial dysfunction in this model. Animal study, with two parallel groups. Animal research facility. One hundred four male adult Wistar rats. Rats underwent either cecal ligation and perforation to induce sepsis or a sham operation and were killed after a variable time, mostly 24 hrs. Experiments designed to test for the impact of sepsis on connexin expression disclosed a three-fold increase in Cx40 messenger RNA and protein in the aorta, an effect that peaked at 24 hrs after cecal ligation and perforation, was specific to this connexin (i.e., levels of Cx37 and Cx43 did not vary), and was restricted to the aortic endothelium. Experiments designed to test the permeability of interendothelial gap junctions using the scrape-loading method did not show a change in function in the septic group. Finally, a time-course study was designed to test for a possible association of enhanced Cx40 expression with endothelial dysfunction. Endothelium-dependent relaxation was diminished in rings of aorta when harvested from septic rats before (6 hrs after surgery) but not at the time when enhanced Cx40 expression occurred (12 and 24 hrs). In this experimental model, recovery from an early transient dysfunction of the aortic endothelium is associated with an enhanced expression of aortic endothelial Cx40.

  8. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment.

    PubMed

    Tan, Xing-Lin; Xue, Yue-Qiang; Ma, Tao; Wang, Xiaofang; Li, Jing Jing; Lan, Lubin; Malik, Kafait U; McDonald, Michael P; Dopico, Alejandro M; Liao, Francesca-Fang

    2015-06-24

    Cerebral infarction due to thrombosis leads to the most common type of stroke and a likely cause of age-related cognitive decline and dementia. Endothelial nitric oxide synthase (eNOS) generates NO, which plays a crucial role in maintaining vascular function and exerting an antithrombotic action. Reduced eNOS expression and eNOS polymorphisms have been associated with stroke and Alzheimer's disease (AD), the most common type of dementia associated with neurovascular dysfunction. However, direct proof of such association is lacking. Since there are no reports of complete eNOS deficiency in humans, we used heterozygous eNOS(+/-) mice to mimic partial deficiency of eNOS, and determine its impact on cerebrovascular pathology and perfusion of cerebral vessels. Combining cerebral angiography with immunohistochemistry, we found thrombotic cerebral infarctions in eNOS(+/-) mice as early as 3-6 months of age but not in eNOS(+/+) mice at any age. Remarkably, vascular occlusions in eNOS(+/-) mice were found almost exclusively in three areas: temporoparietal and retrosplenial granular cortexes, and hippocampus this distribution precisely matching the hypoperfused areas identified in preclinical AD patients. Moreover, progressive cerebral amyloid angiopaphy (CAA), blood brain barrier (BBB) breakdown, and cognitive impairment were also detected in aged eNOS(+/-) mice. These data provide for the first time the evidence that partial eNOS deficiency results in spontaneous thrombotic cerebral infarctions that increase with age, leading to progressive CAA and cognitive impairments. We thus conclude that eNOS(+/-) mouse may represent an ideal model of ischemic stroke to address early and progressive damage in spontaneously-evolving chronic cerebral ischemia and thus, study vascular mechanisms contributing to vascular dementia and AD.

  9. NOX isoforms in the development of abdominal aortic aneurysm.

    PubMed

    Siu, Kin Lung; Li, Qiang; Zhang, Yixuan; Guo, Jun; Youn, Ji Youn; Du, Jie; Cai, Hua

    2017-04-01

    Oxidative stress plays an important role in the formation of abdominal aortic aneurysm (AAA), and we have recently established a causal role of uncoupled eNOS in this severe human disease. We have also shown that activation of NADPH oxidase (NOX) lies upstream of uncoupled eNOS. Therefore, identification of the specific NOX isoforms that are required for eNOS uncoupling and AAA formation would ultimately lead to novel therapies for AAA. In the present study, we used the Ang II infused hph-1 mice to examine the roles of NOX isoforms in the development of AAA. We generated double mutants of hph-1-NOX1, hph-1-NOX2, hph-1-p47phox, and hph-1-NOX4. After two weeks of Ang II infusion, the incidence rate of AAA substantially dropped from 76.5% in Ang II infused hph-1 mice (n=34) to 11.1%, 15.0%, 9.5% and 0% in hph-1-NOX1 (n=27), hph-1-NOX2 (n=40), hph-1-p47phox (n=21), and hph-1-NOX4 (n=33) double mutant mice, respectively. The size of abdominal aortas of the four double mutant mice, determined by ultrasound analyses, was significantly smaller than the hph-1 mice. Aortic nitric oxide and H4B bioavailabilities were markedly improved in the double mutants, while superoxide production and eNOS uncoupling activity were substantially diminished. These effects seemed attributed to an endothelial specific restoration of dihydrofolate reductase expression and activity, deficiency of which has been shown to induce eNOS uncoupling and AAA formation in both Ang II-infused hph-1 and apoE null animals. In addition, over-expression of human NOX4 N129S or T555S mutant newly identified in aneurysm patients increased hydrogen peroxide production, further implicating a relationship between NOX and human aneurysm. Taken together, these data indicate that NOX isoforms 1, 2 or 4 lies upstream of dihydrofolate reductase deficiency and eNOS uncoupling to induce AAA formation. These findings may promote development of novel therapeutics for the treatment of the disease by inhibiting NOX signaling.

  10. [Effect of captopril on expression of PTEN in aorta of aortic-induced hypertensive rats].

    PubMed

    Yan, Zhiqiang; Hu, Ya'e; Liu, Bo; Jiang, Zonglai

    2004-12-01

    This study inquired about the role of tumor suppressor PTEN in the arterial remodeling of Ang II induced hypertension. The expression of PTEN of aorta was examined in the aortic-constricted hypertensive rats (hypertension group), in the aortic-constricted hypertensive rats treated with captopril(hypertension and captopril group), and in the rats having undergone sham operation (control group). At day 28 after surgery, the aortas were collected from the groups. The expression of PTEN mRNA was detected by RT-PCR. The expression and location of PTEN protein were determined by immunohistochemistry. The results showed that the expression of PTEN in aorta of the hypertension group was significantly lower than that of the hypertension and captopril group, and similarly lower than that of the control group. The intensity of PTEN-positive immunohistochemical production in aorta of the hypertension group was weaker than that of the hypertension and captopril group, and likewise, it was weaker than the control. PTEN-positive immunohistochemical production was located in VSMC of aorta. The findings indicated that the expression of PTEN is reduced in hypertensive aorta, that the reduced PTEN experession can be reversed by captopril treatment, that AngII and the increased mechanical strain may participate in regulating expression of PTEN, and that PTEN may play a role in the arterial remodeling induced by hypertension.

  11. Expression of fibrinolytic genes in atherosclerotic abdominal aortic aneurysm wall. A possible mechanism for aneurysm expansion.

    PubMed Central

    Schneiderman, J; Bordin, G M; Engelberg, I; Adar, R; Seiffert, D; Thinnes, T; Bernstein, E F; Dilley, R B; Loskutoff, D J

    1995-01-01

    Expansion of atherosclerotic abdominal aortic aneurysm (AAA) has been attributed to remodeling of the extracellular matrix by active proteolysis. We used in situ hybridization to analyze the expression of fibrinolytic genes in aneurysm wall from eight AAA patients. All specimens exhibited specific areas of inflammatory infiltrates with macrophage-like cells expressing urokinase-type plasminogen activator (u-PA) and tissue-type PA (t-PA) mRNA. Type 1 PA inhibitor (PAI-1) mRNA was expressed at the base of the necrotic atheroma of all specimens and also within some of the inflammatory infiltrates where it frequently colocalized in regions containing u-PA and t-PA mRNA expressing cells. However, in these areas, the cellular distribution of the transcripts for t-PA and u-PA extended far beyond the areas of PAI-1 expression. These observations suggest a local ongoing proteolytic process, one which is only partially counteracted by the more restricted expression of PAI-1 mRNA. An abundance of capillaries was also obvious in all inflammatory infiltrates and may reflect local angiogenesis in response to active pericellular fibrinolysis. The increased fibrinolytic capacity in AAA wall may promote angiogenesis and contribute to local proteolytic degradation of the aortic wall leading to physical weakening and active expansion of the aneurysm. Images PMID:7615837

  12. Pharmacological characterization of mechanisms involved in the vasorelaxation produced by rosuvastatin in aortic rings from rats with a cafeteria-style diet

    PubMed Central

    López-Canales, Jorge Skiold; Lozano-Cuenca, Jair; López-Canales, Oscar Alberto; Aguilar-Carrasco, José Carlos; Aranda-Zepeda, Lidia; López-Sánchez, Pedro; Castillo-Henkel, Enrique Fernando; López-Mayorga, Ruth Mery; Valencia-Hernández, Ignacio

    2015-01-01

    The present study aimed to investigate the possible influence of several inhibitors and blockers on the vascular effect produced by the acute in vitro application of rosuvastatin to phenylephrine-precontracted aortic rings from rats with a semi-solid, cafeteria-style (CAF) diet. It also aimed to examine the effects of rosuvastatin on the expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase in aortic rings from rats with a CAF diet. From comparisons of the effect on phenylephrine-precontracted aortic rings extracted from rats with two different diets (a standard and a CAF diet), it was found that 10−9–10−5-mol/L rosuvastatin produced lower concentration-dependent vasorelaxation on rings from the CAF diet group. The vasorelaxant effect was unaffected by the vehicle, but it was significantly attenuated by 10−5-mol/L NG-nitro-l-arginine methyl ester, 10−2-mol/L tetraethylammonium, 10−3-mol/L 4-aminopyridine, 10−7-mol/L apamin plus 10−7-mol/L charybdotoxin, 10−5-mol/L indomethacin, or 10−5-mol/L cycloheximide. Moreover, in aortic rings from rats with a CAF diet, rosuvastatin enhanced the expression of eNOS, inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase. The acute in vitro application of rosuvastatin to phenylephrine-precontracted aortic rings from rats with a CAF diet had a vasorelaxant effect. Overall, the present results suggest that the stimulation of eNOS, the opening of Ca2+-activated and voltage-activated K+ channels, the stimulation of prostaglandin synthesis and enhanced protein levels of eNOS, inducible nitric oxide synthase, constitutive cyclooxygenase, and inducible cyclooxygenase are involved in this relaxant effect. PMID:25881486

  13. Aortic angiography

    MedlinePlus

    ... problem with the aorta or its branches, including: Aortic aneurysm Aortic dissection Congenital (present from birth) problems AV ... Mean Abnormal results may be due to: Abdominal aortic aneurysm Aortic dissection Aortic regurgitation Aortic stenosis Congenital (present ...

  14. The role of endothelial nitric oxide synthase (eNOS) in the pathogenesis of sinonasal polyps.

    PubMed

    Muluk, N Bayar; Arikan, O K; Atasoy, P; Kiliç, R; Yalçinozan, E Tuna

    2014-01-01

    The pathogenesis of sinonasal polyps has not been known completely. We investigated the role of endothelial Nitric Oxide Synthase (eNOS) in the pathogenesis of sinonasal polyps. Study group (Groups 1-3) consisted of nasal polyp samples of patients with sinonasal polyps; and control group consisted of inferior turbinate samples of patients without nasal polyp. In Group 1: 14 specimens from ethmoid sinus; in Group 2: 10 specimens from nasal cavity; in Group 3: 10 specimens from maxillary sinus; and in Group 4 (Control): 9 specimens from inferior turbinate were included. By immunohistochemical staining technique, eNOS Positivity Index in mucosal layers; and in the inflammatory cells were assessed. eNOS Positivity Index was higher at apical layer of epithelium; and perivascular and glandular parts of subepithelial layer. As a rate of mononuclear cells increased, eNOS positivity increased at basal part of epithelium. In eNOS Positivity Index of mononuclear cells increased ones, eNOS values also increased at glands of subepithelial layer. In nasal cavity, eNOS positivity index of all cells was significantly higher than that of the control group. Increased eNOS all cells positivity index values were seen with decreased glandular and endothelial eNOS values. In all cells group, fibroblasts were seen beside the mononuclear cells. It was observed that eNOS was not expressed in PMNC (mainly neutrophils), growing more in acute inflammatory process; and was expressed in MNCs and all cells group with fibroblasts which were the cells of chronic inflammatory process. Especially MNCs and fibroblasts may play a role in the polyp formation process. In males and in patients with longer polyp duration, eNOS values decreased. We concluded that eNOS Positivity Index was higher at apical layer of epithelium; and perivascular and glandular parts of subepithelial layer. eNOS plays role in vascular dilatation, increases in vascular permeability; increases in nasal secretion due to glandular

  15. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells.

    PubMed

    Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich

    2004-09-01

    Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation.

  16. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells

    PubMed Central

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R.; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  17. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    PubMed

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  18. Expression and Cellular Localization of 15-Hydroxy-Prostaglandin-Dehydrogenase in Abdominal Aortic Aneurysm

    PubMed Central

    Solà-Villà, David; Dilmé, Jaime-Félix; Rodríguez, Cristina; Soto, Begoña; Vila, Luis; Escudero, José-Román; Martínez-González, José; Camacho, Mercedes

    2015-01-01

    PGE2 has been implicated in abdominal aortic aneurysm (AAA) associated hypervascularization. PGE2-metabolism involves 15-hydroxyprostaglandin-dehydrogenase (15-PGDH) the expression of which in AAA is unknown. The aim of this study was to examine the expression and cell distribution of 15-PGDH in AAA. Here, we show that 15-PGDH mRNA levels were significantly higher in aorta samples from patients undergoing AAA repair than in those from healthy multiorgan donors. Consequently, the ratio of metabolized PGE2 secreted by aortic samples was significantly higher in AAA. AAA production of total PGE2 and PGE2 metabolites correlated positively with PGI2 production, while the percentage of metabolized PGE2 correlated negatively with the total amount of PGE2 and with PGI2. Transcript levels of 15-PGDH were statistically associated with leukocyte markers but did not correlate with microvascular endothelial cell markers. Immunohistochemistry revealed 15-PGDH in the areas of leukocyte infiltration in AAA samples, mainly associated with CD45-positive cells, but not in normal aorta samples. We provide new data concerning 15-PGDH expression in human AAA, showing that 15-PGDH is upregulated in AAA and mainly expressed in infiltrating leukocytes. Our data suggest that microvasculature was not involved in PGE2 catabolism, reinforcing the potential role of microvasculature derived PGE2 in AAA-associated hypervascularization. PMID:26287481

  19. Effects of sildenafil on pulmonary hypertension and levels of ET-1, eNOS, and cGMP in aorta-banded rats.

    PubMed

    Dai, Zen-Kong; Tan, Mian-Shin; Chai, Chee-Yin; Chou, Shah-Hwa; Lin, Pei-Chin; Yeh, Jwu-Lai; Jeng, Arco Y; Chang, Chung-I; Chen, Ing-Jun; Wu, Jiunn-Ren

    2006-06-01

    Sildenafil, an oral phosphodiesterase Type 5 inhibitor, has vasodilatory effects through a cGMP-dependent mechanism. We previously showed that aortic banding could result in left ventricular overloading and pulmonary hypertension (PH). In this study, we investigated whether early administration of sildenafil, either immediately after or 2 weeks after aortic banding, could ameliorate the development of PH and alter gene expression of endothelin (ET)-1 and endothelial nitric oxide synthase (eNOS), and alter the levels of cGMP in rats undergoing an ascending aortic banding. Rats (n = 32) were divided into sham-operated and banding groups with or without treatment. The banded rats were further divided into three groups: (i) receiving saline on Days 1-28 (AOB28; n = 8), (ii) receiving saline on Days 1-14 followed by treatment with 50 mg/kg/day sildenafil on Days 15-28 (AOB28/Sil(15-28); n = 8), and (iii) receiving 50 mg/kg/day sildenafil on days 1-28 (AOB28/Sil(1-28); n = 8). The sham-operated rats were administrated saline on Days 1-28 (n = 8). Four weeks after banding, there was a significant development of PH with pulmonary vascular remodeling. Although both sildenafil-treatment groups had significant increases in cGMP and had reductions in the thickening in the medial layer of pulmonary arteriole, notable attenuation of PH occurred only in the AOB28/Sil(1-28) group. PreproET-1 and eNOS messenger RNA (mRNA) expressions were measured by competitive reverse transcription polymerase chain reaction, and eNOS protein was determined by Western blotting. Sildenafil did not alter the elevated ET-1 or preproET-1 mRNA in banded rats. Interestingly, pulmonary eNOS increased in the AOB28/Sil(1-28) group. In conclusion, early treatment with sildenafil inhibited the rise in pulmonary arterial pressure and pulmonary vascular remodeling in PH secondary to heart failure, and cGMP, but not ET-1, might be involved. Clinically, early repeated administration of sildenafil may offer an

  20. 3-Methylcholanthrene/Aryl-Hydrocarbon Receptor-Mediated Hypertension Through eNOS Inactivation.

    PubMed

    Chang, Chih-Cheng; Hsu, Yung-Ho; Chou, Hsiu-Chu; Lee, Yuan-Chii G; Juan, Shu-Hui

    2017-05-01

    Endothelial nitric oxide synthase (eNOS) modulates vascular blood pressure and is predominantly expressed in endothelial cells and activated through the protein kinase B (Akt/PKB)-dependent pathway. We previously reported that 3-methylcholanthrene (3MC) activates the aryl hydrocarbon receptor (AhR) and reduces PI3K/Akt phosphorylation. This study investigated the mechanism underlying the downregulatory effects of 3-MC on nitric oxide (NO) production occurring through the AhR/RhoA/Akt-mediated mechanism. The mechanism underlying the effects of 3-MC on eNOS activity and blood pressure was examined in vitro and in vivo through genetic and pharmacological approaches. Results indicated that 3-MC modified heat shock protein 90 (HSP90), caveolin-1, dynein, and eNOS mRNA and protein expression through the AhR/RhoA-dependent mechanism in mouse cerebral vascular endothelial cells (MCVECs) and that 3-MC reduced eNOS phosphorylation through the AhR/RhoA-mediated inactivation of Akt1. The upregulation of dynein expression was associated with decreased eNOS dimer formation (eNOS dimer; an activated form of the enzyme). Coimmunoprecipitation assay results indicated that 3-MC significantly reduced the interaction between eNOS and its regulatory proteins, including Akt1 and HSP90, but increased the interaction between eNOS and caveolin-1. Immunofluorescence and Western blot analysis revealed that 3-MC reduced the amount of membrane-bound activated eNOS, and a modified Griess assay revealed that 3-MC concomitantly reduced NO production. However, simvastatin reduced 3-MC-mediated murine hypertension. Our study results indicate that AhR, RhoA, and eNOS have major roles in blood pressure regulation. Statin intervention might provide a potential therapeutic approach for reducing hypertension caused by 3-MC. J. Cell. Physiol. 232: 1020-1029, 2017. © 2016 Wiley Periodicals, Inc.

  1. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in Non-Hodgkin's Lymphomas

    SciTech Connect

    Zhu, Xinghua; Miao, Xiaobing; Wu, Yaxun; Li, Chunsun; Guo, Yan; Liu, Yushan; Chen, Yali; Lu, Xiaoyun; Wang, Yuchan; He, Song

    2015-07-15

    Enolases are glycolytic enzymes responsible for the ATP-generated conversion of 2-phosphoglycerate to phosphoenolpyruvate. In addition to the glycolytic function, Enolase 1 (ENO1) has been reported up-regulation in several tumor tissues. In this study, we investigated the expression and biologic function of ENO1 in Non-Hodgkin's Lymphomas (NHLs). Clinically, by western blot analysis we observed that ENO1 expression was apparently higher in diffuse large B-cell lymphoma than in the reactive lymphoid tissues. Subsequently, immunohistochemical staining of 144 NHLs suggested that the expression of ENO1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas. Further, we identified ENO1 as an independent prognostic factor, and it was significantly correlated with overall survival of NHL patients. In addition, we found that ENO1 could promote cell proliferation, regulate cell cycle associated gene and PI3K/AKT signaling pathway in NHLs. Finally, we verified that ENO1 participated in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to FN or HS5 cells significantly protected OCI-Ly8 and Daudi cells from cytotoxicity compared with those cultured in suspension, and these effects were attenuated when transfected with ENO1-siRNA. Based on the study, we propose that inhibition of ENO1 expression may be a novel strategy for therapy for NHLs patients, and it may be a target for drug resistance. - Highlights: • ENO1 expression is reversely correlated with clinical outcomes of patients with NHLs. • ENO1 promotes the proliferation of NHL cells. • ENO1 regulates cell adhesion mediated drug resistance.

  2. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    SciTech Connect

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru; Niwa, Koichi; Hattori, Yuichi; Kondo, Takashi; Inanami, Osamu

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  3. Internalization of eNOS via caveolae regulates PAF-induced inflammatory hyperpermeability to macromolecules.

    PubMed

    Sánchez, Fabiola A; Kim, David D; Durán, Ricardo G; Meininger, Cynthia J; Durán, Walter N

    2008-10-01

    Endothelial nitric oxide (NO) synthase (eNOS) is thought to regulate microvascular permeability via NO production. We tested the hypotheses that the expression of eNOS and eNOS endocytosis by caveolae are fundamental for appropriate signaling mechanisms in inflammatory endothelial permeability to macromolecules. We used bovine coronary postcapillary venular endothelial cells (CVECs) because these cells are derived from the microvascular segment responsible for the transport of macromolecules in inflammation. We stimulated CVECs with platelet-activating factor (PAF) at 100 nM and measured eNOS phosphorylation, NO production, and CVEC monolayer permeability to FITC-dextran 70 KDa (Dx-70). PAF translocated eNOS from plasma membrane to cytosol, induced changes in the phosphorylation state of the enzyme, and increased NO production from 4.3+/-3.8 to 467+/-22.6 nM. PAF elevated CVEC monolayer permeability to FITC-Dx-70 from 3.4+/-0.3 x 10(-6) to 8.5+/-0.4 x 10(-6) cm/s. The depletion of endogenous eNOS with small interfering RNA abolished PAF-induced hyperpermeability, demonstrating that the expression of eNOS is required for inflammatory hyperpermeability responses. The inhibition of the caveolar internalization by blocking caveolar scission using transfection of dynamin dominant-negative mutant, dyn2K44A, inhibited PAF-induced hyperpermeability to FITC-Dx-70. We interpret these data as evidence that 1) eNOS is required for hyperpermeability to macromolecules and 2) the internalization of eNOS via caveolae is an important mechanism in the regulation of endothelial permeability. We advance the novel concept that eNOS internalization to cytosol is a signaling mechanism for the onset of microvascular hyperpermeability in inflammation.

  4. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves

    PubMed Central

    Wirrig, Elaine E.; Hinton, Robert B.; Yutzey, Katherine E.

    2010-01-01

    Approximately 5 million people are affected with aortic valve disease (AoVD) in the United States. The most common treatment is aortic valve (AoV) replacement surgery, however, replacement valves are susceptible to failure, necessitating additional surgeries. The molecular mechanisms underlying disease progression and late AoV calcification are not well understood. Recent studies suggest that genes involved in bone and cartilage development play an active role in osteogenic-like calcification in human calcific AoVD (CAVD). In an effort to define the molecular pathways involved in AoVD progression and calcification, expression of markers of valve mesenchymal progenitors, chondrogenic precursors, and osteogenic differentiation was compared in pediatric non-calcified and adult calcified AoV specimens. Valvular interstitial cell (VIC) activation, extracellular matrix (ECM) disorganization, and markers of valve mesenchymal and skeletal chondrogenic progenitor cells were observed in both pediatric and adult AoVD. However, activated BMP signaling, increased expression of cartilage and bone-type collagens, and increased expression of the osteogenic marker Runx2 are observed in adult diseased AoVs and are not observed in the majority of pediatric diseased valves, representing a marked distinction in the molecular profile between pediatric and adult diseased AoVs. The combined evidence suggests that an actively regulated osteochondrogenic disease process underlies the pathological changes affecting AoVD progression, ultimately resulting in stenotic AoVD. Both pediatric and adult diseased AoVs express protein markers of valve mesenchymal and chondrogenic progenitor cells while adult diseased AoVs also express proteins involved in osteogenic calcification. These findings provide specific molecular indicators of AoVD progression, which may lead to identification of early disease markers and the development of potential therapeutics. PMID:21163264

  5. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves.

    PubMed

    Wirrig, Elaine E; Hinton, Robert B; Yutzey, Katherine E

    2011-03-01

    Approximately 5 million people are affected with aortic valve disease (AoVD) in the United States. The most common treatment is aortic valve (AoV) replacement surgery, however, replacement valves are susceptible to failure, necessitating additional surgeries. The molecular mechanisms underlying disease progression and late AoV calcification are not well understood. Recent studies suggest that genes involved in bone and cartilage development play an active role in osteogenic-like calcification in human calcific AoVD (CAVD). In an effort to define the molecular pathways involved in AoVD progression and calcification, expression of markers of valve mesenchymal progenitors, chondrogenic precursors, and osteogenic differentiation was compared in pediatric non-calcified and adult calcified AoV specimens. Valvular interstitial cell (VIC) activation, extracellular matrix (ECM) disorganization, and markers of valve mesenchymal and skeletal chondrogenic progenitor cells were observed in both pediatric and adult AoVD. However, activated BMP signaling, increased expression of cartilage and bone-type collagens, and increased expression of the osteogenic marker Runx2 are observed in adult diseased AoVs. They are not observed in the majority of pediatric diseased valves, representing a marked distinction in the molecular profile between pediatric and adult diseased AoVs. The combined evidence suggests that an actively regulated osteochondrogenic disease process underlies the pathological changes affecting AoVD progression, ultimately resulting in stenotic AoVD. Both pediatric and adult diseased AoVs express protein markers of valve mesenchymal and chondrogenic progenitor cells while adult diseased AoVs also express proteins involved in osteogenic calcification. These findings provide specific molecular indicators of AoVD progression, which may lead to identification of early disease markers and the development of potential therapeutics.

  6. X-ray Structure of Engineered Human Aortic Preferentially Expressed Protein-1 (APEG-1)

    SciTech Connect

    Manjasetty,B.; Niesen, F.; Scheich, C.; Roske, Y.; Goetz, F.; Behlke, J.; Sievert, V.; Heinemann, U.; Buessow, K.

    2005-01-01

    Arterial smooth muscle cells (SMC) are essential for the formation and function of the cardiovascular system. Abnormalities in their growth can cause a wide range of human disorders such as atherosclerosis, the principal cause for heart failure, thus the leading cause for deaths in the western world. The molecular mechanisms that regulate SMC growth and differentiation are unclear partly due to the lack of specific markers and defined in vitro differentiation systems. The recently discovered Aortic Preferentially Expressed Protein-1 (APEG-1) may serve as a sensitive marker for vascular SMC differentiation. APEG-1 is expressed in differentiated vascular SMC in vivo and was found to be down-regulated rapidly in de-differentiated vascular SMC in vitro and in injured arteries in vivo.

  7. A three-dimensional co-culture model of the aortic valve using magnetic levitation.

    PubMed

    Tseng, Hubert; Balaoing, Liezl R; Grigoryan, Bagrat; Raphael, Robert M; Killian, T C; Souza, Glauco R; Grande-Allen, K Jane

    2014-01-01

    The aortic valve consists of valvular interstitial cells (VICs) and endothelial cells (VECs). While these cells are understood to work synergistically to maintain leaflet structure and valvular function, few co-culture models of these cell types exist. In this study, aortic valve co-cultures (AVCCs) were assembled using magnetic levitation and cultured for 3 days. Immunohistochemistry and quantitative reverse-transcriptase polymerase chain reaction were used to assess the maintenance of cellular phenotype and function, and the formation of extracellular matrix. AVCCs stained positive for CD31 and α-smooth muscle actin (αSMA), demonstrating that the phenotype was maintained. Functional markers endothelial nitric oxide synthase (eNOS), von Willebrand factor (VWF) and prolyl-4-hydroxylase were present. Extracellular matrix components collagen type I, laminin and fibronectin also stained positive, with reduced gene expression of these proteins in three dimensions compared to two dimensions. Genes for collagen type I, lysyl oxidase and αSMA were expressed less in AVCCs than in 2-D cultures, indicating that VICs are quiescent. Co-localization of CD31 and αSMA in the AVCCs suggests that endothelial-mesenchymal transdifferentiation might be occurring. Differences in VWF and eNOS in VECs cultured in two and three dimensions also suggests that the AVCCs possibly have anti-thrombotic potential. Overall, a co-culture model of the aortic valve was designed, and serves as a basis for future experiments to understand heart valve biology.

  8. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells.

    PubMed

    Lv, Qingshan; Yang, Mei; Liu, Xueting; Zhou, Lina; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-03-23

    Muramyldipeptide (MDP), the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2). Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs) with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF) 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  9. The nitric oxide donor DETA-NONOate decreases matrix metalloproteinase-9 expression and activity in rat aortic smooth muscle and abdominal aortic explants.

    PubMed

    Sinha, Indranil; Hannawa, Kevin K; Ailawadi, Gorav; Woodrum, Derek T; Ford, John W; Henke, Peter K; Stanley, James C; Eagleton, Matthew J; Upchurch, Gilbert R

    2006-01-01

    Our objective was to examine the role of an exogenous nitric oxide (NO) donor, DETA-NONOate (DETA), on matrix metalloproteinase (MMP)-9, MMP-2, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 expression and activity in interleukin (IL)-1beta-induced rat aortic smooth muscle cells (RA-SMCs) and rat aortic explants (RAEs). RA-SMCs were incubated with IL-1beta (2 ng/ml), an inflammatory cytokine known to induce MMP-9 expression, and increasing concentrations of DETA (0, 1.0, 10, 100 microM; n = 3/group) for 48 hr. RAEs were incubated with IL-1beta (2 ng/mL) and increasing concentrations of DETA (0, 5.0, 50, 100, and 500 microM; n = 3/group) for 48 hr. Media were collected and assayed for NO(x) by the Griess reaction and MMP-9 activity by zymography. Messenger RNA (mRNA) was extracted from cells and analyzed for MMP-9, MMP-2, and TIMP-1 expression levels by quantitative real-time reverse-transcriptase polymerase chain reaction. All statistical analyses were performed by analysis of variance. In RA-SMCs and RAEs, DETA administration resulted in a dose-dependent increase in media NOx concentration (RA-SCM p < 0.01, RAE p < 0.01) and a concurrent decrease in both MMP-9 expression (RASMC p = 0.01, RAE p = 0.01) and activity (RASMC p = 0.04, RAE p = 0.006). There were no significant differences seen in MMP-2 and TIMP-1 expression or activity in response to DETA exposure. DETA decreased IL-1beta-induced MMP-9 expression and activity in both RA-SMCs and RAEs in a dose-dependent fashion. In addition, DETA administration had no effect on MMP-2 or TIMP-1 expression or activity in vitro. These data suggest that NO donors may be beneficial in decreasing MMP-9 levels and might serve to inhibit MMP-9-dependent vessel wall remodeling seen during abdominal aortic aneurysm formation.

  10. Gene Expression in Experimental Aortic Coarctation and Repair: Candidate Genes for Therapeutic Intervention?

    PubMed Central

    LaDisa, John F.; Bozdag, Serdar; Olson, Jessica; Ramchandran, Ramani; Kersten, Judy R.; Eddinger, Thomas J.

    2015-01-01

    Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is one of the most common congenital cardiovascular defects. Treatments for CoA improve life expectancy, but morbidity persists, particularly due to the development of chronic hypertension (HTN). Identifying the mechanisms of morbidity is difficult in humans due to confounding variables such as age at repair, follow-up duration, coarctation severity and concurrent anomalies. We previously developed an experimental model that replicates aortic pathology in humans with CoA without these confounding variables, and mimics correction at various times using dissolvable suture. Here we present the most comprehensive description of differentially expressed genes (DEGs) to date from the pathology of CoA, which were obtained using this model. Aortic samples (n=4/group) from the ascending aorta that experiences elevated blood pressure (BP) from induction of CoA, and restoration of normal BP after its correction, were analyzed by gene expression microarray, and enriched genes were converted to human orthologues. 51 DEGs with >6 fold-change (FC) were used to determine enriched Gene Ontology terms, altered pathways, and association with National Library of Medicine Medical Subject Headers (MeSH) IDs for HTN, cardiovascular disease (CVD) and CoA. The results generated 18 pathways, 4 of which (cell cycle, immune system, hemostasis and metabolism) were shared with MeSH ID’s for HTN and CVD, and individual genes were associated with the CoA MeSH ID. A thorough literature search further uncovered association with contractile, cytoskeletal and regulatory proteins related to excitation-contraction coupling and metabolism that may explain the structural and functional changes observed in our experimental model, and ultimately help to unravel the mechanisms responsible for persistent morbidity after treatment for CoA. PMID:26207811

  11. Gene Expression in Experimental Aortic Coarctation and Repair: Candidate Genes for Therapeutic Intervention?

    PubMed

    LaDisa, John F; Bozdag, Serdar; Olson, Jessica; Ramchandran, Ramani; Kersten, Judy R; Eddinger, Thomas J

    2015-01-01

    Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is one of the most common congenital cardiovascular defects. Treatments for CoA improve life expectancy, but morbidity persists, particularly due to the development of chronic hypertension (HTN). Identifying the mechanisms of morbidity is difficult in humans due to confounding variables such as age at repair, follow-up duration, coarctation severity and concurrent anomalies. We previously developed an experimental model that replicates aortic pathology in humans with CoA without these confounding variables, and mimics correction at various times using dissolvable suture. Here we present the most comprehensive description of differentially expressed genes (DEGs) to date from the pathology of CoA, which were obtained using this model. Aortic samples (n=4/group) from the ascending aorta that experiences elevated blood pressure (BP) from induction of CoA, and restoration of normal BP after its correction, were analyzed by gene expression microarray, and enriched genes were converted to human orthologues. 51 DEGs with >6 fold-change (FC) were used to determine enriched Gene Ontology terms, altered pathways, and association with National Library of Medicine Medical Subject Headers (MeSH) IDs for HTN, cardiovascular disease (CVD) and CoA. The results generated 18 pathways, 4 of which (cell cycle, immune system, hemostasis and metabolism) were shared with MeSH ID's for HTN and CVD, and individual genes were associated with the CoA MeSH ID. A thorough literature search further uncovered association with contractile, cytoskeletal and regulatory proteins related to excitation-contraction coupling and metabolism that may explain the structural and functional changes observed in our experimental model, and ultimately help to unravel the mechanisms responsible for persistent morbidity after treatment for CoA.

  12. Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms

    PubMed Central

    Lenk, Guy M; Tromp, Gerard; Weinsheimer, Shantel; Gatalica, Zoran; Berguer, Ramon; Kuivaniemi, Helena

    2007-01-01

    Background Abdominal aortic aneurysms are a common disorder with an incompletely understood etiology. We used Illumina and Affymetrix microarray platforms to generate global gene expression profiles for both aneurysmal (AAA) and non-aneurysmal abdominal aorta, and identified genes that were significantly differentially expressed between cases and controls. Results Affymetrix and Illumina arrays included 18,057 genes in common; 11,542 (64%) of these genes were considered to be expressed in either aneurysmal or normal abdominal aorta. There were 3,274 differentially expressed genes with a false discovery rate (FDR) ≤ 0.05. Many of these genes were not previously known to be involved in AAA, including SOST and RUNX3, which were confirmed using Q-RT-PCR (Pearson correlation coefficient for microarray and Q-RT-PCR data = 0.89; p-values for differences in expression between AAA and controls for SOST: 4.87 × 10-4 and for RUNX3: 4.33 × 10-5). Analysis of biological pathways, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), indicated extreme overrepresentation of immune related categories. The enriched categories included the GO category Immune Response (GO:0006955; FDR = 2.1 × 10-14), and the KEGG pathways natural killer cell mediated cytotoxicity (hsa04650; FDR = 5.9 × 10-6) and leukocyte transendothelial migration (hsa04670; FDR = 1.1 × 10-5). Conclusion Previous studies have provided evidence for the involvement of the immune system in AAA. The current expression analysis extends these findings by demonstrating broad coordinate gene expression in immunological pathways. A large number of genes involved in immune function were differentially expressed in AAA, and the pathway analysis gave these results a biological context. The data provide valuable insight for future studies to dissect the pathogenesis of human AAA. These pathways might also be used as targets for the development of therapeutic agents for AAA. PMID:17634102

  13. Vitamin D Receptor Deficiency and Low Vitamin D Diet Stimulate Aortic Calcification and Osteogenic Key Factor Expression in Mice

    PubMed Central

    Schmidt, Nadine; Brandsch, Corinna; Kühne, Hagen; Thiele, Alexandra; Hirche, Frank; Stangl, Gabriele I.

    2012-01-01

    Low levels of 25-hydroxy vitamin D (25(OH)D) are associated with cardiovascular diseases. Herein, we tested the hypothesis that vitamin D deficiency could be a causal factor in atherosclerotic vascular changes and vascular calcification. Aortic root sections of vitamin D receptor knockout (VDR−/−) mice that were stained for vascular calcification and immunostained for osteoblastic differentiation factors showed more calcified areas and a higher expression of the osteogenic key factors Msx2, Bmp2, and Runx2 than the wild-type mice (P<0.01). Data from LDL receptor knockout (LDLR−/−) mice that were fed western diet with either low (50 IU/kg), recommended (1,000 IU/kg), or high (10,000 IU/kg) amounts of vitamin D3 over 16 weeks revealed increasing plasma concentrations of 25(OH)D (P<0.001) with increasing intake of vitamin D, whereas levels of calcium and phosphorus in plasma and femur were not influenced by the dietary treatment. Mice treated with the low vitamin D diet had more calcified lesions and a higher expression of Msx2, Bmp2, and Runx2 in aortic roots than mice fed recommended or high amounts of vitamin D (P<0.001). Taken together, these findings indicate vitamin D deficiency as a risk factor for aortic valve and aortic vessel calcification and a stimulator of osteogenic key factor expression in these vascular areas. PMID:22536373

  14. Phosphorus overload and PTH induce aortic expression of Runx2 in experimental uraemia.

    PubMed

    Graciolli, Fabiana G; Neves, Katia R; dos Reis, Luciene M; Graciolli, Rafael G; Noronha, Irene L; Moysés, Rosa M A; Jorgetti, Vanda

    2009-05-01

    Vascular calcification (VC) is commonly seen in patients with chronic kidney disease (CKD). Elevated levels of phosphate and parathormone (PTH) are considered nontraditional risk factors for VC. It has been shown that, in vitro, phosphate transforms vascular smooth muscle cells (VSMCs) into calcifying cells, evidenced by upregulated expression of runt-related transcription factor 2 (Runx2), whereas PTH is protective against VC. In addition, Runx2 has been detected in calcified arteries of CKD patients. However, the in vivo effect of phosphate and PTH on Runx2 expression remains unknown. Wistar rats were submitted to parathyroidectomy, 5/6 nephrectomy (Nx) and continuous infusion of 1-34 rat PTH (at physiological or supraphysiological rates) or were sham-operated. Diets varied only in phosphate content, which was low (0.2%) or high (1.2%). Biochemical, histological, immunohistochemistry and immunofluorescence analyses were performed. Nephrectomized animals receiving high-PTH infusion presented VC, regardless of the phosphate intake level. However, phosphate overload and normal PTH infusion induced phenotypic changes in VSMCs, as evidenced by upregulated aortic expression of Runx2. High-PTH infusion promoted histological changes in the expression of osteoprotegerin and type I collagen in calcified arteries. Phosphate, by itself is a potential pathogenic factor for VC. It is of note that phosphate overload, even without VC, was associated with overexpression of Runx2 in VSMCs. The mineral imbalance often seen in patients with CKD should be corrected.

  15. Eno-Osher schemes for Euler equations

    NASA Technical Reports Server (NTRS)

    Vandervegt, Jacobus J.

    1992-01-01

    The combination of the Osher approximate Riemann solver for the Euler equations and various ENO schemes is discussed for one-dimensional flow. The three basic approaches, viz. the ENO scheme using primitive variable reconstruction, either with Cauchy-Kowalewski procedure for time integration or the TVD Runge-Kutta scheme, and the flux-ENO method are tested on different shock tube cases. The shock tube cases were chosen to present a serious challenge to the ENO schemes in order to test their ability to capture flow discontinuities, such as shocks. Also the effect of the ordering of the eigen values, viz. natural or reversed ordering, in the Osher scheme is investigated. The ENO schemes are tested up to fifth order accuracy in space and time. The ENO-Osher scheme using the Cauchy-Kowalewski procedure for time integration is found to be the most accurate and robust compared with the other methods and is also computationally efficient. The tests showed that the ENO schemes perform reasonably well, but have problems in cases where two discontinuities are close together. In that case there are not enough points in the smooth part of the flow to create a non-oscillatory interpolation.

  16. Increased vascular eNOS and cystathionine-γ-lyase protein after 6 weeks oral administration of 3, 5, 7, 3', 4'-pentamethoxyflavone to middle-aged male rats.

    PubMed

    Yorsin, Somruedee; Kanokwiroon, Kanyanatt; Radenahmad, Nisaudah; Jansakul, Chaweewan

    2016-11-01

    Effects of treatment of middle-aged male rats with 3, 5, 7, 3', 4'-pentamethoxyflavone (PMF) on vascular and perivascular adipose tissue (PVAT) functions and blood chemistry were investigated. Rats received PMF (22 mg/kg), orally or vehicle, twice a day for 6 weeks. The PMF-treated rats had lower serum glucose, higher HDL-C levels, but no change in other parameters. Thoracic aortic and mesenteric rings of PMF treated rats produced lower maximal contraction to phenylephrine that was normalized by N(G)-nitro-L-arginine (L-NA) or endothelial removal. The aortic- and mesenteric rings of the PMF treated rats showed improved relaxation to acetylcholine, but not to glyceryl trinitrate, and had higher eNOS protein. DL-propargylglycine (PAG) caused greater increase in the baseline tension of the PMF-treated aortic ring and higher contraction to low concentrations of phenylephrine. PVAT lowered the contractile response of the L-NA pretreated aortic rings to phenylephrine for both groups, but PAG had no effect. The cystathionine-γ-lyase (CSE) protein of the thoracic rings, but not of the PVAT, shows increased expression after PMF treatment. Overall, PMF treatment of middle aged rats appeared to increase production of NO and H2S from the blood vessels by upregulating the expression of eNOS and CSE. PMF also decreased fasting serum glucose and increased HDL-C levels, with no toxicity to liver and kidney functions. Thus, PMF is a novel compound for possible use as a health product to prevent and/or to reduce the development of diabetes type II and/or cardiovascular disease.

  17. Effect of transverse aortic constriction on cardiac structure, function and gene expression in pregnant rats.

    PubMed

    Songstad, Nils Thomas; Johansen, David; How, Ole-Jacob; Kaaresen, Per Ivar; Ytrehus, Kirsti; Acharya, Ganesh

    2014-01-01

    There is an increased risk of heart failure and pulmonary edema in pregnancies complicated by hypertensive disorders. However, in a previous study we found that pregnancy protects against fibrosis and preserves angiogenesis in a rat model of angiotensin II induced cardiac hypertrophy. In this study we test the hypothesis that pregnancy protects against negative effects of increased afterload. Pregnant (gestational day 5.5-8.5) and non-pregnant Wistar rats were randomized to transverse aortic constriction (TAC) or sham surgery. After 14.2 ± 0.14 days echocardiography was performed. Aortic blood pressure and left ventricular (LV) pressure-volume loops were obtained using a conductance catheter. LV collagen content and cardiomyocyte circumference were measured. Myocardial gene expression was assessed by real-time polymerase chain reaction. Heart weight was increased by TAC (p<0.001) but not by pregnancy. Cardiac myocyte circumference was larger in pregnant compared to non-pregnant rats independent of TAC (p = 0.01), however TAC per se did not affect this parameter. Collagen content in LV myocardium was not affected by pregnancy or TAC. TAC increased stroke work more in pregnant rats (34.1 ± 2.4 vs 17.5 ± 2.4 mmHg/mL, p<0.001) than in non-pregnant (28.2 ± 1.7 vs 20.9 ± 1.5 mmHg/mL, p = 0.06). However, it did not lead to overt heart failure in any group. In pregnant rats, α-MHC gene expression was reduced by TAC. Increased in the expression of β-MHC gene was higher in pregnant (5-fold) compared to non-pregnant rats (2-fold) after TAC (p = 0.001). Nine out of the 19 genes related to cardiac remodeling were affected by pregnancy independent of TAC. This study did not support the hypothesis that pregnancy is cardioprotective against the negative effects of increased afterload. Some differences in cardiac structure, function and gene expression between pregnant and non-pregnant rats following TAC indicated that afterload increase is less tolerated in pregnancy.

  18. High-fat, cholesterol-rich diet affects leptin expression in the aortic layers.

    PubMed

    Krawczynska, Agata; Olczak, Elzbieta; Rembiszewska, Alina; Gromadzka-Ostrowska, Joanna

    2013-01-01

    Leptin is stated to be an important mediator between obesity and cardiovascular disease. However, whether leptin location in the aorta is dependent on diet and its atherogenic character is still unknown. This study examined the relationship between a high-fat diet with or without cholesterol and the expression of leptin in aortic layers. Forty male rats were fed a high-fat diet with fish or grape seed oil as a dietary fat source, with or without cholesterol, to enhance the atherogenic character of their diet. The experiments lasted for three and six weeks, respectively. Plasma lipid profile, plasma leptin concentration and leptin expression in the endothelium (E), myometrium (M) and adventitia (A) were examined. The length of feeding was a key factor which influenced both the lipid profile and leptin expression in the aorta. Leptin concentration positively correlated with body weight and plasma triglycerides only in the three-week experiment, which suggests that the physiological actions of leptin can be disturbed by prolonged consumption of a high-fat diet. Short-term intake of a high-fat diet with fish oil, increasing high density lipoprotein cholesterol (HDL) level and decreasing total cholesterol (TC)/HDL ratio, enhanced leptin expression in E in comparison to the group fed grape seed oil. However, in the group with the highest diet intake, leptin expression in each layer was lowest. Generally, leptin expression was most common in E; however, an extension of the period of feeding in groups fed a diet with grape seed oil with or without additional cholesterol increased leptin presence in M and A in comparison to the group fed fish oil. Significantly higher values of TC and HDL in the same groups may suggest that leptin changes in the aorta and the atherogenic impact of grape seed oil can be connected when the consumption of a high-fat diet is excessive.

  19. Gene Expression Profiling in Abdominal Aortic Aneurysms After Finite Element Rupture Risk Assessment.

    PubMed

    Erhart, Philipp; Schiele, Sandra; Ginsbach, Philip; Grond-Ginsbach, Caspar; Hakimi, Maani; Böckler, Dittmar; Lorenzo-Bermejo, Justo; Dihlmann, Susanne

    2017-08-01

    To investigate the association between local biomechanical rupture risk calculations from finite element analysis (FEA) and whole-genome profiling of the abdominal aortic aneurysm (AAA) wall to determine if AAA wall regions with highest and lowest estimated rupture risk show different gene expression patterns. Six patients (mean age 74 years; all men) scheduled for open surgery to treat asymptomatic AAAs (mean diameter 55.2±3.5 mm) were recruited for the study. Rupture risk profiles were estimated by FEA from preoperative computed tomography angiography data. During surgery, AAA wall samples of ~10 mm(2) were extracted from the lowest and highest rupture risk locations identified by the FEA. Twelve samples were processed for RNA extraction and subsequent whole genome expression profiling. Expression of single genes and of predefined gene groups were compared between vessel wall areas with highest and lowest predicted rupture risk. Normalized datasets comprised 15,079 gene transcripts with expression above background. In biopsies with high rupture risk, upregulation of 18 and downregulation of 18 genes was detected when compared to the low-risk counterpart. Global analysis of predefined gene groups revealed expression differences in genes associated with extracellular matrix (ECM) degradation (p<0.001), matrix metalloproteinase activity (p<0.001), and chemokine signaling (p<0.001). Increased expression of genes involved in degrading ECM components was present in AAA wall regions with highest biomechanical stress, supporting the thesis of mechanotransduction. More experimental studies with cooperation of multicenter vascular biobanks are necessary to understand AAA etiologies and identify further parameters of FEA model complementation.

  20. Aortic Dissection

    MedlinePlus

    ... arteries (atherosclerosis) Weakened and bulging artery (pre-existing aortic aneurysm) An aortic valve defect (bicuspid aortic valve) A ... valve, tell your doctor. If you have an aortic aneurysm, find out how often you need monitoring and ...

  1. Pharmacological induction of vascular extracellular superoxide dismutase expression in vivo.

    PubMed

    Oppermann, Marc; Balz, Vera; Adams, Volker; Dao, Vu Thao-Vi; Bas, Murat; Suvorava, Tatsiana; Kojda, Georg

    2009-07-01

    Pentaerythritol tetranitrate (PETN) treatment reduces progression of atherosclerosis and endothelial dysfunction and decreases oxidation of low-density lipoprotein (LDL) in rabbits. These effects are associated with decreased vascular superoxide production, but the underlying molecular mechanisms remain unknown. Previous studies demonstrated that endogenous nitric oxide could regulate the expression of extracellular superoxide dismutase (ecSOD) in conductance vessels in vivo. We investigated the effect of PETN and overexpression of endothelial nitric oxide synthase (eNOS(++)) on the expression and activity of ecSOD. C57BL/6 mice were randomized to receive placebo or increasing doses of PETN for 4 weeks and eNOS(++) mice with a several fold higher endothelial-specific eNOS expression were generated. The expression of ecSOD was determined in the lung and aortic tissue by real-time PCR and Western blot. The ecSOD activity was measured using inhibition of cytochrome C reduction. There was no effect of PETN treatment or eNOS overexpression on ecSOD mRNA in the lung tissue, whereas ecSOD protein expression increased from 2.5-fold to 3.6-fold (P < 0.05) by 6 mg PETN/kg body weight (BW)/day and 60 mg PETN/kg BW/day, respectively. A similar increase was found in aortic homogenates. eNOS(++) lung cytosols showed an increase of ecSOD protein level of 142 +/- 10.5% as compared with transgene-negative littermates (P < 0.05), which was abolished by N(omega)-nitro-L-arginine treatment. In each animal group, the increase of ecSOD expression was paralleled by an increase of ecSOD activity. Increased expression and activity of microvascular ecSOD are likely induced by increased bioavailability of vascular nitric oxide. Up-regulation of vascular ecSOD may contribute to the reported antioxidative and anti-atherosclerotic effects of PETN.

  2. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    PubMed Central

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  3. Biglycan induces the expression of osteogenic factors in human aortic valve interstitial cells via Toll-like receptor 2

    PubMed Central

    Song, Rui; Zeng, Qingchun; Ao, Lihua; Yu, Jessica A.; Cleveland, Joseph C.; Zhao, Ke-seng; Fullerton, David A.; Meng, Xianzhong

    2012-01-01

    Background While biglycan and oxidized low-density lipoprotein (oxLDL) accumulation has been observed in calcific, stenotic aortic valves, their role in the pathogenesis of calcific aortic valve disease is poorly understood. We hypothesized that soluble biglycan induces the osteogenic response in human aortic valve interstitial cells (AVICs) via Toll-like receptor (TLR) 2 and TLR4, and mediates the pro-osteogenic effect of oxLDL. Methods and Results AVICs of stenotic valves express higher levels of biglycan. Stimulation of cells from normal valves with biglycan increased the expression of bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP) among the chondrogenic/osterogenic markers examined, and caused accumulation of calcium deposits. TLR2 silencing, but not TLR4 silencing, reduced BMP-2 and ALP levels following biglycan stimulation although co-immunoprecipitation revealed that biglycan intercts with both TLR2 and TLR4. Biglycan induced the phosphorylation of ERK1/2, p38 MAPK and NF-κB. Inhibition of ERK1/2 markedly reduced the up-regulation of BMP-2 and ALP expression by biglycan while inhibition of p38 MAPK or NF-κB had a moderate effect. Stimulation of AVICs with oxLDL up-regulated biglycan expression and release. Knockdown neutralization of biglycan reduced the effect of oxLDL on BMP-2 and ALP expression. Conclusion Extracellular soluble biglycan induces the expression of BMP-2 and ALP in human AVICs primarily via TLR2 and contributes to the the pro-osteogenic effect of oxLDL. These findings highlight the potential role of soluble biglycan and oxLDL in the development of calcific aortic valve disease. PMID:22982459

  4. Impaired mechanics and matrix metalloproteinases/inhibitors expression in female ascending thoracic aortic aneurysms.

    PubMed

    Sokolis, Dimitrios P; Iliopoulos, Dimitrios C

    2014-06-01

    We hypothesized that female gender may have a specific negative impact on the mechanical characteristics, composition, and expression of matrix metalloproteinases/tissue inhibitors (MMPs/TIMPs) in the wall of ascending thoracic aortic aneurysms (ATAAs). Degenerative ATAAs were resected from 35 patients (age: 67±2 years, male: 20, ATAA diameter: 5.5±0.1cm) undergoing elective surgery. Tissue specimens were grouped by gender, region, and direction and submitted to immunohistochemistry for semi-quantitative assessment of MMP-2, MMP-9, TIMP-1, and TIMP-2 expressions, i.e. of staining intensity in extracellular matrix and immunoreactivity in vascular cells, as well as to histology for quantitation of elastin/collagen contents. Biomechanical characterization by the Fung-type model and examination of failure properties was performed. Gender differences in patient age, ATAA diameter, and ATAA diameter/body-surface area were non-significant. Increased MMP-2 and MMP-9, and decreased TIMP-1 and TIMP-2 expressions were observed in females. Elastin/collagen contents were higher in males than females, as was failure stress in circumferential but not longitudinal specimens. In both directions, failure stretch was invariant, while the Fung-type model parameters and elastic moduli calculated at physiologic stress levels were higher in females, suggestive of increased wall stiffness compared to males. MMP and TIMP expressions did not differ with region, unlike failure stress longitudinally that was greater posteriorly than anteriorly. The female gender is associated with impaired ATAA strength and increased stiffness, relating to the more extensive extracellular matrix breakdown and significantly higher ratio of MMP/TIMP expression witnessed in females. The present data may aid to identify the underlying pathophysiology accountable for the higher rupture risk, documented by epidemiologic studies in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cyclic strain is a weak inducer of prostacyclin synthase expression in bovine aortic endothelial cells

    NASA Technical Reports Server (NTRS)

    Segurola, R. J. Jr; Oluwole, B.; Mills, I.; Yokoyama, C.; Tanabe, T.; Kito, H.; Nakajima, N.; Sumpio, B. E.

    1997-01-01

    Recent studies indicate that hemodynamic forces such as cyclic strain and shear stress can increase prostacyclin (PGI2) secretion by endothelial cells (EC) but the effect of these forces on prostacyclin synthase (PGIS) gene expression remains unclear and is the focus of this study. Bovine aortic EC were seeded onto type I collagen coated flexible membranes and grown to confluence. The membranes and attached EC were subjected to 10% average strain at 60 cpm (0.5 sec deformation alternating with 0.5 sec relaxation) for up to 5 days. PGIS gene expression was determined by Northern blot analysis and protein level by Western blot analysis. The effect of cyclic strain on the PGIS promoter was determined by the transfection of a 1-kb human PGIS gene promoter construct coupled to a luciferase reporter gene into EC, followed by determination of luciferase activity. PGIS gene expression increased 1.7-fold in EC subjected to cyclic strain for 24 hr. Likewise, EC transfected with a pGL3B-PGIS (-1070/-10) construct showed an approximate 1.3-fold elevation in luciferase activity in EC subjected to cyclic strain for 3, 4, 8, and 12 hr. The weak stimulation of PGIS gene expression by cyclic strain was reflected in an inability to detect alterations in PGIS protein levels in EC subjected to cyclic strain for as long as 5 days. These data suggest that strain-induced stimulation of PGIS gene expression plays only a minor role in the ability of cyclic strain to stimulate PGI2 release in EC. These findings coupled with our earlier demonstration of a requisite addition of exogenous arachidonate in order to observe strain-induced PGI2 release, implicates a mechanism that more likely involves strain-induced stimulation of PGIS activity.

  6. Cyclic strain is a weak inducer of prostacyclin synthase expression in bovine aortic endothelial cells

    NASA Technical Reports Server (NTRS)

    Segurola, R. J. Jr; Oluwole, B.; Mills, I.; Yokoyama, C.; Tanabe, T.; Kito, H.; Nakajima, N.; Sumpio, B. E.

    1997-01-01

    Recent studies indicate that hemodynamic forces such as cyclic strain and shear stress can increase prostacyclin (PGI2) secretion by endothelial cells (EC) but the effect of these forces on prostacyclin synthase (PGIS) gene expression remains unclear and is the focus of this study. Bovine aortic EC were seeded onto type I collagen coated flexible membranes and grown to confluence. The membranes and attached EC were subjected to 10% average strain at 60 cpm (0.5 sec deformation alternating with 0.5 sec relaxation) for up to 5 days. PGIS gene expression was determined by Northern blot analysis and protein level by Western blot analysis. The effect of cyclic strain on the PGIS promoter was determined by the transfection of a 1-kb human PGIS gene promoter construct coupled to a luciferase reporter gene into EC, followed by determination of luciferase activity. PGIS gene expression increased 1.7-fold in EC subjected to cyclic strain for 24 hr. Likewise, EC transfected with a pGL3B-PGIS (-1070/-10) construct showed an approximate 1.3-fold elevation in luciferase activity in EC subjected to cyclic strain for 3, 4, 8, and 12 hr. The weak stimulation of PGIS gene expression by cyclic strain was reflected in an inability to detect alterations in PGIS protein levels in EC subjected to cyclic strain for as long as 5 days. These data suggest that strain-induced stimulation of PGIS gene expression plays only a minor role in the ability of cyclic strain to stimulate PGI2 release in EC. These findings coupled with our earlier demonstration of a requisite addition of exogenous arachidonate in order to observe strain-induced PGI2 release, implicates a mechanism that more likely involves strain-induced stimulation of PGIS activity.

  7. Type of supplemented simple sugar, not merely calorie intake, determines adverse effects on metabolism and aortic function in female rats.

    PubMed

    Sangüesa, Gemma; Shaligram, Sonali; Akther, Farjana; Roglans, Núria; Laguna, Juan C; Rahimian, Roshanak; Alegret, Marta

    2017-02-01

    High consumption of simple sugars causes adverse cardiometabolic effects. We investigated the mechanisms underlying the metabolic and vascular effects of glucose or fructose intake and determined whether these effects are exclusively related to increased calorie consumption. Female Sprague-Dawley rats were supplemented with 20% wt/vol glucose or fructose for 2 mo, and plasma analytes and aortic response to vasodilator and vasoconstrictor agents were determined. Expression of molecules associated with lipid metabolism, insulin signaling, and vascular response were evaluated in hepatic and/or aortic tissues. Caloric intake was increased in both sugar-supplemented groups vs. control and in glucose- vs. fructose-supplemented rats. Hepatic lipogenesis was induced in both groups. Plasma triglycerides were increased only in the fructose group, together with decreased expression of carnitine palmitoyltransferase-1A and increased microsomal triglyceride transfer protein expression in the liver. Plasma adiponectin and peroxisome proliferator-activated receptor (PPAR)-α expression was increased only by glucose supplementation. Insulin signaling in liver and aorta was impaired in both sugar-supplemented groups, but the effect was more pronounced in the fructose group. Fructose supplementation attenuated aortic relaxation response to a nitric oxide (NO) donor, whereas glucose potentiated it. Phenylephrine-induced maximal contractions were reduced in the glucose group, which could be related to increased endothelial NO synthase (eNOS) phosphorylation and subsequent elevated basal NO in the glucose group. In conclusion, despite higher caloric intake in glucose-supplemented rats, fructose caused worse metabolic and vascular responses. This may be because of the elevated adiponectin level and the subsequent enhancement of PPARα and eNOS phosphorylation in glucose-supplemented rats. This is the first study comparing the effects of glucose and fructose consumption on metabolic

  8. Increased Expression of Lamin A/C Correlate with Regions of High Wall Stress in Abdominal Aortic Aneurysms

    PubMed Central

    Malkawi, Amir; Pirianov, Grisha; Torsney, Evelyn; Chetter, Ian; Sakalihasan, Natzi; Loftus, Ian M.; Nordon, Ian; Huggins, Christopher; Charolidi, Nicoletta; Thompson, Matt; Xu, Xie Yun; Cockerill, Gillian W.

    2015-01-01

    Background Since aortic diameter is the most ­significant risk factor for rupture, we sought to identify stress-dependent changes in gene expression to illuminate novel molecular processes in aneurysm rupture. Materials and Methods We constructed finite element maps of abdominal computerized tomography scans (CTs) of seven abdominal aortic aneurysm (AAA) patients to map wall stress. Paired biopsies from high- and low-stress areas were collected at surgery using vascular landmarks as coordinates. Differential gene expression was evaluated by Illumina Array analysis, using the whole genome DNA-mediated, annealing, selection, extension, and ligation (DASL) gene chip (n = 3 paired samples). Results The sole significant candidate from this analysis, Lamin A/C, was validated at the protein level, using western blotting. Lamin A/C expression in the inferior mesenteric vein (IMV) of AAA patients was compared to a control group and in aortic smooth muscle cells in culture in response to physiological pulsatile stretch. ­Areas of high wall stress (n = 7) correlate to those ­regions which have the thinnest walls [778 µm (585–1120 µm)] in comparison to areas of lowest wall stress [1620 µm (962–2919 µm)]. Induced expression of Lamin A/C ­correlated with areas of high wall stress from AAAs but was not significantly induced in the IMV from AAA patients compared to controls (n = 16). Stress-induced expression of Lamin A/C was mimicked by exposing aortic smooth muscle cells to prolonged pulsatile stretch. Conclusion Lamin A/C protein is specifically increased in areas of high wall stress in AAA from patients, but is not increased on other vascular beds of aneurysm patients, suggesting that its elevation may be a compensatory response to the pathobiology leading to aneurysms. PMID:27175366

  9. Post-translational Regulation of Endothelial Nitric Oxide Synthase (eNOS) by Estrogens in the Rat Vagina

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Strong, Travis D.; Lagoda, Gwen A.; Bivalacqua, Trinity J.; Burnett, Arthur L.

    2010-01-01

    Introduction Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. Aims Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. Methods We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17β (15 μg). Main Outcome Measures Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. Results We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement

  10. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS.

    PubMed

    Elms, Shawn; Chen, Feng; Wang, Yusi; Qian, Jin; Askari, Bardia; Yu, Yanfang; Pandey, Deepesh; Iddings, Jennifer; Caldwell, Ruth B; Fulton, David J R

    2013-09-01

    Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role.

  11. Krox20 heterozygous mice: A model of aortic regurgitation associated with decreased expression of fibrillar collagen genes.

    PubMed

    Théron, Alexis; Odelin, Gaëlle; Faure, Emilie; Avierinos, Jean-François; Zaffran, Stéphane

    2016-03-01

    The mechanism involved in the onset of aortic valve (AoV) disease remains unclear despite its poor prognosis and frequency. Recently, we reported that Krox20 (EGR2 in humans) is involved in AoV development and dysfunction. Analyze Krox20 heterozygous mice (Krox20(+/-)) to discover whether incomplete expression of Krox20 can cause valvular diseases. Transcriptional levels of Col1a2/COL1A2 and Krox20/EGR2 in AoVs from Krox20(+/-) mice and human patients operated on for severe aortic regurgitation were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Human control valves were obtained from three transplanted patients without AoV disease. Twenty-one heterozygous Krox20(+/-) mice were compared with 35 controls at different ages. Three independent measurements of valve thickness were performed on magnified tissue sections using Image J software. In vivo valve structure and function were evaluated using the high-frequency Vevo(®) 2100 echocardiogram. qRT-PCR analysis using AoVs from patients with severe aortic regurgitation showed a decrease in EGR2 expression associated with significant downregulation of COL1A2 expression (P<0.05). Similar results were observed in the AoVs of Krox20(+/-) mice. Anatomical examination revealed that incomplete invalidation of Krox20 caused significant thickening of the aortic leaflet compared with controls (145±22 vs. 75±24μm; P=0.01). Within the mutant group, this thickening worsened significantly over time (Krox20(+/-) mice aged>7 vs.<7months: 136±48 vs. 102±41μm; P<0.001). Moreover, the aortic leaflets of embryonic day 18.5 Krox20(+/-) embryos were significantly more thickened than those from controls, suggesting that this disease begins during embryonic development. Echo-Doppler analysis showed a significant increase in AoV dysfunction in heterozygous versus control mice (53% vs. 17%; P<0.001), suggesting a tight relationship between valve architecture and function. Morphometric analysis

  12. Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase

    PubMed Central

    El Accaoui, Ramzi N.; Gould, Sarah T.; Hajj, Georges P.; Chu, Yi; Davis, Melissa K.; Kraft, Diane C.; Lund, Donald D.; Brooks, Robert M.; Doshi, Hardik; Zimmerman, Kathy A.; Kutschke, William; Anseth, Kristi S.; Heistad, Donald D.

    2014-01-01

    Risk factors for fibrocalcific aortic valve disease (FCAVD) are associated with systemic decreases in bioavailability of endothelium-derived nitric oxide (EDNO). In patients with bicuspid aortic valve (BAV), vascular expression of endothelial nitric oxide synthase (eNOS) is decreased, and eNOS−/− mice have increased prevalence of BAV. The goal of this study was to test the hypotheses that EDNO attenuates profibrotic actions of valve interstitial cells (VICs) in vitro and that EDNO deficiency accelerates development of FCAVD in vivo. As a result of the study, coculture of VICs with aortic valve endothelial cells (vlvECs) significantly decreased VIC activation, a critical early phase of FCAVD. Inhibition of VIC activation by vlvECs was attenuated by NG-nitro-l-arginine methyl ester or indomethacin. Coculture with vlvECs attenuated VIC expression of matrix metalloproteinase-9, which depended on stiffness of the culture matrix. Coculture with vlvECs preferentially inhibited collagen-3, compared with collagen-1, gene expression. BAV occurred in 30% of eNOS−/− mice. At age 6 mo, collagen was increased in both bicuspid and trileaflet eNOS−/− aortic valves, compared with wild-type valves. At 18 mo, total collagen was similar in eNOS−/− and wild-type mice, but collagen-3 was preferentially increased in eNOS−/− mice. Calcification and apoptosis were significantly increased in BAV of eNOS−/− mice at ages 6 and 18 mo. Remarkably, these histological changes were not accompanied by physiologically significant valve stenosis or regurgitation. In conclusion, coculture with vlvECs inhibits specific profibrotic VIC processes. In vivo, eNOS deficiency produces fibrosis in both trileaflet and BAVs but produces calcification only in BAVs. PMID:24610917

  13. eNOS uncoupling in the cerebellum after BBB disruption by exposure to Phoneutria nigriventer spider venom.

    PubMed

    Soares, Edilene Siqueira; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice

    2015-09-15

    Numerous studies have shown that the venom of Phoneutria nigriventer (PNV) armed-spider causes excitotoxic signals and blood-brain barrier breakdown (BBBb) in rats. Nitric oxide (NO) is a signaling molecule which has a role in endothelium homeostasis and vascular health. The present study investigated the relevance of endothelial NO synthase (eNOS) uncoupling to clinical neurotoxic evolution induced by PNV. eNOS immunoblotting of cerebellum lysates processed through low-temperature SDS-PAGE revealed significant increased monomerization of the enzyme at critical periods of severe envenoming (1-2 h), whereas eNOS dimerization reversal paralleled to amelioration of animals condition (5-72 h). Moreover, eNOS uncoupling was accompanied by increased expression in calcium-sensing calmodulin protein and calcium-binding calbindin-D28 protein in cerebellar neurons. It is known that greater eNOS monomers than dimers implies the inability of eNOS to produce NO leading to superoxide production and endothelial/vascular barrier dysfunction. We suggest that transient eNOS deactivation and disturbances in calcium handling reduce NO production and enhance production of free radicals thus contributing to endothelial dysfunction in the cerebellum of envenomed rats. In addition, eNOS uncoupling compromises the enzyme capacity to respond to shear stress contributing to perivascular edema and it is one of the mechanisms involved in the BBBb promoted by PNV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Numerical experiments on the accuracy of ENO and modified ENO schemes

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1990-01-01

    Further numerical experiments are made assessing an accuracy degeneracy phenomena. A modified essentially non-oscillatory (ENO) scheme is proposed, which recovers the correct order of accuracy for all the test problems with smooth initial conditions and gives comparable results with the original ENO schemes for discontinuous problems.

  15. Time-dependent supplementation of vitamin E influences leptin expression in the aortic layers of rats fed atherogenic diet.

    PubMed

    Krawczynska, A; Olczak, E; Rembiszewska, A; Herman, A P; Gromadzka-Ostrowska, J

    2014-02-01

    An excessive consumption of a diet rich in saturated fatty acids is a key factor in pathogenesis of cardiovascular diseases which are strictly connected with leptin imbalance in the vessels. However, whether vitamin E supplementation would influence leptin expression in aortic layers is still unknown. For 3 or 6 weeks male Wistar rats were fed a high-fat (20% w/w) diet with lard as dietary fat source with or without vitamin E supplementation (50 mg/100 g of diet). The 6-week intake of an atherogenic diet increased total cholesterol (TC) and high density lipoprotein cholesterol (HDL) plasma levels simultaneously lowering TC/HDL ratio (ANOVA p≤0.0001 for all three parameters). After longer period of feeding it was stated that leptin expression in all three aortic layers was enhanced (ANOVA p≤0.0001 for endothelium, tunica media and adventitia, respectively) with decreased leptin plasma concentration (ANOVA p≤0.0001). After both periods of feeding vitamin E supplementation caused an increase in plasma HDL content and a decrease of TC/HDL ratio. In the 3-week experiment vitamin E addition caused a decrease in leptin plasma levels (Fisher's test, 3L versus 3LE: p≤0.002) and an increase in leptin expression in all three aortic layers (Fisher's test, 3L versus 3LE p≤0.005, p≤0.01 and p≤0.05 respectively for endothelium, tunica media and adventitia). The contradictory results were observed in the 6-week experiment in which vitamin supplementation decreased leptin expression in the aortic endothelium (Fisher's test, 6L versus 6LE: p≤0.001) with lack of changes in the other two layers of the aorta and plasma. The study showed that vitamin E supplementation influenced leptin expression in aortic layers in rats fed atherogenic diet differently depending on the length of feeding period. It may suggest that vitamin E consumption plays an important role in the control of leptin status in the endothelium.

  16. Diuretics prevent Rho-kinase activation and expression of profibrotic/oxidative genes in the hypertensive aortic wall.

    PubMed

    Araos, Patricio; Mondaca, David; Jalil, Jorge E; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz

    2016-12-01

    Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague-Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p < 0.05) compared with control rats. All treatments reduced ROCK activation in the aortic wall to control levels (p < 0.05). Besides, significantly increased protein levels of transforming growth factor β1 (TGF-β1), gene expression of TGF-β1, connective tissue growth factor (CTGF), p22 phox and gp91 phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, as well as increased media thickness and aortic media area/lumen area (AM/LA) in the untreated hypertensive rats were significantly reduced (p < 0.05) to control levels by all treatments. Similar effects were observed using both diuretics alone or in combination with FAS. In the aortic wall, both HCTZ and spiro

  17. Expression of a functional extracellular calcium-sensing receptor in human aortic endothelial cells

    SciTech Connect

    Ziegelstein, Roy C.; Xiong Yali; He Chaoxia; Hu Qinghua . E-mail: qinghuaa@jhmi.edu

    2006-03-31

    Extracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub o}) regulates the functions of many cell types through a G protein-coupled [Ca{sup 2+}]{sub o}-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca{sup 2+}]{sub o}, neomycin, and gadolinium) failed to increase intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}), the CaR agonist spermine stimulated an increase in [Ca{sup 2+}]{sub i} that was diminished in buffer without Ca{sup 2+} and was abolished after depletion of an intracellular Ca{sup 2+} pool with thapsigargin or after blocking IP{sub 3}- and ryanodine receptor-mediated Ca{sup 2+} release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca{sup 2+}]{sub i} and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca{sup 2+}]{sub i}, primarily due to release of IP{sub 3}- and ryanodine-sensitive intracellular Ca{sup 2+} stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC.

  18. Mg-supplementation Protects Against Ritonavir-mediated Endothelial Oxidative Stress and Hepatic eNOS Downregulation

    PubMed Central

    Chen, Xi; Mak, I.Tong

    2014-01-01

    Ritonavir (RTV), a prototypical protease inhibitor currently used as a key component for anti-HIV therapy, is known for its endothelial and hepatic toxicity. The effects of RTV and Mg-supplementation on cultured bovine endothelial cells (EC) and rat hepatic endothelial nitric oxide synthase (eNOS) status were investigated. RTV dose-dependently (5–30µM) decreased EC viability after 48hrs; high Mg (2 mM) significantly attenuated the lost viability. ECs incubated with 15 µM RTV for 6 to 24 hrs. resulted in 2–4-fold elevation of oxidized glutathione and a 25% loss of total glutathione. At 24 hrs., EC superoxide production due to RTV was detected by dihydroethidium staining, and increased 41% when quantified by flow cytometry; both altered glutathione status and superoxide levels were substantially reversed by 2 mM Mg. RTV reduced eNOS mRNA (−25% at 24 hrs.), and led to decreased eNOS dimer/monomer ratios; nitric oxide (NO)-derived products decreased 40%; both changes were attenuated by Mg-supplementation. In male LewXBrown-Norway rats, RTV administration (75 mg/kg/day, 5 weeks) resulted in an 85% increase in plasma 8-isoprostane, a 30% decrease of hepatic eNOS mRNA; concomitantly, eNOS protein decreased 72%, whereas plasma nitrite level was reduced 49%. Dietary Mg-supplementation (6-fold higher than control) prevented the eNOS mRNA decrease along with lowering 8-isoprostane, and restored the eNOS protein and plasma nitrite levels comparable to controls. Conclusion Mg attenuates RTV-mediated EC oxidative eNOS dysfunction, and down-regulation of hepatic eNOS expression; we suggest that Mg can serve as a beneficial adjunct therapeutic against RTV-mediated eNOS toxicity. PMID:24434120

  19. Aortic dissection

    MedlinePlus

    Aortic aneurysm - dissecting; Chest pain - aortic dissection; Thoracic aortic aneurysm - dissection ... also cause abnormal widening or ballooning of the aorta ( aneurysm ). The exact cause is unknown, but more common ...

  20. Aortic Aneurysm

    MedlinePlus

    ... chest and abdomen. There are two types of aortic aneurysm: Thoracic aortic aneurysms (TAA) - these occur in the part of the aorta running through the chest Abdominal aortic aneurysms (AAA) - these occur in the part of the ...

  1. Homocysteine, a thrombogenic agent, suppresses anticoagulant heparan sulfate expression in cultured porcine aortic endothelial cells.

    PubMed

    Nishinaga, M; Ozawa, T; Shimada, K

    1993-09-01

    Previous studies showed that homocysteine, a thrombo-atherogenic and atherogenic agent, inhibits an endothelial thrombomodulin-protein C anticoagulant pathway. We examined whether homocysteine might affect another endothelial anticoagulant mechanism; i.e., heparin-like glycosaminoglycan-antithrombin III interactions. Incubations of porcine aortic endothelial cell cultures with homocysteine reduced the amount of antithrombin III bound to the cell surface in a dose- and time-dependent fashion. The inhibitory effect was observed at a homocysteine concentration as low as 0.1 mM, and the maximal suppression occurred at 1 mM of homocysteine after 24 h. In contrast with a marked reduction in the maximal antithrombin III binding capacity (approximately 30% of control), the radioactivity of [35S]sulfate incorporated into heparan sulfate on the cell surface was minimally (< 15%) reduced. The cells remained viable after homocysteine treatment. Although neither net negative charge nor proportion in total glycosaminoglycans of cell surface heparan sulfate was altered by homocysteine treatment, a substantial reduction in antithrombin III binding capacity of heparan sulfate isolated from homocysteine-treated endothelial cells was found using both affinity chromatography and dot blot assay techniques. The antithrombin III binding activity of endothelial cells decreased after preincubation with 1 mM homocysteine, cysteine, or 2-mercaptoethanol; no reduction in binding activity was observed after preincubation with the same concentration of methionine, alanine, or valine. This sulfhydryl effect may be caused by generation of hydrogen peroxide, as incubation of catalase, but not superoxide dismutase, with homocysteine-treated endothelial cells prevented this reduction, whereas copper augmented the inhibitory effects of the metabolite. Thus, our data suggest that the inhibited expression of anticoagulant heparan sulfate may contribute to the thrombogenic property resulting from the

  2. Space chimp Enos returns to Patrick Air Force Base

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Enos the chimpanzee that orbited the earth twice in a Mercury spacecraft arrives back at Patrick Air Force Base. Enos landed some 220 nautical miles south of Bermuda and was picked up up by the U.S.S. Stormes.

  3. Space chimp Enos returns to Patrick Air Force Base

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Enos the chimpanzee that orbited the earth twice in a Mercury spacecraft arrives back at Patrick Air Force Base. Enos landed some 220 nautical miles south of Bermuda and was picked up up by the U.S.S. Stormes.

  4. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression.

    PubMed

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K Craig; Liu, Bo

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB-mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression

    PubMed Central

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K. Craig

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB–mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. PMID:26483397

  6. Angiotensin II induces an increase in MMP-2 expression in idiopathic ascending aortic aneurysm via AT1 receptor and JNK pathway.

    PubMed

    Wang, Chunmao; Chang, Qian; Qian, Xiangyang; Tian, Chuan; Sun, Xiaogang

    2015-07-01

    The cellular and molecular mechanisms responsible for human idiopathic ascending aortic aneurysm (IAAA) remain unknown. Matrix metalloproteinase-2 (MMP-2) is a key enzyme for the degradation of extracellular matrix in aneurysmal walls. The aim of this study was to elucidate the role of the angiotensin II (Ang II) pathway in MMP-2 induction in IAAA aortic walls. Quantitative polymerase chain reaction and western blot analysis were used to compare the MMP-2 mRNA and protein levels in ascending aortic specimens with those in IAAA patients (n = 10) and heart transplant donors (n = 5) without any aortopathy. It was found that MMP-2 expression was significantly increased, which was associated with elastic lamellae disruption in IAAA walls. Additionally, the expression levels of angiotensinogen (AGT) and Ang II in the ascending aortic tissues from individuals with and without IAAAs were detected by western blot analysis and radioimmunoassay, respectively. The results demonstrated that the expressions of AGT and Ang II protein were significantly increased in the ascending aortic tissues of IAAA patients. Furthermore, whether Ang II induces MMP-2 expression was investigated using human IAAA walls ex vivo culture. It was found that exogenous Ang II increased the MMP-2 expression in a dose-dependent manner, which was completely inhibited by the Ang II type 1 receptor (AT1R) inhibitor candesartan and was mediated by c-Jun N-terminal kinase (JNK) activation. Taken together, these results indicate that Ang II can induce an increase of MMP-2 expression via AT1R and JNK in ex vivo cultured IAAA aortic walls, and suggest that angiotensin receptor blocker (ARB) drugs and JNK inhibitors have the potential in the prevention or treatment of IAAAs.

  7. Effects of Dietary Decosahexaenoic Acid (Dha) on eNOS in Human Coronary Artery Endothelial Cells

    PubMed Central

    Stebbins, Charles L.; Stice, James P.; Hart, C. Michael; Mbai, Fiona N.; Knowlton, Anne A.

    2015-01-01

    Endothelial dysfunction occurs in heart disease, and may reduce functional capacity via attenuations in peripheral blood flow. Dietary DHA may improve this dysfunction, but the mechanism is unknown. We determined if DHA enhances expression and activity of eNOS in cultured human coronary artery endothelial cells (HCAEC). HCAEC from 4 donors were treated with 5 nM, 50 nM, or 1 μM DHA for 7 days to model chronic DHA exposure. A trend for increased expression of eNOS and phospho-eNOS was observed with 5 and 50 nM DHA. DHA also enhanced expression of two proteins instrumental in activation of eNOS; phospho-Akt (5 and 50 nM) and HSP90 (50 nM and 1 μM). VEGF-induced activation of Akt increased NOx in treated (50 nM DHA) vs. untreated HCAEC (9.2±1.0 vs. 3.3±1.1 μmols/μg protein/μl). Findings suggest that DHA enhances eNOS and Akt activity, augments HSP90 expression, and increases NO bioavailability in response to Akt kinase activation PMID:18682551

  8. Early MT-1 MMP expression following elastase exposure is associated with increased cleaved MMP-2 activity in experimental rodent aortic aneurysms.

    PubMed

    Sinha, Indranil; Hannawa, Kevin K; Eliason, Jonathan L; Ailawadi, Gorav; Deogracias, Michael P; Bethi, Siddharth; Ford, John W; Roelofs, Karen J; Grigoryants, Vladimir; Henke, Peter K; Stanley, James C; Upchurch, Gilbert R

    2004-08-01

    The objective of this study was to determine the significance of membrane type 1 matrix metalloproteinase (MT1-MMP) activation of MMP-2 in experimental abdominal aortic aneurysms. Rat aortas were perfused with either saline as a control or elastase, and harvested on 2, 4, or 7 days after perfusion (n = 5 per treatment group/day). Aortic MT1-MMP and MMP-2 expression and protein were determined by real time polymerase chain reaction and Western blotting, respectively. Aortic explants were used to measure MMP-2 activity by zymography. Rat aortic smooth muscle cells in vitro were exposed to increasing doses of elastase and analyzed for MT-1 MMP expression. Aneurysms formed in 80% of the elastase-perfused aortas at 7 days, whereas none formed in the saline-perfused aortas. Significantly increased MT1-MMP expression was observed only on day 4, when levels were 6.5-fold higher in elastase-perfused aortas compared with saline-perfused aortas (P < .01). By day 7, MT1-MMP protein was present only in the elastase-perfused aortas (P = .02). By immunohistochemistry, MT1-MMP was detectable only in the elastase-perfused group at day 7. Cleaved MMP-2 activity (P = .045) was increased in elastase-perfused aortas compared with saline perfused aortas at day 7. In rat aortic smooth muscle cells, MT-1 MMP expression increased in response to elastase (P = .02). The rodent aortic aneurysm model exhibits upregulation of MT1-MMP expression and protein with subsequent increased conversion of MMP-2 from the latent to the cleaved form. Copyright 2004 Elsevier Inc.

  9. Adenoviral expression of 15-lipoxygenase-1 in rabbit aortic endothelium: role in arachidonic acid-induced relaxation.

    PubMed

    Aggarwal, Nitin T; Holmes, Blythe B; Cui, Lijie; Viita, Helena; Yla-Herttuala, Seppo; Campbell, William B

    2007-02-01

    Endothelium-dependent vasorelaxation of the rabbit aorta is mediated by either nitric oxide (NO) or arachidonic acid (AA) metabolites from cyclooxygenase (COX) and 15-lipoxygenase (15-LO) pathways. 15-LO-1 metabolites of AA, 11,12,15-trihydroxyeicosatrienoic acid (THETA), and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) cause concentration-dependent relaxation. We tested the hypothesis that in the 15-LO pathway of AA metabolism, 15-LO-1 is sufficient and is the rate-limiting step in inducing relaxations in rabbit aorta. Aorta and rabbit aortic endothelial cells were treated with adenoviruses containing human 15-LO-1 cDNA (Ad-15-LO-1) or beta-galactosidase (Ad-beta-Gal). Ad-15-LO-1-transduction increased the expression of a 75-kDa protein corresponding to 15-LO-1, detected by immunoblotting with an anti-human15-LO-1 antibody, and increased the production of HEETA and THETA from [(14)C]AA. Immunohistochemical studies on Ad-15-LO-1-transduced rabbit aorta showed the presence of 15-LO-1 in endothelial cells. Ad-15-LO-1-treated aortic rings showed enhanced relaxation to AA (max 31.7 +/- 3.2%) compared with Ad-beta-Gal-treated (max 12.7 +/- 3.2%) or control nontreated rings (max 13.1 +/- 1.6%) (P < 0.01). The relaxations in Ad-15-LO-1-treated aorta were blocked by the 15-LO inhibitor cinnamyl-3,4-dihydroxy-a-cyanocinnamate. Overexpression of 15-LO-1 in the rabbit aortic endothelium is sufficient to increase the production of the vasodilatory HEETA and THETA and enhance the relaxations to AA. This confirms the role of HEETA and THETA as endothelium-derived relaxing factors.

  10. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    SciTech Connect

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani . E-mail: chandraseka@uthscsa.edu

    2006-09-08

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-{kappa}B (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.

  11. Mechanical Strain Induced Expression of Matrix Metalloproteinase-9 via Stretch-Activated Channels in Rat Abdominal Aortic Dissection

    PubMed Central

    Qiu, ZhiHuang; Chen, LiangWan; Cao, Hua; Chen, Qiang; Peng, Hua

    2017-01-01

    Background The aim of the study was to investigate the expression of matrix metalloproteinase-9 (MMP-9) in rat abdominal aortic dissection (AD) induced by mechanical strain, so as to offer a better understanding of the possible mechanisms of AD. Material/Methods Experimental AD in rats was achieved by the injection of porcine pancreatic elastase. At days 0, 1, 3, 5, 7, 14, 21, and 30 after the establishment of AD model, serum MMP-9 levels were measured by enzyme-linked immunosorbent assay (ELISA). Four groups of vascular rings were stretched in vitro with a mechanical strength of 0 g, 1 g, 3 g, or 5 g for 30 min. Another four groups were pretreated with GdCl3, streptomycin, SN50, and SN50M, followed by stretching with 3 g for 30 min. The messenger RNA and the protein of MMP-9 were analyzed by real-time RT-PCR and Western blotting, and NF-κB p65 was detected by ELISA. Results After the establishment of rat abdominal AD model, the serum MMP-9 levels of AD groups increased significantly. The results showed increased expression of MMP-9 in rat AD vessels stretched with mechanical strength of 1 g, 3 g, and 5 g, but this effect was mostly blocked by Gd Cl3 and streptomycin. The NF-κB activity in aortic rings was activated by stretching with a mechanical strength of 3 g and was blocked by SN50, but not by SN50M. Conclusions The expression of MMP-9 in serum was increased significantly after rat abdominal AD formation. Mechanical strain induced MMP-9 expression in AD vessels, which was mediated through the activation of the stretch-activated channel-induced NF-κB pathway. PMID:28286334

  12. Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins?

    PubMed

    Balakumar, Pitchai; Kathuria, Sonam; Taneja, Gaurav; Kalra, Sanjeev; Mahadevan, Nanjaian

    2012-01-01

    Statins are widely used in the treatment of dyslipidemia and associated cardiovascular abnormalities including atherosclerosis, hypertension and coronary heart disease. Needless to mention, statins have cholesterol-lowering effects by means of inhibiting 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, a rate-limiting enzyme of cholesterol biosynthesis. Besides cholesterol-lowering effects, statins possess pleiotropic anti-inflammatory, anti-oxidant, anti-platelet and anti-fibrotic properties, which may additionally play imperative roles in statins-mediated cardiovascular protection. However, the precise mechanisms involved in the cardiovascular defensive potential of statins have not completely been elucidated. Intriguingly, a considerable number of studies demonstrated the potential modulatory role of statins on endothelial nitric oxide synthase (eNOS), a key enzyme involved in the regulation of cardiovascular function by generating endothelium-derived relaxing factor (often represented 'nitric oxide'). Worthy of note is that vascular generation of nitric oxide has beneficial anti-inflammatory, anti-platelet and vasodilatory actions. The upregulation of eNOS by statins is mediated through inhibition of synthesis of isoprenoids and subsequent prevention of isoprenylation of small GTPase Rho, whereas statin-induced activation of eNOS is mediated through activation of phosphotidylinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) signals. Additionally, statins enhance eNOS activation by abrogating caveolin-1 expression in vascular endothelium. In light of this view-point, we suggest in this review that eNOS upregulation and activation, in part, could play a fundamental role in the cardiovascular defensive potential of statins. The eNOS modulatory role of statins may have an imperative influence on the functional regulation of cardiovascular system and may offer new perspectives for the better use of statins in ameliorating cardiovascular disorders.

  13. Defining the Role of Fluid Shear Stress in the Expression of Early Signaling Markers for Calcific Aortic Valve Disease

    PubMed Central

    Sun, Ling; Rajamannan, Nalini M.; Sucosky, Philippe

    2013-01-01

    Calcific aortic valve disease (CAVD) is an active process presumably triggered by interplays between cardiovascular risk factors, molecular signaling networks and hemodynamic cues. While earlier studies demonstrated that alterations in fluid shear stress (FSS) on the fibrosa could trigger inflammation, the mechanisms of CAVD pathogenesis secondary to side-specific FSS abnormalities are poorly understood. This knowledge could be critical to the elucidation of key CAVD risk factors such as congenital valve defects, aging and hypertension, which are known to generate FSS disturbances. The objective of this study was to characterize ex vivo the contribution of isolated and combined abnormalities in FSS magnitude and frequency to early valvular pathogenesis. The ventricularis and fibrosa of porcine aortic valve leaflets were exposed simultaneously to different combinations of sub-physiologic/physiologic/supra-physiologic levels of FSS magnitude and frequency for 24, 48 and 72 hours in a double cone-and-plate device. Endothelial activation and paracrine signaling were investigated by measuring cell-adhesion molecule (ICAM-1, VCAM-1) and cytokine (BMP-4, TGF-β1) expressions, respectively. Extracellular matrix (ECM) degradation was characterized by measuring the expression and activity of the proteases MMP-2, MMP-9, cathepsin L and cathepsin S. The effect of the FSS treatment yielding the most significant pathological response was examined over a 72-hour period to characterize the time-dependence of FSS mechano-transduction. While cytokine expression was stimulated under elevated FSS magnitude at normal frequency, ECM degradation was stimulated under both elevated FSS magnitude at normal frequency and physiologic FSS magnitude at abnormal frequency. In contrast, combined FSS magnitude and frequency abnormalities essentially maintained valvular homeostasis. The pathological response under supra-physiologic FSS magnitude peaked at 48 hours but was then maintained until the

  14. Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm.

    PubMed

    Waeckel, Ludovic; Badier-Commander, Cécile; Damery, Thibaut; Köhler, Ralf; Sansilvestri-Morel, Patricia; Simonet, Serge; Vayssettes-Courchay, Christine; Wulff, Heike; Félétou, Michel

    2015-09-01

    Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-L-arginine-methyl-ester (L-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress.

  15. Increased Expression and Activation of Absent in Melanoma 2 Inflammasome Components in Lymphocytic Infiltrates of Abdominal Aortic Aneurysms

    PubMed Central

    Dihlmann, Susanne; Erhart, Philipp; Mehrabi, Arianeb; Nickkholgh, Arash; Lasitschka, Felix; Böckler, Dittmar; Hakimi, Maani

    2014-01-01

    Chronic vascular inflammation is a key hallmark in the pathogenesis of abdominal aortic aneurysm (AAA). Recent investigations have suggested that the inflammasome, a cytosolic multiprotein complex that recognizes pathogen-associated molecular patterns, plays a role in atherosclerosis. However, its role in AAA inflammation has not yet been investigated. This pilot study analyzed inflammasome activation and its intramural localization in 24 biopsy samples from 11 patients with asymptomatic AAA versus 12 aortic samples from apparently healthy controls. Using a histological inflammation scale, we identified grade 2/3 inflammatory changes with lymphoid aggregates/tertiary lymphoid organs in 21 out of 24 AAA samples, whereas only 7 of the 12 control samples exhibited local grade 1 inflammatory changes. Strong expression levels of “apoptosis-associated speck-like protein with a caspase recruitment domain” (ASC), caspase-1, caspase-5 and “absent in melanoma 2” (AIM2) were detected by immunohistochemistry in both sporadic infiltrating lymphoid cells and lymphoid aggregates located in the outer media and adventitia of AAA samples. In contrast, inflammasome-positive cells were restricted to cholesterol plaque–associated areas and to single infiltrating cells in control aortas. Analysis of gene expression using real-time polymerase chain reaction (PCR) revealed significantly increased median mRNA levels of the inflammasome core components PYCARD (ASC), CASP1 (Caspase-1) and IL1B (IL-1β) in AAA tissue compared with normal aorta. Moreover, significantly increased median amounts of AIM2 protein and mature caspase-5 (p20) were found in samples associated with high rupture risk compared with paired low rupture risk samples of the same AAA patient. We conclude from our data that AAA-associated lymphoid cells are capable of inflammasome signaling, suggesting that inflammasome activation is involved in the chronic inflammatory process driving AAA progression. PMID:24618883

  16. Functional significance of differential eNOS translocation

    PubMed Central

    Sánchez, Fabiola A.; Savalia, Nirav B.; Durán, Ricardo G.; Lal, Brajesh K.; Boric, Mauricio P.; Durán, Walter N.

    2006-01-01

    Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10−5 M, 10−4 M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10−7 M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation. PMID:16679407

  17. Oral administration of bisphenol A induces high blood pressure through angiotensin II/CaMKII-dependent uncoupling of eNOS.

    PubMed

    Saura, Marta; Marquez, Susana; Reventun, Paula; Olea-Herrero, Nuria; Arenas, María Isabel; Moreno-Gómez-Toledano, Rafael; Gómez-Parrizas, Mónica; Muñóz-Moreno, Carmen; González-Santander, Marta; Zaragoza, Carlos; Bosch, Ricardo J

    2014-11-01

    Bisphenol A (BPA) is found in human urine and fat tissue. Higher urinary BPA concentrations are associated with arterial hypertension. To shed light on the underlying mechanism, we orally administered BPA (4 nM to 400 μM in drinking water) to 8-wk-old CD11 mice over 30 d. Mice developed dosage-dependent high blood pressure (systolic 130 ± 12 vs. 170 ± 12 mmHg; EC50 0.4 μM), impairment of acetylcholine (AcH)-induced carotid relaxation (0.66 ± 0.08 vs. 0.44 ± 0.1 mm), a 1.7-fold increase in arterial angiotensin II (AngII), an 8.7-fold increase in eNOS mRNA and protein, and significant eNOS-dependent superoxide and peroxynitrite accumulation. AngII inhibition with 0.5 mg/ml losartan reduced oxidative stress and normalized blood pressure and endothelium-dependent relaxation, which suggests that AngII uncouples eNOS and contributes to the BPA-induced endothelial dysfunction by promoting oxidative and nitrosative stress. Microarray analysis of mouse aortic endothelial cells revealed a 2.5-fold increase in expression of calcium/calmodulin-dependent protein kinase II-α (CaMKII-α) in response to 10 nM BPA, with increased expression of phosphorylated-CaMKII-α in carotid rings of BPA-exposed mice, whereas CaMKII-α inhibition with 100 nM autocamptide-2-related inhibitor peptide (AIP) reduced BPA-mediated increase of superoxide. Administration of CaMKII-α inhibitor KN 93 reduced BPA-induced blood pressure and carotid blood velocity in mice, and reverted BPA-mediated carotid constriction in response to treatment with AcH. Given that CaMKII-α inhibition prevents BPA-mediated high blood pressure, our data suggest that BPA regulates blood pressure by inducing AngII/CaMKII-α uncoupling of eNOS.

  18. Mutation at the tomato excessive number of floral organs (ENO) locus impairs floral meristem development, thus promoting an increased number of floral organs and fruit size.

    PubMed

    Fernández-Lozano, Antonia; Yuste-Lisbona, Fernando J; Pérez-Martín, Fernando; Pineda, Benito; Moreno, Vicente; Lozano, Rafael; Angosto, Trinidad

    2015-03-01

    A novel tomato (Solanum lycopersicum L.) mutant affected in reproductive development, excessive number of floral organs (eno), is described in this study. The eno plants yielded flowers with a higher number of floral organs in the three innermost floral whorls and larger fruits than those found in wild-type plants. Scanning-electron microscopy study indicated that the rise in floral organ number and fruit size correlates with an increased size of floral meristem at early developmental stages. It has been reported that mutation at the FASCIATED (FAS) gene causes the development of flowers with supernumerary organs; however, complementation test and genetic mapping analyses proved that ENO is not an allele of the FAS locus. Furthermore, expression of WUSCHEL (SlWUS) and INHIBITOR OF MERISTEM ACTIVITY (IMA), the two main regulators of floral meristem activity in tomato, is altered in eno but not in fas flowers indicating that ENO could exert its function in the floral meristem independently of FAS. Interestingly, the eno mutation delayed the expression of IMA leading to a prolonged expression of SlWUS, which would explain the greater size of floral meristem. Taken together, results showed that ENO plays a significant role in the genetic pathway regulating tomato floral meristem development. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Short-term hyper-caloric diet induces blunted aortic vasoconstriction and enhanced vasorelaxation via increased NOS3 activity and expression in Dahl salt-sensitive rats

    PubMed Central

    Spradley, Frank T.; Kang, Kyu-Tae; Pollock, Jennifer S.

    2013-01-01

    Aim To test the hypothesis that hyper-caloric diet on mechanisms of angiotensin (Ang)II-induced vasoconstriction in Dahl salt-sensitive (SS) rats and genetic control SS-13BN rats. Methods Aortic function was assessed using wire myography in 16-week-old rats maintained on a normal diet or started on a 4-week hyper-caloric diet at 12-weeks-old. Results On normal diet, AngII vasoconstriction was greater in SS rats than SS-13BN rats. Intriguingly, the AngII response was reduced in aortic rings from SS rats on hyper-caloric diet versus normal diet, whereas this response was not altered by hyper-caloric diet in SS-13BN rats. We probed whether O2−, H2O2, or NO mediate the AngII response. PEG-SOD reduced the AngII response in all 4 groups. Catalase treatment of aortic rings did not alter aortic AngII response from SS rats on hyper-caloric but reduced the aortic AngII response of SS rats on normal diet; the exact opposite finding was observed with catalase in SS-13BN rats. L-NAME increased AngII response in SS rats on hyper-caloric but was without effect in the normal diet group. In stark contrast, L-NAME did not alter the AngII response in SS-13BN rats on hyper-caloric diet, yet L-NAME enhanced AngII responsiveness in the normal diet group. In SS rats, hyper-caloric diet increased aortic NOS3 activity and expression corresponding with increased endothelial-dependent vasorelaxation. Conclusion A short-term hyper-caloric diet elicits a vasodilatory phenotype in SS rats, but not in SS-13BN rats, by increasing NOS3 expression and function as well as reducing H2O2 function. PMID:23176108

  20. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts

    SciTech Connect

    Wang Zhirong; Chen Yan; Labinskyy, Nazar; Hsieh Tzechen; Ungvari, Zoltan; Wu, Joseph M. . E-mail: Joseph_Wu@nymc.edu

    2006-07-21

    Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol.

  1. Prostacyclin production in rat aortic smooth muscle cells: role of protein kinase C, phospholipase D and cyclooxygenase-2 expression.

    PubMed

    Frias, Miguel A; Dubouloz, Frédérique; Rebsamen, Michela C; Lang, Ursula

    2003-11-01

    The present study was designed to investigate the role of protein kinase C (PKC) and phospholipase D (PLD) in angiotensin II (AngII)- and phorbol ester (PMA)-induced cyclooxygenase-2 (COX-2) expression and prostacyclin (PGI(2)) production in rat aortic smooth muscle cells (VSMC). Prostacyclin production in cultured VSMC was determined by radioimmunoassay. PKC activity was examined by measuring the transfer of 32P from (gamma-32P)ATP to histone III-S. COX-2 expression was determined by Western blotting. To measure PLD activity, thin layer chromatography was used. AngII (50 nM) and PMA (100 nM) promoted the translocation of PKC activity from the cytosol to the membranes within 30 min, followed by a strong increase in PLD activity as well as COX-2 expression and PGI(2) production. After 48 h exposure to PMA, PKC was downregulated resulting in a complete suppression of its activity. PKC-downregulation and the PKC inhibitor CGP41251 abolished PMA- and AngII-induced PLD activation, suppressed the stimulatory effect of PMA on COX-2 expression and PGI(2) production and strongly inhibited that of AngII. Furthermore, AngII- and PMA-induced PGI(2) production depended on protein synthesis and COX-2 but not COX-1 activity. Inhibition of PLD-mediated phosphatidic acid (PA) formation by 1% 1-butanol abolished AngII-induced COX-2 expression and PGI(2) secretion, while dioctanoyl PA increased COX-2 expression and PGI(2) production in a time- and concentration-dependent manner. Our results indicate that in VSMC, AngII promotes PGI(2) production to a large extent through a rise in COX-2 expression which is mediated by PA generated from increased PKC-dependent PLD activity.

  2. Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression.

    PubMed

    Zhong, Jiu-Chang; Ye, Jia-Ying; Jin, Hai-Yan; Yu, Xi; Yu, Hui-Min; Zhu, Ding-Liang; Gao, Ping-Jin; Huang, Dong-Yang; Shuster, Manfred; Loibner, Hans; Guo, Jun-Min; Yu, Xi-Yong; Xiao, Bing-Xiu; Gong, Zhao-Hui; Penninger, Josef M; Oudit, Gavin Y

    2011-01-17

    Profilin-1 has recently been linked to vascular hypertrophy and remodeling. Here, we assessed the hypothesis that angiotensin (Ang) II type I receptor antagonist telmisartan improves vascular hypertrophy by modulation of expression of profilin-1 and angiotensin-converting enzyme 2 (ACE2). Ten-week-old male spontaneously hypertensive rats (SHR) were received oral administration of telmisartan (5 or 10mg/kg; daily) or saline for 10 weeks. Compared with Wistar-Kyoto (WKY) rats, there were marked increases in systolic blood pressure and profilin-1 expression and reduced ACE2 and peroxisome proliferator activated receptor-γ (PPARγ) levels in aorta of SHR, associated with elevated extracellular-signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) phosphorylation signaling and aortic hypertrophy characterized with increased media thickness, which were strikingly reversed by telmisartan. In cultured human umbilical artery smooth muscle cells (HUASMCs), Ang II induced a dose-dependent increase in profilin-1 expression, along with decreased ACE2 protein expression and elevated ERK1/2 and JNK phosphorylation. In addition, blockade of ERK1/2 or JNK by either specific inhibitor was able to abolish Ang II-induced ACE2 downregulation and profilin-1 upregulation in HUASMCs. Importantly, treatment with telmisartan (1 or 10 μM) or recombinant human ACE2 (2mg/ml) largely ameliorated Ang II-induced profilin-1 expression and ERK1/2 and JNK phosphorylation and augmented PPARγ expression in the cultured HUASMCs. In conclusion, telmisartan treatment attenuates vascular hypertrophy in SHR by the modulation of ACE2 and profilin-1 expression with a marked reversal of ERK1/2 and JNK phosphorylation signaling pathways. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Binding Sites for Ets Family of Transcription Factors Dominate the Promoter Regions of Differentially Expressed Genes in Abdominal Aortic Aneurysms

    PubMed Central

    Nischan, Jennifer; Gatalica, Zoran; Curtis, Mindee; Lenk, Guy M.; Tromp, Gerard; Kuivaniemi, Helena

    2011-01-01

    Background Previously, we identified 3,274 distinct differentially expressed genes in abdominal aortic aneurysm (AAA) tissue compared to non-aneurysmal controls. As transcriptional control is responsible for these expression changes, we sought to find common transcriptional elements in the promoter regions of the differentially expressed genes. Methods and Results We analyzed the up- and downregulated gene sets with Whole Genome rVISTA to determine the transcription factor binding sites (TFBSs) overrepresented in the 5 kb promoter regions of the 3,274 genes. The downregulated gene set yielded 144 TFBSs that were overrepresented in the subset when compared to the entire genome. In contrast, the upregulated gene set yielded only 13 distinct overrepresented TFBSs. Interestingly, as classified by TRANSFAC®, 8 of the 13 transcription factors (TFs) binding to these regions belong to the ETS family. Additionally, NFKB and its subunits p50 and p65 showed enrichment. Immunohistochemical analyses in 10 of the TFs from the upregulated analysis showed 9 to be present in AAA tissue. Based on Gene Ontology analysis of biological process categories of the upregulated target genes of enriched TFs, 10 TFs had enrichment in immune system process among their target genes. Conclusions Our genome-wide analysis provides further evidence of ETS and NFKB involvement in AAA. Additionally, our results provide novel insight for future studies aiming to dissect the pathogenesis of AAA and have uncovered potential therapeutic targets for AAA prevention. PMID:20031636

  4. Elevated glucose and angiotensin II increase 12-lipoxygenase activity and expression in porcine aortic smooth muscle cells.

    PubMed Central

    Natarajan, R; Gu, J L; Rossi, J; Gonzales, N; Lanting, L; Xu, L; Nadler, J

    1993-01-01

    The lipoxygenase (LO) pathway of arachidonate metabolism has been suggested to play a key role in atherosclerosis and in mediating several actions of angiotensin II (AII). However, the relationship between LO activation and factors linked to accelerated diabetic vascular disease such as hyperglycemia and AII is not known. We have investigated the effect of high glucose (HG; 25 mM) and AII on LO activity as well as LO protein and mRNA expression in porcine aortic vascular smooth muscle cells (PVSMCs). We observed that cells cultured in HG had significantly higher levels of the cell-associated LO products 12- and 15-hydroxyeicosatetraenoic acids (HETEs). AII added to cells grown in HG specifically further increased only cell-associated 12-HETE levels. Using immunoblot analysis and reverse transcriptase PCRs, we demonstrated the presence in PVSMCs of porcine leukocyte-type 12-LO protein and mRNA, respectively. Furthermore, the levels of both were markedly upregulated by AII as well as by HG. These studies suggest that enhanced 12-LO activity and expression are mechanisms for accelerated vascular disease produced by HG and AII in diabetes mellitus. Images Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8506339

  5. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    PubMed

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries.

  6. Efficient implementation of weighted ENO schemes

    NASA Technical Reports Server (NTRS)

    Jiang, Guang-Shan; Shu, Chi-Wang

    1995-01-01

    In this paper, we further analyze, test, modify and improve the high order WENO (weighted essentially non-oscillatory) finite difference schemes of Liu, Osher and Chan. It was shown by Liu et al. that WENO schemes constructed from the r-th order (in L1 norm) ENO schemes are (r+1)-th order accurate. We propose a new way of measuring the smoothness of a numerical solution, emulating the idea of minimizing the total variation of the approximation, which results in a 5-th order WENO scheme for the case r = 3, instead of the 4-th order with the original smoothness measurement by Liu et al. This 5-th order WENO scheme is as fast as the 4-th order WENO scheme of Liu et al., and both schemes are about twice as fast as the 4-th order ENO schemes on vector supercomputers and as fast on serial and parallel computers. For Euler systems of gas dynamics, we suggest computing the weights from pressure and entropy instead of the characteristic values to simplify the costly characteristic procedure. The resulting WENO schemes are about twice as fast as the WENO schemes using the characteristic decompositions to compute weights, and work well for problems which do not contain strong shocks or strong reflected waves. We also prove that, for conservation laws with smooth solutions, all WENO schemes are convergent. Many numerical tests, including the 1D steady state nozzle flow problem and 2D shock entropy wave interaction problem, are presented to demonstrate the remarkable capability of the WENO schemes, especially the WENO scheme using the new smoothness measurement, in resolving complicated shock and flow structures. We have also applied Yang's artificial compression method to the WENO schemes to sharpen contact discontinuities.

  7. Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells.

    PubMed

    Smith, Kathryn E; Metzler, Scott A; Warnock, James N

    2010-02-01

    Mechanical in vitro preconditioning of tissue engineered heart valves is viewed as an essential process for tissue development prior to in vivo implantation. However, a number of pro-inflammatory genes are mechanosensitive and their elaboration could elicit an adverse response in the host. We hypothesized that the application of normal physiological levels of strain to isolated valve interstitial cells would inhibit the expression of pro-inflammatory genes. Cells were subjected to 0, 5, 10, 15 and 20% strain. Expression of VCAM-1, MCP-1, GM-CSF and OPN was then measured using qRT-PCR. With the exception of OPN, all genes were significantly up regulated when no strain was applied. MCP-1 expression was significantly lower in the presence of strain, although strain magnitude did not affect the expression level. VCAM-1 and GM-CSF had the lowest expression levels at 15% strain, which represent normal physiological conditions. These findings were confirmed using confocal microscopy. Additionally, pSMAD 2/3 and IkappaBalpha expression were imaged to elucidate potential mechanisms of gene expression. Data showed that 15% strain increased pSMAD 2/3 expression and prevented phosphorylation of IkappaBalpha. In conclusion, cyclic strain reduces expression of pro-inflammatory genes, which may be beneficial for the in vitro pre-conditioning of tissue engineered heart valves.

  8. Physical activity maintains aortic endothelium-dependent relaxation in the obese type 2 diabetic OLETF rat.

    PubMed

    Bunker, Aaron K; Arce-Esquivel, Arturo A; Rector, R Scott; Booth, Frank W; Ibdah, Jamal A; Laughlin, M Harold

    2010-06-01

    We tested the hypothesis that physical activity can attenuate the temporal decline of ACh-induced endothelium-dependent relaxation during type 2 diabetes mellitus progression in the Otsuka Long-Evans Tokushima fatty (OLETF) rat. Sedentary OLETF rats exhibited decreased ACh-induced abdominal aortic endothelium-dependent relaxation from 13 to 20 wk of age (20-35%) and from 13 to 40 wk of age (35-50%). ACh-induced endothelium-dependent relaxation was maintained in the physically active OLETF group and control sedentary Long-Evans Tokushima Otsuka (LETO) group from 13 to 40 wk of age. Aortic pretreatment with N(G)-nitro-l-arginine (l-NNA), indomethacin (Indo), and l-NNA + Indo did not alter the temporal decline in ACh-induced endothelium-dependent relaxation. Temporal changes in the protein expression of SOD isoforms in the aortic endothelium or smooth muscle did not contribute to the temporal decline in ACh-induced endothelium-dependent relaxation in sedentary OLETF rats. A significant increase in the 40-wk-old sedentary LETO and physically active OLETF rat aortic phosphorylated endothelial nitric oxide (p-eNOS)-to-eNOS ratio was observed versus 13- and 20-wk-old rats in each group that was not seen in the 40- versus 13- and 20-wk-old sedentary OLETF rats. These results suggest that temporal changes in the antioxidant system, EDHF, and cycloxygenase metabolite production in sedentary OLETF rat aortas do not contribute to the temporal decline in sedentary OLETF rat aortic ACh-induced endothelium-dependent relaxation seen with type 2 diabetes mellitus progression. We also report that physical activity in conjunction with aging in the OLETF rat results in a temporal increase in the aortic endothelial p-eNOS-to-eNOS ratio that was not seen in sedentary OLETF rats. These results suggest that the sustained aortic ACh-induced endothelium-dependent relaxation in aged physically active OLETF rats may be the result of an increase in active aortic eNOS.

  9. Pharmacological induction of vascular extracellular superoxide dismutase expression in vivo

    PubMed Central

    Oppermann, Marc; Balz, Vera; Adams, Volker; Thao-Vi Dao, Vu; Bas, Murat; Suvorava, Tatsiana; Kojda, Georg

    2009-01-01

    Pentaerythritol tetranitrate (PETN) treatment reduces progression of atherosclerosis and endothelial dysfunction and decreases oxidation of low-density lipoprotein (LDL) in rabbits. These effects are associated with decreased vascular superoxide production, but the underlying molecular mechanisms remain unknown. Previous studies demonstrated that endogenous nitric oxide could regulate the expression of extracellular superoxide dismutase (ecSOD) in conductance vessels in vivo. We investigated the effect of PETN and overexpression of endothelial nitric oxide synthase (eNOS++) on the expression and activity of ecSOD. C57BL/6 mice were randomized to receive placebo or increasing doses of PETN for 4 weeks and eNOS++ mice with a several fold higher endothelial-specific eNOS expression were generated. The expression of ecSOD was determined in the lung and aortic tissue by real-time PCR and Western blot. The ecSOD activity was measured using inhibition of cytochrome C reduction. There was no effect of PETN treatment or eNOS overexpression on ecSOD mRNA in the lung tissue, whereas ecSOD protein expression increased from 2.5-fold to 3.6-fold (P < 0.05) by 6 mg PETN/kg body weight (BW)/day and 60 mg PETN/kg BW/day, respectively. A similar increase was found in aortic homogenates. eNOS++ lung cytosols showed an increase of ecSOD protein level of 142 ± 10.5% as compared with transgene-negative littermates (P < 0.05), which was abolished by Nω-nitro-L-arginine treatment. In each animal group, the increase of ecSOD expression was paralleled by an increase of ecSOD activity. Increased expression and activity of microvascular ecSOD are likely induced by increased bioavailability of vascular nitric oxide. Up-regulation of vascular ecSOD may contribute to the reported antioxidative and anti-atherosclerotic effects of PETN. PMID:19320775

  10. Identification of key genes associated with the human abdominal aortic aneurysm based on the gene expression profile

    PubMed Central

    CHEN, XUDONG; ZHENG, CHENGFEI; HE, YUNJUN; TIAN, LU; LI, JIANHUI; LI, DONGLIN; JIN, WEI; LI, MING; ZHENG, SHUSEN

    2015-01-01

    The present study was aimed at screening the key genes associated with abdominal aortic aneurysm (AAA) in the neck, and to investigate the molecular mechanism underlying the development of AAA. The gene expression profile, GSE47472, including 14 AAA neck samples and eight donor controls, was downloaded from the Gene Expression Omnibus database. The total AAA samples were grouped into two types to avoid bias. Differentially expressed genes (DEGs) were screened in patients with AAA and subsequently compared with donor controls using linear models for microarray data, or the Limma package in R, followed by gene ontology enrichment analysis. Furthermore, a protein-protein interaction (PPI) network based on the DEGs was constructed to detect highly connected regions using a Cytoscape plugin. In total, 388 DEGs in the AAA samples were identified. These DEGs were predominantly associated with limb development, including embryonic limb development and appendage development. Nuclear receptor co-repressor 1 (NCOR1), histone 4 (H4), E2F transcription factor 4 (E2F4) and hepatocyte nuclear factor 4α (HNF4A) were the four transcription factors associated with AAA. Furthermore, HNF4A indirectly interacted with the other three transcription factors. Additionally, six clusters were selected from the PPI network. The DEG screening process and the construction of an interaction network enabled an understanding of the mechanism of AAA to be gleaned. HNF4A may exert an important role in AAA development through its interactions with the three other transcription factors (E2F4, NCOR1 and H4), and the mechanism of this coordinated regulation of the transcription factors in AAA may provide a suitable target for the development of therapeutic intervention strategies. PMID:26498477

  11. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    SciTech Connect

    Han, Sung Gu; Eum, Sung Yong; Toborek, Michal; Smart, Eric; Hennig, Bernhard

    2010-07-15

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  12. eNOS Protects from Atherosclerosis Despite Relevant Superoxide Production by the Enzyme in apoE−/− Mice

    PubMed Central

    Ponnuswamy, Padmapriya; Schröttle, Angelika; Ostermeier, Eva; Grüner, Sabine; Huang, Paul L.; Ertl, Georg; Hoffmann, Ulrich; Nieswandt, Bernhard; Kuhlencordt, Peter J.

    2012-01-01

    Background All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial- (L/E) and platelet/endothelial- (P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. Principal Findings Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE−/−/eNOS−/−), while P/E-interactions did not differ, compared to apoE−/−. eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE−/− vessels. Conclusion Overt plaque formation, increased vascular inflammation and L/E- interactions are associated with significant reduction of superoxide production in apoE−/−/eNOS−/− vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE−/− atherosclerosis but does not negate the enzyme's strong protective effects. PMID:22291917

  13. Phenylephrine activates eNOS Ser 1177 phosphorylation and nitric oxide signaling in renal hypertensive rat aorta.

    PubMed

    Silva, Bruno R; Pernomian, Laena; Grando, Marcella D; Bendhack, Lusiane M

    2014-09-05

    The endothelial nitric oxide synthase (eNOS) plays an important role in the control of the vascular tone. This work aimed to evaluate the role of an α1-adrenoceptor agonist phenylephrine (PE) on eNOS activity and downstream signaling pathway activation in normotensive (2K) and renal hypertensive (2K-1C) intact-endothelium rat aortas. Concentration-effect curves were performed for PE in intact-endothelium aortas from 2K and 2K-1C rats, in the absence of or in the presence of NOS or soluble guanylyl cyclase (sGC) inhibitor. Intact endothelium aortas were stimulated with PE in organ chambers and eNOS Ser(1177)/Thr(495) phosphorylation expression was evaluated by western blot. Nitric Oxide (NO) production was evaluated in isolated endothelial cells from 2K and 2K-1C rat aortas by flow-cytometry using NO selective fluorescent probe, DAF-2DA. The sGC activity/expression was also evaluated. PE-induced contractile response is lower in 2K-1C than in 2K intact-endothelium rat aorta. This is due to higher eNOS Ser(1177) phosphorylation in 2K-1C, which induces the eNOS overactivation. It was abolished by NOS or sGC inhibition. Phenylephrine reduces NO production in 2K as compared to the basal level, but it is not modified in 2K-1C. In PE-stimulated endothelial cells, the NO production is higher in 2K-1C than in 2K. Phenylephrine induces higher cGMP production in 2K-1C than in 2K, despite the lower expression of sGC in 2K-1C. Our results suggest that alpha1-adrenoceptor activation contributes to the increased activity of the enzyme eNOS by Ser(1177) phosphorylation in 2K-1C intact-endothelium aorta, which consequently decreases PE-induced contractile response.

  14. Serum Amyloid A Promotes E-Selectin Expression via Toll-Like Receptor 2 in Human Aortic Endothelial Cells

    PubMed Central

    2016-01-01

    Periodontitis is a chronic inflammatory disease that affects the periodontium. Recent studies suggest an association between periodontal and cardiovascular diseases. However, the detailed molecular mechanism is unknown. A previous study has demonstrated that experimental periodontitis induces serum amyloid A (SAA) in the liver and peripheral blood of ApoE-deficient mice as an atherosclerosis model. SAA is an acute-phase protein that affects systemic inflammation. The aim of this study is to investigate the atherosclerosis-onset mechanism using human aortic endothelial cells (HAECs) stimulated by SAA in vitro. Atherosclerosis PCR array and qPCR analyses showed upregulation of adhesion molecules such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in HAECs upon SAA stimulation. In addition, the results demonstrated that Toll-like receptor, TLR2, could serve as an important receptor of SAA in HAECs. Furthermore, small interfering RNA (siRNA) against TLR2 inhibited the upregulation of adhesion molecules in HAECs stimulated by SAA. Our results suggest that SAA stimulates the expression of adhesion molecules via TLR2. SAA could be an important molecule for atherosclerosis induced by periodontal disease. PMID:27799725

  15. Regulation of eNOS enzyme activity by posttranslational modification.

    PubMed

    Heiss, Elke H; Dirsch, Verena M

    2014-01-01

    The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, cooperativity and competition between the different posttranslational modifications will be elaborated with special emphasis on the susceptibility of eNOS to metabolic cues.

  16. Nelfinavir Suppresses Insulin Signaling and Nitric Oxide Production by Human Aortic Endothelial Cells: Protective Effects of Thiazolidinediones

    PubMed Central

    Mondal, Debasis; Liu, Kai; Hamblin, Milton; Lasky, Joseph A.; Agrawal, Krishna C.

    2013-01-01

    ABSTRACT Background In human immunodeficiency virus 1 (HIV-1)–infected individuals, exposure to a protease inhibitor (PI)-based highly active antiretroviral therapy (HAART) regimen increases cardiovascular disease and endothelial dysfunction. However, the mechanisms of PI-induced effects on endothelial cells (ECs) are not known. Furthermore, strategies to suppress these deleterious outcomes of PIs need to be developed. Insulin-induced PI3K/Akt signaling and endothelial nitric oxide (NO)-synthase (eNOS) phosphorylation regulates NO production by ECs that maintain vascular homeostasis. We evaluated whether nelfinavir (NEL), a potent HIV-1 PI that suppresses Akt phosphorylation, can alter insulin-induced NO production in human aortic endothelial cells (HAECs) and whether insulin sensitization of HAECs via the peroxisome proliferator-activated receptor-gamma agonists, thiazolidinediones, can ameliorate these side effects. Methods Real-time NO production in HAECs was monitored by fluorimetric dyes DAF-FM DA and DAF-2 DA. Immunodetection studies were used to determine the phosphorylation of Akt, eNOS, insulin receptor-β (IR-β), insulin receptor substrate-1 (IRS-1), and PI3K/p85α. Expression of eNOS messenger RNA was measured by reverse transcription polymerase chain reaction. Results In vitro exposure (72 hours) of HAECs to NEL (0.25-2 μg/mL) decreased both basal (2.5-fold) and insulin-induced NO production (4- to 5-fold). NEL suppressed insulin-induced phosphorylation of both Akt and eNOS at serine residues 473 and 1177, respectively. NEL decreased tyrosine phosphorylation of IR-β, IRS-1, and PI3K. Coexposure to troglitazone (TRO; 250 nM) ameliorated the suppressive effects of NEL on insulin signaling and NO production. Coexposure to TRO also increased eNOS expression in NEL-treated HAECs. Conclusion Our findings indicate that treatment with potent insulin sensitizers may protect against PI-mediated endothelial dysfunction during long-term HAART. PMID:23533049

  17. Gene silencing of endothelial von Willebrand Factor attenuates angiotensin II-induced endothelin-1 expression in porcine aortic endothelial cells

    PubMed Central

    Dushpanova, Anar; Agostini, Silvia; Ciofini, Enrica; Cabiati, Manuela; Casieri, Valentina; Matteucci, Marco; Del Ry, Silvia; Clerico, Aldo; Berti, Sergio; Lionetti, Vincenzo

    2016-01-01

    Expression of endothelin (ET)-1 is increased in endothelial cells exposed to angiotensin II (Ang II), leading to endothelial dysfunction and cardiovascular disorders. Since von Willebrand Factor (vWF) blockade improves endothelial function in coronary patients, we hypothesized that targeting endothelial vWF with short interference RNA (siRNA) prevents Ang II-induced ET-1 upregulation. Nearly 65 ± 2% silencing of vWF in porcine aortic endothelial cells (PAOECs) was achieved with vWF-specific siRNA without affecting cell viability and growth. While showing ET-1 similar to wild type cells at rest, vWF-silenced cells did not present ET-1 upregulation during exposure to Ang II (100 nM/24 h), preserving levels of endothelial nitric oxide synthase activity similar to wild type. vWF silencing prevented AngII-induced increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity and superoxide anion (O2−) levels, known triggers of ET-1 expression. Moreover, no increase in O2− or ET-1 levels was found in silenced cells treated with AngII or NOX-agonist phorbol ester (PMA 5 nM/48 h). Finally, vWF was required for overexpression of NOX4 and NOX2 in response to AngII and PMA. In conclusion, endothelial vWF knockdown prevented Ang II-induced ET-1 upregulation through attenuation of NOX-mediated O2− production. Our findings reveal a new role of vWF in preventing of Ang II-induced endothelial dysfunction. PMID:27443965

  18. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells.

    PubMed Central

    Morita, T; Kurihara, H; Maemura, K; Yoshizumi, M; Yazaki, Y

    1993-01-01

    Hemodynamic shear stress alters the architecture and functions of vascular endothelial cells. We have previously shown that the synthesis of endothelin-1 (ET-1) in endothelial cells is increased by exposure to shear stress. Here we examined whether shear stress-induced alterations in cytoskeletal structures are responsible for increases in ET-1 synthesis in cultured porcine aortic endothelial cells. Exposure of endothelial cells to 5 dyn/cm2 of low shear stress rapidly increased monomeric G-actin contents within 5 min without changing total actin contents. The ratio of G- to total actin, 54 +/- 0.8% in quiescent endothelial cells, increased to 87 +/- 4.2% at 6 h and then decreased. Following the disruption of filamentous (F)-actin into G-actin, ET-1 mRNA levels in endothelial cells also increased within 30 min and reached a peak at 6 h. The F-actin stabilizer, phalloidin, abolished shear stress-induced increases in ET-1 mRNA; however, it failed to inhibit increases in ET-1 mRNA secondary to other stimulants. This indicates that shear stress-induced increases in ET-1 mRNA levels may be mediated by the disruption of actin fibers. Furthermore, increases in ET-1 gene expression can be induced by actin-disrupting agents, cytochalasin B and D. Another cytoskeleton-disrupting agent, colchicine, which inhibits dimerization of tubulin, did not affect the basal level of ET-1 mRNA. However, colchicine completely inhibited shear stress- and cytochalasin B-induced increases in ET-1 mRNA levels. These results suggest that shear stress-induced ET-1 gene expression in endothelial cells is mediated by the disruption of actin cytoskeleton and this induction is dependent on the integrity of microtubules. Images PMID:8408624

  19. Sildenafil promotes eNOS activation and inhibits NADPH oxidase in the transgenic sickle cell mouse penis.

    PubMed

    Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L

    2014-02-01

    Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.

  20. Sildenafil Promotes eNOS Activation and Inhibits NADPH Oxidase in the Transgenic Sickle Cell Mouse Penis

    PubMed Central

    Musicki, Biljana; Bivalacqua, Trinity J.; Champion, Hunter C.; Burnett, Arthur L.

    2014-01-01

    Introduction Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. Aims We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. Methods SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Main Outcome Measures Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Results Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Conclusion Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. PMID:24251665

  1. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells

    SciTech Connect

    Majesky, M.W.; Benditt, E.P.; Schwartz, S.M.

    1988-03-01

    Cultured arterial smooth muscle cells (SMC) can produce platelet-derived growth factor (PDGF)-like molecules. This property raises the possibility that SMC-derived PDGFs function as autocrine/paracrine regulators in the formation and maintenance of the artery wall. In this study the authors have asked if levels of mRNAs directing synthesis of PDFG are modulated in aortic SMC during postnatal development. The authors report here that genes encoding PDGF A- and B-chain precursors are expressed at similar low levels in intact aortas from newborn and adult rats. Marked differences in regulation of transcript abundance of these genes were revealed when aortic SMC were grown in cell culture. PDGF B-chain transcripts accumulated in passaged newborn rat SMC but not adult rat SMC, whereas PDGF A-chain RNA was found in comparable amounts in SMC from both age groups. Similarly, SMC from newborn rats secreted at least 60-fold more PDGF-like activity into conditioned medium than did adult rat SMC. These results show that PDGF A- and B-chain genes are transcribed in the normal rat aorta and provide evidence for age-related change in the control of PDGF B-chain gene expression in aortic SMC. Independent regulation of transcript levels in cultured SMC leaves open the possibility that PDGFs of different composition (AA, AB, BB) play different roles in normal function of the artery wall.

  2. Vascular nitric oxide: Beyond eNOS.

    PubMed

    Zhao, Yingzi; Vanhoutte, Paul M; Leung, Susan W S

    2015-10-01

    As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  3. Regulation of Endothelial Glutathione by ICAM-1 governs VEGF-A mediated eNOS Activity and Angiogenesis

    PubMed Central

    Langston, Will; Chidlow, John H.; Booth, Blake A.; Barlow, Shayne C.; Lefer, David J.; Patel, Rakesh P.; Kevil, Christopher G.

    2007-01-01

    Previous studies suggest that inflammatory cell adhesion molecules may modulate endothelial cell migration and angiogenesis through unknown mechanisms. Using a combination of in vitro and in vivo approaches, herein we reveal a novel redox sensitive mechanism by which ICAM-1 modulates endothelial GSH that controls VEGF-A induced eNOS activity, endothelial chemotaxis, and angiogenesis. In vivo disk angiogenesis assays showed attenuated VEGF-A mediated angiogenesis in ICAM-1−/− mice. Moreover, VEGF-A dependent chemotaxis, eNOS phosphorylation, and nitric oxide (NO) production were impaired in ICAM-1−/− MAEC compared to WT MAEC. Decreasing intracellular GSH in ICAM-1−/− MAEC to levels observed in WT MAEC with 150 μM buthionine sulfoximine (BSO) restored VEGF-A responses. Conversely, GSH supplementation of WT MAEC with 5 mM glutathione ethyl ester (GEE) mimicked defects observed in ICAM-1−/− cells. Deficient angiogenic responses in ICAM-1−/− cells were associated with increased expression of the lipid phosphatase, PTEN, consistent with antagonism of signaling pathways leading to eNOS activation. PTEN expression was also sensitive to GSH status, decreasing or increasing in proportion to intracellular GSH concentrations. These data suggest a novel role for ICAM-1 in modulating VEGF-A induced angiogenesis and eNOS activity through regulation of PTEN expression via modulation of intracellular GSH status. PMID:17291995

  4. Altered hemodynamics, endothelial function, and protein expression occur with aortic coarctation and persist after repair

    PubMed Central

    Menon, Arjun; Eddinger, Thomas J.; Wang, Hongfeng; Wendell, David C.; Toth, Jeffrey M.

    2012-01-01

    Coarctation of the aorta (CoA) is associated with substantial morbidity despite treatment. Mechanically induced structural and functional vascular changes are implicated; however, their relationship with smooth muscle (SM) phenotypic expression is not fully understood. Using a clinically representative rabbit model of CoA and correction, we quantified mechanical alterations from a 20-mmHg blood pressure (BP) gradient in the thoracic aorta and related the expression of key SM contractile and focal adhesion proteins with remodeling, relaxation, and stiffness. Systolic and mean BP were elevated for CoA rabbits compared with controls leading to remodeling, stiffening, an altered force response, and endothelial dysfunction both proximally and distally. The proximal changes persisted for corrected rabbits despite >12 wk of normal BP (∼4 human years). Computational fluid dynamic simulations revealed reduced wall shear stress (WSS) proximally in CoA compared with control and corrected rabbits. Distally, WSS was markedly increased in CoA rabbits due to a stenotic velocity jet, which has persistent effects as WSS was significantly reduced in corrected rabbits. Immunohistochemistry revealed significantly increased nonmuscle myosin and reduced SM myosin heavy chain expression in the proximal arteries of CoA and corrected rabbits but no differences in SM α-actin, talin, or fibronectin. These findings indicate that CoA can cause alterations in the SM phenotype contributing to structural and functional changes in the proximal arteries that accompany the mechanical stimuli of elevated BP and altered WSS. Importantly, these changes are not reversed upon BP correction and may serve as markers of disease severity, which explains the persistent morbidity observed in CoA patients. PMID:23023871

  5. Lithium increases PGC-1alpha expression and mitochondrial biogenesis in primary bovine aortic endothelial cells.

    PubMed

    Struewing, Ian T; Barnett, Corey D; Tang, Tao; Mao, Catherine D

    2007-06-01

    Lithium is a therapeutic agent commonly used to treat bipolar disorder and its beneficial effects are thought to be due to a combination of activation of the Wnt/beta-catenin pathway via inhibition of glycogen synthase kinase-3beta and depletion of the inositol pool via inhibition of the inositol monophosphatase-1. We demonstrated that lithium in primary endothelial cells induced an increase in mitochondrial mass leading to an increase in ATP production without any significant change in mitochondrial efficiency. This increase in mitochondrial mass was associated with an increase in the mRNA levels of mitochondrial biogenesis transcription factors: nuclear respiratory factor-1 and -2beta, as well as mitochondrial transcription factors A and B2, which lead to the coordinated upregulation of oxidative phosphorylation components encoded by either the nuclear or mitochondrial genome. These effects of lithium on mitochondrial biogenesis were independent of the inhibition of glycogen synthase kinase-3beta and independent of inositol depletion. Also, expression of the coactivator PGC-1alpha was increased, whereas expression of the coactivator PRC was not affected. Lithium treatment rapidly induced a decrease in activating Akt-Ser473 phosphorylation and inhibitory Forkhead box class O (FOXO1)-Thr24 phosphorylation, as well as an increase in activating c-AMP responsive element binding (CREB)-Ser133 phosphorylation, two mechanisms known to control PGC-1alpha expression. Together, our results show that lithium induces mitochondrial biogenesis via CREB/PGC-1alpha and FOXO1/PGC-1alpha cascades, which highlight the pleiotropic effects of lithium and reveal also novel beneficial effects via preservation of mitochondrial functions.

  6. Epigallocatechin-3-gallate inhibits proliferation of human aortic smooth muscle cells via up-regulating expression of mitofusin 2.

    PubMed

    Shu, Zhouwu; Yu, Min; Zeng, Guoning; Zhang, Xin; Wu, Libiao; Tan, Xuerui

    2014-04-01

    Previous studies have shown that epigallocatechin-3-gallate (EGCG) inhibits the proliferation of vascular smooth muscle cells (VSMCs) via the extracellular-signal-regulated kinase (ERK1/2) and mitogen activated protein kinases (MAPKs) pathway. Mitofusin 2 (Mfn-2) also suppresses VSMC proliferation through Ras-Raf-ERK/MAPK, suggesting a possible link between EGCG, Mfn-2 and ERK/MAPK. However, the effect of EGCG on Mfn-2 remains unknown. In this study, we investigated the role of Mfn-2 in the regulation of VSMC proliferation by EGCG, and assessed the underlying mechanisms. The effects of EGCG on the proliferation of cultured human aortic smooth muscle cells (HASMCs) were observed by 5-ethynl-2-deoxyuridine (EdU) incorporation assay. Mfn-2 gene and protein levels, and Ras, p-c-Raf and p-ERK1/2 protein levels were determined by quantitative real-time polymerase chain reaction and western blotting, respectively. Mfn-2 gene silencing was achieved by RNA interference. EGCG 50 μmol/L profoundly inhibited the proliferation of HASMCs in culture, up-regulated Mfn-2, and down-regulated the expression of p-c-Raf and p-ERK1/2. Furthermore, RNA interference-mediated gene knockdown of Mfn-2 antagonized EGCG-induced anti-proliferation and down-regulation of Ras, p-c-Raf and p-ERK1/2. These results suggest that EGCG inhibits the proliferation of HASMCs in vitro largely via Mfn-2-mediated suppression of the Ras-Raf-ERK/MAPK signaling pathway. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Obesity, Inflammation, and Exercise Training: Relative Contribution of iNOS and eNOS in the Modulation of Vascular Function in the Mouse Aorta

    PubMed Central

    Silva, Josiane F.; Correa, Izabella C.; Diniz, Thiago F.; Lima, Paulo M.; Santos, Roger L.; Cortes, Steyner F.; Coimbra, Cândido C.; Lemos, Virginia S.

    2016-01-01

    Background: The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process. Methods: High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO) was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS) knockdown. Results: Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD) than in the sedentary control animals (SS). Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS) functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS−/− animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet–fed animals

  8. Geranylgeranylacetone protects against cerebral ischemia and reperfusion injury: HSP90 and eNOS phosphorylation involved.

    PubMed

    He, Dake; Song, Xiaoqing; Li, Ling

    2015-03-02

    Cerebral ischemia and reperfusion (I/R) can trigger a cytotoxic cascade with overflow of reactive oxygen species, paradoxically causing neurological dysfunction, redox imbalance, inflammation and apoptosis. The present study aims to investigate the effect of geranylgeranylacetone(GGA) on cerebral I/R injury and the underlying mechanism. The results demonstrated that cerebral I/R increased the neurological function abnormality, brain edema, inflammation and oxidative injury in rats as well as the cognitive impairment, which was significantly reversed by GGA in a dose-dependent manner. GGA also suppressed the cell injury and apoptosis caused by cerebral I/R. Moreover, the protective effect of GGA was found to involve heat shock protein 90 (HSP90) and phosphorylated endothelial nitric oxide synthase (eNOS) expression and activity. Both the HSP90 and eNOS inhibitor abolished the effect of GGA. The data showed that GGA could protect rats against cerebral I/R injury, which may be related to the induction of HSP90 and activation of eNOS. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. autoregulatory role of endothelium-derived nitric oxide (NO) on Lipopolysaccharide-induced vascular inducible NO synthase expression and function.

    PubMed

    Vo, Phuong A; Lad, Bhavini; Tomlinson, James A P; Francis, Stephanie; Ahluwalia, Amrita

    2005-02-25

    Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.

  10. 17-β-oestradiol-induced vasorelaxation in vitro is mediated by eNOS through hsp90 and akt/pkb dependent mechanism

    PubMed Central

    Bucci, Mariarosaria; Roviezzo, Fiorentina; Cicala, Carla; Pinto, Aldo; Cirino, Giuseppe

    2002-01-01

    The L-arginine-NO pathway has been implicated in the vasorelaxant effect of 17-β-oestradiol. Here we have addressed the involvement of two distinct activation steps of endothelial nitric oxide synthase (eNOS) in the 17-β-oestradiol-induced vasorelaxant effect on rat aortic rings. Rat aortic rings contracted with phenylephrine (PE) 1 μM relaxed in a concentration related fashion to 17-β-oestradiol water soluble cyclodextrin-encapsulated (E2) only when endothelium was present. The pure anti-oestrogen of E2 receptor ICI 182,780 (20 μM) significantly inhibited E2-induced vasorelaxation. Geldanamycin (10 μM), a specific inhibitor of heat shock protein 90 (hsp90) and Nω-nitro-L-arginine-methyl ester (L-NAME, 100 μM), a nitric oxide synthase inhibitor, significantly inhibited E2-induced vasorelaxation. Incubation of rat aortic rings up to 6 h with LY 294002 (25 μM), a specific inhibitor of PI(3)K akt/pkb pathway reduced E2-induced vasorelaxation. Incubation of rat isolated aorta with E2, induced prostacyclin (PGI2) release. PGI2 levels, measured as 6-keto PGF1α, were abolished by ibuprofen (10 μM), both L-NAME and GA did not influence basal or E2-stimulated PGI2 confirming the specificity of these two compounds on eNOS pathway. In conclusion, we demonstrate that E2 interaction with its receptor is followed by a vasorelaxant effect in rat aortic rings mediated by eNOS activation through both hsp90 and akt/pkb dependent mechanisms. PMID:11934809

  11. eNOS correlates with mitochondrial biogenesis in hearts of congenital heart disease with cyanosis.

    PubMed

    Xiao, Juan; Chen, Lin; Wang, Xuefeng; Liu, Mei; Xiao, Yingbin

    2012-09-01

    Mitochondrial biogenesis program in heart appears to exhibit adaptive remodeling following biomechanical and oxidative stress. The adaptive mechanisms that protect myocardium metabolism during hypoxia are coordinated in part by nitric oxide (NO). To observe mitochondrial biogenesis and nitric oxide synthase (NOS) expression in hearts of congenital heart disease with cyanosis, discuss mitochondrial response to chronic hypoxia in myocardium. 20 patients with cyanotic (n=10) or acyanotic cardiac defects (n=10) were investigated. Samples from the right ventricular outflow tract myocardium taken during operation were studied. Morphometric analysis of mitochondria was performed with transmission electron microscope. Relative mtDNA/nDNA ratio was determined with real-time PCR. Cytochrome c oxidase subunit I (COXI), peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (Tfam) transcript levels were detected by real-time fluorescent RT-PCR. COXI and nNOS, iNOS and eNOS protein levels were measured with western blot. Mitochondrial volume density (Vv) and numerical density (Nv) were significantly elevated in patients with cyanotic compared to acyanotic congenital heart disease. Elevated mtDNA and up-regulated COXI, PGC-1α, NRF1 and Tfam mRNA levels were observed in cyanotic patients. Protein levels of COXI and eNOS were significantly higher in the myocardium of cyanotic than of acyanotic patients. PGC-1α transcript levels correlated with the levels of eNOS. Mitochondrial biogenesis is activated in right ventricular outflow tract myocardium in congenital heart disease with cyanosis, which could be the adaptive response to chronic hypoxia and possibly involves eNOS up-regulation.

  12. P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: implication for calcific aortic valve disease.

    PubMed

    El Husseini, Diala; Boulanger, Marie-Chloé; Mahmut, Ablajan; Bouchareb, Rihab; Laflamme, Marie-Hélène; Fournier, Dominique; Pibarot, Philippe; Bossé, Yohan; Mathieu, Patrick

    2014-07-01

    Calcific aortic valve disease (CAVD) is a disorder characterized by an abnormal mineralization, which may have intricate links with inflammation. Interleukin-6 (IL-6) and its cognate cytokines are widely expressed and exert pleiotropic effects on different tissues. In this study, we examined the expression of the IL-6 family of cytokines in human CAVD by using a transcriptomic approach and we performed in-depth functional assays with valve interstitial cells (VICs) to unravel the process regulating IL-6 expression and its role during the mineralization of the aortic valve. We documented by both microarray and q-PCR analyses an elevated expression of IL-6 in human CAVD, which was correlated with the remodeling process. IL-6 was highly expressed by VICs. We found that following treatment with a phosphate-containing medium the level of IL-6 expressed by VICs increased by several-fold. Phosphate-induced expression of IL-6 relied on reduced PI3K/Akt signaling downstream of the P2Y2 receptor (P2Y2R). In this regard, we found by using transfection experiments that Akt-1 is a negative regulator of the NF-κB pathway. In addition, by using a siRNA targeting IL-6 we found that phosphate-induced mineralization was largely dependent on IL-6 expression. A transfection of Akt-1 rescued the hypermineralizing phenotype of P2Y2R(-/-) mouse VICS (MVICs). Hence, we documented a novel mechanism whereby P2Y2R and Akt modulate the NF-κB pathway and its downstream target IL-6, which is a strong promoter of the mineralization of VICs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Aortic dissection].

    PubMed

    Ogino, Hitoshi

    2011-07-01

    Acute aortic dissection suddenly occurrs and results in a variety of catastrophic sequelae including cardiac tamponade, rupture, and organ malperfusion. In acute stage (< 2 weeks), according to the classifications on the region of aortic dissection, the condition of the false channel and the onset, appropriate medical, surgical, or endovascular treatments including endovascular aneurysm repair followed by the rapid and accurate diagnosis of aortic dissection using computed tomography and ultrasound should be performed without delay. In the chronic stage (> 2 weeks), the behavior of the chronic dissection or residual distal dissection after the initial treatment should be followed-up carefully with best medical treatment at the regular intervals. If necessary, appropriate surgical and endovascular treatment should be carried out in the proper timing before rupture.

  14. [Aortic aneurysm].

    PubMed

    Villar, Fernando; Pedro-Botet, Juan; Vila, Ramón; Lahoz, Carlos

    2013-01-01

    Aortic aneurysm is one important cause of death in our country. The prevalence of abdominal aortic aneurism (AAA) is around 5% for men older than 50 years of age. Some factors are associated with increased risk for AAA: age, hypertension, hypercholesterolemia, cardiovascular disease and, in particular, smoking. The medical management of patients with an AAA includes cardiovascular risk treatment, particularly smoking cessation. Most of major societies guidelines recommend ultrasonography screening for AAA in men aged 65 to 75 years who have ever smoked because it leads to decreased AAA-specific mortality. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  15. Docosahexaenoic acid attenuates VCAM-1 expression and NF-κB activation in TNF-α-treated human aortic endothelial cells.

    PubMed

    Wang, Tzu-Ming; Chen, Chun-Jung; Lee, Tzong-Shyuan; Chao, Han-Yi; Wu, Wen-Huey; Hsieh, Shu-Chen; Sheu, Huey-Herng; Chiang, An-Na

    2011-02-01

    This study was conducted to test the hypothesis that n-3 polyunsaturated fatty acids are able to down-regulate expression of adhesion molecules and nuclear factor-κB (NF-κB) activation in vascular endothelial cells, in addition to reducing atherosclerotic lesions in vivo. We report here that docosahexaenoic acid (DHA) reduces atherosclerotic lesions in the aortic arteries of apolipoprotein E knockout (apoE(-/-)) mice. Consistent with the observation in animal study, DHA inhibited THP-1 cell adhesion to tumor necrosis factor α (TNF-α)-activated human aortic endothelial cells (HAECs). Expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on the cell surface of HAECs was determined by cell-surface enzyme-linked immunosorbent assay. DHA and eicosapentaenoic acid decreased VCAM-1 expression in a dose-dependent manner in TNF-α treated HAECs, while cis-linoleic acid and arachidonic acid did not have any significant effect on either VCAM-1 or ICAM-1 expression. Moreover, DHA significantly reduced VCAM-1 protein expression in the cell lysates of TNF-α-treated HAECs, as determined by Western blot analysis. In line with NF-κB signaling pathway, DHA suppressed the TNF-α-activated IκBα phosphorylation and degradation as well as IκB kinase-β phosphorylation. Subsequently, translocation of the NF-κB (p50/p65) and AP-1 (c-Fos/c-Jun) subunits was down-regulated by DHA in the nucleus of HAECs. These results suggest that DHA negatively regulates TNF-α-induced VCAM-1 expression through attenuation of NF-κB signaling pathway and AP-1 activation. This study provides evidence that DHA may contribute to the prevention of atherosclerosis and inflammatory diseases in vivo.

  16. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    SciTech Connect

    Hossain, Ekhtear; Ota, Akinobu; Karnan, Sivasundaram; Damdindorj, Lkhagvasuren; Takahashi, Miyuki; Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-κB. • SA upregulates LOX-1 expression through ROS-activated NF-κB signaling pathway.

  17. PECAM-1 Isoforms, eNOS, and Endoglin Axis in Regulation of Angiogenesis

    PubMed Central

    Park, SunYoung; Sorenson, Christine M.; Sheibani, Nader

    2016-01-01

    Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineating the regulatory processes involved in development of vascular system and function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been subject of numerous studies. Here we will review the important roles PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signaling pathways which impact various cell adhesive mechanisms and endothelial nitric oxide (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity whose expression and activity are compromised in the absence of PECAM-1. Here we will discuss the roles PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis. PMID:25976664

  18. Vasoinhibins Prevent Bradykinin-Stimulated Endothelial Cell Proliferation by Inactivating eNOS via Reduction of both Intracellular Ca2+ Levels and eNOS Phosphorylation at Ser1179

    PubMed Central

    Thebault, Stéphanie; González, Carmen; García, Celina; Zamarripa, David Arredondo; Nava, Gabriel; Vaca, Luis; López-Casillas, Fernando; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2011-01-01

    Vasoinhibins, a family of antiangiogenic peptides derived from prolactin proteolysis, inhibit the vascular effects of several proangiogenic factors, including bradykinin (BK). Here, we report that vasoinhibins block the BK-induced proliferation of bovine umbilical vein endothelial cells. This effect is mediated by the inactivation of endothelial nitric oxide synthase (eNOS), as the NO donor DETA-NONOate reverted vasoinhibin action. It is an experimentally proven fact that the elevation of intracellular Ca2+ levels ([Ca2+]i) upon BK stimulation activates eNOS, and vasoinhibins blocked the BK-mediated activation of phospholipase C and the formation of inositol 1,4,5-triphosphate leading to a reduced release of Ca2+ from intracellular stores. The [Ca2+]i rise evoked by BK also involves the influx of extracellular Ca2+ via canonical transient receptor potential (TRPC) channels. Vasoinhibins likely interfere with TRPC-mediated Ca2+ entry since La3+, which is an enhancer of TRPC4 and TRPC5 channel activity, prevented vasoinhibins from blocking the stimulation by BK of endothelial cell NO production and proliferation, and vasoinhibins reduced the BK-induced increase of TRPC5 mRNA expression. Finally, vasoinhibins prevented the BK-induced phosphorylation of eNOS at Ser1179, a post-translational modification that facilitates Ca2+-calmodulin activation of eNOS. Together, our data show that vasoinhibins, by lowering NO production through the inhibition of both [Ca2+]i mobilization and eNOS phosphorylation, prevent the BK-induced stimulation of endothelial cell proliferation. Thus, vasoinhibins help to regulate BK effects on angiogenesis and vascular homeostasis.

  19. Betaxolol stimulates eNOS production associated with LOX-1 and VEGF in Dahl salt-sensitive rats.

    PubMed

    Kobayashi, Naohiko; Yoshida, Kohtaro; Mita, Shin-ichiro; Honda, Takeaki; Hara, Kazuyoshi; Nakano, Shigefumi; Tsubokou, Yusuke; Matsuoka, Hiroaki

    2004-07-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and vascular endothelial growth factor (VEGF) may play key roles in atherosclerosis, and have been shown to regulate nitric oxide (NO) production. However, the molecular mechanisms by which betaxolol, a specific beta 1-antagonist, stimulates endothelial NO synthase (eNOS) expression associated with LOX-1 and VEGF are unclear. We hypothesized that in the left ventricle of Dahl salt-sensitive (DS) rats, betaxolol reduces production of LOX-1 by suppressing NAD(P)H oxidase p47phox expression; betaxolol stimulates eNOS production associated with expression of VEGF and LOX-1; and betaxolol inhibits adhesion molecule and signal transduction, which may be involved in cardiovascular remodeling. After 5 weeks of feeding an 8% NaCl diet to 6-week-old DS rats (i.e. at 11 weeks of age), a distinct stage of concentric left ventricular hypertrophy was noted. Betaxolol (0.9 mg/kg per day) was administered to 6-week-old DS rats for 5 weeks until the onset of left ventricular hypertrophy stage. Decreased expression of eNOS and VEGF in DS rats was increased by betaxolol. Upregulated LOX-1, NAD(P)H oxidase p47phox, intercellular and vascular cell adhesion molecule-1 expression and phosphorylations of p38 mitogen-activated protein kinase and p65 nuclear factor-kappa B activity were inhibited by betaxolol. Betaxolol administration resulted in significant improvement of cardiovascular remodeling and suppression of transforming growth factor-beta 1 and type I collagen expression. These results suggest that cardioprotective effects of betaxolol may stimulate eNOS production associated with VEGF and LOX-1, and inhibit adhesion molecule and signal transduction in DS rats.

  20. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels.

    PubMed

    Khoo, Nicholas K H; White, C Roger; Pozzo-Miller, Lucas; Zhou, Fen; Constance, Chad; Inoue, Takafumi; Patel, Rakesh P; Parks, Dale A

    2010-08-01

    Considerable epidemiological evidence indicates that dietary consumption of moderate levels of polyphenols decreases both the incidence of cardiovascular disease and the mortality associated with myocardial infarction. Molecular mechanisms of this cardiovascular protection remain uncertain but can involve changes in rates of nitric oxide (NO) generation by endothelial nitric oxide synthase (eNOS). We examined the vascular responses to quercetin using a combination of biochemical and vessel function criteria. Quercetin treatment for 30min enhanced relaxation of rat aortic ring segments. Moreover, the addition of L-NAME (100muM) or charybdotoxin (ChTx) blocked quercetin-mediated vasorelaxation thus demonstrating the effect was partially dependent on NOS and endothelium-derived hyperpolarizing factor (EDHF). Additionally, bovine aortic endothelial cells (BAEC) treated with quercetin showed a rapid increase of intracellular Ca(2+) concentrations as well as a dose- and time-dependent stimulation of eNOS phosphorylation with a concomitant increase in NO production. These results demonstrate that quercetin-mediated stimulation of eNOS phosphorylation increases NO bioavailability in endothelial cells and can thus play a role in the vascular protective effects associated with improved endothelial cell function.

  1. DIETARY FLAVONOID QUERCETIN STIMULATES VASORELAXATION IN AORTIC VESSELS

    PubMed Central

    Khoo, Nicholas K.H.; White, C. Roger; Pozzo-Miller, Lucas; Zhou, Fen; Constance, Chad; Inoue, Takafumi; Patel, Rakesh P.; Parks, Dale A.

    2010-01-01

    Considerable epidemiological evidence indicates that dietary consumption of moderate levels of polyphenols decreases both the incidence of cardiovascular disease and the mortality associated with myocardial infarction. Molecular mechanisms of this cardiovascular protection remain uncertain but can involve changes in rates of nitric oxide (NO) generation by endothelial nitric oxide synthase (eNOS). We examined the vascular responses to quercetin using a combination of biochemical and vessel function criteria. Quercetin treatment for 30 min enhanced relaxation of rat aortic ring segments. Moreover, the addition of L-NAME (100 μM) or charybdotoxin (ChTx) blocked quercetin-mediated vasorelaxation thus demonstrating the effect was partially dependent on NOS and endothelium-derived hyperpolarizing factor (EDHF). Additionally, bovine aortic endothelial cells (BAEC) treated with quercetin showed a rapid increase of intracellular Ca2+ concentrations as well as a dose- and time-dependent stimulation of eNOS phosphorylation with a concomitant increase in NO production. These results demonstrate that quercetin-mediated stimulation of eNOS phosphorylation increases NO bioavailability in endothelial cells and can thus play a role in the vascular protective effects associated with improved endothelial cell function. PMID:20423726

  2. Protective effect of eNOS overexpression against ischemia/reperfusion injury in small-for-size liver transplantation

    PubMed Central

    Zhang, Bo; Liu, Qiu-Hua; Zhou, Cui-Jie; Hu, Ming-Zheng; Qian, Hai-Xin

    2016-01-01

    Ischemia/reperfusion (I/R) injury can occur during small-for-size liver transplantation, resulting in delayed graft function and decreased long-term graft survival. The aim of the present study was to evaluate the effects of genetic overexpression of endothelial nitric oxide synthase (eNOS) in protecting hepatocytes against I/R injury in a rat model of small-for-size liver transplantation. L02 liver cells were transfected with the eNOS gene using an adenovirus (Ad-eNOS). eNOS expression was detected using quantitative polymerase chain reaction and western blot analysis. To evaluate the effect of eNOS overexpression, L02 cells were placed in a hypoxic environment for 12 h and immediately transferred to an oxygen-enriched atmosphere. For in vivo testing, rats pretreated with Ad-eNOS or control underwent small-for-size liver transplantation. At 6 h after reperfusion, the bile quantity, serum transaminase and nitric oxide (NO) levels, and histological outcomes were evaluated. Cell apoptosis was assessed by flow cytometry or TUNEL assay. In vitro, Ad-eNOS prevented apoptosis in L02 cells with an increase in the level of NO in culture supernatant. In vivo, Ad-eNOS pre-treatment significantly increased bile production, improved abnormal transaminase levels, diminished apoptosis among liver cells, and decreased hepatocellular damage at 6 h after I/R injury. The eNOS-mediated renal protective effects might be associated with the downregulation of tumor necrosis factor-α and a reduction in macrophage activation in the early stage of reperfusion in small-for-size liver allografts. eNOS-derived NO production significantly attenuates hepatic I/R injury. Thus, eNOS overexpression constitutes a promising therapeutic approach to prevent liver I/R injury following small-for-size liver transplantation. PMID:27882135

  3. Differential expression of MMP-2, MMP-9 and TIMP proteins in thoracic aortic aneurysm - comparison with and without bicuspid aortic valve: a meta-analysis.

    PubMed

    Rabkin, Simon W

    2014-11-01

    Hintergrund: Es wird angenommen, dass das Gleichgewicht der Matrix- Metalloproteasen (MMPs) und der Gewebeinhibitoren von Metalloproteinasen (TIMPs ) in der Aorta eine entscheidende Rolle bei der Ausbildung von Aneurysmen spielt. Das Ziel dieser Studie war es, eine Meta-Analyse von Studien durchzuführen, die die Protein-Expression von MMPs und TIMPs bei Aneurysmen der Aorta ascendens (TAA) untersuchten. Dabei sollte zwischen trikuspiden (TAV) und bikuspiden Aortenklappen (BAV) unterschieden werden. Methoden: Medline und Embase OvidSP wurden systematisch nach Studien abgefragt, die MMPs oder TIMPs aus TAAs und Kontrollen untersuchten. Eine entsprechende Suche erfolgte zum Vergleich zwischen BAV und TAV. Ergebnisse: Acht Studien erfüllten die Einschlusskriterien. Es gab einen signifikanten Anstieg der MMP-9 und keine Veränderung in MMP-2 in der Aorta von Personen mit TAA (N = 106 ) im Vergleich zur Kontrolle (n = 30). Zudem gab es eine hochsignifikante Verringerung der TIMP-1 und TIMP-2 in TAA (N = 93) im Vergleich zur Kontrolle (n = 24 ), was zu einem MMP-9 zu TIMP-1 oder TIMP-2-Verhältnis von mehr als 3,5 im Vergleich zu Kontrollen führte. Es fand sich eine hochsignifikante Erhöhung der MMP-2, aber nicht der MMP-9 in TAAs mit BAV (N = 112 ) im Vergleich zu TAV (N = 53). Es gab eine signifikante Reduktion von TIMP-1 bei BAV im Vergleich zu TAV, aber keine Änderung von TIMP-2, TIMP-3 oder TIMP-4 . Schlussfolgerungen: Diese Daten deuten darauf hin, dass MMP eine Rolle in der Pathogenese von TAA spielt. Es gibt eine unterschiedliche Expression mit erhöhtem MMP-9 und verminderten TIMP-1 und -2 bei den häufigsten Formen des TAA. MMP-2 ist erhöht und nur TIMP-1 vermindert bei TAA mit BAV im Vergleich zu TAV.

  4. Acute Aortic Syndromes and Thoracic Aortic Aneurysm

    PubMed Central

    Ramanath, Vijay S.; Oh, Jae K.; Sundt, Thoralf M.; Eagle, Kim A.

    2009-01-01

    Acute and chronic aortic diseases have been diagnosed and studied by physicians for centuries. Both the diagnosis and treatment of aortic diseases have been steadily improving over time, largely because of increased physician awareness and improvements in diagnostic modalities. This comprehensive review discusses the pathophysiology and risk factors, classification schemes, epidemiology, clinical presentations, diagnostic modalities, management options, and outcomes of various aortic conditions, including acute aortic dissection (and its variants intramural hematoma and penetrating aortic ulcers) and thoracic aortic aneurysms. Literature searches of the PubMed database were conducted using the following keywords: aortic dissection, intramural hematoma, aortic ulcer, and thoracic aortic aneurysm. Retrospective and prospective studies performed within the past 20 years were included in the review; however, most data are from the past 15 years. PMID:19411444

  5. A wound-like inflammatory aortic response in chronic portal hypertensive rats.

    PubMed

    de Las Heras, Natalia; Aller, María-Angeles; Martín-Fernández, Beatriz; Miana, María; Ballesteros, Sandra; Regadera, Javier; Cachofeiro, Victoria; Arias, Jaime; Lahera, Vicente

    2012-06-01

    Long-term prehepatic portal hypertension in the rat produces a low-grade splanchnic inflammation with liver steatosis and dyslipidemia. It has been suggested that in this experimental model these inflammatory alterations could represent a risk factor of vascular disease. Therefore, our aim was to investigate whether long-term prehepatic portal hypertension (PH) induces vascular pathology, fundamentally inflammatory aortopathy. Male Wistar sham-operated (SO) rats and rats with triple partial portal vein ligation in the very long-term (22 months) of postoperative evolution were used. Serum lipid profile, pro- and anti- inflammatory cytokines and ACTH and corticosterone were assayed by spectrophotometric and ELISA techniques. Aorta mRNA expression of oxidative and nitrosative stress enzymes, NFκB e IκB, immune-related cytokine production and vascular fibrosis parameters, were evaluated by real time RT-PCR. In addition, aortic p22phox subunit immunostaining, morphometry and vascular fibrosis in aorta were analyzed. PH rats have increased serum cholesterol, triglyceride, low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL), while high-density lipoproteins (HDL) were lower than in SO rats. Serum ACTH and corticosterone decreased in PH rats. Also, serum TNF-α, IL-1β and IL-6 were significantly higher in PH-rats. Portal hypertensive-rats showed aortic oxidative stress with increased mRNA expressions of NAD(P)H oxidase p22phox, XDh, SOD and eNOS; higher aortic levels of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; remodeling markers, like collagen I, CTGF and MMP-9; and finally, higher protein production of p22phox and collagen and extracellular matrix density were significantly higher in rats with PH. The results from the current study suggest that very long-term prehepatic portal hypertension in rats induces an abdominal aortic inflammatory and fibrotic response. Therefore, it could be considered that portal hypertension aggravates

  6. Role of muscular eNOS in skeletal arteries: Endothelium-independent hypoxic vasoconstriction of the femoral artery is impaired in eNOS-deficient mice.

    PubMed

    Kim, Hae Jin; Yoo, Hae Young; Lin, Hai Yue; Oh, Goo Taeg; Zhang, Yin Hua; Kim, Sung Joon

    2016-09-01

    We previously reported that hypoxia augments α-adrenergic contraction (hypoxic vasoconstriction, HVC) of skeletal arteries in rats. The underlying mechanism may involve hypoxic inhibition of endothelial nitric oxide synthase (eNOS) expressed in skeletal arterial myocytes (16). To further explore the novel role of muscular eNOS in the skeletal artery, we compared HVC in femoral arteries (FAs) from eNOS knockout (KO) mice with that from wild-type (WT) and heterozygous (HZ) mice. Immunohistochemical assays revealed that, in addition to endothelia, eNOS is also expressed in the medial layer of FAs, albeit at a much lower level. However, the medial eNOS signal was not evident in HZ FAs, despite strong expression in the endothelium; similar observations were made in WT carotid arteries (CAs). The amplitude of contraction induced by 1 μM phenylephrine (PhE) was greater in HZ than in WT FAs. Hypoxia (3% Po2) significantly augmented PhE-induced contraction in WT FAs but not in HZ or KO FAs. No HVC was observed in PhE-pretreated WT CAs. The NOS inhibitor nitro-l-arginine methyl ester (0.1 mM) also augmented PhE contraction in endothelium-denuded WT FAs but not in WT CAs. Inhibitors specific to neuronal NOS and inducible NOS did not augment PhE-induced contraction of WT FAs. NADPH oxidase 4 (NOX4) inhibitor (GKT137831, 5 μM), but not NOX2 inhibitor (apocynin, 100 μM), suppressed HVC. Consistent with the role of reactive oxygen species (ROS), HVC was also inhibited by pretreatment with tiron or polyethylene glycol-catalase. Taken together, these data suggest that the eNOS expressed in smooth muscle cells in FAs attenuates α-adrenergic vasoconstriction; this suppression is alleviated under hypoxia, which potentiates vasoconstriction in a NOX4/ROS-dependent mechanism. Copyright © 2016 the American Physiological Society.

  7. Aortic Valve Regurgitation

    MedlinePlus

    ... valve. Also, a narrowing of the aortic valve (aortic stenosis) can be associated with leaking. High blood pressure (hypertension). High blood pressure may stretch the root of the aorta where the aortic valve sits. The valve flaps ( ...

  8. Thoracic aortic aneurysm

    MedlinePlus

    Aortic aneurysm - thoracic; Syphilitic aneurysm; Aneurysm - thoracic aortic ... The most common cause of a thoracic aortic aneurysm is hardening of ... high cholesterol, long-term high blood pressure, or who smoke. ...

  9. Aortic Stenosis.

    PubMed

    Bakaeen, Faisal G; Rosengart, Todd K; Carabello, Blase A

    2017-01-03

    This issue provides a clinical overview of aortic stenosis, focusing on screening, diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  10. Sesamin attenuates intercellular cell adhesion molecule-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in apolipoprotein-E-deficient mice.

    PubMed

    Wu, Wen-Huey; Wang, Shu-Huei; Kuan, I-I; Kao, Ya-Shi; Wu, Pei-Jhen; Liang, Chan-Jung; Chien, Hsiung-Fei; Kao, Chiu-Hua; Huang, Ching-Jang; Chen, Yuh-Lien

    2010-09-01

    Sesame lignans have antioxidative and anti-inflammatory properties. We focused on the effects of the lignans sesamin and sesamol on the expression of endothelial-leukocyte adhesion molecules in tumor necrosis factor-alpha (TNF-alpha)-treated human aortic endothelial cells (HAECs). When HAECs were pretreated with sesamin (10 or 100 microM), the TNF-alpha-induced expression of intercellular cell adhesion molecule-1 (ICAM-1) was significantly reduced (35 or 70% decrease, respectively) by Western blotting. Sesamol was less effective at inhibiting ICAM-1 expression (30% decrease at 100 microM). Sesamin and sesamol reduced the marked TNF-alpha-induced increase in human antigen R (HuR) translocation and the interaction between HuR and the 3'UTR of ICAM-1 mRNA. Both significantly reduced the binding of monocytes to TNF-alpha-stimulated HAECs. Sesamin significantly attenuated TNF-alpha-induced ICAM-1 expression and cell adhesion by downregulation of extracellular signal-regulated kinase 1/2 and p38. Furthermore, in vivo, sesamin attenuated intimal thickening and ICAM-1 expression seen in aortas of apolipoprotein-E-deficient mice. Taken together, these data suggest that sesamin inhibits TNF-alpha-induced extracellular signal-regulated kinase/p38 phosphorylation, nuclear translocation of NF-kappaB p65, cytoplasmic translocalization of HuR and thereby suppresses ICAM-1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that sesamin may prevent the development of atherosclerosis and inflammatory responses.

  11. Differential expression of osteopontin, and osteoprotegerin mRNA in epicardial adipose tissue between patients with severe coronary artery disease and aortic valvular stenosis: association with HDL subclasses.

    PubMed

    Luna-Luna, María; Cruz-Robles, David; Ávila-Vanzzini, Nydia; Herrera-Alarcón, Valentín; Martínez-Reding, Jesús; Criales-Vera, Sergio; Sandoval-Zárate, Julio; Vargas-Barrón, Jesús; Martínez-Sánchez, Carlos; Tovar-Palacio, Armando Roberto; Fragoso, José Manuel; Carreón-Torres, Elizabeth; Vargas-Alarcón, Gilberto; Pérez-Méndez, Óscar

    2017-08-18

    Previous studies suggest a relationship of the epicardial adipose tissue (EAT) with progression and calcification of the atherosclerotic plaque; however, it is unknown if this tissue expresses genes that may participate on these processes and if the expression of these genes is regulated by high-density lipoprotein (HDL) subclasses. To explore this possibility, we determined the mRNA expression by qPCR of a pro-calcifying gene (osteopontin (OPN)), and two anti-calcifying genes (osteoprotegerin (OPG) and osteonectin (ON)), in biopsies of EAT obtained from 15 patients with coronary artery disease (CAD) determined by angiography, and 15 patients with diagnostic of aortic valve stenosis but without CAD as control group. We determined the distribution and composition of HDL subclasses by electrophoresis and their statistical relationship with the gene expression in EAT. EAT from CAD patients showed a higher expression level of OPN and OPG than control group, whereas ON expression was similar between groups. Large HDL subclasses were cholesterol-poor in CAD patients as estimated by the cholesterol-to-phospholipid ratio. A linear regression model showed an independent association of OPN expression with HDL3a-cholesterol, and OPG expression with the relative proportion of HDL3b protein. Logistic analysis determined that OPN expression was positively associated with the presence of atherosclerotic plaque CONCLUSION: OPN, ON, and OPG genes are transcribed in EAT; to the exception of ON, the level of expression was different in CAD patients and control group, and correlated with some HDL subclasses, suggesting a new role of these lipoproteins.

  12. Chronic Exercise Training Improved Aortic Endothelial and Mitochondrial Function via an AMPKα2-Dependent Manner

    PubMed Central

    Chen, Xiaohui; An, Xiangbo; Chen, Dongrui; Ye, Maoqing; Shen, Weili; Han, Weiqing; Zhang, Youyi; Gao, Pingjin

    2016-01-01

    Chronic exercise training is known to protect the vasculature; however, the underlying mechanisms remain obscure. The present study hypothesized that exercise may improve aortic endothelial and mitochondrial function through an adenosine monophosphate-activated protein kinase α2 (AMPKα2)-dependent manner. Ten-week-old AMPKα2 knockout (AMPKα2−/−) mice and age-matched wild-type (WT) mice were subjected to daily treadmill running for 6 weeks, and the thoracic aorta from these mice were used for further examination. Our results showed that exercise significantly promoted vasodilatation and increased expression and phosphorylation of endothelial nitric oxide synthase (eNOS), concomitant with increased AMPKα2 expression in WT mice. These effects were not observed in AMPKα2−/− mice. Furthermore, exercise training increased thoracic aortic mitochondrial content as indicated by increased Complex I and mitochondrial DNA (mtDNA) in WT mice but not in AMPKα2−/− mice. This may be caused by decreased mitochondrial autophagy since the expression of BH3 domain-containing BCL2 family members BNIP3-like (BNIP3L) and LC3B were decreased in WT mice with exercise. And these changes were absent with AMPKα2 deletion in mice. Importantly, exercise increased the expression of manganous superoxide dismutase (MnSOD) and catalase, suggesting that mitochondrial antioxidative capacity was increased. Notably, the improved antioxidative capacity was lost in AMPKα2−/− mice with exercise. In conclusion, this study illustrated that AMPKα2 plays a critical role in exercise-related vascular protection via increasing endothelial and mitochondrial function in the artery. PMID:28066264

  13. Heparin-binding epidermal growth factor-like growth factor regulates fibroblast growth factor-2 expression in aortic smooth muscle cells.

    PubMed

    Peifley, K A; Alberts, G F; Hsu, D K; Feng, S L; Winkles, J A

    1996-08-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a vascular smooth muscle cell (SMC) mitogen and chemotactic factor that is expressed by endothelial cells, SMCs, monocytes/macrophages, and T lymphocytes. Both the membrane-anchored HB-EGF precursor and the secreted mature HB-EGF protein are biologically active; thus, HB-EGF may stimulate SMC growth via autocrine, paracrine, and juxtacrine mechanisms. In the present study, we report that HB-EGF treatment of serum-starved at aortic SMCs can induce fibroblast growth factor (FGF)-2 (basic FGF) gene expression but not FGF-1 (acidic FGF) gene expression. Increased FGF-2 mRNA expression is first detectable at 1 hour after HB-EGF addition, and maximal FGF-2 mRNA levels, corresponding to an approximately 46-fold level of induction, are present at 4 hours. The effect of HB-EGF on FGF-2 mRNA levels appears to be mediated primarily by a transcriptional mechanism and requires de novo synthesized proteins. HB-EGF induction of FGF-2 mRNA levels can be inhibited by treating cells with the anti-inflammatory glucocorticoid dexamethasone or the glycosaminoglycan heparin. Finally, Western blot analyses indicate that HB-EGF-treated SMCs also produce an increased amount of FGF-2 protein. These results indicate that HB-EGF expressed at sites of vascular injury or inflammation in vivo may upregulate FGF-2 production by SMCs.

  14. Differential regulation of acidic and basic fibroblast growth factor gene expression in fibroblast growth factor-treated rat aortic smooth muscle cells.

    PubMed

    Alberts, G F; Hsu, D K; Peifley, K A; Winkles, J A

    1994-08-01

    The acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) proteins are potent vascular smooth muscle cell (SMC) mitogens that are expressed by endothelial cells and SMCs in vivo. Overexpression of these proteins in transfected cell lines can result in autocrine transformation; therefore, the precise control of fibroblast growth factor gene expression in the vessel wall may be an important mechanism regulating vascular cell growth. In the present study, we demonstrate that bFGF can induce bFGF mRNA expression, but not aFGF mRNA expression, in serum-starved rat aortic SMCs. bFGF autoinduction is maximal at 4 hours, requires de novo RNA and protein synthesis, and is mediated predominantly by a protein kinase C-dependent signaling pathway. Furthermore, aFGF treatment of rat SMCs also increases bFGF mRNA and protein expression; however, aFGF mRNA levels are only slightly modulated. These results suggest that the local release of aFGF or bFGF within the vessel wall could promote a prolonged period of elevated bFGF synthesis. This, in turn, could be of importance in the SMC hyperplasia that occurs in response to vascular injury and during atherosclerotic plaque formation.

  15. Advanced glycation end products promote human aortic smooth muscle cell calcification in vitro via activating NF-κB and down-regulating IGF1R expression.

    PubMed

    Wang, Yi; Zhang, Zhen-yu; Chen, Xiao-qing; Wang, Xiang; Cao, Heng; Liu, Shao-wen

    2013-04-01

    To investigate the effects of advanced glycation end products (AGEs) on calcification in human aortic smooth muscle cells (HASMCs) in vitro and the underlying mechanisms. AGEs were artificially prepared. Calcification of HASMCs was induced by adding inorganic phosphate (Pi, 2 mmol/L) in the media, and observed with Alizarin red staining. The calcium content in the supernatant was measured using QuantiChrome Calcium Assay Kit. Expression of the related mRNAs and proteins was analyzed using real-time PCR and Western blot, respectively. Chromatin immunoprecipitation (ChIP) assay was used to detect the binding of NF-κB to the putative IGF1R promoter. AGEs (100 μg/mL) significantly enhanced Pi-induced calcification and the levels of osteocalcin and Cbfα1 in HASMCs. Furthermore, the treatment decreased the expression of insulin-like growth factor 1 receptor (IGF1R). Over-expression of IGF1R in HASMCs suppressed the AGEs-induced increase in calcium deposition. When IGF1R expression was knocked down in HASMCs, AGEs did not enhance the calcium deposition. Meanwhile, AGEs time-dependently decreased the amounts of IκBα and Flag-tagged p65 in the cytoplasmic extracts, and increased the amount of nuclear p65 in HASMCs. In the presence of NF-κB inhibitor PDTC (50 μmol/L), the AGEs-induced increase in calcium deposition was blocked. Over-expression of p65 significantly enhanced Pi-induced mineralization, but suppressed IGF1R mRNA level. Knockdown of p65 suppressed the AGEs-induced increase in calcium deposition, and rescued the IGF1R expression. The ChIP analysis revealed that NF-κB bound the putative IGF1R promoter at position -230 to -219 bp. The inhibition of IGF1R by NF-κB was abolished when IGF1R reporter plasmid contained mutated binding sequence for NF-κB or an NF-κB reporter vector. The results demonstrate that AGEs promote calcification of human aortic smooth muscle cells in vitro via activation of NF-κB and down-regulation of IGF1R expression.

  16. Endothelial Dysfunction in Children With Obstructive Sleep Apnea Is Associated With Epigenetic Changes in the eNOS Gene

    PubMed Central

    Kheirandish-Gozal, Leila; Khalyfa, Abdelnaby; Gozal, David; Bhattacharjee, Rakesh

    2013-01-01

    Background: Obstructive sleep apnea (OSA) is a highly prevalent disorder that has been associated with an increased risk for cardiovascular morbidity, even in children. However, not all children with OSA manifest alterations in endothelial postocclusive hyperemia, an endothelial nitric oxide synthase (eNOS)-dependent response. Since expression of the eNOS gene is regulated by epigenetic mechanisms and OSA may cause epigenetic modifications such as DNA hypermethylation, we hypothesized that epigenetic modifications in the eNOS gene may underlie the differential vascular phenotypes in pediatric OSA. Methods: Age-, sex-, ethnicity-, and BMI-matched prepubertal children with polysomnographically confirmed OSA and either normal (OSAn) or abnormal (OSAab) postocclusive hyperemic responses, assessed as the time to attain peak reperfusion flow (Tmax) by laser Doppler flowmetry, were recruited. Blood genomic DNA was assessed for epigenetic modifications in the eNOS gene using pyrosequencing. Children with no evidence of OSA or endothelial dysfunction served as a control group. Results: The study comprised 36 children with OSA (11 with OSAab and 25 with OSAn) and 35 children in the control group. Overall, the mean age was 7.5 ± 2.4 years, 65% were boys, and 30% were obese; mean apnea-hypopnea index was 18 ± 8.6/h of sleep for the children with OSA. Tmax was 66.7 ± 8.8 s in the OSAab group and 30.1 ± 8.3 s in the OSAn group (P < .001). Pyrosequencing of the proximal promoter region of the eNOS gene revealed no significant differences in six of the seven CpG sites. However, a CpG site located at position -171 (relative to transcription start site), approximating important transcriptional elements, displayed significantly higher methylation levels in the OSAab group as compared with the OSAn or control groups (81.5% ± 3.5%, 74.8% ± 1.4%, and 74.5% ± 1.7%, respectively; P < .001). eNOS mRNA expression levels were assessed in a separate group of children and were

  17. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Lagoda, Gwen A.; Strong, Travis D.; Sezen, Sena F.; Johnson, Justin M.; Burnett, Arthur L.

    2010-01-01

    INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)–null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67phox, p47phox, and gp91phox), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES Molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared to WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67phox, p47phox and gp91phox, eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P < 0.05) the abnormalities in protein expressions of gp67phox and gp47phox, 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters

  18. Nifedipine attenuation of abdominal aortic aneurysm in hypertensive and non-hypertensive mice: Mechanisms and implications.

    PubMed

    Miao, Xiao Niu; Siu, Kin Lung; Cai, Hua

    2015-10-01

    Rupture of abdominal aortic aneurysm (AAA) is a lethal event. No oral medicine has been available to prevent or treat AAA. We have recently identified a novel mechanism of eNOS uncoupling by which AAA develops, in angiotensin II (Ang II) infused hyperphenylalaninemia 1 (hph-1) mice. Using this unique model we investigated effects on AAA formation of the L-type calcium channel blocker nifedipine, in view of the unclear relationship between hypertension and AAA, and unclear mechanisms of aneurysm protective effects of some blood pressure lowering drugs. Six-month old hph-1 mice were infused with Ang II (0.7 mg/kg/day) for 2 weeks, and fed nifedipine chow at two different doses (5 and 20 mg/kg/day). While the high dose of nifedipine reduced blood pressure, the lower dose had no effect. Interestingly, the incidence rate of AAA dropped from 71% to 7 and 12.5% for low and high dose nifedipine, respectively. Expansion of abdominal aorta, determined by ultrasound imaging, was abolished by both doses of nifedipine, which recoupled eNOS completely to improve NO bioavailability. Both also abrogated aortic superoxide production. Of note, Ang II activation of NADPH oxidase in vascular smooth muscle cells and endothelial cells, known to uncouple eNOS, was also attenuated by nifedipine. Although low dose was a sub-pressor while the high dose reduced blood pressure via inhibition of calcium channels, both doses were highly effective in preventing AAA by preserving eNOS coupling activity to eliminate sustained oxidative stress from uncoupled eNOS. These data demonstrate that oral treatment of nifedipine is highly effective in preserving eNOS function to attenuate AAA formation. Nifedipine may be used for AAA prevention either at low dose in AAA risk group, or at high dose in patients with co-existing hypertension.

  19. Nifedipine Attenuation of Abdominal Aortic Aneurysm in Hypertensive and non-Hypertensive Mice: Mechanisms and Implications

    PubMed Central

    Miao, Xiao Niu; Siu, Kin Lung; Cai, Hua

    2015-01-01

    Rupture of abdominal aortic aneurysm (AAA) is a lethal event. No oral medicine has been available to prevent or treat AAA. We have recently identified a novel mechanism of eNOS uncoupling by which AAA develops, in Angiotensin II (Ang II) infused hyperphenylalaninemia 1 (hph-1) mice. Using this unique model we investigated effects on AAA formation of the L-type calcium channel blocker nifedipine, in view of the unclear relationship between hypertension and AAA, and unclear mechanisms of aneurysm protective effects of some blood pressure lowering drugs. Six-month old hph-1 mice were infused with Ang II (0.7 mg/kg/day) for 2 weeks, and fed nifedipine chow at two different doses (5 and 20 mg/kg/day). While the high dose of nifedipine reduced blood pressure, the lower dose had no effect. Interestingly, the incidence rate of AAA dropped from 71% to 7 and 12.5% for low and high dose nifedipine, respectively. Expansion of abdominal aorta, determined by ultrasound imaging, was abolished by both doses of nifedipine, which recoupled eNOS completely to improve NO bioavailability. Both also abrogated aortic superoxide production. Of note, Ang II activation of NADPH oxidase in vascular smooth muscle cells and endothelial cells, known to uncouple eNOS, was also attenuated by nifedipine. Although low dose was a sub-pressor while the high dose reduced blood pressure via inhibition of calcium channels, both doses were highly effective in preventing AAA by preserving eNOS coupling activity to eliminate sustained oxidative stress from uncoupled eNOS. These data demonstrate that oral treatment of nifedipine is highly effective in preserving eNOS function to attenuate AAA formation. Nifedipine may be used for AAA prevention either at low dose to AAA risk group, or at high dose to patients with co-existing hypertension. PMID:26254182

  20. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells.

    PubMed Central

    Hernández-Perera, O; Pérez-Sala, D; Navarro-Antolín, J; Sánchez-Pascuala, R; Hernández, G; Díaz, C; Lamas, S

    1998-01-01

    Endothelial dysfunction associated with atherosclerosis has been attributed to alterations in the L-arginine-nitric oxide (NO)-cGMP pathway or to an excess of endothelin-1 (ET-1). The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to ameliorate endothelial function. However, the physiological basis of this observation is largely unknown. We investigated the effects of Atorvastatin and Simvastatin on the pre-proET-1 mRNA expression and ET-1 synthesis and on the endothelial NO synthase (eNOS) transcript and protein levels in bovine aortic endothelial cells. These agents inhibited pre-proET-1 mRNA expression in a concentration- and time-dependent fashion (60-70% maximum inhibition) and reduced immunoreactive ET-1 levels (25-50%). This inhibitory effect was maintained in the presence of oxidized LDL (1-50 microg/ml). No significant modification of pre-proET-1 mRNA half-life was observed. In addition, mevalonate, but not cholesterol, reversed the statin-mediated decrease of pre-proET-1 mRNA levels. eNOS mRNA expression was reduced by oxidized LDL in a dose-dependent fashion (up to 57% inhibition), whereas native LDL had no effect. Statins were able to prevent the inhibitory action exerted by oxidized LDL on eNOS mRNA and protein levels. Hence, these drugs might influence vascular tone by modulating the expression of endothelial vasoactive factors. PMID:9637705

  1. Central Role of eNOS in the Maintenance of Endothelial Homeostasis

    PubMed Central

    Rodriguez-Mateos, Ana; Kelm, Malte

    2015-01-01

    Abstract Significance: Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. Recent Advances: Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. Critical Issues: Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. Future Directions: Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance. Antioxid. Redox Signal. 22, 1230–1242. PMID:25330054

  2. Aortic Disease Presentation and Outcome Associated with ACTA2 mutations

    PubMed Central

    Regalado, Ellen S.; Guo, Dongchuan; Prakash, Siddharth; Bensend, Tracy A.; Flynn, Kelly; Estrera, Anthony; Safi, Hazim; Liang, David; Hyland, James; Child, Anne; Arno, Gavin; Boileau, Catherine; Jondeau, Guillaume; Braverman, Alan; Moran, Rocio; Morisaki, Takayuki; Morisaki, Hiroko; Consortium, Montalcino Aortic; Pyeritz, Reed; Coselli, Joseph; LeMaire, Scott; Milewicz, Dianna M.

    2015-01-01

    Background ACTA2 mutations are the major cause of familial thoracic aortic aneurysms and dissections. We sought to characterize these aortic diseases in a large case series of individuals with ACTA2 mutations. Methods and Results Aortic disease, management, and outcome associated with the first aortic event (aortic dissection or aneurysm repair) were abstracted from the medical records of 277 individuals with 41 various ACTA2 mutations. Aortic events occurred in 48% of these individuals, with the vast majority presenting with thoracic aortic dissections (88%) associated with 25% mortality. Type A dissections were more common than type B dissections (54% versus 21%), but the median age of onset of type B dissections was significantly younger than type A dissections (27 years, IQR 18–41 versus 36 years, IQR 26–45). Only 12% of aortic events were repair of ascending aortic aneurysms, which variably involved the aortic root, ascending aorta and aortic arch. Overall cumulative risk of an aortic event at age 85 years was 0.76 (95% CI 0.64, 0.86). After adjustment for intra-familial correlation, gender and race, mutations disrupting p.R179 and p.R258 were associated with significantly increased risk for aortic events, whereas p.R185Q and p.R118Q mutations showed significantly lower risk of aortic events compared to other mutations. Conclusions ACTA2 mutations are associated with high risk of presentation with an acute aortic dissection. The lifetime risk for an aortic event is only 76%, suggesting that additional environmental or genetic factors play a role in expression of aortic disease in individuals with ACTA2 mutations. PMID:25759435

  3. Wogonin suppresses TNF-{alpha}-induced MMP-9 expression by blocking the NF-{kappa}B activation via MAPK signaling pathways in human aortic smooth muscle cells

    SciTech Connect

    Lee, Syng-Ook; Jeong, Yun-Jeong; Yu, Mi Hee; Lee, Ji-Won; Hwangbo, Mi Hyang; Kim, Cheorl-Ho; Lee, In-Seon . E-mail: inseon@kmu.ac.kr

    2006-12-08

    Matrix metalloproteinase-9 (MMP-9) plays a major role in the pathogenesis of atherosclerosis and restenosis by regulating both migration and proliferation of vascular smooth muscle cells (VSMC) after an arterial injury. In this study, we examined the inhibitory effect of three major flavonoids in Scutellariae Radix, baicalin, baicalein, and wogonin, on TNF-{alpha}-induced MMP-9 expression in human aortic smooth muscle cells (HASMC). Wogonin, but not baicalin and baicalein, significantly and selectively suppressed TNF-{alpha}-induced MMP-9 expression in HASMC. Reporter gene, electrophoretic mobility shift, and Western blotting assays showed that wogonin inhibits MMP-9 gene transcriptional activity by blocking the activation of NF-{kappa}B via MAPK signaling pathways. Moreover, the Matrigel migration assay showed that wogonin reduced TNF-{alpha}-induced HASMC migration. These results suggest that wogonin effectively suppresses TNF-{alpha}-induced HASMC migration through the selective inhibition of MMP-9 expression and represents a potential agent for the prevention of vascular disorders related to the migration of VSMC.

  4. Evaluation of Protective Immune Responses Induced by Recombinant TrxLp and ENO2 Proteins against Toxoplasma gondii Infection in BALB/c Mice

    PubMed Central

    Wang, Meng; Yang, Xiao-Yu; Zhang, De-Lin

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasitic protozoan that can infect almost all species of warm-blooded animals. As any chemical-based drugs could not act against the tissue cyst stage of T. gondii, vaccination may be one of the ideal control strategies. In the present study, two new vaccine candidates, named TgENO2 and TgTrxLp, were purified from Escherichia coli with pET-30a(+) expression system and then were injected into BALB/c mice to evaluate the protective efficacy against acute and chronic toxoplasmosis. The results showed that both the recombinant proteins, either alone or in combination, could elicit strong humoral and cellular immune responses with a higher level of IgG antibodies, IFN-γ, IL-2, CD4+, and CD8+ T cells as compared to those in mice from control groups. After acute challenge with tachyzoites of the GJS strain, mice immunized with rTgTrxLp (8 ± 2.77 d), rTgENO2 (7.4 ± 1.81 d), and rTgTrxLp + rTgENO2 (8.38 ± 4.57 d) proteins showed significantly longer survival time than those that received Freund's adjuvant (6.78 ± 2.08 d) and PBS (6.38 ± 4.65 d) (χ2 = 9.687, df = 4, P = 0.046). The protective immunity of rTgTrxLp, rTgENO2, and rTgTrxLp + rTgENO2 proteins against chronic T. gondii infection showed 69.77%, 58.14%, and 20.93% brain cyst reduction as compared to mice that received PBS. The present study suggested that both TgENO2 and TgTrxLp were potential candidates for the development of multicomponent vaccines against toxoplasmosis. PMID:27803923

  5. Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease.

    PubMed

    Cortese-Krott, Miriam M; Rodriguez-Mateos, Ana; Sansone, Roberto; Kuhnle, Gunter G C; Thasian-Sivarajah, Sivatharsini; Krenz, Thomas; Horn, Patrick; Krisp, Christoph; Wolters, Dirk; Heiß, Christian; Kröncke, Klaus-Dietrich; Hogg, Neil; Feelisch, Martin; Kelm, Malte

    2012-11-15

    A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-(3)H-arginine to L-(3)H-citrulline in a Ca(2+)/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.

  6. eNOS gene haplotype is indirectly associated with the recovery of cardiovascular autonomic modulation from exercise.

    PubMed

    Silva, Bruno M; Barbosa, Thales C; Neves, Fabricia J; Sales, Allan K; Rocha, Natalia G; Medeiros, Renata F; Pereira, Felipe S; Garcia, Vinicius P; Cardoso, Fabiane T; Nobrega, Antonio C L

    2014-12-01

    Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene decrease expression and activation of eNOS in vitro, which is associated with lower post-exercise increase in vasodilator reactivity in vivo. However, it is unknown whether such polymorphisms are associated with other eNOS-related phenotypes during recovery from exercise. Therefore, we investigated the impact of an eNOS haplotype containing polymorphic alleles at loci -786 and 894 on the recovery of cardiovascular autonomic function from exercise. Sedentary, non-obese, healthy subjects were enrolled [n = 107, age 32 ± 1 years (mean ± SEM)]. Resting autonomic modulation (heart rate variability, systolic blood pressure variability, and spontaneous baroreflex sensitivity) and vascular reactivity (forearm hyperemic response post-ischemia) were assessed at baseline, 10, 60, and 120 min after a maximal cardiopulmonary exercise test. Besides, autonomic function was assessed by heart rate recovery (HRR) immediately after peak exercise. Haplotype analysis showed that vagal modulation (i.e., HF n.u.) was significantly higher, combined sympathetic and vagal modulation (i.e., LF/HF) was significantly lower and total blood pressure variability was significantly lower post-exercise in a haplotype containing polymorphic alleles (H2) compared to a haplotype with wild type alleles (H1). HRR was similar between groups. Corroborating previous evidence, H2 had significantly lower post-exercise increase in vasodilator reactivity than H1. In conclusion, a haplotype containing polymorphic alleles at loci -786 and 894 had enhanced recovery of autonomic modulation from exercise, along with unchanged HRR, and attenuated vasodilator reactivity. Then, these results suggest an autonomic compensatory response of a direct deleterious effect of eNOS polymorphisms on the vascular function. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner

    PubMed Central

    Hocher, Berthold; Haumann, Hannah; Rahnenführer, Jan; Reichetzeder, Christoph; Kalk, Philipp; Pfab, Thiemo; Tsuprykov, Oleg; Winter, Stefan; Hofmann, Ute; Li, Jian; Püschel, Gerhard P.; Lang, Florian; Schuppan, Detlef; Schwab, Matthias; Schaeffeler, Elke

    2016-01-01

    ABSTRACT Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood. PMID:27175980

  8. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    PubMed

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors.

  9. Distinct regulation of stearoyl-CoA desaturase 1 gene expression by cis and trans C18:1 fatty acids in human aortic smooth muscle cells.

    PubMed

    Minville-Walz, M; Gresti, J; Pichon, L; Bellenger, S; Bellenger, J; Narce, M; Rialland, M

    2012-04-01

    Consumption of trans fatty acids is positively correlated with cardiovascular diseases and with atherogenic risk factors. Trans fatty acids might play their atherogenic effects through lipid metabolism alteration of vascular cells. Accumulation of lipids in vascular smooth muscle cells is a feature of atherosclerosis and a consequence of lipid metabolism alteration. Stearoyl-CoA desaturase 1 (scd1) catalyses the production of monounsaturated fatty acids (e.g. oleic acid) and its expression is associated with lipogenesis induction and with atherosclerosis development. We were interested in analysing the regulation of delta-9 desaturation rate and scd1 expression in human aortic smooth muscle cells (HASMC) exposed to cis and trans C18:1 fatty acid isomers (cis-9 oleic acid, trans-11 vaccenic acid or trans-9 elaidic acid) for 48 h at 100 μM. Treatment of HASMC with these C18:1 fatty acid isomers led to differential effects on delta-9 desaturation; oleic acid repressed the desaturation rate more potently than trans-11 vaccenic acid, whereas trans-9 elaidic acid increased the delta-9 desaturation rate. We then correlated the delta-9 desaturation rate with the expression of scd1 protein and mRNA. We showed that C18:1 fatty acids controlled the expression of scd1 at the transcriptional level in HASMC, leading to an increase in scd1 mRNA content by trans-9 elaidic acid treatment, whereas a decrease in scd1 mRNA content was observed with cis-9 oleic acid and trans-11 vaccenic acid treatments. Altogether, this work highlights a differential capability of C18:1 fatty acid isomers to control scd1 gene expression, which presumes of different consequent effects on cell functions.

  10. Effects of benidipine, a dihydropyridine-Ca2+ channel blocker, on expression of cytokine-induced adhesion molecules and chemoattractants in human aortic endothelial cells.

    PubMed

    Matsubara, Masahiro; Hasegawa, Kazuhide

    2004-09-13

    Benidipine hydrochloride (benidipine) is a dihydropyridine-Ca2+ channel blocker with antioxidant properties. We examined the effects of benidipine on cytokine-induced expression of adhesion molecules and chemokines, which play important roles in the adhesion of monocytes to endothelium. Pretreatment of human aortic endothelial cells (HAECs) with benidipine (0.3-10 micromol/l) for 24 h significantly suppressed cytokine-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) mRNA and protein expression, resulting in reduced adhesion of THP-1 monocytes. Benidipine also suppressed induction of monocyte chemoattractant protein (MCP)-1 and interleukin-8. Benidipine inhibited redox-sensitive transcriptional nuclear factor-kappaB (NF-kappaB) pathway, as determined by Western blotting of inhibitory kappaB (IkappaB) phosphorylation and luciferase reporter assay. Results of analysis using optical isomers of benidipine and antioxidants suggested that these inhibitory effects were dependent on pharmacological effects other than Ca2+ antagonism such as antioxidant effects. Benidipine may thus have anti-inflammatory properties and benefits for in the treatment of atherosclerosis.

  11. Living Water. Eno River State Park: An Environmental Education Learning Experience Designed for the Middle Grades.

    ERIC Educational Resources Information Center

    Hartley, Scott; Woods, Martha

    This learning packet, one in a series of eight, was developed by the Eno River State Park in North Carolina for Grades 5-6 to teach about various aspects of water life on the Eno River. Loose-leaf pages are presented in nine sections that contain: (1) introductions to the North Carolina State Park System, the Eno River State Park, and to the…

  12. Aortic valve replacement in rheumatoid aortic incompetence.

    PubMed Central

    Devlin, A B; Goldstraw, P; Caves, P K

    1978-01-01

    Rheumatoid aortic valve disease is uncommon. and there are few reports of valve replacement in this condition. Aortic valve replacement and partial pericardiectomy was performed in a patient with acute rheumatoid aortitis and aortic incompetence. Previous reports suggest that any patient with rheumatoid arthritis who develops cardiac symptoms should be carefully assessed for surgically treatable involvement of the pericardium or heart valves. Images PMID:725829

  13. Inhibitory role of Notch1 in calcific aortic valve disease.

    PubMed

    Acharya, Asha; Hans, Chetan P; Koenig, Sara N; Nichols, Haley A; Galindo, Cristi L; Garner, Harold R; Merrill, Walter H; Hinton, Robert B; Garg, Vidu

    2011-01-01

    Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD) are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs). We found significant downregulation of Sox9 along with several cartilage-specific genes that were direct targets of the transcription factor, Sox9. Loss of Sox9 expression has been published to be associated with aortic valve calcification. Utilizing an in vitro porcine aortic valve calcification model system, inhibition of Notch activity resulted in accelerated calcification while stimulation of Notch signaling attenuated the calcific process. Finally, the addition of Sox9 was able to prevent the calcification of porcine AVICs that occurs with Notch inhibition. In conclusion, loss of Notch signaling contributes to aortic valve calcification via a Sox9-dependent mechanism.

  14. Unraveling the Expression Profiles of Long Noncoding RNAs in Rat Cardiac Hypertrophy and Functions of lncRNA BC088254 in Cardiac Hypertrophy Induced by Transverse Aortic Constriction.

    PubMed

    Li, Xiaoying; Zhang, Lei; Liang, Jiangjiu

    2016-01-01

    Long noncoding RNAs (lncRNAs), although initially considered as genomic transcription noise, have been demonstrated to play pivotal roles in multiple biological processes and are increasingly recognized as contributors to the pathology of cancer, neurodegenerative diseases, diabetes, heart diseases, and inflammation. However, studies on the roles of lncRNAs in angiocardiopathy, particularly in cardiac hypertrophy, are still preliminary. In our study, differentially expressed lncRNAs in rat cardiac hypertrophy induced by transverse aortic constriction (TAC) were identified by microarray analysis and validated using quantitative real-time polymerase chain reaction (RT-PCR). Briefly, we identified 6,969 lncRNAs, among which 80 lncRNAs were significantly upregulated and 172 lncRNAs were significantly downregulated. Quantitative RT-PCR was used to validate the differential expression of 5 lncRNAs in myocardial tissue RNA. Further, pathway analysis indicated that 25 pathways corresponded to upregulated transcripts and 20 pathways corresponded to downregulated transcripts. Third, by coexpression network analysis, we found a correlation between BC088254 and phb2 (prohibitin 2) and verified this expression by RT-PCR and Western blot. This is the first study to reveal differentially expressed lncRNAs in rat cardiac hypertrophy induced by TAC, indicating potential lncRNA mechanisms of action in myocardial hypertrophy. We also found that lncRNA BC088254 may have a certain role in myocardial hypertrophy induced by TAC and functional relevance between lncRNA BCO88254 and phb2, but the relationship between these two factors is unclear. © 2016 S. Karger AG, Basel.

  15. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice

    PubMed Central

    d'Uscio, Livius V.; Smith, Leslie A.

    2011-01-01

    In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH4) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH4 levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH4-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser1177-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS. PMID:21963838

  16. Aortic aneurysm repair - endovascular

    MedlinePlus

    ... Endovascular aneurysm repair - aorta; AAA repair - endovascular; Repair - aortic aneurysm - endovascular ... leaking or bleeding. You may have an abdominal aortic aneurysm that is not causing any symptoms or problems. ...

  17. Abdominal aortic aneurysm

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/000162.htm Abdominal aortic aneurysm To use the sharing features on this page, ... to the abdomen, pelvis, and legs. An abdominal aortic aneurysm occurs when an area of the aorta becomes ...

  18. CT in aortic trauma

    SciTech Connect

    Heiberg, E.; Wolverson, M.K.; Sundaram, M.; Shields, J.B.

    1983-06-01

    A diagnosis of aortic transection was made at computed tomography (CT) in four of 10 patients with acute multiple trauma suspected of having thoracic aortic injuries. There were no false-negative or false-positive examinations. The CT findings of an injured aorta were (1) false aneurysm, (2) linear lucency within the opacified aortic lumen caused by the torn edge of the aortic wall, (3) marginal irregularity of the opacified aortic lumen, (4) periaortic or intramural aortic hematoma, and (5) dissection. The extent of associated mediastinal hemorrhage and the amount of blood in the pleural space were not useful as indicators of aortic injury. Similarly, shift of the trachea and esophagus or absence thereof was found in patients with or without aortic tear.

  19. Aortic dissection (image)

    MedlinePlus

    Aortic dissection is a condition in which there is bleeding into and along the wall of the aorta (the ... the inner wall of the artery. Although aortic dissection can affect anybody, it is most often seen ...

  20. Abdominal Aortic Aneurysm (AAA)

    MedlinePlus

    ... Professions Site Index A-Z Abdominal Aortic Aneurysm (AAA) Abdominal aortic aneurysm (AAA) occurs when atherosclerosis or plaque buildup causes the ... weak and bulge outward like a balloon. An AAA develops slowly over time and has few noticeable ...

  1. Homocysteinylated protein levels in internal mammary artery (IMA) fragments and its genotype-dependence. S-homocysteine-induced methylation modifications in IMA and aortic fragments.

    PubMed

    Rodríguez-Esparragón, Francisco; Serna-Gómez, Jaime Alberto; Hernández-Velázquez, Erika; Buset-Ríos, Nisa; Hernández-Trujillo, Yaridé; García-Bello, Miguel A; Rodríguez-Pérez, José C

    2012-10-01

    The resistance of internal mammary artery (IMA) toward atherosclerosis is not well understood. In plasma, homocysteine (Hcy) occurs in reduced, oxidized, homocysteine thiolactone and a component of proteins as a result of N- or S-homocysteinylation. We evaluated S/N-homocysteinylated protein levels in IMA fragments of patients undergoing coronary artery bypass grafting, and whether they were affected by genetic common variants. We tested whether tHcy, Hcy-S-protein levels, genotypes or Hcy-induced methylation modifications were related to differences in iNOS, Ddah2, and eNOS gene expression between territories. A small percentage of Hcy-S-proteins were found in IMA fragments. The Mthfr C677T (rs1801133) and Pon-1 Leu55Met (rs854560) variants were associated with Hcy-S-proteins. We observed a gradual difference according to Hcy-S-protein levels in the methylation degree of the Ddah2 gene promoter in aortic, but not in IMA, fragments. No correlation between the degree of methylation and the Ddah2 gene expression levels was found in both types of analyzed fragments. Total Hcy but not Hcy-S-proteins correlated with iNOS promoter methylation. Analyzed variants seem to contribute to the in vivo Hcy binding properties to IMA. The contribution of the Hcy-derived methylation modifications to Ddah2 and eNOS gene expression seems to be tissue-specific and independent of the Ddah2/ADMA/eNOS pathway. Hcy-derived methylation modifications to the iNOS gene promoter contribute to a lesser extent to iNOS gene expression.

  2. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS.

    PubMed

    Seker, F B; Kilic, U; Caglayan, B; Ethemoglu, M S; Caglayan, A B; Ekimci, N; Demirci, S; Dogan, A; Oztezcan, S; Sahin, F; Yilmaz, B; Kilic, E

    2015-01-22

    Apart from its repressing effect on plasma lipid levels, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors exert neuroprotective functions in animal models of neurodegenerative disorders. In view of these promising observations, we were interested in whether HMG-CoA reductase inhibition would affect epileptiform activity in the brain. To elucidate this issue, atorvastatin, simvastatin and rosuvastatin were administered orally at a dose of 20 mg/kg each for 3 days and their anti-epileptic activities were tested and compared in rats. Epileptiform activity in the brain was induced by an intracortical penicillin G injection. Among HMG-CoA reductase inhibitors, simvastatin-treatment was less effective in terms of spike frequency as compared with atorvastatin- and rosuvastatin-treated animals. Atorvastatin treatment reduced spike frequencies and amplitudes significantly throughout the experiment. However, the most pronounced anti-epileptic effect was observed in rosuvastatin-treated animals, which was associated with improved blood-brain barrier (BBB) integrity, increased expression of endothelial nitric oxide synthase (eNOS) mRNA and decreased expressions of pro-apoptotic p53, Bax and caspase-3 mRNAs. Inhibition of eNOS activity with L-NG-Nitroarginine Methyl Ester (L-NAME) reversed the anti-epileptic effect of rosuvastatin significantly. However, L-NAME did not alter the effect of rosuvastatin on the levels of p53, Bax and caspase-3 mRNA expression. Here, we provide evidence that among HMG-CoA reductase inhibitors, rosuvastatin was the most effective statin on the reduction of epileptiform activity, which was associated with improved BBB permeability, increased expression of eNOS and decreased expressions of pro-apoptotic p53, Bax and caspase-3. Our observation also revealed that the anti-epileptic effect of rosuvastatin was dependent on the increased expression level of eNOS. The robust anti-epileptic effect encourages proof-of-concept studies with

  3. Effects of aldosterone and related steroids on LPS-induced increased expression of inducible NOS in rat aortic smooth muscle cells

    PubMed Central

    Godfrey, V; Martin, AL; Struthers, AD; Lyles, GA

    2011-01-01

    BACKGROUND AND PURPOSE Expression of inducible NOS (iNOS) is important in certain inflammatory diseases. We determined if the hormone aldosterone, a mineralocorticoid receptor (MR) agonist, affects LPS activation of iNOS expression in rat aortic smooth muscle cells (RASMC). EXPERIMENTAL APPROACH Cultured RASMC were treated with LPS, with or without agonists/antagonists of steroid receptors. iNOS expression was determined by nitrite assays on culture medium removed from treated cells and by immunoblotting of cell protein extracts. KEY RESULTS LPS (1 µg·mL−1) increased nitrite and iNOS protein above that in control (untreated) cells. These effects of LPS were reduced by aldosterone (0.1–10 µM). The MR antagonists, eplerenone (10 µM) and spironolactone (10 or 50 µM), did not inhibit these actions of 1 µM aldosterone, but the latter were prevented by 10 µM mifepristone, a glucocorticoid (GR) and progestogen receptor (PR) antagonist. Mifepristone also prevented the reduction of LPS-induced nitrite increase produced by 1 µM dexamethasone (GR agonist) and 10 µM progesterone (PR agonist). Spironolactone (10–50 µM) by itself decreased LPS-induced increases in nitrite and iNOS protein. Mifepristone (10 µM) partially reversed these effects of 10 µM spironolactone, but not those of 50 µM; the effects of 50 µM spironolactone were also unchanged when mifepristone was increased to 50 µM. CONCLUSIONS AND IMPLICATIONS This pharmacological profile suggests that aldosterone, and possibly 10 µM spironolactone, use mechanisms that are dependent on PR and/or GR, but not MR, to inhibit iNOS induction in RASMC. With 50 µM spironolactone, other inhibitory mechanisms requiring further investigation may become predominant. PMID:21649641

  4. Improvement of thoracic aortic vasoreactivity by continuous and intermittent exercise in high-fat diet-induced obese rats.

    PubMed

    Liu, Hongpeng; Yang, Zhen; Hu, Jian; Luo, Yan; Zhu, Lingqin; Yang, Huifang; Li, Guanghua

    2015-07-01

    The aim of the present study was to explore the effects of continuous and intermittent exercise on the thoracic aortic vasoreactivity and free radical metabolism in rats fed with a high-fat diet (HD). Sprague-Dawley (SD) rats were randomly divided into four groups (n=8, each group): Conventional diet (CD), HD, HD with continuous exercise (HCE) and HD with intermittent exercise (HIE). HCE rats swam once/day for 90 min; HIE rats performed swimming exercises 3 times/day, 30 min each time with an interval of 4 h. In these two groups, the exercise was conducted 5 days a week for 8 weeks. Rats in the CD and HD groups were fed without swimming training. At the end of the exercise, all the rats were sacrificed and the blood, thoracic aorta and myocardium were collected immediately. The thoracic aortic vasoreactivity, the plasma total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), superoxide dismutase (SOD), malondialdehyde (MDA) and vascular endothelial nitric oxide synthase (eNOS) gene expression were measured. Compared to the control group, in the HD group the enhanced contractile response of the thoracic aortic rings to noradrenaline (NA) was observed (P<0.01). The levels of TC and LDL (P<0.01) were also increased in serum while the HDL level was reduced without statistical significance. In addition, the MDA content was upregulated in the myocardium, but the SOD level decreased (P<0.01). Furthermore, the expression of vascular eNOS mRNA was reduced (P<0.01). However, following the exercise the contraction of the thoracic aorta vascular rings to NA was reduced in the HCE and HIE groups (P<0.01), and the decreased contractile response was more evident in the HIE group compared to the HCE group (P<0.01). Additionally, in the HCE group the level of TG (P<0.01) was decreased, while the HDL (P<0.01) level was increased. Although the reduction of the TC and LDL level was also observed there was no significant difference

  5. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells

    PubMed Central

    Patel, Vishal; Carrion, Katrina; Hollands, Andrew; Hinton, Andrew; Gallegos, Thomas; Dyo, Jeffrey; Sasik, Roman; Leire, Emma; Hardiman, Gary; Mohamed, Salah A.; Nigam, Sanjay; King, Charles C.; Nizet, Victor; Nigam, Vishal

    2015-01-01

    Bicuspid aortic valves calcify at a significantly higher rate than normal aortic valves, a process that involves increased inflammation. Because we have previously found that bicuspid aortic valve experience greater stretch, we investigated the potential connection between stretch and inflammation in human aortic valve interstitial cells (AVICs). Microarray, quantitative PCR (qPCR), and protein assays performed on AVICs exposed to cyclic stretch showed that stretch was sufficient to increase expression of interleukin and metalloproteinase family members by more than 1.5-fold. Conditioned medium from stretched AVICs was sufficient to activate leukocytes. microRNA sequencing and qPCR experiments demonstrated that miR-148a-3p was repressed in both stretched AVICs (43% repression) and, as a clinical correlate, human bicuspid aortic valves (63% reduction). miR-148a-3p was found to be a novel repressor of IKBKB based on data from qPCR, luciferase, and Western blot experiments. Furthermore, increasing miR-148a-3p levels in AVICs was sufficient to decrease NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling and NF-κB target gene expression. Our data demonstrate that stretch-mediated activation of inflammatory pathways is at least partly the result of stretch-repression of miR-148a-3p and a consequent failure to repress IKBKB. To our knowledge, we are the first to report that cyclic stretch of human AVICs activates inflammatory genes in a tissue-autonomous manner via a microRNA that regulates a central inflammatory pathway.—Patel, V., Carrion, K., Hollands, A., Hinton, A., Gallegos, T., Dyo, J., Sasik, R., Leire, E., Hardiman, G., Mohamed, S. A., Nigam, S., King, C. C., Nizet, V., Nigam V. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells. PMID:25630970

  6. Transcatheter aortic valve replacement

    MedlinePlus

    ... fully will restrict blood flow. This is called aortic stenosis. If there is also a leak, it is ... TAVR is used for people with severe aortic stenosis who aren't ... valve . In adults, aortic stenosis usually occurs due to calcium ...

  7. Endothelial nitric oxide synthase (eNOS) T-786C, 4a4b, and G894T polymorphisms and male infertility: study for idiopathic asthenozoospermia and meta-analysis.

    PubMed

    Song, Pingping; Zou, Shasha; Chen, Tingting; Chen, Jianhua; Wang, Yanan; Yang, Juanjuan; Song, Zhijian; Jiang, Huayu; Shi, Huijuan; Huang, Yiran; Li, Zheng; Shi, Yongyong; Hu, Hongliang

    2015-02-01

    Recent studies on the eNOS gene and male infertility show that expression of eNOS regulates normal spermatogenesis in the testis, and the eNOS gene variants (T-786C, 4a4b, and G894T) are potentially involved in impairment of spermatogenesis and sperm function. Thus, we conducted this association and meta-analysis study to further validate whether variants of those three loci affected the risk of idiopathic asthenozoospermia (AZS) and male infertility. Approximately 340 Chinese idiopathic AZS patients and 342 healthy men were included for this case-control study, genotyped by gel electrophoresis analysis or direct sequencing of PCR products. The eNOS mRNA isolated from the semen of patients was further examined by quantitative real-time PCR. Also, a meta-analysis of association between eNOS gene polymorphisms and male infertility was performed. A significant association was identified on allelic level between 4a4b variant and AZS in our study (chi-squared = 7.53, corrected P = 0.018, odds ratio (OR) = 1.808), while there were no significant difference of T-786C and G894T for asthenozoospermia in both genotype and allele distributions. In addition, expression of eNOS was up-regulated in patients compared with controls (about 2.4-fold, P < 0.001). Furthermore, the results of the meta-analysis support the conclusion that the T-786C and 4a4b loci were associated with male infertility in both Asian and Caucasian populations. Our study provides genetic evidence for the eNOS gene being a risk factor for idiopathic AZS and male infertility. Considering genetic differences among populations and complex pathogenesis of male infertility, more validating studies using independent samples are suggested in the future.

  8. eNOS Deficiency Predisposes Podocytes to Injury in Diabetes

    PubMed Central

    Yuen, Darren A.; Stead, Bailey E.; Zhang, Yanling; White, Kathryn E.; Kabir, M. Golam; Thai, Kerri; Advani, Suzanne L.; Connelly, Kim A.; Takano, Tomoko; Zhu, Lei; Cox, Alison J.; Kelly, Darren J.; Gibson, Ian W.; Takahashi, Takamune; Harris, Raymond C.

    2012-01-01

    Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS−/− mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS−/− mice, even though it inhibited glomerular capillary enlargement in both. In eNOS−/− mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS−/− mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS−/− glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes. PMID:22997257

  9. Function and role of voltage-gated sodium channel NaV1.7 expressed in aortic smooth muscle cells.

    PubMed

    Meguro, Kentaro; Iida, Haruko; Takano, Haruhito; Morita, Toshihiro; Sata, Masataka; Nagai, Ryozo; Nakajima, Toshiaki

    2009-01-01

    Voltage-gated Na(+) channel currents (I(Na)) are expressed in several types of smooth muscle cells. The purpose of this study was to evaluate the expression of I(Na), its functional role, pathophysiology in cultured human (hASMCs) and rabbit aortic smooth muscle cells (rASMCs), and its association with vascular intimal hyperplasia. In whole cell voltage clamp, I(Na) was observed at potential positive to -40 mV, was blocked by tetrodotoxin (TTX), and replacing extracellular Na(+) with N-methyl-d-glucamine in cultured hASMCs. In contrast to native aorta, cultured hASMCs strongly expressed SCN9A encoding Na(V)1.7, as determined by quantitative RT-PCR. I(Na) was abolished by the treatment with SCN9A small-interfering (si)RNA (P < 0.01). TTX and SCN9A siRNA significantly inhibited cell migration (P < 0.01, respectively) and horseradish peroxidase uptake (P < 0.01, respectively). TTX also significantly reduced the secretion of matrix metalloproteinase-2 6 and 12 h after the treatment (P < 0.01 and P < 0.05, respectively). However, neither TTX nor siRNA had any effect on cell proliferation. L-type Ca(2+) channel current was recorded, and I(Na) was not observed in freshly isolated rASMCs, whereas TTX-sensitive I(Na) was recorded in cultured rASMCs. Quantitative RT-PCR and immunostaining for Na(V)1.7 revealed the prominent expression of SCN9A in cultured rASMCs and aorta 48 h after balloon injury but not in native aorta. In conclusion, these studies show that I(Na) is expressed in cultured and diseased conditions but not in normal aorta. The Na(V)1.7 plays an important role in cell migration, endocytosis, and secretion. Na(V)1.7 is also expressed in aorta after balloon injury, suggesting a potential role for Na(V)1.7 in the progression of intimal hyperplasia.

  10. Transcatheter aortic valve implantation.

    PubMed

    Oliemy, Ahmed; Al-Attar, Nawwar

    2014-01-01

    Transcatheter aortic valve implantation was developed to offer a therapeutic solution to patients with severe symptomatic aortic stenosis who are not candidates for conventional aortic valve replacement. The improvement in transcatheter aortic valve implantation outcomes is still of concern in the areas of stroke, vascular injury, heart block, paravalvular regurgitation and valve durability. Concomitantly, the progress, both technical and in terms of material advances of transcatheter valve systems, as well as in patient selection, renders transcatheter aortic valve implantation an increasingly viable treatment for more and more patients with structural heart disease.

  11. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites.

    PubMed

    Farah, C; Kleindienst, A; Bolea, G; Meyer, G; Gayrard, S; Geny, B; Obert, P; Cazorla, O; Tanguy, S; Reboul, Cyril

    2013-11-01

    Exercise is an efficient strategy for myocardial protection against ischemia-reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-L-arginine methyl ester, L-NAME or N5-(1-iminoethyl)-L-ornithine, L-NIO] or tetrahydrobiopterin (BH₄). Exercise training protected hearts against IR injury and this effect was abolished by L-NAME or by L-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O₂·- to form peroxynitrite (ONOO⁻), which is cytotoxic.

  12. Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation

    PubMed Central

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023

  13. Stromal cell-derived factor 2 is critical for Hsp90-dependent eNOS activation.

    PubMed

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C; Sessa, William C

    2015-08-18

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell-derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser(1177), a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser(1177) in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. Copyright © 2015, American Association for the Advancement of Science.

  14. Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways.

    PubMed

    Erdogdu, Ozlem; Eriksson, Linnéa; Xu, Hua; Sjöholm, Ake; Zhang, Qimin; Nyström, Thomas

    2013-04-01

    Experimental studies have indicated that endothelial cells play an important role in maintaining vascular homeostasis. We previously reported that human coronary artery endothelial cells (HCAECs) express the glucagon-like peptide 1 (GLP1) receptor and that the stable GLP1 mimetic exendin-4 is able to activate the receptor, leading to increased cell proliferation. Here, we have studied the effect of exendin-4 and native GLP1 (7-36) on lipoapoptosis and its underlying mechanisms in HCAECs. Apoptosis was assessed by DNA fragmentation and caspase-3 activation, after incubating cells with palmitate. Nitric oxide (NO) and reactive oxidative species (ROS) were analyzed. GLP1 receptor activation, PKA-, PI3K/Akt-, eNOS-, p38 MAPK-, and JNK-dependent pathways, and genetic silencing of transfection of eNOS were also studied. Palmitate-induced apoptosis stimulated cells to release NO and ROS, concomitant with upregulation of eNOS, which required activation of p38 MAPK and JNK. Exendin-4 restored the imbalance between NO and ROS production in which ROS production decreased and NO production was further augmented. Incubation with exendin-4 and GLP1 (7-36) protected HCAECs against lipoapoptosis, an effect that was blocked by PKA, PI3K/Akt, eNOS, p38 MAPK, and JNK inhibitors. Genetic silencing of eNOS also abolished the anti-apoptotic effect afforded by exendin-4. Our results support the notion that GLP1 receptor agonists restore eNOS-induced ROS production due to lipotoxicity and that such agonists protect against lipoapoptosis through PKA-PI3K/Akt-eNOS-p38 MAPK-JNK-dependent pathways via a GLP1 receptor-dependent mechanism.

  15. Sildenafil Ameliorates Gentamicin-Induced Nephrotoxicity in Rats: Role of iNOS and eNOS

    PubMed Central

    Morsy, Mohamed A.; Ibrahim, Salwa A.; Amin, Entesar F.; Kamel, Maha Y.; Rifaai, Rehab A.; Hassan, Magdy K.

    2014-01-01

    Gentamicin, an aminoglycoside antibiotic, is used for the treatment of serious Gram-negative infections. However, its usefulness is limited by its nephrotoxicity. Sildenafil, a selective phosphodiesterase-5 inhibitor, was reported to prevent or decrease tissue injury. The aim of this study is to evaluate the potential protective effects of sildenafil on gentamicin-induced nephrotoxicity in rats. Male Wistar rats were injected with gentamicin (100 mg/kg/day, i.p.) for 6 days with and without sildenafil. Sildenafil administration resulted in nephroprotective effect in gentamicin-intoxicated rats as it significantly decreased serum creatinine and urea, urinary albumin, and renal malondialdehyde and nitrite/nitrate levels, with a concomitant increase in renal catalase and superoxide dismutase activities compared to gentamicin-treated rats. Moreover, immunohistochemical examination revealed that sildenafil treatment markedly reduced inducible nitric oxide synthase (iNOS) expression, while expression of endothelial nitric oxide synthase (eNOS) was markedly enhanced. The protective effects of sildenafil were verified histopathologically. In conclusion, sildenafil protects rats against gentamicin-induced nephrotoxicity possibly, in part, through its antioxidant activity, inhibition of iNOS expression, and induction of eNOS production. PMID:25120567

  16. Prunella vulgaris suppresses HG-induced vascular inflammation via Nrf2/HO-1/eNOS activation.

    PubMed

    Hwang, Sun Mi; Lee, Yun Jung; Yoon, Jung Joo; Lee, So Min; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation is an important factor which can promote diabetic complications. In this study, the inhibitory effects of aqueous extract from Prunella vulgaris (APV) on high glucose (HG)-induced expression of cell adhesion molecules in human umbilical vein endothelial cells (HUVEC) are reported. APV decreased HG-induced expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. APV also dose-dependently inhibited HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen species (ROS). HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1), eNOS, and nuclear factor E2-related factor 2 (Nrf2), which may protect vascular inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to the inhibition of diabetic vascular diseases.

  17. β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells

    PubMed Central

    Coisne, Caroline; Hallier-Vanuxeem, Dorothée; Boucau, Marie-Christine; Hachani, Johan; Tilloy, Sébastien; Bricout, Hervé; Monflier, Eric; Wils, Daniel; Serpelloni, Michel; Parissaux, Xavier; Fenart, Laurence; Gosselet, Fabien

    2016-01-01

    Atherosclerosis is an inflammatory disease that leads to an aberrant accumulation of cholesterol in vessel walls forming atherosclerotic plaques. During this process, the mechanism regulating complex cellular cholesterol pools defined as the reverse cholesterol transport (RCT) is altered as well as expression and functionality of transporters involved in this process, namely ABCA1, ABCG1, and SR-BI. Macrophages, arterial endothelial and smooth muscle cells (SMCs) have been involved in the atherosclerotic plaque formation. As macrophages are widely described as the major cell type forming the foam cells by accumulating intracellular cholesterol, RCT alterations have been poorly studied at the arterial endothelial cell and SMC levels. Amongst the therapeutics tested to actively counteract cellular cholesterol accumulation, the methylated β-cyclodextrin, KLEPTOSE® CRYSMEβ, has recently shown promising effects on decreasing the atherosclerotic plaque size in atherosclerotic mouse models. Therefore we investigated in vitro the RCT process occurring in SMCs and in arterial endothelial cells (ABAE) as well as the ability of some modified β-CDs with different methylation degree to modify RCT in these cells. To this aim, cells were incubated in the presence of different methylated β-CDs, including KLEPTOSE® CRYSMEβ. Both cell types were shown to express basal levels of ABCA1 and SR-BI whereas ABCG1 was solely found in ABAE. Upon CD treatments, the percentage of membrane-extracted cholesterol correlated to the methylation degree of the CDs independently of the lipid composition of the cell membranes. Decreasing the cellular cholesterol content with CDs led to reduce the expression levels of ABCA1 and ABCG1. In addition, the cholesterol efflux to ApoA-I and HDL particles was significantly decreased suggesting that cells forming the blood vessel wall are able to counteract the CD-induced loss of cholesterol. Taken together, our observations suggest that methylated

  18. Glyoxalase 1-knockdown in human aortic endothelial cells – effect on the proteome and endothelial function estimates

    PubMed Central

    Stratmann, Bernd; Engelbrecht, Britta; Espelage, Britta C.; Klusmeier, Nadine; Tiemann, Janina; Gawlowski, Thomas; Mattern, Yvonne; Eisenacher, Martin; Meyer, Helmut E.; Rabbani, Naila; Thornalley, Paul J.; Tschoepe, Diethelm; Poschmann, Gereon; Stühler, Kai

    2016-01-01

    Methylglyoxal (MG), an arginine-directed glycating agent, is implicated in diabetic late complications. MG is detoxified by glyoxalase 1 (GLO1) of the cytosolic glyoxalase system. The aim was to investigate the effects of MG accumulation by GLO1-knockdown under hyperglycaemic conditions in human aortic endothelial cells (HAECs) hypothesizing that the accumulation of MG accounts for the deleterious effects on vascular function. SiRNA-mediated knockdown of GLO1 was performed and MG concentrations were determined. The impact of MG on the cell proteome and targets of MG glycation was analysed, and confirmed by Western blotting. Markers of endothelial function and apoptosis were assessed. Collagen content was assayed in cell culture supernatant. GLO1-knockdown increased MG concentration in cells and culture medium. This was associated with a differential abundance of cytoskeleton stabilisation proteins, intermediate filaments and proteins involved in posttranslational modification of collagen. An increase in fibrillar collagens 1 and 5 was detected. The extracellular concentration of endothelin-1 was increased following GLO1-knockdown, whereas the phosphorylation and amount of eNOS was not influenced by GLO1-knockdown. The expression of ICAM-1, VCAM-1 and of MCP-1 was elevated and apoptosis was increased. MG accumulation by GLO1-knockdown provoked collagen expression, endothelial inflammation and dysfunction and apoptosis which might contribute to vascular damage. PMID:27898103

  19. Aspalatone Prevents VEGF-Induced Lipid Peroxidation, Migration, Tube Formation, and Dysfunction of Human Aortic Endothelial Cells

    PubMed Central

    Sonowal, Himangshu; Pal, Pabitra B.; Shukla, Kirtikar

    2017-01-01

    Although aspalatone (acetylsalicylic acid maltol ester) is recognized as an antithrombotic agent with antioxidative and antiplatelet potential; its efficacy in preventing endothelial dysfunction is not known. In this study, we examined the antiangiogenic, antioxidative, and anti-inflammatory effect of aspalatone in human aortic endothelial cells (HAECs). Specifically, the effect of aspalatone on VEGF-induced HAECs growth, migration, tube formation, and levels of lipid peroxidation-derived malondialdehyde (MDA) was examined. Our results indicate that the treatment of HAECs with aspalatone decreased VEGF-induced cell migration, tube formation, and levels of MDA. Aspalatone also inhibited VEGF-induced decrease in the expression of eNOS and increase in the expression of iNOS, ICAM-1, and VCAM-1. Aspalatone also prevented the VEGF-induced adhesion of monocytes to endothelial cells. Furthermore, aspalatone also prevented VEGF-induced release of inflammatory markers such as Angiopoietin-2, Leptin, EGF, G-CSF, HB-EGF, and HGF in HAECs. Thus, our results suggest that aspalatone could be used to prevent endothelial dysfunction, an important process in the pathophysiology of cardiovascular diseases. PMID:28243353

  20. Supravalvular aortic stenosis in adult with anomalies of aortic arch vessels and aortic regurgitation

    PubMed Central

    Valente, Acrisio Sales; Alencar, Polyanna; Santos, Alana Neiva; Lobo, Roberto Augusto de Mesquita; de Mesquita, Fernando Antônio; Guimarães, Aloyra Guedis

    2013-01-01

    The supravalvular aortic stenosis is a rare congenital heart defect being very uncommon in adults. We present a case of supravalvular aortic stenosis in adult associated with anomalies of the aortic arch vessels and aortic regurgitation, which was submitted to aortic valve replacement and arterioplasty of the ascending aorta with a good postoperative course. PMID:24598962

  1. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation.

    PubMed

    García, Celina; Aranda, Jorge; Arnold, Edith; Thébault, Stéphanie; Macotela, Yazmín; López-Casillas, Fernando; Mendoza, Valentín; Quiroz-Mercado, Hugo; Hernández-Montiel, Hebert Luis; Lin, Sue-Hwa; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2008-06-01

    Increased retinal vasopermeability contributes to diabetic retinopathy, the leading cause of blindness in working-age adults. Despite clinical progress, effective therapy remains a major need. Vasoinhibins, a family of peptides derived from the protein hormone prolactin (and inclusive of the 16-kDa fragment of prolactin), antagonize the proangiogenic effects of VEGF, a primary mediator of retinal vasopermeability. Here, we demonstrate what we believe to be a novel function of vasoinhibins as inhibitors of the increased retinal vasopermeability associated with diabetic retinopathy. Vasoinhibins inhibited VEGF-induced vasopermeability in bovine aortic and rat retinal capillary endothelial cells in vitro. In vivo, vasoinhibins blocked retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with diabetic retinopathy. Inhibition by vasoinhibins was similar to that achieved following immunodepletion of VEGF from human diabetic retinopathy vitreous or blockage of NO synthesis, suggesting that vasoinhibins inhibit VEGF-induced NOS activation. We further showed that vasoinhibins activate protein phosphatase 2A (PP2A), leading to eNOS dephosphorylation at Ser1179 and, thereby, eNOS inactivation. Moreover, intravitreous injection of okadaic acid, a PP2A inhibitor, blocked the vasoinhibin effect on endothelial cell permeability and retinal vasopermeability. These results suggest that vasoinhibins have the potential to be developed as new therapeutic agents to control the excessive retinal vasopermeability observed in diabetic retinopathy and other vasoproliferative retinopathies.

  2. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A–dependent eNOS inactivation

    PubMed Central

    García, Celina; Aranda, Jorge; Arnold, Edith; Thébault, Stéphanie; Macotela, Yazmín; López-Casillas, Fernando; Mendoza, Valentín; Quiroz-Mercado, Hugo; Hernández-Montiel, Hebert Luis; Lin, Sue-Hwa; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2008-01-01

    Increased retinal vasopermeability contributes to diabetic retinopathy, the leading cause of blindness in working-age adults. Despite clinical progress, effective therapy remains a major need. Vasoinhibins, a family of peptides derived from the protein hormone prolactin (and inclusive of the 16-kDa fragment of prolactin), antagonize the proangiogenic effects of VEGF, a primary mediator of retinal vasopermeability. Here, we demonstrate what we believe to be a novel function of vasoinhibins as inhibitors of the increased retinal vasopermeability associated with diabetic retinopathy. Vasoinhibins inhibited VEGF-induced vasopermeability in bovine aortic and rat retinal capillary endothelial cells in vitro. In vivo, vasoinhibins blocked retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with diabetic retinopathy. Inhibition by vasoinhibins was similar to that achieved following immunodepletion of VEGF from human diabetic retinopathy vitreous or blockage of NO synthesis, suggesting that vasoinhibins inhibit VEGF-induced NOS activation. We further showed that vasoinhibins activate protein phosphatase 2A (PP2A), leading to eNOS dephosphorylation at Ser1179 and, thereby, eNOS inactivation. Moreover, intravitreous injection of okadaic acid, a PP2A inhibitor, blocked the vasoinhibin effect on endothelial cell permeability and retinal vasopermeability. These results suggest that vasoinhibins have the potential to be developed as new therapeutic agents to control the excessive retinal vasopermeability observed in diabetic retinopathy and other vasoproliferative retinopathies. PMID:18497878

  3. On the application of ENO scheme with subcell resolution to conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Chang, Shih-Hung

    1991-01-01

    Two approaches are used to extend the essentially non-oscillatory (ENO) schemes to treat conservation laws with stiff source terms. One approach is the application of the Strang time-splitting method. Here the basic ENO scheme and the Harten modification using subcell resolution (SR), ENO/SR scheme, are extended this way. The other approach is a direct method and a modification of the ENO/SR. Here the technique of ENO reconstruction with subcell resolution is used to locate the discontinuity within a cell and the time evolution is then accomplished by solving the differential equation along characteristics locally and advancing in the characteristic direction. This scheme is denoted ENO/SRCD (subcell resolution - characteristic direction). All the schemes are tested on the equation of LeVeque and Yee (NASA-TM-100075, 1988) modeling reacting flow problems. Numerical results show that these schemes handle this intriguing model problem very well, especially with ENO/SRCD which produces perfect resolution at the discontinuity.

  4. Aortic valve surgery - minimally invasive

    MedlinePlus

    ... of the heart is reduced. This is called aortic stenosis. The aortic valve can be replaced using: Minimally ... RN, Wang A. Percutaneous heart valve replacement for aortic stenosis: state of the evidence. Ann Intern Med . 2010; ...

  5. Lycopene Ameliorates Transplant Arteriosclerosis in Vascular Allograft Transplantation by Regulating the NO/cGMP Pathways and Rho-Associated Kinases Expression

    PubMed Central

    Xia, Peng; Jin, Hao; Zhang, Yan

    2016-01-01

    Objective. Transplant arteriosclerosis is considered one of the major factors affecting the survival time of grafts after organ transplantation. In this study, we proposed a hypothesis of whether lycopene can protect grafted vessels through regulating key proteins expression involved in arteriosclerosis. Methods. Allogeneic aortic transplantation was performed using Brow-Norway rats as donors and Lewis rats as recipients. After transplantation, the recipients were divided into two groups: the allograft group and the lycopene group. Negative control rats (isograft group) were also established. Histopathological staining was performed to observe the pathological changes, and the expression levels of Ki-67, caspase-3, Rho-associated kinases, intercellular adhesion molecules (ICAM-1), and eNOS were assessed. Western blotting analysis and real-time PCR were also performed for quantitative analysis. Results. The histopathological staining showed that vascular stenosis and intimal thickening were not evident after lycopene treatment. The Ki-67, ROCK1, ROCK2, and ICAM-1 expression levels were significantly decreased. However, eNOS expression in grafted arteries and plasma cGMP concentration were increased after lycopene treatment. Conclusions. Lycopene could alleviate vascular arteriosclerosis in allograft transplantation via downregulating Rho-associated kinases and regulating key factor expression through the NO/cGMP pathways, which may provide a potentially effective method for transplant arteriosclerosis in clinical organ transplantation. PMID:28050227

  6. Lycopene Ameliorates Transplant Arteriosclerosis in Vascular Allograft Transplantation by Regulating the NO/cGMP Pathways and Rho-Associated Kinases Expression.

    PubMed

    He, Yunqiang; Xia, Peng; Jin, Hao; Zhang, Yan; Chen, Bicheng; Xu, Ziqiang

    2016-01-01

    Objective. Transplant arteriosclerosis is considered one of the major factors affecting the survival time of grafts after organ transplantation. In this study, we proposed a hypothesis of whether lycopene can protect grafted vessels through regulating key proteins expression involved in arteriosclerosis. Methods. Allogeneic aortic transplantation was performed using Brow-Norway rats as donors and Lewis rats as recipients. After transplantation, the recipients were divided into two groups: the allograft group and the lycopene group. Negative control rats (isograft group) were also established. Histopathological staining was performed to observe the pathological changes, and the expression levels of Ki-67, caspase-3, Rho-associated kinases, intercellular adhesion molecules (ICAM-1), and eNOS were assessed. Western blotting analysis and real-time PCR were also performed for quantitative analysis. Results. The histopathological staining showed that vascular stenosis and intimal thickening were not evident after lycopene treatment. The Ki-67, ROCK1, ROCK2, and ICAM-1 expression levels were significantly decreased. However, eNOS expression in grafted arteries and plasma cGMP concentration were increased after lycopene treatment. Conclusions. Lycopene could alleviate vascular arteriosclerosis in allograft transplantation via downregulating Rho-associated kinases and regulating key factor expression through the NO/cGMP pathways, which may provide a potentially effective method for transplant arteriosclerosis in clinical organ transplantation.

  7. Aortic Valve Calcification is Mediated by a Differential Response of Aortic Valve Interstitial Cells to Inflammation

    PubMed Central

    Venardos, Neil; Nadlonek, Nicole A.; Zhan, Qiong; Weyant, Michael J.; Reece, T. Brett; Meng, Xianzhong; Fullerton, David A.

    2014-01-01

    Background While calcific aortic stenosis is common, calcification of the other three heart valves is not. The aortic valve interstitial cell (VIC) has been implicated in the pathogenesis of aortic stenosis. Pro-inflammatory stimulation of aortic VICs induces an osteogenic and inflammatory phenotypic change. We hypothesized that the VICs of the other heart valves do not undergo these changes. Using isolated human VICs from normal aortic, mitral, pulmonary and tricuspid valves, our purpose was to compare the osteogenic response to pro-inflammatory stimulation via TLR-4. Materials And Methods Aortic, pulmonic, mitral, and tricuspid (n=4 for each valve type) VICs were isolated from hearts valves explanted from patients undergoing cardiac transplantation. Cells were cultured and grown to confluence in passage 2-6 before treatment with LPS (100-200ng/mL) for 24 or 48 hours. Cells were characterized by immunofluorescent staining. TLR-4 expression was analyzed (immunoblotting, flow cytometry). BMP-2 and intercellular adhesion molecule-1 (ICAM-1) production were determined (immunoblotting). Monocyte chemoattractant protein-1 (MCP-1) levels were determined by ELISA. Statistics were by Mann-Whitney U test. Results TLR-4 stimulation induced BMP-2 production only in aortic VICs (p<0.05). ICAM-1 production and MCP-1 secretion increased in a similar fashion among TLR4-stimulated VICs from all four valves. Conclusions Pro-inflammatory stimulation induces an osteogenic phenotype in aortic VICs but not mitral, pulmonic, or tricuspid VICs. We conclude that this differential osteogenic response of aortic VICs contributes to the pathogenesis of calcific aortic stenosis. PMID:24746950

  8. C-reactive protein in aortic valve disease

    PubMed Central

    Sanchez, Pedro L; Mazzone, Anna Maria

    2006-01-01

    Aortic Valve Disease, includes a range of disorder severity from mild leaflet thickening without valve obstruction, "aortic sclerosis", to severe calcified aortic stenosis. It is a slowly progressive active process of valve modification similar atherosclerosis for cardiovascular risk factors, lipoprotein deposition, chronic inflammation, and calcification. Systemic signs of inflammation, as wall and serum CRP, similar to those found in atherosclerosis, are present in patients with degenerative aortic valve stenosis and may be expression of a common disease, useful in monitoring of stenosis progression. PMID:17042945

  9. Bicuspid Aortic Valve

    DTIC Science & Technology

    2006-08-01

    Schnell E, Wollenek G, Maurer G, Baumgartner H, Lang IM. Mechanisms underlying aortic dilatation in congenital aortic valve malformation . Circulation...1999; 99(16):2138-2143. 10. Roberts CS, Roberts WC. Dissection of the aorta associated with congenital malformation of the aortic valve. J Am Coll... congenital heart defect, often diagnosed incidentally or as a consequence of an associated condition. Patients with this anomaly are at increased risk

  10. Pulmonary hypertension and vascular oxidative damage in cigarette smoke exposed eNOS(-/-) mice and human smokers.

    PubMed

    Wright, J L; Zhou, S; Churg, A

    2012-09-01

    Cigarette smoke is known to be associated with pulmonary hypertension in humans and in animal models. Although the etiology of pulmonary hypertension in smokers is not understood, recent work has suggested a role for inducible nitric oxide synthase (iNOS) in inducing oxidative stress. To further evaluate this question, we assessed eNOS-/- mice exposed to air or cigarette smoke for the presence of pulmonary hypertension and examined vascular remodeling and expression of nitrotyrosine, a marker of reactive nitrogen species-induced oxidative damage, using immunohistochemistry. To ascertain whether oxidants may play a role in humans, we also examined lung tissue from nonsmokers, and patients with chronic obstructive pulmonary disease (COPD) with and without pulmonary hypertension. We found that eNOS(-/-) mice developed increased pulmonary arterial pressure after six months cigarette smoke exposure, and this was associated with vascular remodeling and increased vascular nitrotyrosine staining. iNOS gene expression was decreased in the pulmonary arteries of the smoke exposed animals, and no protein was detectable by immunohistochemistry. In humans, vascular nitrotyrosine staining intensity was increased in smokers with COPD compared to nonsmokers, and further increased in smokers with combined COPD and pulmonary hypertension. We conclude that cigarette smoke-induced pulmonary hypertension is associated with evidence of oxidative vascular damage by reactive nitrogen species, but that iNOS does not appear to be the major contributor to such damage. Most likely the source of reactive nitrogen species is the cigarette smoke itself.

  11. HSP70-1 is required for interleukin-5-induced angiogenic responses through eNOS pathway

    PubMed Central

    Park, Sung Lyea; Chung, Tae-Wook; Kim, Sangtae; Hwang, Byungdoo; Kim, Jung Min; Lee, Hwan Myung; Cha, Hee-Jae; Seo, Yoonhee; Choe, Soo Young; Ha, Ki-Tae; Kim, Gonhyung; Yun, Seok-Joong; Park, Sung-Soo; Choi, Yung Hyun; Kim, Bo Kyung; Kim, Won-Tae; Cha, Eun-Jong; Patterson, Cam; Kim, Wun-Jae; Moon, Sung-Kwon

    2017-01-01

    We report a pivotal role for IL-5 as an angiogenic activator. IL-5 increased proliferation, migration and colony tube formation in HUVECs associated with the phosphorylation of ERK and AKT/eNOS, and promoted microvessel sprouting from an angiogenesis animal model. The angiogenic effects were confirmed in IL-5-deficient mice and addition of IL-5 antibody. HSP70-1 was identified via expression profiling following IL-5 stimulation. A siRNA knockdown of HSP70-1 suppressed angiogenic responses and eNOS phosphorylation induced by IL-5. HSP70-1 overexpression enhanced IL-5-induced angiogenic responses. In addition, IL-5-induced neo-vascular formation was verified in both HSP70-1 knockout and HSP70-1 transgenic mice. Furthermore, transcription factor AP-1 was a main factor in IL-5-induced HSP70-1 in response to ERK and AKT signaling pathway. Angiogenic responses induced by VEGF had no effect in either HSP70-1 siRNA in vitro or HSP70-1 knockout mice. IL-5-induced angiogenic responses depended on the binding of IL-5Rα. Our data demonstrate that binding of IL-5 to IL-5Rα receptors enhances angiogenic responses by stimulating the expression of HSP70-1 via the eNOS signaling pathway. PMID:28317868

  12. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a.

    PubMed

    Alhosin, Mahmoud; Anselm, Eric; Rashid, Sherzad; Kim, Jong Hun; Madeira, Socorro Vanesca Frota; Bronner, Christian; Schini-Kerth, Valérie B

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene.

  13. Redox-Sensitive Up-Regulation of eNOS by Purple Grape Juice in Endothelial Cells: Role of PI3-Kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a

    PubMed Central

    Rashid, Sherzad; Kim, Jong Hun; Frota Madeira, Socorro Vanesca; Bronner, Christian; Schini-Kerth, Valérie B.

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene. PMID:23533577

  14. Transcatheter aortic valve implantation in aortic coarctation.

    PubMed

    Schramm, René; Kupatt, Christian; Becker, Christoph; Bombien, René; Reichart, Bruno; Sodian, Ralf; Schmitz, Christoph

    2013-06-01

    A 77-year-old male patient was scheduled for transcatheter aortic valve implantation for symptomatic and severe aortic valve stenosis. Severe multidirectional kinking of the aorta based on aortic coarctation did not allow for the transfemoral, but only for the transapical approach. The procedure was complicated because of the technically challenging retrograde passage of the transfemorally inserted pig-tail catheter required for intraoperative angiography of the aortic root. Correct positioning of the pig-tail catheter into the ascending aorta was accomplished by use of a loop snare, which was advanced into the descending aorta via the antegrade route, passing the cardiac apex, the stenotic aortic valve, and the coarctation-associated kinking. The pig-tail catheter tip was manipulated into the loop snare, pulled traverse the coarctation, and released within the proximal ascending aorta. Subsequent procedures were uneventful and followed the standardized protocol. A 29 mm Edwards Lifescience transcatheter Sapien bioprosthesis was successfully implanted. Georg Thieme Verlag KG Stuttgart · New York.

  15. Aortic Remodeling Following Transverse Aortic Constriction in Mice is Attenuated with AT1 Receptor Blockade

    PubMed Central

    Kuang, Shao-Qing; Geng, Liang; Prakash, Siddharth K.; Cao, Jiu-Mei; Guo, Steven; Villamizar, Carlos; Kwartler, Callie S.; Ju, Xiaoxi; Brasier, Allan R.; Milewicz, Dianna M.

    2016-01-01

    Objective Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of Ang II type 1 (AT1) receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model. Approach and Results Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation, aortic wall thickening and medial hypertrophy. Significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density due to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC induced adventitial hyperplasia, collagen accumulation and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas was effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked Erk activation and ROS production in the TAC ascending aorta. Conclusions Inhibition of the AT1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased TGF- β1 expression, adventitial Smad2 signaling and collagen accumulation. These results help to delineate the aortic TGF-β signaling that is dependent and independent of the AT1 receptor after TAC. PMID:23868934

  16. Aortic Valve Disease

    MedlinePlus

    ... body Watch the video below as Dr. Robbin Cohen describes aortic stenosis Video of Robbin G. Cohen, MD on Aortic Stenosis Causes and Symptoms Causes ... when having dental work. Reviewed by: Robbin G. Cohen, MD, with assistance from John Hallsten and Travis ...

  17. Partial Deletion of eNOS Gene Causes Hyperinsulinemic State, Unbalance of Cardiac Insulin Signaling Pathways and Coronary Dysfunction Independently of High Fat Diet

    PubMed Central

    Vecoli, Cecilia; Novelli, Michela; Pippa, Anna; Giacopelli, Daniela; Beffy, Pascale; Masiello, Pellegrino; L’Abbate, Antonio; Neglia, Danilo

    2014-01-01

    Abnormalities in eNOS gene, possibly interacting with high fat diet (HFD), affect peripheral vascular function and glucose metabolism. The relative role of eNOS gene, HFD and metabolic derangement on coronary function has not been fully elucidated. We test whether eNOS gene deficiency per se or in association with HFD modulates coronary function through mechanisms involving molecular pathways related to insulin signaling. Wild type (WT), eNOS−/− and eNOS+/− mice were studied. WT and eNOS+/− mice were fed with either standard or HF diet for 16 weeks and compared with standard diet fed eNOS−/−. Glucose and insulin tolerance tests were performed during the last week of diet. Coronary resistance (CR) was measured at baseline and during infusions of acetylcholine (Ach) or sodium-nitroprusside (SNP) to evaluate endothelium-dependent or independent vasodilation, in the Langendorff isolated hearts. Cardiac expression of Akt and ERK genes as evaluation of two major insulin-regulated signaling pathways involved in the control of vascular tone were assessed by western blot. HFD-fed mice developed an overt diabetic state. Conversely, chow-fed genetically modified mice (in particular eNOS−/−) showed a metabolic pattern characterized by normoglycemia and hyperinsulinemia with a limited degree of insulin resistance. CR was significantly higher in animals with eNOS gene deletions than in WT, independently of diet. Percent decrease in CR, during Ach infusion, was significantly lower in both eNOS−/− and eNOS+/− mice than in WT, independently of diet. SNP reduced CR in all groups except eNOS−/−. The cardiac ERK1-2/Akt ratio, increased in animals with eNOS gene deletions compared with WT, independently of diet. These results suggest that the eNOS genetic deficiency, associated or not with HFD, has a relevant effect on coronary vascular function, possibly mediated by increase in blood insulin levels and unbalance in insulin-dependent signaling in coronary

  18. A central role of eNOS in the protective effect of wine against metabolic syndrome.

    PubMed

    Leighton, Federico; Miranda-Rottmann, Soledad; Urquiaga, Inés

    2006-01-01

    The positive health effects derived from moderate wine consumption are pleiotropic. They appear as improvements in cardiovascular risk factors such as plasma lipids, haemostatic mechanisms, endothelial function and antioxidant defences. The active principles would be ethanol and mainly polyphenols. Results from our and other laboratories support the unifying hypothesis that the improvements in risk factors after red wine consumption are mediated by endothelial nitric oxide synthase (eNOS). Many genes are involved, but the participation of eNOS would be a constant feature. The metabolic syndrome is a cluster of metabolic risk factors associated with high risk of cardiovascular disease (CVD). The National Cholesterol Education Programmmes Adult Treatment Panel III (NCEPATP III) clinical definition of the metabolic syndrome requires the presence of at least three risk factors, from among abdominal obesity, high plasma triacylglycerols, low plasma HDL, high blood pressure and high fasting plasma glucose. The molecular mechanisms responsible for the metabolic syndrome are not known. Since metabolic syndrome apparently affects 10-30% of the population in the world, research on its pathogenesis and control is needed. The recent finding that eNOS knockout mice present a cluster of cardiovascular risk factors comparable to those of the metabolic syndrome suggests that defects in eNOS function may cause human metabolic syndrome. These mice are hypertensive, insulin resistant and dyslipidemic. Further support for a pathogenic role of eNOS comes from the finding in humans that eNOS polymorphisms associate with insulin resistance and diabetes, with hypertension, with inflammatory and oxidative stress markers and with albuminuria. So, the data sustain the hypothesis that eNOS enhancement should reduce metabolic syndrome incidence and its consequences. Therefore red wine, since it enhances eNOS function, should be considered as a potential tool for the control of metabolic

  19. Aortic curvature as a predictor of intraoperative type Ia endoleak.

    PubMed

    Schuurmann, Richte C L; Ouriel, Kenneth; Muhs, Bart E; Jordan, William D; Ouriel, Richard L; Boersen, Johannes T; de Vries, Jean-Paul P M

    2016-03-01

    receiver operating characteristic curve. The analysis included 64 patients with intraoperative type Ia endoleak and 79 controls. Logistic regression identified only aortic neck calcification and aortic curvature, expressed over the juxtarenal aortic neck, the aneurysm sac, and the terminal aorta, as independent predictors of intraoperative type Ia endoleak. Together with aortic neck calcification, aortic curvature appears to be the best predictor of intraoperative type Ia endoleak, as expressed within the juxtarenal aortic neck, the aneurysm sac, and the terminal aorta. Aortic neck angulation was not a predictor for acute failure. Aortic curvature may provide a better anatomic characteristic to define patients at risk for early complications after endovascular aneurysm repair. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. New Findings in eNOS gene and Thalidomide Embryopathy Suggest pre-transcriptional effect variants as susceptibility factors.

    PubMed

    Kowalski, Thayne Woycinck; Fraga, Lucas Rosa; Tovo-Rodrigues, Luciana; Sanseverino, Maria Teresa Vieira; Hutz, Mara Helena; Schuler-Faccini, Lavínia; Vianna, Fernanda Sales Luiz

    2016-03-23

    Antiangiogenic properties of thalidomide have created an interest in the use of the drug in treatment of cancer. However, thalidomide is responsible for thalidomide embryopathy (TE). A lack of knowledge regarding the mechanisms of thalidomide teratogenesis acts as a barrier in the aim to synthesize a safer analogue of thalidomide. Recently, our group detected a higher frequency of alleles that impair the pro-angiogenic mechanisms of endothelial nitric oxide synthase (eNOS), coded by the NOS3 gene. In this study we evaluated variable number tandem repeats (VNTR) functional polymorphism in intron 4 of NOS3 in individuals with TE (38) and Brazilians without congenital anomalies (136). Haplotypes were estimated for this VNTR with previously analyzed polymorphisms, rs2070744 (-786C > T) and rs1799983 (894T > G), in promoter region and exon 7, respectively. Haplotypic distribution was different between the groups (p = 0.007). Alleles -786C (rs2070744) and 4b (VNTR), associated with decreased NOS3 expression, presented in higher frequency in TE individuals (p = 0.018; OR = 2.57; IC = 1.2-5.8). This association was not identified with polymorphism 894T > G (p = 0.079), which influences eNOS enzymatic activity. These results suggest variants in NOS3, with pre-transcriptional effects as susceptibility factors, influencing the risk TE development. This finding generates insight for a new approach to research that pursues a safer analogue.

  1. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    SciTech Connect

    Murakami, Hisashi; Murakami, Ryuichiro . E-mail: ryuichi@med.nagoya-u.ac.jp; Kambe, Fukushi; Cao, Xia; Takahashi, Ryotaro; Asai, Toru; Hirai, Toshihisa; Numaguchi, Yasushi; Okumura, Kenji; Seo, Hisao; Murohara, Toyoaki

    2006-03-24

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor {alpha}.

  2. Relationships between caveolae and eNOS: everything in proximity and the proximity of everything.

    PubMed

    Goligorsky, Michael S; Li, Hong; Brodsky, Sergey; Chen, Jun

    2002-07-01

    Caveolae, flask-shaped invaginations of the plasma membrane occupying up to 30% of cell surface in capillaries, represent a predominant location of endothelial nitric oxide synthase (eNOS) in endothelial cells. The caveolar coat protein caveolin forms high-molecular-weight, Triton-insoluble complexes through oligomerization mediated by interactions between NH2-terminal residues 61-101. eNOS is targeted to caveolae by cotranslational N-myristoylation and posttranslational palmitoylation. Caveolin-1 coimmunoprecipitates with eNOS; interaction with eNOS occurs via the caveolin-1 scaffolding domain and appears to result in the inhibition of NOS activity. The inhibitory conformation of eNOS is reversed by the addition of excess Ca2+/calmodulin and by Akt-induced phosphorylation of eNOS. Here, we shall dissect the system using the classic paradigm of a reflex loop: 1) the action of afferent elements, such as fluid shear stress and its putative caveolar sensor, on caveolae; 2) the ways in which afferent signals may affect the central element, the activation of the eNOS-nitric oxide system; and 3) several resultant well-established and novel physiologically important effector mechanisms, i.e., vasorelaxation, angiogenesis, membrane fluidity, endothelial permeability, deterrance of inflammatory cells, and prevention of platelet aggregation.

  3. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections.

    PubMed

    Kuang, Shao-Qing; Medina-Martinez, Olga; Guo, Dong-Chuan; Gong, Limin; Regalado, Ellen S; Reynolds, Corey L; Boileau, Catherine; Jondeau, Guillaume; Prakash, Siddharth K; Kwartler, Callie S; Zhu, Lawrence Yang; Peters, Andrew M; Duan, Xue-Yan; Bamshad, Michael J; Shendure, Jay; Nickerson, Debbie A; Santos-Cortez, Regie L; Dong, Xiurong; Leal, Suzanne M; Majesky, Mark W; Swindell, Eric C; Jamrich, Milan; Milewicz, Dianna M

    2016-03-01

    The ascending thoracic aorta is designed to withstand biomechanical forces from pulsatile blood. Thoracic aortic aneurysms and acute aortic dissections (TAADs) occur as a result of genetically triggered defects in aortic structure and a dysfunctional response to these forces. Here, we describe mutations in the forkhead transcription factor FOXE3 that predispose mutation-bearing individuals to TAAD. We performed exome sequencing of a large family with multiple members with TAADs and identified a rare variant in FOXE3 with an altered amino acid in the DNA-binding domain (p.Asp153His) that segregated with disease in this family. Additional pathogenic FOXE3 variants were identified in unrelated TAAD families. In mice, Foxe3 deficiency reduced smooth muscle cell (SMC) density and impaired SMC differentiation in the ascending aorta. Foxe3 expression was induced in aortic SMCs after transverse aortic constriction, and Foxe3 deficiency increased SMC apoptosis and ascending aortic rupture with increased aortic pressure. These phenotypes were rescued by inhibiting p53 activity, either by administration of a p53 inhibitor (pifithrin-α), or by crossing Foxe3-/- mice with p53-/- mice. Our data demonstrate that FOXE3 mutations lead to a reduced number of aortic SMCs during development and increased SMC apoptosis in the ascending aorta in response to increased biomechanical forces, thus defining an additional molecular pathway that leads to familial thoracic aortic disease.

  4. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections

    PubMed Central

    Kuang, Shao-Qing; Medina-Martinez, Olga; Guo, Dong-chuan; Gong, Limin; Regalado, Ellen S.; Reynolds, Corey L.; Boileau, Catherine; Jondeau, Guillaume; Prakash, Siddharth K.; Kwartler, Callie S.; Zhu, Lawrence Yang; Peters, Andrew M.; Duan, Xue-Yan; Bamshad, Michael J.; Shendure, Jay; Nickerson, Debbie A.; Santos-Cortez, Regie L.; Dong, Xiurong; Leal, Suzanne M.; Majesky, Mark W.; Swindell, Eric C.; Jamrich, Milan; Milewicz, Dianna M.

    2016-01-01

    The ascending thoracic aorta is designed to withstand biomechanical forces from pulsatile blood. Thoracic aortic aneurysms and acute aortic dissections (TAADs) occur as a result of genetically triggered defects in aortic structure and a dysfunctional response to these forces. Here, we describe mutations in the forkhead transcription factor FOXE3 that predispose mutation-bearing individuals to TAAD. We performed exome sequencing of a large family with multiple members with TAADs and identified a rare variant in FOXE3 with an altered amino acid in the DNA-binding domain (p.Asp153His) that segregated with disease in this family. Additional pathogenic FOXE3 variants were identified in unrelated TAAD families. In mice, Foxe3 deficiency reduced smooth muscle cell (SMC) density and impaired SMC differentiation in the ascending aorta. Foxe3 expression was induced in aortic SMCs after transverse aortic constriction, and Foxe3 deficiency increased SMC apoptosis and ascending aortic rupture with increased aortic pressure. These phenotypes were rescued by inhibiting p53 activity, either by administration of a p53 inhibitor (pifithrin-α), or by crossing Foxe3–/– mice with p53–/– mice. Our data demonstrate that FOXE3 mutations lead to a reduced number of aortic SMCs during development and increased SMC apoptosis in the ascending aorta in response to increased biomechanical forces, thus defining an additional molecular pathway that leads to familial thoracic aortic disease. PMID:26854927

  5. An ethanol root extract of Cynanchum wilfordii containing acetophenones suppresses the expression of VCAM-1 and ICAM-1 in TNF-α-stimulated human aortic smooth muscle cells through the NF-κB pathway

    PubMed Central

    KOO, HYUN JUNG; SOHN, EUN-HWA; PYO, SUHKNEUNG; WOO, HAN GOO; PARK, DAE WON; HAM, YOUNG-MIN; JANG, SEON-A; PARK, SOO-YEONG; KANG, SE CHAN

    2015-01-01

    The root of Cynanchum wilfordii (C. wilfordii) contains several biologically active compounds which have been used as traditional medicines in Asia. In the present study, we evaluated the anti-inflammatory effects of an ethanol root extract of C. wilfordii (CWE) on tumor necrosis factor (TNF)-α-stimulated human aortic smooth muscle cells (HASMCs). The inhibitory effects of CWE on vascular cell adhesion molecule (VCAM)-1 expression under an optimum extraction condition were examined. CWE suppressed the expression of VCAM-1 and ICAM-1 and the adhesion of THP-1 monocytes to the TNF-α-stimulated HASMCs. Consistent with the in vitro observations, CWE inhibited the aortic expression of ICAM-1 and VCAM-1 in atherogenic diet-fed mice. CWE also downregulated the expression of nuclear factor-κB (NF-κB p65) and its uclear translocation in the stimulated HASMCs. In order to identify the active components in CWE, we re-extracted CWE using several solvents, and found that the ethyl acetate fraction was the most effective in suppressing the expression of VCAM-1 and ICAM-1. Four major acetophenones were purified from the ethyl acetate fraction, and two components, p-hydroxyacetophenone and cynandione A, potently inhibited the expression of ICAM-1 and VCAM-1 in the stimulated HASMCs. We assessed and determined the amounts of these two active components from CWE, and our results suggested that the root of C. wilfordii and its two bioactive acetophenones may be used for the prevention and treatment of atherosclerosis and vascular inflammatory diseases. PMID:25716870

  6. Bovine aortic arch with supravalvular aortic stenosis.

    PubMed

    Idhrees, Mohammed; Cherian, Vijay Thomas; Menon, Sabarinath; Mathew, Thomas; Dharan, Baiju S; Jayakumar, K

    2016-09-01

    A 5-year-old boy was diagnosed to have supravalvular aortic stenosis (SVAS). On evaluation of CT angiogram, there was associated bovine aortic arch (BAA). Association of BAA with SVAS has not been previously reported in literature, and to best of our knowledge, this is the first case report of SVAS with BAA. Recent studies show BAA as a marker for aortopathy. SVAS is also an arteriopathy. In light of this, SVAS can also possibly be a manifestation of aortopathy associated with BAA.

  7. Erythropoietin Reverses Sepsis-Induced Vasoplegia to Norepinephrine Through Preservation of α1D-Adrenoceptor mRNA Expression and Inhibition of GRK2-Mediated Desensitization in Mouse Aorta.

    PubMed

    Kandasamy, Kannan; Choudhury, Soumen; Singh, Vishakha; Addison, M Pule; Darzi, Sazad Ahmad; Kasa, Jaya Kiran; Thangamalai, Ramasamy; Dash, Jeevan Ranjan; Kumar, Tarun; Sultan, Faheem; Singh, Thakur Uttam; Parida, Subhashree; Mishra, Santosh Kumar

    2016-01-01

    We investigated the effect of erythropoietin (EPO) posttreatment on survival time and vascular functions in a mouse model of sepsis. Sepsis was induced by cecal ligation and puncture. After 20 ± 2 hours of sepsis, thoracic aorta was isolated for assessing its reactivity to norepinephrine (NE) and acetylcholine (ACh). We also measured the tissue nitric oxide (NO) level, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), G protein-coupled receptor kinase 2 (GRK2), and α1D adrenoceptor messenger RNA (mRNA)/protein expression. In septic mice, EPO moderately improved the survival time from 19.68 ± 0.75 to 34.7 ± 3.2 hours. Sepsis significantly decreased the aortic contractile response to NE along with reduced α1D mRNA and protein expression. Erythropoietin significantly preserved the α1D receptor expression and restored NE-induced contractions to control levels in septic mice. Further, it attenuated the aortic α1D receptor desensitization in sepsis which was evident from reduced GRK2 mRNA expression. Accordingly, a selective GRK2 inhibitor markedly restored the contractile responses to NE in sepsis. Erythropoietin treatment attenuated iNOS mRNA expression and iNOS-induced overproduction of NO, but improved endothelium-dependent relaxation to ACh associated with increased eNOS mRNA expression. In conclusion, EPO seems to reverse sepsis-induced vasoplegia to NE through the preservation of α1D adrenoceptor mRNA/protein expression, inhibition of GRK2-mediated desensitization, and attenuation of NO overproduction in the mouse aorta.

  8. Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE(-/-) mice as well as smooth muscle cells.

    PubMed

    Wang, Zhaojun; Wang, Zhongqun; Zhu, Jie; Long, Xinguang; Yan, Jinchuan

    2017-01-01

    Background and objectives Vascular calcification is a common complication in atherosclerosis. Accumulating evidence showed that Toll-like receptors (TLRs) mediate pro-inflammatory and atherosclerosis. Recent studies demonstrated that vascular calcification is one of the detrimental effects of vitamin K (Vit K) antagonists. However, the effects of Vit K on the expression of TLR2 and 4 and intimal calcification in artery remained unidentified. Methods and results Eighteen ApoE(-/-) mice were randomly divided into model group, Vit K-treated group, and control group. The mice of model and Vit K-treated group were fed with high-fat diet, while control group mice were fed with normal diet. Mice of Vit K-treated group were administered orally with vitamin K2 (40 mg.kg(-1).day(-1)) for 12 weeks. Twelve weeks later the aortic sections of mice were acquired and stained with hematoxylin and eosin and von Kossa, respectively. Calcium content and activity of alkaline phosphatase (ALP) at aortic tissues were measured. The expression levels of TLR2 and TLR4 in aorta sections were detected by immunohistochemisty and RT-PCR, respectively. The effects of Vit K on cellular calcification were further studied in A7r5 SMCs. Results demonstrated that high-fat diet induced typical atherosclerosis with intimal calcification in ApoE(-/-) mice, while in Vit K-treated group atherosclerosis and calcium deposits were not serious; Vit K2 also inhibited cellular calcification in A7r5 SMCs. Quantitative analysis showed that calcium and ALP activity at aortic tissues in the Vit K-treated mice were significantly lower than that of the model group ( P < 0.01); Compared to the control group, the expression levels of TLR2 and TLR4 in the model group were significantly higher ( P < 0.05), while in Vit K-treated group the levels of TLR2 and 4 were significantly lower than that in the model group. Furthermore, the content of calcium was positively related to the expression levels of TLR2 and TLR

  9. Sutureless aortic valve replacement

    PubMed Central

    Phan, Kevin

    2015-01-01

    The increasing incidence of aortic stenosis and greater co-morbidities and risk profiles of the contemporary patient population has driven the development of minimally invasive aortic valve surgery and percutaneous transcatheter aortic valve implantation (TAVI) techniques to reduce surgical trauma. Recent technological developments have led to an alternative minimally invasive option which avoids the placement and tying of sutures, known as “sutureless” or rapid deployment aortic valves. Potential advantages for sutureless aortic prostheses include reducing cross-clamp and cardiopulmonary bypass (CPB) duration, facilitating minimally invasive surgery and complex cardiac interventions, whilst maintaining satisfactory hemodynamic outcomes and low paravalvular leak rates. However, given its recent developments, the majority of evidence regarding sutureless aortic valve replacement (SU-AVR) is limited to observational studies and there is a paucity of adequately-powered randomized studies. Recently, the International Valvular Surgery Study Group (IVSSG) has formulated to conduct the Sutureless Projects, set to be the largest international collaborative group to investigate this technology. This keynote lecture will overview the use, the potential advantages, the caveats, and current evidence of sutureless and rapid deployment aortic valve replacement (AVR). PMID:25870807

  10. Aortic root stiffness affects the kinematics of bioprosthetic aortic valves.

    PubMed

    Jahren, Silje Ekroll; Winkler, Bernhard Michael; Heinisch, Paul Philipp; Wirz, Jessica; Carrel, Thierry; Obrist, Dominik

    2017-02-01

    In this study, the influence of aortic root distensibility on the haemodynamic parameters and valve kinematics of a bioprosthetic aortic valve was investigated in a controlled in vitro experiment. An Edwards INTUITY Elite 21 mm sutureless aortic valve (Edwards Lifesciences, Irvine, CA, USA) was inserted in three transparent aortic root phantoms with different wall thicknesses (0.55, 0.85 and 1.50 mm) mimicking different physiological distensibilities. Haemodynamic measurements were performed in an in vitro flow loop at heart rates of 60, 80 and 100 bpm with corresponding cardiac outputs of 3.5, 4.0 and 5.0 l/min and aortic pressures of 100/60, 120/90 and 145/110 mmHg, respectively. Aortic valve kinematics were assessed using a high-speed camera. The geometric orifice area (GOA) was measured by counting pixels in the lumen of the open aortic valve. The effective orifice area (EOA) was calculated from the root-mean-square value of the systolic aortic valve flow rate and the mean systolic trans-valvular pressure gradient. The tested aortic root phantoms reproduce physiological distensibilities of healthy individuals in age groups ranging from 40 to 70 years (±10 years). The haemodynamic results show only minor differences between the aortic root phantoms: the trans-valvular pressure gradient tends to increase for stiffer aortic roots, whereas the systolic aortic valve flow rate remains constant. As a consequence, the EOA decreased slightly for less distensible aortic roots. The GOA and the aortic valve opening and closing velocities increase significantly with reduced distensibility for all haemodynamic measurements. The resulting mean systolic flow velocity in the aortic valve orifice is lower for the stiffer aortic root. Aortic root distensibility may influence GOA and aortic valve kinematics, which affects the mechanical load on the aortic valve cusps. Whether these changes have a significant effect on the onset of structural valve deterioration of bioprosthetic

  11. Upregulation of ERK1/2-eNOS via AT2 Receptors Decreases the Contractile Response to Angiotensin II in Resistance Mesenteric Arteries from Obese Rats

    PubMed Central

    Hagihara, Graziela N.; Lobato, Nubia S.; Filgueira, Fernando P.; Akamine, Eliana H.; Aragão, Danielle S.; Casarini, Dulce E.; Carvalho, Maria Helena C.; Fortes, Zuleica B.

    2014-01-01

    It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. The role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. The circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats. PMID:25170617

  12. Influence of coronary artery diameter on eNOS protein content

    NASA Technical Reports Server (NTRS)

    Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.

    2003-01-01

    The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.

  13. Influence of coronary artery diameter on eNOS protein content

    NASA Technical Reports Server (NTRS)

    Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.

    2003-01-01

    The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.

  14. (−)-Epicatechin activation of endothelial cell eNOS, NO and related signaling pathways

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo; Villarreal, Francisco

    2010-01-01

    Recent reports indicate that (−)-epicatechin can exert cardioprotective actions, which may involve eNOS-mediated nitric oxide production in endothelial cells. However, the mechanism by which (−)-epicatechin activates eNOS remains unclear. In this study, we proposed to identify the intracellular pathways involved in (−)-epicatechin-induced effects on eNOS, utilizing human coronary artery endothelial cells in culture. Treatment of cells with (−)-epicatechin leads to time- and dose-dependent effects, which peaked at 10 min at 1 μmol/L. (−)-Epicatechin treatment activates eNOS via serine-633 and serine-1177 phosphorylation and threonine-495 dephosphorylation. Using specific inhibitors, we have established the participation of the PI3K pathway in eNOS activation. (−)-Epicatechin induces eNOS uncoupling from caveolin-1 and its association with calmodulin-1, suggesting the involvement of intracellular calcium. These results allowed us to propose that (−) epicatechin effects may be dependent on actions exerted at the cell membrane level. To test this hypothesis, cells were treated with the phospholipase C inhibitor U73122, which blocked (−)-epicatechin-induced eNOS activation. We also demonstrated inositol phosphate accumulation in (−)-epicatechin-treated cells. The inhibitory effects of the pre-incubation of cells with the CaMKII inhibitor KN-93 indicate that (−)-epicatechin-induced eNOS activation is at least partially mediated via the Ca2+/CaMKII pathway. The (−)-epicatechin stereoisomer catechin was only able to partially stimulate nitric oxide production in cells. Altogether, these results strongly suggest the presence of a cell surface acceptor-effector for the cacao flavanol (−)-epicatechin, which may mediate its cardiovascular effects. PMID:20404222

  15. Aortic Valve Stenosis

    MedlinePlus

    ... evaluation of aortic stenosis in adults. http://www.uptodate.com/home. Accessed April 29, 2014. Mohty D, ... Valvular heart disease in elderly adults. http://www.uptodate.com/home. Accessed May 2, 2014. Bonow RO, ...

  16. Aortic Aneurysm Statistics

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Heart Disease Stroke High Blood Pressure Salt ... to Prevent and Control Chronic Diseases Million Hearts® Web Sites with More Information About Aortic Aneurysm For ...

  17. Aortic Valve Stenosis

    MedlinePlus

    ... pulmonary valve and aortic valve. Each valve has flaps (cusps or leaflets) that open and close once ... valve consists of three tightly fitting, triangular-shaped flaps of tissue called cusps. Some children are born ...

  18. [Inflammatory abdominal aortic aneurysm].

    PubMed

    Ziaja, K; Sedlak, L; Urbanek, T; Kostyra, J; Ludyga, T

    2000-01-01

    The reported incidence of inflammatory abdominal aortic aneurysm (IAAA) is from 2% to 14% of patients with abdominal aortic aneurysm and the etiology of this disease is still discussed--according to the literature several pathogenic theories have been proposed. From 1992 to 1997 32 patients with IAAA were operated on. The patients were mostly symptomatic--abdominal pain was present in 68.75% cases, back pain in 31.25%, fever in 12.5% and weight loss in 6.25% of the operated patients. In all the patients ultrasound examination was performed, in 4 patients CT and in 3 cases urography. All the patients were operated on and characteristic signs of inflammatory abdominal aortic aneurysm like: thickened aortic wall, perianeurysmal infiltration or retroperitoneal fibrosis with involvement of retroperitoneal structures were found. In all cases surgery was performed using transperitoneal approach; in three cases intraoperatively contiguous abdominal organs were injured, which was connected with their involvement into periaortic inflammation. In 4 cases clamping of the aorta was done at the level of the diaphragmatic hiatus. 3 patients (9.37%) died (one patient with ruptured abdominal aortic aneurysm). Authors present diagnostic procedures and the differences in the surgical tactic, emphasizing the necessity of the surgical therapy in patients with inflammatory abdominal aortic aneurysm.

  19. Role of endothelial nitric oxide synthase (eNOS) in chronic stress-promoted tumour growth

    PubMed Central

    Barbieri, Antonio; Palma, Giuseppe; Rosati, Alessandra; Giudice, Aldo; Falco, Antonia; Petrillo, Antonella; Petrillo, Mario; Bimonte, Sabrina; Benedetto, Maria Di; Esposito, Giuseppe; Stiuso, Paola; Abbruzzese, Alberto; Caraglia, Michele; Arra, Claudio

    2012-01-01

    Abstract Accumulating evidence suggests that chronic stress can be a cofactor for the initiation and progression of cancer. Here we evaluated the role of endothelial nitric oxide synthase (eNOS) in stress-promoted tumour growth of murine B16F10 melanoma cell line in C57BL/6 mice. Animals subjected to restraint stress showed increased levels adrenocorticotropic hormone, enlarged adrenal glands, reduced thymus weight and a 3.61-fold increase in tumour growth in respect to no-stressed animals. Tumour growth was significantly reduced in mice treated with the β-antagonist propranolol. Tumour samples obtained from stressed mice displayed high levels of vascular endothelial growth factor (VEGF) protein in immunohistochemistry. Because VEGF can induce eNOS increase, and nitric oxide is a relevant factor in angiogenesis, we assessed the levels of eNOS protein by Western blot analysis. We found a significant increase in eNOS levels in tumour samples from stressed mice, indicating an involvement of this enzyme in stress-induced tumour growth. Accordingly, chronic stress did not promote tumour growth in eNOS−/− mice. These results disclose for the first time a pivotal role for eNOS in chronic stress-induced initiation and promotion of tumour growth. PMID:21722303

  20. Extensive Ethnogenomic Diversity of Endothelial Nitric Oxide Synthase (eNOS) Polymorphisms

    PubMed Central

    Thomas, Bolaji N.; Thakur, Tanya J.; Yi, Li; Guindo, Aldiouma; Diallo, Dapa A.; Ott, Jurg

    2013-01-01

    Nitric oxide (NO) is highly reactive, produced in endothelial cells by endothelial NO synthase (eNOS) and has been implicated in sickle cell pathophysiology. We evaluated the distribution of functionally significant eNOS variants (the T786C variant in the promoter region, the Glu298Asp variant in exon 7, and the variable number of tandem repeats (VNTR) in intron 4) in Africans, African Americans and Caucasians. The C-786 variant was more common in Caucasians than in Africans and African Americans. Consistent with other findings, the Asp-298 variant had the highest frequency in Caucasians followed by African Americans, but was completely absent in Africans. The very rare intron 4 allele, eNOS 4c, was found in some Africans and African Americans, but not in Caucasians. eNOS 4d allele was present in 2 Africans. These findings suggest a consistent and widespread genomic diversity in the distribution of eNOS variants in Africans, comparative to African Americans and Caucasians. PMID:23400313

  1. Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?

    PubMed

    Grewal, Nimrat; Franken, Romy; Mulder, Barbara J M; Goumans, Marie-José; Lindeman, Johannes H N; Jongbloed, Monique R M; DeRuiter, Marco C; Klautz, Robert J M; Bogers, Ad J J C; Poelmann, Robert E; Groot, Adriana C Gittenberger-de

    2016-05-01

    Patients with bicuspid aortic valve (BAV) and patients with Marfan syndrome (MFS) are more prone to develop aortic dilation and dissection compared to persons with a tricuspid aortic valve (TAV). To elucidate potential common and distinct pathways of clinical relevance, we compared the histopathological substrates of aortopathy. Ascending aortic wall biopsies were divided in five groups: BAV (n = 36) and TAV (n = 23) without and with dilation and non-dilated MFS (n = 8). General histologic features, apoptosis, the expression of markers for vascular smooth muscle cell (VSMC) maturation, markers predictive for ascending aortic dilation in BAV, and expression of fibrillin-1 were investigated. Both MFS and BAV showed an altered distribution and decreased fibrillin-1 expression in the aorta and a significantly lower level of differentiated VSMC markers. Interestingly, markers predictive for aortic dilation in BAV were not expressed in the MFS aorta. The aorta in MFS was similar to the aorta in dilated TAV with regard to the presence of medial degeneration and apoptosis, while other markers for degeneration and aging like inflammation and progerin expression were low in MFS, comparable to BAV. Both MFS and BAV aortas have immature VSMCs, while MFS and TAV patients have a similar increased rate of medial degeneration. However, the mechanism leading to apoptosis is expected to be different, being fibrillin-1 mutation induced increased angiotensin-receptor-pathway signaling in MFS and cardiovascular aging and increased progerin in TAV. Our findings could explain why angiotensin inhibition is successful in MFS and less effective in TAV and BAV patients.

  2. Increased Neuron Specific Enolase Expression by Urothelial Cells Exposed to or Malignantly Transformed by Exposure to Cd+2 or As+3

    PubMed Central

    Soh, Maureen; Dunlevy, Jane R.; Garrett, Scott H.; Allen, Christina; Sens, Donald A.; Zhou, Xu Dong; Sens, Mary Ann; Somji, Seema

    2012-01-01

    Neuron specific enolase (ENO2, γ-enolase) is a biomarker used to help identify neuroendocrine differentiation in tumors. This laboratory has shown that ENO2 might be a biomarker for exposure to cadmium and arsenite. In this study these observations are extended to the urothelial cell, where environmental exposures are strongly linked to urothelial cancer. The UROtsa urothelial cell line and its Cd+2- and As+3-transformed counterparts were used as the model. Acute exposure of the UROtsa cells to both As+3- and Cd+2-caused significant increases in ENO2 expression. Treatment with the histone deacetlyase inhibitor was also shown to significantly increase the expression of ENO2 mRNA. The expression of ENO2 was significantly elevated in the Cd+2- and As+3-transformed UROtsa cells and tumor transplants. In contrast, ENO1, was unaffected by exposure to As+3 or Cd+2. Immunofluorescence showed ENO2 associated with both the nucleus and cytoplasm and cytoplasmic ENO2 co-localized with ENO1. The findings extend the evidence suggesting a link between As+3 and Cd+2 exposure and neuroendocrine differentiation in tumors. The results suggest that ENO2 might be a biomarker of human exposure to Cd+2 and As+3 that operates through histone modification. PMID:22613180

  3. Redox regulation of ischemic preconditioning is mediated by the differential activation of caveolins and their association with eNOS and GLUT-4.

    PubMed

    Koneru, Srikanth; Penumathsa, Suresh Varma; Thirunavukkarasu, Mahesh; Samuel, Samson Mathews; Zhan, Lijun; Han, Zhihua; Maulik, Gautam; Das, Dipak K; Maulik, Nilanjana

    2007-05-01

    Reactive oxygen species (ROS) generated during ischemia-reperfusion (I/R) enhance myocardial injury, but brief periods of myocardial ischemia followed by reperfusion [ischemic preconditioning (IP)] induce cardioprotection. Ischemia is reported to stimulate glucose uptake through the translocation of GLUT-4 from the intracellular vesicles to the sarcolemma. In the present study we demonstrated involvement of ROS in IP-mediated GLUT-4 translocation along with increased expression of caveolin (Cav)-3, phospho (p)-endothelial nitric oxide synthase (eNOS), p-Akt, and decreased expression of Cav-1. The rats were divided into the following groups: 1) control sham, 2) N-acetyl-L-cysteine (NAC, free radical scavenger) sham (NS), 3) I/R, 4) IP + I/R (IP), and 5) NAC + IP (IPN). IP was performed by four cycles of 4 min of ischemia and 4 min of reperfusion followed by 30 min of ischemia and 3, 24, 48 h of reperfusion, depending on the protocol. Increased mRNA expression of GLUT-4 and Cav-3 was observed after 3 h of reperfusion in the IP group compared with other groups. IP increased expression of GLUT-4, Cav-3, and p-AKT and p-eNOS compared with I/R. Coimmunoprecipitation demonstrated decreased association of Cav-1/eNOS in the IP group compared with the I/R group. Significant GLUT-4 and Cav-3 association was also observed in the IP group. This association was disrupted when NAC was used in conjunction with IP. It clearly documents a significant role of ROS signaling in Akt/eNOS/Cav-3-mediated GLUT-4 translocation and association in IP myocardium. In conclusion, we demonstrated a novel redox mechanism in IP-induced eNOS and GLUT-4 translocation and the role of caveolar paradox in making the heart euglycemic during the process of ischemia, leading to myocardial protection in a clinically relevant rat ischemic model.

  4. Intact mitochondrial Ca2+ uniport is essential for agonist-induced activation of endothelial nitric oxide synthase (eNOS)

    PubMed Central

    Charoensin, Suphachai; Eroglu, Emrah; Opelt, Marissa; Bischof, Helmut; Madreiter-Sokolowski, Corina T.; Kirsch, Andrijana; Depaoli, Maria R.; Frank, Saša; Schrammel, Astrid; Mayer, Bernd; Waldeck-Weiermair, Markus; Graier, Wolfgang F.; Malli, Roland

    2017-01-01

    Mitochondrial Ca2+ uptake regulates diverse endothelial cell functions and has also been related to nitric oxide (NO•) production. However, it is not entirely clear if the organelles support or counteract NO• biosynthesis by taking up Ca2+. The objective of this study was to verify whether or not mitochondrial Ca2+ uptake influences Ca2+-triggered NO• generation by endothelial NO• synthase (eNOS) in an immortalized endothelial cell line (EA.hy926), respective primary human umbilical vein endothelial cells (HUVECs) and eNOS-RFP (red fluorescent protein) expressing human embryonic kidney (HEK293) cells. We used novel genetically encoded fluorescent NO• probes, the geNOps, and Ca2+ sensors to monitor single cell NO• and Ca2+ dynamics upon cell treatment with ATP, an inositol 1,4,5-trisphosphate (IP3)-generating agonist. Mitochondrial Ca2+ uptake was specifically manipulated by siRNA-mediated knock-down of recently identified key components of the mitochondrial Ca2+ uniporter machinery. In endothelial cells and the eNOS-RFP expressing HEK293 cells we show that reduced mitochondrial Ca2+ uptake upon the knock-down of the mitochondrial calcium uniporter (MCU) protein and the essential MCU regulator (EMRE) yield considerable attenuation of the Ca2+-triggered NO• increase independently of global cytosolic Ca2+ signals. The knock-down of mitochondrial calcium uptake 1 (MICU1), a gatekeeper of the MCU, increased both mitochondrial Ca2+ sequestration and Ca2+-induced NO• signals. The positive correlation between mitochondrial Ca2+ elevation and NO• production was independent of eNOS phosphorylation at serine1177. Our findings emphasize that manipulating mitochondrial Ca2+ uptake may represent a novel strategy to control eNOS-mediated NO• production. PMID:27923677

  5. Are Aortic Stent Grafts Safe in Pregnancy?

    PubMed Central

    Khandanpour, Nader; Mehta, Tapan A.; Adiseshiah, M.; Meyer, Felicity J.

    2015-01-01

    Aortic stent grafts are increasingly used to treat aortic aneurysms and also other aortic pathologies. The safety of aortic stent grafts in pregnancy has never been studied or reported. We report on two cases of aortic stent grafts in pregnant women and discuss the effect of pregnancy on these aortic stent grafts. PMID:26229702

  6. Deficient eNOS phosphorylation is a mechanism for diabetic vascular dysfunction contributing to increased stroke size

    PubMed Central

    Li, Qian; Atochin, Dmitriy; Kashiwagi, Satoshi; Earle, John; Wang, Annie; Mandeville, Emiri; Hayakawa, Kazuhide; d'Uscio, Livius V.; Lo, Eng H.; Katusic, Zvonimir; Sessa, William; Huang, Paul

    2013-01-01

    Background and Purpose Phosphorylation of eNOS, an important post-translational modulator of its enzymatic activity, is reduced in diabetes. We hypothesized that modulation of eNOS phosphorylation could overcome diabetic vascular dysfunction and improves the outcome to stroke. Methods We used the db/db mouse model of type 2 diabetes. We mated db/db mice with eNOS knockin mice that carry single-amino acid mutations at the S1176 phosphorylation site; the phosphomimetic SD mutation shows increased eNOS enzymatic activity, while the unphosphorylatable SA mutation shows decreased eNOS activity. We characterized the vascular anatomy, baseline physiologic parameters and vascular reactivity. We used the middle cerebral artery occlusion model of stroke and measured infarct volume and neurological deficits. Results db/db mice showed diminished eNOS phosphorylation at S1176. eNOS SD and SA mutations do not change the vascular anatomy at the Circle of Willis, brain capillary density, heart rate, or arterial blood gases of db/db mice. The eNOS SD mutation, but not the SA mutation, lowers blood pressure and improves vascular reactivity to acetylcholine in db/db mice. The eNOS SD mutation reduces stroke size and neurologic deficit following middle cerebral artery occlusion. Conclusion Diminished eNOS phosphorylation is a mechanism of vascular dysfunction in db/db mice. We show here that modulation of the eNOS S1176 phosphorylation site in db/db mice is associated with improved vascular reactivity and improved outcome to stroke following middle cerebral artery occlusion. PMID:23988642

  7. Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2.

    PubMed

    Bibli, Sofia-Iris; Zhou, Zongmin; Zukunft, Sven; Fisslthaler, Beate; Andreadou, Ioanna; Szabo, Csaba; Brouckaert, Peter; Fleming, Ingrid; Papapetropoulos, Andreas

    2017-07-01

    Endothelial nitric oxide (NO) synthase (eNOS) is known to play a cardioprotective protective. However, the molecular mechanisms regulating eNOS activity during ischaemia/reperfusion (I/R) injury are incompletely understood. eNOS is a substrate for several kinases that positively or negatively affect its enzymatic activity. Herein, we sought to correlate eNOS phosphorylation status with cardiomyocyte survival and we investigated the contribution of the proline-rich tyrosine kinase 2 (PYK2)/eNOS axis to the regulation of myocardial infarct size in vivo. Exposure of H9c2 cardiomyocytes to H2O2 lead to PYK2 phosphorylation on its activator site (Y402) and eNOS phosphorylation on the inhibitor site Y656 and the activator site S1176. Both H2O2-induced eNOS phosphorylation events were abolished by PYK2 pharmacological inhibition or gene knockdown. Activity assays demonstrated that phosphorylation of the tyrosine inhibitory site exerts a dominant effect over S1176. In cardiomyocytes subjected to oxidative stress or oxygen-glucose deprivation, inhibition of PYK2 limited cell injury; this effect was prevented by inhibition of NO production. In vivo, ischaemia-reperfusion induced an early activation of PYK2, leading to eNOS phosphorylation on Y656, which, in turn, reduced NO output, as judged by the low tissue levels of its downstream effector cGMP. Moreover, pharmacological blockade of PYK2 alleviated eNOS inhibition and prevented cardiac damage following I/R injury in wild-type, but not in eNOS KO mice. The current studies demonstrate that PYK2 is a pivotal regulator of eNOS function in myocardial infarction and identify PYK2 as a novel therapeutic target for cardioprotection.

  8. Folic acid modulates eNOS activity via effects on posttranslational modifications and protein–protein interactions☆

    PubMed Central

    Taylor, Sarah Y.; Dixon, Hannah M.; Yoganayagam, Shobana; Price, Natalie; Lang, Derek

    2013-01-01

    Folic acid enhances endothelial function and improves outcome in primary prevention of cardiovascular disease. The exact intracellular signalling mechanisms involved remain elusive and were therefore the subject of this study. Particular focus was placed on folic acid-induced changes in posttranslational modifications of endothelial nitric oxide synthase (eNOS). Cultured endothelial cells were exposed to folic acid in the absence or presence of phosphatidylinositol-3' kinase/Akt (PI3K/Akt) inhibitors. The phosphorylation status of eNOS was determined via western blotting. The activities of eNOS and PI3K/Akt were evaluated. The interaction of eNOS with caveolin-1, Heat-Shock Protein 90 and calmodulin was studied using co-immunoprecipitation. Intracellular localisation of eNOS was investigated using sucrose gradient centrifugation and confocal microscopy. Folic acid promoted eNOS dephosphorylation at negative regulatory sites, and increased phosphorylation at positive regulatory sites. Modulation of phosphorylation status was concomitant with increased cGMP concentrations, and PI3K/Akt activity. Inhibition of PI3K/Akt revealed specific roles for this kinase pathway in folic acid-mediated eNOS phosphorylation. Regulatory protein and eNOS protein associations were altered in favour of a positive regulatory effect in the absence of bulk changes in intracellular eNOS localisation. Folic acid-mediated eNOS activation involves the modulation of eNOS phosphorylation status at multiple residues and positive changes in important protein–protein interactions. Such intracellular mechanisms may in part explain improvements in clinical vascular outcome following folic acid treatment. PMID:23796957

  9. Aortic involvement in relapsing polychondritis.

    PubMed

    Le Besnerais, Maëlle; Arnaud, Laurent; Boutémy, Jonathan; Bienvenu, Boris; Lévesque, Hervé; Amoura, Zahir; Marie, Isabelle

    2017-05-17

    To assess prevalence of aortic involvement in relapsing polychondritis (RP) patients; to evaluate clinical features and long-term outcome of RP patients exhibiting aortitis, aortic ectasia and/or aneurysm. One hundred and seventy-two RP patients underwent aortic computed tomography (CT)-scan; they were seen in 3 medical centers. Eleven patients (6.4%) had aortic involvement, occurring within a median time of 2 years after RP diagnosis. CT-scan showed isolated aortitis (n=2); the 9 other patients exhibited: aortitis and aortic aneurysm (n=2) or ectasia (n=1), isolated aortic aneurysm (n=4) or ectasia (n=2); aortic localizations were as follows: thoracic (n=6), abdominal (n=2), thoracic and abdominal (n=4) aorta. Patients exhibited: resolution (n=3) improvement (n=3), stabilization (n=4) or deterioration (n=1) of aortic localization. Five patients experienced recurrence of aortic localization; one patient died of aortic abdominal aneurysm rupture. Predictive factors of death related to aortic complications were: aortitis on CT-scan, higher median levels of erythrocyte sedimentation rate. Predictive parameters of aortic relapses were: aortitis on CT-scan and involvement of the abdominal aorta. This study underlines that aortic involvement is severe in RP. Furthermore, we suggest that RP patients exhibiting poor prognostic factors, including panaortitis and higher values of ESR, may require more aggressive therapy. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  10. Successful transfemoral aortic valve implantation through aortic stent graft after endovascular repair of abdominal aortic aneurysm.

    PubMed

    Kawashima, Hideyuki; Watanabe, Yusuke; Kozuma, Ken

    2017-04-01

    The patient was a 91-year-old woman presenting with severe aortic valve stenosis. Pre-procedural computed tomography scan revealed a 45-mm abdominal aortic aneurysm (AAA). Transfemoral transcatheter aortic valve implantation (TF-TAVI) was performed after endovascular aortic repair (EVAR) of the AAA. The 23-mm Edwards Sapien XT system passed through the aortic stent graft smoothly. This is the first case report showing that successful TF-TAVI can be performed through a prior abdominal aortic stent graft. TF-TAVI after EVAR of AAA is a feasible option for patients with extremely poor access.

  11. Association Between Three eNOS Polymorphisms and Intracranial Aneurysms Risk

    PubMed Central

    Yang, Chao; Qi, Zhen-yu; Shao, Chuan; Xing, Wei-kang; Wang, Zhong

    2015-01-01

    Abstract Endothelial nitric oxide synthase (eNOS) is the catalyst of endothelial nitric oxide (NO) synthesis. Polymorphisms in the eNOS gene may influence the risk of intracranial aneurysm (IA), but the results of existing researches are still inconsistent. Thus, we performed the present meta-analysis to derive a more precise estimation between eNOS polymorphisms (T786C, G894T, 27-bp-variable number of tandem repeat [VNTR]) and IA risk. Case–control studies evaluating the association between the eNOS polymorphisms and IA risk were searched in PubMed, Ovid & Embase, Web of Science, and Chinese Wanfang datasets with the last search up to July 15, 2014. The pooled odds ratios (ORs) for the association between eNOS polymorphisms and IA and their corresponding 95% confidence intervals (CIs) were estimated using the random or fixed-effects model. Finally, 10 studies for T786C polymorphism (1819 cases and 1893 controls), 9 studies for G894T polymorphism (1393 cases and 1508 controls), and 7 studies for 27-bp-VNTR polymorphism (1281 cases and 1406 controls) were included in the meta-analyses. In the overall analysis, no evidence of association between eNOS polymorphisms and susceptibility of IA was found. When subgrouped by race descent, significantly increased risk was detected among Asians for T786C polymorphism (heterozygous comparison of codominant model: OR = 1.294, 95% CI = 1.025–1.634; dominant model: OR = 1.277, 95% CI = 1.019–1.600), but not in Caucasians or the other 2 polymorphisms. Our meta-analysis suggested that T786C polymorphism was associated with increased risk of IA among Asians, whereas G894T and 27-bp-VNTR polymorphisms might have no influence on the susceptibility of IA. PMID:25634184

  12. Genetic variants of eNOS gene may modify the susceptibility to idiopathic male infertility.

    PubMed

    Ying, Hou-Qun; Pu, Xiao-Ying; Liu, Shuo-Ran; A, Zhou-Cun

    2013-08-01

    In testis, eNOS is responsible for synthesis of nitric oxide (NO) which is an essential gas message regulator in spermatogenesis, suggesting that eNOS gene plays a role in normal spermatogenesis and the genetic variants of eNOS gene may be potential genetic risk factors of spermatogenesis impairment. In this study, the polymorphic distributions of three common polymorphism loci including T-786C, 4A4B and G894T in eNOS gene were investigated in 355 Chinese infertile patients with azoospermia or oligozoospermia and 246 healthy fertile men and a meta-analysis was carried in order to explore the possible relationship between the three loci of eNOS gene and male infertility with spermatogenesis impairment. As a result, allele -786C of T-786C (11.4% versus 6.5%, p = 0.004) and 4A of 4A4B (11.0% versus 6.3%, p = 0.005) as well as genotype TC of T-786C (22.8% versus 13.0%, p = 0.002) and AB of 4A4B (18% versus 11%, p = 0.015) were significantly associated with idiopathic male infertility. The haplotypes T-4A-G (7.4% versus 4.1%, p = 0.015) and C-4B-G (7.6% versus 4.4%, p = 0.028) could increase the susceptibility to male infertility, whereas haplotype T-4B-G (67.0% versus 75.2%, p = 0.002) might be a protective factor for male infertility. The results of meta-analysis revealed that the polymorphism of T-786C was associated with male infertility. These findings suggested that the variants of eNOS gene may modify the susceptibility to male infertility with impaired spermatogenesis.

  13. Aortic aneurysm repair - endovascular- discharge

    MedlinePlus

    ... MRI scan Aortic aneurysm repair - endovascular Aortic angiography Hardening of ... Center-Shreveport, Shreveport, LA. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Isla ...

  14. High-order ENO schemes applied to two- and three-dimensional compressible flow

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Erlebacher, Gordon; Zang, Thomas A.; Whitaker, David; Osher, Stanley

    1991-01-01

    High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.

  15. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  16. [Congenital aortic stenosis].

    PubMed

    Yamaguchi, M

    2001-08-01

    Recent advances in and controversies concerning the management of children with congenital valvular aortic stenosis are discussed. In neonates with critical aortic stenosis, improved survival has recently been reported after surgical open valvotomy and balloon valvuloplasty, although it is difficult at this point to compare the results of the two procedures and determine their differential indications. Good results have also been achieved after extended aortic valvuloplasty for recurrent aortic stenosis and/or insufficiency, but the length of follow-up in these patients is still short. The technique first reported in 1991 for bilateral enlargement fo a small annulus permits the insertion of an aortic valve 3-4 sizes larger than the native annulus. It entails no risk of distorting the mitral valve, damaging the conduction system or important branches of the coronary arteries, or resulting in left ventricular dysfunction. The Ross procedure is now widely applied in the West, with reports of early mortality rates of less than 5% and event-free survival rates of 80-90% during follow-up of 4-8 years. Longer follow-up and continued careful evaluation are required to resolve the issue of possible dilatation and subsequent neoaortic valve dysfunction and pulmonary stenosis due to allograft degeneration after pulmonary autograft root replacement in children.

  17. Comparing American, European and Asian practice guidelines for aortic diseases

    PubMed Central

    Martin, Maria; Pascual, Isaac; Hernandez-Vaquero, Daniel; Moris, Cesar

    2017-01-01

    The aortic disease comprises a group of different pathologies of high prevalence, seriousness and ever changing by the medical and surgical investigations. Therefore cardiovascular scientific societies in USA, Europe and Asia have created Task Force on practice guidelines (PG) to develop, update and revise PG for aortic diseases. These documents issue recommendations on the diagnosis and management of different aortic diseases. The three societies agree on the recommendations about diagnostic tests and on the value of computed tomography and magnetic resonance as the main tools for the diagnosis and follow-up of aortic disease. Concerning to acute aortic syndromes (AAS), American and European GPs recognize intramural hematoma (IMH) as a type of AAS with surgery indication; however Asian guidelines consider IMH a pathological process different from AAS and indicate medical treatment. In thoracic aortic aneurysms (TAA), all express the need for an adequate control of cardiovascular risk factors, emphasizing strict control of blood pressure, smoking cessation and recommend the use of beta-blockers and statins. The threshold for asymptomatic repair is 5.5 cm in European and American and 6 cm for Asian PG, with lower thresholds in Marfan and bicuspid aortic valve (BAV). As regards the abdominal aortic aneurysms (AAA), the PGs recognize the adequate control of cardiovascular risk factors, but there are differences in class of recommendation on statins, angiotensin-converting enzyme inhibitors or beta-blockers to prevent progression of AAA. For intervention, the threshold diameter in asymptomatic is 5.5 cm but can be reduced to 5 cm in women as recommended by Asian PG. Moreover the specific diseases such as Marfan, BAV, pregnancy or atherosclerosis aortic present specific recommendations with small differences between PGs. In conclusion, PGs are interesting and appropriate documents at present. They issue recommendations based on evidence that help the clinician and

  18. New Findings in eNOS gene and Thalidomide Embryopathy Suggest pre-transcriptional effect variants as susceptibility factors

    PubMed Central

    Kowalski, Thayne Woycinck; Fraga, Lucas Rosa; Tovo-Rodrigues, Luciana; Sanseverino, Maria Teresa Vieira; Hutz, Mara Helena; Schuler-Faccini, Lavínia; Vianna, Fernanda Sales Luiz

    2016-01-01

    Antiangiogenic properties of thalidomide have created an interest in the use of the drug in treatment of cancer. However, thalidomide is responsible for thalidomide embryopathy (TE). A lack of knowledge regarding the mechanisms of thalidomide teratogenesis acts as a barrier in the aim to synthesize a safer analogue of thalidomide. Recently, our group detected a higher frequency of alleles that impair the pro-angiogenic mechanisms of endothelial nitric oxide synthase (eNOS), coded by the NOS3 gene. In this study we evaluated variable number tandem repeats (VNTR) functional polymorphism in intron 4 of NOS3 in individuals with TE (38) and Brazilians without congenital anomalies (136). Haplotypes were estimated for this VNTR with previously analyzed polymorphisms, rs2070744 (−786C > T) and rs1799983 (894T > G), in promoter region and exon 7, respectively. Haplotypic distribution was different between the groups (p = 0.007). Alleles −786C (rs2070744) and 4b (VNTR), associated with decreased NOS3 expression, presented in higher frequency in TE individuals (p = 0.018; OR = 2.57; IC = 1.2–5.8). This association was not identified with polymorphism 894T > G (p = 0.079), which influences eNOS enzymatic activity. These results suggest variants in NOS3, with pre-transcriptional effects as susceptibility factors, influencing the risk TE development. This finding generates insight for a new approach to research that pursues a safer analogue. PMID:27004986

  19. The -665 C>T polymorphism in the eNOS gene predicts cardiovascular mortality and morbidity in white Europeans.

    PubMed

    Olivi, L; Gu, Y M; Salvi, E; Liu, Y P; Thijs, L; Velayutham, D; Jin, Y; Jacobs, L; D'Avila, F; Petit, T; Barcella, M; Lanzani, C; Kuznetsova, T; Manunta, P; Barlassina, C; Cusi, D; Staessen, J A

    2015-03-01

    We recently identified rs3918226 as a hypertension susceptibility locus (-665 C>T), TT homozygosity being associated with higher hypertension risk. T compared with C allele transfected cells had lower endothelial nitric oxide synthase (eNOS) expression. In the family-based Flemish Study on Environment, Genes and Health Outcomes (50.9% women; mean age 40.3 years), we investigated whether 32 TT homozygotes had worse outcomes than 2787 C allele carriers. Over 15 years (median), total and cardiovascular mortality and cardiovascular and coronary events amounted to 269 (9.5%), 98 (3.5%), 247 (8.8%) and 120 (4.3%), respectively. While accounting for family clusters, the hazard ratios associated with TT homozygosity were 4.11 (P=0.0052) for cardiovascular mortality (4 deaths), 2.75 (P=0.0067) for cardiovascular events (7 endpoints) and 3.10 (P=0.022) for coronary events (4 endpoints). With adjustment for cardiovascular risk factors, these hazard ratios were 6.01 (P=0.0003), 2.64 (P=0.0091) and 2.89 (P=0.010), respectively. Analyses unadjusted for blood pressure and antihypertensive treatment produced consistent results. For all fatal plus nonfatal cardiovascular events, the positive predictive value, attributable risk and population-attributable risk associated with TT homozygosity were 21.9, 61.5 and 2.0%, respectively. In conclusion, TT homozygosity at the position -665 in the eNOS promoter predicts adverse outcomes, independent of blood pressure and other risk factors.

  20. Cavin-2 regulates the activity and stability of endothelial nitric oxide synthase (eNOS) in angiogenesis.

    PubMed

    Boopathy, Gandhi T K; Kulkarni, Madhura; Ho, Sze Yuan; Boey, Adrian; Chua, Edmond Wei Min; Barathi, Veluchamy A; Carney, Tom J; Wang, Xiaomeng; Hong, Wanjin

    2017-09-14

    Angiogenesis is a highly regulated process for formation of new blood vessels from pre-existing ones. Angiogenesis is dysregulated in various pathologies, including age-related macular degeneration, arthritis, and cancer. Inhibiting pathological angiogenesis therefore represents a promising therapeutic strategy for treating these disorders, highlighting the need to study angiogenesis in more detail. To this end, identifying the genes essential for blood vessel formation and elucidating their function are crucial for a complete understanding of angiogenesis. Here, focusing on potential candidate genes for angiogenesis, we performed a morpholino-based genetic screen in zebrafish and identified Cavin-2, a membrane-bound phosphatidylserine-binding protein and critical organizer of caveolae (small microdomains in the plasma membrane), as a regulator of angiogenesis. Using endothelial cells, we show that Cavin-2 is required for in vitro angiogenesis and also for endothelial cell proliferation, migration, and invasion. We noted a high level of Cavin-2 expression in the neovascular tufts in the mouse model of oxygen-induced retinopathy, suggesting a role for Cavin-2 in pathogenic angiogenesis. Interestingly, we also found that Cavin-2 regulates the production of nitric oxide (NO) in endothelial cells by controlling the stability and activity of the endothelial nitric oxide synthase (eNOS) and that Cavin-2 knockdown cells produce much less NO than WT cells. Also, mass spectrometry, flow cytometry, and electron microscopy analyses indicated that Cavin-2 is secreted in endothelial microparticles (EMPs) and is required for EMP biogenesis. Taken together, our results indicate that in addition to its function in caveolae biogenesis, Cavin-2 plays a critical role in endothelial cell maintenance and function by regulating eNOS activity. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  1. Robotic aortic surgery.

    PubMed

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  2. Aortic hammer syndrome.

    PubMed

    Komen, Niels; Vercauteren, Sven; de Roover, Dominique

    2011-08-01

    To present a case of penetrating aortic ulcer with extraordinary etiology. A 57-year-old man was admitted with acute retrosternal and interscapular pain. He was a demolition worker and often used a pneumatic drill to which he pressed his chest as he drilled. Clinical examination showed previously undiagnosed hypertension. Computed tomographic angiography disclosed a penetrating aortic ulcer in the descending thoracic aorta without any sign of atherosclerosis. Initial treatment consisted of blood pressure control. However, due to progression of the lesion, endovascular treatment was performed to implant a covered endoprosthesis. We hypothesize that the etiology of the ulcer was the shear forces developed by incorrect, repetitive use of the pneumatic hammer in combination with the untreated hypertension. This is analogous to the hypothenar hammer syndrome, and we propose naming this the "aortic hammer syndrome."

  3. [Inflammatory abdominal aortic aneurysm].

    PubMed

    Mikami, Y; Kyogoku, M

    1994-08-01

    Inflammatory abdominal aortic aneurysm (IAAA) is a distinct clinicopathological entity, characterized by: (1) clinical presentation, such as back pain, weight loss, and increased ESR, (2) patchy and/or diffuse lymphoplasmacytic infiltration, and (3) marked periaortic fibrosis resulting in thickening of the aneurysmal wall and occasional retroperitoneal fibrosis. Its pathogenesis is unknown, but some authors support the theory that IAAA is a subtype of atherosclerotic abdominal aortic aneurysm because of close relationship between IAAA and atherosclerotic change. In this article, we describe clinical and histological features of IAAA on the basis of the literature and our review of 6 cases of IAAA, emphasizing the similarity and difference between IAAA and atherosclerotic abdominal aortic aneurysm. Our review supports that marked lamellar fibrosis completely replacing the media and adventitia, patchy lymphocytic infiltration (mostly B cells) and endarteritis obliterans are characteristic features of IAAA.

  4. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in association with neovascularization in human primary astrocytoma*

    PubMed Central

    Pan, Jian-wei; Zhan, Ren-ya; Tong, Ying; Zhou, Yong-qing; Zhang, Ming

    2005-01-01

    Objective: To investigate the relationship between the expression of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and angiogenesis in primary astrocytoma. Methods: Thirty-seven primary astrocytomas and 4 astrocytic hyperplasia samples were collected and divided into three groups according to histological grade. The expression of eNOS, VEGF and factor VIII related antigen (FVIIIRAg) were assayed by immunohistochemistry. Microvascular density was assessed by FVIIIRAg immunoreactivity. The intensity of immunoreactivity was graded according to the percentage of positive tumor cells. Results: No eNOS and VEGF were expressed in the astrocytes and vascular endothelium in astrocytic hyperplasia. The expression of eNOS or VEGF was light in low-grade astrocytoma and strong in glioblastoma. eNOS expression in astrocytoma was very positively correlated with VEGF. eNOS and VEGF expression in anaplastic astrocytoma was median in contrast to the low grade astrocytoma and glioblastoma. Lower microvascular density was found in low grade astrocytoma than that in higher grade malignant ones. The expressions of eNOS and VEGF were correlated with microvascular density and tumor malignancy. Conclusion: This finding suggests that eNOS and VEGF may have cooperative effect in tumor angiogenesis and play an important role in the pathogenesis of primary astrocytoma. PMID:15973775

  5. Deficits in Col5a2 Expression Result in Novel Skin and Adipose Abnormalities and Predisposition to Aortic Aneurysms and Dissections.

    PubMed

    Park, Arick C; Phan, Noel; Massoudi, Dawiyat; Liu, Zhenjie; Kernien, John F; Adams, Sheila M; Davidson, Jeffrey M; Birk, David E; Liu, Bo; Greenspan, Daniel S

    2017-10-01

    Classic Ehlers-Danlos syndrome (cEDS) is characterized by fragile, hyperextensible skin and hypermobile joints. cEDS can be caused by heterozygosity for missense mutations in genes COL5A2 and COL5A1, which encode the α2(V) and α1(V) chains, respectively, of collagen V, and is most often caused by COL5A1 null alleles. However, COL5A2 null alleles have yet to be associated with cEDS or other human pathologies. We previously showed that mice homozygous null for the α2(V) gene Col5a2 are early embryonic lethal, whereas haploinsufficiency caused aberrancies of adult skin, but not a frank cEDS-like phenotype, as skin hyperextensibility at low strain and dermal cauliflower-contoured collagen fibril aggregates, two cEDS hallmarks, were absent. Herein, we show that ubiquitous postnatal Col5a2 knockdown results in pathognomonic dermal cauliflower-contoured collagen fibril aggregates, but absence of skin hyperextensibility, demonstrating these cEDS hallmarks to arise separately from loss of collagen V roles in control of collagen fibril growth and nucleation events, respectively. Col5a2 knockdown also led to loss of dermal white adipose tissue (WAT) and markedly decreased abdominal WAT that was characterized by miniadipocytes and increased collagen deposition, suggesting α2(V) to be important to WAT development/maintenance. More important, Col5a2 haploinsufficiency markedly increased the incidence and severity of abdominal aortic aneurysms, and caused aortic arch ruptures and dissections, indicating that α2(V) chain deficits may play roles in these pathologies in humans. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Chronic Type A Aortic Dissection and Giant Aortic Root Aneurysm After Aortic Valve Replacement

    PubMed Central

    Puga, Andrés Enríquez; Rodríguez, Sara Castaño; Pañero, Blanca Mateos; Moreira, Beatriz Castaño; López Almodóvar, Luis Fernando

    2016-01-01

    We describe the case of a 61-year-old male with a giant aortic root aneurysm associated with chronic aortic Type A dissection. The patient had been operated on 16 years before due to aortic annuloectasia with mechanical valve replacement. The patient underwent revision aortic surgery with a Bentall-De Bono operation with Svensson modification, using a #21 On-X Valsalva mechanical valve conduit. The postoperative course was uneventful. PMID:28097190

  7. Upregulation of MicroRNA-15a Contributes to Pathogenesis of Abdominal Aortic Aneurysm (AAA) by Modulating the Expression of Cyclin-Dependent Kinase Inhibitor 2B (CDKN2B)

    PubMed Central

    Gao, Peng; Si, Jiyuan; Yang, Bin; Yu, Jixiang

    2017-01-01

    Background The objective of the present study was to identify the association between miR-15a-5p and CDKN2B, and their roles in regulating the development of abdominal aortic aneurysm (AAA). Material/Methods We searched the miRNA database online (www.mirdb.org) and used a luciferase reporter assay system to study the regulatory relationship between miR-15a-5p and CDKN2B. We also conducted real-time PCR and Western blot analysis to study the mRNA and protein expression level of CDKN2B among different patient groups (participants with abdominal aortic aneurysm (AAA) and normal controls) or cells treated with scramble control, miR-15a-5p mimics, CDKN2B siRNA, and miR-15a-5p inhibitors. Results We found that CDKN2B was a virtual target of miR-15a-5p with potential binding sites in the 3′UTR of CDKN2B (77–83 bp). We also showed that miR-15a-5p could bind to the CDKN2B 3′UTR, resulting in a significant decrease in luciferase activity compared with the scramble control. Furthermore, we found that the cells isolated from AAA participants showed an over-expression of miR-15a-5p compared to the normal controls, while the CDKN2B mRNA and protein expression level of the AAA group were much lower than the normal control group. Additionally, the expression of CDKN2B mRNA and the protein of the cells transfected with miR-15a-5p mimics and CDKN2B siRNA was downregulated, while the cells showed upregulated expression subsequent to transfection with miR-15a-5p inhibitors compared to the scramble control. Conclusions The data revealed a negative regulatory role of miR-15a-5p in the apoptosis of smooth muscle cells via targeting CDKN2B, and showed that miR-15a-5p could be a novel therapeutic target of AAA. PMID:28214350

  8. Upregulation of MicroRNA-15a Contributes to Pathogenesis of Abdominal Aortic Aneurysm (AAA) by Modulating the Expression of Cyclin-Dependent Kinase Inhibitor 2B (CDKN2B).

    PubMed

    Gao, Peng; Si, Jiyuan; Yang, Bin; Yu, Jixiang

    2017-02-18

    BACKGROUND The objective of the present study was to identify the association between miR-15a-5p and CDKN2B, and their roles in regulating the development of abdominal aortic aneurysm (AAA). MATERIAL AND METHODS We searched the miRNA database online (www.mirdb.org) and used a luciferase reporter assay system to study the regulatory relationship between miR-15a-5p and CDKN2B. We also conducted real-time PCR and Western blot analysis to study the mRNA and protein expression level of CDKN2B among different patient groups (participants with abdominal aortic aneurysm (AAA) and normal controls) or cells treated with scramble control, miR-15a-5p mimics, CDKN2B siRNA, and miR-15a-5p inhibitors. RESULTS We found that CDKN2B was a virtual target of miR-15a-5p with potential binding sites in the 3'UTR of CDKN2B (77-83 bp). We also showed that miR-15a-5p could bind to the CDKN2B 3'UTR, resulting in a significant decrease in luciferase activity compared with the scramble control. Furthermore, we found that the cells isolated from AAA participants showed an over-expression of miR-15a-5p compared to the normal controls, while the CDKN2B mRNA and protein expression level of the AAA group were much lower than the normal control group. Additionally, the expression of CDKN2B mRNA and the protein of the cells transfected with miR-15a-5p mimics and CDKN2B siRNA was downregulated, while the cells showed upregulated expression subsequent to transfection with miR-15a-5p inhibitors compared to the scramble control. CONCLUSIONS The data revealed a negative regulatory role of miR-15a-5p in the apoptosis of smooth muscle cells via targeting CDKN2B, and showed that miR-15a-5p could be a novel therapeutic target of AAA.

  9. Circadian rhythms in heart rate, motility, and body temperature of wild-type C57 and eNOS knock-out mice under light-dark, free-run, and after time zone transition.

    PubMed

    Arraj, M; Lemmer, B

    2006-01-01

    The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system--though expressed in the suprachiasmatic nuclei and in peripheral tissues--did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.

  10. Aortic Valve Adaptation to Aortic Root Dilatation

    PubMed Central

    Kim, Dae-Hee; Handschumacher, Mark D.; Levine, Robert A.; Sun, Byung Joo; Jang, Jeong Yoon; Yang, Dong Hyun; Kang, Joon-Won; Song, Jong-Min; Kang, Duk-Hyun; Lim, Tae-Hwan; Song, Jae-Kwan

    2015-01-01

    Background The 3-dimensional relationship between aortic root and cusp is essential to understand the mechanism of aortic regurgitation (AR) because of aortic root dilatation (ARD). We sought to test the hypothesis that the stretched cusps in ARD enlarge to compensate for ARD. Methods and Results Computed tomography imaged 92 patients (57 with ARD, 29 with moderate to severe AR, 28 without significant AR) and 35 normal controls. Specialized 3-dimensional software measured individual cusp surface areas relative to maximal mid-sinus cross-sectional area and minimal 3-dimensional annular area, coaptation area fraction, and asymmetry of sinus volumes and intercommissural distances. Total open cusp surface area increased (P<0.001) from 7.6±1.4 cm2/m2 in normals to 12.9±2.2 cm2/m2 in AR-negative and 15.2±3.3 cm2/m2 in AR-positive patients. However, the ratio of closed cusp surface area to maximal mid-sinus area, reflecting cusp adaptation, decreased from normals to AR-negative to AR-positive patients (1.38±0.20, 1.15±0.15, 0.88±0.15; P<0.001), creating the lowest coaptation area fraction. Cusp distensibility (closed diastolic versus open area) decreased from 20% in controls and AR-negative patients to 5% in AR-positive patients (P<0.001). Multivariate determinants of AR and coaptation area fraction reflected both sinus size and cusp-to-annular adaptation. ARD was also progressively asymmetrical with root size, and individual cusp surface areas failed to match this asymmetry. Conclusions Aortic cusp enlargement occurs in ARD, but cusp adaptation and distensibility become limited in prominent, asymmetrical ARD, leading to AR. Optimal AR repair tailored to individual patient anatomy can benefit from appreciating valve adaptation and 3-dimensional relationships; understanding cusp adaptation mechanisms may ultimately provide therapeutic opportunities to improve such compensation. PMID:25051951

  11. Grape seed proanthocyanidin extracts enhance endothelial nitric oxide synthase expression through 5'-AMP activated protein kinase/Surtuin 1-Krüpple like factor 2 pathway and modulate blood pressure in ouabain induced hypertensive rats.

    PubMed

    Cui, Xiaopei; Liu, Xiangju; Feng, Hua; Zhao, Shaohua; Gao, Haiqing

    2012-01-01

    Grape seed proanthocyanidin extracts (GSPE) belonging to polyphenols, possess various biological effects including anti-inflammation, anti-oxidant, anti-aging, anti-atherosclerosis, etc. GSPE is potential in regulating endothelial function. However, the underlying mechanism is not clear yet. In this study, by small interfering RNA (siRNA) knocking down, we proved that GSPE increase endothelial nitric oxide synthase (eNOS) expression in human umbilical vessel cells (HUVECs) in vitro, which was attributed to its transcription factor Krüpple like factor 2 (KLF2) induction. Furthermore, GSPE activate 5'-AMP activated protein kinase (AMPK) and increase surtuin 1 (SIRT1) protein level, critical for KLF2 induction. We also illuminated the role of GSPE in hypertension treatment. By chronic administration of GSPE in ouabain induced hypertensive rats model, we access the effect of GSPE on blood pressure regulation and the possible mechanisms involved. After 5 weeks feeding, GSPE significantly block the ouabain induced blood pressure increase. The aortic NO production impaired by ouabain was improved. In conclusion, GSPE increase eNOS expression and NO production in an AMPK/SIRT1 dependent manner through KLF2 induction, and attenuate ouabain induced hypertension.

  12. L-theanine promotes nitric oxide production in endothelial cells through eNOS phosphorylation.

    PubMed

    Siamwala, Jamila H; Dias, Paul M; Majumder, Syamantak; Joshi, Manoj K; Sinkar, Vilas P; Banerjee, Gautam; Chatterjee, Suvro

    2013-03-01

    Consumption of tea (Camellia sinensis) improves vascular function and is linked to lowering the risk of cardiovascular disease. Endothelial nitric oxide is the key regulator of vascular functions in endothelium. In this study, we establish that l-theanine, a non-protein amino-acid found in tea, promotes nitric oxide (NO) production in endothelial cells. l-theanine potentiated NO production in endothelial cells was evaluated using Griess reaction, NO sensitive electrode and a NO specific fluorescent probe (4-amino-5-methylamino-2',7'-difluororescein diacetate). l-Theanine induced NO production was partially attenuated in presence of l-NAME or l-NIO and completely abolished using eNOS siRNA. eNOS activation was Ca(2+) and Akt independent, as assessed by fluo-4AM and immunoblotting experiments, respectively and was associated with phosphorylation of eNOS Ser 1177. eNOS phosphorylation was inhibited in the presence of ERK1/2 inhibitor, PD-98059 and partially inhibited by PI3K inhibitor, LY-294002 and Wortmanin suggesting PI3K-ERK1/2 dependent pathway. Increased NO production was associated with vasodilation in ex ovo (chorioallantoic membrane) model. These results demonstrated that l-theanine administration in vitro activated ERK/eNOS resulting in enhanced NO production and thereby vasodilation in the artery. The results of our experiments are suggestive of l-theanine mediated vascular health benefits of tea.

  13. VANADL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS. Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and ORD, US EPA, Chapel Hill, North Carolina
    V...

  14. VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS.

    Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and NHEERL, US EPA, Chapel Hill, North Ca...

  15. VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS.

    Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and NHEERL, US EPA, Chapel Hill, North Ca...

  16. VANADL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF ENOS

    EPA Science Inventory

    VANADYL SULFATE INHIBITS NO PRODUCTION BY DIFFERENTIALLY REGULATING SERINE/THREONINE PHOSPHORYLATION OF eNOS. Zhuowei Li, Jacqueline D. Carter, Lisa A. Dailey, Joleen Soukup, Yuh-Chin T. Huang. CEMALB, University of North Carolina and ORD, US EPA, Chapel Hill, North Carolina
    V...

  17. C-reactive protein activates the nuclear factor-kappaB pathway and induces vascular cell adhesion molecule-1 expression through CD32 in human umbilical vein endothelial cells and aortic endothelial cells.

    PubMed

    Liang, Yao-Jen; Shyu, Kou-Gi; Wang, Bao-Wei; Lai, Ling-Ping

    2006-03-01

    C-reactive protein (CRP) contributes to the process of atherosclerosis by inducing pro-inflammatory changes in endothelial cells. However, the exact receptor involved in CRP-induced endothelial changes remains unclear. Human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs) were used for the experiments. After incubation with CRP, immunoblotting showed a significant decrease of IkappaB protein and electrophoretic mobility shift assay showed a significant increase of nuclear NF-kappaB binding capacity. These changes were associated with a significant increase of vascular cell adhesion molecule-1 (VCAM-1) expression. The mRNA level of CD32, the major binding protein for CRP in endothelial cells, increased significantly as measured by Northern blot and Western blot. When these cells were transfected with siRNA directed against CD32, the mRNA of CD32 decreased significantly. The IkappaB degradation, NF-kappaB nuclear translocation and VCAM-1 up-regulation induced by CRP were all inhibited by treatment with siRNA against CD32. SB203580, a P38 inhibitor, significantly attenuated the CRP-induced responses while SP600125 (c-jun kinase inhibitor) did not. In conclusion, CRP-induced IkappaB degradation, NF-kappaB nuclear translocation and VCAM-1 protein expression in HUVECs and HAECs. CRP also increased the expression of CD32, which might serve as the receptor for CRP in endothelial cells and mediated the effects of CRP.

  18. Increased MMP-9 expression and activity by aortic smooth muscle cells after nitric oxide synthase inhibition is associated with increased nuclear factor-kappaB and activator protein-1 activity.

    PubMed

    Knipp, Brian S; Ailawadi, Gorav; Ford, John W; Peterson, David A; Eagleton, Matthew J; Roelofs, Karen J; Hannawa, Kevin K; Deogracias, Michael P; Ji, Baoan; Logsdon, Craig; Graziano, Kathleen D; Simeone, Diane M; Thompson, Robert W; Henke, Peter K; Stanley, James C; Upchurch, Gilbert R

    2004-01-01

    To determine the mechanism underlying increased expression and activity of matrix metalloproteinase 9 (MMP-9) by rat aortic smooth muscle cells (RA-SMC) after inhibition of inducible nitric oxide synthase (iNOS). Treatment of interleukin-1beta-stimulated RA-SMC with aminoguanidine led to an increase of 96% in MMP-9 activity (P = 0.003) by gelatin zymography, a 40% increase in pro-MMP-9 protein (P = 0.018) by Western blot, and a 155% increase in MMP-9 mRNA (P = 0.06) by reverse transcription polymerase chain reaction. Aminoguanidine also caused a 26% decrease in cytosolic IkappaB levels (P = 0.014) by Western blot, as well as a 97% increase in nuclear factor-kappaB binding and a 216% increase in activator protein-1 binding as measured by electrophoretic mobility shift assay. No significant changes were noted in MMP-2 or TIMP-1 expression, protein levels, or activity after aminoguanidine administration. MMP-9 expression and activity is increased in cytokine stimulated RA-SMCs after iNOS inhibition, coincident with activation of the nuclear factor-kappaB and activator protein-1 pathways. We speculate that local derangements in iNOS may favor MMP-9-dependent vessel wall damage in vivo via an inflammatory cascade mechanism.

  19. Lipid Interventions in Aortic Valvular Disease.

    PubMed

    Choi, Kwang Jin; Tsomidou, Christiana; Lerakis, Stamatios; Madanieh, Raef; Vittorio, Timothy J; Kosmas, Constantine E

    2015-10-01

    Aortic valve stenosis is the most common valvular disease in the elderly population. Presently, there is increasing evidence that aortic stenosis (AS) is an active process of lipid deposition, inflammation, fibrosis and calcium deposition. The pathogenesis of AS shares many similarities to that of atherosclerosis; therefore, it was hypothesized that certain lipid interventions could prevent or slow the progression of aortic valve stenosis. Despite the early enthusiasm that statins may slow the progression of AS, recent large clinical trials did not consistently demonstrate a decrease in the progression of AS. However, some researchers believe that statins may have a benefit early on in the disease process, where inflammation (and not calcification) is the predominant process, in contrast to severe or advanced AS, where calcification (and not inflammation) predominates. Positron emission tomography using 18F-fluorodeoxyglucose and 18F-sodium fluoride can demonstrate the relative contributions of valvular calcification and inflammation in AS, and thus this method might potentially be useful in providing the answer as to whether lipid interventions at the earlier stages of AS would be more effective in slowing the progression of the disease. Currently, there is a strong interest in recombinant apolipoprotein A-1 Milano and in the development of new pharmacological agents, targeting reduction of lipoprotein (a) levels and possibly reduction of the expression of lipoprotein-associated phospholipase A2, as potential means to slow the progression of aortic valvular stenosis.

  20. (−)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo

    2011-01-01

    The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (−)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca2+ depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca2+-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca2+-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca2+ depletion. Thus, under Ca2+-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca2+-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-l-arginine methyl ester, suggesting a functional relevance for this phenomenon. PMID:21209365

  1. Inflammatory abdominal aortic aneurysm.

    PubMed

    Savarese, R P; Rosenfeld, J C; DeLaurentis, D A

    1986-05-01

    Between January 1976 and December 1982, 181 patients with abdominal aortic aneurysms were treated surgically, and in 13 patients the aneurysms were found to be inflammatory. Inflammatory aneurysms of the abdominal aorta (IAAA) share important characteristics with typical atherosclerotic abdominal aortic aneurysms. Diagnosis and surgical management of IAAA are distinctive which suggests that IAAA should be considered separately, as a varient of typical abdominal aortic aneurysms. IAAA occur predominantly in males. The presenting symptoms are often idiosyncratic and include severe abdominal or back pain, or both, and ureteral obstruction; the diagnosis of IAAA should be considered when these symptoms are present. Although grossly and microscopically, the perianeurysmal fibrosis resembles idiopathic retroperitoneal fibrosis, the two conditions can be differentiated. At the present time, ultrasonography and computed tomography appear to offer reliable means for diagnosing IAAA. The presence of IAAA, whether established preoperatively or discovered unexpectedly at operation, necessitate certain modifications in the surgical approach, in order to avoid injuring the duodenum and the venous structures. Most patients can be successfully treated by resection and graft replacement. Rupture of the aneurysm in IAAA appears to be less frequent than in typical atherosclerotic abdominal aortic aneurysm.

  2. Expression and regulation of endothelial nitric oxide synthase by vascular endothelial growth factor in ECV 304 cells.

    PubMed Central

    Park, Jong Seon; Hong, Gu Ru; Baek, Suk Whan; Shin, Dong Gu; Kim, Young Jo; Shim, Bong Sup

    2002-01-01

    Nitric oxide (NO) seems to play a pivotal role in the vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation. This study was designed to investigate the role and intracellular signal pathway of endothelial nitric oxide synthase (eNOS) activation induced by VEGF. ECV 304 cells were treated with VEGF(165) and then cell proliferation, eNOS protein and mRNA expression levels were analyzed to elucidate the functional role of eNOS in cell proliferation induced by VEGF. After exposure of cells to VEGF(165), eNOS activity and cell growth were increased by approximately two-fold in the VEGF(165) -treated cells compared to the untreated cells. In addition, VEGF stimulated eNOS expression at both the mRNA and protein levels in a dose-dependent manner. Phosphatidylinositol-3 kinase (PI-3K) inhibitors were used to assess PI-3K involvement in eNOS regulation. LY294002 was found to attenuate VEGF-stimulated eNOS expression. Wortmannin was not as effective as LY294002, but the reduction effect was detectable. Cells activated by VEGF showed increased ERK1/2 levels. Moreover, the VEGF-induced eNOS expression was reduced by the PD98059, MAPK pathway inhibitor. This suggests that eNOS expression might be regulated by PI-3K and the ERK1/2 signaling pathway. In conclusion, VEGF(165) induces ECV 304 cell proliferation via the NO produced by eNOS. In addition, eNOS may be regulated by the PI-3K or mitogen-activated protein kinase pathway. PMID:11961297

  3. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability

    PubMed Central

    2012-01-01

    Background Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR), one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA) has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. Methods StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. Results We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as StAR overexpression. On the

  4. Glucocorticoid response elements and 11β-hydroxysteroid dehydrogenases in the regulation of endothelial nitric oxide synthase expression

    PubMed Central

    Liu, Yong; Mladinov, Domagoj; Pietrusz, Jennifer L.; Usa, Kristie; Liang, Mingyu

    2009-01-01

    Aims Hypertensive and other effects of excess glucocorticoids might be in part mediated by the suppression of endothelial nitric oxide synthase (eNOS) expression. We studied the transcriptional and biochemical mechanisms that mediate or modulate the suppression of eNOS expression by glucocorticoids. Methods and results We found that a mere three-fold increase in the concentration of the natural glucocorticoid cortisol (from 30 to 100 nmol/L) significantly decreased the expression level of eNOS in human endothelial cells. Deletion analysis of the eNOS promoter indicated that the segment within −119 bp upstream from the transcription start site was significantly involved in the effect of cortisol. Site-directed mutagenesis and chromatin immunoprecipitation analyses demonstrated the presence of a suppressive glucocorticoid response element (GRE) at −111 to −105 bp. 11β-hydroxysteroid dehydrogenases (11β-HSD) catalyse the interconversion of active and inactive glucocorticoids. The suppression of 11β-HSD2 using small interfering RNA markedly exacerbated the inhibition of eNOS by cortisol. The suppression of 11β-HSD1 abolished the inhibition of eNOS expression by cortisol. Conclusion We identified the first GRE in the eNOS promoter region and demonstrated that endogenous 11β-HSD1 and 11β-HSD2 play significant and distinct roles in modulating the effect of glucocorticoids on eNOS expression. PMID:18716005

  5. Efficacy of Stentless Aortic Bioprosthesis Implantation for Aortic Stenosis with Small Aortic Annulus.

    PubMed

    Murashita, Takashi; Okada, Yukikatsu; Kanemitsu, Hideo; Fukunaga, Naoto; Konishi, Yasunobu; Nakamura, Ken; Koyama, Tadaaki

    2015-09-01

    In patients with small aortic annulus, sufficient size of stented aortic bioprosthesis cannot be implanted without additional procedures. In such cases, we use stentless aortic bioprosthesis to obtain sufficient effective orifice area. In this study, we investigated long-term impact of stentless aortic bioprosthesis on clinical outcomes, compared with stented aortic bioprosthesis. We retrospectively investigated 140 patients who underwent aortic valve replacement (AVR) with porcine bioprosthesis for severe aortic stenosis between 1999 and 2010. Patients who had moderate or more aortic regurgitation and who underwent concomitant mitral procedures were excluded. A total of 69 patients (49%) were implanted stentless bioprosthesis (Freestyle group; Medtronic Inc, Minneapolis, Minnesota, United States) and 71 patients (51%) were implanted stented bioprosthesis (Mosaic group; Medtronic Inc). Follow-up was complete in 97.9% patients. Median follow-up period was 4.2 years. Patients in Freestyle group had smaller body surface area, smaller aortic annulus diameter, smaller aortic valve area, larger mean pressure gradient, higher peak velocity across aortic valve, larger left ventricular mass index (LVMI), and lower left ventricular ejection fraction (LVEF). Mean size of implanted prosthesis was larger in Freestyle group. In-hospital mortality was 1.4% in Freestyle group and 2.8% in Mosaic group (p = 0.980). Five-year survival rate was not different between two groups (5-year survival rate was 87.5 ± 4.7% in Freestyle group and 84.1 ± 7.5% in Mosaic group; log rank, p = 0.619). Late New York Heart Association functional class was lower in Freestyle group. Late LVMI and LVEF became similar between two groups. Stentless aortic bioprosthesis is superior in left ventricular remodeling after AVR for aortic stenosis and is especially effective for small aortic annulus. Georg Thieme Verlag KG Stuttgart · New York.

  6. Liposomal tetrahydrobiopterin preserves eNOS coupling in the post-ischemic heart conferring in vivo cardioprotection.

    PubMed

    Xie, Lin; Talukder, M A Hassan; Sun, Jian; Varadharaj, Saradhadevi; Zweier, Jay L

    2015-09-01

    Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), and reduced BH4 availability leads to endothelial NOS (eNOS) uncoupling and increased reactive oxygen species (ROS) generation. Questions remain regarding the functional state of eNOS and role of BH4 availability in the process of in vivo myocardial ischemia-reperfusion (I/R) injury. Rats were subjected to 60min of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic liposomal BH4 supplementation (1mg/kg, iv). Myocardial infarction was correlated with cardiac BH4 content, eNOS protein level, NOS enzyme activity, and ROS generation. In the vehicle group, 60-min ischemia drastically reduced myocardial BH4 content in the area at risk (AAR) compared to non-ischemic (NI) area and the level remained lower during early reperfusion followed by recovery after 24-h reperfusion. Total eNOS, activated eNOS protein level (eNOS Ser1177 phosphorylation) and NOS activity were also significantly reduced during ischemia and/or early reperfusion, but recovered after 24-h reperfusion. With liposomal BH4 treatment, BH4 levels were identical in the AAR and NI area during ischemia and/or early reperfusion, and were significantly higher than with vehicle. BH4 pre-treatment preserved eNOS Ser1177 phosphorylation and NOS activity in the AAR, and significantly reduced myocardial ROS generation and infarction compared to vehicle. These findings provide direct evidence that in vivo I/R induces eNOS dysfunction secondary to BH4 depletion, and that pre-ischemic liposomal BH4 administration preserves eNOS function conferring cardioprotection with reduced oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Innate and Adaptive Immunity in Calcific Aortic Valve Disease

    PubMed Central

    Mathieu, Patrick; Bouchareb, Rihab

    2015-01-01

    Calcific aortic valve disease (CAVD) is the most common heart valve disorder. CAVD is a chronic process characterized by a pathologic mineralization of valve leaflets. Ectopic mineralization of the aortic valve involves complex relationships with immunity. Studies have highlighted that both innate and adaptive immunity play a role in the development of CAVD. In this regard, accumulating evidence indicates that fibrocalcific remodelling of the aortic valve is associated with activation of the NF-κB pathway. The expression of TNF-α and IL-6 is increased in human mineralized aortic valves and promotes an osteogenic program as well as the mineralization of valve interstitial cells (VICs), the main cellular component of the aortic valve. Different factors, including oxidized lipid species, activate the innate immune response through the Toll-like receptors. Moreover, VICs express 5-lipoxygenase and therefore produce leukotrienes, which may amplify the inflammatory response in the aortic valve. More recently, studies have emphasized that an adaptive immune response is triggered during CAVD. Herein, we are reviewing the link between the immune response and the development of CAVD and we have tried, whenever possible, to keep a translational approach. PMID:26065007

  8. Innate and Adaptive Immunity in Calcific Aortic Valve Disease.

    PubMed

    Mathieu, Patrick; Bouchareb, Rihab; Boulanger, Marie-Chloé

    2015-01-01

    Calcific aortic valve disease (CAVD) is the most common heart valve disorder. CAVD is a chronic process characterized by a pathologic mineralization of valve leaflets. Ectopic mineralization of the aortic valve involves complex relationships with immunity. Studies have highlighted that both innate and adaptive immunity play a role in the development of CAVD. In this regard, accumulating evidence indicates that fibrocalcific remodelling of the aortic valve is associated with activation of the NF-κB pathway. The expression of TNF-α and IL-6 is increased in human mineralized aortic valves and promotes an osteogenic program as well as the mineralization of valve interstitial cells (VICs), the main cellular component of the aortic valve. Different factors, including oxidized lipid species, activate the innate immune response through the Toll-like receptors. Moreover, VICs express 5-lipoxygenase and therefore produce leukotrienes, which may amplify the inflammatory response in the aortic valve. More recently, studies have emphasized that an adaptive immune response is triggered during CAVD. Herein, we are reviewing the link between the immune response and the development of CAVD and we have tried, whenever possible, to keep a translational approach.

  9. Honokiol suppresses TNF-α-induced migration and matrix metalloproteinase expression by blocking NF-κB activation via the ERK signaling pathway in rat aortic smooth muscle cells.

    PubMed

    Zhu, Xiaoying; Wang, Zhansheng; Hu, Cuizhu; Li, Zhao; Hu, Jian

    2014-05-01

    Honokiol, a small-molecule polyphenol derived and isolated from the Chinese medicinal herb Magnolia officinalis, has been shown to possess a wide range of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on tumor necrosis factor-α (TNF-α)-induced migration in rat aortic smooth muscle cells (RASMCs). We found that honokiol inhibited TNF-α-induced RASMC proliferation and migration in a dose-dependent manner. At the molecular level, pretreatment with honokiol blocked TNF-α-induced protein expression of matrix metalloproteinase (MMP)-2 and MMP-9, nuclear factor (NF)-κB activation, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Moreover, NF-κB inhibitor (BAY 11-7028) and ERK inhibitor (U0126) also mimicked the inhibitory effects of honokiol in TNF-α-treated RASMCs. In conclusion, these results indicate that honokiol suppresses TNF-α-induced migration and MMP expression by blocking NF-κB activation via the ERK signaling pathway in RASMCs. Our findings support honokiol as a promising novel agent for the prevention and treatment of atherosclerosis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Aortic coarctation with persistent fifth left aortic arch.

    PubMed

    Santoro, Giuseppe; Caianiello, Giuseppe; Palladino, Maria Teresa; Iacono, Carola; Russo, Maria Giovanna; Calabrò, Raffaele

    2009-08-14

    A neonate with severe aortic coarctation showed a double lumen transverse aorta (persistent fifth aortic arch) with both channels joining at the isthmus where the obstruction was confirmed by echocardiography and cardiac catheterization. Surgical repair was performed with a pantaloon-shaped patch. Persistent fifth aortic arch does not result in a vascular ring and, per se, is not hemodynamically significant unless associated with other cardiac malformations.

  11. Differential regulation of the superoxide dismutase family in experimental aortic aneurysms and rat aortic explants.

    PubMed

    Sinha, Indranil; Pearce, Charles G; Cho, Brenda S; Hannawa, Kevin K; Roelofs, Karen J; Stanley, James C; Henke, Peter K; Upchurch, Gilbert R

    2007-04-01

    Oxidative stress has been implicated in abdominal aortic aneurysm pathogenesis. This study sought to characterize the relevance of superoxide dismutases (SOD), a family of reactive oxygen catalyzing metalloenzymes, including manganese SOD (MnSOD), copper-zinc SOD (CuZnSOD), and extracellular SOD (EcSOD), in a rodent aortic aneurysm model. Male rat infrarenal abdominal aortas were perfused with either saline (control) or porcine pancreatic elastase (6 U/mL). Aortic diameter was measured and aortas harvested on post-operation days 1, 2, and 7 (N=5-6 per treatment group per day). MnSOD, CuZnSOD, EcSOD, catalase, MMP-2, MMP-9, and beta-actin expression in aortic tissue was determined by quantitative real-time PCR. MnSOD protein levels were measured using western immunoblotting and immunohistochemistry. In subsequent experiments, aimed at understanding the mechanism by which SOD is involved in AAA pathogenesis, rat aortic explants (RAEs) were incubated in media for 24 h in the presence of interleukin-1beta (IL-1beta, 2 ng/mL) and TEMPOL (SOD mimetic), catalase, or a combined SOD and catalase mimetic. Media MMP-2 and MMP-9 activity was determined by zymography. Data were analyzed by Student's t-tests and ANOVA. Elastase-perfused aortic diameters were significantly increased compared to control aortas by post-perfusion day 7 (P=0.016). MnSOD mRNA levels in elastase perfused aortas were 6.0 (P=0.05) and 7.5 times (P<0.01) greater than control aortas at post-perfusion days 1 and 2, respectively. EcSOD, CuZnSOD, catalase, and MMP-2 mRNA expression did not statistically vary between the two groups. MMP-9 expression was 3.5-fold higher in the elastase group on post-perfusion day 2 (P=0.04). Western immunoblotting confirmed MnSOD protein was up-regulated on day 4 in the elastase-perfused group compared to controls (P=0.02). Immunohistrochemistry demonstrated increased MnSOD staining in the elastase group on day 4. In RAE experiments, TEMPOL increased both MMP-9 and MMP-2

  12. Identification of Reference Genes for Quantitative RT-PCR in Ascending Aortic Aneurysms

    PubMed Central

    Henn, Dominic; Bandner-Risch, Doris; Perttunen, Hilja; Schmied, Wolfram; Porras, Carlos; Ceballos, Francisco; Rodriguez-Losada, Noela; Schäfers, Hans-Joachim

    2013-01-01

    Hypertension and congenital aortic valve malformations are frequent causes of ascending aortic aneurysms. The molecular mechanisms of aneurysm formation under these circumstances are not well understood. Reference genes for gene activity studies in aortic tissue that are not influenced by aortic valve morphology and its hemodynamic consequences, aortic dilatation, hypertension, or antihypertensive medication are not available so far. This study determines genes in ascending aortic tissue that are independent of these parameters. Tissue specimens from dilated and undilated ascending aortas were obtained from 60 patients (age ≤70 years) with different morphologies of the aortic valve (tricuspid undilated n = 24, dilated n = 11; bicuspid undilated n = 6, dilated n = 15; unicuspid dilated n = 4). Of the studied individuals, 36 had hypertension, and 31 received ACE inhibitors or AT1 receptor antagonists. The specimens were obtained intraoperatively from the wall of the ascending aorta. We analyzed the expression levels of 32 candidate reference genes by quantitative RT-PCR (RT-qPCR). Differential expression levels were assessed by parametric statistics. The expression analysis of these 32 genes by RT-qPCR showed that EIF2B1, ELF1, and PPIA remained constant in their expression levels in the different specimen groups, thus being insensitive to aortic valve morphology, aortic dilatation, hypertension, and medication with ACE inhibitors or AT1 receptor antagonists. Unlike many other commonly used reference genes, the genes EIF2B1, ELF1, and PPIA are neither confounded by aortic comorbidities nor by antihypertensive medication and therefore are most suitable for gene expression analysis of ascending aortic tissue. PMID:23326585

  13. Aortic compressor for aortic occlusion in hemorrhagic shock.

    PubMed

    Mahoney, B D; Gerdes, D; Roller, B; Ruiz, E

    1984-01-01

    The aortic compressor is a device that allows rapid, simple, immediately reversible occlusion of the thoracic aorta, without the aortic dissection required to use an aortic cross-clamp. We evaluated the aortic compressor in a controlled study using a canine hemorrhagic shock model. Twelve mongrel dogs were exsanguinated to a mean arterial pressure (MAP) of 47 mm Hg and maintained at that level for 20 minutes. At that point, all animals had a left lateral thoracotomy. Six study animals had the thoracic aorta occluded at the diaphragm using the compressor. Five minutes after thoracotomy, with or without occlusion, the shed blood was reinfused. Application of the aortic compressor was the only variable. Use of the aortic compressor led to an immediate and statistically significant doubling of the study animals' MAP. The increased afterload of aortic occlusion did not impair cardiac output. The cardiac index of the study animals rose slightly, while that of the control animals fell. At the same time the compressor prevented blood flow to the abdominal aorta. If the canine model can be extrapolated to human application, then the aortic compressor would be expected to enhance perfusion of the heart and brain during hemorrhagic shock, prevent further arterial blood loss from intra-abdominal injury or ruptured abdominal aortic aneurysm, and preserve already diminished cardiac output. Because the aorta does not need to be dissected out to use the compressor, there is no risk of injury to nearby vascular structures.

  14. Matrix Gla protein regulates calcification of the aortic valve.

    PubMed

    Venardos, Neil; Bennett, Daine; Weyant, Michael J; Reece, Thomas Brett; Meng, Xianzhong; Fullerton, David A

    2015-11-01

    The aortic valve interstitial cell (AVIC) has been implicated in the pathogenesis of aortic stenosis. In response to proinflammatory stimulation, the AVIC undergoes a phenotypic change from that of a myofibroblast phenotype to that of osteoblast-like cell. Matrix Gla-protein (MGP) has been identified as an important inhibitor of vascular calcification. We therefore hypothesized that MGP expression is reduced in diseased AVICs, and loss of this protective protein contributes to calcification of the aortic valve. Our purpose was to compare MGP expression in normal versus diseased AVICs. Human AVICs were isolated from normal aortic valves from explanted hearts (n = 6) at the time of heart transplantation. AVICs were also isolated from calcified, diseased valves of patients (n = 6) undergoing aortic valve replacement. AVICs were grown in culture until they reached passages 2-6 before experimentation. Immunofluorescent staining, reverse transcriptase-polymerase chain reaction, immunoblotting, and enzyme-linked immunosorbent assay were used to compare levels of MGP in normal and diseased AVICs. Statistics were performed using the Mann-Whitney U test (P < 0.05). MGP expression was significantly decreased in diseased AVICs relative to normal AVICs by immunofluorescent staining, reverse transcriptase-polymerase chain reaction, immunoblotting, and enzyme-linked immunosorbent assay. An important anti-calcification defense mechanism is deficient in calcified aortic valves. MGP expression is significantly lower in diseased relative to normal AVICs. Lack of this important "anti-calcification" protein may contribute to calcification of the aortic valve. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Genetics Home Reference: supravalvular aortic stenosis

    MedlinePlus

    ... Genetics Home Health Conditions supravalvular aortic stenosis supravalvular aortic stenosis Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Supravalvular aortic stenosis (SVAS) is a heart defect that develops before ...

  16. [Stent Grafting for Aortic Dissection].

    PubMed

    Uchida, Naomichi

    2016-07-01

    The purpose of stent graft for aortic dissection is to terminate antegrade blood flow into the false lumen through primary entry. Early intervention for primary entry makes excellent aortic remodeling and emergent stent grafting for complicated acute type B aortic dissection is supported as a class I. On the other hand stent grafting for chronic aortic dissection is controversial. Early stent grafting is considered with in 6 months after on-set if the diameter of the descending aorta is more than 40 mm. Additional interventions for residual false lumen on the downstream aorta are still required. Stent graft for re-entry, candy-plug technique, and double stenting, other effective re-interventions were reported. Best treatment on the basis of each anatomical and physical characteristics should be selected in each institution. Frozen elephant trunk is alternative procedure for aortic dissection without the need to take account of proximal anatomical limitation and effective for acute type A aortic dissection.

  17. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    SciTech Connect

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.; Searles, Charles D.

    2010-03-19

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.

  18. Ruptured abdominal aortic aneurysm.

    PubMed

    Sachs, T; Schermerhorn, M

    2010-06-01

    Ruptured abdominal aortic aneurysm (AAA) continues to be one of the most lethal vascular pathologies we encounter. Its management demands prompt and efficient evaluation and repair. Open repair has traditionally been the mainstay of treatment. However, the introduction of endovascular techniques has altered the treatment algorithm for ruptured AAA in most major medical centers. We present recent literature and techniques for ruptured AAA and its surgical management.

  19. Myeloid mineralocorticoid receptor deficiency inhibits aortic constriction-induced cardiac hypertrophy in mice.

    PubMed

    Li, Chao; Zhang, Yu Yao; Frieler, Ryan A; Zheng, Xiao Jun; Zhang, Wu Chang; Sun, Xue Nan; Yang, Qing Zhen; Ma, Shu Min; Huang, Baozhuan; Berger, Stefan; Wang, Wang; Wu, Yong; Yu, Ying; Duan, Sheng Zhong; Mortensen, Richard M

    2014-01-01

    Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.

  20. Aortic dimensions in Turner syndrome.

    PubMed

    Quezada, Emilio; Lapidus, Jodi; Shaughnessy, Robin; Chen, Zunqiu; Silberbach, Michael

    2015-11-01

    In Turner syndrome, linear growth is less than the general population. Consequently, to assess stature in Turner syndrome, condition-specific comparators have been employed. Similar reference curves for cardiac structures in Turner syndrome are currently unavailable. Accurate assessment of the aorta is particularly critical in Turner syndrome because aortic dissection and rupture occur more frequently than in the general population. Furthermore, comparisons to references calculated from the taller general population with the shorter Turner syndrome population can lead to over-estimation of aortic size causing stigmatization, medicalization, and potentially over-treatment. We used echocardiography to measure aortic diameters at eight levels of the thoracic aorta in 481 healthy girls and women with Turner syndrome who ranged in age from two to seventy years. Univariate and multivariate linear regression analyses were performed to assess the influence of karyotype, age, body mass index, bicuspid aortic valve, blood pressure, history of renal disease, thyroid disease, or growth hormone therapy. Because only bicuspid aortic valve was found to independently affect aortic size, subjects with bicuspid aortic valve were excluded from the analysis. Regression equations for aortic diameters were calculated and Z-scores corresponding to 1, 2, and 3 standard deviations from the mean were plotted against body surface area. The information presented here will allow clinicians and other caregivers to calculate aortic Z-scores using a Turner-based reference population. © 2015 Wiley Periodicals, Inc.

  1. Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS

    SciTech Connect

    Knuckles, Travis L.; Lund, Amie K.; Lucas, Selita N.; Campen, Matthew J.

    2008-08-01

    Environmental air pollution is associated with adverse cardiovascular events, including increased hospital admissions due to heart failure and myocardial infarction. The exact mechanism(s) by which air pollution affects the heart and vasculature is currently unknown. Recent studies have found that exposure to air pollution enhances arterial vasoconstriction in humans and animal models. Work in our laboratory has shown that diesel emissions (DE) enhance vasoconstriction of mouse coronary arteries. Thus, we hypothesized that DE could enhance vasoconstriction in arteries and veins through uncoupling of endothelial nitric oxide synthase (eNOS). To test this hypothesis, we first bubbled DE through a physiological saline solution and exposed isolated mesenteric veins. Second, we exposed animals, whole body, to DE at 350 {mu}g/m{sup 3} for 4 h, after which mesenteric arteries and veins were isolated. Results from these experiments show that saline bubbled with DE as well as inhaled DE enhances vasoconstriction in veins but not arteries. Exposure to several representative volatile organic compounds found in the DE-exposed saline did not enhance arterial constriction. L-nitro-arginine-methyl-ester (L-NAME), an eNOS inhibitor, normalized the control vessels to the DE-exposed vessels implicating an uncoupling of eNOS as a mechanism for enhanced vasoconstriction. The principal conclusions of this research are 1) veins exhibit endothelial dysfunction following in vivo and ex vivo exposures to DE, 2) veins appear to be more sensitive to DE effects than arteries, and 3) DE components most likely induce endothelial dysfunction through the uncoupling of eNOS.

  2. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism.

    PubMed

    Chu, Shaoyou; Bohlen, H Glenn

    2004-09-01

    Kidney glomeruli are important targets of diabetic nephropathy. We hypothesized a high concentration of glucose could suppress glomerular endothelial nitric oxide synthase (eNOS) by a protein kinase C (PKC) mechanism, as has been found in other tissues. Mouse kidney slices (150-200 microm) were bathed in Hanks' solution with 100 microM L-arginine and exposed to either 5 or 20-30 mM D-glucose. Immunofluorescence identified only eNOS in normal mouse glomeruli. Measurements of glomerular NO concentration with NO-sensitive fluorescent dye (4,5-diaminofluorescein diacetate) using confocal microscopy and NO-sensitive microelectrodes verified that resting glomeruli had active production of NO that was inhibited by N(G)-nitro-L-arginine methyl ester. High-concentration (20-30 mM) D-glucose inhibited 60-70% of the NO production within 15-30 min; L-glucose at the same concentration did not have any effect. Inhibition of PKC-beta with 100 nM ruboxistaurin prevented eNOS suppression in high-glucose media. Activation of PKC with 100 nM phorbol ester also suppressed the glomerular NO concentration. We concluded that eNOS in the renal glomerular capillary endothelial cells is suppressed by activity of PKC at high-glucose concentrations comparable to those in diabetic animals and humans. The consequence is a rapid decline in the generation of NO in the glomerular endothelial cells in the presence of a high concentration of glucose.

  3. Role of eNOS in water exchange index maintenance-MRI studies

    NASA Astrophysics Data System (ADS)

    Atochin, D.; Litvak, M.; Huang, S.; Kim, Y. R.; Huang, P.

    2017-08-01

    Stroke studies employ experimental models of cerebral ischemic and reperfusion injury in rodents. MRI provides valuable supravital data of cerebral blood flow and brain tissue damage. This paper presents MRI applications for cerebral blood flow research in mice lines with impaired nitric oxide production by endothelial nitric oxide synthase. Our data demonstrates that specific modifications of MRI methodology in transgenic mouse models help to evaluate the role of eNOS in the brain-blood barrier function.

  4. eNOS gene polymorphisms modify the association of PM(10) with oxidative stress.

    PubMed

    Kim, Jin Hee; Choi, Yoon-Hyeong; Bae, Sanghyuk; Park, Hye-Yin; Hong, Yun-Chul

    2012-11-15

    Previous studies have suggested that air pollution increases various health outcomes through oxidative stress and oxidative stress-related genes modify the relationship between air pollution and health outcomes. Therefore, we evaluated the effect of PM(10) on the levels of malondialdehyde (MDA), oxidative stress biomarker, and the effect modification by genetic polymorphisms of eNOS, oxidative stress-related gene, in the 560 Korean elderly. We obtained urine samples repeatedly from participants during five medical examinations between 2008 and 2010 and all ambient air pollutant concentration data from the Korea National Institute of Environmental Research air quality monitoring system. We measured urinary levels of MDA to assess oxidative stress and genotyped eNOS (rs1799983, rs2853796, and rs7830). Mixed-effect model was used to estimate the effect of PM(10) on the level of oxidative stress biomarker and their modification by genotypes. PM(10) showed apparent positive effect on MDA level after adjusting for age, sex, BMI, cotinine level, temperature, dew point, levels of SO(2), O(3), NO(2), and CO, and season (p=0.0133). Moreover, the association of PM(10) with MDA was found only in participants with eNOS GG genotype for rs1799983 (p=0.0107), TT genotype for rs2853796 (p=0.0289), or GT genotype for rs7830 (p=0.0158) and in participants with a set of risky haplotypes (GTT, GTG, GGT, and TGT) (p=0.0093). Our results suggest that PM(10) affect oxidative stress in the elderly and eNOS genotype affect the oxidative stress level in regard of exposure to PM(10).

  5. Liposomal Tetrahydrobiopterin Preserves eNOS Coupling in the Post-ischemic Heart Conferring in vivo Cardioprotection

    PubMed Central

    Xie, Lin; Talukder, M A Hassan; Sun, Jian; Varadharaj, Saradhadevi; Zweier, Jay L.

    2015-01-01

    Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), and reduced BH4 availability leads to endothelial NOS (eNOS) uncoupling and increased reactive oxygen species (ROS) generation. Questions remain regarding the functional state of eNOS and role of BH4 availability in the process of in vivo myocardial ischemia-reperfusion (I/R) injury. Rats were subjected to 60-minutes of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic liposomal BH4 supplementation (1 mg/kg, iv). Myocardial infarction was correlated with cardiac BH4 content, eNOS protein level, NOS enzyme activity, and ROS generation. In the vehicle group, 60-min ischemia drastically reduced myocardial BH4 content in the area at risk (AAR) compared to non-ischemic (NI) area and the level remained lower during early reperfusion followed by recovery after 24-hr reperfusion. Activated eNOS protein level (eNOS Ser1177 phosphorylation) and NOS activity were also significantly reduced during ischemia and/or early reperfusion, but recovered after 24-hr reperfusion. With liposomal BH4 treatment, BH4 levels were identical in the AAR and NI area during ischemia and/or early reperfusion, and were significantly higher than with vehicle. BH4 pre-treatment preserved eNOS Ser1177 phosphorylation and NOS activity in the AAR, and significantly reduced myocardial ROS generation and infarction compared to vehicle. These findings provide direct evidence that in vivo I/R induces eNOS dysfunction secondary to BH4 depletion, and that pre-ischemic liposomal BH4 administration preserves eNOS function conferring cardioprotection with reduced oxidative stress. PMID:26116866

  6. 9p21.3 Coronary Artery Disease Risk Variants Disrupt TEAD Transcription Factor-Dependent Transforming Growth Factor β Regulation of p16 Expression in Human Aortic Smooth Muscle Cells.

    PubMed

    Almontashiri, Naif A M; Antoine, Darlène; Zhou, Xun; Vilmundarson, Ragnar O; Zhang, Sean X; Hao, Kennedy N; Chen, Hsiao-Huei; Stewart, Alexandre F R

    2015-11-24

    The mechanism whereby the 9p21.3 locus confers risk for coronary artery disease remains incompletely understood. Risk alleles are associated with reduced expression of the cell cycle suppressor genes CDKN2A (p16 and p14) and CDKN2B (p15) and increased vascular smooth muscle cell proliferation. We asked whether risk alleles disrupt transcription factor binding to account for this effect. A bioinformatic screen was used to predict which of 59 single nucleotide polymorphisms at the 9p21.3 locus disrupt (or create) transcription factor binding sites. Electrophoretic mobility shift and luciferase reporter assays examined the binding and functionality of the predicted regulatory sequences. Primary human aortic smooth muscle cells (HAoSMCs) were genotyped for 9p21.3, and HAoSMCs homozygous for the risk allele showed reduced p15 and p16 levels and increased proliferation. rs10811656 and rs4977757 disrupted functional TEF-1 TEC1 AbaA domain (TEAD) transcription factor binding sites. TEAD3 and TEAD4 overexpression induced p16 in HAoSMCs homozygous for the nonrisk allele, but not for the risk allele. Transforming growth factor β, known to activate p16 and also to interact with TEAD factors, failed to induce p16 or to inhibit proliferation of HAoSMCs homozygous for the risk allele. Knockdown of TEAD3 blocked transforming growth factor β-induced p16 mRNA and protein expression, and dual knockdown of TEAD3 and TEAD4 markedly reduced p16 expression in heterozygous HAoSMCs. Here, we identify a novel mechanism whereby sequences at the 9p21.3 risk locus disrupt TEAD factor binding and TEAD3-dependent transforming growth factor β induction of p16 in HAoSMCs. This mechanism accounts, in part, for the 9p21.3 coronary artery disease risk. © 2015 American Heart Association, Inc.

  7. Some Aspects of Essentially Nonoscillatory (ENO) Formulations for the Euler Equations, Part 3

    NASA Technical Reports Server (NTRS)

    Chakravarthy, Sukumar R.

    1990-01-01

    An essentially nonoscillatory (ENO) formulation is described for hyperbolic systems of conservation laws. ENO approaches are based on smart interpolation to avoid spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing (TVD) schemes. In the recent past, TVD formulations were used to construct shock capturing finite difference methods. At extremum points of the solution, TVD schemes automatically reduce to being first-order accurate discretizations locally, while away from extrema they can be constructed to be of higher order accuracy. The new framework helps construct essentially non-oscillatory finite difference methods without recourse to local reductions of accuracy to first order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of the new approach can be specialized in several ways and one specific implementation is described based on: (1) the integral form of the conservation laws; (2) reconstruction based on the primitive functions; (3) extension to multiple dimensions in a tensor product fashion; and (4) Runge-Kutta time integration. The resulting method is fourth-order accurate in time and space and is applicable to uniform Cartesian grids. The construction of such schemes for scalar equations and systems in one and two space dimensions is described along with several examples which illustrate interesting aspects of the new approach.

  8. Apoptosis in testicular tissue of rats after vasectomy: evaluation of eNOS, iNOS immunoreactivities and the effects of ozone therapy

    PubMed Central

    Alpcan, Serhan; Başar, Halil; Aydos, Tolga Reşat; Kul, Oğuz; Kısa, Üçler; Başar, Murad Mehmet

    2014-01-01

    Objective: We aimed to investigate the changes in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression and apoptotic index in rat testicular tissue, as well as serum and seminal plasma sex hormone levels after vasectomy, and the effect of ozone therapy (OT). Material and methods: Adult male Wistar rats were used (n=6 per group). Control (G1), sham for 4 weeks (G2) or 6 weeks (G3), orchiectomy at the 4th (G4) or 6th (G5) week after left vasectomy, orchiectomy at the 4th (G6) or 6th (G7) week after bilateral vasectomy, orchiectomy after 6 weeks OT following left (G8) or bilateral (G9) vasectomy, orchiectomy after 6 weeks OT (G10). Results: In the left testes, while there were increases in eNOS and iNOS immunoreactivity and apoptotic indexes in G4 and G5, no changes were observed in contralateral testis. These values increased in G6 and G7, while OT inhibited these parameters in the left testis of G8 and both testes of G9. Sex hormone levels did not show any changes after vasectomy and ozone therapy. Conclusion: While OT was found to be protective against some parameters mentioned above under stress conditions, it seemed to cause some harmful effects when used in healthy conditions. PMID:26328178

  9. MAT2A mutations predispose individuals to thoracic aortic aneurysms.

    PubMed

    Guo, Dong-chuan; Gong, Limin; Regalado, Ellen S; Santos-Cortez, Regie L; Zhao, Ren; Cai, Bo; Veeraraghavan, Sudha; Prakash, Siddharth K; Johnson, Ralph J; Muilenburg, Ann; Willing, Marcia; Jondeau, Guillaume; Boileau, Catherine; Pannu, Hariyadarshi; Moran, Rocio; Debacker, Julie; Bamshad, Michael J; Shendure, Jay; Nickerson, Deborah A; Leal, Suzanne M; Raman, C S; Swindell, Eric C; Milewicz, Dianna M

    2015-01-08

    Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease.

  10. MAT2A Mutations Predispose Individuals to Thoracic Aortic Aneurysms

    PubMed Central

    Guo, Dong-chuan; Gong, Limin; Regalado, Ellen S.; Santos-Cortez, Regie L.; Zhao, Ren; Cai, Bo; Veeraraghavan, Sudha; Prakash, Siddharth K.; Johnson, Ralph J.; Muilenburg, Ann; Willing, Marcia; Jondeau, Guillaume; Boileau, Catherine; Pannu, Hariyadarshi; Moran, Rocio; Debacker, Julie; Bamshad, Michael J.; Shendure, Jay; Nickerson, Deborah A.; Leal, Suzanne M.; Raman, C.S.; Swindell, Eric C.; Milewicz, Dianna M.

    2015-01-01

    Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease. PMID:25557781

  11. Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension.

    PubMed

    Shaul, P W; Yuhanna, I S; German, Z; Chen, Z; Steinhorn, R H; Morin, F C

    1997-05-01

    Nitric oxide (NO), produced by endothelial (e) NO synthase (NOS), is critically involved in the cardiopulmonary transition from fetal to neonatal life. We have previously shown that NO-dependent relaxation is attenuated in intrapulmonary arteries from fetal lambs with pulmonary hypertension (PHT) created by prenatal ligation of the ductus arteriosus. In the present study, we determined whether this is due to altered pulmonary eNOS expression. eNOS and neuronal NOS (nNOS) protein expression were assessed in lungs from near-term control lambs and PHT lambs that underwent ductal ligation 10 days earlier. eNOS protein expression was decreased 49% in PHT lung. In contrast, nNOS protein abundance was unchanged. NOS enzymatic activity was also diminished in PHT vs. control lung (60 +/- 3 vs. 110 +/- 7 fmol.mg protein-1.min-1, respectively). Paralleling the declines in eNOS protein and NOS enzymatic activity, eNOS mRNA abundance was decreased 64% in PHT lung. Thus pulmonary eNOS gene expression is attenuated in the lamb model of fetal PHT. Because NO modulates both vasodilation and vascular smooth muscle growth, diminished eNOS expression may contribute to both the abnormal vasoreactivity and the excessive muscularization of the pulmonary circulation in fetal PHT.

  12. The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo.

    PubMed

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Di Lorenzo, Annarita; Harrison, Kenneth D; Huang, Paul L; Sessa, William C

    2009-08-04

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1(-/-) mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme "constitutively active" or "less active." The eNOS mutations did not influence several phenotypes in Akt1(-/-) mice; however, the defective postnatal angiogenesis characteristic of Akt1(-/-) mice was rescued by crossing the Akt1(-/-) mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) and increased production of HIF-1alpha-responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling.

  13. Management of Acute Aortic Syndrome and Chronic Aortic Dissection

    SciTech Connect

    Nordon, Ian M. Hinchliffe, Robert J.; Loftus, Ian M.; Morgan, Robert A.; Thompson, Matt M.

    2011-10-15

    Acute aortic syndrome (AAS) describes several life-threatening aortic pathologies. These include intramural hematoma, penetrating aortic ulcer, and acute aortic dissection (AAD). Advances in both imaging and endovascular treatment have led to an increase in diagnosis and improved management of these often catastrophic pathologies. Patients, who were previously consigned to medical management or high-risk open surgical repair, can now be offered minimally invasive solutions with reduced morbidity and mortality. Information from the International Registry of Acute Aortic Dissection (IRAD) database demonstrates how in selected patients with complicated AAD the 30-day mortality from open surgery is 17% and endovascular stenting is 6%. Despite these improvements in perioperative deaths, the risks of stroke and paraplegia remain with endovascular treatment (combined outcome risk 4%). The pathophysiology of each aspect of AAS is described. The best imaging techniques and the evolving role of endovascular techniques in the definitive management of AAS are discussed incorporating strategies to reduce perioperative morbidity.

  14. Spectrum of aortic valve abnormalities associated with aortic dilation across age groups in Turner syndrome.

    PubMed

    Olivieri, Laura J; Baba, Ridhwan Y; Arai, Andrew E; Bandettini, W Patricia; Rosing, Douglas R; Bakalov, Vladimir; Sachdev, Vandana; Bondy, Carolyn A

    2013-11-01

    Congenital aortic valve fusion is associated with aortic dilation, aneurysm, and rupture in girls and women with Turner syndrome. Our objective was to characterize aortic valve structure in subjects with Turner syndrome and to determine the prevalence of aortic dilation and valve dysfunction associated with different types of aortic valves. The aortic valve and thoracic aorta were characterized by cardiovascular MRI in 208 subjects with Turner syndrome in an institutional review board-approved natural history study. Echocardiography was used to measure peak velocities across the aortic valve and the degree of aortic regurgitation. Four distinct valve morphologies were identified: tricuspid aortic valve, 64% (n=133); partially fused aortic valve, 12% (n=25); bicuspid aortic valve, 23% (n=47); and unicuspid aortic valve, 1% (n=3). Age and body surface area were similar in the 4 valve morphology groups. There was a significant trend, independent of age, toward larger body surface area-indexed ascending aortic diameters with increasing valve fusion. Ascending aortic diameters were (mean±SD) 16.9±3.3, 18.3±3.3, and 19.8±3.9 mm/m(2) (P<0.0001) for tricuspid aortic valve, partially fused aortic valve, and bicuspid aortic valve+unicuspid aortic valve, respectively. Partially fused aortic valve, bicuspid aortic valve, and unicuspid aortic valve were significantly associated with mild aortic regurgitation and elevated peak velocities across the aortic valve. Aortic valve abnormalities in Turner syndrome occur with a spectrum of severity and are associated with aortic root dilation across age groups. Partial fusion of the aortic valve, traditionally regarded as an acquired valve problem, had an equal age distribution and was associated with an increased ascending aortic diameters.

  15. Fenofibrate Improves Vascular Endothelial Function by Reducing Oxidative Stress While Increasing eNOS in Healthy Normolipidemic Older Adults

    PubMed Central

    Walker, Ashley E; Kaplon, Rachelle E; Lucking, Sara Marian S; Russell-Nowlan, Molly J; Eckel, Robert H; Seals, Douglas R

    2013-01-01

    Vascular endothelial dysfunction develops with aging, as indicated by impaired endothelium-dependent dilation(EDD), and is related to increased cardiovascular disease risk. We hypothesized that short-term treatment with fenofibrate, a lipid-lowering agent with potential pleiotropic effects, would improve EDD in middle-aged and older normolipidemic adults by reducing oxidative stress. Brachial artery flow-mediated dilation (FMD), a measure of EDD, was assessed in 22healthy adults aged 50-77 years before and after 7days of fenofibrate (145 mg/d; n=12/7M) or placebo (n=10/5M). Brachial FMD was unchanged with placebo, but improved after 2 and 7 days of fenofibrate (5.1±0.7 vs. 2d: 6.0±0.7 and 7d: 6.4±0.6 %Δ; both P<0.005). The improvements in FMD after 7 days remained significant (P<0.05) after accounting for modest changes in plasma total and LDL-cholesterol. Endothelium-independent dilation was not affected by fenofibrate or placebo (P>0.05). Infusion (i.v.) of the antioxidant vitamin C improved brachial FMD at baseline in both groups and during placebo treatment (P<0.05), but not after 2 and 7 days of fenofibrate (P>0.05). Fenofibrate treatment also reduced plasma oxidized LDL, a systemic marker of oxidative stress, compared with placebo (P<0.05). In vascular endothelial cells sampled from peripheral veins of the subjects, endothelial nitric oxide synthase (eNOS) protein expression was unchanged with placebo and after 2 days of fenofibrate, but was increased after 7 days of fenofibrate (0.54±0.03 vs. 2d: 0.52±0.04 and 7d: 0.76±0.11 intensity/HUVEC control; P<0.05 7d). Short-term treatment with fenofibrate improves vascular endothelial function in healthy normolipidemic middle-aged/older adults by reducing oxidative stress and induces increases in eNOS. PMID:23108655

  16. Fluid dynamics of aortic valve stenosis

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra; Maftoon, Nima

    2009-11-01

    Aortic valve stenosis, which causes considerable constriction of the flow passage, is one of the most frequent cardiovascular diseases and is the most common cause of the valvular replacements which take place for around 100,000 per year in North America. Furthermore, it is considered as the most frequent cardiac disease after arterial hypertension and coronary artery disease. The objective of this study is to develop an analytical model considering the coupling effect between fluid flow and elastic deformation with reasonable boundary conditions to describe the effect of AS on the left ventricle and the aorta. The pulsatile and Newtonian blood flow through aortic stenosis with vascular wall deformability is analyzed and its effects are discussed in terms of flow parameters such as velocity, resistance to flow, shear stress distribution and pressure loss. Meanwhile we developed analytical expressions to improve the comprehension of the transvalvular hemodynamics and the aortic stenosis hemodynamics which is of great interest because of one main reason. To medical scientists, an accurate knowledge of the mechanical properties of whole blood flow in the aorta can suggest a new diagnostic tool.

  17. [Aortic valve replacement for the small aortic annulus].

    PubMed

    Oshima, H; Usui, A; Akita, T; Ueda, Y

    2006-04-01

    Aortic valve surgery for the small aortic annulus is still challenging for surgeons. Recently, the new types of high performance prosthesis have been developed and the chance of an aortic root enlargement (ARE) is decreasing. In this study, we propose the ideal strategy of the aortic surgery for the small aortic annulus. We analyzed the clinical records of 158 patients who underwent aortic valve replacement from August 1999 to October 2005 in our institution. The small aortic annulus was observed in 38 patients (24%). Fourteen patients of this group underwent ARE. Patient-prosthesis mismatch (PPM) was less frequently observed in patients with ARE compared to those without ARE. The additional time required for ARE was not considerable, and neither ischemic time nor cardiopulmonary bypass time was significantly prolonged by ARE. In conclusion, we have to select a prosthesis with sufficient orifice area to avoid PPM, otherwise we should choose an option of ARE. For this consideration, we definitely need the chart that demonstrates the relationship between the nominal size of various types of prostheses and the size of a patient's annulus that those prostheses actually fit.

  18. Pentacuspid aortic valve diagnosed by transoesophageal echocardiography

    PubMed Central

    Cemri, M; Cengel, A; Timurkaynak, T

    2000-01-01

    Congenital aortic valve anomalies are quite a rare finding in echocardiographic examinations. A case of a 19 year old man with a pentacuspid aortic valve without aortic stenosis and regurgitation, detected by transoesophageal echocardiography, is presented.


Keywords: pentacuspid aortic valve; echocardiography PMID:10995427

  19. D-lactate increases pulmonary apoptosis by restricting phosphorylation of bad and eNOS in a rat model of hemorrhagic shock.

    PubMed

    Jaskille, Amín; Alam, Hasan B; Rhee, Peter; Hanes, William; Kirkpatrick, John R; Koustova, Elena

    2004-08-01

    Resuscitation with racemic lactated Ringer's solution (containing equal amounts of D and L isomers of lactate) has been shown to induce pulmonary apoptosis. Substitution of DL-isomer lactate with ketone bodies (beta-hydroxybutyrate, BHB), sodium pyruvate, or L-isomer of lactate decrease this injury without changing the energy status of the tissues or the expression of apoptotic genes. These modified solutions however alter the function of apoptotic proteins through an unknown mechanism. We postulated that DL-LR induces apoptosis by restricting the phosphorylation of key apoptotic proteins. Male Sprague Dawley rats (n = 30, 5/group) were subjected to a three stage, volume-controlled hemorrhage and randomized to the following groups. 1) No hemorrhage (Sham); 2) Hemorrhage and no resuscitation (NR); 3) Resuscitation with 3x shed blood volume of racemic LR (DL-LR); 4) Resuscitation with 3x shed blood volume of LR containing only the L-isomer of lactate (L-LR); 5) Resuscitation with 3s shed blood volume of pyruvate Ringer's (PR); 6) Resuscitation with 3s shed blood volume of ketone Ringer's (KR). The modified Ringer's solutions were identical to racemic LR except for equimolar substitution of DL-lactate for L-lactate, pyruvate and BHB respectively. Lung tissue was obtained 2 hours later and subjected to Western Blotting. The levels of Akt, Bad, and eNOS (total and phosphorylated) proteins were measured. Finally, the expression of gene coding for protein 14-3-3 was measured using RT-PCR. Resuscitation with DL-LR caused a significant (p < 0.05) increase in the total Bad and a decrease in phosphorylated Bad protein expression in the lung. It also caused an increase in the phosphorylated Akt levels and a decrease in gene coding for protein 14-3-3. These changes were consistent with signaling imbalances that favor apoptosis. Modified LR solutions, on the other hand, did not cause these alterations. Phosphorylation pattern of eNOS supported the involvement of PI3K/Akt pathway

  20. Wall stretch and thromboxane A₂ activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H₂O₂ and Akt-dependent phosphorylation.

    PubMed

    Kim, Hae Jin; Yoo, Hae Young; Jang, Ji Hyun; Lin, Hai Yue; Seo, Eun Yeong; Zhang, Yin Hua; Kim, Sung Joon

    2016-04-01

    Pulmonary arteries (PAs) have high compliance, buffering the wide ranges of blood flow. Here, we addressed a hypothesis that PA smooth muscle cells (PASMCs) express nitric oxide synthases (NOS) that might be activated by mechanical stress and vasoactive agonists. In the myograph study of endothelium-denuded rat PAs, NOS inhibition (L-NAME) induced strong contraction (96 % of 80 mM KCl-induced contraction (80K)) in the presence of 5 nM U46619 (thromboxane A2 (TXA2) analogue) with relatively high basal stretch (2.94 mN, S(+)). With lower basal stretch (0.98 mN, S(-)), however, L-NAME application following U46619 (TXA2/L-NAME) induced weak contraction (27 % of 80K). Inhibitors of nNOS and iNOS had no such effect in S(+) PAs. In endothelium-denuded S(+) mesenteric and renal arteries, TXA2/L-NAME-induced contraction was only 18 and 21 % of 80K, respectively. Expression of endothelial-type NOS (eNOS) in rat PASMCs was confirmed by RT-PCR and immunohistochemistry. Even in S(-) PAs, pretreatment with H2O2 (0.1-10 μM) effectively increased the sensitivity to TXA2/L-NAME (105 % of 80K). Vice versa, NADPH oxidase inhibitors, reactive oxygen species scavengers, or an Akt inhibitor (SC-66) suppressed TXA2/L-NAME-induced contraction in S(+) PAs. In a human PASMC line, immunoblot analysis showed the following: (1) eNOS expression, (2) Ser(1177) phosphorylation by U46619 and H2O2, and (3) Akt activation (Ser(473) phosphorylation) by U46619. In the cell-attached patch clamp study, H2O2 facilitated membrane stretch-activated cation channels in rat PASMCs. Taken together, the muscular eNOS in PAs can be activated by TXA2 and mechanical stress via H2O2 and Akt-mediated signaling, which may counterbalance the contractile signals from TXA2 and mechanical stimuli.

  1. Green tea polyphenols down-regulate caveolin-1 expression via ERK1/2 and p38MAPK in endothelial cells.

    PubMed

    Li, Yanrong; Ying, Chenjiang; Zuo, Xuezhi; Yi, Haiwei; Yi, Weijie; Meng, Yi; Ikeda, Katsumi; Ye, Xiaolei; Yamori, Yukio; Sun, Xiufa

    2009-12-01

    Caveolin-1 (Cav-1), a negative regulator of endothelial nitric oxide synthase (eNOS), influences various aspects of the cardiovascular functions. We had reported that a high-fat diet up-regulated aortic Cav-1 expressions in rats. In this study, we investigated the effects of green tea polyphenols (GTPs) on endothelial Cav-1 expression and phosphorylation in vitro. Bovine aortic endothelial cells (BAECs) were treated with 4 microg/ml GTPs for 0, 4, 8, 12, 16 and 24 h, and with 0, 0.04, 0.4, 4 and 40 microg/ml GTPs for 16 h, respectively. Cav-1 protein and mRNA were detected using Western blot and reverse transcriptase polymerase chain reaction. Cav-1 protein expression was down-regulated after treatment of BAECs with 4 microg/ml GTPs for 12, 16 and 24 h. And decrease in the level of Cav-1 mRNA was observed after GTP treatment for 4 and 8 h. GTPs (0.04-4 microg/ml) down-regulate Cav-1 protein expressions and mRNA levels dose dependently. PD98059, an inhibitor of extracellular signal-regulated kinase 1/2 (ERK1/2), up-regulated Cav-1 expression in BAECs alone and abolished the down-regulation effects of GTPs in BAECs while pretreatment with it. Inhibition of p38 mitogen-activated protein kinase (p38MAPK) with SB203580, which down-regulates Cav-1 expression in BAECs alone, deteriorated the Cav-1 down-regulating effects by GTPs. In addition to the effects on expression of Cav-1, GTP treatment inhibited phosphorylation of Cav-1 [tyrosine 14 (Tyr14)]. These data indicate that GTPs down-regulate gene expression of Cav-1 time- and dose- dependently via activating ERK1/2 and inhibiting p38MAPK signaling.

  2. Balloon aortic valvuloplasty as a bridge to aortic valve replacement in a patient with severe calcific aortic stenosis.

    PubMed

    Swinkels, B M; Jaarsma, W; Wely, L Relik-van; van Swieten, H A; Ernst, J M P G; Plokker, H W M

    2003-03-01

    This case report describes a patient with severe calcific aortic stenosis who was initially considered inoperable because of a very poor left ventricular function and severe pulmonary hypertension. After balloon aortic valvuloplasty, the clinical and haemodynamic status of the patient improved to such an extent that subsequent aortic valve replacement was considered possible and eventually proved to be successful. Balloon aortic valvuloplasty has value as a potential bridge to aortic valve replacement when the risks for surgery are considered to be too high.

  3. Characterisation of fractalkine/CX3CL1 and fractalkine receptor (CX3CR1) expression in abdominal aortic aneurysm disease.

    PubMed

    Patel, A; Jagadesham, V P; Porter, K E; Scott, D J A; Carding, S R

    2008-07-01

    Fractalkine (CX3CL1) promotes adhesion and extravasation of leucocytes through interactions with fractalkine receptor (CX3CR1) expressed on CD56+/CD16+ NK cells and CD8+ T cells. The current study aims to test the hypothesis the CX3CL1-CX3CR1 interaction contributes to the inflammatory infiltrate in AAA tissue. Immunohistochemistry (IHC) was used to define expression of CX3CR1 in AAA tissue. Multi-parametric flow cytometry (FC) was used to determine CX3CR1 expression on T-cells (CD3+) and NK cells (CD56+) from AAA tissue and peripheral blood of AAA patients and healthy controls. Regulation of CX3CL1 expression by vascular endothelial (vEC) and smooth muscle cells (vSMC) was examined in vitro using primary cell cultures. CX3CR1+ cells were detected in 19/28 AAA tissue samples and predominately localised in the adventitia. PBMCs from patients with AAA demonstrated higher percentages of CX3CR1+ NK cells (60.0-88.6%) and T cells (7.5-39.4%) compared with healthy controls. Furthermore, the frequency of CX3CR1+ NK cells (91%) and T cells (94%) in inflammatory AAA tissue were higher than in atherosclerotic AAA tissue. The pro-inflammatory cytokine TNFalpha increased expression of fractalkine by vSMC and vEC. CX3CL1+ and CX3CR1+ cells are present in AAA disease and their interaction may contribute to the recruitment of inflammatory cells seen in AAA tissue.

  4. Aortic biomechanics in hypertrophic cardiomyopathy

    PubMed Central

    Badran, Hala Mahfouz; Soltan, Ghada; Faheem, Nagla; Elnoamany, Mohamed Fahmy; Tawfik, Mohamed; Yacoub, Magdi

    2015-01-01

    Background: Ventricular-vascular coupling is an important phenomenon in many cardiovascular diseases. The association between aortic mechanical dysfunction and left ventricular (LV) dysfunction is well characterized in many disease entities, but no data are available on how these changes are related in hypertrophic cardiomyopathy (HCM). Aim of the work: This study examined whether HCM alone is associated with an impaired aortic mechanical function in patients without cardiovascular risk factors and the relation of these changes, if any, to LV deformation and cardiac phenotype. Methods: 141 patients with HCM were recruited and compared to 66 age- and sex-matched healthy subjects as control group. Pulse pressure, aortic strain, stiffness and distensibility were calculated from the aortic diameters measured by M-mode echocardiography and blood pressure obtained by sphygmomanometer. Aortic wall systolic and diastolic velocities were measured using pulsed wave Doppler tissue imaging (DTI). Cardiac assessment included geometric parameters and myocardial deformation (strain and strain rate) and mechanical dyssynchrony. Results: The pulsatile change in the aortic diameter, distensibility and aortic wall systolic velocity (AWS') were significantly decreased and aortic stiffness index was increased in HCM compared to control (P < .001) In HCM AWS' was inversely correlated to age(r = − .32, P < .0001), MWT (r = − .22, P < .008), LVMI (r = − .20, P < .02), E/Ea (r = − .16, P < .03) LVOT gradient (r = − 19, P < .02) and severity of mitral regurg (r = − .18, P < .03) but not to the concealed LV deformation abnormalities or mechanical dyssynchrony. On multivariate analysis, the key determinant of aortic stiffness was LV mass index and LVOT obstruction while the role LV dysfunction in aortic stiffness is not evident in this population. Conclusion: HCM is associated with abnormal aortic mechanical properties. The severity of cardiac

  5. Thoracic endovascular aortic repair for blunt thoracic aortic injuries in complex aortic arch vessels anatomies.

    PubMed

    Piffaretti, Gabriele; Carrafiello, Gianpaolo; Ierardi, Anna Maria; Mariscalco, Giovanni; Macchi, Edoardo; Castelli, Patrizio; Tozzi, Matteo; Franchin, Marco

    2015-08-01

    The aim of this study is to report the use of thoracic endovascular aortic repair (TEVAR) in blunt thoracic aortic injuries (BTAIs) presenting with complex anatomies of the aortic arch vessels. Two patients were admitted to our hospital for the management of BTAI. Anomalies were as follow: aberrant right subclavian artery (n = 1) and right-sided aortic arch with 5 vessels anatomy variant (n = 1). TEVAR was accomplished using parallel graft with periscope configuration in the patient with the aberrant right subclavian artery. At 12-month follow-up, computed tomography angiographies confirmed the exclusion of the BTAI, the stability of the endograft, the resolution of the pseudoaneurysm, and the patency of the parallel endograft. Aortic arch vessels variants and anomalies are not rare, and should be recognized and studied precisely to plan the most appropriate operative treatment. TEVAR proved to be effective even in complex anatomies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content

    PubMed Central

    Harvey, Nicholas C.; Lillycrop, Karen A.; Garratt, Emma; Sheppard, Allan; McLean, Cameron; Burdge, Graham; Slater-Jefferies, Jo; Rodford, Joanne; Crozier, Sarah; Inskip, Hazel; Emerald, Bright Starling; Gale, Catharine R; Hanson, Mark; Gluckman, Peter; Godfrey, Keith; Cooper, Cyrus

    2013-01-01

    Aim Our previous work has shown associations between childhood adiposity and perinatal methylation status of several genes in umbilical cord tissue, including endothelial nitric oxide synthase (eNOS). There is increasing evidence that eNOS is important in bone metabolism; we therefore related the methylation status of the eNOS gene promoter in stored umbilical cord to childhood bone size and density in a group of 9-year old children. Methods We used Sequenom MassARRAY to assess the methylation status of 2 CpGs in the eNOS promoter, identified from our previous study, in stored umbilical cords of 66 children who formed part of a Southampton birth cohort and who had measurements of bone size and density at age 9 years (Lunar DPXL DXA instrument). Results Percentage methylation varied greatly between subjects. For one of the two CpGs, eNOS chr7:150315553+, after taking account of age and sex there was a strong positive association between methylation status and the child’s whole body bone area (r=0.28,p=0.02), bone mineral content (r=0.34,p=0.005) and areal bone mineral density (r=0.34,p=0.005) at age 9 years. These associations were independent of previously documented maternal determinants of offspring bone mass. Conclusions Our findings suggest an association between methylation status at birth of a specific CpG within the eNOS promoter and bone mineral content in childhood. This supports a role for eNOS in bone growth and metabolism and implies that its contribution may at least in part occur during early skeletal development. PMID:22159788

  7. Early ischaemic preconditioning requires Akt- and PKA-mediated activation of eNOS via serine1176 phosphorylation

    PubMed Central

    Yang, Changjun; Talukder, M.A. Hassan; Varadharaj, Saradhadevi; Velayutham, Murugesan; Zweier, Jay L.

    2013-01-01

    Aims The role of endothelial nitric oxide synthase (eNOS)/NO signalling is well documented in late ischaemic preconditioning (IPC); however, the role of eNOS and its activation in early IPC remains controversial. This study investigates the role of eNOS in early IPC and the signalling pathways and molecular interactions that regulate eNOS activation during early IPC. Methods and results Rat hearts were subjected to 30-min global ischaemia and reperfusion (I/R) with or without IPC (three cycles 5-min I and 5-min R) in the presence or absence of the NOS inhibitor l-NAME, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (LY), and protein kinase A (PKA) inhibitor H89 during IPC induction or prior endothelial permeablization. IPC improved post-ischaemic contractile function and reduced infarction compared with I/R with this being abrogated by l-NAME or endothelial permeablization. eNOSSer1176, AktSer473, and PKAThr197 phosphorylation was increased following IPC. I/R decreased eNOSSer1176 phosphorylation, whereas IPC increased it. Mass spectroscopy confirmed eNOSSer1176 phosphorylation and quantitative Western blots showed ∼24% modification of eNOSSer1176 following IPC. Immunoprecipitation demonstrated eNOS, Akt, and PKA complexation. Immunohistology showed IPC-induced Akt and PKA phosphorylation in cardiomyocytes and endothelium. With eNOS activation, IPC increased NO production as measured by electron paramagnetic resonance spin trapping and fluorescence microscopy. LY or H89 not only decreased AktSer473 or PKAThr197 phosphorylation, respectively, but also abolished IPC-induced preservation of eNOS and eNOSSer1176 phosphorylation as well as cardioprotection. Conclusion Thus, Akt- and PKA-mediated eNOS activation, with phosphorylation near the C-terminus, is critical for early IPC-induced cardioprotection, with eNOS-derived NO from the endothelium serving a critical role. PMID:22977010

  8. Prosthesis-preserving aortic root repair after aortic valve replacement.

    PubMed

    Hamamoto, Masaki; Kobayashi, Taira; Kodama, Hiroshi

    2015-07-01

    We describe a new technique of prosthesis-preserving aortic root replacement for patients who have previously undergone aortic valve replacement. With preservation of the mechanical prosthesis, we implant a Gelweave Valsalva graft using double suture lines. The first suture line is made between the sewing cuff of the mechanical valve and the graft, with mattress sutures of 2/0 braided polyester with pledgets. After the first sutures are tied, the second suture line is created between the graft collar and the aortic root remnant with continuous 4/0 polypropylene sutures.

  9. The excluder aortic endograft.

    PubMed

    Alterman, Daniel M; Stevens, Scott L

    2008-06-01

    Since its introduction, more than 59000 patients have been treated with Gore Excluder endoprosthesis (GORE) for abdominal aortic aneurysm (AAA) in the past 11 years. It has become clearer that differences in device delivery and design provide certain advantages that may favor one anatomical milieu over another. Behavior of the aneurysm sac also seems to be graft dependent as more long-term data become available. The currently available low-permeability GORE seems to have addressed the problem of endotension noted with previous designs. Cumulative data are reviewed, and the data demonstrate very low perioperative morbidity and mortality and excellent protection from aneurysm-related complications with the GORE device. Superior ease of use, excellent trackability, and rare failures requiring acute open conversion characterize the GORE device. By addressing clinical demands of aortic endografting, Gore has eclipsed other endografts in the industry to now dominate the US market. The aim of this review is to describe the history, experience, advantages, and future goals with the GORE for the treatment of AAA.

  10. [Inflammatory abdominal aortic aneurysm].

    PubMed

    Siebenmann, R; Schneider, K; von Segesser, L; Turina, M

    1988-06-11

    348 cases of abdominal aortic aneurysm were reviewed for typical features of inflammatory aneurysm (IAAA) (marked thickening of aneurysm wall, retroperitoneal fibrosis and rigid adherence of adjacent structures). IAAA was present in 15 cases (14 male, 1 female). When compared with patients who had ordinary aneurysms, significantly more patients complained of back or abdominal pain (p less than 0.01). Erythrocyte sedimentation rate was highly elevated. Diagnosis was established in 7 of 10 computed tomographies. 2 patients underwent emergency repair for ruptured aneurysm. Unilateral ureteral obstruction was present in 4 cases and bilateral in 1. Repair of IAAA was performed by a modified technique. Histological examination revealed thickening of the aortic wall, mainly of the adventitial layer, infiltrated by plasma cells and lymphocytes. One 71-year-old patient operated on for rupture of IAAA died early, and another 78-year-old patient after 5 1/2 months. Control computed tomographies revealed spontaneous regression of inflammatory infiltration after repair. Equally, hydronephrosis due to ureteral obstruction could be shown to disappear or at least to decrease. IAAA can be diagnosed by computed tomography with high sensitivity. Repair involves low risk, but modification of technique is necessary. The etiology of IAAA remains unclear.

  11. Raloxifene attenuates Gas6 and apoptosis in experimental aortic valve disease in renal failure

    PubMed Central

    Abedat, Suzan; Beeri, Ronen; Valitsky, Michael; Daher, Sameh; Kott-Gutkowski, Miriam; Gal-Moscovici, Anca; Sosna, Jacob; Rajamannan, Nalini M.; Lotan, Chaim

    2011-01-01

    Renal failure is associated with aortic valve calcification. Using our rat model of uremia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in that disease. We also explored the effects of raloxifene, an estrogen receptor modulator, on valvular calcification. Gene array analysis was performed in aortic valves obtained from three groups of rats (n = 7 rats/group): calcified valves obtained from rats fed with uremic diet, valves after calcification resolution following diet cessation, and control. In addition, four groups of rats (n = 10 rats/group) were used to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet that also received daily raloxifene. Evaluation included imaging, histology, and antigen expression analysis. Gene array results showed that the majority of the altered expressed genes were in diet group valves. Most apoptosis-related genes were changed in a proapoptotic direction in calcified valves. Apoptosis and decreases in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of survival pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. In conclusion, downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure. PMID:21335463

  12. An Important but Forgotten Technique: Aortic Fenestration.

    PubMed

    Yalcin, Mihriban; Tayfur, Kaptan Derya; Urkmez, Melih

    2016-10-01

    Aortic fenestration is a technique that treats organ ischemia in descending aortic dissection. Open surgical aortic fenestration is an effective yet uncommonly used and widely forgotten procedure. Here, we describe 2 patients suffering from chronic thoracoabdominal aortic dissection, and we aimed to identify under what circumstances surgical aortic fenestration should be applied, to assess its safety and efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Minimally invasive aortic valve surgery

    PubMed Central

    Castrovinci, Sebastiano; Emmanuel, Sam; Moscarelli, Marco; Murana, Giacomo; Caccamo, Giuseppa; Bertolino, Emanuela Clara; Nasso, Giuseppe; Speziale, Giuseppe; Fattouch, Khalil

    2016-01-01

    Aortic valve disease is a prevalent disorder that affects approximately 2% of the general adult population. Surgical aortic valve replacement is the gold standard treatment for symptomatic patients. This treatment has demonstrably proven to be both safe and effective. Over the last few decades, in an attempt to reduce surgical trauma, different minimally invasive approaches for aortic valve replacement have been developed and are now being increasingly utilized. A narrative review of the literature was carried out to describe the surgical techniques for minimally invasive aortic valve surgery and report the results from different experienced centers. Minimally invasive aortic valve replacement is associated with low perioperative morbidity, mortality and a low conversion rate to full sternotomy. Long-term survival appears to be at least comparable to that reported for conventional full sternotomy. Minimally invasive aortic valve surgery, either with a partial upper sternotomy or a right anterior minithoracotomy provides early- and long-term benefits. Given these benefits, it may be considered the standard of care for isolated aortic valve disease. PMID:27582764

  14. Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis.

    PubMed

    Moran, Corey S; Seto, Sai-Wang; Krishna, Smriti M; Sharma, Surabhi; Jose, Roby J; Biros, Erik; Wang, Yutang; Morton, Susan K; Golledge, Jonathan

    2017-02-21

    Intraluminal thrombus is a consistent feature of human abdominal aortic aneurysm (AAA). Coagulation factor Xa (FXa) catalyses FII to thrombin (FIIa). We examined the effect of FXa/FIIa inhibition on experimental aortic aneurysm in apolipoprotein E-deficient (ApoE(-/-)) mice infused with angiotensin II (AngII). The concentration of FXa within the supra-renal aorta (SRA) correlated positively with SRA diameter. Parenteral administration of enoxaparin (FXa/IIa inhibitor) and fondaparinux (FXa inhibitor) over 14 days reduced to severity of aortic aneurysm and atherosclerosis in AngII-infused ApoE(-/-) mice. Enteral administration of the FIIa inhibitor dabigatran had no significant effect. Aortic protease-activated receptor (PAR)-2 expression increased in response to AngII infusion. Fondaparinux reduced SRA levels of FXa, FIIa, PAR-2, matrix metalloproteinase (MMP)2, Smad2/3 phosphorylation, and MOMA-2 positive cells in the mouse model. FXa stimulated Smad2/3 phosphorylation and MMP2 expression in aortic vascular smooth muscle cells (VSMC) in vitro. Expression of MMP2 in FXa-stimulated VSMC was downregulated in the presence of a PAR-2 but not a PAR-1 inhibitor. These findings suggest that FXa/FIIa inhibition limits aortic aneurysm and atherosclerosis severity due to down-regulation of vascular PAR-2-mediated Smad2/3 signalling and MMP2 expression. Inhibition of FXa/FIIa may be a potential therapy for limiting aortic aneurysm.

  15. Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis

    PubMed Central

    Moran, Corey S.; Seto, Sai-Wang; Krishna, Smriti M.; Sharma, Surabhi; Jose, Roby J.; Biros, Erik; Wang, Yutang; Morton, Susan K.; Golledge, Jonathan

    2017-01-01

    Intraluminal thrombus is a consistent feature of human abdominal aortic aneurysm (AAA). Coagulation factor Xa (FXa) catalyses FII to thrombin (FIIa). We examined the effect of FXa/FIIa inhibition on experimental aortic aneurysm in apolipoprotein E-deficient (ApoE−/−) mice infused with angiotensin II (AngII). The concentration of FXa within the supra-renal aorta (SRA) correlated positively with SRA diameter. Parenteral administration of enoxaparin (FXa/IIa inhibitor) and fondaparinux (FXa inhibitor) over 14 days reduced to severity of aortic aneurysm and atherosclerosis in AngII-infused ApoE−/− mice. Enteral administration of the FIIa inhibitor dabigatran had no significant effect. Aortic protease-activated receptor (PAR)-2 expression increased in response to AngII infusion. Fondaparinux reduced SRA levels of FXa, FIIa, PAR-2, matrix metalloproteinase (MMP)2, Smad2/3 phosphorylation, and MOMA-2 positive cells in the mouse model. FXa stimulated Smad2/3 phosphorylation and MMP2 expression in aortic vascular smooth muscle cells (VSMC) in vitro. Expression of MMP2 in FXa-stimulated VSMC was downregulated in the presence of a PAR-2 but not a PAR-1 inhibitor. These findings suggest that FXa/FIIa inhibition limits aortic aneurysm and atherosclerosis severity due to down-regulation of vascular PAR-2-mediated Smad2/3 signalling and MMP2 expression. Inhibition of FXa/FIIa may be a potential therapy for limiting aortic aneurysm. PMID:28220880

  16. Proteomic Analysis of Bovine Axonemes Exposed to Acute Alcohol: Role of eNOS and HSP90 in Cilia Stimulation

    PubMed Central

    Simet, Samantha M.; Pavlik, Jacqueline A.; Sisson, Joseph H.

    2012-01-01

    Background Cilia are fingerlike motor-driven organelles, which propel inhaled particles and mucus from the lung and airways. We have previously shown that brief alcohol exposure stimulates ciliary motility through an endothelial nitric oxide (eNOS)-dependent pathway localized in the ciliary metabolon. However, the signaling molecules of the ciliary metabolon involved in alcohol-triggered cilia beat frequency (CBF) stimulation upstream of eNOS activation are unknown. Methods and Results We hypothesized that brief alcohol exposure alters threonine and serine phosphorylation of proteins involved in stimulating ciliary beat frequency. Two-dimensional electrophoresis indicated both increases and deceases in the serine and threonine phosphorylation states of several proteins. One of the proteins identified was heat shock protein 90 (HSP90), which undergoes increased threonine phosphorylation after brief alcohol exposure. Because HSP90 has been shown to associate with eNOS in lung tissue, we hypothesized that HSP90 is a key component in alcohol-triggered eNOS activation and that these two proteins co-localize within the ciliary metabolon. Immunofluorescence experiments demonstrate that eNOS and HSP90 co-localize within basal bodies of the ciliary metabolon and partially translocate to the axoneme upon brief alcohol exposure. Pretreatment with geldanamycin, which disrupts HSP90 chaperone functions, prevented eNOS-HSP90 association and prevented the translocation of eNOS from the ciliary metabolon to the axoneme. Functional cilia motility studies revealed that geldanamycin blocked alcohol-stimulated ciliary motility in bovine bronchial epithelial cells and mouse tracheal rings. Conclusions Based on the HSP90 localization with eNOS, alcohol activation of HSP90 phosphorylation, and geldanamycin’s ability inhibit HSP90-eNOS association, prevent eNOS translocation to the axoneme, and block alcohol-stimulated ciliary motility, we conclude that alcohol-induced cilia stimulation

  17. ET-1 Stimulates Superoxide Production by eNOS Following Exposure of Vascular Endothelial Cells to Endotoxin.

    PubMed

    Gopalakrishna, Deepak; Pennington, Samantha; Karaa, Amel; Clemens, Mark G

    2016-07-01

    It has been shown that microcirculation is hypersensitized to endothelin1 (ET-1) following endotoxin (lipopolysaccharide [LPS]) treatment leading to an increased vasopressor response. This may be related in part to decreased activation of endothelial nitric oxide synthase (eNOS) by ET-1. eNOS can also be uncoupled to produce superoxide (O2). This aberrant eNOS activity could further contribute to the hyperconstriction and injury caused by ET-1 following LPS. We therefore tested whether LPS affects ROS production by vascular endothelial cells and whether and how this effect is altered by ET-1. Human umbilical vein endothelial cells (HUVEC) or human microvascular endothelial cells (HMEC) were subjected to a 6-h treatment with LPS (250 ng/mL) or LPS and sepiapterin (100 μM) followed by a 30-min treatment with 100 μM L-Iminoethyl Ornithine (L-NIO) an irreversible eNOS inhibitor and 30-min treatment with ET-1 (10 nM). Conversion of [H]L-arginine to [H]L-citrulline was used to measure eNOS activity. Superoxide dismutase (SOD) inhibitable reduction of Cytochrome-C, dihydro carboxy fluorescein (DCF), and Mitosox was used to estimate ROS. LT-SDS PAGE was used to assess the degree of monomerization of the eNOS homodimer. Stimulation of HUVECs with ET-1 significantly increased NO synthesis by 1.4-fold (P < 0.05). ET-1 stimulation of LPS-treated HUVECs failed to increase NO production. Western blot for eNOS protein showed no change in eNOS protein levels. LPS alone resulted in an insignificant increase in ROS production as measured by cytochrome C that was increased 4.6-fold by ET-1 stimulation (P < 0.05). L-NIO significantly decreased ET-1-induced ROS production (P < 0.05). Sepiapterin significantly decreased ROS production in both; unstimulated and ET-1-stimulated LPS-treated groups, but did not restore NO production. DCF experiments confirmed intracellular ROS while Mitosox suggested a non-mitochondrial source. ET-1 treatment following a chronic LPS stress

  18. Possible extracardiac predictors of aortic dissection in Marfan syndrome

    PubMed Central

    2014-01-01

    Background According to previous studies, aortic diameter alone seems to be insufficient to predict the event of aortic dissection in Marfan syndrome (MFS). Determining the optimal schedule for preventive aortic root replacement (ARR) aortic growth rate is of importance, as well as family history, however, none of them appear to be decisive. Thus, the aim of this study was to search for potential predictors of aortic dissection in MFS. Methods A Marfan Biobank consisting of 79 MFS patients was established. Thirty-nine MFS patients who underwent ARR were assigned into three groups based on the indication for surgery (dissection, annuloaortic ectasia and prophylactic surgery). The prophylactic surgery group was excluded from the study. Transforming growth factor-β (TGF-β) serum levels were measured by ELISA, relative expression of c-Fos, matrix metalloproteinase 3 and 9 (MMP-3 and −9) were assessed by RT-PCR. Clinical parameters, including anthropometric variables - based on the original Ghent criteria were also analyzed. Results Among patients with aortic dissection, TGF-β serum level was elevated (43.78 ± 6.51 vs. 31.64 ± 4.99 ng/l, p < 0.0001), MMP-3 was up-regulated (Ln2α = 1.87, p = 0.062) and striae atrophicae were more common (92% vs. 41% p = 0.027) compared to the annuloaortic ectasia group. Conclusions We found three easily measurable parameters (striae atrophicae, TGF-β serum level, MMP-3) that may help to predict the risk of aortic dissection in MFS. Based on these findings a new classification of MFS, that is benign or malignant is also proposed, which could be taken into consideration in determining the timing of prophylactic ARR. PMID:24720641

  19. Association of eNOS Gene Polymorphisms G894T and T-786C with Risk of Hepatorenal Syndrome

    PubMed Central

    Yigit, Ali; Yesilada, Elif; Gulbay, Gonca; Bılgıc, Yılmaz; Yildirim, Oguzhan; Turkoz, Yusuf; Aksungur, Zeynep

    2016-01-01

    Background. There are no studies investigating the relationship between endothelial nitric oxide synthase (eNOS) gene polymorphisms and hepatorenal syndrome (HRS). Aim. The purpose of this study is to elucidate whether eNOS gene polymorphisms (G894T and T-786C) play a role in the development of type-2 HRS. Methods. This study was carried out in a group of 92 patients with cirrhosis (44 patients with type-2 HRS and 48 without HRS) and 50 healthy controls. Polymorphisms were determined by polymerase chain reaction (PCR) and melting curve analysis. Results. We did not find any significant difference in allele and genotype distributions of the eNOS -T-786C polymorphism among the groups (p = 0.440). However, the frequency of GT (40.9%) and TT (13.6%) genotypes and mutant allele T (34.1%) for the eNOS G894T polymorphism were significantly higher (p < 0.001 and p < 0.001, resp.) in the HRS group than in both the stable cirrhosis (14.6%, 4.2%, and 11.5%, resp.) and the control (22.0%, 2.0%, and 13.0%, resp.) groups. Conclusion. The occurrence of mutant genotypes (GT/TT) and mutant allele T in eNOS -G894T polymorphisms should be considered as a potential risk factor in cirrhotic patients with HRS. PMID:27594880

  20. Mild aerobic exercise blocks elastin fiber fragmentation and aortic dilatation in a mouse model of Marfan syndrome associated aortic aneurysm.

    PubMed

    Gibson, Christine; Nielsen, Cory; Alex, Ramona; Cooper, Kimbal; Farney, Michael; Gaufin, Douglas; Cui, Jason Z; van Breemen, Cornelis; Broderick, Tom L; Vallejo-Elias, Johana; Esfandiarei, Mitra

    2017-07-01

    Regular low-impact physical activity is generally allowed in patients with Marfan syndrome, a connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene. However, being above average in height encourages young adults with this syndrome to engage in high-intensity contact sports, which unfortunately increases the risk for aortic aneurysm and rupture, the leading cause of death in Marfan syndrome. In this study, we investigated the effects of voluntary (cage-wheel) or forced (treadmill) aerobic exercise at different intensities on aortic function and structure in a mouse model of Marfan syndrome. Four-week-old Marfan and wild-type mice were subjected to voluntary and forced exercise regimens or sedentary lifestyle for 5 mo. Thoracic aortic tissue was isolated and subjected to structural and functional studies. Our data showed that exercise improved aortic wall structure and function in Marfan mice and that the beneficial effect was biphasic, with an optimum at low intensity exercise (55-65% V̇o2max) and tapering off at a higher intensity of exercise (85% V̇o2max). The mechanism underlying the reduced elastin fragmentation in Marfan mice involved reduction of the expression of matrix metalloproteinases 2 and 9 within the aortic wall. These findings present the first evidence of potential beneficial effects of mild exercise on the structural integrity of the aortic wall in Marfan syndrome associated aneurysm. Our finding that moderate, but not strenuous, exercise protects aortic structure and function in a mouse model of Marfan syndrome could have important implications for the medical care of young Marfan patients.NEW & NOTEWORTHY The present study provides conclusive scientific evidence that daily exercise can improve aortic health in a mouse model of Marfan syndrome associated aortic aneurysm, and it establishes the threshold for the exercise intensity beyond which exercise may not be as protective. These findings establish a platform for

  1. High-Order ENO Schemes Applied to Two- and Three-Dimensional Compressible Flow

    DTIC Science & Technology

    1991-04-01

    method, the evolution of the lowest 4 Fourier harmonics as represented by the quantity Ek= L k2 + Ijkl)W(y)dY (31) where dk(Y,t) = 2.1o q(x’yt)e-’ka’mdx...finer resolution in the vicinity of the shock. Results for the lowest 4 Fourier harmonics for the two methods are given in Figures 11 and 12. The...Evolution of the 4 lowest Fourier harmonics for the Mach 0.5 free shear layer problem using the 3rd-order ENO scheme. 22 COMPAC T Mcach 0.50 k=l k=2

  2. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    PubMed Central

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  3. Abdominal aortic aneurysm repair - open

    MedlinePlus

    AAA - open; Repair - aortic aneurysm - open ... Open surgery to repair an AAA is sometimes done as an emergency procedure when there is bleeding inside your body from the aneurysm. You may have an ...

  4. Screening for Abdominal Aortic Aneurysm

    MedlinePlus

    ... signs or symptoms of an abdominal aortic aneurysm (AAA). The final recommendation statement summarizes what the Task ... the potential benefits and harms of screening for AAA: (1) Men ages 65 to 75 who smoke ...

  5. Thoracic Aortic Aneurysm: Reading the Enemy’s Playbook

    PubMed Central

    Elefteriades, John A.

    2008-01-01

    Background: At the Yale University Center for Thoracic Aortic Disease, we have been using our clinical experience and laboratory investigations to shed light on the pathophysiology of thoracic aortic aneurysm (TAA), the clinical behavior of thoracic aortic aneurysm, and the optimal clinical management. Materials and Methods: The Yale database contains information on 3,000 patients with thoracic aortic aneurysm, with 9,000 patient-years of follow-up and 9,000 imaging studies. Advanced statistical techniques were applied to this information. Results: Analysis yielded the following Yale-generated observations: (1) TAA is a genetic disease with a predominantly autosomal dominant mode of inheritance; (2) matrix metalloproteinase (MMP) enzymes are activated in the pathogenesis of TAA; (3) wall tension in TAA approaches the tensile limits of aortic tissue at a diameter of 6 cm; (4) by the time a TAA reaches a clinical diameter of 6 cm, 34 percent of affected patients have suffered dissection or rupture; (5) extreme physical exertion or severe emotion often precipitate acute dissection; and (6) single nucleotide polymorphisms (SNPs) and RNA expression profile changes are being identified that predispose a patient to TAA and can serve as biomarkers for screening for this virulent disease. Conclusions: The “playbook” of TAA is gradually being read, with the help of scientific investigations, positioning practitioners to combat this lethal disease more effectively than ever before. PMID:19099048

  6. Evaluation of regional aortic distensibility using color kinesis.

    PubMed

    Kato, Yoshimasa; Kotoh, Keiju; Yamashita, Akio; Furuta, Hidetoshi; Shimazu, Chikasi; Misaki, Takurou

    2003-01-01

    Regional aortic stiffness cannot be evaluated by conventional methods. Regional aortic wall velocity during systole in the descending aorta was evaluated by using transesophageal echocardiography with color kinesis. The authors defined regional aortic distensibility (RAD) by considering pulse pressure, with RAD (microm/s/mm Hg) = (regional aortic wall velocity)/(pulse pressure). RAD was evaluated in 38 patients who had coronary artery disease (CAD) and 10 who did not. RAD decreased depending on aging (partial regression coefficient was -5.39 x 10(-1), p<0.001), and RAD was lower in the CAD group than that in the no-CAD group (p<0.05). In the CAD group, 19 patients had a single fixed plaque (4 calcified and 15 noncalcified plaques). RAD in the calcified plaque was lower than that in the noncalcified plaque (p<0.01), and RAD was lower in the noncalcified plaque than that in the no-plaque region (p<0.05). In noncalcified plaques, the relation between RAD and maximum intimal thickness had a significant correlation, r=0.7, p<0.001. The residual of RAD from the regression line was significantly larger in the calcified plaque than that in the noncalcified plaque (p<0.001). In conclusion, RAD can express increasing regional aortic wall stiffness brought about by arteriosclerosis quantitatively. Color kinesis provides information on characteristic difference between calcified and noncalcified plaque.

  7. Misconceptions and Facts About Aortic Stenosis.

    PubMed

    Argulian, Edgar; Windecker, Stephan; Messerli, Franz H

    2017-04-01

    Aortic stenosis is the most common valvular heart disease leading to intervention, and it is typically a disease of the elderly. Recent clinical advances have expanded the role of transcatheter aortic valve intervention in patients with severe aortic stenosis, making aortic valve intervention feasible and effective even in patients at intermediate, high, and prohibitive surgical risk. With the rapid advances in treatment, proper diagnosis becomes crucial for a wide range of patients with aortic stenosis: from "concordant" high-gradient aortic stenosis to "discordant" low-gradient aortic stenosis. The latter group commonly presents a clinical challenge requiring thoughtful and comprehensive evaluation to determine eligibility for aortic valve intervention. Providers at all levels should be familiar with basic diagnostic caveats and misconceptions when evaluating patients with possible aortic stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. eNOS polymorphisms and clinical outcome in advanced HCC patients receiving sorafenib: final results of the ePHAS study.

    PubMed

    Casadei Gardini, Andrea; Marisi, Giorgia; Faloppi, Luca; Scarpi, Emanuela; Foschi, Francesco Giuseppe; Iavarone, Massimo; Lauletta, Gianfranco; Corbelli, Jody; Valgiusti, Martina; Facchetti, Floriana; Della Corte, Cristina; Neri, Luca Maria; Tamberi, Stefano; Cascinu, Stefano; Scartozzi, Mario; Amadori, Dino; Nanni, Oriana; Tenti, Elena; Ulivi, Paola; Frassineti, Giovanni Luca

    2016-05-10

    Sorafenib may reduce endothelial nitric oxide synthase (eNOS) activity by inhibiting vascular endothelial growth factor receptors (VEGF-R), leading to a decrease in nitric oxide production. In the Italian multicenter ePHAS (eNOS polymorphisms in HCC and sorafenib) study, we analyzed the role of eNOS polymorphisms in relation to clinical outcome in patients with hepatocellular carcinoma (HCC) receiving sorafenib. Our retrospective study included a training cohort of 41 HCC patients and a validation cohort of 87 HCC patients, all undergoing sorafenib treatment. Three eNOS polymorphisms (eNOS -786T>C, eNOS VNTR 27bp 4a/b and eNOS+894G>T) were analyzed by direct sequencing or Real Time PCR in relation to progression-free survival (PFS) and overall survival (OS) (log-rank test). In univariate analysis, training cohort patients homozygous for eNOS haplotype (HT1:T-4b at eNOS-786/eNOS VNTR) had a lower median PFS (2.6 vs. 5.8 months, P < 0.0001) and OS (3.2 vs.14.6 months, P = 0.024) than those with other haplotypes. In the validation set, patients homozygous for HT1 had a lower median PFS (2.0 vs. 6.7 months, P < 0.0001) and OS (6.4 vs.18.0 months, P < 0.0001) than those with other haplotypes. Multivariate analysis confirmed this haplotype as the only independent prognostic factor. Our results suggest that haplotype HT1 in the eNOS gene may be capable of identifying a subset of HCC patients who are resistant to sorafenib.

  9. eNOS polymorphisms and clinical outcome in advanced HCC patients receiving sorafenib: final results of the ePHAS study

    PubMed Central

    Faloppi, Luca; Scarpi, Emanuela; Foschi, Francesco Giuseppe; Iavarone, Massimo; Lauletta, Gianfranco; Corbelli, Jody; Valgiusti, Martina; Facchetti, Floriana; Corte, Cristina della; Neri, Luca Maria; Tamberi, Stefano; Cascinu, Stefano; Scartozzi, Mario; Amadori, Dino; Nanni, Oriana; Tenti, Elena

    2016-01-01

    Sorafenib may reduce endothelial nitric oxide synthase (eNOS) activity by inhibiting vascular endothelial growth factor receptors (VEGF-R), leading to a decrease in nitric oxide production. In the Italian multicenter ePHAS (eNOS polymorphisms in HCC and sorafenib) study, we analyzed the role of eNOS polymorphisms in relation to clinical outcome in patients with hepatocellular carcinoma (HCC) receiving sorafenib. Our retrospective study included a training cohort of 41 HCC patients and a validation cohort of 87 HCC patients, all undergoing sorafenib treatment. Three eNOS polymorphisms (eNOS -786T>C, eNOS VNTR 27bp 4a/b and eNOS+894G>T) were analyzed by direct sequencing or Real Time PCR in relation to progression-free survival (PFS) and overall survival (OS) (log-rank test). In univariate analysis, training cohort patients homozygous for eNOS haplotype (HT1:T-4b at eNOS-786/eNOS VNTR) had a lower median PFS (2.6 vs. 5.8 months, P < 0.0001) and OS (3.2 vs.14.6 months, P = 0.024) than those with other haplotypes. In the validation set, patients homozygous for HT1 had a lower median PFS (2.0 vs. 6.7 months, P < 0.0001) and OS (6.4 vs.18.0 months, P < 0.0001) than those with other haplotypes. Multivariate analysis confirmed this haplotype as the only independent prognostic factor. Our results suggest that haplotype HT1 in the eNOS gene may be capable of identifying a subset of HCC patients who are resistant to sorafenib. PMID:27058899

  10. A numerical study of ENO and TVD schemes for shock capturing

    NASA Technical Reports Server (NTRS)

    Chang, Shih-Hung; Liou, Meng-Sing

    1988-01-01

    The numerical performance of a second-order upwind-based total variation diminishing (TVD) scheme and that of a uniform second-order essentially non-oscillatory (ENO) scheme for shock capturing are compared. The TVD scheme used is a modified version of Liou, using the flux-difference splitting (FDS) of Roe and his superbee function as the limiter. The construction of the basic ENO scheme is based on Harten, Engquist, Osher, and Chakravarthy, and the 2-D extensions are obtained by using a Strang-type of fractional-step time-splitting method. Numerical results presented include both steady and unsteady, 1-D and 2-D calculations. All the chosen test problems have exact solutions so that numerical performance can be measured by comparing the computer results to them. For 1-D calculations, the standard shock-tube problems of Sod and Lax are chosen. A very strong shock-tube problem, with the initial density ratio of 400 to 1 and pressure ratio of 500 to 1, is also used to study the behavior of the two schemes. For 2-D calculations, the shock wave reflection problems are adopted for testing. The cases presented in this report include flows with Mach numbers of 2.9, 5.0, and 10.0.

  11. A family of high-order targeted ENO schemes for compressible-fluid simulations

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2016-01-01

    Although classical WENO schemes have achieved great success and are widely accepted, they exhibit several shortcomings. They are too dissipative for direct simulations of turbulence and lack robustness when very-high-order versions are applied to complex flows. In this paper, we propose a family of high-order targeted ENO schemes which are applicable for compressible-fluid simulations involving a wide range of flow scales. In order to increase the numerical robustness as compared to very-high-order classical WENO schemes, the reconstruction dynamically assembles a set of low-order candidate stencils with incrementally increasing width. While discontinuities and small-scale fluctuations are efficiently separated, the numerical dissipation is significantly diminished by an ENO-like stencil selection, which either applies a candidate stencil with its original linear weight, or removes its contribution when it is crossed by a discontinuity. The background linear scheme is optimized under the constraint of preserving an approximate dispersion-dissipation relation. By means of quasi-linear analyses and practical numerical experiments, a set of case-independent parameters is determined. The general formulation of arbitrarily high-order schemes is presented in a straightforward way. A variety of benchmark-test problems, including broadband waves, strong shock and contact discontinuities are studied. Compared to well-established classical WENO schemes, the present schemes exhibit significantly improved robustness, low numerical dissipation and sharp discontinuity capturing. They are particularly suitable for DNS and LES of shock-turbulence interactions.

  12. Atherosclerosis: analysis of the eNOS (T786C) gene polymorphism.

    PubMed

    Barbosa, A M; Silva, K S F; Lagares, M H; Rodrigues, D A; da Costa, I R; Morais, M P; Martins, J V M; Mascarenhas, R S; Campedelli, F L; Moura, K K V O

    2017-09-21

    The coronary arteriosclerotic disease is the most common cardiovascular disease. Atherosclerosis affects large- and medium-sized arteries leading to severe thrombosis or artery stenosis that could evolve to myocardial infarction, ischemic stroke, ischemic injury of kidneys and intestines, and several other life-threatening clinical manifestations. Nitric oxide has been shown to be a promising therapeutic agent against cardiovascular diseases. The eNOS gene assumes several important functions, including regulation of vascular tone and regional blood flow, the suppression of vascular smooth muscle cell proliferation, and modulation of leukocyte-endothelium interactions. The T786C polymorphism is an important point mutation, where thymine is changed to cytosine. T786C significantly reduces the activity of the eNOS promoter gene. Two hundred and ninety-seven peripheral blood samples were collected from patients with the previous diagnosis of atherosclerotic disease based on clinical examination and confirmed by imaging methods. Results were compared using the chi-square test and the G-test. In the present study, the TC genotype was more frequent in both case and control groups with no statistically significant difference. Comparing the relation TC/TT and CC genotypes in the case and control groups, there was no statistically significant difference. No significant difference was found when genotypes were analyzed regarding gender and smoking. Our results suggest a strong tendency of the T allele, in single or double dose, to be associated with atherosclerosis that was not confirmed by the scientific data.

  13. Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model.

    PubMed

    Hibender, Stijntje; Franken, Romy; van Roomen, Cindy; Ter Braake, Anique; van der Made, Ingeborg; Schermer, Edith E; Gunst, Quinn; van den Hoff, Maurice J; Lutgens, Esther; Pinto, Yigal M; Groenink, Maarten; Zwinderman, Aeilko H; Mulder, Barbara J M; de Vries, Carlie J M; de Waard, Vivian

    2016-08-01

    Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure-lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell-specific sirtuin-1-deficient mice, spontaneous aneurysm formation and senescence are observed. Resveratrol is known to enhance sirtuin-1 activity and to reduce senescence, which prompted us to investigate the effectiveness of resveratrol in inhibition of aortic dilatation in the Fbn1(C1039G/+) MFS mouse model. Aortic senescence strongly correlates with aortic root dilatation rate in MFS mice. However, although resveratrol inhibits aortic dilatation, it only shows a trend toward reduced aortic senescence. Resveratrol enhances nuclear localization of sirtuin-1 in the vessel wall and, in contrast to losartan, does not affect leukocyte infiltration nor activation of SMAD2 and extracellular signal-regulated kinases 1/2 (ERK1/2). Interestingly, specific sirtuin-1 activation (SRT1720) or inhibition (sirtinol) in MFS mice does not affect aortic root dilatation rate, although senescence is changed. Resveratrol reduces aortic elastin breaks and decreases micro-RNA-29b expression coinciding with enhanced antiapoptotic Bcl-2 expression and decreased number of terminal apoptotic cells. In cultured smooth muscle cells, the resveratrol effect on micro-RNA-29b downregulation is endothelial cell and nuclear factor κB-dependent. Resveratrol inhibits aortic root dilatation in MFS mice by promoting elastin integrity and smooth muscle cell survival, involving downregulation of the aneurysm-related micro-RNA-29b in the aorta. On the basis of these data, resveratrol holds promise as a novel intervention strategy for patients with MFS. © 2016 The Authors.

  14. eNOS Deficiency Acts through Endothelin to Aggravate sFlt-1–Induced Pre-Eclampsia–Like Phenotype

    PubMed Central

    Li, Feng; Hagaman, John R.; Kim, Hyung-Suk; Maeda, Nobuyo; Jennette, J. Charles; Faber, James E.; Karumanchi, S. Ananth; Smithies, Oliver

    2012-01-01

    Excess soluble fms-like tyrosine kinase 1 (sFlt-1) of vascular endothelial growth factor receptor 1 secreted from the placenta causes pre-eclampsia–like features by antagonizing vascular endothelial growth factor signaling, which can lead to reduced endothelial nitric oxide synthase (eNOS) activity; the effect of this concomitant decrease in eNOS activity is unknown. We tested whether the decrease in nitric oxide occurring in female mice lacking eNOS aggravates the pre-eclampsia–like phenotype induced by increased sFlt-1. Untreated eNOS-deficient female mice had higher BP than wild-type mice. Adenovirus-mediated overexpression of sFlt-1 increased systolic BP by approximately 27 mmHg and led to severe loss of fenestration of glomerular capillary endothelial cells in both eNOS-deficient and wild-type mice. However, only the eNOS-deficient sFlt-1 mice exhibited severe foot process effacement. Compared with wild-type sFlt-1 mice, eNOS-deficient sFlt-1 mice also showed markedly higher urinary albumin excretion (467±74 versus 174±23 μg/d), lower creatinine clearance (126±29 versus 452±63 μl/min), and more severe endotheliosis. Expression of preproendothelin-1 (ET-1) and its ETA receptor in the kidney was higher in eNOS-deficient sFlt-1 mice than in wild-type sFlt-1 mice. Furthermore, the selective ETA receptor antagonist ambrisentan attenuated the increases in BP and urinary albumin excretion and ameliorated endotheliosis in both wild-type and eNOS-deficient sFlt-1 mice. Ambrisentan improved creatinine clearance and podocyte effacement in eNOS-deficient sFlt-1 mice. In conclusion, reduced maternal eNOS/nitric oxide exacerbates the sFlt1-related pre-eclampsia–like phenotype through activation of the endothelin system. PMID:22282588

  15. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    SciTech Connect

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic

  16. [New aspects in aortic valve disease].

    PubMed

    Tornos, P

    2001-01-01

    Renewed interest for aortic valve disease has evolved in recent years. Aortic valve replacement has become the second most frequent cause of cardiac surgery, following coronary bypass surgery. In addition, the etiologic and physiopathologic knowledge of this disorder has improved. In the present paper we analyze three aspects of the disease which are, at present, the subject of study and controversy: first, we discuss the possible relationship between degenerative aortic stenosis and atherosclerosis; second, the involvement of the aortic root in cases of bicuspid aortic valve; and third, the surgical indications in asymptomatic patients with either aortic stenosis or regurgitation.

  17. MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production

    SciTech Connect

    Bi, Rui; Bao, Chunrong; Jiang, Lianyong; Liu, Hao; Yang, Yang; Mei, Ju; Ding, Fangbao

    2015-05-01

    Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAH associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.

  18. Chronic treatment with qiliqiangxin ameliorates aortic endothelial cell dysfunction in diabetic rats.

    PubMed

    Chen, Fei; Wu, Jia-Le; Fu, Guo-Sheng; Mou, Yun; Hu, Shen-Jiang

    2015-03-01

    Qiliqiangxin (QL), a traditional Chinese medicine, has been shown to be beneficial for chronic heart failure. However, whether QL can also improve endothelial cell function in diabetic rats remains unknown. Here, we investigated the effect of QL treatment on endothelial dysfunction by comparing the effect of QL to that of benazepril (Ben) in diabetic Sprague-Dawley rats for 8 weeks. Cardiac function was evaluated by echocardiography and catheterization. Assays for acetylcholine-induced, endothelium-dependent relaxation (EDR), sodium nitroprusside-induced endothelium-independent relaxation, serum nitric oxide (NO), and nitric oxide synthase (NOS) as well as histological analyses were performed to assess endothelial function. Diabetic rats showed significantly inhibited cardiac function and EDR, decreased expression of serum NO and phosphorylation at Ser(1177) on endothelial NOS (eNOS), and impaired endothelial integrity after 8 weeks. Chronic treatment for 8 weeks with either QL or Ben prevented the inhibition of cardiac function and EDR and the decrease in serum NO and eNOS phosphorylation caused by diabetes. Moreover, either QL or Ben suppressed inducible NOS (iNOS) protein levels as well as endothelial necrosis compared with the diabetic rats. Additionally, QL prevented the increase in angiotensin-converting enzyme 1 and angiotensin II receptor type 1 in diabetes. Thus, chronic administration of QL improved serum NO production, EDR, and endothelial integrity in diabetic rat aortas, possibly through balancing eNOS and iNOS activity and decreasing renin-angiotensin system expression.

  19. Rare or unusual causes of chronic, isolated, pure aortic regurgitation

    SciTech Connect

    Waller, B.F.; Taliercio, C.P.; Dickos, D.K.; Howard, J.; Adlam, J.H.; Jolly, W. )

    1990-08-01

    Six patients undergoing aortic valve replacement had rare or unusual causes of isolated, pure aortic regurgitation. Two patients had congenitally bicuspid aortic valves with a false commissure (raphe) displaced to the aortic wall (tethered bicuspid aortic valve), two had floppy aortic valves, one had a congenital quadricuspid valve, and one had radiation-induced valve damage.

  20. [Transcatheter aortic valve implantation for aortic stenosis. Initial experience].

    PubMed

    Careaga-Reyna, Guillermo; Lázaro-Castillo, José Luis; Lezama-Urtecho, Carlos Alberto; Macías-Miranda, Enriqueta; Dosta-Herrera, Juan José; Galván Díaz, José

    2016-12-09

    Aortic stenosis is a frequent disease in the elderly, and is associated with other systemic pathologies that may contraindicate the surgical procedure. Another option for these patients is percutaneous aortic valve implantation, which is less invasive. We present our initial experience with this procedure. Patients with aortic stenosis were included once selection criteria were accomplished. Under general anaesthesia and echocardiographic and fluosocopic control, a transcatheter aortic valve was implanted following s valvuloplasty. Once concluded the procedure, angiographic and pressure control was realized in order to confirm the valve function. Between November 2014 and May 2015, 6 patients were treated (4 males and 2 females), with a mean age of 78.83±5.66 years-old. The preoperative transvalvular gradient was 90.16±28.53mmHg and posterior to valve implant was 3.33±2.92mmHg (P<.05). Two patients had concomitant coronary artery disease which had been treated previously. One patient presented with acute right coronary artery occlusion which was immediately treated. However due to previous renal failure, postoperative sepsis and respiratory failure, the patient died one month later. It was concluded that our preliminary results showed that in selected patients percutaneous aortic valve implantation is a safe procedure with clinical improvement for treated patients. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  1. Coronary Flow Impacts Aortic Leaflet Mechanics and Aortic Sinus Hemodynamics.

    PubMed

    Moore, Brandon L; Dasi, Lakshmi Prasad

    2015-09-01

    Mechanical stresses on aortic valve leaflets are well-known mediators for initiating processes leading to calcific aortic valve disease. Given that non-coronary leaflets calcify first, it may be hypothesized that coronary flow originating from the ostia significantly influences aortic leaflet mechanics and sinus hemodynamics. High resolution time-resolved particle image velocimetry (PIV) measurements were conducted to map the spatiotemporal characteristics of aortic sinus blood flow and leaflet motion with and without physiological coronary flow in a well-controlled in vitro setup. The in vitro setup consists of a porcine aortic valve mounted in a physiological aorta sinus chamber with dynamically controlled coronary resistance to emulate physiological coronary flow. Results were analyzed using qualitative streak plots illustrating the spatiotemporal complexity of blood flow patterns, and quantitative velocity vector and shear stress contour plots to show differences in the mechanical environments between the coronary and non-coronary sinuses. It is shown that the presence of coronary flow pulls the classical sinus vorticity deeper into the sinus and increases flow velocity near the leaflet base. This creates a beneficial increase in shear stress and washout near the leaflet that is not seen in the non-coronary sinus. Further, leaflet opens approximately 10% farther into the sinus with coronary flow case indicating superior valve opening area. The presence of coronary flow significantly improves leaflet mechanics and sinus hemodynamics in a manner that would reduce low wall shear stress conditions while improving washout at the base of the leaflet.

  2. COX2 Inhibition Reduces Aortic Valve Calcification In Vivo

    PubMed Central

    Wirrig, Elaine E.; Gomez, M. Victoria; Hinton, Robert B.; Yutzey, Katherine E.

    2016-01-01

    Objective Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects approximately 1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild type mice, increased expression of the gene encoding cyclooxygenase 2/COX2 (Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. Approach and Results In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells (VICs) prior to calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic VICs with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacologic inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. Conclusions COX2 expression is upregulated in CAVD and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo. PMID:25722432

  3. Aortic root replacement with a valve-sparing technique for quadricuspid aortic valve.

    PubMed

    Yamanaka, Katsuhiro; Okada, Kenji; Okita, Yutaka

    2015-04-01

    A 67-year old man with ascending aortic aneurysm was referred because of a quadricuspid aortic valve. He underwent aortic root replacement with a valve-sparing technique. Under deep hypothermic circulatory arrest, replacement of the ascending aorta was successfully performed. The postoperative course was uneventful without recurrence of aortic regurgitation.

  4. Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms

    PubMed Central

    Malashicheva, Anna; Kostina, Daria; Kostina, Aleksandra; Irtyuga, Olga; Voronkina, Irina; Smagina, Larisa; Ignatieva, Elena; Gavriliuk, Natalia; Uspensky, Vladimir; Moiseeva, Olga; Vaage, Jarle; Kostareva, Anna

    2016-01-01

    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis. PMID:26904289

  5. Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms.

    PubMed

    Malashicheva, Anna; Kostina, Daria; Kostina, Aleksandra; Irtyuga, Olga; Voronkina, Irina; Smagina, Larisa; Ignatieva, Elena; Gavriliuk, Natalia; Uspensky, Vladimir; Moiseeva, Olga; Vaage, Jarle; Kostareva, Anna

    2016-01-01

    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis.

  6. Aortic valve orifice equation independent of valvular flow intervals: application to aortic valve area computation in aortic stenosis and comparison with the Gorlin formula.

    PubMed

    Seitz, W; Oppenheimer, L; McIlroy, M; Nelson, D; Operschall, J

    1986-12-01

    An orifice equation is derived relating the effective aortic valve area, A, the average aortic valve pressure gradient, dP, the stroke volume, SV, and the heart frequency, FH, through considerations of momentum conservation across the aortic valve. This leads to a formula consistent with Newton's second law of motion. The form of the new equation is A = (7.5 X 10(-5)) SV FH2/Pd, where A, VS, FH and Pd are expressed in cm2, ml, s-1 and mmHg, respectively. Aortic valve areas computed with the new orifice equation are found to correlate with those computed by the Gorlin formula in conditions of resting haemodynamic states at a level of r = 0.86, SE = 0.25 cm2, N = 120. The results suggest that the new formula may be considered as an independent orifice equation having a similar domain of validity as the Gorlin formula. The new equation offers the possibility of deriving additional useful haemodynamic relationships through combination with established cardiological formulas and applying it in a noninvasive Doppler ultrasonic or echocardiographic context.

  7. Spontaneous aortic dissection within an infrarenal AAA.

    PubMed

    Griffin, Kathryn J; Bailey, Marc A; McAree, Barry; Mekako, Anthony; Berridge, David C; Nicholson, Tony; Scott, D Julian A

    2012-12-01

    Aortic dissection occurring in the infrarenal abdominal aorta is uncommon. We present the case of a patient presenting with an enlarging abdominal aortic aneurysm and concurrent dissection (with associated radiological imaging) and briefly discuss the literature relating to this phenomenon.

  8. Abdominal aortic feminism.

    PubMed

    Mortimer, Alice Emily

    2014-11-14

    A 79-year-old woman presented to a private medical practice 2 years previously for an elective ultrasound screening scan. This imaging provided the evidence for a diagnosis of an abdominal aortic aneurysm (AAA) to be made. Despite having a number of recognised risk factors for an AAA, her general practitioner at the time did not follow the guidance set out by the private medical professional, that is, to refer the patient to a vascular specialist to be entered into a surveillance programme and surgically evaluated. The patient became symptomatic with her AAA, was admitted to hospital and found to have a tender, symptomatic, 6 cm leaking AAA. She consented for an emergency open AAA repair within a few hours of being admitted to hospital, despite the 50% perioperative mortality risk. The patient spent 4 days in intensive care where she recovered well. She was discharged after a 12 day hospital stay but unfortunately passed away shortly after her discharge from a previously undiagnosed gastric cancer. 2014 BMJ Publishing Group Ltd.

  9. Aortic Arch Interruption and Persistent Fifth Aortic Arch in Phace Syndrome: Prenatal Diagnosis and Postnatal Course.

    PubMed

    Chiappa, Enrico; Greco, Antonella; Fainardi, Valentina; Passantino, Silvia; Serranti, Daniele; Favilli, Silvia

    2015-09-01

    PHACE is a rare congenital neurocutaneous syndrome where posterior fossa malformations, hemangiomas, cerebrovascular anomalies, aortic arch anomalies, cardiac defects, and eye abnormalities are variably associated. We describe the prenatal detection and the postnatal course of a child with PHACE syndrome with a unique type of aortic arch anomaly consisting of proximal interruption of the aortic arch and persistence of the fifth aortic arch. The fifth aortic arch represented in this case a vital systemic-to-systemic connection between the ascending aorta and the transverse portion of the aortic arch allowing adequate forward flow through the aortic arch without surgical treatment.

  10. Single nucleotide polymorphism (SNP) of the endothelial nitric oxide synthase (eNOS) gene (Glu298Asp variant) in infertile men with asthenozoospermia.

    PubMed

    Buldreghini, Eddi; Mahfouz, Reda Z; Vignini, Arianna; Mazzanti, Laura; Ricciardo-Lamonica, Giuseppe; Lenzi, Andrea; Agarwal, Ashok; Balercia, Giancarlo

    2010-01-01

    The objective of this study was to elucidate the missense Glu298Asp polymorphism within exon 7 of the endothelial nitric oxide synthase (eNOS) gene in infertile men with asthenozoospermia and its potential role in sperm motility. In this prospective controlled study conducted in our andrology unit, we investigated the frequency of the 894G>T polymorphism (Glu298Asp variant) within exon 7 of the eNOS gene in 70 infertile men and 60 healthy men. Sperm motion kinetics were assessed with computer-assisted semen analysis. The presence of G>T, a single nucleotide polymorphism (SNP) in exon 7 of the eNOS gene (NCBI SNP cluster rs1799983; GenBank accession number NG_011992; protein accession number NP_000594) was determined by allelespecific polymerase chain reaction followed by restriction fragment length polymorphism analysis. Sequencing analysis was used to confirm the specific genotype. The 894G>T eNOS allele (T) was found at a higher frequency in the patients with asthenozoospermia (60% vs 22.5% in the control group; P = .02). The percentage of progressive motile sperm (grade a + b) was lower in the asthenozoospermic infertile men with the homozygous eNOS (TT) genotype than in the wild-type eNOS (GG) (P = .02) and heterozygous eNOS (GT) genotypes (P = .01). However, the percentage of progressive motile sperm (grade a + b) was higher in the wild-type vs mutant eNOS (TT) (P = .03) and heterozygous eNOS (GT) genotypes (P = .04). Our findings suggest that the T allele encoding for aspartic acid of the eNOS (Glu298Asp) gene may contribute to poor sperm motility.

  11. Fibrotic Aortic Valve Stenosis in Hypercholesterolemic/Hypertensive Mice.

    PubMed

    Chu, Yi; Lund, Donald D; Doshi, Hardik; Keen, Henry L; Knudtson, Kevin L; Funk, Nathan D; Shao, Jian Q; Cheng, Justine; Hajj, Georges P; Zimmerman, Kathy A; Davis, Melissa K; Brooks, Robert M; Chapleau, Mark W; Sigmund, Curt D; Weiss, Robert M; Heistad, Donald D

    2016-03-01

    Hypercholesterolemia and hypertension are associated with aortic valve stenosis (AVS) in humans. We have examined aortic valve function, structure, and gene expression in hypercholesterolemic/hypertensive mice. Control, hypertensive, hypercholesterolemic (Apoe(-/-)), and hypercholesterolemic/hypertensive mice were studied. Severe aortic stenosis (echocardiography) occurred only in hypercholesterolemic/hypertensive mice. There was minimal calcification of the aortic valve. Several structural changes were identified at the base of the valve. The intercusp raphe (or seam between leaflets) was longer in hypercholesterolemic/hypertensive mice than in other mice, and collagen fibers at the base of the leaflets were reoriented to form a mesh. In hypercholesterolemic/hypertensive mice, the cusps were asymmetrical, which may contribute to changes that produce AVS. RNA sequencing was used to identify molecular targets during the developmental phase of stenosis. Genes related to the structure of the valve were identified, which differentially expressed before fibrotic AVS developed. Both RNA and protein of a profibrotic molecule, plasminogen activator inhibitor 1, were increased greatly in hypercholesterolemic/hypertensive mice. Hypercholesterolemic/hypertensive mice are the first model of fibrotic AVS. Hypercholesterolemic/hypertensive mice develop severe AVS in the absence of significant calcification, a feature that resembles AVS in children and some adults. Structural changes at the base of the valve leaflets include lengthening of the raphe, remodeling of collagen, and asymmetry of the leaflets. Genes were identified that may contribute to the development of fibrotic AVS. © 2016 American Heart Association, Inc.

  12. Current aortic endografts for the treatment of abdominal aortic aneurysms.

    PubMed

    Colvard, Benjamin; Georg, Yannick; Chakfe, Nabil; Swanstrom, Lee

    2016-05-01

    Endovascular Aneurysm Repair is a widely adopted method of treatment for patients with abdominal aortic aneurysms. The minimally invasive approach offered with EVAR has become popular not only among physicians and patients, but in the medical device industry as well. Over the past 25 years the global market for aortic endografts has increased rapidly, resulting in a wide range of devices from various companies. Currently, there are seven endografts approved by the FDA for the treatment of abdominal aortic aneurysms. These devices offer a wide range of designs intended to increase inclusion criteria while decreasing technical complications such as endoleak and migration. Despite advances in device design, secondary interventions and follow-up requirements remain a significant issue. New devices are currently being studied in the U.S. and abroad and may significantly reduce complications and secondary interventions.

  13. Aging-related endothelial dysfunction in the aorta from female senescence-accelerated mice is associated with decreased nitric oxide synthase expression.

    PubMed

    Novella, Susana; Dantas, Ana Paula; Segarra, Gloria; Vidal-Gómez, Xavier; Mompeón, Ana; Garabito, Manel; Hermenegildo, Carlos; Medina, Pascual

    2013-11-01

    The present study investigated the time-course for aging-associated effects on contractile and relaxing vascular responses and nitric oxide (NO) production in the aorta from female senescence-accelerated resistant (SAMR1) and prone (SAMP8) mice. Both SAMR1 and SAMP8 were studied at three different ages: 3 (young), 6 (middle age) and 10 (old) months. Concentration-response curves to phenylephrine (10(-8) to 10(-5) M) or acetylcholine (10(-9) to 10(-5) M) were performed in the aortic rings in the absence or in the presence of NO synthase (NOS) inhibitor L-NAME (10(-4) M). Protein and gene expression for endothelial NOS (eNOS) was determined by immunofluorescence, Western blot and real-time PCR. Although we have not seen any difference in vascular responses when comparing both strains at 3 months old, we found a significant aging-associated impairment of vascular reactivity that follows a distinct time-course in SAMR1 and SAMP8. In SAMR1, increases in phenylephrine contraction and decreases in acetylcholine relaxation were only seen at 10 months old, while SAMP8 displays altered responses at 6 months that are further impaired at 10 months old. L-NAME treatment enhanced phenylephrine contractions and completely inhibited acetylcholine relaxations in all age groups of SAMR1 and SAMP8. However, the magnitude of increase in phenylephrine contraction by L-NAME was markedly reduced by aging and followed a faster pace in SAMP8. Similar pattern of responses was observed in the time course for changes of eNOS expression, suggesting an earlier and more pronounced aging-associated decrease of NO production and eNOS expression in SAMP8. These results reveal that aging enhances contractile responses to phenylephrine and decreases endothelium-dependent relaxation to acetylcholine in the aorta from female mice by a mechanism that involves a decrease of NO production. This process occurs earlier in the aorta from SAMP8 mice, establishing these mice as suitable model to study

  14. Management of bicuspid aortic valve with or without involvement of ascending aorta and aortic root.

    PubMed

    Neragi-Miandoab, S

    2014-06-01

    Patients with a bicuspid aortic valve (BAV) constitute a heterogeneous population with variable clinical presentation and complications. More than 50% of the patients who require aortic valve replacement have a BAV, a condition that may be associated with dilation of ascending aorta and aortic insufficiency caused by cusp disease or aortic root pathology. Of the potential BAV-related complications, dilation of the aortic root and ascending aorta are among the most serious. The dilation of ascending aorta and aortic root have been the subject of controversy. Whereas some surgeons believe that the dilation of the aorta is caused by the hemodynamic properties of the BAV, others believe that the dilation of the aortic root is secondary to genetic defects associated with the BAV. Management of a BAV should be tailored to each patient's clinical condition. The surgical approach varies from aortic valve replacement to combined aortic valve and root replacement to aortic-valve-sparing root replacement.

  15. Viscous energy loss in the presence of abnormal aortic flow.

    PubMed

    Barker, Alex J; van Ooij, Pim; Bandi, Krishna; Garcia, Julio; Albaghdadi, Mazen; McCarthy, Patrick; Bonow, Robert O; Carr, James; Collins, Jeremy; Malaisrie, S Chris; Markl, Michael

    2014-09-01

    To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. Four-dimensional flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n = 12, age = 37 ± 10 yr), patients with aortic dilation (n = 16, age = 52 ± 8 yr), and patients with aortic valve stenosis matched for age and aortic size (n = 14, age = 46 ± 15 yr), using a relationship between the three-dimensional velocity field and viscous energy dissipation. Viscous energy loss was elevated significantly in the thoracic aorta in patients with dilated aorta (3.6 ± 1.3 mW, P = 0.024) and patients with aortic stenosis (14.3 ± 8.2 mW, P < 0.001) compared with healthy volunteers (2.3 ± 0.9 mW). The same pattern of significant differences was seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2 ± 1.1 mW, P = 0.021) and patients with aortic stenosis (10.9 ± 6.8 mW, P < 0.001) were elevated compared with healthy volunteers (1.2 ± 0.6 mW). This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow. Copyright © 2013 Wiley Periodicals, Inc.

  16. Genes and Abdominal Aortic Aneurysm

    PubMed Central

    Hinterseher, Irene; Tromp, Gerard; Kuivaniemi, Helena

    2010-01-01

    Abdominal aortic aneurysm (AAA) is a multifactorial disease with a strong genetic component. Since first candidate gene studies were published 20 years ago, nearly 100 genetic association studies using single nucleotide polymorphisms (SNPs) in biologically relevant genes have been reported on AAA. The studies investigated SNPs in genes of the extracellular matrix, the cardiovascular system, the immune system, and signaling pathways. Very few studies were large enough to draw firm conclusions and very few results could be replicated in another sample set. The more recent unbiased approaches are family-based DNA linkage studies and genome-wide genetic association studies, which have the potential of identifying the genetic basis for AAA, if appropriately powered and well-characterized large AAA cohorts are used. SNPs associated with AAA have already been identified in these large multicenter studies. One significant association was of a variant in a gene called CNTN3 which is located on chromosome 3p12.3. Two follow-up studies, however, could not replicate the association. Two other SNPs, which are located on chromosome 9p21 and 9q33 were replicated in other samples. The two genes with the strongest supporting evidence of contribution to the genetic risk for AAA are the CDKN2BAS gene, also known as ANRIL, which encodes an antisense RNA that regulates expression of the cyclin-dependent kinase inhibitors CDKN2A and CDKN2B, and DAB2IP, which encodes an inhibitor of cell growth and survival. Functional studies are now needed to establish the mechanisms by which these genes contribute to AAA pathogenesis. PMID:21146954

  17. Thoracic Aortic Aneurysm from Chronic Antiestrogen Therapy.

    PubMed

    Tripathi, Rishi; Sainathan, Sandeep; Ziganshin, Bulat A; Elefteriades, John A

    2017-03-01

    Aortic aneurysms are a common but often undetected pathology prevalent in the population. They are often detected as incidental findings on imaging studies performed for unrelated pathologies. Estrogens have been shown to exert a protective influence on aortic tissue. Pharmacological agents blocking the actions of estrogens may thus be implicated in causing aortic pathologies. We present the case of an elderly woman with breast carcinoma treated for 18 years with antiestrogen therapy who subsequently developed acute thoracic aortic deterioration (enlargement and wall disruption).

  18. Surgical Repair of Retrograde Type A Aortic Dissection after Thoracic Endovascular Aortic Repair

    PubMed Central

    Kim, Chang-Young; Kim, Yeon Soo; Ryoo, Ji Yoon

    2014-01-01

    It is expected that the stent graft will become an alternative method for treating aortic diseases or reducing the extent of surgery; therefore, thoracic endovascular aortic repair has widened its indications. However, it can have rare but serious complications such as paraplegia and retrograde type A aortic dissection. Here, we report a surgical repair of retrograde type A aortic dissection that was performed after thoracic endovascular aortic repair. PMID:24570865

  19. Successes and challenges of using whole exome sequencing to identify novel genes underlying an inherited predisposition for thoracic aortic aneurysms and acute aortic dissections.

    PubMed

    Milewicz, Dianna M; Regalado, Ellen S; Shendure, Jay; Nickerson, Deborah A; Guo, Dong-chuan

    2014-02-01

    Thoracic aortic aneurysms involving the aortic root and/or ascending aorta can lead to acute aortic dissections. Approximately 20% of patients with thoracic aortic aneurysms and dissections (TAAD) have a family history of the disease, referred to as familial TAAD (FTAAD) that can be inherited in an autosomal dominant manner with variable expression with respect to disease presentation, age of onset and associated features. Whole exome sequencing (WES) has been used to identify causative mutations in novel genes for TAAD. The strategy used to reduce the large number of rare variants identified using WES is to sequence distant relatives with TAAD and filter for heterozygous rare variants that are shared between the relatives, predicted to disrupt protein function and segregate with the TAAD phenotype in other family members. Putative genes are validated by identifying additional families with a causative mutation in the genes. This approach has successfully identified novel genes for FTAAD.

  20. Successes and Challenges of Using Whole Exome Sequencing to Identify Novel Genes Underlying an Inherited Predisposition for Thoracic Aortic Aneurysms and Acute Aortic Dissections

    PubMed Central

    Milewicz, Dianna M.; Regalado, Ellen; Shendure, Jay; Nickerson, Deborah A.; Guo, Dongchuan

    2013-01-01

    Thoracic aortic aneurysms involving the aortic root and/or ascending aorta can lead to acute aortic dissections. Approximately 20% of patients with thoracic aortic aneurysms and dissections (TAAD) have a family history of the disease, referred to as familial TAAD (FTAAD), which can be inherited in an autosomal dominant manner with variable expression with respect to disease presentation, age of onset and associated features. Whole exome sequencing (WES) has been used to identify causative mutations in novel genes for TAAD. The strategy used to reduce the large number of rare variants identified using WES is to sequence distant relatives with TAAD and filter for heterozygous rare variants that are shared between the relatives, predicted to disrupt protein function and segregate with the TAAD phenotype in other family members. Further validation of putative genes by sequencing of additional families with TAAD has successfully identified novel genes for FTAAD. PMID:23953976