Sample records for ap-2alpha binding site

  1. Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site.

    PubMed Central

    Pintor, J.; Torres, M.; Castro, E.; Miras-Portugal, M. T.

    1991-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide, which is stored in secretory granules, presents two types of high affinity binding sites in chromaffin cells. A Kd value of 8 +/- 0.65 x 10(-11) M and Bmax value of 5420 +/- 450 sites per cell were obtained for the high affinity binding site. A Kd value of 5.6 +/- 0.53 x 10(-9) M and a Bmax value close to 70,000 sites per cell were obtained for the second binding site with high affinity. 2. The diadenosine polyphosphates, Ap3A, Ap4A, Ap5A and Ap6A, displaced [3H]-Ap4A from the two binding sites, the Ki values being 1.0 nM, 0.013 nM, 0.013 nM and 0.013 nM for the very high affinity binding site and 0.5 microM, 0.13 microM, 0.062 microM and 0.75 microM for the second binding site. 3. The ATP analogues displaced [3H]-Ap4A with the potency order of the P2y receptors, adenosine 5'-O-(2 thiodiphosphate) (ADP-beta-S) greater than 5'-adenylyl imidodiphosphate (AMP-PNP) greater than alpha, beta-methylene ATP (alpha, beta-MeATP), in both binding sites. The Ki values were respectively 0.075 nM, 0.2 nM and 0.75 nM for the very high affinity binding site and 0.125 microM, 0.5 microM and 0.9 microM for the second binding site. PMID:1912985

  2. Induction of dystrophin Dp71 expression during neuronal differentiation: opposite roles of Sp1 and AP2alpha in Dp71 promoter activity.

    PubMed

    Morales-Lázaro, Sara Luz; González-Ramírez, Ricardo; Gómez, Pablo; Tapia-Ramírez, Victor; de León, Mario Bermúdez; Cisneros, Bulmaro

    2010-01-01

    In this study, we delineated the molecular mechanisms that modulate Dp71 expression during neuronal differentiation, using the N1E-115 cell line. We demonstrated that Dp71 expression is up-regulated in response to cAMP-mediated neuronal differentiation of these cells, and that this induction is controlled at promoter level. Functional deletion analysis of the Dp71 promoter revealed that a 5'-flanking 159-bp DNA fragment that contains Sp1 and AP2 binding sites is necessary and sufficient for basal expression of this TATA-less promoter, as well as for its induction during neuronal differentiation. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that Sp1 and AP2alpha bind to their respective DNA elements within the Dp71 basal promoter. Overall, mutagenesis assays on the Sp1 and AP2 binding sites, over-expression of Sp1 and AP2alpha, as well as knock-down experiments on Sp1 and AP2alpha gene expression established that Dp71 basal expression is controlled by the combined action of Sp1 and AP2alpha, which act as activator and repressor, respectively. Furthermore, we demonstrated that induction of Dp71 expression in differentiated cells is the result of the maintenance of positive regulation exerted by Sp1, as well as of the loss of AP2alpha binding, which ultimately releases the promoter from repression.

  3. Ap4A and ADP-beta-S binding to P2 purinoceptors present on rat brain synaptic terminals.

    PubMed Central

    Pintor, J.; Díaz-Rey, M. A.; Miras-Portugal, M. T.

    1993-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide stored and released from rat brain synaptic terminals presents two types of affinity binding sites in synaptosomes. When [3H]-Ap4A was used for binding studies a Kd value of 0.10 +/- 0.014 nM and a Bmax value of 16.6 +/- 1.2 fmol mg-1 protein were obtained for the high affinity binding site from the Scatchard analysis. The second binding site, obtained by displacement studies, showed a Ki value of 0.57 +/- 0.09 microM. 2. Displacement of [3H]-Ap4A by non-labelled Ap4A and P2-purinoceptor ligands showed a displacement order of Ap4A > adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S) > 5'-adenylyl-imidodiphosphate (AMP-PNP) > alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) in both sites revealed by the Ki values of 0.017 nM, 0.030 nM, 0.058 nM and 0.147 nM respectively for the high affinity binding site and values of 0.57 microM, 0.87 microM, 2.20 microM and 4.28 microM respectively for the second binding site. 3. Studies of the P2-purinoceptors present in synaptosomes were also performed with [35S]-ADP-beta-S. This radioligand showed two binding sites the first with Kd and Bmax values of 0.11 +/- 0.022 nM and 3.9 +/- 2.1 fmol mg-1 of protein respectively for the high affinity binding site obtained from the Scatchard plot. The second binding site showed a Ki of 0.018 +/- 0.0035 microM obtained from displacement curves. 4. Competition studies with diadenosine polyphosphates of [35S]-ADP-beta-S binding showed a displacement order of Ap4A > Ap5A > Ap6A in the high affinity binding site and Ki values of 0.023 nM, 0.081 nM and 5.72 nM respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8485620

  4. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-{alpha}-induced vascular endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayermore » binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.« less

  5. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain.

    PubMed

    Legendre-Guillemin, Valerie; Metzler, Martina; Charbonneau, Martine; Gan, Lu; Chopra, Vikramjit; Philie, Jacynthe; Hayden, Michael R; McPherson, Peter S

    2002-05-31

    Huntingtin-interacting protein 1 (HIP1) and HIP12 are orthologues of Sla2p, a yeast protein with essential functions in endocytosis and regulation of the actin cytoskeleton. We now report that HIP1 and HIP12 are major components of the clathrin coat that interact but differ in their ability to bind clathrin and the clathrin adaptor AP2. HIP1 contains a clathrin-box and AP2 consensus-binding sites that display high affinity binding to the terminal domain of the clathrin heavy chain and the ear domain of the AP2 alpha subunit, respectively. These consensus sites are poorly conserved in HIP12 and correspondingly, HIP12 does not bind to AP2 nor does it demonstrate high affinity clathrin binding. Moreover, HIP12 co-sediments with F-actin in contrast to HIP1, which exhibits no interaction with actin in vitro. Despite these differences, both proteins efficiently stimulate clathrin assembly through their central helical domain. Interestingly, in both HIP1 and HIP12, this domain binds directly to the clathrin light chain. Our data suggest that HIP1 and HIP12 play related yet distinct functional roles in clathrin-mediated endocytosis.

  6. Resolution of the diadenosine 5',5"'-P1,P4-tetraphosphate binding subunit from a multiprotein form of HeLa cell DNA polymerase alpha.

    PubMed Central

    Baril, E; Bonin, P; Burstein, D; Mara, K; Zamecnik, P

    1983-01-01

    A diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) binding subunit has been resolved from a high molecular weight (640,000) multiprotein form of DNA polymerase alpha [deoxynucleoside triphosphate:DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7] from HeLa cells [DNA polymerase alpha 2 of Lamothe, P., Baril, B., Chi, A., Lee, L. & Baril, E. (1981) Proc. Natl. Acad. Sci. USA 78, 4723-4727]. The Ap4A binding activity copurifies with the DNA polymerizing activity during the course of purification. Hydrophobic chromatography on butylagarose resolves the Ap4A binding activity from the DNA polymerase. The Ap4A binding activity is protein in nature since the binding of Ap4A is abolished by treatment of the isolated binding activity with proteinase K but is insensitive to treatment with DNase or RNase. The molecular weight of the Ap4A binding protein, as determined by polyacrylamide gel electrophoresis under nondenaturing conditions or by NaDodSO4/polyacrylamide gel electrophoresis after photoaffinity labeling of the protein with [32P]Ap4A is 92,000 or 47,000. The binding activity of this protein is highly specific for Ap4A. Images PMID:6576366

  7. Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.

    2010-11-05

    Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened ormore » eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.« less

  8. Molecular and functional characterization of clathrin- and AP-2-binding determinants within a disordered domain of auxilin.

    PubMed

    Scheele, Urte; Alves, Jurgen; Frank, Ronald; Duwel, Michael; Kalthoff, Christoph; Ungewickell, Ernst

    2003-07-11

    Uncoating of clathrin-coated vesicles requires the J-domain protein auxilin for targeting hsc70 to the clathrin coats and for stimulating the hsc70 ATPase activity. This results in the release of hsc70-complexed clathrin triskelia and concomitant dissociation of the coat. To understand the complex role of auxilin in uncoating and clathrin assembly in more detail, we analyzed the molecular organization of its clathrin-binding domain (amino acids 547-813). CD spectroscopy of auxilin fragments revealed that the clathrin-binding domain is almost completely disordered in solution. By systematic mapping using synthetic peptides and by site-directed mutagenesis, we identified short peptide sequences involved in clathrin heavy chain and AP-2 binding and evaluated their significance for the function of auxilin. Some of the binding determinants, including those containing sequences 674DPF and 636WDW, showed dual specificity for both clathrin and AP-2. In contrast, the two DLL motifs within the clathrin-binding domain were exclusively involved in clathrin binding. Surprisingly, they interacted not only with the N-terminal domain of the heavy chain, but also with the distal domain. Moreover, both DLL peptides proved to be essential for clathrin assembly and uncoating. In addition, we found that the motif 726NWQ is required for efficient clathrin assembly activity. Auxilin shares a number of protein-protein interaction motifs with other endocytic proteins, including AP180. We demonstrate that AP180 and auxilin compete for binding to the alpha-ear domain of AP-2. Like AP180, auxilin also directly interacts with the ear domain of beta-adaptin. On the basis of our data, we propose a refined model for the uncoating mechanism of clathrin-coated vesicles.

  9. ERalpha and AP-1 interact in vivo with a specific sequence of the F promoter of the human ERalpha gene in osteoblasts.

    PubMed

    Lambertini, Elisabetta; Tavanti, Elisa; Torreggiani, Elena; Penolazzi, Letizia; Gambari, Roberto; Piva, Roberta

    2008-07-01

    Estrogen-responsive genes often have an estrogen response element (ERE) positioned next to activator protein-1 (AP-1) binding sites. Considering that the interaction between ERE and AP-1 elements has been described for the modulation of bone-specific genes, we investigated the 17-beta-estradiol responsiveness and the role of these cis-elements present in the F promoter of the human estrogen receptor alpha (ERalpha) gene. The F promoter, containing the sequence analyzed here, is one of the multiple promoters of the human ERalpha gene and is the only active promoter in bone tissue. Through electrophoretic mobility shift (EMSA), chromatin immunoprecipitation (ChIP), and re-ChIP assays, we investigated the binding of ERalpha and four members of the AP-1 family (c-Jun, c-fos, Fra-2, and ATF2) to a region located approximately 800 bp upstream of the transcriptional start site of exon F of the human ERalpha gene in SaOS-2 osteoblast-like cells. Reporter gene assay experiments in combination with DNA binding assays demonstrated that F promoter activity is under the control of upstream cis-acting elements which are recognized by specific combinations of ERalpha, c-Jun, c-fos, and ATF2 homo- and heterodimers. Moreover, ChIP and re-ChIP experiments showed that these nuclear factors bind the F promoter in vivo with a simultaneous occupancy stimulated by 17-beta-estradiol. Taken together, our findings support a model in which ERalpha/AP-1 complexes modulate F promoter activity under conditions of 17-beta-estradiol stimulation. (c) 2008 Wiley-Liss, Inc.

  10. Autoradiography of P2x ATP receptors in the rat brain.

    PubMed Central

    Balcar, V. J.; Li, Y.; Killinger, S.; Bennett, M. R.

    1995-01-01

    1. Binding of a P2x receptor specific radioligand, [3H]-alpha,beta-methylene adenosine triphosphate ([3H]-alpha,beta-MeATP) to sections of rat brain was reversible and association/dissociation parameters indicated that it consisted of two saturable components. Non-specific binding was very low (< 7% at 10 nM ligand concentration). 2. The binding was completely inhibited by suramin (IC50 approximately 14-26 microM) but none of the ligands specific for P2y receptors such as 2-methylthio-adenosine triphosphate (2-methyl-S-ATP) and 2-chloro-adenosine triphosphate (2-C1-ATP) nor 2-methylthio-adenosine diphosphate (2-methyl-S-ADP) a ligand for the P2 receptor on blood platelets ('P2T' type) produced strong inhibitions except for P1,P4-di(adenosine-5')tetraphosphate (Ap4A). 3. Inhibitors of Na+,K(+)-dependent adenosine triphosphatase (ATPase) ouabain, P1-ligand adenosine and an inhibitor of transport of, respectively, adenosine and cyclic nucleotides, dilazep, had no effect. 4. The highest density of P2x binding sites was found to be in the cerebellar cortex but the binding sites were present in all major brain regions, especially in areas known to receive strong excitatory innervation. Images Figure 2 PMID:7670731

  11. Organization, regulatory sequences, and alternatively spliced transcripts of the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampaio, S.O.; Mei, C.; Butcher, E.C.

    The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less

  12. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat.

    PubMed

    Laubinger, W; Reiser, G

    1999-01-29

    Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.

  13. The interaction of diadenosine polyphosphates with P2x-receptors in the guinea-pig isolated vas deferens.

    PubMed

    Westfall, T D; McIntyre, C A; Obeid, S; Bowes, J; Kennedy, C; Sneddon, P

    1997-05-01

    1. The site(s) at which diadenosine 5',5"'-P1,P4-tetraphosphate (AP4A) and diadenosine 5', 5"'-P1,P5-pentaphosphate (AP5A) act to evoke contraction of the guinea-pig isolated vas deferens was studied by use of a series of P2-receptor antagonists and the ecto-ATPase inhibitor 6-N,N-diethyl-D-beta,gamma-dibromomethyleneATP (ARL 67156). 2. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (300 nM - 30 microM), suramin (3-100 microM) and pyridoxal-5'-phosphate (P-5-P) (3-1000 microM) inhibited contractions evoked by equi-effective concentrations of AP5A (3 microM), AP4A (30 microM) and alpha,beta-methyleneATP (alpha,beta-meATP) (1 microM), in a concentration-dependent manner and abolished them at the highest concentrations used. 3. PPADS was more potent than suramin, which in turn was more potent than P-5-P. PPADS inhibited AP5A, AP4A and alpha,beta-meATP with similar IC50 values. No significant difference was found between IC50 values for suramin against alpha,beta-meATP and AP5A or alpha,beta-meATP and AP4A, but suramin was more than 2.5 times more potent against AP4A than AP5A. P-5-P showed the same pattern of antagonism. 4. Desensitization of the P2xi-receptor by alpha,beta-meATP abolished contractions evoked by AP5A (3 microM) and AP4A (30 microM), but had no effect on those elicited by noradrenaline (100 microM). 5. ARL 67156 (100 microM) reversibly potentiated contractions evoked by AP4A (30 microM) by 61%, but caused a small, significant decrease in the mean response to AP5A (3 microM). 6. It is concluded that AP4A and AP5A act at the P2xi-receptor, or a site similar to the P2xi-receptor, to evoke contraction of the guinea-pig isolated vas deferens. Furthermore, the potency of AP4A, but not AP5A, appears to be inhibited by an ecto-enzyme which is sensitive to ARL 67156.

  14. Functional Analysis of AP-2 α and μ2 Subunits

    PubMed Central

    Motley, Alison M.; Berg, Nicola; Taylor, Marcus J.; Sahlender, Daniela A.; Hirst, Jennifer; Owen, David J.

    2006-01-01

    The AP-2 adaptor complex plays a key role in cargo recognition and clathrin-coated vesicle formation at the plasma membrane. To investigate the functions of individual binding sites and domains of the AP-2 complex in vivo, we have stably transfected HeLa cells with wild-type and mutant small interfering RNA–resistant α and μ2 subunits and then used siRNA knockdowns to deplete the endogenous proteins. Mutating the PtdIns(4,5)P2 binding site of α, the phosphorylation site of μ2, or the YXXΦ binding site of μ2 impairs AP-2 function, as assayed by transferrin uptake. In contrast, removing the C-terminal appendage domain of α, or mutating the PtdIns(4,5)P2 binding site of μ2, has no apparent effect. However, adding a C-terminal GFP tag to α renders it completely nonfunctional. These findings demonstrate that there is some functional redundancy in the binding sites of the various AP-2 subunits, because no single mutation totally abolishes function. They also help to explain why GFP-tagged AP-2 never appears to leave the plasma membrane in some live cell imaging studies. Finally, they establish a new model system that can be used both for additional structure-function analyses, and as a way of testing tagged constructs for function in vivo. PMID:17035630

  15. Shape-selective recognition of DNA abasic sites by metallohelices: inhibition of human AP endonuclease 1

    PubMed Central

    Malina, Jaroslav; Scott, Peter; Brabec, Viktor

    2015-01-01

    Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo–helical ‘flexicate’ complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3]4+ incorporating the common NN–NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo–helical complexes for cancer chemotherapy. PMID:25940617

  16. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    PubMed

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  17. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human beta 3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in alphaIIbbeta3 activation.

    PubMed

    Chen, P; Melchior, C; Brons, N H; Schlegel, N; Caen, J; Kieffer, N

    2001-10-19

    We have investigated receptor function and epitope expression of recombinant alpha(IIb)beta(3) mutated at Cys(177) or Cys(273) in the I-like domain as well as Cys(598), located in the fourth repeat of the membrane-proximal cysteine-rich region and mutated in a Glanzmann's thrombasthenia type II patient. The beta(3) mutants beta(3)C177A, beta(3)C273A, and beta(3)C598Y exhibited a decreased electrophoretic mobility in SDS-polyacrylamide gel electrophoresis under nonreducing conditions, confirming the disruption of the respective disulfide loops. Despite reduced surface expression, the alpha(IIb)beta(3)C177A, alpha(IIb)beta(3)C273A, and alpha(IIb)beta(3)C598Y receptors mediated cell adhesion to immobilized fibrinogen and translocated into focal adhesion plaques. The beta(3)C598Y mutation, but not the beta(3)C177A or beta(3)C273A mutations, induced spontaneous binding of the ligand mimetic monoclonal antibody PAC-1, while the beta(3)C177A and beta(3)C273A mutants exhibited reduced complex stability in the absence of Ca(2+). Epitope mapping of function-blocking monoclonal antibodies (mAbs) allowed the identification of two distinct subgroups; mAbs A2A9, pl2-46, 10E5, and P256 did not interact with alpha(IIb)beta(3)C273A and bound only weakly to alpha(IIb)beta(3)C177A, while mAbs AP2, LM609 and 7E3 bound normally to mutant alpha(IIb)beta(3)C273A, but interacted only weakly with mutant alpha(IIb)beta(3)C177A. Furthermore, a cryptic epitope recognized by mAb 4D10G3 and not exposed on wild type alpha(IIb)beta(3) became accessible only on mutant alpha(IIb)beta(3)C177A and was mapped to the 60-kDa chymotrypsin fragment of beta(3). Finally, the ligand-induced binding site (LIBS) epitopes AP5, D3, LIBS1, and LIBS2 were spontaneously expressed on all three mutants independent of RGDS or dithiothreitol treatment. Our results provide evidence that disruption of a single cysteine disulfide bond in the cysteine-rich repeat domain, but not in the I-like domain, activates integrin alpha(IIb)beta(3). In contrast, disruption of each of the disulfide bonds in the two long insertions of the I-like domain predicted to be in close contact with the alpha subunit beta-propeller domain affect the stability of the alpha(IIb)beta(3) heterodimer and inhibit complex-specific mAb binding without affecting the RGD binding capacity of the metal ion-dependent adhesion site-like domain.

  18. Shape-selective recognition of DNA abasic sites by metallohelices: inhibition of human AP endonuclease 1.

    PubMed

    Malina, Jaroslav; Scott, Peter; Brabec, Viktor

    2015-06-23

    Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo-helical 'flexicate' complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3](4+) incorporating the common NN-NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo-helical complexes for cancer chemotherapy. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function, and evolutionary relatedness

    PubMed Central

    Brimer, Nicole

    2017-01-01

    Papillomavirus E6 proteins bind to LXXLL peptide motifs displayed on targeted cellular proteins. Alpha genus HPV E6 proteins associate with the cellular ubiquitin ligase E6AP (UBE3A), by binding to an LXXLL peptide (ELTLQELLGEE) displayed by E6AP, thereby stimulating E6AP ubiquitin ligase activity. Beta, Gamma, and Delta genera E6 proteins bind a similar LXXLL peptide (WMSDLDDLLGS) on the cellular transcriptional co-activator MAML1 and thereby repress Notch signaling. We expressed 45 different animal and human E6 proteins from diverse papillomavirus genera to ascertain the overall preference of E6 proteins for E6AP or MAML1. E6 proteins from all HPV genera except Alpha preferentially interacted with MAML1 over E6AP. Among animal papillomaviruses, E6 proteins from certain ungulate (SsPV1 from pigs) and cetacean (porpoises and dolphins) hosts functionally resembled Alpha genus HPV by binding and targeting the degradation of E6AP. Beta genus HPV E6 proteins functionally clustered with Delta, Pi, Tau, Gamma, Chi, Mu, Lambda, Iota, Dyokappa, Rho, and Dyolambda E6 proteins to bind and repress MAML1. None of the tested E6 proteins physically and functionally interacted with both MAML1 and E6AP, indicating an evolutionary split. Further, interaction of an E6 protein was insufficient to activate degradation of E6AP, indicating that E6 proteins that target E6AP co-evolved to separately acquire both binding and triggering of ubiquitin ligase activation. E6 proteins with similar biological function clustered together in phylogenetic trees and shared structural features. This suggests that the divergence of E6 proteins from either MAML1 or E6AP binding preference is a major event in papillomavirus evolution. PMID:29281732

  20. Structural Basis for the Recognition of Tyrosine-based Sorting Signals by the μ3A Subunit of the AP-3 Adaptor Complex*

    PubMed Central

    Mardones, Gonzalo A.; Burgos, Patricia V.; Lin, Yimo; Kloer, Daniel P.; Magadán, Javier G.; Hurley, James H.; Bonifacino, Juan S.

    2013-01-01

    Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14–19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides. PMID:23404500

  1. Structural basis for the recognition of tyrosine-based sorting signals by the μ3A subunit of the AP-3 adaptor complex.

    PubMed

    Mardones, Gonzalo A; Burgos, Patricia V; Lin, Yimo; Kloer, Daniel P; Magadán, Javier G; Hurley, James H; Bonifacino, Juan S

    2013-03-29

    Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14-19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides.

  2. Efficient triple helix formation by oligodeoxyribonucleotides containing alpha- or beta-2-amino-5-(2-deoxy-D-ribofuranosyl) pyridine residues.

    PubMed

    Bates, P J; Laughton, C A; Jenkins, T C; Capaldi, D C; Roselt, P D; Reese, C B; Neidle, S

    1996-11-01

    Triple helices containing C+xGxC triplets are destabilised at physiological pH due to the requirement for base protonation of 2'-deoxycytidine (dC), which has a pKa of 4.3. The C nucleoside 2-amino-5-(2'-deoxy-beta-D-ribofuranosyl)pyridine (beta-AP) is structurally analogous to dC but is considerably more basic, with a pKa of 5.93. We have synthesised 5'-psoralen linked oligodeoxyribonucleotides (ODNs) containing thymidine (dT) and either beta-AP or its alpha-anomer (alpha-AP) and have assessed their ability to form triplexes with a double-stranded target derived from standard deoxynucleotides (i.e. beta-anomers). Third strand ODNs derived from dT and beta-AP were found to have considerably higher binding affinities for the target than the corresponding ODNs derived from dT and either dC or 5-methyl-2'-deoxycytidine (5-Me-dC). ODNs containing dT and alpha-AP also showed enhanced triplex formation with the duplex target and, in addition are more stable in serum-containing medium than standard oligopyrimidine-derived ODNs or ODNs derived from dT and beta-AP. Molecular modelling studies showed that an alpha-anomeric AP nucleotide can be accommodated within an otherwise beta-anomeric triplex with only minor perturbation of the triplex structure. Molecular dynamics (MD) simulations on triplexes containing either the alpha- or beta-anomer of (N1-protonated) AP showed that in both cases the base retained two standard hydrogen bonds to its associated guanine when the 'A-type' model of the triplex was used as the start-point for the simulation, but that bifurcated hydrogen bonds resulted when the alternative 'B-type' triplex model was used. The lack of a differential stability between alpha-AP- and beta-AP-containing triplexes at pH >7, predicted from the behaviour of the B-type models, suggests that the A-type models are more appropriate.

  3. Clathrin- and AP-2-binding sites in HIP1 uncover a general assembly role for endocytic accessory proteins.

    PubMed

    Mishra, S K; Agostinelli, N R; Brett, T J; Mizukami, I; Ross, T S; Traub, L M

    2001-12-07

    Clathrin-mediated endocytosis is a major pathway for the internalization of macromolecules into the cytoplasm of eukaryotic cells. The principle coat components, clathrin and the AP-2 adaptor complex, assemble a polyhedral lattice at plasma membrane bud sites with the aid of several endocytic accessory proteins. Here, we show that huntingtin-interacting protein 1 (HIP1), a binding partner of huntingtin, copurifies with brain clathrin-coated vesicles and associates directly with both AP-2 and clathrin. The discrete interaction sequences within HIP1 that facilitate binding are analogous to motifs present in other accessory proteins, including AP180, amphiphysin, and epsin. Bound to a phosphoinositide-containing membrane surface via an epsin N-terminal homology (ENTH) domain, HIP1 associates with AP-2 to provide coincident clathrin-binding sites that together efficiently recruit clathrin to the bilayer. Our data implicate HIP1 in endocytosis, and the similar modular architecture and function of HIP1, epsin, and AP180 suggest a common role in lipid-regulated clathrin lattice biogenesis.

  4. Interactions of the GM2 activator protein with phosphatidylcholine bilayers: a site-directed spin-labeling power saturation study.

    PubMed

    Mathias, Jordan D; Ran, Yong; Carter, Jeffery D; Fanucci, Gail E

    2009-09-02

    The GM2 activator protein (GM2AP) is an accessory protein that is an essential component in the catabolism of the ganglioside GM2. A function of GM2AP is to bind and extract GM2 from intralysosomal vesicles, forming a soluble protein-lipid complex, which interacts with the hydrolase Hexosaminidase A, the enzyme that cleaves the terminal sugar group of GM2. Here, we used site-directed spin labeling with power saturation electron paramagnetic resonance to determine the surface-bound orientation of GM2AP upon phosphatidylcholine vesicles. Because GM2AP extracts lipid ligands from the vesicle and is undergoing exchange on and off the vesicle surface, we utilized a nickel-chelating lipid to localize the paramagnetic metal collider to the lipid bilayer-aqueous interface. Spin-labeled sites that collide with the lipid-bound metal relaxing agent provide a means for mapping sites of the protein that interact with the lipid bilayer interface. Results show that GM2AP binds to lipid bilayers such that the residues lining the lipid-binding cavity lie on the vesicle surface. This orientation creates a favorable microenvironment that can allow for the lipid tails to flip out of the bilayer directly into the hydrophobic pocket of GM2AP.

  5. Mycophenolic acid attenuates tumor necrosis factor-alpha-induced endothelin-1 production in human aortic endothelial cells.

    PubMed

    Yang, Won Seok; Lee, Joo Mi; Han, Nam Jeong; Kim, Yoon Ji; Chang, Jai Won; Park, Su-Kil

    2010-07-01

    Atherosclerotic cardiovascular disease is the major cause of morbidity and mortality in solid organ transplant recipients. Endothelin-1 (ET-1) is implicated in the pathogenesis of atherosclerosis and is one of the potential therapeutic targets. This study was conducted to evaluate the effect of mycophenolic acid (MPA), an immunosuppressant for the transplant recipients, on tumor necrosis factor-alpha (TNF-alpha)-induced ET-1 production in aortic endothelial cells. In cultured human aortic endothelial cells, TNF-alpha increased ET-1 through AP-1 and NF-kappaB, whereas MPA attenuated it by reducing both AP-1 and NF-kappaB DNA-binding activities. TNF-alpha increased ET-1 via c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), but not extracellular signal-regulated kinase. N-acetylcysteine that downregulated TNF-alpha-induced reactive oxygen species (ROS) inhibited JNK activation, but not p38 MAPK. N-acetylcysteine, SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated TNF-alpha-induced DNA-binding activities of both AP-1 and NF-kappaB. MPA inhibited JNK and p38 MAPK activations as well as ROS generation. N-acetylcysteine, SP600125, SB203580 and MPA had no effect on either TNF-alpha-induced IkappaBalpha degradation or p65 nuclear translocation, but attenuated p65 Ser276 phosphorylation. MPA attenuated TNF-alpha-induced ET-1 production through inhibitions of ROS-dependent JNK and ROS-independent p38 MAPK that regulated NF-kappaB as well as AP-1. These findings suggest that MPA could have an effect of amelioration of atherosclerosis. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Synthesis and pharmacological evaluation of neurosteroid photoaffinity ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma

    2017-08-01

    Neuroactive steroids are potent positive allosteric modulators of GABAA receptors (GABAAR), but the locations of their GABAAR binding sites remain poorly defined. To discover these sites, we synthesized two photoreactive analogs of alphaxalone, an anesthetic neurosteroid targeting GABAAR, 11β-(4-azido-2,3,5,6-tetrafluorobenzoyloxy)allopregnanolone, (F4N3Bzoxy-AP) and 11-aziallopregnanolone (11-AziAP). Both photoprobes acted with equal or higher potency than alphaxalone as general anesthetics and potentiators of GABAAR responses, left-shifting the GABA concentration – response curve for human α1β3γ2 GABAARs expressed in Xenopus oocytes, and enhancing [3H]muscimol binding to α1β3γ2 GABAARs expressed in HEK293 cells. With EC50 of 110 nM, 11-AziAP is one the most potent general anestheticsmore » reported. [3H]F4N3Bzoxy-AP and [3H]11-AziAP, at anesthetic concentrations, photoincorporated into α- and β-subunits of purified α1β3γ2 GABAARs, but labeling at the subunit level was not inhibited by alphaxalone (30 μM). The enhancement of photolabeling by 3H-azietomidate and 3H-mTFD-MPAB in the presence of either of the two steroid photoprobes indicates the neurosteroid binding site is different from, but allosterically related to, the etomidate and barbiturate sites. Our observations are consistent with two hypotheses. First, F4N3Bzoxy-AP and 11-aziAP bind to a high affinity site in such a pose that the 11-photoactivatable moiety, that is rigidly attached to the steroid backbone, points away from the protein. Second, F4N3Bzoxy-AP, 11-aziAP and other steroid anesthetics, which are present at very high concentration at the lipid-protein interface due to their high lipophilicity, act via low affinity sites, as proposed by Akk et al. (Psychoneuroendocrinology 2009, 34S1, S59-S66).« less

  7. Immunological characterization of eristostatin and echistatin binding sites on alpha IIb beta 3 and alpha V beta 3 integrins.

    PubMed Central

    Marcinkiewicz, C; Rosenthal, L A; Mosser, D M; Kunicki, T J; Niewiarowski, S

    1996-01-01

    Two disintegrins with a high degree of amino acid sequence similarity, echistatin and eristostatin, showed a low level of interaction with Chinese hamster ovary (CHO) cells, but they bound to CHO cells transfected with alpha IIb beta 3 genes (A5 cells) and to CHO cells transfected with alpha v beta 3 genes (VNRC3 cells) in a reversible and saturable manner. Scatchard analysis revealed that eristostatin bound to 816000 sites per A5 cell (Kd 28 nM) and to 200000 sites (Kd 14 nM) per VNRC3 cell respectively. However, VNRC3 cells did not bind to immobilized eristostatin. Echistatin bound to 495000 sites (Kd 53 nM) per A5 cell and to 443000 sites (Kd 20 nM) per VNRC3 cell. As determined by flow cytometry, radiobinding assay and adhesion studies, binding of both disintegrins to A5 cells and resting platelets and binding of echistatin to VNRC3 cells resulted in the expression of ligand-induced binding sites (LIBS) on the beta 3 subunit. Eristostatin inhibited, more strongly than echistatin, the binding of three monoclonal antibodies: OPG2 (RGD motif dependent), A2A9 (alpha IIb beta 3 complex dependent) and 7E3 (alpha IIb beta 3 and alpha v beta 3 complex dependent) to A5 cells, to resting and to activated platelets and to purified alpha IIb beta 3. Experiments in which echistatin and eristostatin were used alone or in combination to inhibit the binding of 7E3 and OPG2 antibodies to resting platelets suggested that these two disintegrins bind to different but overlapping sites on alpha IIb beta 3 integrin. Monoclonal antibody LM 609 and echistatin seemed to bind to different sites on alpha v beta 3 integrin. However, echistatin inhibited binding of 7E3 antibody to VNRC3 cells and to purified alpha v beta 3 suggesting that alpha v beta 3 and alpha IIb beta 3 might share the same epitope to which both echistatin and 7E3 bind. Eristostatin had no effect in these systems, providing further evidence that it binds to a different epitope on alpha v beta 3. PMID:8760368

  8. Chromosome localization of human genes for clathrin adaptor polypeptides AP2{beta} and AP50 and the clathrin-binding protein, VCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druck, T.; Gu, Y.; Prabhala, G.

    1995-11-01

    Clathrin-coated vesicles, involved in endocytosis and Golgi processing, have a surface lattice containing clathrin triskelia and stoichiometric amounts of additional components termed {open_quotes}assembly proteins,{close_quotes} or APs. The AP form at the plasma membrane, AP2, is composed of two large subunits of 100-115 kDa, denoted AP2{alpha} and AP2{beta}, a medium chain of 50 kDa, designated AP50, and a small chain. We have determined human chromosomal locations of genes for a large AP2{beta} (CLAPB1) and a medium (CLAPM1) AP subunit and of a novel clathrin-binding protein, VCP, that binds clathrin simultaneously with A1`s. Chromosomal in situ hybridization of a human genomic clonemore » demonstrated that the CLAPM1 gene mapped to chromosome region 3q28. The gene for the CLAPB1 large subunit was mapped to 17q11.2-q12 by PCR amplification of an AP2{beta} fragment from a panel of rodent-human hybrid DNAs. To map the human VCP sequence, a human-specific probe was made by RT-PCR of human mRNA using oligonucleotide primers from conserved regions of the porcine sequence. The amplified human fragment served as probe on Southern blots of hybrid DNAs to determine that the human VCP locus maps to chromosome region 9pter-q34. 13 refs., 2 figs.« less

  9. Prostaglandin E and F2 alpha receptors in human myometrium during the menstrual cycle and in pregnancy and labor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannopoulos, G.; Jackson, K.; Kredentser, J.

    The binding of prostaglandins E1 and F2 alpha has been studied in the human myometrium and cervix during the menstrual cycle and in the myometrium of pregnant patients at term before and during labor. Tritium-labeled prostaglandin E1 and F2 alpha binding was saturable and reversible. Scatchard analysis of tritium-labeled prostaglandin E1 binding was linear, which suggests a single class of high-affinity binding sites with an estimated apparent equilibrium dissociation constant of 2.5 to 5.4 nmol/L and inhibitor affinities of 0.9, 273, 273, and 217 nmol/L for prostaglandins E2, A1, B1, and F2 alpha, respectively. Scatchard analysis of tritium-labeled prostaglandin F2more » alpha, binding was also linear, but the affinity of these binding sites was much lower, with an average dissociation constant of 50 nmol/L and inhibitor affinities of 1.6, 2.2, and 11.2 nmol/L for prostaglandins E1, E2, and A1, respectively. In nonpregnant patients, the concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were similar in the myometrium during the proliferative and secretory phases of the menstrual cycle, but the concentration of these sites was much lower in the cervix. The concentration of the tritium-labeled prostaglandin E1 binding sites was significantly lower in the myometrium of pregnant patients at term than in the myometrium of nonpregnant patients. The concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were not significantly different in the upper and lower myometrium of pregnant patients at term or in the myometrium of such patients before and during labor. The concentrations of the tritium-labeled prostaglandin F2 alpha binding sites during the menstrual cycle and in pregnancy at term were similar to those of tritium-labeled prostaglandin E1 binding sites.« less

  10. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Karsenty, Gerard; Partridge, Nicola C.

    2002-01-01

    Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.

  11. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    PubMed

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch.

    PubMed

    Oberst, Andrew; Malatesta, Martina; Aqeilan, Rami I; Rossi, Mario; Salomoni, Paolo; Murillas, Rodolfo; Sharma, Prashant; Kuehn, Michael R; Oren, Moshe; Croce, Carlo M; Bernassola, Francesca; Melino, Gerry

    2007-07-03

    Nedd4-binding partner-1 (N4BP1) has been identified as a protein interactor and a substrate of the homologous to E6AP C terminus (HECT) domain-containing E3 ubiquitin-protein ligase (E3), Nedd4. Here, we describe a previously unrecognized functional interaction between N4BP1 and Itch, a Nedd4 structurally related E3, which contains four WW domains, conferring substrate-binding activity. We show that N4BP1 association with the second WW domain (WW2) of Itch interferes with E3 binding to its substrates. In particular, we found that N4BP1 and p73 alpha, a target of Itch-mediated ubiquitin/proteasome proteolysis, share the same binding site. By competing with p73 alpha for binding to the WW2 domain, N4BP1 reduces the ability of Itch to recruit and ubiquitylate p73 alpha and inhibits Itch autoubiquitylation activity both in in vitro and in vivo ubiquitylation assays. Similarly, both c-Jun and p63 polyubiquitylation by Itch are inhibited by N4BP1. As a consequence, genetic and RNAi knockdown of N4BP1 diminish the steady-state protein levels and significantly impair the transcriptional activity of Itch substrates. Notably, stress-induced induction of c-Jun was impaired in N4BP1(-/-) cells. These results demonstrate that N4BP1 functions as a negative regulator of Itch. In addition, because inhibition of Itch by N4BP1 results in the stabilization of crucial cell death regulators such as p73 alpha and c-Jun, it is conceivable that N4BP1 may have a role in regulating tumor progression and the response of cancer cells to chemotherapy.

  13. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest.

    PubMed

    Yu, W; Sanders, B G; Kline, K

    1997-01-01

    RRR-alpha-tocopheryl succinate (vitamin E succinate, VES) treatment of murine EL4 T lymphoma cells induced the cells to undergo apoptosis. After 48 hours of VES treatment at 20 micrograms/ml, 95% of cells were apoptotic. Evidence for the induction of apoptosis by VES treatments is based on staining of DNA for detection of chromatin condensation/fragmentation, two-color flow-cytometric analyses of DNA content, and end-labeled DNA and electrophoretic analyses for detection of DNA ladder formation. VES-treated EL4 cells were blocked in the G1 cell cycle phase; however, apoptotic cells came from all cell cycle phases. Analyses of mRNA expression of genes involved in apoptosis revealed decreased c-myc and increased bcl-2, c-fos, and c-jun mRNAs within three to six hours after treatment. Western analyses showed increased c-Jun, c-Fos, and Bcl-2 protein levels. Electrophoretic mobility shift assays showed increased AP-1 binding at 6, 12, and 24 hours after treatment and decreased c-Myc binding after 12 and 24 hours of VES treatment. Treatments of EL4 cells with VES+RRR-alpha-to-copherol reduced apoptosis without effecting DNA synthesis arrest. Treatments of EL4 cells with VES+rac-6-hydroxyl-2, 5,7,8-tetramethyl-chroman-2-carboxylic acid, butylated hydroxytoluene, or butylated hydroxyanisole had no effect on apoptosis or DNA synthesis arrest caused by VES treatments. Analyses of bcl-2, c-myc, c-jun, and c-fos mRNA levels in cells receiving VES + RRR-alpha-tocopherol treatments showed no change from cells receiving VES treatments alone, implying that these changes are correlated with VES treatments but are not causal for apoptosis. However, treatments with VES + RRR-alpha-tocopherol decreased AP-1 binding to consensus DNA oligomer, suggesting AP-1 involvement in apoptosis induced by VES treatments.

  14. Novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies.

    PubMed

    Wright, Michael; Miller, Andrew D

    2006-02-15

    Tandem synthetic-biosynthetic procedures were used to prepare two novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies. These compounds (dial-mant-Ap4A and azido-mant-Ap4A) are shown to clearly distinguish known Ap4A-binding proteins from Escherichia coli (LysU and GroEL) and a variety of other control proteins. Successful labelling of chaperonin GroEL appears to be allosteric with respect to the well-characterized adenosine 5'-triphosphate (ATP)-binding site, suggesting that GroEL possesses a distinct Ap4A-binding site.

  15. The 193-base pair Gsg2 (haspin) promoter region regulates germ cell-specific expression bidirectionally and synchronously.

    PubMed

    Tokuhiro, Keizo; Miyagawa, Yasushi; Yamada, Shuichi; Hirose, Mika; Ohta, Hiroshi; Nishimune, Yoshitake; Tanaka, Hiromitsu

    2007-03-01

    Haspin is a unique protein kinase expressed predominantly in haploid male germ cells. The genomic structure of haspin (Gsg2) has revealed it to be intronless, and the entire transcription unit is in an intron of the integrin alphaE (Itgae) gene. Transcription occurs from a bidirectional promoter that also generates an alternatively spliced integrin alphaE-derived mRNA (Aed). In mice, the testis-specific alternative splicing of Aed is expressed bidirectionally downstream from the Gsg2 transcription initiation site, and a segment consisting of 26 bp transcribes both genomic DNA strands between Gsg2 and the Aed transcription initiation sites. To investigate the mechanisms for this unique gene regulation, we cloned and characterized the Gsg2 promoter region. The 193-bp genomic fragment from the 5' end of the Gsg2 and Aed genes, fused with EGFP and DsRed genes, drove the expression of both proteins in haploid germ cells of transgenic mice. This promoter element contained only a GC-rich sequence, and not the previously reported DNA sequences known to bind various transcription factors--with the exception of E2F1, TCFAP2A1 (AP2), and SP1. Here, we show that the 193-bp DNA sequence is sufficient for the specific, bidirectional, and synchronous expression in germ cells in the testis. We also demonstrate the existence of germ cell nuclear factors specifically bound to the promoter sequence. This activity may be regulated by binding to the promoter sequence with germ cell-specific nuclear complex(es) without regulation via DNA methylation.

  16. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. Highmore » glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.« less

  17. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum ormore » the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.« less

  18. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3)*

    PubMed Central

    Rouka, Evgenia; Simister, Philip C.; Janning, Melanie; Kumbrink, Joerg; Konstantinou, Tassos; Muniz, João R. C.; Joshi, Dhira; O'Reilly, Nicola; Volkmer, Rudolf; Ritter, Brigitte; Knapp, Stefan; von Delft, Frank; Kirsch, Kathrin H.; Feller, Stephan M.

    2015-01-01

    CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3. PMID:26296892

  19. Allosteric regulation of tryptophan synthase channeling: the internal aldimine probed by trans-3-indole-3'-acrylate binding.

    PubMed

    Casino, Patricia; Niks, Dimitri; Ngo, Huu; Pan, Peng; Brzovic, Peter; Blumenstein, Lars; Barends, Thomas Reinier; Schlichting, Ilme; Dunn, Michael F

    2007-07-03

    Substrate channeling in the tryptophan synthase bienzyme complex from Salmonella typhimurium is regulated by allosteric interactions triggered by binding of ligand to the alpha-site and covalent reaction at the beta-site. These interactions switch the enzyme between low-activity forms with open conformations and high-activity forms with closed conformations. Previously, allosteric interactions have been demonstrated between the alpha-site and the external aldimine, alpha-aminoacrylate, and quinonoid forms of the beta-site. Here we employ the chromophoric l-Trp analogue, trans-3-indole-3'-acrylate (IA), and noncleavable alpha-site ligands (ASLs) to probe the allosteric properties of the internal aldimine, E(Ain). The ASLs studied are alpha-d,l-glycerol phosphate (GP) and d-glyceraldehyde 3-phosphate (G3P), and examples of two new classes of high-affinity alpha-site ligands, N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), that were previously shown to bind to the alpha-site by optical spectroscopy and X-ray crystal structures [Ngo, H., Harris, R., Kimmich, N., Casino, P., Niks, D., Blumenstein, L., Barends, T. R., Kulik, V., Weyand, M., Schlichting, I., and Dunn, M. F. (2007) Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex, Biochemistry 46, 7713-7727]. The binding of IA to the beta-site is stimulated by the binding of GP, G3P, F6, or F9 to the alpha-site. The binding of ASLs was found to increase the affinity of the beta-site of E(Ain) for IA by 4-5-fold, demonstrating for the first time that the beta-subunit of the E(Ain) species undergoes a switching between low- and high-affinity states in response to the binding of ASLs.

  20. Interaction of acute-phase-inducible and liver-enriched nuclear factors with the promoter region of the mouse alpha sub 1 -acid glycoprotein gene-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, T.; Papaconstantinou, J.

    1992-02-25

    The synthesis and secretion of several acute-phase proteins increases markedly following physiological stress. {alpha}{sub 1}-Acid glycoprotein (AGP), a major acute-phase reactant made by the liver, is strongly induced by inflammatory agents such as lipopolysaccharide (LPS). Nuclear run-on assay showed a 17-fold increase in the rate of AGP transcription 4 h following LPS injection. DNase I footprinting assays revealed multiple protein binding domains in the mouse AGP-1 promoter region. Region B ({minus}104 to {minus}91) is protected by a liver-enriched transcription factor that is heat labile and in limiting quantity. An adjacent region, C ({minus}125 to {minus}104), is well-protected by nuclear extractsmore » from hepatocytes. Electrophoretic mobility shift assays indicated that only one DNA-protein complex can form with an oligonucleotide corresponding to region B. However, nuclear proteins from untreated mouse liver can form three strong complexes (C1, C2, and C3) and a weak one (C4) with oligonucleotide C. An acute-phase-inducible DNA-binding protein (AP-DBP) forms complex 4. A dramatic increase (over 11-fold) in AP-DBP binding activity is seen with nuclear proteins from LPS-stimulated animals. Interestingly, AP-DBP, a heat-stable factor, can form heterodimers with the transcription factor CCAAT/enhancer binding protein (C/EBP). Furthermore, purified C/EBP also binds avidly to region C. The studies indicate that several liver-enriched nuclear factors can interact with AGP-1 promoter and that AP-DBP binds to the AGP-1 promoter with high affinity only during the acute-phase induction.« less

  1. Glucocorticoids suppress tumor necrosis factor-alpha expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-kappa B and c-Jun-activating transcription factor-2 binding sites in the promoter.

    PubMed

    Steer, J H; Kroeger, K M; Abraham, L J; Joyce, D A

    2000-06-16

    Glucocorticoid drugs suppress tumor necrosis factor-alpha (TNF-alpha) synthesis by activated monocyte/macrophages, contributing to an anti-inflammatory action in vivo. In lipopolysaccharide (LPS)-activated human monocytic THP-1 cells, glucocorticoids acted primarily on the TNF-alpha promoter to suppress a burst of transcriptional activity that occurred between 90 min and 3 h after LPS exposure. LPS increased nuclear c-Jun/ATF-2, NF-kappaB(1)/Rel-A, and Rel-A/C-Rel transcription factor complexes, which bound specifically to oligonucleotide sequences from the -106 to -88 base pair (bp) region of the promoter. The glucocorticoid, dexamethasone, suppressed nuclear binding activity of these complexes prior to and during the critical phase of TNF-alpha transcription. Site-directed mutagenesis in TNF-alpha promoter-luciferase reporter constructs showed that the adjacent c-Jun/ATF-2 (-106 to -99 bp) and NF-kappaB (-97 to -88 bp) binding sites each contributed to the LPS-stimulated expression. Mutating both sites largely prevented dexamethasone from suppressing TNF-alpha promoter-luciferase reporters. LPS exposure also increased nuclear Egr-1 and PU.1 abundance. The Egr-1/Sp1 (-172 to -161 bp) binding sites and the PU.1-binding Ets site (-116 to -110 bp) each contributed to the LPS-stimulated expression but not to glucocorticoid response. Dexamethasone suppressed the abundance of the c-Fos/c-Jun complex in THP-1 cell nuclei, but there was no direct evidence for c-Fos/c-Jun transactivation through sites in the -172 to -52 bp region. Small contributions to glucocorticoid response were attributable to promoter sequences outside the -172 to -88 bp region and to sequences in the TNF-alpha 3'-untranslated region. We conclude that glucocorticoids suppress LPS-stimulated secretion of TNF-alpha from human monocytic cells largely through antagonizing transactivation by c-Jun/ATF-2 and NF-kappaB complexes at binding sites in the -106 to -88 bp region of the TNF-alpha promoter.

  2. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  3. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors.

    PubMed Central

    Rana, B; Mischoulon, D; Xie, Y; Bucher, N L; Farmer, S R

    1994-01-01

    Previous investigations have shown that culture of freshly isolated hepatocytes under conventional conditions, i.e., on dried rat tail collagen in the presence of growth factors, facilitates cell growth but also causes an extensive down-regulation of most liver-specific functions. This dedifferentiation process can be prevented if the cells are cultured on a reconstituted basement membrane gel matrix derived from the Englebreth-Holm-Swarm mouse sarcoma tumor (EHS gel). To gain insight into the mechanisms regulating this response to extracellular matrix, we are analyzing the activities of two families of transcription factors, C/EBP and AP-1, which control the transcription of hepatic and growth-responsive genes, respectively. We demonstrate that isolation of hepatocytes from the normal quiescent rat liver by collagenase perfusion activates the immediate-early growth response program, as indicated by increased expression of c-jun, junB, c-fos, and c-myc mRNAs. Adhesion of these activated cells to dried rat tail collagen augments the elevated levels of these mRNAs for the initial 1 to 2 h postplating; junB and c-myc mRNA levels then drop steeply, with junB returning to normal quiescence and the c-myc level remaining slightly elevated during the 3-day culture period. Levels of c-jun mRNA and AP-1 DNA binding activity, however, remain elevated from the outset, while C/EBP alpha mRNA expression is down-regulated, resulting in a decrease in the steady-state levels of the 42- and 30-kDa C/EBP alpha polypeptides and C/EBP alpha DNA binding activity. In contrast, C/EBP beta mRNA production remains at near-normal hepatic levels for 5 to 8 days of culture, although its DNA binding activity decreases severalfold during this time. Adhesion of hepatocytes to the EHS gel for the same period of time dramatically alters this program: it arrests growth and inhibits AP-1 DNA binding activity and the expression of c-jun, junB, and c-myc mRNAs, but, in addition, it restores C/EBP alpha mRNA and protein as well as C/EBP alpha and C/EBP beta DNA binding activities to the abundant levels present in freshly isolated hepatocytes. These changes are not due merely to growth inhibition, because suppression of hepatocyte proliferation on collagen by epidermal growth factor starvation or addition of transforming growth factor beta does not inhibit AP-1 activity or restore C/EBP alpha DNA binding activity to normal hepatic levels. These data suggest that expression of the normal hepatic phenotype requires that hepatocytes exist in a G0 state of growth arrest, facilitated here by adhesion of cells to the EHS gel, in order to express high levels of hepatic transcription factors such as C/EBP alpha. Images PMID:8065319

  4. Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer.

    PubMed

    Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L

    2003-08-01

    Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.

  5. In silico modeling of the cryptic E2∼ubiquitin-binding site of E6-associated protein (E6AP)/UBE3A reveals the mechanism of polyubiquitin chain assembly.

    PubMed

    Ronchi, Virginia P; Kim, Elizabeth D; Summa, Christopher M; Klein, Jennifer M; Haas, Arthur L

    2017-11-03

    To understand the mechanism for assembly of Lys 48 -linked polyubiquitin degradation signals, we previously demonstrated that the E6AP/UBE3A ligase harbors two functionally distinct E2∼ubiquitin-binding sites: a high-affinity Site 1 required for E6AP Cys 820 ∼ubiquitin thioester formation and a canonical Site 2 responsible for subsequent chain elongation. Ordered binding to Sites 1 and 2 is here revealed by observation of UbcH7∼ubiquitin-dependent substrate inhibition of chain formation at micromolar concentrations. To understand substrate inhibition, we exploited the PatchDock algorithm to model in silico UbcH7∼ubiquitin bound to Site 1, validated by chain assembly kinetics of selected point mutants. The predicted structure buries an extensive solvent-excluded surface bringing the UbcH7∼ubiquitin thioester bond within 6 Å of the Cys 820 nucleophile. Modeling onto the active E6AP trimer suggests that substrate inhibition arises from steric hindrance between Sites 1 and 2 of adjacent subunits. Confirmation that Sites 1 and 2 function in trans was demonstrated by examining the effect of E6APC820A on wild-type activity and single-turnover pulse-chase kinetics. A cyclic proximal indexation model proposes that Sites 1 and 2 function in tandem to assemble thioester-linked polyubiquitin chains from the proximal end attached to Cys 820 before stochastic en bloc transfer to the target protein. Non-reducing SDS-PAGE confirms assembly of the predicted Cys 820 -linked 125 I-polyubiquitin thioester intermediate. Other studies suggest that Glu 550 serves as a general base to generate the Cys 820 thiolate within the low dielectric binding interface and Arg 506 functions to orient Glu 550 and to stabilize the incipient anionic transition state during thioester exchange. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed Central

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-01-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800

  7. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-11-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery.

  8. Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor

    PubMed Central

    Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi

    2016-01-01

    ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314

  9. Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site

    PubMed Central

    Rajan, Rakhi; Osterman, Amy; Mondragón, Alfonso

    2016-01-01

    Topoisomerase V (Topo-V) is the only topoisomerase with both topoisomerase and DNA repair activities. The topoisomerase activity is conferred by a small alpha-helical domain, whereas the AP lyase activity is found in a region formed by 12 tandem helix-hairpin-helix ((HhH)2) domains. Although it was known that Topo-V has multiple repair sites, only one had been mapped. Here, we show that Topo-V has three AP lyase sites. The atomic structure and Small Angle X-ray Scattering studies of a 97 kDa fragment spanning the topoisomerase and 10 (HhH)2 domains reveal that the (HhH)2 domains extend away from the topoisomerase domain. A combination of biochemical and structural observations allow the mapping of the second repair site to the junction of the 9th and 10th (HhH)2 domains. The second site is structurally similar to the first one and to the sites found in other AP lyases. The 3rd AP lyase site is located in the 12th (HhH)2 domain. The results show that Topo-V is an unusual protein: it is the only known protein with more than one (HhH)2 domain, the only known topoisomerase with dual activities and is also unique by having three AP lyase repair sites in the same polypeptide. PMID:26908655

  10. Toward an Orofacial Gene Regulatory Network

    PubMed Central

    Kousa, Youssef A.; Schutte, Brian C.

    2015-01-01

    Orofacial clefting is a common birth defect with significant morbidity. A panoply of candidate genes have been discovered through synergy of animal models and human genetics. Among these, variants in Interferon Regulatory Factor 6 (IRF6) cause syndromic orofacial clefting and contribute risk toward isolated cleft lip and palate (1/700 live births). Rare variants in IRF6 can lead to Van der Woude Syndrome (1/35,000 live births) and Popliteal Pterygium Syndrome (1/300,000 live births). Furthermore, IRF6 regulates GRHL3 and rare variants in this downstream target can also lead to Van der Woude Syndrome. In addition, a common variant (rs642961) in the IRF6 locus is found in 30% of the world’s population and contributes risk for isolated orofacial clefting. Biochemical studies revealed that rs642961 abrogates one of four AP-2alpha binding sites. Like IRF6 and GRHL3, rare variants in TFAP2A can also lead to syndromic orofacial clefting with lip pits (Branchio-oculo-facial Syndrome). The literature suggests that AP-2alpha, IRF6 and GRHL3 are part of a pathway that is essential for lip and palate development. In addition to updating the pathways, players and pursuits, this review will highlight some of the current questions in the study of orofacial clefting. PMID:26332872

  11. Atypical binding of the Swa2p UBA domain to ubiquitin.

    PubMed

    Matta-Camacho, Edna; Kozlov, Guennadi; Trempe, Jean-François; Gehring, Kalle

    2009-02-20

    Swa2p is an auxilin-like yeast protein that is involved in vesicular transport and required for uncoating of clathrin-coated vesicles. Swa2p contains a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin (Ub)-mediated processes. We have determined a structural model of the Swa2p UBA domain in complex with Ub using NMR spectroscopy and molecular docking. Ub recognition occurs predominantly through an atypical interaction in which UBA helix alpha1 and the N-terminal part of helix alpha2 bind to Ub. Mutation of Ala148, a key residue in helix alpha1, to polar residues greatly reduced the affinity of the UBA domain for Ub and revealed a second low-affinity Ub-binding site located on the surface formed by helices alpha1 and alpha3. Surface plasmon resonance showed that the Swa2p UBA domain binds K48- and K63-linked di-Ub in a non-linkage-specific manner. These results reveal convergent evolution of a Ub-binding site on helix alpha1 of UBA domains involved in membrane protein trafficking.

  12. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun.

    PubMed

    Leonard, D A; Rajaram, N; Kerppola, T K

    1997-05-13

    Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.

  13. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    PubMed

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  14. P alpha-chiral phosphorothioate analogues of bis(5'-adenosyl)tetraphosphate (Ap4A); their enzymatic synthesis and degradation.

    PubMed Central

    Lazewska, D; Guranowski, A

    1990-01-01

    Synthesis of Sp and Rp diastereomers of Ap4A alpha S has been characterized in two enzymatic systems, the lysyl-tRNA synthetase from Escherichia coli and the Ap4A alpha, beta-phosphorylase from Saccharomyces cerevisiae. The synthetase was able to use both (Sp)ATP alpha S and (Rp)ATP alpha S as acceptors of adenylate thus yielding corresponding monothioanalogues of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S. No dithiophosphate analogue was formed. Relative synthetase velocities of the formation of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S were 1:0.38:0.15, and the computed Km values for (Sp)ATP alpha S and (Rp)ATP alpha S were 0.48 and 1.34 mM, respectively. The yeast Ap4A phosphorylase synthesized (Sp)Ap4A alpha S and (Rp)Ap4A alpha S using adenosine 5'-phosphosulfate (APS) as source of adenylate. The adenylate was accepted by corresponding thioanalogues of ATP. In that system, relative velocities of Ap4A, (Sp)Ap4A alpha S and (Rp)Ap4A alpha S formation were 1:0.15:0.60. The two isomeric phosphorothioate analogues of Ap4A were tested as substrates for the following specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow lupin (Lupinus luteus) seeds hydrolyzed each of the analogues to AMP and the corresponding isomer of ATP alpha S; (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from E. coli produced ADP and the corresponding diastereomer of ADP alpha S; and Ap4A phosphorylase (EC 2.7.7.53) from S. cerevisiae cleaved the Rp isomer only at the unmodified end yielding ADP and (Rp)ATP alpha S whereas the Sp isomer was degraded non-specifically yielding a mixture of ADP, (Sp)ADP alpha S, ATP and (Sp)ATP alpha S. For all the Ap4A-degrading enzymes, the Rp isomer of Ap4A alpha S appeared to be a better substrate than its Sp counterpart; stereoselectivity of the three enzymes for the Ap4A alpha S diastereomers is 51, 6 and 2.5, respectively. Basic kinetic parameters of the degradation reactions are presented and structural requirements of the Ap4A-metabolizing enzymes with respect to the potential substrates modified at the Ap4A-P alpha are discussed. PMID:2172926

  15. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing.

    PubMed

    Yang, Qin; Gilmartin, Gregory M; Doublié, Sylvie

    2010-06-01

    Human Cleavage Factor Im (CFI(m)) is an essential component of the pre-mRNA 3' processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFI(m)25) of the CFI(m) complex possesses a characteristic alpha/beta/alpha Nudix fold, CFI(m)25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFI(m)25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFI(m)25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson-Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap(4)A (diadenosine tetraphosphate) by CFI(m)25 suggests a potential role for small molecules in the regulation of mRNA 3' processing.

  16. AP1 binding site is another target of FGF2 regulation of bone sialoprotein gene transcription.

    PubMed

    Takai, Hideki; Araki, Shouta; Mezawa, Masaru; Kim, Dong-Soon; Li, Xinyue; Yang, Li; Li, Zhengyang; Wang, Zhitao; Nakayama, Youhei; Ogata, Yorimasa

    2008-02-29

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. We previously reported that fibroblast growth factor 2 (FGF2) regulates BSP gene transcription via FGF2 response element (FRE) in the proximal promoter of rat BSP gene. We here report that activator protein 1 (AP1) binding site overlapping with glucocorticoid response element (GRE) AP1/GRE in the rat BSP gene promoter is another target of FGF2. Using the osteoblastic cell line ROS17/2.8, we determined that BSP mRNA levels increased by 10 ng/ml FGF2 at 6 and 12 h. Runx2 protein levels increased by FGF2 (10 ng/ml) at 3 h. Treatment of ROS17/2.8 cells with FGF2 (10 ng/ml, 12 h) increased luciferase activities of constructs including -116 to +60 and -938 to +60 of the rat BSP gene promoter. Effects of FGF2 abrogated in constructs included 2 bp mutations in the FRE and AP1/GRE elements. Luciferase activities induced by FGF2 were blocked by tyrosine kinase inhibitor herbimycin A, src-tyrosine kinase inhibitor PP1 and MAP kinase kinase inhibitor U0126. Gel shift analyses showed that FGF2 increased binding of FRE and AP1/GRE elements. Notably, the AP1/GRE-protein complexes were supershifted by Smad1 and c-Fos antibodies, c-Jun and Dlx5 antibodies disrupted the complexes formation, on the other hand AP1/GRE-protein complexes did not change by Runx2 antibody. These studies demonstrate that FGF2 stimulates BSP gene transcription by targeting the FRE and AP1/GRE elements in the rat BSP gene promoter.

  17. Ligand-induced changes in 2-aminopurine fluorescence as a probe for small molecule binding to HIV-1 TAR RNA

    PubMed Central

    BRADRICK, THOMAS D.; MARINO, JOHN P.

    2004-01-01

    Replication of human immunodeficiency virus type 1 (HIV-1) is regulated in part through an interaction between the virally encoded trans-activator protein Tat and the trans-activator responsive region (TAR) of the viral RNA genome. Because TAR is highly conserved and its interaction with Tat is required for efficient viral replication, it has received much attention as an antiviral drug target. Here, we report a 2-aminopurine (2-AP) fluorescence-based assay for evaluating potential TAR inhibitors. Through selective incorporation of 2-AP within the bulge (C23 or U24) of a truncated form of the TAR sequence (Δ TAR-ap23 and Δ TAR-ap24), binding of argininamide, a 24-residue arginine-rich peptide derived from Tat, and Neomycin has been characterized using steady-state fluorescence. Binding of argininamide to the 2-AP ΔTAR constructs results in a four- to 11-fold increase in fluorescence intensity, thus providing a sensitive reporter of that interaction (KD ~ 1 mM). Similarly, binding of the Tat peptide results in an initial 14-fold increase in fluorescence (KD ~ 25 nM), but is then followed by a slight decrease that is attributed to an additional, lower-affinity association(s). Using the ΔTAR-ap23 and TAR-ap24 constructs, two classes of Neomycin binding sites are detected; the first molecule of antibiotic binds as a noncompetitive inhibitor of Tat/argininamide (KD ~ 200 nM), whereas the second, more weakly bound molecule(s) becomes associated in a presumably nonspecific manner (KD ~ 4 μM). Taken together, the results demonstrate that the 2-AP fluorescence-detected binding assays provide accurate and general methods for quantitatively assessing TAR interactions. PMID:15273324

  18. Identification and characterization of (/sup 3/H)-rauwolscine binding to alpha2-adrenoceptors in the canine saphenous vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gout, B.

    1988-01-01

    The biochemical exploration of the alpha2-adrenergic receptors was investigated in the canine saphenous vein using the highly selective alpha2-adrenergic antagonist rauwolscine as a tritiated ligand. Following an enzymatic digestive pretreatment, the authors isolated a purified smooth muscle cell membranes fraction from saphenous veins in quantity sufficient to permit them to study the venous alpha2-adrenoreceptor content. The binding of tritiated rauwolscine was rapid, specific, saturable and reversible. The presence of high affinity sites with a density of binding Bmax of 125.2 /+ -/ 43.1 fmol/mg protein was demonstrated on a unique class of non interacting sites. The kinetically derived Kd wasmore » 1.28 nM, in good agreement with the value obtained from saturation isotherms. The pharmacological profile of these sites was assessed by the comparison of the potency of alpha-adrenergic agonists and antagonists to inhibit 1 nM (/sup 3/H)-rauwolscine. Their efficacy was respectively: rauwolscine > phentolamine > RX 781094 > clonidine >> prazosin > (-)-phenylephrine > (-)-noradrenaline. The results showed that (/sup 3/H)-rauwolscine bound specifically to sites in their membranal preparation, which had the pharmacological characteristics of the alpha2-adrenoceptors. The correlation between biochemical and pharmacological data revealed the usefulness of binding methods in the further study of adrenergic mechanisms in the canine saphenous vein.« less

  19. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    PubMed Central

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-01-01

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5′-phosphodiester bond at an AP site to generate a free 3′-­hydroxyl group and a 5′-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-­ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. PMID:20823514

  20. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James

    2006-10-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level inmore » ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.« less

  1. Characterization of Short Range DNA Looping in Endotoxin-mediated Transcription of the Murine Inducible Nitric-oxide Synthase (iNOS) Gene*

    PubMed Central

    Guo, Hongtao; Mi, Zhiyong; Kuo, Paul C.

    2008-01-01

    The local structural properties and spatial conformations of chromosomes are intimately associated with gene expression. The spatial associations of critical genomic elements in inducible nitric-oxide synthase (iNOS) transcription have not been previously examined. In this regard, the murine iNOS promoter contains 2 NF-κB binding sites (nt –86 and nt –972) that are essential for maximal transactivation of iNOS by LPS. Although AP-1 is commonly listed as an essential transcription factor for LPS-mediated iNOS transactivation, the relationship between AP-1 and NF-κB in this setting is not well studied. In this study using a model of LPS-stimulated ANA-1 murine macrophages, we demonstrate that short range DNA looping occurs at the iNOS promoter. This looping requires the presence of AP-1, c-Jun, NF-κB p65, and p300-associated acetyltransferase activity. The distal AP-1 binding site interacts via p300 with the proximal NF-κB binding site to create this DNA loop to participate in iNOS transcription. Other geographically distant AP-1 and NF-κB sites are certainly occupied, but selected sites are critical for iNOS transcription and the formation of the c-Jun, p65, and p300 transcriptional complex. In this “simplified” model of murine iNOS promoter, numerous transcription factors recognize and bind to various response elements, but these locales do not equally contribute to iNOS gene transcription. PMID:18596035

  2. Interaction of anti-cancer drug-cisplatin with major proteinase inhibitor-alpha-2-macroglobulin: Biophysical and thermodynamic analysis.

    PubMed

    Zia, Mohammad Khalid; Siddiqui, Tooba; Ali, Syed Saqib; Ahsan, Haseeb; Khan, Fahim Halim

    2018-05-09

    Alpha-2-macroglobulin is a multifunctional, highly abundant, plasma protein which reacts with a wide variety of molecules and drugs including cisplatin. Cisplatin is commonly used anticancer drug widely used for treatment of testicular, bladder, ovarian, head and neck, lung and cervical cancers. This study is designed to examine the interaction of cisplatin with human alpha-2-macroglobulin through various biophysical techniques and drug binding through molecular modeling. Cisplatin alters the function of alpha-2-macroglobulin and the thiolesters are most likely the reactive sites for cisplatin. Our result suggests that cisplatin decreases the antiproteolytic potential and causes structural and functional change in human alpha-2-macroglobulin as evident by absorption and fluorescence spectroscopy. Change in secondary structure of alpha-2-macroglobulin was confirmed by CD and FTIR. Thermodynamics parameters such as entropy (ΔS), enthalpy (ΔH) and Gibb's free energy changes (ΔG) along with number of binding sites (N) of alpha-2-macroglobulin-cisplatin binding in solutions were determined by isothermal titration calorimetry (ITC). It was found that binding of cisplatin with alpha-2-macroglobulin was exothermic in nature. The interaction of drug with alpha-2-macroglobulin in the plasma could lead to structural alterations in the conformational status of alpha-2-macroglobulin resulting in its functional inactivation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Theoretical Framework.

    PubMed

    Giovannelli, Edoardo; Procacci, Piero; Cardini, Gianni; Pagliai, Marco; Volkov, Victor; Chelli, Riccardo

    2017-12-12

    The fast-switching decoupling method is a powerful nonequilibrium technique to compute absolute binding free energies of ligand-receptor complexes (Sandberg et al., J. Chem. Theory Comput. 2014, 11, 423-435). Inspired by the theory of noncovalent binding association of Gilson and co-workers (Biophys. J. 1997, 72, 1047-1069), we develop two approaches, termed binded-domain and single-point alchemical-path schemes (BiD-AP and SiP-AP), based on the possibility of performing alchemical trajectories during which the ligand is constrained to fixed positions relative to the receptor. The BiD-AP scheme exploits a recent generalization of nonequilibrium work theorems to estimate the free energy difference between the coupled and uncoupled states of the ligand-receptor complex. With respect to the fast-switching decoupling method without constraints, BiD-AP prevents the ligand from leaving the binding site, but still requires an estimate of the positional binding-site volume, which may not be a simple task. On the other side, the SiP-AP scheme allows avoidance of the calculation of the binding-site volume by introducing an additional equilibrium simulation of ligand and receptor in the bound state. In the companion article (DOI: 10.1021/acs.jctc.7b00595), we show that the extra computational effort required by SiP-AP leads to a significant improvement of accuracy in the free energy estimates.

  4. The adipocyte fatty acid–binding protein aP2 is required in allergic airway inflammation

    PubMed Central

    Shum, Bennett O.V.; Mackay, Charles R.; Gorgun, Cem Z.; Frost, Melinda J.; Kumar, Rakesh K.; Hotamisligil, Gökhan S.; Rolph, Michael S.

    2006-01-01

    The adipocyte fatty acid–binding protein aP2 regulates systemic glucose and lipid metabolism. We report that aP2, in addition to being abundantly expressed by adipocytes, is also expressed by human airway epithelial cells and shows a striking upregulation following stimulation of epithelial cells with the Th2 cytokines IL-4 and IL-13. Regulation of aP2 mRNA expression by Th2 cytokines was highly dependent on STAT6, a transcription factor with a major regulatory role in allergic inflammation. We examined aP2-deficient mice in a model of allergic airway inflammation and found that infiltration of leukocytes, especially eosinophils, into the airways was highly dependent on aP2 function. T cell priming was unaffected by aP2 deficiency, suggesting that aP2 was acting locally within the lung, and analysis of bone marrow chimeras implicated non-hematopoietic cells, most likely bronchial epithelial cells, as the site of action of aP2 in allergic airway inflammation. Thus, aP2 regulates allergic airway inflammation and may provide a link between fatty acid metabolism and asthma. PMID:16841093

  5. Identification and Targeting of an Interaction between a Tyrosine Motif within Hepatitis C Virus Core Protein and AP2M1 Essential for Viral Assembly

    PubMed Central

    Ziv-Av, Amotz; Gerber, Doron; Jacob, Yves; Einav, Shirit

    2012-01-01

    Novel therapies are urgently needed against hepatitis C virus infection (HCV), a major global health problem. The current model of infectious virus production suggests that HCV virions are assembled on or near the surface of lipid droplets, acquire their envelope at the ER, and egress through the secretory pathway. The mechanisms of HCV assembly and particularly the role of viral-host protein-protein interactions in mediating this process are, however, poorly understood. We identified a conserved heretofore unrecognized YXXΦ motif (Φ is a bulky hydrophobic residue) within the core protein. This motif is homologous to sorting signals within host cargo proteins known to mediate binding of AP2M1, the μ subunit of clathrin adaptor protein complex 2 (AP-2), and intracellular trafficking. Using microfluidics affinity analysis, protein-fragment complementation assays, and co-immunoprecipitations in infected cells, we show that this motif mediates core binding to AP2M1. YXXΦ mutations, silencing AP2M1 expression or overexpressing a dominant negative AP2M1 mutant had no effect on HCV RNA replication, however, they dramatically inhibited intra- and extracellular infectivity, consistent with a defect in viral assembly. Quantitative confocal immunofluorescence analysis revealed that core's YXXΦ motif mediates recruitment of AP2M1 to lipid droplets and that the observed defect in HCV assembly following disruption of core-AP2M1 binding correlates with accumulation of core on lipid droplets, reduced core colocalization with E2 and reduced core localization to trans-Golgi network (TGN), the presumed site of viral particles maturation. Furthermore, AAK1 and GAK, serine/threonine kinases known to stimulate binding of AP2M1 to host cargo proteins, regulate core-AP2M1 binding and are essential for HCV assembly. Last, approved anti-cancer drugs that inhibit AAK1 or GAK not only disrupt core-AP2M1 binding, but also significantly inhibit HCV assembly and infectious virus production. These results validate viral-host interactions essential for HCV assembly and yield compounds for pharmaceutical development. PMID:22916011

  6. Mechanism of Aldolase Control of Sorting Nexin 9 Function in Endocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangarajan, Erumbi S.; Park, HaJeung; Fortin, Emanuelle

    Sorting nexin 9 (SNX9) functions in a complex with the GTPase dynamin-2 at clathrin-coated pits, where it provokes fission of vesicles to complete endocytosis. Here the SNX9-dynamin-2 complex binds to clathrin and adapter protein complex 2 (AP-2) that line these pits, and this occurs through interactions of the low complexity domain (LC4) of SNX9 with AP-2. Intriguingly, localization of the SNX9-dynamin-2 complex to clathrin-coated pits is blocked by interactions with the abundant glycolytic enzyme aldolase, which also binds to the LC4 domain of SNX9. The crystal structure of the LC4 motif of human SNX9 in complex with aldolase explains themore » biochemistry and biology of this interaction, where SNX9 binds near the active site of aldolase via residues 165-171 that are also required for the interactions of SNX9 with AP-2. Accordingly, SNX9 binding to aldolase is structurally precluded by the binding of substrate to the active site. Interactions of SNX9 with aldolase are far more extensive and differ from those of the actin-nucleating factor WASP with aldolase, indicating considerable plasticity in mechanisms that direct the functions of the aldolase as a scaffold protein.« less

  7. Role of a cysteine residue in the active site of ERK and the MAPKK family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji

    2007-02-16

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGF{beta}-induced AP-1-dependent luciferase expression with respective IC{sub 50} values of 0.08 and 0.05 {mu}M. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the {alpha},{beta}-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding sitemore » of ERK2, involving a covalent bond to S{gamma} of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, N{zeta} of Lys114, backbone C=O of Ser153, N{delta}2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPK{alpha}/{beta}/{gamma}/{delta} which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades.« less

  8. Characteristics of the isomeric flavonoids apigenin and genistein binding to hemoglobin by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Yuan, Jiang-Lan; Liu, Hui; Kang, Xu; Lv, Zhong; Zou, Guo-Lin

    2008-11-01

    Apigenin (Ap) and genistein (Ge), a couple of isomeric flavonoids with extensive bioactivities, are the most common dietary ingredients. They have been widely investigated due to their potential therapeutic actions for some diseases. In our work, binding characteristics of Ap and Ge to hemoglobin (Hb) were analyzed with fluorescence spectroscopy, circular dichroism (CD) and UV-vis absorption spectroscopy. The results indicated that Ap and Ge caused strong fluorescence quenching of Hb by static quenching mechanism, but their quenching efficiency and mechanisms were different. The binding site n suggested that there was a single binding site in Hb for Ap and Ge. The results of synchronous fluorescence showed that the microenvironment around Tyr residues of Hb had a slight trend of polarity decreasing, but the polarity around Trp residues increased by adding Ap. Results of CD indicated that the Ap and Ge did not changed the secondary structure of Hb. According to the theory of Förster resonance energy transfer, the binding distance r between Trp 37 and Ap/Ge was predicted to be 3.4 nm and 3.32 nm, respectively. The affinity of Ge toward Hb was higher than that of Ap.

  9. Crystal structures of Salmonella typhimurium propionate kinase and its complex with Ap4A: evidence for a novel Ap4A synthetic activity.

    PubMed

    Simanshu, Dhirendra K; Savithri, H S; Murthy, M R N

    2008-03-01

    Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATP. Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap4A bound to the active site pocket suggesting the presence of Ap4A synthetic activity in TdcD. Binding of Ap4A to the enzyme was confirmed by the structure determination of a TdcD-Ap4A complex obtained after cocrystallization of TdcD with commercially available Ap4A. Mass spectroscopic studies provided further evidence for the formation of Ap4A by propionate kinase in the presence of ATP. In the TdcD-Ap4A complex structure, Ap4A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction. 2007 Wiley-Liss, Inc.

  10. Exploring the mechanism of how tvMyb2 recognizes and binds ap65-1 by molecular dynamics simulations and free energy calculations.

    PubMed

    Li, Wei-Kang; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-01-01

    TvMyb2, one of the Myb-like transcriptional factors in Trichomonas vaginalis, binds to two closely spaced promoter sites, MRE-1/MRE-2r and MRE-2f, on the ap65-1 gene. However, detailed dynamical structural characteristics of the tvMyb2-ap65-1 complex and a detailed study of the protein in the complex have not been done. Focused on a specific tvMyb2-MRE-2-13 complex (PDB code: ) and a series of mutants K51A, R84A and R87A, we applied molecular dynamics (MD) simulation and molecular mechanics generalized Born surface area (MM-GBSA) free energy calculations to examine the role of the tvMyb2 protein in recognition interaction. The simulation results indicate that tvMyb2 becomes stable when it binds the DNA duplex. A series of mutants, K51A, R84A and R87A, have been followed, and the results of statistical analyses of the H-bond and hydrophobic contacts show that some residues have significant influence on recognition and binding to ap65-1 DNA. Our work gives important information to understand the interactions of tvMyb2 with ap65-1.

  11. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.

    PubMed

    Hisabori, T; Yoshida, M; Sakurai, H

    1986-09-01

    Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.

  12. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  13. Molecular Basis for Association of PIPKIγ-p90 with Clathrin Adaptor AP-2*

    PubMed Central

    Kahlfeldt, Nina; Vahedi-Faridi, Ardeschir; Koo, Seong Joo; Schäfer, Johannes G.; Krainer, Georg; Keller, Sandro; Saenger, Wolfram; Krauss, Michael; Haucke, Volker

    2010-01-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential determinant in clathrin-mediated endocytosis (CME). In mammals three type I phosphatidylinositol-4-phosphate 5-kinase (PIPK) enzymes are expressed, with the Iγ-p90 isoform being highly expressed in the brain where it regulates synaptic vesicle (SV) exo-/endocytosis at nerve terminals. How precisely PI(4,5)P2 metabolism is controlled spatially and temporally is still uncertain, but recent data indicate that direct interactions between type I PIPK and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved. Here we demonstrated that PIPKIγ-p90 associates with both the μ and β2 subunits of AP-2 via multiple sites. Crystallographic data show that a peptide derived from the splice insert of the human PIPKIγ-p90 tail binds to a cognate recognition site on the sandwich subdomain of the β2 appendage. Partly overlapping aromatic and hydrophobic residues within the same peptide also can engage the C-terminal sorting signal binding domain of AP-2μ, thereby potentially competing with the sorting of conventional YXXØ motif-containing cargo. Biochemical and structure-based mutagenesis analysis revealed that association of the tail domain of PIPKIγ-p90 with AP-2 involves both of these sites. Accordingly the ability of overexpressed PIPKIγ tail to impair endocytosis of SVs in primary neurons largely depends on its association with AP-2β and AP-2μ. Our data also suggest that interactions between AP-2 and the tail domain of PIPKIγ-p90 may serve to regulate complex formation and enzymatic activity. We postulate a model according to which multiple interactions between PIPKIγ-p90 and AP-2 lead to spatiotemporally controlled PI(4,5)P2 synthesis during clathrin-mediated SV endocytosis. PMID:19903820

  14. Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.

    PubMed

    Unelius, L; Cannon, B; Nedergaard, J

    1994-10-07

    The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.

  15. Specific binding of nicergoline on an alpha1-like adrenoreceptor in the rat retina.

    PubMed

    Lograno, M D; Tricarico, D; Masciopinto, V; Scuderl, A C

    2000-02-01

    Systemic treatment with nicergoline, an ergoline derivative showing alpha1-antagonist properties, causes vasodilatation in the eye without apparent untoward cardiovascular effects. In the present work we investigated the ability of nicergoline to inhibit the binding of radiolabelled prazosin in the rat retina and cortex. We found that nicergoline inhibited [3H]prazosin binding in both tissues, being more potent than unlabelled prazosin in the retinal tissue. The competition curves of the ergoline derivative were well fitted by a one-site model in the cortical tissue, with an IC50 (concentration of the drugs needed to inhibit the binding of labelled prazosin by 50%) of 2.54 x 10(-8) M, and by a two-site model in the retinal tissue, with IC50 values of 7.08 x 10(-12) M and 1.82 x 10(-5) M. 2-(2,6 dimetoxyphenoxyethyl) aminomethyl-1,4-benzodioxane hydrochloride (WB4101) and phentolamine, selective ligands for the high-affinity binding site for prazosin, in particular the alpha1A-site, fully inhibited prazosin binding in the cortex but only partially inhibited prazosin binding in the retina, being less potent in this tissue than either nicergoline or prazosin. Our results suggest that a binding component of alpha1-adrenoreceptors is expressed to a lesser extent in the retina than the cortex, leading to a reduced response of the retinal tissue to prazosin, and more particularly to WB4101 and phentolamine. The selective binding of the nicergoline on this retinal adrenoreceptor may explain the peculiar efficacy of the drug in ocular pathophysiology.

  16. The X-ray Crystal Structures of Human {alpha}-Phosphomannomutase 1 Reveal the Structural Basis of Congenital Disorder of Glycosylation Type 1a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvaggi,N.; Zhang, C.; Lu, Z.

    2006-01-01

    Carbohydrate-deficient glycoprotein syndrome type 1a (CDG-1a) is a congenital disease characterized by severe defects in nervous system development. It is caused by mutations in alpha -phosphomannomutase (of which there are two isozymes, {alpha}-PMM1 and {alpha}-PPM2). Here we report the X-ray crystal structures of human {alpha}-PMM1 in the open conformation, with and without the bound substrate, {alpha}-D-mannose 1-phosphate. {alpha}-PMM1, like most Haloalkanoic Acid Dehalogenase Superfamily (HADSF) members, consists of two domains, the cap and core, which open to bind substrate and then close to provide a solvent exclusive environment for catalysis. The substrate phosphate group is observed at a positively chargedmore » site of the cap domain, rather than at the core domain phosphoryl-transfer site defined by the D19 nucleophile and Mg{sup 2+} cofactor. This suggests that substrate binds first to the cap and then is swept into the active site upon cap closure. The orientation of the acid/base residue D21 suggests that {alpha}-PMM uses a different method of protecting the aspartylphosphate from hydrolysis than the HADSF member {beta}-phosphoglucomutase. It is hypothesized that the electrostatic repulsion of positive charges at the interface of the cap and core domains stabilizes {alpha}-PMM1 in the open conformation, and that the negatively charged substrate binds to the cap, thereby facilitating its closure over the core domain. The two isozymes {alpha}-PMM1 and {alpha}-PMM2 are shown to have a conserved active-site structure and to display similar kinetic properties. Analysis of the known mutation sites in the context of the structures reveals the genotype-phenotype relationship underlying CDG-1a.« less

  17. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    PubMed

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  18. Inhibitory function of adapter-related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, Yukiko; Department of Oral and Maxillofacial Surgery II, Osaka University, Osaka 565-0871; Kameoka, Masanori

    2008-03-30

    The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2{alpha}) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2{alpha}. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2{alpha}. Confocal fluorescence microscopy revealed that a subpopulation of AP2{alpha} wasmore » not only localized in the cytoplasm but was also partly co-localized with lamin B, importin {beta} and Nup153, implying that AP2{alpha} negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2{alpha} may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle.« less

  19. X-ray Crystallographic Analysis of [alpha]-Ketoheterocycle Inhibitors Bound to a Humanized Variant of Fatty Acid Amide Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine

    2010-11-03

    Three cocrystal X-ray structures of the {alpha}-ketoheterocycle inhibitors 3-5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the {alpha}-ketoheterocycle inhibitors captured as deprotonated hemiketals mimickingmore » the tetrahedral intermediate of the enzyme-catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure-activity relationships are discussed providing important insights for future design.« less

  20. A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2.

    PubMed

    Gárriz, Andrés; Qiu, Hongfang; Dey, Madhusudan; Seo, Eun-Joo; Dever, Thomas E; Hinnebusch, Alan G

    2009-03-01

    Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD. Here, we provide strong evidence that a network of hydrophobic interactions centered on Leu-856 also promotes latency by constraining helix alphaC rotation in the KD in a manner relieved during amino acid starvation by tRNA binding and autophosphorylation of Thr-882 in the activation loop. Thus, we show that mutationally disrupting the hydrophobic network in various ways constitutively activates eIF2alpha phosphorylation in vivo and bypasses the requirement for a key tRNA binding motif (m2) and Thr-882 in Gcn2. In particular, replacing Leu-856 with any nonhydrophobic residue activates Gcn2, while substitutions with various hydrophobic residues maintain kinase latency. We further provide strong evidence that parallel, back-to-back dimerization of the KD is a step on the Gcn2 activation pathway promoted by tRNA binding and autophosphorylation. Remarkably, mutations that disrupt the L856 hydrophobic network or enhance hinge flexibility eliminate the need for the conserved salt bridge at the parallel dimer interface, implying that KD dimerization facilitates the reorientation of alphaC and remodeling of the active site for enhanced ATP binding and catalysis. We propose that hinge remodeling, parallel dimerization, and reorientation of alphaC are mutually reinforcing conformational transitions stimulated by tRNA binding and secured by the ensuing autophosphorylation of T882 for stable kinase activation.

  1. The relative influence of metal ion binding sites in the I-like domain and the interface with the hybrid domain on rolling and firm adhesion by integrin alpha4beta7.

    PubMed

    Chen, JianFeng; Takagi, Junichi; Xie, Can; Xiao, Tsan; Luo, Bing-Hao; Springer, Timothy A

    2004-12-31

    We examined the effect of conformational change at the beta(7) I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin alpha(4)beta(7). An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the alpha(4) beta(7) headpiece. Wild-type alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+)/Mg(2+) but firm adhesion in Mg(2+) and Mn(2+). Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn(2+), confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn(2+). Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion.

  2. Complexes of yeast adenylate kinase and nucleotides investigated by sup 1 H NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetter, I.R.; Konrad, M.; Rosch, P.

    1991-04-30

    The role of one of the histidine residues present in many adenylate kinases (H36 in the porcine cytosolic enzyme) is highly disputed. The authors studied the yeast enzyme (AK{sub ye}) containing this His residue. AK{sub ye} is highly homologous to the Escherichia coli enzyme (AK{sub ec}), a protein that is already well characterized by NMR and does not contain the His residue in question. In addition, discrepancies between solution structural and X-ray crystallographic studies on the location of the nucleotide binding sites of adenylate kinases are clarified. One- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was used to investigate AK{submore » ye} and its complex with the bisubstrate analogue P{sup 1},P{sup 5}-bis(5{prime}-adenosyl)pentaphosphate (AP{sub 5}A). From these studies, all aromatic residues of AK{sub ec} involved in the binding of ATP{center dot}Mg{sup 2+} have functional analogues in AK{sub ye}. The AMP site seems to make no contacts to aromatic side chains, neither in the AK{sub ye}{center dot}AP{sub 5}A{center dot}Mg{sup 2+} nor in the AK{sub ec}{center dot}AP{sub 5}A{center dot}Mg{sup 2+} complexes, so that it is presently not possible to localize this binding site by NMR. In combination with the recent X-ray results on the AP{sub 5}A complexes AK{sub ye} and AK{sub ec} and the GMP complex of guanylate kinase the latter one leading to the definition of the monophosphate site, the problem of the location of the nucleotide sites can be considered to be solved in a way contradicting earlier work and denying the His residue homologous to H36 in porcine adenylate kinase a direct role in substrate binding.« less

  3. The mongoose acetylcholine receptor alpha-subunit: analysis of glycosylation and alpha-bungarotoxin binding.

    PubMed

    Asher, O; Jensen, B S; Lupu-Meiri, M; Oron, Y; Fuchs, S

    1998-04-17

    The mongoose AChR alpha-subunit has been cloned and shown to be highly homologous to other AChR alpha-subunits, with only six differences in amino acid residues at positions that are conserved in animal species that bind alpha-bungarotoxin (alpha-BTX). Four of these six substitutions cluster in the ligand binding site, and one of them, Asn-187, forms a consensus N-glycosylation site. The mongoose glycosylated alpha-subunit has a higher apparent molecular mass than that of the rat glycosylated alpha-subunit, probably resulting from the additional glycosylation at Asn-187 of the mongoose subunit. The in vitro translated mongoose alpha-subunit, in a glycosylated or non-glycosylated form, does not bind alpha-BTX, indicating that lack of alpha-BTX binding can be achieved also in the absence of glycosylation.

  4. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed atmore » 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.« less

  5. Probing the substrate specificity of Golgi alpha-mannosidase II by use of synthetic oligosaccharides and a catalytic nucleophile mutant.

    PubMed

    Zhong, Wei; Kuntz, Douglas A; Ember, Brian; Singh, Harminder; Moremen, Kelley W; Rose, David R; Boons, Geert-Jan

    2008-07-16

    Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site.

  6. 5',5'''-P1, P4 diadenosine tetraphosphate (Ap4A): a putative initiator of DNA replication.

    PubMed

    Baril, E F; Coughlin, S A; Zamecnik, P C

    1985-01-01

    The proposal that Ap4A acts as an inducer of DNA replication is based primarily on two pieces of evidence (7). The intracellular levels of Ap4A increase ten- to 1000-fold as cells progress into S phase and the introduction of Ap4A into nonproliferating cells stimulated DNA synthesis. There is also some additional suggestive evidence such as the binding of Ap4A to a protein that is associated with multiprotein forms of the replicative DNA polymerase alpha and the ability of this enzyme to use Ap4A as a primer for DNA synthesis in vitro with single-stranded DNA templates. These observations have stimulated interest in the cellular metabolism of Ap4A. This is well since there is a great need for additional experimentation in order to clearly establish Ap4A as an inducer of DNA replication. Microinjection experiments of Ap4A into quiescent cells are needed in order to ascertain if Ap4A will stimulate DNA replication and possibly cell division in intact cells. Studies of the effects of nonhydrolyzable analogs of Ap4A on DNA replication in intact quiescent cells could also prove valuable. Although Ap4A can function as a primer for in vitro DNA synthesis by DNA polymerase alpha this may not be relevant in regard to its in vivo role in DNA replication. Ap4A in vivo could interact with key protein(s) in DNA replication and in this way act as an effector molecule in the initiation of DNA replication. In this regard the interaction of Ap4A with a protein associated with a multiprotein form of DNA polymerase alpha isolated from S-phase cells is of interest. More experiments are required to determine if there is a specific target protein(s) for Ap4A in vivo and what its role in DNA replication is. The cofractionation of tryptophanyl-tRNA synthetase with the replicative DNA polymerase alpha from animal and plant cells is of interest. The DNA polymerase alpha from synchronized animal cells also interacted with Ap4A. Although the plant cell alpha-like DNA polymerase did not interact with Ap4A this DNA polymerase was not a multiprotein form of polymerase alpha and the synchrony of the wheat germ embryos was not known. A possible tie between protein-synthesizing systems and the regulation of proteins involved in DNA replication may exist. The requirement of protein synthesis for the initiation of DNA replication has long been known. Also, it is well established that many temperature-sensitive mutants for tRNA synthetases are also DNA-synthesizing mutants. More investigation in this area may be warranted.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Diphtheria toxin can simultaneously bind to its receptor and adenylyl-(3',5')-uridine 3'-monophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbieri, J.T.; Collins, C.M.; Collier, R.J.

    1986-10-21

    Diphtheria toxin (DT) that was bound to receptors on BS-C-1 cells was able to bind approximately 1 molar equiv of adenylyl-(3',5')-uridine 3'-monophosphate (ApUp). In contrast, receptor-bound CRM197, a mutant form of toxin with greatly diminished affinity for dinucleotides, did not bind ApUp. Affinity of the dinucleotide for receptor-bound toxin differed from that for free toxin by less than an order of magnitude. These results indicate that the receptor site and the ApUp site on the toxin do not significantly overlap. BS-C-1 cells were incubated with or without /sup 125/I-DT or CRM 197. They were then incubated with (/sup 32/P)ApUp, andmore » assayed.« less

  8. Localization and characterization of an alpha-thrombin-binding site on platelet glycoprotein Ib alpha.

    PubMed

    De Marco, L; Mazzucato, M; Masotti, A; Ruggeri, Z M

    1994-03-04

    Glycoprotein (GP) Ib alpha is required for expression of the highest affinity alpha-thrombin-binding site on platelets, possibly contributing to platelet activation through a pathway involving cleavage of a specific receptor. This function may be important for the initiation of hemostasis and may also play a role in the development of pathological vascular occlusion. We have now identified a discrete sequence in the extracytoplasmic domain of GP Ib alpha, including residues 271-284 of the mature protein, which appears to be part of the high affinity alpha-thrombin-binding site. Synthetic peptidyl mimetics of this sequence inhibit alpha-thrombin binding to GP Ib as well as platelet activation and aggregation induced by subnanomolar concentrations of the agonist; they also inhibit alpha-thrombin binding to purified glycocalicin, the isolated extracytoplasmic portion of GP Ib alpha. The inhibitory peptides interfere with the clotting of fibrinogen by alpha-thrombin but not with the amidolytic activity of the enzyme on a small synthetic substrate, a finding compatible with the concept that the identified GP Ib alpha sequence interacts with the anion-binding exosite of alpha-thrombin but not with its active proteolytic site. The crucial structural elements of this sequence necessary for thrombin binding appear to be a cluster of negatively charged residues as well as three tyrosine residues that, in the native protein, may be sulfated. GP Ib alpha has no significant overall sequence homology with the thrombin inhibitor, hirudin, nor with the specific thrombin receptor on platelets; all three molecules, however, possess a distinct region rich in negatively charged residues that appear to be involved in thrombin binding. This may represent a case of convergent evolution of unrelated proteins for high affinity interaction with the same ligand.

  9. Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins

    DOE PAGES

    Snyder, Rae Ana; Butch, Susan E.; Reig, Amanda J.; ...

    2015-06-19

    Using the single-chain due ferri (DFsc) peptide scaffold, the differential oxidase and oxygenase reactivities of two 4A → 4G variants, one with two histidines at the diiron center (G4DFsc) and the other with three histidines (3His-G4DFsc(Mut3)), are explored. By controlling the reaction conditions, the active form responsible for 4-aminophenol (4-AP) oxidase activity in both G4DFsc and 3His-G4DFsc(Mut3) is determined to be the substrate-bound biferrous site. Using circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies, 4-AP is found to bind directly to the biferrous sites of the DF proteins. In G4DFsc, 4-AP increases the coordination of themore » biferrous site, while in 3His-G4DFsc(Mut3), the coordination number remains the same and the substrate likely replaces the additional bound histidine. This substrate binding enables a two-electron process where 4-AP is oxidized to benzoquinone imine and O 2 is reduced to H 2O 2. In contrast, only the biferrous 3His variant is found to be active in the oxygenation of p-anisidine to 4-nitroso-methoxybenzene. From CD, MCD, and VTVH MCD, p-anisidine addition is found to minimally perturb the biferrous centers of both G4DFsc and 3His-G4DFsc(Mut3), indicating that this substrate binds near the biferrous site. Lastly, in 3His-G4DFsc(Mut3), the coordinative saturation of one iron leads to the two-electron reduction of O 2 at the second iron to generate an end-on hydroperoxo-Fe(III) active oxygenating species.« less

  10. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1.

    PubMed

    DeJong, Eric S; Chang, Chia-en; Gilson, Michael K; Marino, John P

    2003-07-08

    Rev is an essential regulatory HIV-1 protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome, activating the switch between viral latency and active viral replication. Previously, we have shown that selective incorporation of the fluorescent probe 2-aminopurine (2-AP) into a truncated form of the RRE sequence (RRE-IIB) allowed the binding of an arginine-rich peptide derived from Rev and aminoglycosides to be characterized directly by fluorescence methods. Using these fluorescence and nuclear magnetic resonance (NMR) methods, proflavine has been identified, through a limited screen of selected small heterocyclic compounds, as a specific and high-affinity RRE-IIB binder which inhibits the interaction of the Rev peptide with RRE-IIB. Direct and competitive 2-AP fluorescence binding assays reveal that there are at least two classes of proflavine binding sites on RRE-IIB: a high-affinity site that competes with the Rev peptide for binding to RRE-IIB (K(D) approximately 0.1 +/- 0.05 microM) and a weaker binding site(s) (K(D) approximately 1.1 +/- 0.05 microM). Titrations of RRE-IIB with proflavine, monitored using (1)H NMR, demonstrate that the high-affinity proflavine binding interaction occurs with a 2:1 (proflavine:RRE-IIB) stoichiometry, and NOEs observed in the NOESY spectrum of the 2:1 proflavine.RRE-IIB complex indicate that the two proflavine molecules bind specifically and close to each other within a single binding site. NOESY data further indicate that formation of the 2:1 proflavine.RRE-IIB complex stabilizes base pairing and stacking within the internal purine-rich bulge of RRE-IIB in a manner analogous to what has been observed in the Rev peptide.RRE-IIB complex. The observation that proflavine competes with Rev for binding to RRE-IIB by binding as a dimer to a single high-affinity site opens the possibility for rational drug design based on linking and modifying it and related compounds.

  11. In vitro binding of the asialoglycoprotein receptor to the beta adaptin of plasma membrane coated vesicles.

    PubMed Central

    Beltzer, J P; Spiess, M

    1991-01-01

    The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897

  12. High level activity of the mouse CCAAT/enhancer binding protein (C/EBP alpha) gene promoter involves autoregulation and several ubiquitous transcription factors.

    PubMed Central

    Legraverend, C; Antonson, P; Flodby, P; Xanthopoulos, K G

    1993-01-01

    The promoter region of the mouse CCAAT-Enhancer Binding Protein (C/EBP alpha) gene is capable of directing high levels of expression of reporter constructs in various cell lines, albeit even in cells that do not express their endogenous C/EBP alpha gene. To understand the molecular mechanisms underlying this ubiquitous expression, we have characterized the promoter region of the mouse C/EBP alpha gene by a variety of in vitro and in vivo methods. We show that three sites related in sequence to USF, BTE and C/EBP binding sites and present in promoter region -350/+3, are recognized by proteins from rat liver nuclear extracts. The sequence of the C/EBP alpha promoter that includes the USF binding site is also capable of forming stable complexes with purified Myc+Max heterodimers and mutation of this site drastically reduces transcription of C/EBP alpha promoter luciferase constructs both in liver and non liver cell lines. In addition, we identify three novel protein-binding sites two of which display similarity to NF-1 and a NF kappa B binding sites. The region located between nucleotides -197 and -178 forms several heat-stable complexes with liver nuclear proteins in vitro which are recognized mainly by antibodies specific for C/EBP alpha. Furthermore, transient expression of C/EBP alpha and to a lesser extent C/EBP beta expression vectors, results in transactivation of a cotransfected C/EBP alpha promoter-luciferase reporter construct. These experiments support the notion that the C/EBP alpha gene is regulated by C/EBP alpha but other C/EBP-related proteins may also be involved. Images PMID:8493090

  13. Structural integration in hypoxia-inducible factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dalei; Potluri, Nalini; Lu, Jingping

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinctmore » pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.« less

  14. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  15. Functional studies of ATP sulfurylase from Penicillium chrysogenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seubert, P.A.

    1985-01-01

    ATP sulfurylase from Penicillium chrysogenum has a specific activity (V/sub max/) of 6-7 units x mg protein/sup -1/ determined with the physiological substrates of MgATP and SO/sub 4//sup 2 -/ and assayed by (A) initial velocity measurements with APS kinase and inorganic pyrophosphatase present and (B) analysis of nonlinear reaction progress curves. The fact both assays give the same results show the intrinsic activity of ATP sulfurylase is much higher than previously reported. In initial velocity dead-end inhibition studies, the sulfate analog S/sub 2/O/sub 3//sup 2 -/ is a competitive inhibitor of SO/sub 42/..sqrt.. and a noncompetitive inhibitor of MgATP.more » Monovalent oxyanions such as NO/sub 3//sup -/, ClO/sub 3//sup -/, ClO/sub 4//sup -/, and FSO/sub 3//sup -/ behave as uncompetitive inhibitors of MgATP and thus seem not to be true sulfate analogs. The reverse reaction was assayed by the pyrophosphate dependent release of /sup 35/SO/sub 4//sup 2 -/ from AP/sup 35/S. Product inhibition by MgATP or SO/sub 4//sup 2 -/ is competitive with APS and mixed-type with PP/sub i/. Imidodiphosphate can serve as an alternative substrate for PP/sub i/. ATP sulfurylase binds (but does not hydrolyze) APS. A Scatchard plot of the APS binding is nonlinear, suggesting at least two types of sites. The cumulative results are qualitatively consistent with the random addition of MgATP and SO/sub 4//sup 2 -/ and the ordered release of first MgPP/sub i/ then APS, with APS release being partially rate limiting. Certain quantitative discrepancies suggest either an unknown variable (e.g. enzyme concentration) complicates the analysis or, in light of binding studies that the actual mechanism is more complicated (e.g. alternating sites) than any of the conventional models examined.« less

  16. In silico and in vitro Studies on Begomovirus Induced Andrographolide Biosynthesis Pathway in Andrographis Paniculata for Combating Inflammation and Cancer.

    PubMed

    Khan, Asifa; Sharma, Pooja; Khan, Feroz; Ajayakumar, P V; Shanker, Karuna; Samad, Abdul

    2016-07-01

    Andrographolide and neoandrographolide are major bioactive molecules of Andrographis paniculata, a well-known medicinal plant. These molecules exhibited varying degrees of anti-inflammatory and anticancer activities in-vitro and in-vivo. Role of begomovirus protein C2/TrAP in biosynthesis of andrographolide was identified through molecular modeling, docking and predicted results were substantiated by in vitro studies. Homology molecular modeling and molecular docking were performed to study the binding conformations and different bonding behaviors, in order to reveal the possible mechanism of action behind higher accumulation of andrographolide. It was concluded that C2/TrAP inhibit the activation of SNF1-Related Protein Kinase-1 (SnRK1) in terpenoid pathway and removes the negative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) by SnRK1, leading to higher accumulation of andrographolide and neoandrographolide in begomovirus infected plants. The binding site residues of SnRK1 docked with C2/TrAP were found to be associated with ATP binding site, substrate binding site and activation loop. Predicted results were also validated by HPTLC. This study provides important insights into understanding the role of viral protein in altering the regulation of biosynthesis of andrographolide and could be used in future research to develop biomimetic methods for increasing the production of such phytometabolites having anti-cancerous and anti-inflammatory properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structural and functional characterization of cargo-binding sites on the μ4-subunit of adaptor protein complex 4.

    PubMed

    Ross, Breyan H; Lin, Yimo; Corales, Esteban A; Burgos, Patricia V; Mardones, Gonzalo A

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of μ4.

  18. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    PubMed Central

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of μ4. PMID:24498434

  19. Autoradiographic labelling of P2 purinoceptors in the guinea-pig cochlea.

    PubMed

    Mockett, B G; Bo, X; Housley, G D; Thorne, P R; Burnstock, G

    1995-04-01

    Two different radioligands were used to identify extracellular ATP binding sites specific to P2 purinoceptors in guinea-pig cochlear tissue. Deoxyadenosine 5'-(alpha-[35S]thio)triphosphate ([35S]dATP alpha S; 10 nM) provided a high activity probe for the P2y purinoceptor subtype on the basis of selective block by 2-methylthio-ATP (2MeSATP; 100 microM). [3H]alpha, beta-methylene-ATP (10 nM), a high affinity probe for a P2x purinoceptor subtype was selectively blocked by inclusion of the related compound beta, gamma-methylene-ATP (100 microM). Both probes labelled the organ of Corti, stria vascularis and spiral prominence regions. The P2x purinoceptor probe also bound to lateral wall tissue below the spiral prominence and insertion point of the basilar membrane within the scala tympani compartment, a region which failed to show significant binding using [35S]dATP alpha S. Frozen sections of whole cochlea permitted analysis of radioligand binding to the cell body region (spiral ganglion in Rosenthal's canal) of the primary auditory afferents and the auditory nerve itself, which lies within the central region of the modiolus of the cochlea. Both these regions exhibited 2MeSATP blockable [35S]dATP alpha S binding whereas specific [3H]alpha, beta-methylene-ATP binding was absent from spiral ganglion and minimal in the auditory nerve region. These results demonstrate a mixed P2 purinoceptor distribution in cochlear tissues and suggest that complex purine-mediated neurohumoral mechanisms may influence cochlear function at a number of sites.

  20. Spectroscopic studies on the interaction of bovine serum albumin with surfactants and apigenin

    NASA Astrophysics Data System (ADS)

    Zhao, Xu-Na; Liu, Yi; Niu, Li-Yuan; Zhao, Chen-Ping

    The binding of apigenin (Ap) to bovine serum albumin (BSA) has been studied using the methods of fluorescence spectroscopy and UV-vis absorption spectroscopy. The spectroscopic analysis of the quenching mechanism indicates that the quenching constants are inversely correlated with the temperatures and the quenching process could result from a static interaction. The type of interaction force was discussed and the binding site of Ap was in site I (subdomain IIA) of BSA. The thermodynamic parameters ΔH and ΔS are -42.02 kJ mol-1 and -48.31 J mol-1 K-1, respectively and the negative ΔG implying that the binding interaction was spontaneous. The distance r between BSA and Ap was calculated according to Förster's theory and the value is 3.44 nm. The synchronous and three-dimensional fluorescence spectra show that the binding of Ap to BSA could lead to the changes in the conformation and microenvironment of BSA. At the same time, the effects of ionic surfactants on the interaction of Ap and BSA have also been investigated.

  1. Refined structure of dimeric diphtheria toxin at 2.0 A resolution.

    PubMed Central

    Bennett, M. J.; Choe, S.; Eisenberg, D.

    1994-01-01

    The refined structure of dimeric diphtheria toxin (DT) at 2.0 A resolution, based on 37,727 unique reflections (F > 1 sigma (F)), yields a final R factor of 19.5% with a model obeying standard geometry. The refined model consists of 523 amino acid residues, 1 molecule of the bound dinucleotide inhibitor adenylyl 3'-5' uridine 3' monophosphate (ApUp), and 405 well-ordered water molecules. The 2.0-A refined model reveals that the binding motif for ApUp includes residues in the catalytic and receptor-binding domains and is different from the Rossmann dinucleotide-binding fold. ApUp is bound in part by a long loop (residues 34-52) that crosses the active site. Several residues in the active site were previously identified as NAD-binding residues. Glu 148, previously identified as playing a catalytic role in ADP-ribosylation of elongation factor 2 by DT, is about 5 A from uracil in ApUp. The trigger for insertion of the transmembrane domain of DT into the endosomal membrane at low pH may involve 3 intradomain and 4 interdomain salt bridges that will be weakened at low pH by protonation of their acidic residues. The refined model also reveals that each molecule in dimeric DT has an "open" structure unlike most globular proteins, which we call an open monomer. Two open monomers interact by "domain swapping" to form a compact, globular dimeric DT structure. The possibility that the open monomer resembles a membrane insertion intermediate is discussed. PMID:7833807

  2. Role of water molecules in structure and energetics of Pseudomonas aeruginosa lectin I interacting with disaccharides.

    PubMed

    Nurisso, Alessandra; Blanchard, Bertrand; Audfray, Aymeric; Rydner, Lina; Oscarson, Stefan; Varrot, Annabelle; Imberty, Anne

    2010-06-25

    Calcium-dependent lectin I from Pseudomonas aeruginosa (PA-IL) binds specifically to oligosaccharides presenting an alpha-galactose residue at their nonreducing end, such as the disaccharides alphaGal1-2betaGalOMe, alphaGal1-3betaGalOMe, and alphaGal1-4betaGalOMe. This provides a unique model for studying the effect of the glycosidic linkage of the ligands on structure and thermodynamics of the complexes by means of experimental and theoretical tools. The structural features of PA-IL in complex with the three disaccharides were established by docking and molecular dynamics simulations and compared with those observed in available crystal structures, including PA-IL.alphaGal1-2betaGalOMe complex, which was solved at 2.4 A resolution and reported herein. The role of a structural bridge water molecule in the binding site of PA-IL was also elucidated through molecular dynamics simulations and free energy calculations. This water molecule establishes three very stable hydrogen bonds with O6 of nonreducing galactose, oxygen from Pro-51 main chain, and nitrogen from Gln-53 main chain of the lectin binding site. Binding free energies for PA-IL in complex with the three disaccharides were investigated, and the results were compared with the experimental data determined by titration microcalorimetry. When the bridge water molecule was included in the free energy calculations, the simulations predicted the correct binding affinity trends with the 1-2-linked disaccharide presenting three times stronger affinity ligand than the other two. These results highlight the role of the water molecule in the binding site of PA-IL and indicate that it should be taken into account when designing glycoderivatives active against P. aeruginosa adhesion.

  3. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.

  4. Trench-shaped binding sites promote multiple classes of interactions between collagen and the adherence receptors, alpha(1)beta(1) integrin and Staphylococcus aureus cna MSCRAMM.

    PubMed

    Rich, R L; Deivanayagam, C C; Owens, R T; Carson, M; Höök, A; Moore, D; Symersky, J; Yang, V W; Narayana, S V; Höök, M

    1999-08-27

    Most mammalian cells and some pathogenic bacteria are capable of adhering to collagenous substrates in processes mediated by specific cell surface adherence molecules. Crystal structures of collagen-binding regions of the human integrin alpha(2)beta(1) and a Staphylococcus aureus adhesin reveal a "trench" on the surface of both of these proteins. This trench can accommodate a collagen triple-helical structure and presumably represents the ligand-binding site (Emsley, J., King, S. L., Bergelson, J. M., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517; Symersky, J., Patti, J. M., Carson, M., House-Pompeo, K., Teale, M., Moore, D., Jin, L., Schneider, A., DeLucas, L. J., Höök, M., and Narayana, S. V. L. (1997) Nat. Struct. Biol. 4, 833-838). We report here the crystal structure of the alpha subunit I domain from the alpha(1)beta(1) integrin. This collagen-binding protein also contains a trench on one face in which the collagen triple helix may be docked. Furthermore, we compare the collagen-binding mechanisms of the human alpha(1) integrin I domain and the A domain from the S. aureus collagen adhesin, Cna. Although the S. aureus and human proteins have unrelated amino acid sequences, secondary structure composition, and cation requirements for effective ligand binding, both proteins bind at multiple sites within one collagen molecule, with the sites in collagen varying in their affinity for the adherence molecule. We propose that (i) these evolutionarily dissimilar adherence proteins recognize collagen via similar mechanisms, (ii) the multisite, multiclass protein/ligand interactions observed in these two systems result from a binding-site trench, and (iii) this unusual binding mechanism may be thematic for proteins binding extended, rigid ligands that contain repeating structural motifs.

  5. Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric

    2012-05-09

    The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides.more » The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.« less

  6. Structure of isocitrate dehydrogenase with alpha-ketoglutarate at 2.7-A resolution: conformational changes induced by decarboxylation of isocitrate.

    PubMed

    Stoddard, B L; Koshland, D E

    1993-09-14

    The structure of the isocitrate dehydrogenase (IDH) complex with bound alpha-ketoglutarate, Ca2+, and NADPH was solved at 2.7-A resolution. The alpha-ketoglutarate binds in the active site at the same position and orientation as isocitrate, with a difference between the two bound molecules of about 0.8 A. The Ca2+ metal is coordinated by alpha-ketoglutarate, three conserved aspartate residues, and a pair of water molecules. The largest motion in the active site relative to the isocitrate enzyme complex is observed for tyrosine 160, which originally forms a hydrogen bond to the labile carboxyl group of isocitrate and moves to form a new hydrogen bond to Asp 307 in the complex with alpha-ketoglutarate. This triggers a number of significant movements among several short loops and adjoining secondary structural elements in the enzyme, most of which participate in dimer stabilization and formation of the active-site cleft. These rearrangements are similar to the ligand-binding-induced movements observed in globins and insulin and serve as a model for an enzymatic mechanism which involves local shifts of secondary structural elements during turnover, rather than large-scale domain closures or loop transitions induced by substrate binding such as those observed in hexokinase or triosephosphate isomerase.

  7. Inhibition of LPS binding to MD-2 co-receptor for suppressing TLR4-mediated expression of inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri

    Highlights: Black-Right-Pointing-Pointer 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. Black-Right-Pointing-Pointer 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. Black-Right-Pointing-Pointer 1D10G down-regulates the expression of NF-{kappa}B-, AP1- or IRF3-target genes. Black-Right-Pointing-Pointer MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity thanmore » gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-{kappa}B (NF-{kappa}B) or activating protein 1 (AP1)-target genes such as tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-1{beta}, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-{beta} gene and IFN-{gamma} inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.« less

  8. Two distinct cellular proteins interact with the EIa-responsive element of an adenovirus early promoter.

    PubMed Central

    Jansen-Durr, P; Wintzerith, M; Reimund, B; Hauss, C; Kédinger, C

    1990-01-01

    EIa-dependent transactivation of the adenovirus EIIa early (EIIaE) promoter is correlated with the activation of the cellular transcription factor E2F. In this study we identified a cellular protein, C alpha, that is distinct from E2F and that binds two sites in the EIIaE promoter, one of which overlaps with the proximal E2F binding site of the EIIaE promoter. The possible involvement of C alpha in the EIa responsiveness of this promoter is discussed. Images PMID:2139142

  9. Central alpha/sub 2/ adrenergic receptors in the rat cerebral cortex: repopulation kinetics and receptor reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, C.H.

    1986-01-01

    The alpha/sub 2/ adrenergic receptor subtype is thought to play a role in the mechanism of action of antidepressant and antihypertensive drugs. This thesis has attempted to shed light on the regulation of central alpha/sub 2/ adrenergic receptors in the rat cerebral cortex. Repopulation kinetics analysis allows for the determination of the rate of receptor production, rate constant of degradation, and half-life of the receptor. This analysis was carried out using both radioligand binding and functional receptor assays at various times following the irreversible inactivation of central alpha/sub 2/ adrenergic receptors by in vivo administration of N-ethoxycarbonyl-2-ethyoxy-1,2-dihydroquinoline (EEDQ). Both alpha/submore » 2/ agonist and antagonist ligand binding sites recovered with a t/sub 1/2/ equal to approximately 4 days. The function of alpha/sub 2/ adrenergic autoreceptors, which inhibit stimulation-evoked release of /sup 3/H-norepinephrine (/sup 3/H-NE) and alpha/sub 2/ adrenergic heteroreceptors which inhibit stimulation-evoked release of /sup 3/H-serotonin (/sup 3/H-5-HT) were assayed. The t/sub 1/2/ for recovery of maximal autoreceptor and heteroreceptor function was 2.4 days and 4.6 days, respectively. The demonstration of a receptor reserve is critical to the interpretation of past and future studies of the alpha/sub 2/ adrenergic receptor since it demonstrates that: (1) alterations in the number of alpha/sub 2/ adrenergic receptor binding sites cannot be extrapolated to the actual function of the alpha/sub 2/ adrenergic receptor; and (2) alterations in the number of alpha/sub 2/ receptors is not necessarily accompanied by a change in the maximum function being studied, but may only result in shifting of the dose-response curve.« less

  10. Interaction of ibogaine with human alpha3beta4-nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W

    2010-09-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) alpha3beta4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (+/-)-epibatidine-induced Ca2+ influx in h(alpha)3beta4 AChRs with approximately 9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the h(alpha)3beta4 AChR ion channel with relatively high affinity (Kd = 0.46 +/- 0.06 microM), and ibogaine inhibits [3H]ibogaine binding to the desensitized h(alpha)3beta4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the h(alpha)3beta4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6') and valine/phenylalanine (position 13') rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiaoyong; Cai, Cuizan; Xiao, Fei

    Highlights: • A specific aFGF-binding peptide AP8 was identified from a phage display library. • AP8 could inhibit aFGF-stimulated cell proliferation in a dose-dependent manner. • AP8 arrested the cell cycle at the G0/G1 phase by suppressing Cyclin D1. • AP8 could block the activation of Erk1/2 and Akt kinase. • AP8 counteracted proliferation and cell cycle via influencing PA2G4 and PCNA. - Abstract: It has been reported that acidic fibroblast growth factor (aFGF) is expressed in breast cancer and via interactions with fibroblast growth factor receptors (FGFRs) to promote the stage and grade of the disease. Thus, aFGF/FGFRs havemore » been considered essential targets in breast cancer therapy. We identified a specific aFGF-binding peptide (AGNWTPI, named AP8) from a phage display heptapeptide library with aFGF after four rounds of biopanning. The peptide AP8 contained two (TP) amino acids identical and showed high homology to the peptides of the 182–188 (GTPNPTL) site of high-affinity aFGF receptor FGFR1. Functional analyses indicated that AP8 specifically competed with the corresponding phage clone A8 for binding to aFGF. In addition, AP8 could inhibit aFGF-stimulated cell proliferation, arrested the cell cycle at the G0/G1 phase by increasing PA2G4 and suppressing Cyclin D1 and PCNA, and blocked the aFGF-induced activation of Erk1/2 and Akt kinase in both breast cancer cells and vascular endothelial cells. Therefore, these results indicate that peptide AP8, acting as an aFGF antagonist, is a promising therapeutic agent for the treatment of breast cancer.« less

  12. Characterizing Solution Surface Loop Conformational Flexibility of the GM2 Activator Protein

    PubMed Central

    2015-01-01

    GM2AP has a β-cup topology with numerous X-ray structures showing multiple conformations for some of the surface loops, revealing conformational flexibility that may be related to function, where function is defined as either membrane binding associated with ligand binding and extraction or interaction with other proteins. Here, site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and molecular dynamic (MD) simulations are used to characterize the mobility and conformational flexibility of various structural regions of GM2AP. A series of 10 single cysteine amino acid substitutions were generated, and the constructs were chemically modified with the methanethiosulfonate spin label. Continuous wave (CW) EPR line shapes were obtained and subsequently simulated using the microscopic order macroscopic disorder (MOMD) program. Line shapes for sites that have multiple conformations in the X-ray structures required two spectral components, whereas spectra of the remaining sites were adequately fit with single-component parameters. For spin labeled sites L126C and I66C, spectra were acquired as a function of temperature, and simulations provided for the determination of thermodynamic parameters associated with conformational change. Binding to GM2 ligand did not alter the conformational flexibility of the loops, as evaluated by EPR and NMR spectroscopies. These results confirm that the conformational flexibility observed in the surface loops of GM2AP crystals is present in solution and that the exchange is slow on the EPR time scale (>ns). Furthermore, MD simulation results are presented and agree well with the conformational heterogeneity revealed by SDSL. PMID:25127419

  13. Mutagenesis of the C2 domain of protein kinase C-alpha. Differential roles of Ca2+ ligands and membrane binding residues.

    PubMed

    Medkova, M; Cho, W

    1998-07-10

    The C2 domains of conventional protein kinase C (PKC) have been implicated in their Ca2+-dependent membrane binding. The C2 domain of PKC-alpha contains several Ca2+ ligands that bind multiple Ca2+ ions and other putative membrane binding residues. To understand the roles of individual Ca2+ ligands and protein-bound Ca2+ ions in the membrane binding and activation of PKC-alpha, we mutated five putative Ca2+ ligands (D187N, D193N, D246N, D248N, and D254N) and measured the effects of mutations on vesicle binding, enzyme activity, and monolayer penetration of PKC-alpha. Altered properties of these mutants indicate that individual Ca2+ ions and their ligands have different roles in the membrane binding and activation of PKC-alpha. The binding of Ca2+ to Asp187, Asp193, and Asp246 of PKC-alpha is important for the initial binding of protein to membrane surfaces. On the other hand, the binding of another Ca2+ to Asp187, Asp246, Asp248, and Asp254 induces the conformational change of PKC-alpha, which in turn triggers its membrane penetration and activation. Among these Ca2+ ligands, Asp246 was shown to be most essential for both membrane binding and activation of PKC-alpha, presumably due to its coordination to multiple Ca2+ ions. Furthermore, to identify the residues in the C2 domain that are involved in membrane binding of PKC-alpha, we mutated four putative membrane binding residues (Trp245, Trp247, Arg249, and Arg252). Membrane binding and enzymatic properties of two double-site mutants (W245A/W247A and R249A/R252A) indicate that Arg249 and Arg252 are involved in electrostatic interactions of PKC-alpha with anionic membranes, whereas Trp245 and Trp247 participate in its penetration into membranes and resulting hydrophobic interactions. Taken together, these studies provide the first experimental evidence for the role of C2 domain of conventional PKC as a membrane docking unit as well as a module that triggers conformational changes to activate the protein.

  14. Interleukin 2 transcription factors as molecular targets of cAMP inhibition: delayed inhibition kinetics and combinatorial transcription roles

    PubMed Central

    1994-01-01

    Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685

  15. Regulation of rat mesangial cell growth by diadenosine phosphates.

    PubMed Central

    Heidenreich, S; Tepel, M; Schlüter, H; Harrach, B; Zidek, W

    1995-01-01

    The newly recognized human endogenous vasoconstrictive dinucleotides, diadenosine pentaphosphate (AP5A) and diadenosine hexaphosphate (AP6A), were tested for growth stimulatory effects in rat mesangial cells (MC). Both AP5A and AP6A stimulated growth in micromolar concentrations. The growth stimulatory effect exceeded that of ATP, alpha,beta-methylene ATP, adenosine 5'-O-(3-thio)triphosphate and UTP. Both diadenosine phosphates potentiated the growth response to platelet-derived growth factor, but not to insulin-like growth factor-1. To further elucidate the site of action in the cell cycle, RNA and protein synthesis were assessed. AP5 and AP6A stimulated protein synthesis, but not RNA formation. Furthermore, both agents increased cytosolic free Ca2+ concentration. It is concluded that AP5A and AP6A may play a regulatory role in MC growth as progression factors and possibly modify MC proliferation in glomerular disease. PMID:7769127

  16. Three-dimensional structure of holo 3 alpha,20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family.

    PubMed Central

    Ghosh, D; Weeks, C M; Grochulski, P; Duax, W L; Erman, M; Rimsay, R L; Orr, J C

    1991-01-01

    The x-ray structure of a short-chain dehydrogenase, the bacterial holo 3 alpha,20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), is described at 2.6 A resolution. This enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the alpha/beta fold characteristic of the dinucleotide binding region. The fold of the rest of the subunit, the quaternary structure, and the nature of the cofactor-enzyme interactions are, however, significantly different from those observed in the long-chain dehydrogenases. The architecture of the postulated active site is consistent with the observed stereospecificity of the enzyme and the fact that the tetramer is the active form. There is only one cofactor and one substrate-binding site per subunit; the specificity for both 3 alpha- and 20 beta-ends of the steroid results from the binding of the steroid in two orientations near the same cofactor at the same catalytic site. Images PMID:1946424

  17. Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    PubMed

    Svensson, Malin; Fast, Jonas; Mossberg, Ann-Kristin; Düringer, Caroline; Gustafsson, Lotta; Hallgren, Oskar; Brooks, Charles L; Berliner, Lawrence; Linse, Sara; Svanborg, Catharina

    2003-12-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.

  18. A beta-N-acetylglucosaminyl phosphate diester residue is attached to the glycosylphosphatidylinositol anchor of human placental alkaline phosphatase: a target of the channel-forming toxin aerolysin.

    PubMed

    Fukushima, Keiko; Ikehara, Yukio; Kanai, Michiko; Kochibe, Naohisa; Kuroki, Masahide; Yamashita, Katsuko

    2003-09-19

    Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitous in eukaryotes. The minimum conserved GPI core structure of all GPI-anchored glycans has been determined as EtN-PO4-6Manalpha1-2Manalpha1-6Manalpha1-4GlcN-myo-inositol-PO3H. Human placental alkaline phosphatase (AP) has been reported to be a GPI-anchored membrane protein. AP carries one N-glycan, (NeuAcalpha2-->3)2Gal2GlcNAc2Man3GlcNAc(+/-Fuc)GlcNAc, and a GPI anchor, which contains an ethanolamine phosphate diester group, as a side chain. However, we found that both sialidase-treated soluble AP (sAP) and its GPI-anchored glycan bound to a Psathyrella velutina lectin (PVL)-Sepharose column, which binds beta-GlcNAc residues. PVL binding of asialo-sAP and its GPI-anchored glycan was diminished by digestion with diplococcal beta-N-acetylhexosaminidase or by mild acid treatment. After sequential digestion of asialo-sAP with beta-N-acetylhexosaminidase and acid phosphatase, the elution patterns on chromatofocusing gels were changed in accordance with the negative charges of phosphate residues. Trypsin-digested sAP was analyzed by liquid chromatography/electrospray ionization mass spectrometry, and the structures of two glycopeptides with GPI-anchored glycans were confirmed as peptide-EtN-PO4-6Manalpha1-->2(GlcNAcbeta1-PO4-->6)Manalpha1-6(+/-EtN-PO4-->)Manalpha1-->4GlcN, which may be produced by endo-alpha-glucosaminidase. In addition to AP, GPI-anchored carcinoembryonic antigen, cholinesterase, and Tamm-Horsfall glycoprotein also bound to a PVL-Sepharose column, suggesting that the beta-N-acetylglucosaminyl phosphate diester residue is widely distributed in human GPI-anchored glycans. Furthermore, we found that the beta-N-acetylglucosaminyl phosphate diester residue is important for GPI anchor recognition of aerolysin, a channel-forming toxin derived from Aeromonas hydrophila.

  19. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that modes were reduced. Based on our results, we propose that WT loop C has an important role in determining resting affinity, in part by making stable interactions with the complementary surface of the alphadelta binding pocket. We suggest a possible structural basis for the fluctuations caused by loop C perturbations and propose that at the alphadelta agonist binding site, both loop C and the complementary subunit surface can adopt alternative conformations and interact with each other with respect to the aromatic core, to cause the variations in affinity.

  20. NFκB- and AP-1-mediated DNA looping regulates matrix metalloproteinase-9 transcription in TNF-α-treated human leukemia U937 cells.

    PubMed

    Chen, Ying-Jung; Chang, Long-Sen

    2015-10-01

    The aim of this study is to explore the spatial association of critical genomic elements in the effect of TNF-α on matrix metalloproteinase-9 (MMP-9) expression in human leukemia U937 cells. TNF-α up-regulated MMP-9 protein expression and mRNA level in U937 cells, and Akt-mediated-NFκB/p65 activation and JNK-mediated c-Jun activation were proven to be involved in TNF-α-induced MMP-9 up-regulation. Promoter luciferase activity assay revealed that NFκB (nt-600) and AP-1 (nt-79) binding sites were crucial for TNF-α-induced transcription of MMP-9 gene. The results of a chromatin immunoprecipitation assay indicated that TNF-α reduced histone deacetylase-1 (HDAC-1) recruitment but increased p300 (a histone acetyltransferase) recruitment to MMP-9 promoter regions surrounding NFκB and AP-1 binding sites. Consistently, TNF-α increased enrichment of the acetylated histone H3 mark on MMP-9 promoter regions. DNA affinity purification assay revealed that p300 and HDAC1 could bind oligonucleotides containing AP-1/c-Jun and NFκB/p65 binding sites. Chromosome conformation capture assay showed that TNF-α stimulated chromosomal loops in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun. The p300-associated acetyltransferase activity was crucial for p65/c-Jun-mediated DNA looping, and inhibition of HDAC activity increased the level of DNA looping. Reduction in the level of DNA looping eliminated all TNF-α-stimulated MMP-9 up-regulation. Taken together, our data suggest that p65/c-Jun-mediated DNA looping is involved in TNF-α-induced MMP-9 up-regulation and that the recruitment of p300 or HDAC1 to NFκB and AP-1 binding sites modifies the level of DNA looping. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Energetics of lectin-carbohydrate binding. A microcalorimetric investigation of concanavalin A-oligomannoside complexation.

    PubMed

    Williams, B A; Chervenak, M C; Toone, E J

    1992-11-15

    Despite years of study, a comprehensive picture of the binding of the lectin from Canavalia ensiformis, concanavalin A, to carbohydrates remains elusive. We report here studies on the interaction of concanavalin A with methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, the minimum carbohydrate epitope that completely fills the oligosaccharide binding site, and the two conceptual disaccharide "halves" of the trisaccharide, methyl 3-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside and methyl 6-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, using titration microcalorimetry. In all cases the interaction of protein and carbohydrate is enthalpically driven, with an unfavorable entropic contribution. The choice of concentration scales has an important impact on both the magnitude and, in some cases, the sign of the entropic component of the free energy of binding. The thermodynamic data suggest binding of the two disaccharides may take place in distinct sites, as opposed to binding in a single high affinity site. In contrast to carbohydrate-antibody binding, delta Cp values were small and negative, pointing to possible differences in the motifs used by the two groups of proteins to bind carbohydrates. The thermodynamic data are interpreted in terms of solvent reorganization. Cooperativity during lectin-carbohydrate binding was also investigated. Significant cooperativity was observed only for binding of the trisaccharide, and gave a Hill plot coefficient of 1.3 for dimeric protein.

  2. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors

    PubMed Central

    Rietz, Anne; Petrov, Dino P.; Bartolowits, Matthew; DeSmet, Marsha; Davisson, V. Jo; Androphy, Elliot J.

    2016-01-01

    The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6. PMID:26915086

  3. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    PubMed Central

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  4. Regulatory elements involved in constitutive and phorbol ester-inducible expression of the plasminogen activator inhibitor type 2 gene promoter.

    PubMed Central

    Cousin, E; Medcalf, R L; Bergonzelli, G E; Kruithof, E K

    1991-01-01

    Gene transcription rates and mRNA levels of plasminogen activator inhibitor type 2 (PAI-2) are markedly induced by the tumor promoting agent phorbol 12-myristate 13-acetate (PMA) in human HT1080 fibrosarcoma cells. To identify promoter elements required for basal-, and phorbol ester-inducible expression, deletion mutants of the PAI-1 promoter fused to the chloramphenicol acetyl transferase (CAT) reporter gene, were transiently expressed in HT1080 cells. Constitutive CAT activity was expressed from constructs containing more than 215 bp of promoter sequence, whereas deletion to position -91 bp abolished CAT gene expression. Treatment of transfected cells with PMA resulted in a three- to ten-fold increase in CAT expression from all constructs except from the construct shortened to position -91. DNAse1 protection analysis of the promoter region between -215 and the transcription initiation site revealed numerous protected regions, including two AP1-like binding sites (AP1a and AP1b) and one CRE-like element. Site-directed mutagenesis of the AP1a site or of the CRE-like site resulted in the loss of basal CAT activity and abolished the PMA effect, whereas mutagenesis of AP1b only partially inhibited basal and PMA-mediated expression. Our results suggest that the PAI-2 promoter contains at least two elements required for basal gene transcription and PMA-mediated induction. Images PMID:1650454

  5. Pheromone induction of agglutination in Saccharomyces cerevisiae a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrance, K.; Lipke, P.N.

    1987-10-01

    a-Agglutinin, the cell surface sexual agglutinin of yeast a cells, was assayed by its ability to bind its complementary agglutinin, ..cap alpha..-agglutinin. The specific binding of /sup 125/I-..cap alpha..-agglutinin to a cells treated with the sex pheromone ..cap alpha..-factor was 2 to 2.5 times that of binding to a cells not treated with ..cap alpha..-factor. Competition with unlabeled ..cap alpha..-agglutinin revealed that the increased binding was due to increased cell surface expression of a-agglutinin, with no apparent change in the binding constant. The increase in site number was similar to the increase in cellular agglutinability. Increased expression of a-agglutinin followedmore » the same kinetics as the increase in cellular agglutinability, with a 10-min lag followed by a 15- to 20-min response time. Induction kinetics were similar in cells in phases G1 and G2 of the cell cycle. Maximal expression levels were similar in cells treated with excess pheromone and in cells exposed to pheromone after destruction of constitutively expressed a-agglutinin.« less

  6. No need to be HAMLET or BAMLET to interact with histones: binding of monomeric alpha-lactalbumin to histones and basic poly-amino acids.

    PubMed

    Permyakov, Serge E; Pershikova, Irina V; Khokhlova, Tatyana I; Uversky, Vladimir N; Permyakov, Eugene A

    2004-05-18

    The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.

  7. L-Cysteine and L-AP4 microinjections in the rat caudal ventrolateral medulla decrease arterial blood pressure.

    PubMed

    Takemoto, Yumi

    2014-12-01

    The thiol amino acid L-cysteine increases arterial blood pressure (ABP) when injected into the cerebrospinal fluid space in conscious rats, indicating a pressor response to centrally acting L-cysteine. A prior synaptic membrane binding assay suggests that L-cysteine has a strong affinity for the L-2-amino-4-phosphonobutyric acid (L-AP4) binding site. The central action of L-cysteine may be vial-AP4 sensitive receptors. The present study investigated cardiovascular responses to L-cysteine and L-ap4 microinjected into the autonomic area of the caudal ventrolateral medulla (CVLM) where inhibitory neurons regulate ABP via pre-sympathetic vasomotor neurons. Both the injection of L-cysteine and L-AP4 in the CVLM sites identified with L-glutamate produced the same depressor and bradycardic responses in urethane-anesthetized rats. Neither a prior antagonist microinjection of MK801 for the N-methyl-D-aspartate (NMDA) receptor nor CNQX for the non-NMDA receptor attenuated the responses to L-cysteine, but the combination of the two receptor blocking with an additional prior injection abolished the response. In contrast, either receptor blockade alone abolished the response to L-AP4, indicating distinct mechanisms between responses to L-cysteine and L-AP4 in the CVLM. The results indicate that the CVLM is a central active site for L-cysteine's cardiovascular response. Central L-cysteine's action could be independent of the L-AP4 sensitive receptors. Cardiovascular regulation may involve endogenous L-cysteine in the CVLM. Further multidisciplinary examinations are required to elaborate on L-cysteine's functional roles in the CVLM. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  9. Inhibition of Mycobacterium tuberculosis Methionine Aminopeptidases by Bengamide Derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jing-Ping; Yuan, Xiu-Hua; Yuan, Hai

    Methionine aminopeptidase (MetAP) carries out an essential function of protein N-terminal processing in many bacteria and is a promising target for the development of novel antitubercular agents. Natural bengamides potently inhibit the proliferation of mammalian cells by targeting MetAP enzymes, and the X-ray crystal structure of human type 2 MetAP in complex with a bengamide derivative reveals the key interactions at the active site. By preserving the interactions with the conserved residues inside the binding pocket while exploring the differences between bacterial and human MetAPs around the binding pocket, seven bengamide derivatives were synthesized and evaluated for inhibition of MtMetAP1amore » and MtMetAP1c in different metalloforms, inhibition of M. tuberculosis growth in replicating and non-replicating states, and inhibition of human K562 cell growth. Potent inhibition of MtMetAP1a and MtMetAP1c and modest growth inhibition of M. tuberculosis were observed for some of these derivatives. Crystal structures of MtMetAP1c in complex with two of the derivatives provided valuable structural information for improvement of these inhibitors for potency and selectivity.« less

  10. Generation of tumour-necrosis-factor-alpha-specific affibody molecules capable of blocking receptor binding in vitro.

    PubMed

    Jonsson, Andreas; Wållberg, Helena; Herne, Nina; Ståhl, Stefan; Frejd, Fredrik Y

    2009-08-17

    Affibody molecules specific for human TNF-alpha (tumour necrosis factor-alpha) were selected by phage-display technology from a library based on the 58-residue Protein A-derived Z domain. TNF-alpha is a proinflammatory cytokine involved in several inflammatory diseases and, to this day, four TNF-alpha-blocking protein pharmaceuticals have been approved for clinical use. The phage selection generated 18 unique cysteine-free affibody sequences of which 12 were chosen, after sequence cluster analysis, for characterization as proteins. Biosensor binding studies of the 12 Escherichia coli-produced and IMAC (immobilized-metal-ion affinity chromatography)-purified affibody molecules revealed three variants that demonstrated the strongest binding to human TNF-alpha. These three affibody molecules were subjected to kinetic binding analysis and also tested for their binding to mouse, rat and pig TNF-alpha. For ZTNF-alpha:185, subnanomolar affinity (KD=0.1-0.5 nM) for human TNF-alpha was demonstrated, as well as significant binding to TNF-alpha from the other species. Furthermore, the binding site was found to overlap with the binding site for the TNF-alpha receptor, since this interaction could be efficiently blocked by the ZTNF-alpha:185 affibody. When investigating six dimeric affibody constructs with different linker lengths, and one trimeric construct, it was found that the inhibition of the TNF-alpha binding to its receptor could be further improved by using dimers with extended linkers and/or a trimeric affibody construct. The potential implication of the results for the future design of affibody-based reagents for the diagnosis of inflammation is discussed.

  11. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  12. [125I]2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), a high-affinity radioligand selective for I1 imidazoline receptors.

    PubMed

    Greney, Hugues; Urosevic, Dragan; Schann, Stephan; Dupuy, Laurence; Bruban, Véronique; Ehrhardt, Jean-Daniel; Bousquet, Pascal; Dontenwill, Monique

    2002-07-01

    The I1 subtype of imidazoline receptors (I1R) is a plasma membrane protein that is involved in diverse physiological functions. Available radioligands used so far to characterize the I(1)R were able to bind with similar affinities to alpha2-adrenergic receptors (alpha2-ARs) and to I1R. This feature was a major drawback for an adequate characterization of this receptor subtype. New imidazoline analogs were therefore synthesized and the present study describes one of these compounds, 2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), which was of high affinity and selectivity for the I1R. LNP 911 was radioiodinated and its binding properties characterized in different membrane preparations. Saturation experiments with [125I]LNP 911 revealed a single high affinity binding site in PC-12 cell membranes (K(D) = 1.4 nM; B(max) = 398 fmol/mg protein) with low nonspecific binding. [125I]LNP 911 specific binding was inhibited by various imidazolines and analogs but was insensitive to guanosine-5'-O-(3-thio)triphosphate. The rank order of potency of some competing ligands [LNP 911, PIC, rilmenidine, 4-chloro-2-(imidazolin-2-ylamino)-isoindoline (BDF 6143), lofexidine, and clonidine] was consistent with the definition of [125I]LNP 911 binding sites as I1R. However, other high-affinity I1R ligands (moxonidine, efaroxan, and benazoline) exhibited low affinities for these binding sites in standard binding assays. In contrast, when [125I]LNP 911 was preincubated at 4 degrees C, competition curves of moxonidine became biphasic. In this case, moxonidine exhibited similar high affinities on [125I]LNP 911 binding sites as on I1R defined with [125I]PIC. Moxonidine proved also able to accelerate the dissociation of [125I]LNP 911 from its binding sites. These results suggest the existence of an allosteric modulation at the level of the I1R, which seems to be corroborated by the dose-dependent enhancement by LNP 911 of the agonist effects on the adenylate cyclase pathway associated to I1R. Because [125I]LNP 911 was unable to bind to the I2 binding site and alpha2AR, our data indicate that [125I]LNP 911 is the first highly selective radioiodinated probe for I1R with a nanomolar affinity. This new tool should facilitate the molecular characterization of the I1 imidazoline receptor.

  13. Isolation of linoleic acid as an estrogenic compound from the fruits of Vitex agnus-castus L. (chaste-berry).

    PubMed

    Liu, J; Burdette, J E; Sun, Y; Deng, S; Schlecht, S M; Zheng, W; Nikolic, D; Mahady, G; van Breemen, R B; Fong, H H S; Pezzuto, J M; Bolton, J L; Farnsworth, N R

    2004-01-01

    A methanol extract of chaste-tree berry (Vitex agnus-castus L.) was tested for its ability to displace radiolabeled estradiol from the binding site of estrogen receptors alpha (ERalpha) and beta (ERbeta). The extract at 46 +/- 3 microg/ml displaced 50% of estradiol from ERalpha and 64 +/- 4 microg/ml from ERbeta. Treatment of the ER+ hormone-dependent T47D:A18 breast cancer cell line with the extract induced up-regulation of ERbeta mRNA. Progesterone receptor (PR) mRNA was upregulated in the Ishikawa endometrial cancer cell line. However, chaste-tree berry extract did not induce estrogen-dependent alkaline phosphatase (AP) activity in Ishikawa cells. Bioassay-guided isolation, utilizing ER binding as a monitor, resulted in the isolation of linoleic acid as one possible estrogenic component of the extract. The use of pulsed ultrafiltration liquid chromatography-mass spectrometry, which is an affinity-based screening technique, also identified linoleic acid as an ER ligand based on its selective affinity, molecular weight, and retention time. Linoleic acid also stimulated mRNA ERbeta expression in T47D:A18 cells, PR expression in Ishikawa cells, but not AP activity in Ishikawa cells. These data suggest that linoleic acid from the fruits of Vitex agnus-castus can bind to estrogen receptors and induce certain estrogen inducible genes.

  14. Free and ATP-bound structures of Ap4A hydrolase from Aquifex aeolicus V5.

    PubMed

    Jeyakanthan, Jeyaraman; Kanaujia, Shankar Prasad; Nishida, Yuya; Nakagawa, Noriko; Praveen, Surendran; Shinkai, Akeo; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Sekar, Kanagaraj

    2010-02-01

    Asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases degrade the metabolite Ap(4)A back into ATP and AMP. The three-dimensional crystal structure of Ap(4)A hydrolase (16 kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95 A resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an alphabetaalpha-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap(4)A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule.

  15. Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15-4513.

    PubMed

    Pym, Luanda J; Cook, Susan M; Rosahl, Thomas; McKernan, Ruth M; Atack, John R

    2005-11-01

    Classical benzodiazepines (BZs), such as diazepam, bind to GABAA receptors containing alpha1, alpha2, alpha3 or alpha5 subunits that are therefore described as diazepam-sensitive (DS) receptors. However, the corresponding binding site of GABAA receptors containing either an alpha4 or alpha6 subunit do not bind the classical BZs and are therefore diazepam-insensitive (DIS) receptors; a difference attributable to a single amino acid (histidine in alpha1, alpha2, alpha3 and alpha5 subunits and arginine in alpha4 and alpha6). Unlike classical BZs, the imidazobenzodiazepines Ro 15-4513 and bretazenil bind to both DS and DIS populations of GABAA receptors. In the present study, an in vivo assay was developed using lorazepam to fully occupy DS receptors such that [3H]Ro 15-4513 was then only able to bind to DIS receptors. When dosed i.v., [3H]Ro 15-4513 rapidly entered and was cleared from the brain, with approximately 70% of brain radioactivity being membrane-bound. Essentially all membrane binding to DS+DIS receptors could be displaced by unlabelled Ro 15-4513 or bretazenil, with respective ID50 values of 0.35 and 1.2 mg kg(-1). A dose of 30 mg kg(-1) lorazepam was used to block all DS receptors in a [3H]Ro 15-1788 in vivo binding assay. When predosed in a [3H]Ro 15-4513 binding assay, lorazepam blocked [3H]Ro 15-4513 binding to DS receptors, with the remaining binding to DIS receptors accounting for 5 and 23% of the total (DS plus DIS) receptors in the forebrain and cerebellum, respectively. The in vivo binding of [3H]Ro 15-4513 to DIS receptors in the presence of lorazepam was confirmed using alpha1H101R knock-in mice, in which alpha1-containing GABAA receptors are rendered diazepam insensitive by mutation of the histidine that confers diazepam sensitivity to arginine. In these mice, and in the presence of lorazepam, there was an increase of in vivo [3H]Ro 15-4513 binding in the forebrain and cerebellum from 4 and 15% to 36 and 59% of the total (i.e. DS plus DIS) [3H]Ro 15-4513 binding observed in the absence of lorazepam.

  16. Effects of PPADS and suramin on contractions and cytoplasmic Ca2+ changes evoked by AP4A, ATP and alpha, beta-methylene ATP in guinea-pig urinary bladder.

    PubMed Central

    Usune, S.; Katsuragi, T.; Furukawa, T.

    1996-01-01

    1. The contraction and intracellular Ca2+ change evoked by diadenosine tetraphosphate (AP4A) were studied in the outer longitudinal muscle of the guinea-pig urinary bladder and compared with those evoked by ATP and alpha, beta-methylene ATP (a P2-purinoceptor agonist). 2. AP4A, ATP and alpha, beta-methylene ATP produced concentration-dependent transient contractions. These contractions were inhibited by PPADS (pyridoralphosphate-6-azophenyl- 2'-4'-disulphonic acid), 0.3- 30 microM, a P2x-purinoceptor antagonist, and suramin, 1-300 microM, a P2-purinoceptor antagonist in a concentration-dependent manner. From Schild plot analysis, the apparent pA2 values for PPADS for contractions evoked by AP4A, ATP and alpha, beta-methylene ATP were 6.86, 6.56, 6.74, and those for suramin were 6.01, 4.59 and 5.12, respectively; the Schild slopes for PPADS were 1.07, 1.14 and 1.06, and, those for suramin 0.75, 1.05 and 1.16, respectively. 3. AP4A (10 microM) and ATP (100 microM) failed to elicit any contraction of the tissue after a desensitization produced by repeated application of alpha, beta-methylene ATP (1 microM). 4. In fluorescence experiments with fura-2, the increases in [Ca2+]i and contraction evoked by AP4A were suppressed by suramin and nifedipine, an L-type Ca2+ channel blocker. 5. These findings suggest that P2x-purinoceptors, which are more sensitive to PPADS than suramin, exist on the outer longitudinal muscles of guinea-pig urinary bladder, and that the AP4A-evoked contraction results from Ca2+ influx. PMID:8646416

  17. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    PubMed

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  18. Fluorescence and NMR investigations in the ligand binding properties of adenylate kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinstein, J.; Vetter, I.R.; Schlichting, I.

    A new system for measurement of affinities of adenylate kinases (AK) for substrates and inhibitors is presented. This system is based on the use of the fluorescent ligand {alpha},{omega}-di((3{prime} or 2{prime})-O-(N-methyl-anthraniloyl)adenosine-5{prime}) pentaphosphate (MAP5Am), which is an analogue of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A). It allows the determination of dissociation constants for any ligand in the range of 1 {times} 10{sup {minus}9} to 5 {times} 10{sup {minus}2} M. Affinities for different bisubstrate inhibitors (AP4A, AP5A, AP6A) and substrates (AMP, ADP, ATP, GTP) were determined in the presence and absence of magnesium. An analysis of the binding of bisubstrate inhibitors ismore » proposed and applied to these data. Temperature denaturation experiments indicate that the mutant enzyme has the same thermal stability as the wild-type enzyme and, as NMR studies indicate, also a very similar structure. Together with the results obtained by Tian et al on the effect of replacement of the conserved His-36 in the cytosolic AK (AK1) from chicken by glutamine and asparagine, this shows that residues 28 of AK from E. coli (AKec) and 36 of AK1 are situated in a comparable environment and are not essential for catalytic activity.« less

  19. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution.

    PubMed Central

    Qian, M.; Haser, R.; Payan, F.

    1995-01-01

    The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA. PMID:7613472

  20. Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist.

    PubMed

    Chiara, David C; Trinidad, Jonathan C; Wang, Dong; Ziebell, Michael R; Sullivan, Deirdre; Cohen, Jonathan B

    2003-01-21

    [(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner. The specific residues labeled by [(3)H]TDBzcholine were determined by N-terminal sequence analysis of subunit fragments produced by enzymatic cleavage and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high-performance liquid chromatography. For the alpha subunit, [(3)H]TDBzcholine photoincorporated into alphaCys-192, alphaCys-193, and alphaPro-194. For the gamma and delta subunits, [(3)H]TDBzcholine incorporated into homologous leucine residues, gammaLeu-109 and deltaLeu-111. The photolabeling of these amino acids suggests that when the antagonist TDBzcholine occupies the agonist binding sites, the Cys-192-193 disulfide and Pro-194 from the alpha subunit Segment C are oriented toward the agonist site and are in proximity to gammaLeu-109/deltaLeu-111 in Segment E, a conclusion consistent with the structure of the binding site in the molluscan acetylcholine binding protein, a soluble protein that is homologous to the nAChR extracellular domain.

  1. Nuclear Receptor SHP Activates miR-206 Expression via a Cascade Dual Inhibitory Mechanism

    PubMed Central

    Song, Guisheng; Wang, Li

    2009-01-01

    MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP−/− mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRγ (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRγ, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRγ binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRγ and YY1 reduced its expression. The effects of AP1, ERRγ, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade “dual inhibitory” mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRγ led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription. PMID:19721712

  2. HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2.

    PubMed

    Metzler, M; Legendre-Guillemin, V; Gan, L; Chopra, V; Kwok, A; McPherson, P S; Hayden, M R

    2001-10-19

    Polyglutamine expansion in huntingtin is the underlying mutation leading to neurodegeneration in Huntington disease. This mutation influences the interaction of huntingtin with different proteins, including huntingtin-interacting protein 1 (HIP1), in which affinity to bind to mutant huntingtin is profoundly reduced. Here we demonstrate that HIP1 colocalizes with markers of clathrin-mediated endocytosis in neuronal cells and is highly enriched on clathrin-coated vesicles (CCVs) purified from brain homogenates. HIP1 binds to the clathrin adaptor protein 2 (AP2) and the terminal domain of the clathrin heavy chain, predominantly through a small fragment encompassing amino acids 276-335. This region, which contains consensus clathrin- and AP2-binding sites, functions in conjunction with the coiled-coil domain to target HIP1 to CCVs. Expression of various HIP1 fragments leads to a potent block of clathrin-mediated endocytosis. Our findings demonstrate that HIP1 is a novel component of the endocytic machinery.

  3. Comparative Mg(2+)-dependent sequential covalent binding stoichiometries of 3'-O-(4-benzoyl)benzoyl adenosine 5'-diphosphate of MF1, TF1, and the alpha 3 beta 3 core complex of TF1. The binding change motif is independent of the F1 gamma delta epsilon subunits.

    PubMed

    Aloise, P; Kagawa, Y; Coleman, P S

    1991-06-05

    Three F1 preparations, the beef heart (MF1) and thermophilic bacterium (TF1) holoenzymes, and the alpha 3 beta 3 "core" complex of TF1 reconstituted from individually expressed alpha and beta subunits, were compared as to their kinetic and binding stoichiometric responses to covalent photoaffinity labeling with BzATP and BzADP (+/- Mg2+). Each enzyme displayed an enhanced pseudo-first order rate of photoinhibition and one-third of the sites covalent binding to a catalytic site for full inhibition, plus, but not minus Mg2+. Titration of near stoichiometric [MgBzADP]/[F1] ratios during photolysis disclosed two sequential covalent binding patterns for each enzyme; a high affinity binding corresponding to unistoichiometric covalent association concomitant with enzyme inhibition, followed by a low affinity multisite-saturating covalent association. Thus, in the absence of the structural asymmetry inducing gamma delta epsilon subunits of the holoenzyme, the sequential binding of nucleotide at putative catalytic sites on the alpha 3 beta 3 complex of any F1 appears sufficient to effect binding affinity changes. With MF1, final covalent saturation of BzADP-accessible sites was achieved with 2 mol of BzADP/mol of enzyme, but with TF1 or its alpha 3 beta 3 complex, saturation required 3 mol of BzADP/mol of enzyme. Such differential final labeling stoichiometries could arise because of the endogenous presence of 1 nucleotide already bound to one of the 3 potential catalytic sites on normally prepared MF1, whereas TF1, possessing no endogenous nucleotide, has 3 vacant BzADP-accessible sites. Kinetics measurements revealed that regardless of the incremental extent of inhibition of the TF1 holoenzyme by BzADP during photolysis, the two higher apparent Km values (approximately 1.5 x 10(-4) and approximately 10(-3) M, respectively) of the progressively inactivated incubation are unchanged relative to fully unmodified enzyme. As reported for BzATP (or BzADP) and MF1 (Ackerman, S.H., Grubmeyer, C., and Coleman, P.S. (1987) J. Biol. Chem. 262, 13765-13772), this supports the fact that the photocovalent inhibition of F1 is a one-hit one-kill phenomenon. Isoelectric focusing gels revealed that [3H]BzADP covalently modifies both TF1 and MF1 exclusively on the beta subunit, whether or not Mg2+ is present. A single 19-residue [3H]BzADP-labeled peptide was resolved from a tryptic digest of MF1, and this peptide corresponded with the one believed to contain at least a portion of the beta subunit catalytic site domain (i.e. beta Ala-338----beta Arg-356).

  4. LRP-mediated clearance of Abeta is inhibited by KPI-containing isoforms of APP.

    PubMed

    Moir, Robert D; Tanzi, Rudolph E

    2005-04-01

    The pathogenesis of Alzheimer's disease (AD) involves the abnormal accumulation and deposition of beta-amyloid in cerebral blood vessels and in the brain parenchyma. Critical in modulating beta-amyloid deposition in brain is the flux of Abeta across the blood brain barrier. The low-density lipoprotein receptor-related protein (LRP), is a large endocytic receptor that mediates the efflux of Abeta out of brain and into the periphery. The first step in the LRP-mediated clearance of Abeta involves the formation of a complex between Abeta and the LRP ligands apolipoprotein E (apoE) or alpha(2)-macroglobulin (alpha(2)M). The Abeta/chaperone complexes then bind to LRP via binding sites on apoE or alpha(2)M. The efflux of Abeta/chaperone complexes out of the neuropil and into the periphery may be attenuated by LRP-ligands that compete with apoE or alpha(2)M for LRP binding. LRP is also the cell surface receptor for Kunitz Protease Inhibitor (KPI) containing isoforms of Abeta's parent protein, the amyloid protein precursor (APP). Protein and mRNA levels of KPI-containing APP isoforms (APP-KPI) are elevated in AD brain and are associated with increased Abeta production. In this study we show that soluble non-amyloidogenic APP-KPI can also inhibit the uptake of Abeta/alpha(2)M in a cell culture model of LRP mediated Abeta clearance. Clearance of Abeta/apoE complexes was not inhibited by APP-KPI. Our findings are consistent with studies showing that apoE and alpha(2)M have discrete binding sites on LRP. Most significantly, our data suggests that the elevated levels of APP-KPI in AD brain may attenuate the clearance of Abeta, the proteins own amyloidogenic catabolic product.

  5. Phase correlated adequate afferent action potentials as a drive of human spinal oscillators.

    PubMed

    Schalow, G

    1993-12-01

    1. By recording, with 2 pairs of wire electrodes, single-fibre action potentials (APs) from lower sacral nerve roots of a brain-dead human and a patient with spinal cord lesion, impulse patterns of afferent APs and impulse trains of oscillatory firing motoneurons could be identified and correlated. 2. Two highly activated secondary muscle spindle afferents increased and decreased their activity at about 0.3 Hz. The duration of the doublet interspike interval of a secondary spindle afferent fibre showed no correlation to the oscillation period of the motoneuron. 3. A continuously oscillatory firing motoneuron innervating the external and sphincter showed more transient breaks with the reduction of the number of phase correlated APs from 2 spindle afferents, indicating a looser oscillation. A transient brake of a 157 msec period alpha 2-oscillation could be correlated to the shift of a interspike interval distribution peak from 150 to 180 msec of the adequate afferent input, which suggests a transient loss of the necessary phase relation. 4. Oscillatory firing alpha 2-motoneurons innervating the external bladder and anal sphincters fired independently according to their phase correlated APs from the urinary bladder stretch receptor and muscle spindle afferents respectively; the bladder motoneuron slightly inhibited the anal motoneuron. 5. Receptors of the afferents and innervation sites of oscillatory firing motoneurons could be located within the urinary tract and the anal canal.

  6. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  7. One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system

    PubMed Central

    Wang, Wei-Ming; Lee, A-Young; Chiang, Cheng-Ming

    2008-01-01

    The AP-1 transcription factor is a dimeric protein complex formed primarily between Jun (c-Jun, JunB, JunD) and Fos (c-Fos, FosB, Fra-1, Fra-2) family members. These distinct AP-1 complexes are expressed in many cell types and modulate target gene expression implicated in cell proliferation, differentiation, and stress responses. Although the importance of AP-1 has long been recognized, the biochemical characterization of AP-1 remains limited in part due to the difficulty in purifying full-length, reconstituted dimers with active DNA-binding and transcriptional activity. Using a combination of bacterial coexpression and epitope-tagging methods, we successfully purified all 12 heterodimers (3 Jun × 4 Fos) of full-length human AP-1 complexes as well as c-Jun/c-Jun, JunD/JunD, and c-Jun/JunD dimers from bacterial inclusion bodies using one-step nickel-NTA affinity tag purification following denaturation and renaturation of coexpressed AP-1 subunits. Coexpression of two constitutive components in a dimeric AP-1 complex helps stabilize the proteins when compared with individual protein expression in bacteria. Purified dimeric AP-1 complexes are functional in sequence-specific DNA binding, as illustrated by electrophoretic mobility shift assays and DNase I footprinting, and are also active in transcription with in vitro-reconstituted human papillomavirus (HPV) chromatin containing AP-1-binding sites in the native configuration of HPV nucleosomes. The availability of these recombinant full-length human AP-1 complexes has greatly facilitated mechanistic studies of AP-1-regulated gene transcription in many biological systems. PMID:18329890

  8. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrainmore » and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.« less

  9. Metabolic fate of fenetylline in rat and man.

    PubMed

    Yoshimura, H; Yoshimitsu, T; Yamada, H; Koga, N; Oguri, K

    1988-08-01

    1. Metabolic fate of 7-[2-(alpha-methylphenylethylamino)ethyl]theophylline hydrochloride (fenetylline) was investigated in male Sprague-Dawley rats and three male volunteers. 2. Six metabolites were identified in the rat urine as amphetamine(AP), p-hydroxy-AP, acetylaminoethyl-theophylline(TP), aminoethyl-TP, hydroxyethyl-TP and carboxymethyl-TP by comparison of their spectral properties and h.p.l.c. and g.l.c. characteristics with those of authentic samples. All these metabolites was also detected in the urine of humans receiving fenetylline. 3. Quantification of these metabolites using h.p.l.c. and g.l.c. showed that carboxymethyl-TP, p-hydroxy-AP and acetylaminoethyl-TP were the major metabolites in 0-24 h rat urine at 13.7%, 11.2% and 9.3% of dose, respectively. In men, carboxymethyl-TP(39-43% dose) and AP(23-33% dose) were the major metabolites in 0-48 h urine. 4. These results suggest that fenetylline metabolism proceeds via oxidative cleavage at two different sites to produce aminoethyl-TP and AP, respectively. The pathway producing AP predominates, in both man and rat, but is more predominant in the former.

  10. Elimination of polarity in the carotenoid terminus promotes the exposure of B850-binding sites (Tyr 44, 45) and ANS-mediated energy transfer in LH2 complexes of Rhodobacter sphaeroides.

    PubMed

    Liu, Yuan; Wu, Yongqiang; Xu, Chunhe

    2004-12-10

    Carotenoids in the peripheral light-harvesting complexes (LH2) of the green mutant (GM309) of Rhodobacter sphaeroides were identified as containing neurosporenes, which lack the polar CH(3)O group, compared to spheroidenes in native-LH2 of R. sphaeroides 601. After LH2 complexes were treated with 1-anilino-8-naphthalene sulfonate (ANS), new energy transfer pathways from ANS or tryptophan to carotenoids were discovered in both native- and GM309-LH2. The carotenoid fluorescence intensity of GM309-LH2 was greater than that of native-LH2 when bound with ANS, suggesting that the elimination of polarity in the neurosporene increases the energy transfer from ANS to carotenoid. The fact that two alpha-tyrosines (alpha-Tyr 44, 45, B850-binding sites) in each alpha-apoprotein of GM309-LH2 were more easily modified than those of native-LH2 by N-acetylimidazole (NAI) indicates that the elimination of polarity in the neurosporene terminus increases the exposure of these sites to solution.

  11. Amplification of the enzyme-linked immunosorbent assay (ELISA) in the detection of class-specific antibodies.

    PubMed

    Butler, J E; McGivern, P L; Swanson, P

    1978-01-01

    A modification of the standard enzyme-linked immunosorbent assay (ELISA) is described which circumvents the requirement for specifically purified antibodies from which antibody-enzyme complexes are made. The assay utilizes the principle of a soluble anti-alkaline phosphatase immune complex (AP-A-AP) and has been called the amplified ELISA. Methods for preparing and evidence for the specificity of rabbit anti-rat gamma-FC, IgM (mu) and IgA (alpha) are presented. These reagents are used to measure anti-DNP antibodies belonging to classes IgG, IgM and IgA in rat serum. Using antiglobulin and anti-enzyme reagents prepared in guinea pigs, anti-ovalbumin antibodies are measured in rabbit serum. Titration curves are similar when the amplified ELISA is compared to the standard ELISA. A change in slope suggesting an effect of saturation of antigen sites, occurs at the same input antibody concentration for both assays. Determination of the anti-DNP concentration of unknown sera by extrapopulation from titration graphs of a known serum suggests that the value is overestimated, i.e., amplified when the amplified ELISA is used. In addition, the amplified ELISA has an improved ability to detect low levels of antibody. Evidence is presented which illustrates how the use of optimally conjugated DNP-proteins, age of conjugates, and optimal dilutions of secondary antiglobulins and the AP-A-AP reduce non-specific binding in the amplified ELISA. The amplified ELISA is capable of detecting 2.4 ng of antibody to ovalbumin in a one: one million dilution of rabbit serum with high reproducibility and low background.

  12. Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors.

    PubMed

    Uberti, Michelle A; Hague, Chris; Oller, Heide; Minneman, Kenneth P; Hall, Randy A

    2005-04-01

    The alpha1D-adrenergic receptor (alpha1D-AR) is a G protein-coupled receptor (GPCR) that is poorly trafficked to the cell surface and largely nonfunctional when heterologously expressed by itself in a variety of cell types. We screened a library of approximately 30 other group I GPCRs in a quantitative luminometer assay for the ability to promote alpha1D-AR cell surface expression. Strikingly, these screens revealed only two receptors capable of inducing robust increases in the amount of alpha1D-AR at the cell surface: alpha1B-AR and beta2-AR. Confocal imaging confirmed that coexpression with beta2-AR resulted in translocation of alpha1D-AR from intracellular sites to the plasma membrane. Additionally, coimmunoprecipitation studies demonstrated that alpha1D-AR and beta2-AR specifically interact to form heterodimers when coexpressed in HEK-293 cells. Ligand binding studies revealed an increase in total alpha1D-AR binding sites upon coexpression with beta2-AR, but no apparent effect on the pharmacological properties of the receptors. In functional studies, coexpression with beta2-AR significantly enhanced the coupling of alpha1D-AR to norepinephrine-stimulated Ca2+ mobilization. Heterodimerization of beta2-AR with alpha1D-AR also conferred the ability of alpha1D-AR to cointernalize upon beta2-AR agonist stimulation, revealing a novel mechanism by which these different adrenergic receptor subtypes may regulate each other's activity. These findings demonstrate that the selective association of alpha1D-AR with other receptors is crucial for receptor surface expression and function and also shed light on a novel mechanism of cross talk between alpha1- and beta2-ARs that is mediated through heterodimerization and cross-internalization.

  13. C-type natriuretic peptide and atrial natriuretic peptide receptors of rat brain.

    PubMed

    Brown, J; Zuo, Z

    1993-03-01

    Natriuretic peptide receptors in rat brain were mapped by in vitro autoradiography using 125I-labeled [Tyr0]CNP-(1-22) to bind atrial natriuretic peptide receptor (ANPR)-B and ANPR-C receptors selectively, and 125I-labeled alpha-ANP to select ANPR-A and ANPR-C receptors. Des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP-(4- 23)-amide (C-ANP) was used for its selectivity for ANPR-C over ANPR-A. Specific binding of 125I-[Tyr0]CNP-(1-22) with a dissociation constant (Kd) approximately 1 nM occurred in olfactory bulb, cerebral cortex, lateral septal nucleus, choroid plexus, and arachnoid mater. This binding was abolished by C-type natriuretic peptide [CNP-(1-22)], alpha-ANP and C-ANP, and conformed to ANPR-C. 125I-alpha-ANP bound to all structures that bound 125I-[Tyr0]CNP-(1-22). This binding was also inhibited by both CNP-(1-22) and C-ANP, confirming the presence of ANPR-C-like binding sites. However, ANPR-C-like binding sites were heterogenous because only some had high affinities for 125I-[Tyr0]CNP-(1-22) and CNP-(1-22). 125I-alpha-ANP also bound sites without affinities for C-ANP or CNP-(1-22). These sites were consistent with ANPR-A. They occurred mainly on the olfactory bulb, the choroid plexus, and the subfornical organ. Guanosine 3',5'-cyclic monophosphate production was strongly stimulated by alpha-ANP but not by CNP-(1-22) in olfactory bulb. Neither ligand stimulated it in cortical tissue. Thus the natriuretic peptide binding sites of rat brain conformed to ANPR-A and to heterogenous ANPR-C-like sites. No ANPR-B were detected.

  14. Binding of [alpha, alpha]-Disubstituted Amino Acids to Arginase Suggests New Avenues for Inhibitor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilies, Monica; Di Costanzo, Luigi; Dowling, Daniel P.

    Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of {alpha},{alpha}-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase Imore » and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional {alpha}-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.« less

  15. Characterization of the primary interaction between the mating pheromone, alpha-factor, and its receptor in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raths, S.K.

    1987-01-01

    Alpha-factor is a peptide of thirteen amino acids which is required for mating between the haploid mating types, a and ..cap alpha.., in Saccharomyces cerevisiae. An analogue of alpha-factor, DHP/sup 8/ DHP/sup 11/ Nle/sup 12/ tridecapeptide, was catalytically reduced in the presence of /sup 3/H gas for production of a radiolabeled pheromone suitable for use in binding studies. Incorporation of tritium resulted in /sup 3/H-alpha-factor with high specific activity, purity, biological activity and long shelf-life. Binding studies revealed that alpha-factor interacts with its receptor via a simple, reversible process which obeys the law of mass action. Association and dissociation kineticsmore » indicate values of 2.92 x 10/sup 6/ M/sup /minus/1/ min/sup -1/ for k/sub 1/ and between 4 and 7 x 10/sup /minus/2/ min/sup /minus/1/ for k/sub /minus/1/. Saturation binding studies reveal an equilibrium dissociation constant equal to 2.32 x 10/sup /minus/8/ M which approximate the kinetically-derived K/sub D/ of 2.12 x 10/sup /minus/8/ M. Scatchard and Hill analyses as well as dissociation behavior in the presence of excess unlabeled ligand indicate alpha-factor interacts with a homogeneous population of binding sites which do not interact and exhibit one affinity for the alpha-factor pheromone.« less

  16. Pharmacological characterization of the cloned kappa opioid receptor as a kappa 1b subtype.

    PubMed

    Lai, J; Ma, S W; Zhu, R H; Rothman, R B; Lentes, K U; Porreca, F

    1994-10-27

    Substantial pharmacological evidence in vitro and in vivo has suggested the existence of subtypes of the kappa opioid receptor. Quantitative radioligand binding techniques resolved the presence of two high affinity binding sites for the kappa 1 ligand [3H]U69,593 in mouse brain membranes, termed kappa 1a and kappa 1b, respectively. Whereas the kappa 1a site has high affinity for fedotozine and oxymorphindole and low affinity for bremazocine and alpha-neoendorphin, site kappa 1b has high affinity for bremazocine and alpha-neoendorphin and low affinity for fedotozine and oxymorphindole. CI-977 and U69,593 bind equally well at both sites. To determine the relationship between these kappa 1 receptor subtypes and the recently cloned mouse kappa 1 receptor (KOR), we examined [3H]U69,593 binding to the KOR in stably transfected cells (KORCHN-8). Competition of [3H]U69,593 binding to the KOR by bremazocine, alpha-neoendorphin, fedotozine and oxymorphindole resolved a single class of binding sites at which these agents had binding affinities similar to that of the kappa 1b site present in mouse brain. These results suggest that the cloned KOR corresponds to the kappa 1 site in mouse brain defined as kappa 1b.

  17. Structure of a retro-binding peptide inhibitor complexed with human alpha-thrombin.

    PubMed

    Tabernero, L; Chang, C Y; Ohringer, S L; Lau, W F; Iwanowicz, E J; Han, W C; Wang, T C; Seiler, S M; Roberts, D G; Sack, J S

    1995-02-10

    The crystallographic structure of the ternary complex between human alpha-thrombin, hirugen and the peptidyl inhibitor Phe-alloThr-Phe-O-CH3, which is acylated at its N terminus with 4-guanidino butanoic acid (BMS-183507), has been determined at 2.6 A resolution. The structure reveals a unique "retro-binding" mode for this tripeptide active site inhibitor. The inhibitor binds with its alkyl-guanidine moiety in the primary specificity pocket and its two phenyl rings occupying the hydrophobic proximal and distal pockets of the thrombin active site. In this arrangement the backbone of the tripeptide forms a parallel beta-strand to the thrombin main-chain at the binding site. This is opposite to the orientation of the natural substrate, fibrinogen, and all the small active site-directed thrombin inhibitors whose bound structures have been previously reported. BMS-183507 is the first synthetic inhibitor proved to bind in a retro-binding fashion to thrombin, in a fashion similar to that of the N-terminal residues of the natural inhibitor hirudin. Furthermore, this new potent thrombin inhibitor (Ki = 17.2 nM) is selective for thrombin over other serine proteases tested and may be a template to be considered in designing hirudin-based thrombin inhibitors with interactions at the specificity pocket.

  18. Indomethacin inhibits the effects of oestrogen in the anterior pituitary gland of the rat.

    PubMed

    Rosental, D G; Machiavelli, G A; Cherñavsky, A C; Speziale, N S; Burdman, J A

    1989-06-01

    Two inhibitors of prostaglandin synthesis, indomethacin and aspirin, blocked the increase of oestrogen-binding sites in the nuclear subcellular fraction, an increase which occurs after the administration of oestradiol. Consequently the biological effects of oestrogens in the anterior pituitary gland of the rat (prolactin synthesis, concentration of progesterone-binding sites and cell proliferation) are diminished. The anterior pituitary gland synthesized prostaglandin F2 alpha (PGF2 alpha), PGE2 and PGD2 from arachidonic acid. This synthesis was blocked when indomethacin was added to the culture media. Oestrogen increased the concentration of PGE2: an increase that was partially prevented by indomethacin. Prostaglandins may have an important role on the effects of oestrogen in the anterior pituitary gland of the rat.

  19. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression.

    PubMed

    Sato, Takanobu; Kitahara, Kousuke; Susa, Takao; Kato, Takako; Kato, Yukio

    2006-10-01

    Recently, we have reported that a Prophet of Pit-1 homeodomain factor, Prop-1, is a novel transcription factor for the porcine follicle-stimulating hormone beta subunit (FSHbeta) gene. This study subsequently aimed to examine the role of Prop-1 in the gene expression of two other porcine gonadotropin subunits, pituitary glycoprotein hormone alpha subunit (alphaGSU), and luteinizing hormone beta subunit (LHbeta). A series of deletion mutants of the porcine alphaGSU (up to -1059 bp) and LHbeta (up to -1277 bp) promoters were constructed in the reporter vector, fused with the secreted alkaline phosphatase gene (pSEAP2-Basic). Transient transfection studies using GH3 cells were carried out to estimate the activation of the porcine alphaGSU and LHbeta promoters by Prop-1, which was found to activate the alphaGSU promoter of -1059/+12 bp up to 11.7-fold but not the LHbeta promoter. Electrophoretic mobility shift assay and DNase I footprinting analysis revealed that Prop-1 binds to six positions, -1038/-1026, -942/-928, -495/-479, -338/-326, -153/-146, and -131/-124 bp, that comprise the A/T cluster. Oligonucleotides of six Prop-1 binding sites were directly connected to the minimum promoter of alphaGSU, fused in the pSEAP2-Basic vector, followed by transfecting GH3 cells to determine the cis-acting activity. Finally, we concluded that at least five Prop-1 binding sites are the cis-acting elements for alphaGSU gene expression. The present results revealed a notable feature of the proximal region, where three Prop-1-binding sites are close to and/or overlap the pituitary glycoprotein hormone basal element, GATA-binding element, and junctional regulatory element. To our knowledge, this is the first demonstration of the role of Prop-1 in the regulation of alphaGSU gene expression. These results, taken together with our previous finding that Prop-1 is a transcription factor for FSHbeta gene, confirm that Prop-1 modulates the synthesis of FSH at the transcriptional level. On the other hand, the defects of Prop-1 are known to cause dwarfism and combined pituitary hormone deficiency accompanying hypogonadism. Accordingly, the present observations provide a novel view to understand the hypogonadism caused by Prop-1 defects at the molecular level through the regulatory mechanism of alphaGSU and FSHbeta gene expressions.

  20. Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis.

    PubMed

    Lemieux, M Joanne; Mark, Brian L; Cherney, Maia M; Withers, Stephen G; Mahuran, Don J; James, Michael N G

    2006-06-16

    Lysosomal beta-hexosaminidase A (Hex A) is essential for the degradation of GM2 gangliosides in the central and peripheral nervous system. Accumulation of GM2 leads to severely debilitating neurodegeneration associated with Tay-Sachs disease (TSD), Sandoff disease (SD) and AB variant. Here, we present the X-ray crystallographic structure of Hex A to 2.8 A resolution and the structure of Hex A in complex with NAG-thiazoline, (NGT) to 3.25 A resolution. NGT, a mechanism-based inhibitor, has been shown to act as a chemical chaperone that, to some extent, prevents misfolding of a Hex A mutant associated with adult onset Tay Sachs disease and, as a result, increases the residual activity of Hex A to a level above the critical threshold for disease. The crystal structure of Hex A reveals an alphabeta heterodimer, with each subunit having a functional active site. Only the alpha-subunit active site can hydrolyze GM2 gangliosides due to a flexible loop structure that is removed post-translationally from beta, and to the presence of alphaAsn423 and alphaArg424. The loop structure is involved in binding the GM2 activator protein, while alphaArg424 is critical for binding the carboxylate group of the N-acetyl-neuraminic acid residue of GM2. The beta-subunit lacks these key residues and has betaAsp452 and betaLeu453 in their place; the beta-subunit therefore cleaves only neutral substrates efficiently. Mutations in the alpha-subunit, associated with TSD, and those in the beta-subunit, associated with SD are discussed. The effect of NGT binding in the active site of a mutant Hex A and its effect on protein function is discussed.

  1. Genetic framework for GATA factor function in vascular biology.

    PubMed

    Linnemann, Amelia K; O'Geen, Henriette; Keles, Sunduz; Farnham, Peggy J; Bresnick, Emery H

    2011-08-16

    Vascular endothelial dysfunction underlies the genesis and progression of numerous diseases. Although the GATA transcription factor GATA-2 is expressed in endothelial cells and is implicated in coronary heart disease, it has been studied predominantly as a master regulator of hematopoiesis. Because many questions regarding GATA-2 function in the vascular biology realm remain unanswered, we used ChIP sequencing and loss-of-function strategies to define the GATA-2-instigated genetic network in human endothelial cells. In contrast to erythroid cells, GATA-2 occupied a unique target gene ensemble consisting of genes encoding key determinants of endothelial cell identity and inflammation. GATA-2-occupied sites characteristically contained motifs that bind activator protein-1 (AP-1), a pivotal regulator of inflammatory genes. GATA-2 frequently occupied the same chromatin sites as c-JUN and c-FOS, heterodimeric components of AP-1. Although all three components were required for maximal AP-1 target gene expression, GATA-2 was not required for AP-1 chromatin occupancy. GATA-2 conferred maximal phosphorylation of chromatin-bound c-JUN at Ser-73, which stimulates AP-1-dependent transactivation, in a chromosomal context-dependent manner. This work establishes a link between a GATA factor and inflammatory genes, mechanistic insights underlying GATA-2-AP-1 cooperativity and a rigorous genetic framework for understanding GATA-2 function in normal and pathophysiological vascular states.

  2. Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation.

    PubMed Central

    Bazenet, C E; Gelderloos, J A; Kazlauskas, A

    1996-01-01

    Following binding of platelet-derived growth factor (PDGF), the PDGF alpha receptor (alphaPDGFR) becomes tyrosine phosphorylated and associates with a number of signal transduction molecules, including phospholipase Cgamma-1 (PLCgamma-1), phosphatidylinositol 3-kinase (PI3K), the phosphotyrosine phosphatase SHP-2, Grb2, and Src. Here, we present data identifying a novel phosphorylation site in the kinase insert domain of the alphaPDGFR at tyrosine (Y) 720. We replaced this residue with phenylalanine and expressed the mutated receptor (F720) in Patch fibroblasts that do not express the alphaPDGFR. Characterization of the F720 mutant indicated that binding of two proteins, SHP-2 and Grb2, was severely impaired, whereas PLCgamma-1 and PI3K associated to wild-type levels. In addition, mutating Y720 to phenylalanine dramatically reduced PDGF-dependent tyrosine phosphorylation of SHP-2. Since Y720 was required for recruitment of two proteins, we investigated the mechanism by which these two proteins associated with the alphaPDGFR. SHP-2 bound the alphaPDGFR directly, whereas Grb2 associated indirectly, most probably via SHP-2, as Grb2 and SHP-2 coimmunoprecipitated when SHP-2 was tyrosine phosphorylated. We also compared the ability of the wild-type and F720 alphaPDGFRs to mediate a number of downstream events. Preventing the alphaPDGFR from recruiting SHP-2 and Grb2 did not compromise PDGF-AA-induced activation of Ras, initiation of DNA synthesis, or growth of cells in soft agar. We conclude that phosphorylation of the alphaPDGFR at Y720 is required for association of SHP-2 and Grb2 and tyrosine phosphorylation of SHP-2; however, these events are not required for the alphaPDGFR to activate Ras or initiate a proliferative response. In addition, these findings reveal that while SHP-2 binds to both of the receptors, it binds in different locations: to the carboxy terminus of the betaPDGFR but to the kinase insert of the alphaPDGFR. PMID:8943348

  3. Peroxisome-proliferator-activated receptor-{gamma} agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Ralf; Koenig, Wolfgang

    2006-03-15

    The epithelial cells of the airways are the target cells for respiratory syncytial virus (RSV) infection and the site of the majority of the inflammation associated with the disease. Recently, peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear hormone receptor superfamily, has been shown to possess anti-inflammatory properties. Therefore, we investigated the role of PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone and troglitazone) on the synthesis of RSV-induced cytokine release from RSV-infected human lung epithelial cells (A549). We observed that all PPAR{gamma} ligands inhibited dose-dependently the release of TNF-{alpha}, GM-CSF, IL-1{alpha}, IL-6 and the chemokines CXCL8 (IL-8) and CCL5 (RANTES) frommore » RSV-infected A549 cells. Concomitantly, the PPAR{gamma} ligands diminished the cellular amount of mRNA encoding for IL-6, CXCL8 and CCL5 and the RSV-induced binding activity of the transcription factors NF-{kappa}B (p65/p50) and AP-1 (c-fos), respectively. Our data presented herein suggest a potential application of PPAR{gamma} ligands in the anti-inflammatory treatment of RSV infection.« less

  4. Distinct Ubiquitin Binding Modes Exhibited by SH3 Domains: Molecular Determinants and Functional Implications

    PubMed Central

    Ortega Roldan, Jose L.; Casares, Salvador; Ringkjøbing Jensen, Malene; Cárdenes, Nayra; Bravo, Jerónimo; Blackledge, Martin; Azuaga, Ana I.; van Nuland, Nico A. J.

    2013-01-01

    SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C) of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination. PMID:24039852

  5. Variola Virus IL-18 Binding Protein Interacts with Three Human IL-18 Residues That Are Part of a Binding Site for Human IL-18 Receptor Alpha Subunit

    PubMed Central

    Meng, Xiangzhi; Leman, Michael; Xiang, Yan

    2007-01-01

    Interleukin-18 (IL-18) plays an important role in host defense against microbial pathogens. Many poxviruses encode homologous IL-18 binding proteins (IL-18BP) that neutralize IL-18 activity. Here, we examined whether IL-18BP neutralizes IL-18 activity by binding to the same region of IL-18 where IL-18 receptor (IL-18R) binds. We introduced alanine substitutions to known receptor binding sites of human IL18, and found that only the substitution of Leu5 reduced the binding affinity of IL-18 with IL-18BP of variola virus (varvIL-18BP) by more than 4-fold. The substitutions of Lys53 and Ser55, which were not previously known to be part of the receptor binding site but that are spatially adjacent to Leu5, reduced the binding affinity to varvIL-18BP by approximately 100- and 7-fold, respectively. These two substitutions also reduced the binding affinity with human IL-18R alpha subunit (hIL-18Rα) by 4- and 2-fold, respectively. Altogether, our data shows that varvIL-18BP prevents IL-18 from binding to IL-18R by interacting with three residues that are part of the binding site for hIL-18Rα. PMID:16979683

  6. AF64A depletes hippocampal high-affinity choline uptake but does not alter the density of alpha-bungarotoxin binding sites or modify the effect of exogenous choline.

    PubMed

    Morley, B J; Garner, L L

    1990-06-11

    Sodium-dependent, high-affinity choline uptake (HACU) and the density of alpha-bungarotoxin (BuTX) receptor-binding sites were measured in the hippocampus following the intraventricular infusion of ethylcholine aziridinium ion (AF64A), a neurotoxin that competes with choline at high-affinity choline transport sites and may result in the degeneration of cholinergic axons. Eight days after the infusion of AF64A into the lateral ventricles (2.5 nmol/side), HACU was depleted by 60% in the hippocampus of experimental animals in comparison with controls, but the density of BuTX-binding sites was not altered. The administration of 15 mg/ml of choline chloride in the drinking water increased the density of BuTX-binding sites, as previously reported by this laboratory. The administration of AF64A did not prevent the effect of exogenous choline on the density of binding sites, nor did choline treatment alter the effect of AF64A on HACU. These data indicate that the density of BuTX-binding sites in the hippocampus is not altered following a substantial decrease in HACU and presumed degeneration of cholinergic axons. Since the effect of exogenous choline was not prevented by AF64A treatment, the data are interpreted to support the hypothesis that the increase in the density of BuTX-binding sites following dietary choline supplementation is attributable to a direct effect of choline on receptor sites.

  7. Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor.

    PubMed Central

    Aghajari, N.; Feller, G.; Gerday, C.; Haser, R.

    1998-01-01

    Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase. PMID:9541387

  8. Preparation of fluorescent tocopherols for use in protein binding and localization with the alpha-tocopherol transfer protein.

    PubMed

    Nava, Phillip; Cecchini, Matt; Chirico, Sara; Gordon, Heather; Morley, Samantha; Manor, Danny; Atkinson, Jeffrey

    2006-06-01

    Sixteen fluorescent analogues of the lipid-soluble antioxidant vitamin alpha-tocopherol were prepared incorporating fluorophores at the terminus of omega-functionalized 2-n-alkyl-substituted chromanols (1a-d and 4a-d) that match the methylation pattern of alpha-tocopherol, the most biologically active form of vitamin E. The fluorophores used include 9-anthroyloxy (AO), 7-nitrobenz-2-oxa-1,3-diazole (NBD), N-methyl anthranilamide (NMA), and dansyl (DAN). The compounds were designed to function as fluorescent reporter ligands for protein-binding and lipid transfer assays. The fluorophores were chosen to maximize the fluorescence changes observed upon moving from an aqueous environment (low fluorescence intensity) to an hydrophobic environment such as a protein's binding site (high fluorescence intensity). Compounds 9d (anthroyloxy) and 10d (nitrobenzoxadiazole), having a C9-carbon chain between the chromanol and the fluorophore, were shown to bind specifically and reversibly to recombinant human tocopherol transfer protein (alpha-TTP) with dissociation constants of approximately 280 and 60 nM, respectively, as compared to 25 nM for the natural ligand 2R,4'R,8'R-alpha-tocopherol. Thus, compounds have been prepared that allow the investigation of the rate of alpha-TTP-mediated inter-membrane transfer of alpha-tocopherol and to investigate the mechanism of alpha-TTP function at membranes of different composition.

  9. Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes

    PubMed Central

    Sitaram, Anand; Dennis, Megan K.; Chaudhuri, Rittik; De Jesus-Rojas, Wilfredo; Tenza, Danièle; Setty, Subba Rao Gangi; Wood, Christopher S.; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Bonifacino, Juan S.; Marks, Michael S.

    2012-01-01

    Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine–based sorting signal in the pigment cell–specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1– and AP-3–favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs. PMID:22718909

  10. The effect of interferon on the receptor sites to rabies virus on mouse neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, D.J.

    1989-01-01

    The binding of rabies virus to mouse neuroblastoma cells (MNA) primed with alpha interferon (IFN-{alpha}), beta interferon (IFN-{beta}), or alpha bungarotoxin (BTX) was examined. A saturable number of receptor sites to rabies virus was calculated by increasing the amount of {sup 3}H-CVS added to a constant number of untreated MNA cells. MNA cells were then exposed to 20 I.U. of IFN-{alpha}, IFN-{beta}, or 1 {mu}g of BTX and assayed to determine if these treatments had an effect on the number of receptor sites to rabies virus. Total amount of {sup 3}H-CVS bound to MNA cells was determined during a threemore » hour incubation period. Cold competition assays using 1,000 fold excess unlabeled CVS were used to determine non-specific binding for each treatment. Specific binding was then calculated by subtracting non-specific binding from the total amount of CVS bound to MNA cells. A similar amount of total viral protein bound to untreated and IFN-{beta}, and BTX treated cells after 180 minutes of incubation. The bound protein varied by only 0.07 {mu}g. However, the amount of specific and non-specific binding varied a great deal between treatments. BTX caused an increase in non-specific and a decrease in specific binding of rabies virus. IFN-{beta} produced variable results in non-specific and specific binding while IFN-{alpha} caused mainly specific binding to occur. The most significant change brought about by IFN-{alpha} was an increase in the rate of viral attachment. At 30 minutes post-infection, IFN-{alpha} treated cells had bound 90% of the total amount of virus bound to untreated cells after 180 minutes. The increased binding rate did not cause a productive infection of rabies virus. No viral production was evident after an incubation period of 48 hours in either IFN-{alpha} or IFN-{beta} treated cells.« less

  11. Improve the catalytic activity of {alpha}-Fe{sub 2}O{sub 3} particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yifu; Liu Xinghai, E-mail: liuxh@whu.edu.c; Nie Jiaorong

    2011-02-15

    Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value of the designed synthetic system, respectively. The sphere-like {alpha}-Fe{sub 2}O{sub 3} particles with diameter about 25 nm on average were encapsulated into carbon shells to fabricate a novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C) through the coating experiments. The catalytic performance of the products on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermal gravimetric analyzer (TG) and differential thermal analysis (DTA). The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3},more » sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which show that {alpha}-Fe{sub 2}O{sub 3}-C core-shell composites have higher catalytic activity than that of {alpha}-Fe{sub 2}O{sub 3}. -- Graphical abstract: The catalytic performance of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C on the thermal decomposition of ammonium perchlorate (AP). Display Omitted Research highlights: {yields} Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value. {yields} A novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C core-shell structured composite) has been successfully synthesized using sphere-like {alpha}-Fe{sub 2}O{sub 3} particles as the cores and glucose as the source of carbon. {yields} The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which shows that these materials have high catalytic activity.« less

  12. Mechanisms by which herpes simplex virus DNA polymerase limits translesion synthesis through abasic sites.

    PubMed

    Zhu, Yali; Song, Liping; Stroud, Jason; Parris, Deborah S

    2008-01-01

    Results suggest a high probability that abasic (AP) sites occur at least once per herpes simplex virus type 1 (HSV-1) genome. The parameters that control the ability of HSV-1 DNA polymerase (pol) to engage in AP translesion synthesis (TLS) were examined because AP lesions could influence the completion and fidelity of viral DNA synthesis. Pre-steady-state kinetic experiments demonstrated that wildtype (WT) and exonuclease-deficient (exo-) pol could incorporate opposite an AP lesion, but full TLS required absence of exo function. Virtually all of the WT pol was bound at the exo site to AP-containing primer-templates (P/Ts) at equilibrium, and the pre-steady-state rate of excision by WT pol was higher on AP-containing than on matched DNA. However, several factors influencing polymerization work synergistically with exo activity to prevent HSV-1 pol from engaging in TLS. Although the pre-steady-state catalytic rate constant for insertion of dATP opposite a T or AP site was similar, ground-state-binding affinity of dATP for insertion opposite an AP site was reduced 3-9-fold. Single-turnover running-start experiments demonstrated a reduced proportion of P/Ts extended to the AP site compared to the preceding site during processive synthesis by WT or exo- pol. Only the exo- pol engaged in TLS, though inefficiently and without burst kinetics, suggesting a much slower rate-limiting step for extension beyond the AP site.

  13. Insight into the interactions of proteinase inhibitor-alpha-2-macroglobulin with hypochlorite-thermal analysis and biophysical approach.

    PubMed

    Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Ahsan, Haseeb; Khan, Fahim Halim

    2018-05-17

    Hypochlorous acid, an active bleaching agent is one of the major oxidants produced by neutrophils under physiological conditions. It is a potent reactive oxygen species (ROS) which causes oxidation of biomolecules. Treatment of proteins with hypochlorite results in direct oxidative damage to proteins. Alpha-2-macroglobulin is a major proteinase inhibitor and it can inhibit proteinase of any kind regardless of specificity and catalytic mechanism. The proteinase-antiproteinase balance plays an important role in mediating inflammation associated tissue destruction. In this paper, we have studied hypochlorite induced modifications in proteinase inhibitor-alpha-2-macroglobulin via biophysical techniques such as absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD), fourier transform infrared spectrometery (FTIR) and isothermal titration calorimetry (ITC). It was found that hypochlorite decreases the anti-proteolytic potential and causes inactivation of sheep alpha-2-macroglobulin. It also causes structural and functional change in alpha-2-macroglobulin as evident by absorption spectroscopy and fluorescence spectroscopy. Change in secondary structure of alpha-2-macroglobulin was confirmed by CD and FTIR. Thermodynamics parameters such as entropy (ΔS), enthalpy (ΔH) and Gibb's free energy changes (ΔG). The number of binding sites (N) of alpha-2-macroglobulin-HOCl binding in solution was determined by isothermal titration calorimetry and it was found that binding of hypochlorite with alpha-2-macroglobulin was exothermic in nature. Copyright © 2017. Published by Elsevier B.V.

  14. Ionic modulation of QPX stability as a nano-switch regulating gene expression in neurons

    NASA Astrophysics Data System (ADS)

    Baghaee Ravari, Soodeh

    G-quadruplexes (G-QPX) have been the subject of intense research due to their unique structural configuration and potential applications, particularly their functionality in biological process as a novel type of nano--switch. They have been found in critical regions of the human genome such as telomeres, promoter regions, and untranslated regions of RNA. About 50% of human DNA in promoters has G-rich regions with the potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF switch, regulating gene expression, meaning that the formation of G-QPX in a single strand of DNA disrupts double stranded DNA, prevents the binding of transcription factors (TF) to their recognition sites, resulting in gene down-regulation. Although there are numerous studies on biological roles of G-QPXs in oncogenes, their potential formation in neuronal cells, in particular upstream of transcription start sites, is poorly investigated. The main focus of this research is to identify stable G-QPXs in the 97bp active promoter region of the choline acetyltransferase (ChAT) gene, the terminal enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic modulation of G-QPX nanostructures through the mechanism of neural action potentials. Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-Calculator programs, have been used to predict stable G-QPX in the active promoter region of the human ChAT gene, located 1000bp upstream from the TATA box. The results of computational studies (using those three different algorithms) led to the identification of three consecutive intramolecular G-QPX structures in the negative strand (ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-runs in opposed DNA strands with a short distance of each other may be able to form a stable intermolecular G-QPX involving two DNA complementary strands (ds ChAT G21). Formation of G-QPX structures, by blocking the availability of the transcription factor binding site (TFBS) on double stranded DNA, can interfere with transcriptional activation. This suggests that there is competition between TFBS binding to dsDNA and the conversion to high order non-B form secondary structures (G-QPXs) in the active promoter region. TFBS mapping analysis of the active promoter region of the human ChAT gene revealed that it contains multiple consensus AP-2alpha and Sp1 binding sites and consensus sites for other TF, including multiple sites for GR-alpha, Pax-5, p53 and GC box proteins. (Abstract shortened by ProQuest.).

  15. Screening of a library of T7 phage-displayed peptides identifies alphaC helix in 14-3-3 protein as a CBP501-binding site.

    PubMed

    Matsumoto, Yuki; Shindo, Yosuke; Takakusagi, Yoichi; Takakusagi, Kaori; Tsukuda, Senko; Kusayanagi, Tomoe; Sato, Hitoshi; Kawabe, Takumi; Sugawara, Fumio; Sakaguchi, Kengo

    2011-12-01

    CBP501 is a chemically modified peptide composed of twelve unnatural d-amino acids, which inhibits Chk kinase and abrogates G2 arrest induced by DNA-damaging agents. Here we identified an alphaC helix in 14-3-3 protein as a CBP501-binding site using T7 phage display technology. An affinity selection of T7 phage-displayed peptide using biotinylated CBP501 identified a 14-mer peptide NSDCIISRKIEQKE. This peptide sequence showed similarity to a portion of the alphaC helix of human 14-3-3ε, suggesting that CBP501 may bind to this region. Surface plasmon resonance (SPR) and ELISA demonstrated that CBP501 interacts with 14-3-3ε specifically at the screen-guided region. An avidin-agarose bead pull-down assay showed that CBP501 also binds to other 14-3-3 isoforms in Jurkat cells. Among the other known Chk kinase inhibitors tested, CBP501 showed the strongest affinity for 14-3-3ε. Thus, we conclude that in addition to the direct inhibition of Chk kinase activity, CBP501 directly binds to cellular 14-3-3 proteins through alphaC helix. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Degraded λ-carrageenan activates NF-κB and AP-1 pathways in macrophages and enhances LPS-induced TNF-α secretion through AP-1.

    PubMed

    Chen, Haimin; Wang, Feng; Mao, Haihua; Yan, Xiaojun

    2014-07-01

    Carrageenan (CGN), a high molecular weight sulfated polysaccharide, is a traditional ingredient used in food industry. Its degraded forms have been identified as potential carcinogens, although the mechanism remains unclear. The effects of degraded λ-carrageenan (λ-dCGN) on murine RAW264.7 cells and human THP-1-derived macrophage cells were investigated by studying its actions on tumor necrosis factor alpha (TNF-α) secretion, Toll-like receptor 4 (TLR4) expression, and activation of nuclear factor-κb (NF-κB) and activation protein-1 (AP-1) pathways. We found that λ-dCGN was much stronger than native λ-CGN in the activation of macrophages to secrete TNF-α. Treatment of RAW264.7 cells with λ-dCGN resulted in the upregulation of TLR4, CD14 and MD-2 expressions, but it did not increase the binding of lipopolysacchride (LPS) with macrophages. Meanwhile, λ-dCGN treatment activated NF-κB via B-cell lymphoma/leukemia 10 (Bcl10) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation. In addition, λ-dCGN induced extracellular signal-regulated kinases/1/2/mitogen-activated protein kinases (ERK1/2/MAPK) and AP-1 activation. Interestingly, pretreatment of RAW264.7 cells with λ-dCGN markedly enhanced LPS-stimulated TNF-α secretion. This pretreatment resulted in the enhanced phosphorylation of ERK1/2 and c-Jun N-terminal kinase (JNK) and intensified activation of AP-1. λ-dCGN induced an inflammatory reaction via both NF-κB and AP-1, and enhanced the inflammatory effect of LPS through AP-1 activation. The study demonstrated the role of λ-dCGN to induce the inflammatory reaction and to aggravate the effect of LPS on macrophages, suggesting that λ-dCGN produced during food processing and gastric digestion may be a safety concern. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Inactivation of chloroplast H(+)-ATPase by modification of Lys beta 359, Lys alpha 176 and Lys alpha 266.

    PubMed

    Horbach, M; Meyer, H E; Bickel-Sandkötter, S

    1991-09-01

    Treatment of isolated, latent chloroplast ATPase with pyridoxal-5-phosphate (pyridoxal-P) in presence of Mg2+ causes inhibition of dithiothreitol-activated plus heat-activated ATP hydrolysis. The amount of [3H]pyridoxal-P bound to chloroplast coupling factor 1 (CF1) was estimated to run up to 6 +/- 1 pyridoxal-P/enzyme, almost equally distributed between the alpha- and beta-subunits. Inactivation, however, is complete after binding of 1.5-2 pyridoxal-P/CF1, suggesting that two covalently modified lysines prevent the activation of the enzyme. ADP as well as ATP in presence of Mg2+ protects the enzyme against inactivation and concomittantly prevents incorporation of a part of the 3H-labeled pyridoxal-P into beta- and alpha-subunits. Phosphate prevents labeling of the alpha-subunit, but has only a minor effect on protection against inactivation. The data indicate a binding site at the interface between the alpha- and beta-subunits. Cleavage of the pyridoxal-P-labeled subunits with cyanogen bromide followed by sequence analysis of the labeled peptides led to the detection of Lys beta 359, Lys alpha 176 and Lys alpha 266, which are closely related to proposed nucleotide-binding regions of the alpha- and beta-subunits.

  18. NF-κB– and AP-1–Mediated DNA Looping Regulates Osteopontin Transcription in Endotoxin-Stimulated Murine Macrophages

    PubMed Central

    Zhao, Wei; Wang, Lijuan; Zhang, Meng; Wang, Peng; Zhang, Lei; Yuan, Chao; Qi, Jianni; Qiao, Yu; Kuo, Paul C.; Gao, Chengjiang

    2013-01-01

    Osteopontin (OPN) is expressed by various immune cells and modulates both innate and adaptive immune responses. However, the molecular mechanisms that control opn gene expression, especially at the chromatin level, remain largely unknown. We have previously demonstrated many specific cis- and trans-regulatory elements that determine the extent of endotoxin (LPS)-mediated induction of OPN synthesis in murine macrophages. In the present study, we confirm that NF-κB also plays an important role in the setting of LPS-stimulated OPN expression through binding to a distal regulatory element. Importantly, we demonstrate that LPS stimulates chromosomal loops in the OPN promoter between NF-κB binding site and AP-1 binding site using chromosome conformation capture technology. The crucial role of NF-κB and AP-1 in LPS-stimulated DNA looping was confirmed, as small interfering RNA knock-down of NF-κB p65 and AP-1 c-Jun exhibited decreased levels of DNA looping. Furthermore, we demonstrate that p300 can form a complex with NF-κB and AP-1 and is involved in DNA looping and LPS-induced OPN expression. Therefore, we have identified an essential mechanism to remodel the local chromatin structures and spatial conformations to regulate LPS-induced OPN expression. PMID:21257959

  19. Heparin (GAG-hed) inhibits LCR activity of human papillomavirus type 18 by decreasing AP1 binding.

    PubMed

    Villanueva, Rita; Morales-Peza, Néstor; Castelán-Sánchez, Irma; García-Villa, Enrique; Tapia, Rocio; Cid-Arregui, Angel; García-Carrancá, Alejandro; López-Bayghen, Esther; Gariglio, Patricio

    2006-08-31

    High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G2/M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have antitumoral and antiviral activity mainly by inhibiting AP1 binding to the HPV18-LCR.

  20. Unusual sugar specificity of banana lectin from Musa paradisiaca and its probable evolutionary origin. Crystallographic and modelling studies.

    PubMed

    Singh, D D; Saikrishnan, K; Kumar, Prashant; Surolia, A; Sekar, K; Vijayan, M

    2005-10-01

    The crystal structure of a complex of methyl-alpha-D-mannoside with banana lectin from Musa paradisiaca reveals two primary binding sites in the lectin, unlike in other lectins with beta-prism I fold which essentially consists of three Greek key motifs. It has been suggested that the fold evolved through successive gene duplication and fusion of an ancestral Greek key motif. In other lectins, all from dicots, the primary binding site exists on one of the three motifs in the three-fold symmetric molecule. Banana is a monocot, and the three motifs have not diverged enough to obliterate sequence similarity among them. Two Greek key motifs in it carry one primary binding site each. A common secondary binding site exists on the third Greek key. Modelling shows that both the primary sites can support 1-2, 1-3, and 1-6 linked mannosides with the second residue interacting in each case primarily with the secondary binding site. Modelling also readily leads to a bound branched mannopentose with the nonreducing ends of the two branches anchored at the two primary binding sites, providing a structural explanation for the lectin's specificity for branched alpha-mannans. A comparison of the dimeric banana lectin with other beta-prism I fold lectins, provides interesting insights into the variability in their quaternary structure.

  1. Crystal structures of human 108V and 108M catechol O-methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, K.; Le Trong, I.; Stenkamp, R.E.

    2008-08-01

    Catechol O-methyltransferase (COMT) plays important roles in the metabolism of catecholamine neurotransmitters and catechol estrogens. The development of COMT inhibitors for use in the treatment of Parkinson's disease has been aided by crystallographic structures of the rat enzyme. However, the human and rat proteins have significantly different substrate specificities. Additionally, human COMT contains a common valine-methionine polymorphism at position 108. The methionine protein is less stable than the valine polymorph, resulting in decreased enzyme activity and protein levels in vivo. Here we describe the crystal structures of the 108V and 108M variants of the soluble form of human COMT boundmore » with S-adenosylmethionine (SAM) and a substrate analog, 3,5-dinitrocatechol. The polymorphic residue 108 is located in the {alpha}5-{beta}3 loop, buried in a hydrophobic pocket {approx}16 {angstrom} from the SAM-binding site. The 108V and 108M structures are very similar overall [RMSD of C{sup {alpha}} atoms between two structures (C{sup {alpha}} RMSD) = 0.2 {angstrom}], and the active-site residues are superposable, in accord with the observation that SAM stabilizes 108M COMT. However, the methionine side chain is packed more tightly within the polymorphic site and, consequently, interacts more closely with residues A22 ({alpha}2) and R78 ({alpha}4) than does valine. These interactions of the larger methionine result in a 0.7-{angstrom} displacement in the backbone structure near residue 108, which propagates along {alpha}1 and {alpha}5 toward the SAM-binding site. Although the overall secondary structures of the human and rat proteins are very similar (C{sup {alpha}} RMSD = 0.4 {angstrom}), several nonconserved residues are present in the SAM-(I89M, I91M, C95Y) and catechol- (C173V, R201M, E202K) binding sites. The human protein also contains three additional solvent-exposed cysteine residues (C95, C173, C188) that may contribute to intermolecular disulfide bond formation and protein aggregation.« less

  2. Identification of the antigenic determinants of factors 8, 9, and 34 of genus Candida.

    PubMed

    Kobayashi, H; Oyamada, H; Suzuki, A; Shibata, N; Suzuki, S; Okawa, Y

    1996-10-21

    We investigated the antigenic determinants of factors 8, 9, and 34 of the genus Candida among pathogenic yeasts by enzyme-linked immunosorbent assay (ELISA) using mannans of Saccharomyces cerevisiae wild type and mutant types, mnn 1-mnn 4 and mnn 2. Results of ELISA including antisera against the antigenic factors of genus Candida (Candida Check, latron; FAbs) indicated that these three types of mannan distinctly react with FAbs 34, 8 and 9, respectively. To identify the recognition sites of these FAbs, we compared the ability of various oligosaccharides to inhibit the binding of the mannans to FAbs. The results indicated that FAb 34 preferentially recognizes linear side chains containing a non-reducing terminal alpha-1,3-linked mannose residue, Man(alpha)1 --> 3Man(alpha)1 --> (2Man(alpha)1 --> )n(2Man) (n > or = 0), and that one of the recognition sites of FAb 9 is linear alpha-1,6-linked oligomannosyl series, Man(alpha)1 --> (6Man(alpha)1 --> )n(6Man) (n > or = 2). On the other hand, the recognition site of FAb 8 apparently consisted of two alpha-1,2-linked oligomannosyl side chains and an alpha-1,6-linked mannose residue that originated from the mannan backbone, Man(alpha)1 --> 2Man(alpha)1 --> 2(Man(alpha)1 -->2Man(alpha)1 --> 6)Man.

  3. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avianmore » receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.« less

  4. Two classes of ouabain binding sites in ferret heart and two forms of Na+-K+-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Y.C.; Akera, T.

    1987-05-01

    In partially purified Na+-K+-adenosinetriphosphatase (ATPase) obtained from ferret heart, ouabain produced a monophasic inhibition curve; however, the curve spanned over 5 logarithmic units, indicating the presence of more than one classes of enzyme. (/sup 3/H)ouabain binding studies revealed high-and low-affinity binding sites in approximately equal abundance, with apparent dissociation constants of 10 and 230 nM, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of phosphoenzyme formed from (gamma-/sup 32/P)ATP showed two distinct K+-sensitive bands of approximately 100,000 molecular weight. Phosphoenzyme formation from the high-molecular-weight alpha(+) form was selectively inhibited by N-ethylmaleimide. Ouabain caused a 50% inhibition of phosphorylation of the alpha(+) formmore » at 40 nM and the lower-molecular-weight alpha form at 300 nM. In papillary muscle preparations, 1-30 nM ouabain produced a modest positive inotropic effect that reached an apparent plateau at 30 nM. Further increases in ouabain concentrations, however, produced additional and prominent inotropic effects at 0.1-10 microM. These results indicate for the first time in cardiac muscle that the high- and low-affinity ouabain binding sites are associated with the alpha(+) and alpha forms of the Na+-K+-ATPase, respectively, and that binding of ouabain to either of these sites causes enzyme inhibition and the positive inotropic effect.« less

  5. The role of His-83 of yeast apurinic/apyrimidinic endonuclease Apn1 in catalytic incision of abasic sites in DNA.

    PubMed

    Dyakonova, Elena S; Koval, Vladimir V; Lomzov, Alexander A; Ishchenko, Alexander A; Fedorova, Olga S

    2015-06-01

    The apurinic/apyrimidinic (AP) endonuclease Apn1 from Saccharomyces cerevisiae is a key enzyme involved in the base excision repair (BER) at the cleavage stage of abasic sites (AP sites) in DNA. The crystal structure of Apn1 from S. cerevisiae is unresolved. Based on its high amino acid homology to Escherichia coli Endo IV, His-83 is believed to coordinate one of three Zn2+ ions in Apn1's active site similar to His-69 in Endo IV. Substituting His-83 with Ala is proposed to decrease the AP endonuclease activity of Apn1 owing to weak coordination of Zn2+ ions involved in enzymatic catalysis. The kinetics of recognition, binding, and incision of DNA substrates with the H83A Apn1 mutant was investigated. The stopped-flow method detecting fluorescence intensity changes of 2-aminopurine (2-aPu) was used to monitor the conformational dynamics of DNA at pre-steady-state conditions. We found substituting His-83 with Ala influenced catalytic complex formation and further incision of the damaged DNA strand. The H83A Apn1 catalysis depends not only on the location of the mismatch relative to the abasic site in DNA, but also on the nature of damage. We consider His-83 properly coordinates the active site Zn2+ ion playing a crucial role in catalytic incision stage. Our data prove suppressed enzymatic activity of H83A Apn1 results from the reduced number of active site Zn2+ ions. Our study provides insights into mechanistic specialty of AP site repair by yeast AP endonuclease Apn1 of Endo IV family, which members are not found in mammals, but are present in many microorganisms. The results will provide useful guidelines for design of new anti-fungal and anti-malarial agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Crystal Structures of Human Choline Kinase Isoforms in Complex with Hemicholinium-3 Single Amino Acid near the Active Site Influences Inhibitor Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Bum Soo; Allali-Hassani, Abdellah; Tempel, Wolfram

    2010-07-06

    Human choline kinase (ChoK) catalyzes the first reaction in phosphatidylcholine biosynthesis and exists as ChoK{alpha} ({alpha}1 and {alpha}2) and ChoK{beta} isoforms. Recent studies suggest that ChoK is implicated in tumorigenesis and emerging as an attractive target for anticancer chemotherapy. To extend our understanding of the molecular mechanism of ChoK inhibition, we have determined the high resolution x-ray structures of the ChoK{alpha}1 and ChoK{beta} isoforms in complex with hemicholinium-3 (HC-3), a known inhibitor of ChoK. In both structures, HC-3 bound at the conserved hydrophobic groove on the C-terminal lobe. One of the HC-3 oxazinium rings complexed with ChoK{alpha}1 occupied the choline-bindingmore » pocket, providing a structural explanation for its inhibitory action. Interestingly, the HC-3 molecule co-crystallized with ChoK{beta} was phosphorylated in the choline binding site. This phosphorylation, albeit occurring at a very slow rate, was confirmed experimentally by mass spectroscopy and radioactive assays. Detailed kinetic studies revealed that HC-3 is a much more potent inhibitor for ChoK{alpha} isoforms ({alpha}1 and {alpha}2) compared with ChoK{beta}. Mutational studies based on the structures of both inhibitor-bound ChoK complexes demonstrated that Leu-401 of ChoK{alpha}2 (equivalent to Leu-419 of ChoK{alpha}1), or the corresponding residue Phe-352 of ChoK{beta}, which is one of the hydrophobic residues neighboring the active site, influences the plasticity of the HC-3-binding groove, thereby playing a key role in HC-3 sensitivity and phosphorylation.« less

  7. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor.

    PubMed Central

    Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G

    1991-01-01

    Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547

  8. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  9. Cellular corepressor TLE2 inhibits replication-and-transcription- activator-mediated transactivation and lytic reactivation of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    He, Zhiheng; Liu, Yunhua; Liang, Deguang; Wang, Zhuo; Robertson, Erle S; Lan, Ke

    2010-02-01

    Replication and transcription activator (RTA) encoded by open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential and sufficient to initiate lytic reactivation. RTA activates its target genes through direct binding with high affinity to its responsive elements or by interaction with cellular factors, such as RBP-Jkappa, Ap-1, C/EBP-alpha, and Oct-1. In this study, we identified transducin-like enhancer of split 2 (TLE2) as a novel RTA binding protein by using yeast two-hybrid screening of a human spleen cDNA library. The interaction between TLE2 and RTA was confirmed by glutathione S-transferase (GST) binding and coimmunoprecipitation assays. Immunofluorescence analysis showed that TLE2 and RTA were colocalized in the same nuclear compartment in KSHV-infected cells. This interaction recruited TLE2 to RTA bound to its recognition sites on DNA and repressed RTA auto-activation and transactivation activity. Moreover, TLE2 also inhibited the induction of lytic replication and virion production driven by RTA. We further showed that the Q (Gln-rich), SP (Ser-Pro-rich), and WDR (Trp-Asp repeat) domains of TLE2 and the Pro-rich domain of RTA were essential for this interaction. RBP-Jkappa has been shown previously to bind to the same Pro-rich domain of RTA, and this binding can be subject to competition by TLE2. In addition, TLE2 can form a complex with RTA to access the cognate DNA sequence of the RTA-responsive element at different promoters. Intriguingly, the transcription level of TLE2 could be upregulated by RTA during the lytic reactivation process. In conclusion, we identified a new RTA binding protein, TLE2, and demonstrated that TLE2 inhibited replication and transactivation mediated by RTA. This provides another potentially important mechanism for maintenance of KSHV viral latency through interaction with a host protein.

  10. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  11. Binding site in eag voltage sensor accommodates a variety of ions and is accessible in closed channel.

    PubMed

    Silverman, William R; Bannister, John P A; Papazian, Diane M

    2004-11-01

    In ether-a-go-go K+ channels, voltage-dependent activation is modulated by ion binding to a site located in an extracellular-facing crevice between transmembrane segments S2 and S3 in the voltage sensor. We find that acidic residues D278 in S2 and D327 in S3 are able to coordinate a variety of divalent cations, including Mg2+, Mn2+, and Ni2+, which have qualitatively similar functional effects, but different half-maximal effective concentrations. Our data indicate that ions binding to individual voltage sensors in the tetrameric channel act without cooperativity to modulate activation gating. We have taken advantage of the unique phenotype of Ni2+ in the D274A channel, which contains a mutation of a nonbinding site residue, to demonstrate that ions can access the binding site from the extracellular solution when the voltage sensor is in the resting conformation. Our results are difficult to reconcile with the x-ray structure of the KvAP K+ channel, in which the binding site residues are widely separated, and with the hydrophobic paddle model for voltage-dependent activation, in which the voltage sensor domain, including the S3-S4 loop, is near the cytoplasmic side of the membrane in the closed channel.

  12. Structure and substrate-binding mechanism of human Ap4A hydrolase.

    PubMed

    Swarbrick, James D; Buyya, Smrithi; Gunawardana, Dilantha; Gayler, Kenwyn R; McLennan, Alexander G; Gooley, Paul R

    2005-03-04

    Asymmetric diadenosine 5',5'''-P(1),P(4)-tetraphosphate (Ap(4)A) hydrolases play a major role in maintaining homeostasis by cleaving the metabolite diadenosine tetraphosphate (Ap(4)A) back into ATP and AMP. The NMR solution structures of the 17-kDa human asymmetric Ap(4)A hydrolase have been solved in both the presence and absence of the product ATP. The adenine moiety of the nucleotide predominantly binds in a ring stacking arrangement equivalent to that observed in the x-ray structure of the homologue from Caenorhabditis elegans. The binding site is, however, markedly divergent to that observed in the plant/pathogenic bacteria class of enzymes, opening avenues for the exploration of specific therapeutics. Binding of ATP induces substantial conformational and dynamic changes that were not observed in the C. elegans structure. In contrast to the C. elegans homologue, important side chains that play a major role in substrate binding do not have to reorient to accommodate the ligand. This may have important implications in the mechanism of substrate recognition in this class of enzymes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap}more » (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.« less

  14. The influence of surface integrin binding patterns on specific biomaterial-cell interactions

    NASA Astrophysics Data System (ADS)

    Beranek, Maggi Marie

    As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second aim, the response of surface-bound integrins to flow-related shear stress was examined. Based on fluorescent analysis, total alphavbeta 3, alpha1beta1, and alpha5beta 1 appeared to increase on stainless steel after 90-minute low shear stress exposure, whereas only alpha5beta1 appeared to increase when exposed to high shear. 65/35 poly(D, L-lactide-co-glycolide) exhibited increased total binding of alpha5beta1 and alphaMbeta2, when exposed to either shear stress level. Exposure to either shear stress regimen appeared to increase binding of all integrins on the combinational surface. These responses to shear stress suggest differential integrin binding affinity compared to stainless steel. Using antibodies specific to the integrin subunits, the apparent increase in surface-bound integrins was found to be related to a surface disassociation of alpha and beta subunits. The third aim evaluated human aortic endothelial cells and acute monocytic leukemia cells (THP-1) cell binding to the tested biomaterial surfaces under both static and flow conditions. Both stainless steel and the combinational surface had increased endothelial cell binding compared to monocyte attachment. Pre-incubation of the surface with the specific integrins significantly inhibited human aortic endothelial cell binding. Aim four was designed to investigate the influence of surface bound integrins on human aortic endothelial cell migration under shear stress. If biomaterial surface integrin binding patterns are specific, then pre-bound surface integrins should competitively inhibit binding of cellular integrins to the surface. Cell migration distance on to alphavbeta3, alpha 1beta1, and alpha5beta1 pre-incubated stainless steel was decreased ten-fold, and decreased by three-fold on both 65/35 poly(D, L-lactide-coglycolide) and combinational surfaces compared to the respective bare surfaces. In contrast, migration distance on to alphaMbeta2 pre-coated stainless steel and combinational surface was decreased by only sixty percent and only fifty percent on alphaMbeta2 precoated 65/35 poly(D, L -lactide-co-glycolide). These results suggested that surface binding sites are selective and critical in governing endothelial cell migration. In conclusion, these results support the hypothesis that a surface that encourages specific integrin binding would promote differential cell binding. The novel integrin binding model used in this investigation may be a methodology that can be employed to evaluate potential vascular biomaterials.

  15. Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling.

    PubMed

    Kang, Lianguo; Zhang, Xintian; Xie, Yan; Tu, Yaping; Wang, Dong; Liu, Zhenming; Wang, Zhao-Yi

    2010-04-01

    Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-alpha36, a variant of ER-alpha. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-alpha36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-alpha36 via an activator protein 1 binding site. Both 17beta-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-alpha36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-alpha36, such as transcription activation activity of a VP16-ER-alpha36 fusion protein and activation of the MAPK/ERK1/2 in ER-alpha36-expressing cells. ER-alpha36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca(2+) mobilization only in ER-alpha36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-alpha36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-alpha36. Thus, the ER-alpha variant ER-alpha36, not GPR30, is involved in nongenomic estrogen signaling.

  16. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  17. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R.

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which representedmore » approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.« less

  18. Muscarinic and alpha 1-adrenergic receptor binding characteristics of saw palmetto extract in rat lower urinary tract.

    PubMed

    Suzuki, Mayumi; Oki, Tomomi; Sugiyama, Tomomi; Umegaki, Keizo; Uchida, Shinya; Yamada, Shizuo

    2007-06-01

    To elucidate the in vitro and ex vivo effects of saw palmetto extract (SPE) on autonomic receptors in the rat lower urinary tract. The in vitro binding affinities for alpha 1-adrenergic, muscarinic, and purinergic receptors in the rat prostate and bladder were measured by radioligand binding assays. Rats received vehicle or SPE (0.6 to 60 mg/kg/day) orally for 4 weeks, and alpha 1-adrenergic and muscarinic receptor binding in tissues of these rats were measured. Saw palmetto extract inhibited specific binding of [3H]prazosin and [N-methyl-3H]scopolamine methyl chloride (NMS) but not alpha, beta-methylene adenosine triphosphate [2,8-(3)H]tetrasodium salt in the rat prostate and bladder. The binding activity of SPE for muscarinic receptors was four times greater than that for alpha 1-adrenergic receptors. Scatchard analysis revealed that SPE significantly reduced the maximal number of binding sites (Bmax) for each radioligand in the prostate and bladder under in vitro condition. Repeated oral administration of SPE to rats brought about significant alteration in Bmax for prostatic [3H]prazosin binding and for bladder [3H]NMS binding. Such alteration by SPE was selective to the receptors in the lower urinary tract. Saw palmetto extract exerts significant binding activity on autonomic receptors in the lower urinary tract under in vitro and in vivo conditions.

  19. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vognsen, Tina, E-mail: tv@farma.ku.dk; Kristensen, Ole, E-mail: ok@farma.ku.dk

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The crystal structure of the NTF2-like domain of Rasputin protein is presented. Black-Right-Pointing-Pointer Differences to known ligand binding sites of nuclear transport factor 2 are discussed. Black-Right-Pointing-Pointer A new ligand binding site for the Rasputin and G3BP proteins is proposed. -- Abstract: The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7 A resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a {beta}-sheet and three {alpha}-helices forming a cone-like shape. However, known binding sites formore » RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site.« less

  20. Functional Analysis of a Novel Genome-Wide Association Study Signal in SMAD3 That Confers Protection From Coronary Artery Disease.

    PubMed

    Turner, Adam W; Martinuk, Amy; Silva, Anada; Lau, Paulina; Nikpay, Majid; Eriksson, Per; Folkersen, Lasse; Perisic, Ljubica; Hedin, Ulf; Soubeyrand, Sebastien; McPherson, Ruth

    2016-05-01

    A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3, rs56062135C>T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease-associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C>T (D', 0.97; r(2), 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity (P<0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent (P<0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. The coronary artery disease-associated rs17293632C>T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation. © 2016 American Heart Association, Inc.

  1. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon β.

    PubMed

    Mittelstadt, Megan L; Patel, Rekha C

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) is a 92 kDa zinc-dependant endopeptidase that degrades components of the extracellular matrix. Increased expression of MMP-9 is implicated in many pathological conditions including metastatic cancer, multiple sclerosis, and atherosclerosis. Although it has been widely noted that interferon-β (IFNβ) downregulates both the basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 expression at the transcriptional level, the molecular mechanism of this repression is poorly understood. In the present study we identify a novel mechanism for repression of MMP-9 transcription by IFNβ in HT1080 fibrosarcoma cells. Using reporter assays with promoter deletion constructs we show that IFNβ's inhibitory effects require a region of the promoter between -154 and -72, which contains an AP-1 binding site. Chromatin immunoprecipitation (ChIP) studies indicate that IFNβ increases histone deacetylase (HDAC)-1 recruitment to the MMP-9 promoter and reduces histone H3 acetylation, in addition to reduced NF-κB recruitment. ChIP analysis shows that IFNβ induced HDAC1 recruitment to the MMP-9 promoter and IFNβ mediated transcriptional repression is lost when the AP-1 binding site is inactivated by a point mutation. Altogether, our results establish that the repression of MMP-9 transcription in response to IFNβ occurs by the recruitment of HDAC1 via the proximal AP-1 binding site.

  3. Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFkappaB, AP-1, COX-2, and iNOS in mouse epidermis.

    PubMed

    Cichocki, Michal; Paluszczak, Jaroslaw; Szaefer, Hanna; Piechowiak, Adriana; Rimando, Agnes M; Baer-Dubowska, Wanda

    2008-06-01

    Resveratrol, a phytoalexin present in grapes, has been reported to inhibit multistage mouse skin carcinogenesis. Recent studies showed that topically applied resveratrol significantly inhibited cyclooxygenase-2 (COX-2) expression and activation of nuclear factor-kappaB (NF-kappaB) induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse epidermis. The aim of the present study was to further explore the effect of resveratrol on TPA-induced signaling pathways in mouse epidermis and to compare with its dimethylether, pterostilbene. Resveratrol and pterostilbene significantly reduced activator protein 1 (AP-1) and NF-kappaB activation. In the case of AP-1, the binding of c-Jun subunit was particularly affected, while only slight effect on c-Fos binding to TPA-responsive element (AP-1 binding consensus sequence) (TRE) site was observed. Both stilbenes inhibited the activation of NF-kappaB by blocking the translocation of p65 to the nucleus and increasing the retention of IkappaBa in the cytosol. The latter might be related to decreased activity of IkappaB kinase and/or proteasome 20S. Reduced activation of transcription factors decreased the expression and activity of COX-2 and inducible nitric oxide synthase (iNOS). In most assays, pterostilbene was either equally or significantly more potent than resveratrol. Pterostilbene might show higher biological activity due to its possible better bioavailability, since substitution of hydroxy with methoxy group increases lipophilicity.

  4. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic.

    PubMed

    Craige, Branch; Salazar, Gloria; Faundez, Victor

    2008-04-01

    The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.

  5. Formononetin, a phyto-oestrogen, and its metabolites up-regulate interleukin-4 production in activated T cells via increased AP-1 DNA binding activity

    PubMed Central

    Park, Jin; Kim, Seung H; Cho, Daeho; Kim, Tae S

    2005-01-01

    Phyto-oestrogens are polyphenolic non-steroidal plant compounds with oestrogen-like biological activity. Phyto-oestrogens have many biological effects including oestrogen agonist/antagonist properties. However, the effect of phyto-oestrogens on allergic responses remains unclear. In this study we investigated whether formononetin, a phyto-oestrogen, and its metabolites, daidzein and equol, affect production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune response, in primary CD4+ T cells and EL4 T lymphoma cells. Formononetin, daidzein and equol significantly enhanced IL-4 production from both CD4+ T cells and EL4 cells in a dose-dependent manner. Formononetin, daidzein and equol also enhanced IL-4 gene promoter activity in EL4 cells transiently transfected with IL-4 gene promoter constructs, but this effect was impaired in EL4 cells transfected with an IL-4 promoter construct deleted of P4 site carrying nuclear factor of activated T cells (NF-AT) and activator protein-1 (AP-1) binding sites. In addition, formononetin, daidzein and equol increased AP-1 DNA binding activities while did not affect NF-AT DNA binding activities. The enhancing effects on IL-4 production and AP-1 DNA binding activities were abrogated by specific inhibitors for phosphatidylinositol-3-kinase (PI3K), protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), indicating that formononetin, daidzein and equol might enhance IL-4 production by increased activation of AP-1 through the PI3-K/PKC/p38 MAPK signalling pathway. These results suggest that phyto-oestrogens and some of their metabolites may increase allergic responses via the enhancement of IL-4 production in T cells. PMID:16108819

  6. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    PubMed

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53

    PubMed Central

    Martinez-Zapien, Denise; Ruiz, Francesc Xavier; Poirson, Juline; Mitschler, André; Ramirez-Ramos, Juan; Forster, Anne; Cousido-Siah, Alexandra; Masson, Murielle; Pol, Scott Vande; Podjarny, Alberto; Travé, Gilles; Zanier, Katia

    2015-01-01

    Summary The p53 pro-apoptotic tumor suppressor is mutated or functionally altered in most cancers. In epithelial tumors induced by “high-risk” mucosal Human Papillomaviruses (hrm-HPVs), including human cervical carcinoma and a growing number of head-and-neck cancers 1, p53 is degraded by the viral oncoprotein E6 2. In this process, E6 binds to a short LxxLL consensus sequence within the cellular ubiquitin ligase E6AP 3. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 4. Neither E6 nor E6AP are separately able to recruit p53 3,5, and the precise mode of assembly of E6, E6AP and p53 is unknown. Here, we solved the crystal structure of a ternary complex comprising full-length HPV16 E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumor suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against HPV-mediated oncogenesis. PMID:26789255

  8. Steroid ligands bind human sex hormone-binding globulin in specific orientations and produce distinct changes in protein conformation.

    PubMed

    Grishkovskaya, Irina; Avvakumov, George V; Hammond, Geoffrey L; Catalano, Maria G; Muller, Yves A

    2002-08-30

    The amino-terminal laminin G-like domain of human sex hormone-binding globulin (SHBG) contains a single high affinity steroid-binding site. Crystal structures of this domain in complex with several different steroid ligands have revealed that estradiol occupies the SHBG steroid-binding site in an opposite orientation when compared with 5 alpha-dihydrotestosterone or C19 androgen metabolites (5 alpha-androstan-3 beta,17 beta-diol and 5 alpha-androstan-3 beta,17 alpha-diol) or the synthetic progestin levonorgestrel. Substitution of specific residues within the SHBG steroid-binding site confirmed that Ser(42) plays a key role in determining high affinity interactions by hydrogen bonding to functional groups at C3 of the androstanediols and levonorgestrel and the hydroxyl at C17 of estradiol. Among residues participating in the hydrogen bond network with hydroxy groups at C17 of C19 steroids or C3 of estradiol, Asp(65) appears to be the most important. The different binding mode of estradiol is associated with a difference in the position/orientation of residues (Leu(131) and Lys(134)) in the loop segment (Leu(131)-His(136)) that covers the steroid-binding site as well as others (Leu(171)-Lys(173) and Trp(84)) on the surface of human SHBG and may provide a basis for ligand-dependent interactions between SHBG and other macromolecules. These new crystal structures have also enabled us to construct a simple space-filling model that can be used to predict the characteristics of novel SHBG ligands.

  9. Biochemistry of terminal deoxynucleotidyltransferase. Identification and unity of ribo- and deoxyribonucleoside triphosphate binding site in terminal deoxynucleotidyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, V.N.; Modak, M.J.

    Terminal deoxynucleotidyltransferase is the only DNA polymerase that is strongly inhibited in the presence of ATP. We have labeled calf terminal deoxynucleotidyltransferase with (/sup 32/P)ATP in order to identify its binding site in terminal deoxynucleotidyltransferase. The specificity of ATP cross-linking to terminal deoxynucleotidyltransferase is shown by the competitive inhibition of the overall cross-linking reaction by deoxynucleoside triphosphates, as well as the ATP analogs Ap4A and Ap5A. Tryptic peptide mapping of (/sup 32/P)ATP-labeled enzyme revealed a peptide fraction that contained the majority of cross-linked ATP. The properties, chromatographic characteristics, amino acid composition, and sequence analysis of this peptide fraction were identicalmore » with those found associated with dTTP cross-linked terminal deoxynucleotidyl-transferase peptide. The involvement of the same 2 cysteine residues in the crosslinking of both nucleotides further confirmed the unity of the ATP and dTTP binding domain that contains residues 224-237 in the primary amino acid sequence of calf terminal deoxynucleotidyltransferase.« less

  10. All human Na(+)-K(+)-ATPase alpha-subunit isoforms have a similar affinity for cardiac glycosides.

    PubMed

    Wang, J; Velotta, J B; McDonough, A A; Farley, R A

    2001-10-01

    Three alpha-subunit isoforms of the sodium pump, which is the receptor for cardiac glycosides, are expressed in human heart. The aim of this study was to determine whether these isoforms have distinct affinities for the cardiac glycoside ouabain. Equilibrium ouabain binding to membranes from a panel of different human tissues and cell lines derived from human tissues was compared by an F statistic to determine whether a single population of binding sites or two populations of sites with different affinities would better fit the data. For all tissues, the single-site model fit the data as well as the two-site model. The mean equilibrium dissociation constant (K(d)) for all samples calculated using the single-site model was 18 +/- 6 nM (mean +/- SD). No difference in K(d) was found between nonfailing and failing human heart samples, although the maximum number of binding sites in failing heart was only approximately 50% of the number of sites in nonfailing heart. Measurement of association rate constants and dissociation rate constants confirmed that the binding affinities of the different human alpha-isoforms are similar to each other, although calculated K(d) values were lower than those determined by equilibrium binding. These results indicate both that the affinity of all human alpha-subunit isoforms for ouabain is similar and that the increased sensitivity of failing human heart to cardiac glycosides is probably due to a reduction in the number of pumps in the heart rather than to a selective inhibition of a subset of pumps with different affinities for the drugs.

  11. Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene.

    PubMed Central

    Mavrothalassitis, G J; Watson, D K; Papas, T S

    1990-01-01

    The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical "TATA" and "CAAT" elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1400 base pairs (bp) upstream from the first major transcription initiation site. A G + C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long (approximately 250-bp) polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. This region of 159 bp contains putative binding sites for transcription factors Sp1 and AP2 (one for each), the GC element, one small forward repeat, one inverted repeat, and half of the polypurine-pyrimidine tract. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with "TATA-less" promoters. Images PMID:2405393

  12. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.

    PubMed

    Lawlis, V B; Roche, T E

    1981-04-28

    Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.

  13. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    PubMed

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-28

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  14. The effects of inferior olive lesion on strychnine seizure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.C.; Chung, E.Y.; Van Woert, M.H.

    1990-10-01

    Bilateral inferior olive lesions, produced by systemic administration of the neurotoxin 3-acetylpyridine (3AP) produce a proconvulsant state specific for strychnine-induced seizures and myoclonus. We have proposed that these phenomena are mediated through increased excitation of cerebellar Purkinje cells, through activation of glutamate receptors, in response to climbing fiber deafferentation. An increase in quisqualic acid (QA)-displaceable ({sup 3}H)AMPA ((RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding in cerebella from inferior olive-lesioned rats was observed, but no difference in ({sup 3}H)AMPA binding displaced by glutamate, kainic acid (KA) or glutamate diethylester (GDEE) was seen. The excitatory amino acid antagonists GDEE and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclo-hepten-5,10 imine) were tested asmore » anticonvulsants for strychnine-induced seizures in 3AP inferior olive-lesioned and control rats. Neither drug effected seizures in control rats, however, both GDEE and MK-801 produced a leftward shift in the strychnine-seizure dose-response curve in 3AP inferior olive-lesioned rats. GDEE also inhibited strychnine-induced myoclonus in the lesioned group, while MK-801 had no effect on myoclonus. The decreased threshold for strychnine-induced seizures and myoclonus in the 3AP-inferior olive-lesioned rats may be due to an increase in glutamate receptors as suggested by the ({sup 3}H)AMPA binding data.« less

  15. Tuning of "antenna effect" of Eu(III) in ternary systems in aqueous medium through binding with protein.

    PubMed

    Ghorai, Shyamal Kr; Samanta, Swarna Kamal; Mukherjee, Manini; Saha Sardar, Pinki; Ghosh, Sanjib

    2013-02-04

    A simple ternary system containing a protein [human serum albumin (HSA)/bovine serum albumin (BSA)], tetracycline hydrochloride (TC), and Eu(III) in suitable aqueous buffer medium at physiological pH (= 7.2) has been shown to exhibit highly efficient "antenna effect" compared to the binary complex of TC with Eu(III) (Eu(3)TC). The ternary system containing E. coli alkaline phosphatase (AP), TC, and Eu(III), however, shows a slight enhancement of Eu(III) emission, although the binding constant of AP with TC is 2 orders of magnitude greater than with BSA/HSA. The enhanced emission of bound TC in the binary systems containing proteins and TC gets quenched in the ternary systems containing HSA/BSA, showing the efficient energy transfer (ET) from TC to Eu(III). Steady state and time-resolved emission studies of each component in all the ternary systems in H(2)O and in D(2)O medium reveal that Eu(III) is very well protected from the O-H oscillator in the ternary system containing HSA/BSA compared to that containing AP. The docking studies locating the binding site of TC in the proteins suggest that TC binds near the surface of AP. In the case of HSA/BSA, TC resides in the interior of the protein resulting in a large shielding effect of Eu(III). The rotational correlation time (θ(c)) determined from the anisotropy decay of bound TC in the complexes and the accessible surface area (ASA) of the ligand in the complexes obtained from the docking studies also support the contention that Eu(3)TC is more exposed to solvent in the case of the ternary system consisting of AP, TC, and Eu(III). The calculated radiative lifetime and the sensitization efficiency ratio of Eu(III) in all the systems clearly demonstrate the protein mediated tuning of "antenna effect" in Eu(III).

  16. Vitamin D Receptor (VDR) Regulation of Voltage-Gated Chloride Channels by Ligands Preferring a VDR-Alternative Pocket (VDR-AP)

    PubMed Central

    Menegaz, Danusa; Mizwicki, Mathew T.; Barrientos-Duran, Antonio; Chen, Ning; Henry, Helen L.

    2011-01-01

    We have postulated that the vitamin D receptor (VDR) contains two overlapping ligand binding sites, a genomic pocket and an alternative pocket (AP), that mediate regulation of gene transcription and rapid responses, respectively. Flexible VDR + ligand docking calculations predict that the major blood metabolite, 25(OH)-vitamin D3 (25D3), and curcumin (CM) bind more selectively to the VDR-AP when compared with the seco-steroid hormone 1α,25(OH)2-vitamin D3 (1,25D3). In VDR wild-type-transfected COS-1 cells and TM4 Sertoli cells, 1,25D3, 25D3, and CM each trigger voltage-gated, outwardly rectifying chloride channel (ORCC) currents that can be blocked by the VDR antagonist 1β,25(OH)2-vitamin D3 and the chloride channel antagonist (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid). VDR mutational analysis in transfected COS-1 cells demonstrate the DNA-binding domain is not, but the ligand binding and hinge domains of the VDR are, required for 1,25D3 and 25D3 to activate the ORCC. Dose-response studies demonstrate that 25D3 and 1,25D3 are approximately equipotent in stimulating ORCC rapid responses, whereas 1 nm 1,25D3 was 1000-fold more potent than 25D3 and CM in stimulating gene expression. The VDR-AP agonist effects of 1,25D3, 25D3, and low-dose CM are lost after pretreatment of TM4 cells with VDR small interfering RNA. Collectively, these results are consistent with an essential role for the VDR-AP in initiating the signaling required for rapid opening of ORCC. The fact that 25D3 is equipotent to 1,25D3 in opening ORCC suggests that reconsideration of the ability of 25D3 to generate biological responses in vivo may be in order. PMID:21659475

  17. Role of astrocytes in reproduction and neuroprotection.

    PubMed

    Mahesh, Virendra B; Dhandapani, Krishnan M; Brann, Darrell W

    2006-02-26

    Hypothalamic astrocytes secrete TGF-beta and 3 alpha,5 alpha-tetrahydro progesterone (3 alpha,5 alpha-THP) in culture. When the astrocyte-conditioned medium (ACM) was incubated with the hypothalamic cell line GT1-7, it resulted in the secretion of GnRH. Immunoneutralization with TGF-beta antibody or ultra-filteration with a 10 kDa cut off filter resulted in attenuation of the GnRH releasing ability of ACM, indicating that TGF-beta was a major factor involved with GnRH release. Treatment with estrogens increases TGF-beta secretion. These observations indicate a significant role of astrocytes in GnRH secretion. Serum-deprivation results in the death of GT1-7 neurons in culture and addition of ACM or TGF-beta to the culture, attenuates cell death. The mechanism of protection from cell death appears to involve phosphorylation of MKK4, JNK, c-Jun(Ser63), and enhancement of AP-1 binding. Co-administration of JNK inhibitors, but not MEK inhibitors attenuated ACM or TGF-beta-induced c-Jun(Ser63) phosphorylation and their neuroprotective effects. These studies suggest that astrocytes can protect neurons, at least in part, by the release of TGF-beta and activation of a c-Jun/AP-1 protective pathway.

  18. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling.

    PubMed

    Dietz, Karl-Josef; Vogel, Marc Oliver; Viehhauser, Andrea

    2010-09-01

    To optimize acclimation responses to environmental growth conditions, plants integrate and weigh a diversity of input signals. Signal integration within the signalling networks occurs at different sites including the level of transcription factor activation. Accumulating evidence assigns a major and diversified role in environmental signal integration to the family of APETALA 2/ethylene response element binding protein (AP2/EREBP) transcription factors. Presently, the Plant Transcription Factor Database 3.0 assigns 147 gene loci to this family in Arabidopsis thaliana, 200 in Populus trichocarpa and 163 in Oryza sativa subsp. japonica as compared to 13 to 14 in unicellular algae ( http://plntfdb.bio.uni-potsdam.de/v3.0/ ). AP2/EREBP transcription factors have been implicated in hormone, sugar and redox signalling in context of abiotic stresses such as cold and drought. This review exemplarily addresses present-day knowledge of selected AP2/EREBP with focus on a function in stress signal integration and retrograde signalling and defines AP2/EREBP-linked gene networks from transcriptional profiling-based graphical Gaussian models. The latter approach suggests highly interlinked functions of AP2/EREBPs in retrograde and stress signalling.

  19. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II.

    PubMed

    Dong, L-F; Low, P; Dyason, J C; Wang, X-F; Prochazka, L; Witting, P K; Freeman, R; Swettenham, E; Valis, K; Liu, J; Zobalova, R; Turanek, J; Spitz, D R; Domann, F E; Scheffler, I E; Ralph, S J; Neuzil, J

    2008-07-17

    Alpha-tocopheryl succinate (alpha-TOS) is a selective inducer of apoptosis in cancer cells, which involves the accumulation of reactive oxygen species (ROS). The molecular target of alpha-TOS has not been identified. Here, we show that alpha-TOS inhibits succinate dehydrogenase (SDH) activity of complex II (CII) by interacting with the proximal and distal ubiquinone (UbQ)-binding site (Q(P) and Q(D), respectively). This is based on biochemical analyses and molecular modelling, revealing similar or stronger interaction energy of alpha-TOS compared to that of UbQ for the Q(P) and Q(D) sites, respectively. CybL-mutant cells with dysfunctional CII failed to accumulate ROS and underwent apoptosis in the presence of alpha-TOS. Similar resistance was observed when CybL was knocked down with siRNA. Reconstitution of functional CII rendered CybL-mutant cells susceptible to alpha-TOS. We propose that alpha-TOS displaces UbQ in CII causing electrons generated by SDH to recombine with molecular oxygen to yield ROS. Our data highlight CII, a known tumour suppressor, as a novel target for cancer therapy.

  20. Stabilization of different types of transition states in a single enzyme active site: QM/MM analysis of enzymes in the alkaline phosphatase superfamily.

    PubMed

    Hou, Guanhua; Cui, Qiang

    2013-07-17

    The first step for the hydrolysis of a phosphate monoester (pNPP(2-)) in enzymes of the alkaline phosphatase (AP) superfamily, R166S AP and wild-type NPP, is studied using QM/MM simulations based on an approximate density functional theory (SCC-DFTBPR) and a recently introduced QM/MM interaction Hamiltonian. The calculations suggest that similar loose transition states are involved in both enzymes, despite the fact that phosphate monoesters are the cognate substrates for AP but promiscuous substrates for NPP. The computed loose transition states are clearly different from the more synchronous ones previously calculated for diester reactions in the same AP enzymes. Therefore, our results explicitly support the proposal that AP enzymes are able to recognize and stabilize different types of transition states in a single active site. Analysis of the structural features of computed transition states indicates that the plastic nature of the bimetallic site plays a minor role in accommodating multiple types of transition states and that the high degree of solvent accessibility of the AP active site also contributes to its ability to stabilize diverse transition-state structures without the need of causing large structural distortions of the bimetallic motif. The binding mode of the leaving group in the transition state highlights that vanadate may not always be an ideal transition state analog for loose phosphoryl transfer transition states.

  1. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2

    PubMed Central

    Pechstein, Arndt; Bacetic, Jelena; Vahedi-Faridi, Ardeschir; Gromova, Kira; Sundborger, Anna; Tomlin, Nikolay; Krainer, Georg; Vorontsova, Olga; Schäfer, Johannes G.; Owe, Simen G.; Cousin, Michael A.; Saenger, Wolfram; Shupliakov, Oleg; Haucke, Volker

    2010-01-01

    Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P2]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the “side sites” of the AP2 α- and β-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses. PMID:20160082

  2. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    PubMed

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  3. Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coseno,M.; Martin, G.; Berger, C.

    Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present heremore » the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.« less

  4. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.

    PubMed

    Fukasawa, Kayoko M; Hirose, Junzo; Hata, Toshiyuki; Ono, Yukio

    2006-09-26

    Aminopeptidase B (EC 3.4.11.6, ApB) specifically cleaves in vitro the N-terminal Arg or Lys residue from peptides and synthetic derivatives. Ap B was shown to have a consensus sequence found in the metallopeptidase family. We determined the putative zinc binding residues (His324, His328, and Glu347) and the essential Glu325 residue for the enzyme using site-directed mutagenesis (Fukasawa, K. M., et al. (1999) Biochem. J. 339, 497-502). To identify the residues binding to the amino-terminal basic amino acid of the substrate, rat cDNA encoding ApB was cloned into pGEX-4T-3 so that recombinant protein was expressed as a GST fusion protein. Twelve acidic amino acid residues (Glu or Asp) in ApB were replaced with a Gln or Asn using site-directed mutagenesis. These mutants were isolated to characterize the kinetic parameters of enzyme activity toward Arg-NA and compare them to those of the wild-type ApB. The catalytic efficiency (kcat/Km) of the mutant D405N was 1.7 x 10(4) M(-1) s(-1), markedly decreased compared with that of the wild-type ApB (6.2 x 10(5) M(-1) s(-1)). The replacement of Asp405 with an Asn residue resulted in the change of substrate specificity such that the specific activity of the mutant D405N toward Lys-NA was twice that toward Arg-NA (in the case of wild-type ApB; 0.4). Moreover, when Asp405 was replaced with an Ala residue, the kcat/Km ratio was 1000-fold lower than that of the wild-type ApB for hydrolysis of Arg-NA; in contrast, in the hydrolysis of Tyr-NA, the kcat/Km ratios of the wild-type (1.1 x 10(4) M(-1) s(-1)) and the mutated (8.2 x 10(3) M(-1) s(-1)) enzymes were similar. Furthermore, the replacement of Asp-405 with a Glu residue led to the reduction of the kcat/Km ratio for the hydrolysis of Arg-NA by a factor of 6 and an increase of that for the hydrolysis of Lys-NA. Then the kcat/Km ratio of the D405E mutant for the hydrolysis of Lys-NA was higher than that for the hydrolysis of Arg-NA as opposed to that of wild-type ApB. These data strongly suggest that the Asp 405 residue is involved in substrate binding via an interaction with the P1 amino group of the substrate's side chain.

  5. Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain.

    PubMed

    Buczek, Pawel; Horvath, Martin P

    2006-06-23

    The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.

  6. The three-dimensional structure of a T-cell antigen receptor V alpha V beta heterodimer reveals a novel arrangement of the V beta domain.

    PubMed Central

    Housset, D; Mazza, G; Grégoire, C; Piras, C; Malissen, B; Fontecilla-Camps, J C

    1997-01-01

    The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand. PMID:9250664

  7. AlphaII-spectrin interacts with Tes and EVL, two actin-binding proteins located at cell contacts.

    PubMed

    Rotter, Björn; Bournier, Odile; Nicolas, Gael; Dhermy, Didier; Lecomte, Marie-Christine

    2005-06-01

    The spectrin-based membrane skeleton, a multi-protein scaffold attached to diverse cellular membranes, is presumed to be involved in the stabilization of membranes, the establishment of membrane domains as well as in vesicle trafficking and nuclear functions. Spectrin tetramers made of alpha- and beta-subunits are linked to actin microfilaments, forming a network that binds a multitude of proteins. The most prevalent alpha-spectrin subunit in non-erythroid cells, alphaII-spectrin, contains two particular spectrin repeats in its central region, alpha9 and alpha10, which host an Src homology 3 domain, a tissue-specific spliced sequence of 20 residues, a calmodulin-binding site and major cleavage sites for caspases and calpains. Using yeast two-hybrid screening of kidney libraries, we identified two partners of the alpha9-alpha10 repeats: the potential tumour suppressor Tes, an actin-binding protein mainly located at focal adhesions; and EVL (Ena/vasodilator-stimulated phosphoprotein-like protein), another actin-binding protein, equally recruited at focal adhesions. Interactions between spectrin and overexpressed Tes and EVL were confirmed by co-immunoprecipitation. In vitro studies showed that the interaction between Tes and spectrin is mediated by a LIM (Lin-11, Isl-1 and Mec3) domain of Tes and by the alpha10 repeat of alphaII-spectrin whereas EVL interacts with the Src homology 3 domain located within the alpha9 repeat. Moreover, we describe an in vitro interaction between Tes and EVL, and a co-localization of these two proteins at focal adhesions. These interactions between alphaII-spectrin, Tes and EVL indicate new functions for spectrin in actin dynamics and focal adhesions.

  8. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  9. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma

    PubMed Central

    Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong

    2007-01-01

    Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted therapeutics for HNSCC. PMID:17498291

  10. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    PubMed

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.

    DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. Here we report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylatedmore » CpG dinucleotides. Moreover, these structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. Finally, these snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.« less

  12. Capturing Snapshots of APE1 Processing DNA Damage

    PubMed Central

    Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; Dyrkheeva, Nadezhda S.; Wilson, Samuel H.

    2015-01-01

    DNA apurinic-apyrimidinic (AP) sites are prevalent non-coding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive due in part to limited structural information. We report multiple high-resolution human APE1:DNA structures that divulge novel features of the APE1 reaction, including the metal binding site, nucleophile, and arginine clamps that mediate product release. We also report APE1:DNA structures with a T:G mismatch 5′ to the AP-site, representing a clustered lesion occurring in methylated CpG dinucleotides. These reveal that APE1 molds the T:G mismatch into a unique Watson-Crick like geometry that distorts the active site reducing incision. These snapshots provide mechanistic clarity for APE1, while affording a rational framework to manipulate biological responses to DNA damage. PMID:26458045

  13. Capturing snapshots of APE1 processing DNA damage

    DOE PAGES

    Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; ...

    2015-10-12

    DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. Here we report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylatedmore » CpG dinucleotides. Moreover, these structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. Finally, these snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.« less

  14. Fibroblast growth factor 2 regulates bone sialoprotein gene transcription in human breast cancer cells.

    PubMed

    Li, Zhengyang; Wang, Zhitao; Yang, Li; Li, Xinyue; Sasaki, Yoko; Wang, Shuang; Araki, Shouta; Mezawa, Masaru; Takai, Hideki; Nakayama, Youhei; Ogata, Yorimasa

    2010-03-01

    Bone sialoprotein (BSP) is a major non-collagenous, extracellular matrix glycoprotein associated with mineralized tissues. Fibroblast growth factor 2 (FGF2) is recognized as a potent mitogen for a variety of mesenchymal cells. FGF2 produced by osteoblasts accumulates in the bone matrix and acts as an autocrine/paracrine regulator of osteoblasts. We previously reported that FGF2 regulates BSP gene transcription through the FGF2 response element (FRE) and activator protein 1 (AP1) binding site overlapping with the glucocorticoid response element in the rat BSP gene promoter. In the present study, FGF2 (10 ng/ml) increased BSP and Runx2 mRNA levels at 6 h in MCF7 human breast cancer cells. Transient transfection analyses were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of MCF7 cells with FGF2 (10 ng/ml) increased the luciferase activity of the constructs between -84LUC and -927LUC. Gel mobility shift analyses showed that FGF2 increased the binding of AP1 and CRE2. The CRE2- and AP1-protein complexes were disrupted by antibodies against CREB1, c-Fos, c-Jun, Fra2, p300 and Runx2. These studies demonstrate that FGF2 stimulates BSP transcription in MCF7 human breast cancer cells by targeting the AP1 and CRE2 elements in the human BSP gene promoter.

  15. Methylation of an alpha-foetoprotein gene intragenic site modulates gene activity.

    PubMed Central

    Opdecamp, K; Rivière, M; Molné, M; Szpirer, J; Szpirer, C

    1992-01-01

    By comparing the methylation pattern of Mspl/Hpall sites in the 5' region of the mouse alpha-foetoprotein (AFP) gene of different cells (hepatoma cells, foetal and adult liver, fibroblasts), we found a correlation between gene expression and unmethylation of a site located in the first intron of the gene. Other sites did not show this correlation. In transfection experiments of unmethylated and methylated AFP-CAT chimeric constructions, we then showed that methylation of the intronic site negatively modulates expression of CAT activity. We also found that a DNA segment centered on this site binds nuclear proteins; however methylation did not affect protein binding. Images PMID:1371343

  16. A Structure-Based Mechanism for Arf1-Dependent Recruitment of Coatomer to Membranes

    PubMed Central

    Yu, Xinchao; Breitman, Marianna; Goldberg, Jonathan

    2012-01-01

    Summary Budding of COPI-coated vesicles from Golgi membranes requires an Arf-family G protein and the coatomer complex recruited from cytosol. Arf is also required with coatomer-related clathrin adaptor complexes to bud vesicles from the trans-Golgi network and endosomal compartments. To understand the structural basis for Arf-dependent recruitment of a vesicular coat to the membrane, we determined the structure of Arf1 bound to the γζ-COP subcomplex of coatomer. Structure-guided biochemical analysis reveals that a second Arf1-GTP molecule binds to βδ-COP at a site common to the γ- and β-COP subunits. The Arf1-binding sites on coatomer are spatially related to PtdIns4,5P2-binding sites on the endocytic AP2 complex, providing evidence that the orientation of membrane binding is general for this class of vesicular coat proteins. A bivalent GTP-dependent binding mode has implications for the dynamics of coatomer interaction with the Golgi and for the selection of cargo molecules. PMID:22304919

  17. Combined effects of a thymic peptide, thymopoietin and myasthenic patient sera in rat myotube culture.

    PubMed

    Eymard, B; Aimé, C; Cottin, C; Morel, E; Goldstein, G; Bach, J F; Berrih-Aknin, S

    1992-10-01

    We investigated in a rat myotube assay the combined effect of 26 myasthenic (MG) patient sera and a thymic peptide, thymopoietin (Tpo) which had previously been shown to bind Torpedo and human AChR and to compete with alpha-bungarotoxin (alpha-Bgt) binding. Cultures were first exposed to Tpo alone for 3 h (0.3, 7.5, 15 nM), then MG sera (5% final dilution) were added for an additional 18 h. Reduction in the amount of 125I-alpha-Bgt binding sites in the presence of various concentrations of Tpo were similar with control sera and in all the patients with low or undetectable anti-AChR Ab (11 cases). In cultures exposed to Tpo and sera with high anti-AChR Ab titre (15 cases), Tpo and anti-AChR Ab have an additive capacity to reduce the number of alpha-Bgt binding sites. The results are compatible with the hypothesis that anti-AChR Ab and Tpo could impair neuromuscular transmission by complementary mechanisms.

  18. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  19. NMR study of the transforming growth factor-alpha (TGF-alpha)-epidermal growth factor receptor complex. Visualization of human TGF-alpha binding determinants through nuclear Overhauser enhancement analysis.

    PubMed

    McInnes, C; Hoyt, D W; Harkins, R N; Pagila, R N; Debanne, M T; O'Connor-McCourt, M; Sykes, B D

    1996-12-13

    The study of human transforming growth factor-alpha (TGF-alpha) in complex with the epidermal growth factor (EGF) receptor extracellular domain has been undertaken in order to generate information on the interactions of these molecules. Analysis of 1H NMR transferred nuclear Overhauser enhancement data for titration of the ligand with the receptor has yielded specific data on the residues of the growth factor involved in contact with the larger protein. Significant increases and decreases in nuclear Overhauser enhancement cross-peak intensity occur upon complexation, and interpretation of these changes indicates that residues of the A- and C-loops of TGF-alpha form the major binding interface, while the B-loop provides a structural scaffold for this site. These results corroborate the conclusions from NMR relaxation studies (Hoyt, D. W., Harkins, R. N., Debanne, M. T., O'Connor-McCourt, M., and Sykes, B. D. (1994) Biochemistry 33, 15283-15292), which suggest that the C-terminal residues of the polypeptide are immobilized upon receptor binding, while the N terminus of the molecule retains considerable flexibility, and are consistent with structure-function studies of the TGF-alpha/EGF system indicating a multidomain binding model. These results give a visualization, for the first time, of native TGF-alpha in complex with the EGF receptor and generate a picture of the ligand-binding site based upon the intact molecule. This will undoubtedly be of utility in the structure-based design of TGF-alpha/EGF agonists and/or antagonists.

  20. Preliminary results from the lunar prospector alpha particle spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawson, S. L.

    2001-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) builds on Apollo heritage and maps the distribution of outgassing sites on the Moon. The APS searches for lunar surface gas release events and maps their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life) and solid polonium-210 (5.3 MeV, 138 day half-life, but remains on the surface with a 21 year half-life as lead-210), which are radioactive daughters from the decay of uranium-238. Radon is in such small quantities that it is not released directly from the lunar interior, rather it is entrainedmore » in a stream of gases and serves as a tracer for such gases. Once released, the radon spreads out by 'bouncing' across the surface on ballistic trajectories in a random-walk process. The 3.8 day half-life of radon-222 allows the gas to spread out by several 100 km before it decays and allows the APS to detect gas release events up to a few days after they occur. The long residence time (10s of years) of the lead-210 precursor to the polonium-210 allows the mapping of gas vents which have been active over the last approximately 50 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Using radioactive radon and polonium as tracers, the Apollo 15 and 16 Command Module orbital alpha particle experiments obtained evidence for the release of gases at several sites beneath the orbit tracks, especially over the Aristarchus Plateau and Mare Fecunditatis [1]. Aristarchus crater had previously been identified by ground-based observers as the site of transient optical events [2]. The Apollo 17 surface mass spectrometer showed that argon-40 is released from the lunar interior every few months, apparently in concert with some of the shallow moonquakes that are believed to be of tectonic origin [3]. The latter tectonic events could be associated with very young scarps identified in the lunar highlands [4] and are believed to indicate continued global contraction. Such quakes could open fissures leading to the release of gases that are trapped below the surface. The detection of radon-222 outgassing events at the margins of Fecunditatis basin was surprising because the observed surface distribution of uranium and thorium do not extend sufficiently eastward to cover Fecunditatis. If the Apollo detections prove sound, then those alpha particle emissions indicate substantial subsurface concentrations of uranium-238 within Fecunditatis. A primary goal of the APS was to map gas-release events, thus allowing both an appraisal of the current level of tectonic activity on the Moon and providing a probe of subsurface uranium concentrations.« less

  1. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates.

    PubMed

    Ladd, Charlotte O; Thrivikraman, K V; Huot, Rebecca L; Plotsky, Paul M

    2005-07-01

    Burgeoning evidence supports a preeminent role for early- and late-life stressors in the development of physio- and psychopathology. Handling-maternal separation (HMS) in neonatal Long Evans hooded rats leads to stable phenotypes ranging from resilient to vulnerable to later stressor exposure. Handling with 180 min of maternal separation yields a phenotype of stress hyper-responsiveness associated with facilitation of regional CRF neurocircuits and glucocorticoid resistance. This study assessed whether or not prolonged HMS (180 min/day, HMS180) on post-natal days 2-14 sensitizes the adult limbic hypothalamo-pituitary-adrenal (LHPA) axis to chronic variable stress (CS) compared to brief HMS (15 min/day, HMS15). We examined regional mRNA densities of corticotropin-releasing factor (CRF), its receptor CRF1, glucocorticoid receptor (GR), and mineralocorticoid receptor (MR); regional CRF1 and CRF2alpha binding, and pituitary-adrenal responses to an acute air-puff startle (APS) stressor in four groups: HMS15, nonstressed; HMS15, stressed; HMS180, nonstressed; HMS180, stressed. As expected we observed exaggerated pituitary-adrenal responses to APS, increased regional CRF mRNA density, decreased regional CRF1 binding, and decreased cortical GR mRNA density in nonstressed HMS180 vs. HMS15 animals. However, in contrast to our hypothesis, CS decreased pituitary-adrenal reactivity and central amygdala CRF mRNA density in HMS180 rats, while increasing cortical GR mRNA density and CRF1 binding. CS had no effect on the pituitary-adrenal response to APS in HMS15 rats, despite tripling hypothalamic paraventricular CRF mRNA density. The data suggest that many effects of prolonged HMS are reversible in adulthood by CS, while the neuroendocrine adaptations imbued by brief HMS are sufficiently stable to restrain pituitary-adrenal stress responses even following CS.

  2. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  3. A synthetic peptide derived from alpha-fetoprotein inhibits the estradiol-induced proliferation of mammary tumor cells in culture through the modulation of p21.

    PubMed

    Sierralta, Walter D; Epuñan, María J; Reyes, José M; Valladares, Luis E; Pino, Ana M

    2008-01-01

    A stable cyclized 9-mer peptide (cP) containing the active site of alpha-alpha fetoprotein (alphaFP) has been shown to be effective for prevention of estrogen-stimulated tumor cell proliferation in culture or of xenographt growth in immunodeficient mice. cP does not block 17beta-estradiol (E2) binding to its receptors, but rather appears to interfere with intracellular processing of the signal that supports growth. To obtain insight on that mechanism we studied the effect of cP on the proliferation of MCF-7 cells in culture. Proliferation in the presence of 2 microM E2 is decreased up to 40% upon addition of 2 microg ml(-1) cP to the medium; the presence of cP did not increase cell death, cP reduced also the proliferation of estrogen-dependent ZR75-1 cells but had no effect on autonomous MDA-MB-231 cells, cP did not modify the number of binding sites for labeled E2 or affected cell death. We detected increased nuclear p21Cip1 immunoreactivity after cP treatment. Our results suggest that cP acts via p21Cip1 to slow the process of MCF-7 cells through the cycle.

  4. Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes

    PubMed Central

    Jetha, Khushboo; Theißen, Günter; Melzer, Rainer

    2014-01-01

    The SEPALLATA (SEP) genes of Arabidopsis thaliana encode MADS-domain transcription factors that specify the identity of all floral organs. The four Arabidopsis SEP genes function in a largely yet not completely redundant manner. Here, we analysed interactions of the SEP proteins with DNA. All of the proteins were capable of forming tetrameric quartet-like complexes on DNA fragments carrying two sequence elements termed CArG-boxes. Distances between the CArG-boxes for strong cooperative DNA-binding were in the range of 4–6 helical turns. However, SEP1 also bound strongly to CArG-box pairs separated by smaller or larger distances, whereas SEP2 preferred large and SEP4 preferred small inter-site distances for binding. Cooperative binding of SEP3 was comparatively weak for most of the inter-site distances tested. All SEP proteins constituted floral quartet-like complexes together with the floral homeotic proteins APETALA3 (AP3) and PISTILLATA (PI) on the target genes AP3 and SEP3. Our results suggest an important part of an explanation for why the different SEP proteins have largely, but not completely redundant functions in determining floral organ identity: they may bind to largely overlapping, but not identical sets of target genes that differ in the arrangement and spacing of the CArG-boxes in their cis-regulatory regions. PMID:25183521

  5. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the cognate elements.

  6. Spectral Line Polarisation Atlases for 53 Cam (A4p) and alpha 2 CVn (A0p)

    NASA Astrophysics Data System (ADS)

    Wade, G. A.

    2002-08-01

    Wade, Donati & Landstreet (2000) presented a atlas of the R=35,000 Stokes IQUV spectrum of the cool magnetic Ap star beta CrB in the spectral range 450-660 nm. In this report we present analogous atlases for the well-studied magnetic Ap stars 53 Cam (HD 65339, A4p) and alpha 2 CVn (HD 112413, A0p).

  7. Conformational dynamics of abasic DNA upon interactions with AP endonuclease 1 revealed by stopped-flow fluorescence analysis.

    PubMed

    Kanazhevskaya, Lyubov Yu; Koval, Vladimir V; Vorobjev, Yury N; Fedorova, Olga S

    2012-02-14

    Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from exposure to UV light, ionizing radiation, alkylating agents, and oxygen radicals. In human cells, AP endonuclease 1 (APE1) recognizes this mutagenic lesion and initiates its repair via a specific incision of the phosphodiester backbone 5' to the AP site. We have investigated a detailed mechanism of APE1 functioning using fluorescently labeled DNA substrates. A fluorescent adenine analogue, 2-aminopurine, was introduced into DNA substrates adjacent to the abasic site to serve as an on-site reporter of conformational transitions in DNA during the catalytic cycle. Application of a pre-steady-state stopped-flow technique allows us to observe changes in the fluorescence intensity corresponding to different stages of the process in real time. We also detected an intrinsic Trp fluorescence of the enzyme during interactions with 2-aPu-containing substrates. Our data have revealed a conformational flexibility of the abasic DNA being processed by APE1. Quantitative analysis of fluorescent traces has yielded a minimal kinetic scheme and appropriate rate constants consisting of four steps. The results obtained from stopped-flow data have shown a substantial influence of the 2-aPu base location on completion of certain reaction steps. Using detailed molecular dynamics simulations of the DNA substrates, we have attributed structural distortions of AP-DNA to realization of specific binding, effective locking, and incision of the damaged DNA. The findings allowed us to accurately discern the step that corresponds to insertion of specific APE1 amino acid residues into the abasic DNA void in the course of stabilization of the precatalytic complex.

  8. Receptor-mediated cytotoxicity of alpha-MSH fragments containing melphalan in a human melanoma cell line.

    PubMed

    Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G

    1994-01-02

    Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human melanoma cells due to the presence of alpha-MSH-specific receptors. This mechanism appeared to be both peptide- and cell-type-specific.

  9. Polar bear hemoglobin and human Hb A0: same 2,3-diphosphoglycerate binding site but asymmetry of the binding?

    PubMed

    Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J

    2002-11-01

    Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.

  10. Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.

    PubMed

    Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B

    2006-07-01

    alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.

  11. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  12. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    PubMed

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  13. SusG: A Unique Cell-Membrane-Associated [alpha]-Amylase from a Prominent Human Gut Symbiont Targets Complex Starch Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koropatkin, Nicole M.; Smith, Thomas J.

    SusG is an {alpha}-amylase and part of a large protein complex on the outer surface of the bacterial cell and plays a major role in carbohydrate acquisition by the animal gut microbiota. Presented here, the atomic structure of SusG has an unusual extended, bilobed structure composed of amylase at one end and an unprecedented internal carbohydrate-binding motif at the other. Structural studies further demonstrate that the carbohydrate-binding motif binds maltooligosaccharide distal to, and on the opposite side of, the amylase catalytic site. SusG has an additional starch-binding site on the amylase domain immediately adjacent to the active cleft. Mutagenesis analysismore » demonstrates that these two additional starch-binding sites appear to play a role in catabolism of insoluble starch. However, elimination of these sites has only a limited effect, suggesting that they may have a more important role in product exchange with other Sus components.« less

  14. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly.

    PubMed

    Hocking, D C; Smith, R K; McKeown-Longo, P J

    1996-04-01

    Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183-19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red-conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.

  15. hnRNP L regulates differences in expression of mouse integrin alpha2beta1.

    PubMed

    Cheli, Yann; Kunicki, Thomas J

    2006-06-01

    There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.

  16. Antiasthmic effect of fermented Artemisia princeps in asthmic mice induced by ovalbumin.

    PubMed

    Bae, Eun-Ah; Min, Sung-Won; Lee, Bomi; Kim, Nam-Jae; Baek, Nam-In; Han, Eun-Joo; Chung, Hae-Gon; Kim, Dong-Hyun

    2007-09-01

    Artemisia princeps Pampanini (AP) was fermented with Bifidobacterium infantis K-525 and its antiasthmic effect investigated. AP and fermented AP (FAP) reduced the IgE level in the blood of ovalbumin-induced asthmic mice. Moreover, FAP reduced the IgE, proinflammatory cytokine IL-6, and IL-4 levels in the trachea, as well as in the lung of the experimental asthmic mice, whereas AP only reduced the IgE and IL-6 levels in the lungs. Nonetheless, AP and FAP both inhibited the mRNA expression of IL-6 and TNF-alpha in IgE-induced RBL-2H3 cells. The in vivo antiasthmic effect of FAP was more potent than that of AP. Therefore, these findings suggest that the enhanced antiasthmic effect of AP after bifidus fermentation was possibly due to the regulation of the proinflammatory cytokine biosynthesis of IL-6 and TNF-alpha.

  17. TPA can overcome the requirement for EIa and together act synergistically in stimulating expression of the adenovirus EIII promoter.

    PubMed Central

    Buckbinder, L; Miralles, V J; Reinberg, D

    1989-01-01

    We have examined the control of gene expression from the adenovirus early region III (Ad-EIII) promoter, which contains two previously defined elements, the AP1 and ATF sites. We found that the AP1 element is capable of mediating activation by the adenovirus immediate early (EIa) gene products. Consistent with studies demonstrating that the AP1 site mediates signal transduction in response to 12-O-tetradecanoylphorbol 13-acetate (TPA) we have shown that TPA can activate Ad-EIII expression and overcome the requirement for EIa. Together TPA and EIa elicited a synergistic response in expression from the Ad-EIII promoter during both transient expression assays and viral infections. This synergistic effect required the AP1 element. An EIII promoter construct, in which sequences upstream of the TATA box had been replaced with four AP1 sites, was responsive to TPA and EIa and in combination promoted the synergistic effect. The analysis of specific factors involved in transcription from the Ad-EIII indicated that proteins recognizing the ATF and AP1 sites were important in expression from this promoter in vitro. Purification of protein factors that specifically stimulated EIII expression resulted in the isolation of a set of factors of the AP1 family. Affinity purified AP1 recognized and activated transcription through both the AP1 and ATF elements. In addition, a protein fraction was identified with DNA binding activity specific for the ATF element. This fraction was dependent on the ATF site for transcriptional activity. Images PMID:2531661

  18. Ion-binding properties of Calnuc, Ca2+ versus Mg2+--Calnuc adopts additional and unusual Ca2+-binding sites upon interaction with G-protein.

    PubMed

    Kanuru, Madhavi; Samuel, Jebakumar J; Balivada, Lavanya M; Aradhyam, Gopala K

    2009-05-01

    Calnuc is a novel, highly modular, EF-hand containing, Ca(2+)-binding, Golgi resident protein whose functions are not clear. Using amino acid sequences, we demonstrate that Calnuc is a highly conserved protein among various organisms, from Ciona intestinalis to humans. Maximum homology among all sequences is found in the region that binds to G-proteins. In humans, it is known to be expressed in a variety of tissues, and it interacts with several important protein partners. Among other proteins, Calnuc is known to interact with heterotrimeric G-proteins, specifically with the alpha-subunit. Herein, we report the structural implications of Ca(2+) and Mg(2+) binding, and illustrate that Calnuc functions as a downstream effector for G-protein alpha-subunit. Our results show that Ca(2+) binds with an affinity of 7 mum and causes structural changes. Although Mg(2+) binds to Calnuc with very weak affinity, the structural changes that it causes are further enhanced by Ca(2+) binding. Furthermore, isothermal titration calorimetry results show that Calnuc and the G-protein bind with an affinity of 13 nm. We also predict a probable function for Calnuc, that of maintaining Ca(2+) homeostasis in the cell. Using Stains-all and terbium as Ca(2+) mimic probes, we demonstrate that the Ca(2+)-binding ability of Calnuc is governed by the activity-based conformational state of the G-protein. We propose that Calnuc adopts structural sites similar to the ones seen in proteins such as annexins, c2 domains or chromogrannin A, and therefore binds more calcium ions upon binding to Gialpha. With the number of organelle-targeted G-protein-coupled receptors increasing, intracellular communication mediated by G-proteins could become a new paradigm. In this regard, we propose that Calnuc could be involved in the downstream signaling of G-proteins.

  19. Homologous kappa-neurotoxins exhibit residue-specific interactions with the alpha 3 subunit of the nicotinic acetylcholine receptor: a comparison of the structural requirements for kappa-bungarotoxin and kappa-flavitoxin binding.

    PubMed

    McLane, K E; Weaver, W R; Lei, S; Chiappinelli, V A; Conti-Tronconi, B M

    1993-07-13

    kappa-Flavotoxin (kappa-FTX), a snake neurotoxin that is a selective antagonist of certain neuronal nicotinic acetylcholine receptors (AChRs), has recently been isolated and characterized [Grant, G. A., Frazier, M. W., & Chiappinelli, V. A. (1988) Biochemistry 27, 1532-1537]. Like the related snake toxin kappa-bungarotoxin (kappa-BTX), kappa-FTX binds with high affinity to alpha 3 subtypes of neuronal AChRs, even though there are distinct sequence differences between the two toxins. To further characterize the sequence regions of the neuronal AChR alpha 3 subunit involved in formation of the binding site for this family of kappa-neurotoxins, we investigated kappa-FTX binding to overlapping synthetic peptides screening the alpha 3 subunit sequence. A sequence region forming a "prototope" for kappa-FTX was identified within residues alpha 3 (51-70), confirming the suggestions of previous studies on the binding of kappa-BTX to the alpha 3 subunit [McLane, K. E., Tang, F., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 1537-1544] and alpha-bungarotoxin to the Torpedo AChR alpha subunit [Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230] that this sequence region is involved in formation of a cholinergic site. Single residue substituted analogues, where each residue of the sequence alpha 3 (51-70) was sequentially replaced by a glycine, were used to identify the amino acid side chains involved in the interaction of this prototope with kappa-FTX.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Structural basis for the binding of tryptophan-based motifs by δ-COP

    PubMed Central

    Suckling, Richard J.; Poon, Pak Phi; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1–6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing. PMID:26578768

  1. Detection of the CLOCK/BMAL1 heterodimer using a nucleic acid probe with cycling probe technology.

    PubMed

    Nakagawa, Kazuhiro; Yamamoto, Takuro; Yasuda, Akio

    2010-09-15

    An isothermal signal amplification technique for specific DNA sequences, known as cycling probe technology (CPT), has enabled rapid acquisition of genomic information. Here we report an analogous technique for the detection of an activated transcription factor, a transcription element-binding assay with fluorescent amplification by apurinic/apyrimidinic (AP) site lysis cycle (TEFAL). This simple amplification assay can detect activated transcription factors by using a unique nucleic acid probe containing a consensus binding sequence and an AP site, which enables the CPT reaction with AP endonuclease. In this article, we demonstrate that this method detects the functional CLOCK/BMAL1 heterodimer via the TEFAL probe containing the E-box consensus sequence to which the CLOCK/BMAL1 heterodimer binds. Using TEFAL combined with immunoassays, we measured oscillations in the amount of CLOCK/BMAL1 heterodimer in serum-stimulated HeLa cells. Furthermore, we succeeded in measuring the circadian accumulation of the functional CLOCK/BMAL1 heterodimer in human buccal mucosa cells. TEFAL contributes greatly to the study of transcription factor activation in mammalian tissues and cell extracts and is a powerful tool for less invasive investigation of human circadian rhythms. 2010 Elsevier Inc. All rights reserved.

  2. Spacing requirements for interactions between the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase and the cAMP receptor protein.

    PubMed Central

    Lloyd, G S; Busby, S J; Savery, N J

    1998-01-01

    During transcription initiation at bacterial promoters, the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) can interact with DNA-sequence elements (known as UP elements) and with activator proteins. We have constructed a series of semi-synthetic promoters carrying both an UP element and a consensus DNA-binding site for the Escherichia coli cAMP receptor protein (CRP; a factor that activates transcription by making direct contacts with alphaCTD). At these promoters, the UP element was located at a variety of distances upstream of the CRP-binding site, which was fixed at position -41.5 bp upstream of the transcript start. At some positions, the UP element caused enhanced promoter activity whereas, at other positions, it had very little effect. In no case was the CRP-dependence of the promoter relieved. DNase I and hydroxyl-radical footprinting were used to study ternary RNA polymerase-CRP-promoter complexes formed at two of the most active of these promoters, and co-operativity between the binding of CRP and purified alpha subunits was studied. The footprints show that alphaCTD binds to the UP element as it is displaced upstream but that this displacement does not prevent alphaCTD from being contacted by CRP. Models to account for this are discussed. PMID:9461538

  3. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{supmore » -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney {alpha}-intercalated cells.« less

  4. Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA

    PubMed Central

    de Jésus, Karine Pereira; Serre, Laurence; Zelwer, Charles; Castaing, Bertrand

    2005-01-01

    Fpg is a DNA glycosylase that recognizes and excises the mutagenic 8-oxoguanine (8-oxoG) and the potentially lethal formamidopyrimidic residues (Fapy). Fpg is also associated with an AP lyase activity which successively cleaves the abasic (AP) site at the 3′ and 5′ sides by βδ-elimination. Here, we present the high-resolution crystal structures of the wild-type and the P1G defective mutant of Fpg from Lactococcus lactis bound to 14mer DNA duplexes containing either a tetrahydrofuran (THF) or 1,3-propanediol (Pr) AP site analogues. Structures show that THF is less extrahelical than Pr and its backbone C5′–C4′–C3′ diverges significantly from those of Pr, rAP, 8-oxodG and FapydG. Clearly, the heterocyclic oxygen of THF is pushed back by the carboxylate of the strictly conserved E2 residue. We can propose that the ring-opened form of the damaged deoxyribose is the structure active form of the sugar for Fpg catalysis process. Both structural and functional data suggest that the first step of catalysis mediated by Fpg involves the expulsion of the O4′ leaving group facilitated by general acid catalysis (involving E2), rather than the immediate cleavage of the N-glycosic bond of the damaged nucleoside. PMID:16243784

  5. Development of a dialyzer with enhanced internal filtration to increase the clearance of low molecular weight proteins.

    PubMed

    Fujimura, Takayasu; Uchi, Yukihiko; Fukuda, Makoto; Miyazaki, Miwa; Uezumi, Satoshi; Hiyoshi, Tatsuo

    2004-01-01

    Accumulated low molecular weight proteins in hemodialysis patients require a high-flux dialyzer. There have been several methods proposed for enhancing internal filtration, including narrowing the inside diameter of the hollow fibers, lengthening the fibers, and increasing the fiber density ratio. We tried to enhance the internal filtration by increasing the pressure drop in the dialysate compartment through increasing the fiber density ratio. If the fiber density ratio is too high, however, an irregular dialysate path may result, thus decreasing dialysis performance. Therefore, we took note of the shape of the inner housing and added a short taper structure, which improved the dialysate path dramatically. Consequently, we developed an internal filtration-enhanced dialyzer (APS-Prototype) to improve dialysis performance. The internal filtration rate in water (measured by Doppler ultrasound) was 13.2 l/session for the APS-Prototype and 5.3 l/session for the APS-15E. The amount of alpha1-microglobulin (alpha1-MG) in bovine plasma was 0.34 g for the APS-Prototype and 0.11 g for the APS-15E. In addition, the amount of alpha1-MG in vivo was 29.0% +/- 5.8% for the APS-Prototype, significantly higher than that for the APS-15E (13.6% +/- 1.9%). The desirable loss of albumin is 2-4 g in hemodiafiltration, and it was 3.92 +/- 1.03 g for the APS-Prototype. The prototype showed excellent solute removal performance with no clinical or engineering problems.

  6. The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin.

    PubMed

    Linnemann, Anja; van der Ven, Peter F M; Vakeel, Padmanabhan; Albinus, Britta; Simonis, Dirk; Bendas, Gerd; Schenk, Jörg A; Micheel, Burkhard; Kley, Rudolf A; Fürst, Dieter O

    2010-09-01

    Here we introduce myopodin as a novel filamin C binding partner. Corroborative yeast two-hybrid and biochemical analyses indicate that the central part of myopodin that shows high homology to the closely related protein synaptopodin and that is common to all its currently known or predicted variants interacts with filamin C immunoglobulin-like domains 20-21. A detailed characterization of the previously described interaction between myopodin and alpha-actinin demonstrates for the first time that myopodin contains three independent alpha-actinin-binding sites. Newly developed myopodin-specific antibodies reveal expression at the earliest stages of in vitro differentiation of human skeletal muscle cells preceding the expression of sarcomeric alpha-actinin. Myopodin colocalizes with filamin and alpha-actinin during all stages of muscle development. By contrast, colocalization with its previously identified binding partner zyxin is restricted to early developmental stages. Genetic and cellular analyses of skeletal muscle provided direct evidence for an alternative transcriptional start site in exon three, corroborating the expression of a myopodin variant lacking the PDZ domain encoded by exons 1 and 2 in skeletal muscle. We conclude that myopodin is a multiadapter protein of the sarcomeric Z-disc that links nascent myofibrils to the sarcolemma via zyxin, and might play a role in early assembly and stabilization of the Z-disc. Mutations in FLNC, ACTN2 and several other genes encoding Z-disc-related proteins cause myopathy and cardiomyopathy. Its localization and its association with the myopathy-associated proteins filamin C and alpha-actinin make myopodin an interesting candidate for a muscle disease gene. Copyright 2010 Elsevier GmbH. All rights reserved.

  7. NECAPs are negative regulators of the AP2 clathrin adaptor complex.

    PubMed

    Beacham, Gwendolyn M; Partlow, Edward A; Lange, Jeffrey J; Hollopeter, Gunther

    2018-01-18

    Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1 , the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2. © 2018, Beacham et al.

  8. NECAPs are negative regulators of the AP2 clathrin adaptor complex

    PubMed Central

    Beacham, Gwendolyn M; Partlow, Edward A; Lange, Jeffrey J

    2018-01-01

    Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1, the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2. PMID:29345618

  9. TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k

    NASA Technical Reports Server (NTRS)

    Li, Yi-Ping; Lecker, Stewart H.; Chen, Yuling; Waddell, Ian D.; Goldberg, Alfred L.; Reid, Michael B.

    2003-01-01

    In some inflammatory diseases, TNF-alpha is thought to stimulate muscle catabolism via an NF-kappaB-dependent process that increases ubiquitin conjugation to muscle proteins. The transcriptional mechanism of this response has not been determined. Here we studied the potential role of UbcH2, a ubiquitin carrier protein and homologue of murine E220k. We find that UbcH2 is constitutively expressed by human skeletal and cardiac muscles, murine limb muscle, and cultured myotubes. TNF-alpha stimulates UbcH2 expression in mouse limb muscles in vivo and in cultured myotubes. The UbcH2 promoter region contains a functional NF-kappaB binding site; NF-kappaB binding to this sequence is increased by TNF-alpha stimulation. A dominant negative inhibitor of NF-kappaB activation blocks both UbcH2 up-regulation and the increase in ubiquitin-conjugating activity stimulated by TNF-alpha. In extracts from TNF-alpha-treated myotubes, ubiquitin-conjugating activity is limited by UbcH2 availability; activity is inhibited by an antiserum to UbcH2 or a dominant negative mutant of UbcH2 and is enhanced by wild-type UbcH2. Thus, UbcH2 up-regulation is a novel response to TNF-alpha/NF-kappaB signaling in skeletal muscle that appears to be essential for the increased ubiquitin conjugation induced by this cytokine.

  10. Computer modeling of siRNA knockdown effects indicates an essential role of the Ca2+ channel alpha2delta-1 subunit in cardiac excitation-contraction coupling.

    PubMed

    Tuluc, Petronel; Kern, Georg; Obermair, Gerald J; Flucher, Bernhard E

    2007-06-26

    L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However, their role in cardiac excitation-contraction coupling is still elusive. Here we addressed this question by combining siRNA knockdown of the alpha(2)delta-1 subunit in a muscle expression system with simulation of APs and Ca(2+) transients by using a quantitative computer model of ventricular myocytes. Reconstitution of dysgenic muscle cells with Ca(V)1.2 (GFP-alpha(1C)) recapitulates key properties of cardiac excitation-contraction coupling. Concomitant depletion of the alpha(2)delta-1 subunit did not perturb membrane expression or targeting of the pore-forming GFP-alpha(1C) subunit into junctions between the outer membrane and the sarcoplasmic reticulum. However, alpha(2)delta-1 depletion shifted the voltage dependence of Ca(2+) current activation by 9 mV to more positive potentials, and it slowed down activation and inactivation kinetics approximately 2-fold. Computer modeling revealed that the altered voltage dependence and current kinetics exert opposing effects on the function of ventricular myocytes that in total cause a 60% prolongation of the AP and a 2-fold increase of the myoplasmic Ca(2+) concentration during each contraction. Thus, the Ca(2+) channel alpha(2)delta-1 subunit is not essential for normal Ca(2+) channel targeting in muscle but is a key determinant of normal excitation and contraction of cardiac muscle cells, and a reduction of alpha(2)delta-1 function is predicted to severely perturb normal heart function.

  11. Replacing Arginine 33 for Alanine in the Hemophore HasA from Pseudomonas aeruginosa Causes Closure of the H32 Loop in the Apo-Protein

    PubMed Central

    Kumar, Ritesh; Qi, Yifei; Matsumura, Hirotoshi; Lovell, Scott; Yao, Huili; Battaile, Kevin P.; Im, Wonpil; Moënne-Loccoz, Pierre; Rivera, Mario

    2017-01-01

    Previous characterization of hemophores from Serratia marcescens (HasAs), Pseudomonas aeruginosa (HasAp) and Yersinia pestis (HasAyp) showed that hemin binds between two loops, where it is axially coordinated by H32 and Y75. The Y75 loop is structurally conserved in all three hemophores and harbors conserved ligand Y75. The other loop contains H32 in HasAs and HasAp, but a noncoordinating Q32 in HasAyp. The H32 loop in apo-HasAs and apo-HasAp is in an open conformation, which places H32 about 30 Å from the hemin-binding site. Hence, hemin binding onto the Y75 loop of HasAs or HasAp triggers a large relocation of the H32 loop from an open- to a closed-loop conformation and enables coordination of the hemin-iron by H32. In comparison, the Q32 loop in apo-HasAyp is in the closed conformation and hemin binding occurs with minimal reorganization and without coordinative interactions with the Q32 loop. Studies in crystallo and in solution have established that the open H32 loop in apo-HasAp and apo-HasAs is well structured and minimally affected by conformational dynamics. In this study we address the intriguing issue of the stability of the H32 loop in apo-HasAp and how hemin binding triggers its relocation. We address this question with a combination of NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations and find that R33 is critical to the stability of the open H32 loop. Replacing R33 with A causes the H32 loop in R33A apo-HasAp to adopt a conformation similar to that of holo-HasAp. Finally, stopped-flow absorption and resonance Raman analyses of hemin binding to apo-R33A HasAp indicates that the closed H32 loop slows down the insertion of the heme inside the binding pocket, presumably as it obstructs access to the hydrophobic platform on the Y75 loop, but accelerate the completion of the heme iron coordination. PMID:27074415

  12. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.

    PubMed

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P

    2014-11-01

    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Matrix Proteins of Nipah and Hendra Viruses Interact with Beta Subunits of AP-3 Complexes

    PubMed Central

    Sun, Weina; McCrory, Thomas S.; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell

    2014-01-01

    ABSTRACT Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people, and smaller outbreaks have since occurred in Bangladesh and India. In this study, we have defined, for the first time, host factors that interact with henipavirus M proteins and contribute to viral particle assembly. We have also defined a new host protein-viral protein binding interface that can potentially be targeted for the inhibition of paramyxovirus infections. PMID:25210190

  14. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    PubMed

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  15. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes

    PubMed Central

    1980-01-01

    The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812

  16. Apo And Calcium-Bound Crystal Structures of Alpha-11 Giardin, An Unusual Annexin From 'Giardia Lamblia'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathuri, P.; Nguyen, E.T.; Svard, S.G.

    2007-07-12

    Alpha-11 giardin is a member of the multi-gene alpha-giardin family in the intestinal protozoan, Giardia lamblia. This gene family shares an ancestry with the annexin super family, whose common characteristic is calcium-dependent binding to membranes that contain acidic phospholipids. Several alpha giardins are highly expressed during parasite-induced diarrhea in humans. Despite being a member of a large family of proteins, little is known about the function and cellular localization of alpha-11 giardin, although giardins are often associated with the cytoskeleton. It has been shown that Giardia exhibits high levels of alpha-11 giardin mRNA transcript throughout its life cycle; however, constitutivemore » over-expression of this protein is lethal to the parasite. Determining the three-dimensional structure of an alpha-giardin is essential to identifying functional domains shared in the alpha-giardin family. Here we report the crystal structures of the apo and Ca{sup 2+}-bound forms of alpha-11 giardin, the first alpha giardin to be characterized structurally. Crystals of apo and Ca{sup 2+}-bound alpha-11 giardin diffracted to 1.1 angstroms and 2.93 angstroms, respectively. The crystal structure of selenium-substituted apo alpha-11 giardin reveals a planar array of four tandem repeats of predominantly {alpha}-helical domains, reminiscent of previously determined annexin structures, making this the highest-resolution structure of an annexin to date. The apo alpha-11 giardin structure also reveals a hydrophobic core formed between repeats I/IV and II/III, a region typically hydrophilic in other annexins. Surprisingly, the Ca{sup 2+}-bound structure contains only a single calcium ion, located in the DE loop of repeat I and coordinated differently from the two types of calcium sites observed in previous annexin structures. The apo and Ca{sup 2+}-bound alpha-11 giardin structures assume overall similar conformations; however, Ca2+-bound alpha-11 giardin crystallized in a lower-symmetry space group with four molecules in the asymmetric unit. Vesicle-binding studies suggest that alpha-11 giardin, unlike most other annexins, does not bind to vesicles composed of acidic phospholipids in a calcium-dependent manner.« less

  17. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    PubMed Central

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  18. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression.

    PubMed

    Jang, Min A; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1-10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538-234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression.

  19. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.

    PubMed

    Li, Jing-Ya; Cui, Yong-Mei; Chen, Ling-Ling; Gu, Min; Li, Jia; Nan, Fa-Jun; Ye, Qi-Zhuang

    2004-05-14

    Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.

  20. Unexpected Heterodivalent Recruitment of NOS1AP to nNOS Reveals Multiple Sites for Pharmacological Intervention in Neuronal Disease Models.

    PubMed

    Li, Li-Li; Melero-Fernandez de Mera, Raquel M; Chen, Jia; Ba, Wei; Kasri, Nael Nadif; Zhang, Mingjie; Courtney, Michael J

    2015-05-13

    The protein NOS1AP/CAPON mediates signaling from a protein complex of NMDA receptor, PSD95 and nNOS. The only stroke trial for neuroprotectants that showed benefit to patients targeted this ternary complex. NOS1AP/nNOS interaction regulates small GTPases, iron transport, p38MAPK-linked excitotoxicity, and anxiety. Moreover, the nos1ap gene is linked to disorders from schizophrenia, post-traumatic stress disorder, and autism to cardiovascular disorders and breast cancer. Understanding protein interactions required for NOS1AP function, therefore, has broad implications for numerous diseases. Here we show that the interaction of NOS1AP with nNOS differs radically from the classical PDZ docking assumed to be responsible. The NOS1AP PDZ motif does not bind nNOS as measured by multiple methods. In contrast, full-length NOS1AP forms an unusually stable interaction with nNOS. We mapped the discrepancy between full-length and C-terminal PDZ motif to a novel internal region we call the ExF motif. The C-terminal PDZ motif, although neither sufficient nor necessary for binding, nevertheless promotes the stability of the complex. It therefore potentially affects signal transduction and suggests that functional interaction of nNOS with NOS1AP might be targetable at two distinct sites. We demonstrate that excitotoxic pathways can be regulated, in cortical neuron and organotypic hippocampal slice cultures from rat, either by the previously described PDZ ligand TAT-GESV or by the ExF motif-bearing region of NOS1AP, even when lacking the critical PDZ residues as long as the ExF motif is intact and not mutated. This previously unrecognized heterodivalent interaction of nNOS with NOS1AP may therefore provide distinct opportunities for pharmacological intervention in NOS1AP-dependent signaling and excitotoxicity. Copyright © 2015 the authors 0270-6474/15/357349-16$15.00/0.

  1. Hydrazine and hydroxylamine as probes for O2-reduction site of mitochondrial cytochrome c oxidase.

    PubMed Central

    Kubota, T; Yoshikawa, S

    1993-01-01

    Reactions of hydrazine and hydroxylamine with bovine heart cytochrome c oxidase in the fully reduced state were investigated under anaerobic conditions following the visible-Soret spectral change. Hydrazine gave a sharp band at 575 nm with 20% decrease in the alpha band at 603 nm, and hydroxylamine induced a 2 nm blue-shift for the alpha band without any clear splitting. The Soret band at 443 nm was decreased significantly in intensity, with the concomitant appearance of a shoulder with hydrazine or a peak with hydroxylamine, both near 430 nm. The dependence on pH of the affinity of these reagents for the enzyme indicates that only the deprotonated forms of these reagents bind to the enzyme, suggesting a highly hydrophobic environment of the haem ligand-biding site. These spectral changes were largely removed by addition of cyanide or CO. However, detailed analysis of these spectral changes indicates that hydrazine perturbs the shape of the spectral change induced by cyanide and hydroxylamine perturbs that induced by CO. These results suggest that these aldehyde reagents bind to haem a3 iron as well as to a second site which is most likely to be the formyl group on the haem periphery, and that these two sites bind these reagents anti-cooperatively with each other. PMID:8389138

  2. Biotin-c10-AppCH2ppA is an effective new chemical proteomics probe for diadenosine polyphosphate binding proteins.

    PubMed

    Azhar, M Ameruddin; Wright, Michael; Kamal, Ahmed; Nagy, Judith; Miller, Andrew D

    2014-07-01

    Here we report on the synthesis of a synthetic, stable biotin-c10-AppCH2ppA conjugate involving an unusual Cannizzaro reaction step. This conjugate is used to bind prospective Ap4A binding proteins from Escherichia coli bacterial cell lyzates. Following binding, identities of these proteins are then determined smoothly by a process of magnetic bio-panning and electrospray mass spectrometry. Protein hits appear to be a definitive set of stress protein related targets. While this hit list may not be exclusive, and may vary with the nature of sampling conditions and organism status, nevertheless hits do appear to correspond with bona fide Ap4A-binding proteins. Therefore these hits represent a sound basis on which to construct new hypotheses concerning the cellular importance of Ap4A to bacterial cells and the potential biological significance of Ap4A-protein binding interactions. Copyright © 2014. Published by Elsevier Ltd.

  3. Isolation and characterization at cholinergic nicotinic receptors of a neurotoxin from the venom of the Acanthophis sp. Seram death adder.

    PubMed

    Wickramaratna, Janith C; Fry, Bryan G; Loiacono, Richard E; Aguilar, Marie-Isabel; Alewood, Paul F; Hodgson, Wayne C

    2004-07-15

    The present study describes the isolation of the first neurotoxin (acantoxin IVa) from Acanthophis sp. Seram death adder venom and an examination of its activity at nicotinic acetylcholine receptor (nAChR) subtypes. Acantoxin IVa (MW 6815; 0.1-1.0 microM) caused concentration-dependent inhibition of indirect twitches (0.1 Hz, 0.2 ms, supramaximal V) and inhibited contractile responses to exogenous nicotinic agonists in the chick biventer cervicis nerve-muscle, confirming that this toxin is a postsynaptic neurotoxin. Acantoxin IVa (1-10 nM) caused pseudo-irreversible antagonism at skeletal muscle nAChR with an estimated pA2 of 8.36+/-0.17. Acantoxin IVa was approximately two-fold less potent than the long-chain (Type II) neurotoxin, alpha-bungarotoxin. With a pKi value of 4.48, acantoxin IVa was approximately 25,000 times less potent than alpha-bungarotoxin at alpha7-type neuronal nAChR. However, in contrast to alpha-bungarotoxin, acantoxin IVa completely inhibited specific [3H]-methyllycaconitine (MLA) binding in rat hippocampus homogenate. Acantoxin IVa had no activity at ganglionic nAChR, alpha4beta2 subtype neuronal nAChR or cytisine-resistant [3H]-epibatidine binding sites. While long-chain neurotoxin resistant [3H]-MLA binding in hippocampus homogenate requires further investigation, we have shown that a short-chain (Type I) neurotoxin is capable of fully inhibiting specific [3H]-MLA binding.

  4. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  5. Adrenergic receptors in frontal cortex in human brain.

    PubMed

    Cash, R; Raisman, R; Ruberg, M; Agid, Y

    1985-02-05

    The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.

  6. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed Central

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-01-01

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266

  7. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-12-20

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.

  8. Uncoupling Lipid Metabolism from Inflammation through Fatty Acid Binding Protein-Dependent Expression of UCP2

    PubMed Central

    Xu, Hongliang; Hertzel, Ann V.; Steen, Kaylee A.; Wang, Qigui; Suttles, Jill

    2015-01-01

    Chronic inflammation in obese adipose tissue is linked to endoplasmic reticulum (ER) stress and systemic insulin resistance. Targeted deletion of the murine fatty acid binding protein (FABP4/aP2) uncouples obesity from inflammation although the mechanism underlying this finding has remained enigmatic. Here, we show that inhibition or deletion of FABP4/aP2 in macrophages results in increased intracellular free fatty acids (FFAs) and elevated expression of uncoupling protein 2 (UCP2) without concomitant increases in UCP1 or UCP3. Silencing of UCP2 mRNA in FABP4/aP2-deficient macrophages negated the protective effect of FABP loss and increased ER stress in response to palmitate or lipopolysaccharide (LPS). Pharmacologic inhibition of FABP4/aP2 with the FABP inhibitor HTS01037 also upregulated UCP2 and reduced expression of BiP, CHOP, and XBP-1s. Expression of native FABP4/aP2 (but not the non-fatty acid binding mutant R126Q) into FABP4/aP2 null cells reduced UCP2 expression, suggesting that the FABP-FFA equilibrium controls UCP2 expression. FABP4/aP2-deficient macrophages are resistant to LPS-induced mitochondrial dysfunction and exhibit decreased mitochondrial protein carbonylation and UCP2-dependent reduction in intracellular reactive oxygen species. These data demonstrate that FABP4/aP2 directly regulates intracellular FFA levels and indirectly controls macrophage inflammation and ER stress by regulating the expression of UCP2. PMID:25582199

  9. Dopamine D1A directly interacts with otoferlin synaptic pathway proteins: Ca2+ and phosphorylation underlie an NSF-to-AP2mu1 molecular switch.

    PubMed

    Selvakumar, Dakshnamurthy; Drescher, Marian J; Deckard, Nathan A; Ramakrishnan, Neeliyath A; Morley, Barbara J; Drescher, Dennis G

    2017-01-01

    Dopamine receptors regulate exocytosis via protein-protein interactions (PPIs) as well as via adenylyl cyclase transduction pathways. Evidence has been obtained for PPIs in inner ear hair cells coupling D1A to soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-related proteins snapin, otoferlin, N-ethylmaleimide-sensitive factor (NSF), and adaptor-related protein complex 2, mu 1 (AP2mu1), dependent on [Ca 2+ ] and phosphorylation. Specifically, the carboxy terminus of dopamine D1A was found to directly bind t-SNARE-associated protein snapin in teleost and mammalian hair cell models by yeast two-hybrid (Y2H) and pull-down assays, and snapin directly interacts with hair cell calcium-sensor otoferlin. Surface plasmon resonance (SPR) analysis, competitive pull-downs, and co-immunoprecipitation indicated that these interactions were promoted by Ca 2+ and occur together. D1A was also found to separately interact with NSF, but with an inverse dependence on Ca 2+ Evidence was obtained, for the first time, that otoferlin domains C2A, C2B, C2D, and C2F interact with NSF and AP2mu1, whereas C2C or C2E do not bind to either protein, representing binding characteristics consistent with respective inclusion or omission in individual C2 domains of the tyrosine motif YXXΦ. In competitive pull-down assays, as predicted by K D values from SPR (+Ca 2+ ), C2F pulled down primarily NSF as opposed to AP2mu1. Phosphorylation of AP2mu1 gave rise to a reversal: an increase in binding by C2F to phosphorylated AP2mu1 was accompanied by a decrease in binding to NSF, consistent with a molecular switch for otoferlin from membrane fusion (NSF) to endocytosis (AP2mu1). An increase in phosphorylated AP2mu1 at the base of the cochlear inner hair cell was the observed response elicited by a dopamine D1A agonist, as predicted. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. Plasma binding of an alpha-blocking agent, nicergoline--affinity for serum albumin and native and modified alpha 1-acid glycoprotein.

    PubMed

    Robert, L; Migne, J; Santonja, R; Zini, R; Schmid, K; Tillement, J P

    1983-06-01

    The binding of nicergoline, an alpha-blocking drug, by human plasma proteins was studied using gel filtration, polyacrylamide gel electrophoresis, and equilibrium dialysis techniques. 3H-labeled nicergoline added to plasma was eluted together with two major protein fractions, one containing mainly serum albumin, the other glycoproteins such as alpha 1-acid glycoprotein (alpha 1-AG). Equilibrium dialysis experiments with pure human serum albumin and alpha 1-AG as well as with its chemically modified forms, desialylated, carboxymethylated, and both desialylated and carboxymethylated alpha 1-AG gave the following results: nicergoline has about a 4-fold higher affinity for alpha 1-AG than for serum albumin. There are two binding sites per molecule on serum albumin and one on alpha 1-AG. The binding parameters of alpha 1-AG were not significantly modified by desialylation or carboxymethylation. Only desialylated and carboxymethylated alpha 1-AG showed a decreased binding for nicergoline, suggesting conformational modifications induced by these combined treatments. The fact that desialylated alpha 1-AG keeps its affinity for nicergoline suggests the possibility of a selective introduction of this drug in cells possessing the Ashwell-type specific receptor for desialylated alpha 1-AG, for instance hepatocytes. Increased serum alpha 1-AG concentration induced by inflammatory reactions will also modify the distribution of bound nicergoline between serum albumin and alpha 1-AG and as a consequence its half-life and cell distribution.

  11. The alpha3(betaMet222Ser/Tyr345Trp)3gamma subcomplex of the TF1-ATPase does not hydolyze ATP at a significant rate until the substrate binds to the catalytic site of the lowest affinity.

    PubMed

    Ren, Huimiao; Bandyopadhyay, Sanjay; Allison, William S

    2006-05-16

    The alpha(3)(betaM(222)S/Y(345)W)(3)gamma double-mutant subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)), free of endogenous nucleotides, does not entrap inhibitory MgADP in a catalytic site during turnover. It hydrolyzes 100 nM-2 mM ATP with a K(m) of 31 microM and a k(cat) of 220 s(-)(1). Fluorescence titrations of the introduced tryptophans with MgADP or MgATP revealed that both Mg-nucleotide complexes bind to the catalytic site of the highest affinity with K(d)()1 values of less than 1 nM and bind to the site of intermediate affinity with a common K(d)2 value of about 12 nM. The K(d)3 values obtained for the catalytic site of the lowest affinity from titrations with MgADP and MgATP are 25 and 37 microM, respectively. The double mutant hydrolyzes 200 nM ATP with a first-order rate of 1.5 s(-)(1), which is 0.7% of k(cat). Hence, it does not hydrolyze ATP at a significant rate when the catalytic site of intermediate affinity is saturated and the catalytic site of the lowest affinity is minimally occupied. After the addition of stoichiometric MgATP to the alpha(3)(betaM(222)S/Y(345)W)(3)gamma subcomplex, one-third of the tryptophan fluorescence remains quenched after 10 min. The product [(3)H]ADP remains bound when the wild-type and double-mutant subcomplexes hydrolyze substoichiometric [(3)H]ATP. In contrast, (32)P(i) is not retained when the wild-type subcomplex hydrolyzes substoichiometric [gamma-(32)P]ATP. This precludes assessment of the equilibrium at the high-affinity catalytic site when the wild-type TF(1) subcomplex hydrolyzes substoichiometric ATP.

  12. Activation of p115-RhoGEF Requires Direct Association of G[alpha subscript 13] and the Dbl Homology Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe; Guo, Liang; Hadas, Jana

    2012-09-05

    RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G{sub 12} class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated {alpha} subunits of G{sub 12} and G{sub 13}. Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by G{alpha}{sub 13}, the exact mechanism of the stimulation has remained unclear. Using combined studies with small angle x-ray scattering, biochemistry, and mutagenesis, wemore » identify an additional binding site for activated G{alpha}{sub 13} in the DH domain of p115. Small angle x-ray scattering reveals that the helical domain of G{alpha}{sub 13} docks onto the DH domain, opposite to the surface of DH that binds RhoA. Mutation of a single tryptophan residue in the {alpha}3b helix of DH reduces binding to activated G{alpha}{sub 13} and ablates the stimulation of p115 by G{alpha}{sub 13}. Complementary mutations at the predicted DH-binding site in the {alpha}B-{alpha}C loop of the helical domain of G{alpha}{sub 13} also affect stimulation of p115 by G{alpha}{sub 13}. Although the GAP activity of p115 is not required for stimulation by G{alpha}{sub 13}, two hydrophobic motifs in RH outside of the consensus RGS box are critical for this process. Therefore, the binding of G{alpha}{sub 13} to the RH domain facilitates direct association of G{alpha}{sub 13} to the DH domain to regulate its exchange activity. This study provides new insight into the mechanism of regulation of the RGS-RhoGEF and broadens our understanding of G protein signaling.« less

  13. Probes of the catalytic site of cysteine dioxygenase.

    PubMed

    Chai, Sergio C; Bruyere, John R; Maroney, Michael J

    2006-06-09

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.

  14. Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood.

    PubMed

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2004-01-01

    Brain alpha2-adrenergic receptors (alpha2-ARs) have been implicated in the regulation of anxiety, which is associated with stress. Environmental treatments during neonatal development could modulate the level of brain alpha2-AR expression and alter anxiety in adults, suggesting possible involvement of these receptors in early-life programming of anxiety state. The present study was undertaken to determine whether the reduction of the expression of A subtype of these receptors most abundant in the neonatal brain affects anxiety-related behavior in adulthood. We attenuated the expression of alpha2A-ARs during neonatal life by two different sequence specific approaches, antisense technology and RNA interference. Treatment of rats with the antisense oligodeoxynucleotide or short interfering RNA (siRNA) against alpha2A-ARs on the days 2-4 of their life, produced a marked acute decrease in the levels of both alpha2A-AR mRNA and [3H]RX821002 binding sites in the brainstem into which drugs were injected. The decrease of alpha2A-AR expression in the neonatal brainstem influenced the development of this receptor system in the brain regions as evidenced by the increased number of [3H]RX821002 binding sites in the hypothalamus of adult animals with both neonatal alpha2A-AR knockdown treatments; also in the frontal cortex of antisense-treated, and in the hippocampus of siRNA-treated adult rats. These adult animals also demonstrated a decreased anxiety in the elevated plus-maze as evidenced by an increased number of the open arm entries, greater proportion of time spent in the open arms, and more than a two-fold increase in the number of exploratory head dips. The results provide the first evidence that the reduction in the brain expression of a gene encoding for alpha2A-AR during neonatal life led to the long-term neurochemical and behavioral alterations. The data suggests that alterations in the expression of the receptor-specific gene during critical periods of brain development may be involved in early-life programming of anxiety-related behavior.

  15. Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding.

    PubMed Central

    Faurobert, E; Otto-Bruc, A; Chardin, P; Chabre, M

    1993-01-01

    We have produced a recombinant transducin alpha subunit (rT alpha) in sf9 cells, using a baculovirus system. Deletion of the myristoylation site near the N-terminal increased the solubility and allowed the purification of rT alpha. When reconstituted with excess T beta gamma on retinal membrane, rT alpha displayed functional characteristics of wild-type T alpha vis à vis its coupled receptor, rhodopsin and its effector, cGMP phosphodiesterase (PDE). We further mutated a tryptophan, W207, which is conserved in all G proteins and is suspected to elicit the fluorescence change correlated to their activation upon GDP/GTP exchange or aluminofluoride (AlFx) binding. [W207F]T alpha mutant displayed high affinity receptor binding and underwent a conformational switch upon receptor-catalysed GTP gamma S binding or upon AlFx binding, but this did not elicit any fluorescence change. Thus W207 is the only fluorescence sensor of the switch. Upon the switch the mutant remained unable to activate the PDE. To characterize better its effector-activating interaction we measured the affinity of [W207F]T alpha GDP-AlFx for PDE gamma, the effector subunit that binds most tightly to T alpha. [W207F]T alpha still bound in an activation-dependent way to PDE gamma, but with a 100-fold lower affinity than rT alpha. This suggests that W207 contributes to the G protein effector binding. Images PMID:8223434

  16. Molecular basis for zinc potentiation at strychnine-sensitive glycine receptors.

    PubMed

    Miller, Paul S; Da Silva, Helena M A; Smart, Trevor G

    2005-11-11

    The divalent cation Zn(2+) is a potent potentiator at the strychnine-sensitive glycine receptor (GlyR). This occurs at nanomolar concentrations, which are the predicted endogenous levels of extracellular neuronal Zn(2+). Using structural modeling and functional mutagenesis, we have identified the molecular basis for the elusive Zn(2+) potentiation site on GlyRs and account for the differential sensitivity of GlyR alpha(1) and GlyR alpha(2) to Zn(2+) potentiation. In addition, juxtaposed to this Zn(2+) site, which is located externally on the N-terminal domain of the alpha subunit, another residue was identified in the nearby Cys loop, a region that is critical for receptor gating in all Cys loop ligand-gated ion channels. This residue acted as a key control element in the allosteric transduction pathway for Zn(2+) potentiation, enabling either potentiation or overt inhibition of receptor activation depending upon the moiety resident at this location. Overall, we propose that Zn(2+) binds to a site on the extracellular outer face of the GlyR alpha subunit and exerts its positive allosteric effect via an interaction with the Cys loop to increase the efficacy of glycine receptor gating.

  17. Chai-Qin-Cheng-Qi Decoction and Carbachol Improve Intestinal Motility by Regulating Protein Kinase C-Mediated Ca2+ Release in Colonic Smooth Muscle Cells in Rats with Acute Necrotising Pancreatitis

    PubMed Central

    Zhang, Chen-Long; Lin, Zi-Qi; Zhang, Xiao-Xin; Guo, Jia; Wu, Wei; Shi, Na; Deng, Li-Hui; Chen, Wei-Wei; Zhang, Xiao-Ying; Bharucha, Shameena; Huang, Wei; Sutton, Robert; Windsor, John A.

    2017-01-01

    Chai-Qin-Cheng-Qi decoction (CQCQD) improves intestinal motility in acute pancreatitis (AP), but the mechanism(s) require elucidation. We investigated the effects of CQCQD and carbachol, a prokinetic agent, on colonic smooth muscle cells (SMCs) in L-arginine-induced necrotising AP model in rats. In treatment groups, intragastric CQCQD (20 g/kg, 2 hourly × 3 doses) or intraperitoneal carbachol (60 μg/kg) was given 24 hours after induction of AP. Both CQCQD and carbachol decreased the severity of pancreatic and colonic histopathology (all P < 0.05). Both CQCQD and carbachol reduced serum intestinal fatty acid binding protein, vasoactive intestinal peptide, and substance P and increased motility levels. CQCQD upregulated SMC phospholipase C-beta 1 (PLC-β1) mRNA and PLC protein (both P < 0.05), while both treatments upregulated protein kinase C-alpha (PKC-α) mRNA and PKC protein and downregulated adenylate cyclase (AC) mRNA and protein compared with no treatment (all P < 0.05). Neither treatment significantly altered L-arginine-induced PKC-β1 and PKC-ε mRNA reduction. Both treatments significantly increased fluorescence intensity of SMC intracellular calcium concentration [Ca2+]i (3563.5 and 3046.9 versus 1086.9, both P < 0.01). These data suggest CQCQD and carbachol improve intestinal motility in AP by increasing [Ca2+]i in colonic SMCs via upregulating PLC, PKC and downregulating AC. PMID:28529530

  18. The Importance of Comprehensive Cam Correction: Radiographic Parameters Are Predictive of Patient-Reported Outcome Measures at 2 Years After Hip Arthroscopy.

    PubMed

    Lansdown, Drew A; Kunze, Kyle; Ukwuani, Gift; Waterman, Brian R; Nho, Shane J

    2018-06-01

    The specific influence of preoperative and postoperative radiographic measurements on patient-reported outcome measures after hip arthroscopy for femoroacetabular impingement (FAI) remains unclear. To investigate the relationship between radiographic measurements and 2-year outcomes after hip arthroscopy for the treatment of FAI. Case series; Level of evidence, 4. A clinical registry of patients undergoing primary hip arthroscopy for FAI between January 1, 2012, and December 31, 2014, was queried. Outcome measures included the Hip Outcome Score (HOS) Activities of Daily Living (ADL), HOS Sport-Specific Subscale (SSS), modified Harris Hip Score (mHHS), and visual analog scale (VAS) for pain and satisfaction. Preoperative and postoperative radiographic measurements were recorded. Univariate analysis was conducted to identify relationships between all radiographic and demographic variables and outcome scores. A multivariate regression analysis, controlling for demographic factors, was used to identify independent associations between radiographic measurements on plain radiographs and patient-reported outcomes. The authors identified 707 patients who underwent primary hip arthroscopic management for FAI who were included for analysis. Two-year outcome surveys were completed for 78% to 84% of patients. The mean age of the patients was 33.2 ± 12.3 years, and 64.4% of the patients (n = 456) were female. The mean anteroposterior (AP) alpha angle decreased by 34.3° ( P < .0001), false profile alpha angle by 25.2° ( P < .0001), Dunn lateral alpha angle by 28.9° ( P < .0001), lateral center edge angle by 2.6° ( P < .0001), and anterior center edge angle by 3.4° ( P < .0001). The HOS-ADL score increased from 65.7 ± 18.7 preoperatively to 85.9 ± 16.7 postoperatively ( P < .0001), HOS-SSS increased from 43.4 ± 23.1 to 72.6 ± 27.2 ( P < .0001), and mHHS increased from 57.7 ± 14.0 to 79.1 ± 17.2 ( P < .0001). With multivariate analysis, independent predictors of the postoperative HOS-ADL score included the preoperative false profile alpha angle (beta = -0.16, P = .028). Independent predictors of HOS-SSS score were preoperative AP alpha angle (beta = -0.33, P = .032) and preoperative false profile alpha angle (beta = -0.28, P = .041). For the postoperative mHHS score, independent predictors included preoperative AP alpha angle (beta = -0.18, P = .046), preoperative false profile alpha angle (beta = -0.20, P = .014), and postoperative false profile alpha angle (beta = -0.48, P = .035). The preoperative AP alpha angle (beta = 0.28, P = .024) was a significant predictor for the postoperative VAS pain score. The preoperative false profile alpha angle (beta = -0.34, P = .040) was a significant predictor for the postoperative VAS satisfaction score. The authors observed that radiographic measurements, specifically the preoperative false profile alpha angle, AP alpha angle, and postoperative false profile alpha angle, are independent predictors of 2-year clinical outcomes. The femoral-side measurements were the strongest independent predictors of outcomes, especially measurements of the anterior and lateral-based CAM lesion.

  19. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

    PubMed Central

    Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M

    2000-01-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding. PMID:10727405

  20. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

    PubMed

    Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M

    2000-04-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.

  1. Quantitative analysis of rat brain alpha 2-receptors discriminated by [3H]clonidine and [3H]rauwolscine.

    PubMed

    Asakura, M; Tsukamoto, T; Imafuku, J; Matsui, H; Ino, M; Hasegawa, K

    1984-10-30

    Quantitative analysis of direct ligand binding of both [3H]clonidine and [3H]rauwolscine to the rat cerebral cortex alpha 2-receptors indicates the existence of two affinity states of the same receptor populations. In the presence of Mn2+, the high affinity state of [3H]clonidine binding was increased, whereas the high affinity state of [3H]rauwolscine binding was reduced. By contrast, GTP in micromolar ranges caused a decrease of the agonist high affinity state and an increase of the antagonist high affinity state. The total receptor sites and the respective separate affinities for both radioligands were approximately equal to their control values under all conditions, indicating that Mn2+ and GTP modulate the proportion of the two affinity states of the receptor. These results can be incorporated into a two-step, ternary complex model involving a guanine nucleotide binding protein (N protein) for the agonist and antagonist interaction with the alpha 2-receptor. Furthermore, the effects of GTP on the interaction of both ligands with the two affinity states can be mimicked by EDTA. It is suggested that divalent cations induce the formation of the receptor-N protein binary complex showing high affinity for agonists and low affinity for antagonists.

  2. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types.

    PubMed

    Vassbotn, F S; Ostman, A; Siegbahn, A; Holmsen, H; Heldin, C H

    1992-08-05

    The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.

  3. Epitope characterization of a supramolecular protein assembly with a collection of monoclonal antibodies: the case of casein micelle.

    PubMed

    Johansson, Annette; Lugand, Damien; Rolet-Répécaud, Odile; Mollé, Daniel; Delage, Marie-Madeleine; Peltre, Gabriel; Marchesseau, Sylvie; Léonil, Joëlle; Dupont, Didier

    2009-03-01

    In milk, kappa-, beta-, alphas(1)- and alphas(2)-casein (CN) are associated into a supramolecular assembly, the micelle. In this work, CN micelles contained in fresh skim milk were used to produce over 100 monoclonal antibodies. The specificity of these probes was determined using libraries of synthetic peptides and peptides fractionated from tryptic hydrolysis of purified CNs. Although kappa-CN and alphas(2)-CN are minor proteins in the micelle (ratio 1:1:4:4 for kappa, alphas(2), alphas(1), beta) a proportionally high number of clones were produced towards these two proteins (32 for each), compared to 9 and 29 for alphas(1)-CN and beta-CN, respectively. Most of the beta-CN and kappa-CN epitopes were identified, while about 50% of alphas(1)-CN and alphas(2)-CN antibodies were suspected to react to conformational linear or discontinuous epitopes, since no peptide binding could be identified. Antibody binding to the phosphoserine rich regions of the three calcium sensitive CNs was weak or non-existing, suggesting them to be hidden in the micelle structure together with alphas(1)-CN. The C-terminal glycomacropeptide of kappa-CN and the C-terminal moiety of beta-CN were well exposed generating the majority of the antibodies specific for these two proteins. The two major antigenic sites of alphas(2) were alphas(2)-CN (f96-114) and (f16-35). Cross-reaction between alphas(2)-CN specific antibodies with alphas(1)-CN illustrated the tangled structure between the two proteins. Immuno-dominant epitopes identified in the present study totally differ from those known for the purified caseins suggesting they were specific for the micelle supramolecular structure.

  4. Spectroscopic, electrochemical DNA binding and in vivo anti-inflammatory studies on newly synthesized Schiff bases of 4-aminophenazone.

    PubMed

    Arshad, Nasima; Ahmad, Mukhtar; Ashraf, Muhammad Zaman; Nadeem, Humaira

    2014-09-05

    4-Aminophenazone (Ap-1) Schiff bases i.e., 4-{(3,4,5-trimethoxybenzylidine) amino}phenazone (Ap-2), 4-{(2-chlorobenzylidine) amino}phenazone (Ap-3) and 4-{(4-chlorobenzylidine)amino} phenazone (Ap-4) were synthesized and characterized by different spectroscopic techniques. Interaction of these compounds with ds.DNA was investigated through UV-Visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry at stomach (4.7) and blood (7.4) pH under 37 °C (human body temperature). Instrumental findings were further quantified both kinetically and thermodynamically. Results obtained through these techniques inferred intercalative mode of binding of all the compounds with DNA. The binding constant data, "Kb", and free energy change, ΔG, indicated comparatively greater binding affinity and more spontaneity of binding of compounds with DNA at stomach pH (4.7), respectively. However, among these compounds, Ap-4 showed comparatively greater binding at both the pH. Formation of compound-DNA complex was further confirmed through the decrease in diffusion rates after the addition of DNA. The in vivo anti-inflammatory activity of the compounds was evaluated using the carrageenan-induced hind paw edema method. The results revealed that among all the compounds, Ap-4 showed greater percentage of edema inhibition compared to standard drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.

    PubMed

    Xie, Y; Cohen, J B

    2001-01-26

    Results of affinity-labeling studies and mutational analyses provide evidence that the agonist binding sites of the nicotinic acetylcholine receptor (nAChR) are located at the alpha-gamma and alpha-delta subunit interfaces. For Torpedo nAChR, photoaffinity-labeling studies with the competitive antagonist d-[(3)H]tubocurarine (dTC) identified two tryptophans, gammaTrp-55 and deltaTrp-57, as the primary sites of photolabeling in the non-alpha subunits. To characterize the importance of gammaTrp-55 and deltaTrp-57 to the interactions of agonists and antagonists, Torpedo nAChRs were expressed in Xenopus oocytes, and equilibrium binding assays and electrophysiological recordings were used to examine the functional consequences when either or both tryptophans were mutated to leucine. Neither substitution altered the equilibrium binding of dTC. However, the deltaW57L and gammaW55L mutations decreased acetylcholine (ACh) binding affinity by 20- and 7,000-fold respectively. For the wild-type, gammaW55L, and deltaW57L nAChRs, the concentration dependence of channel activation was characterized by Hill coefficients of 1.8, 1.1, and 1.7. For the gammaW55L mutant, dTC binding at the alpha-gamma site acts not as a competitive antagonist but as a coactivator or partial agonist. These results establish that interactions with gamma Trp-55 of the Torpedo nAChR play a crucial role in agonist binding and in the agonist-induced conformational changes that lead to channel opening.

  6. Three-dimensional crystal structure of recombinant murine interferon-beta.

    PubMed Central

    Senda, T; Shimazu, T; Matsuda, S; Kawano, G; Shimizu, H; Nakamura, K T; Mitsui, Y

    1992-01-01

    The crystal structure of recombinant murine interferon-beta (IFN-beta) has been solved by the multiple isomorphous replacement method and refined to an R-factor of 20.5% against 2.6 A X-ray diffraction data. The structure shows a variant of the alpha-helix bundle with a new chain-folding topology, which seems to represent a basic structural framework of all the IFN-alpha and IFN-beta molecules belonging to the type I family. Functionally important segments of the polypeptide chain, as implied through numerous gene manipulation studies carried out so far, are spatially clustered indicating the binding site(s) to the receptor(s). Comparison of the present structure with those of other alpha-helical cytokine proteins, including porcine growth hormone, interleukin 2 and interferon gamma, indicated either a topological similarity in chain folding or a similar spatial arrangement of the alpha-helices. Images PMID:1505514

  7. Probing the active site of alpha-class rat liver glutathione S-transferases using affinity labeling by monobromobimane.

    PubMed Central

    Hu, L.; Borleske, B. L.; Colman, R. F.

    1997-01-01

    Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme's steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes. PMID:9007975

  8. Probing the active site of alpha-class rat liver glutathione S-transferases using affinity labeling by monobromobimane.

    PubMed

    Hu, L; Borleske, B L; Colman, R F

    1997-01-01

    Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme's steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes.

  9. Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling.

    PubMed

    Im, Young Jun; Kim, Jeong-Il; Shen, Yu; Na, Young; Han, Yun-Jeong; Kim, Seong-Hee; Song, Pill-Soon; Eom, Soo Hyun

    2004-10-22

    In plants, nucleoside diphosphate kinases (NDPKs) play a key role in the signaling of both stress and light. However, little is known about the structural elements involved in their function. Of the three NDPKs (NDPK1-NDPK3) expressed in Arabidopsis thaliana, NDPK2 is involved in phytochrome-mediated signal transduction. In this study, we found that the binding of dNDP or NTP to NDPK2 strengthens the interaction significantly between activated phytochrome and NDPK2. To better understand the structural basis of the phytochrome-NDPK2 interaction, we determined the X-ray structures of NDPK1, NDPK2, and dGTP-bound NDPK2 from A.thaliana at 1.8A, 2.6A, and 2.4A, respectively. The structures showed that nucleotide binding caused a slight conformational change in NDPK2 that was confined to helices alphaA and alpha2. This suggests that the presence of nucleotide in the active site and/or the evoked conformational change contributes to the recognition of NDPK2 by activated phytochrome. In vitro binding assays showed that only NDPK2 interacted specifically with the phytochrome and the C-terminal regulatory domain of phytochrome is involved in the interaction. A domain swap experiment between NDPK1 and NDPK2 showed that the variable C-terminal region of NDPK2 is important for the activation by phytochrome. The structure of Arabidopsis NDPK1 and NDPK2 showed that the isoforms share common electrostatic surfaces at the nucleotide-binding site, but the variable C-terminal regions have distinct electrostatic charge distributions. These findings suggest that the binding of nucleotide to NDPK2 plays a regulatory role in phytochrome signaling and that the C-terminal extension of NDPK2 provides a potential binding surface for the specific interaction with phytochromes.

  10. Evidence for a modulatory effect of sulbutiamine on glutamatergic and dopaminergic cortical transmissions in the rat brain.

    PubMed

    Trovero, F; Gobbi, M; Weil-Fuggaza, J; Besson, M J; Brochet, D; Pirot, S

    2000-09-29

    Chronic treatment of rats by sulbutiamine induced no change in density of N-methyl-D-aspartate (NMDA) and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in the cingular cortex, but a significant decrease of the kainate binding sites, as measured by quantitative autoradiography. In the same treated animals, an increase of D1 dopaminergic (DA) binding sites was measured both in the prefrontal and the cingular cortex, while no modification of the D2 binding sites was detected. Furthermore, an acute sulbutiamine administration induced a decrease of kainate binding sites but no change of the density of D1 and D2 DA receptors. Acute sulbutiamine injection led to a decrease of the DA levels in the prefrontal cortex and 3,4-dihydroxyphenylacetic acid levels in both the cingular and the prefrontal cortex. These observations are discussed in terms of a modulatory effect of sulbutiamine on both dopaminergic and glutamatergic cortical transmissions.

  11. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence.

    PubMed

    Josefsson, Elisabet; Higgins, Judy; Foster, Timothy J; Tarkowski, Andrej

    2008-05-21

    We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336) and Y(338), were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336)Y(338) mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336)Y(338) mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336) and Y(338) were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336)Y(338) mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336)SY(338)A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.

  12. Promoter mapping of the mouse Tcp-10bt gene in transgenic mice identifies essential male germ cell regulatory sequences.

    PubMed

    Ewulonu, U K; Snyder, L; Silver, L M; Schimenti, J C

    1996-03-01

    Transgenic mice were generated to localize essential promoter elements in the mouse testis-expressed Tcp-10 genes. These genes are expressed exclusively in male germ cells, and exhibit a diffuse range of transcriptional start sites, possibly due to the absence of a TATA box. A series of transgene constructs containing different amounts of 5' flanking DNA revealed that all sequences necessary for appropriate temporal and tissue-specific transcription of Tcp-10 reside between positions -1 to -973. All transgenic animals containing these sequences expressed a chimeric transgene at high levels, in a pattern that paralleled the endogenous genes. These experiments further defined a 227 bp fragment from -746 to -973 that was absolutely essential for expression. In a gel-shift assay, this 227-bp fragment bound nuclear protein from testis, but not other tissues, to yield two retarded bands. Sequence analysis of this fragment revealed a half-site for the AP-2 transcription factor recognition sequence. Gel shift assays using native or mutant oligonucleotides demonstrated that the putative AP-2 recognition sequence was essential for generating the retarded bands. Since the binding activity is testis-specific, but AP-2 expression is not exclusive to male germ cells, it is possible that transcription of Tcp-10 requires interaction between AP-2 and a germ cell-specific transcription factor.

  13. Avian and human influenza A virus receptors in trachea and lung of animals.

    PubMed

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  14. Human alpha 7 acetylcholine receptor: cloning of the alpha 7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional alpha 7 homomers expressed in Xenopus oocytes.

    PubMed

    Peng, X; Katz, M; Gerzanich, V; Anand, R; Lindstrom, J

    1994-03-01

    The alpha-bungarotoxin-binding acetylcholine receptors from the human neuroblastoma cell line SH-SY5Y were found to cross-react with some monoclonal antibodies to alpha 7 subunits of nicotinic acetylcholine receptors from chicken brain. The human alpha 7 subunit cDNA from SH-SY5Y was cloned, revealing 94% amino acid sequence identity to rat alpha 7 subunits and 92% identity to chicken alpha 7 subunits. Native human alpha 7 receptors showed affinities for some ligands similar to those previously observed with native chicken alpha 7 receptors, but for other ligands there were large species-specific differences in binding affinity. These results paralleled properties of alpha 7 homomers expressed in Xenopus oocytes. Human alpha 7 homomers exhibited rapidly desensitizing, inwardly rectifying, agonist-induced, cation currents that triggered Ca(2+)-sensitive Cl- channels in the oocytes. A change in efficacy from partial agonist for chicken alpha 7 homomers to full agonist for human alpha 7 homomers was exhibited by 1,1-dimethyl-4-phenylpiperazinium. This result reveals a large species-specific pharmacological difference, despite small differences in alpha 7 sequences. This is important for understanding the effects of these drugs in humans and for identifying amino acids that may contribute to the acetylcholine binding site, for analysis by in vitro mutagenesis. These results also characterize properties of native alpha 7 receptors and alpha 7 homomers that will provide criteria for functional properties expected of structural subunits, when these can be identified, cloned, and coexpressed with alpha 7 subunits.

  15. Control of ACAT2 liver expression by HNF4{alpha}: lesson from MODY1 patients.

    PubMed

    Pramfalk, C; Karlsson, E; Groop, L; Rudel, L L; Angelin, B; Eriksson, M; Parini, P

    2009-08-01

    ACAT2 is thought to be responsible for cholesteryl ester production in chylomicron and VLDL assembly. Recently, we identified HNF1alpha as an important regulator of the human ACAT2 promoter. Thus, we hypothesized that MODY3 (HNF1alpha gene mutations) and possibly MODY1 (HNF4alpha, upstream regulator of HNF1alpha, gene mutations) subjects may have lower VLDL esterified cholesterol. Serum analysis and lipoprotein separation using size-exclusion chromatography were performed in controls and MODY1 and MODY3 subjects. In vitro analyses included mutagenesis and cotransfections in HuH7 cells. Finally, the relevance in vivo of these findings was tested by ChIP assays in human liver. Whereas patients with MODY3 had normal lipoprotein composition, those with MODY1 had lower levels of VLDL and LDL esterified cholesterol, as well as of VLDL triglyceride. Mutagenesis revealed one important HNF4 binding site in the human ACAT2 promoter. ChIP assays and protein-to-protein interaction studies showed that HNF4alpha, directly or indirectly (via HNF1alpha), can bind to the ACAT2 promoter. We identified HNF4alpha as an important regulator of the hepatocyte-specific expression of the human ACAT2 promoter. Our results suggest that the lower levels of esterified cholesterol in VLDL- and LDL-particles in patients with MODY1 may-at least in part-be attributable to lower ACAT2 activity in these patients.

  16. Characterization of a diadenosine tetraphosphate-receptor distinct from the ATP-purinoceptor in human tracheal gland cells.

    PubMed

    Saleh, A; Picher, M; Kammouni, W; Figarella, C; Merten, M D

    1999-11-12

    Human submucosal tracheal glands are now believed to play a major role in the physiopathology of cystic fibrosis, a genetic disease in which ATP is used as a therapeutic agent. However, actions of ATP on tracheal gland cells are not well known. ATP binds to P2 receptors and induced secretory leucocyte protease inhibitor (SLPI) secretion through formation of cyclic adenosine monophosphate and mobilization of intracellular [Ca(2+)]. Since diadenosine polyphosphates (ApnA) are also endogenous effectors of P2 receptors, we investigated their effects in a cell line (MM39) of human tracheal gland cells. Diadenosine tetraphosphates (Ap4A) induced significant stimulation (+50+/-12%) of SLPI secretion and to a similar extent to that of ATP (+65+/-10%). No significant effects were observed with diadenosine triphosphate (Ap3A), diadenosine pentaphosphate (Ap5A), ADP and 2-methylthio-adenosine triphosphate (2-MeS-ATP). Since Ap4A was weakly hydrolyzed (<2% of total), and the hydrolysis product was only inosine which is ineffective on cells, this Ap4A effect was not due to Ap4A hydrolysis in ATP and adenosine monophosphate (AMP). A mixture of Ap4A and ATP elicited only partial additive effects on SLPI secretion. ADP was shown to be a potent antagonist of ATP and Ap4A receptors, with IC(50)s of 0.8 and 2 microM, respectively. 2-MeS-ATP also showed antagonistic properties with IC(50)s of 20 and 30 microM for ATP- and Ap4A-receptors, respectively. Single cell intracellular calcium ([Ca(2+)](i)) measurements showed similar transient increases of [Ca(2+)](i) after ATP or Ap4A challenges. ATP desensitized the cell [Ca(2+)](i) responses to ATP and Ap4A, and Ap4A also desensitized the cell response to Ap4A. Nevertheless, Ap4A did not desensitize the cell [Ca(2+)](i) responses to ATP. In conclusion, both P2Y2-ATP-receptors and Ap4A-P2D-receptors seem to be present in tracheal gland cells. Ap4A may only bind to P2D-receptors whilst ATP may bind to both Ap4A- and ATP-receptors.

  17. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase.

    PubMed

    Barta, Michael L; Lovell, Scott; Sinclair, Amy N; Battaile, Kevin P; Hefty, P Scott

    2014-01-14

    Asymmetric diadenosine 5',5‴-P(1),P(4)-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologues to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH).

  18. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    PubMed Central

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  19. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer.

    PubMed

    Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P H; Zhao, Chunyan; Dahlman-Wright, Karin

    2015-04-10

    The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression.

  20. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial–mesenchymal transition in triple-negative breast cancer

    PubMed Central

    Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P.H.; Zhao, Chunyan; Dahlman-Wright, Karin

    2015-01-01

    The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression. PMID:25762639

  1. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less

  2. Specific high-affinity binding sites for a synthetic gliadin heptapeptide of human peripheral blood lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payan, D.G.; Horvath, K.; Graf, L.

    1987-03-23

    The synthetic peptide containing residues 43-49 of ..cap alpha..-gliadin, the major protein component of gluten, has previously been shown to inhibit the production of lymphokine activities by mononuclear leukocytes. The authors demonstrate using radiolabeled ..cap alpha..-gliadin(43-49) that human peripheral blood lymphocytes express approximately 20,000-25,000 surface receptors for this peptide, with a dissociation constant (K/sub D/) of 20 nM. In addition, binding is inhibited by naloxone and an enkephalin analog, thus confirming the functional correlate which demonstrates inhibition by these agents of ..cap alpha..-gliadin(43-49) functional effects. Furthermore, B-lymphocytes bind specifically a greater amount of (/sup 125/I)..cap alpha..-gliadin(43-49) than T-lymphocytes. The lymphocytemore » ..cap alpha..-gliadin(43-49) receptor may play an important role in mediating the immunological response to ..cap alpha..-gliadin. 16 references, 4 figures.« less

  3. Mapping of a binding site for ATP within the extracellular region of the Torpedo nicotinic acetylcholine receptor beta-subunit.

    PubMed

    Schrattenholz, A; Roth, U; Godovac-Zimmermann, J; Maelicke, A

    1997-10-28

    Using 2,8,5'-[3H]ATP as a direct photoaffinity label for membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata, we have identified a binding site for ATP in the extracellular region of the beta-subunit of the receptor. Photolabeling was completely inhibited in the presence of saturating concentrations of nonradioactive ATP, whereas neither the purinoreceptor antagonists suramin, theophyllin, and caffeine nor the nAChR antagonists alpha-bungarotoxin and d-tubocurarine affected the labeling reaction. Competitive and noncompetitive nicotinic agonists and Ca2+ increased the yield of the photoreaction by up to 50%, suggesting that the respective binding sites are allosterically linked with the ATP site. The dissociation constant KD of binding of ATP to the identified site on the nAChR was of the order of 10(-4) M. Sites of labeling were found in the sequence regions Leu11-Pro17 and Asp152-His163 of the nAChR beta-subunit. These regions may represent parts of a single binding site for ATP, which is discontinuously distributed within the primary structure of the N-terminal extracellular domain. The existence of an extracellular binding site for ATP confirms, on the molecular level, that this nucleotide can directly act on nicotinic receptors, as has been suggested from previous electrophysiological and biochemical studies.

  4. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway.

    PubMed

    Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Del Aguila, Carmen; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2006-01-01

    African swine fever virus (ASFV) is able to inhibit TNF-alpha-induced gene expression through the synthesis of A238L protein. This was shown by the use of deletion mutants lacking the A238L gene from the Vero cell-adapted Ba71V ASFV strain and from the virulent isolate E70. To further analyze the molecular mechanism by which the viral gene controls TNF-alpha, we have used Jurkat cells stably transfected with the viral gene to identify the TNF-alpha regulatory elements involved in the induction of the gene after stimulation with PMA and calcium ionophore. We have thus identified the cAMP-responsive element and kappa3 sites on the TNF-alpha promoter as the responsible of the gene activation, and demonstrate that A238L inhibits TNF-alpha expression through these DNA binding sites. This inhibition was partially reverted by overexpression of the transcriptional factors NF-AT, NF-kappaB, and c-Jun. Furthermore, we present evidence that A238L inhibits the activation of TNF-alpha by modulating NF-kappaB, NF-AT, and c-Jun trans activation through a mechanism that involves CREB binding protein/p300 function, because overexpression of these transcriptional coactivators recovers TNF-alpha promoter activity. In addition, we show that A238L is a nuclear protein that binds to the cyclic AMP-responsive element/kappa3 complex, thus displacing the CREB binding protein/p300 coactivators. Taken together, these results establish a novel mechanism in the control of TNF-alpha gene expression by a viral protein that could represent an efficient strategy used by ASFV to evade the innate immune response.

  5. Analysis of TFAP2A mutations in Branchio-Oculo-Facial Syndrome indicates functional complexity within the AP-2α DNA-binding domain

    PubMed Central

    Li, Hong; Sheridan, Ryan; Williams, Trevor

    2013-01-01

    Multiple lines of evidence indicate that the AP-2 transcription factor family has an important regulatory function in human craniofacial development. Notably, mutations in TFAP2A, the gene encoding AP-2α, have been identified in patients with Branchio-Oculo-Facial Syndrome (BOFS). BOFS is an autosomal-dominant trait that commonly presents with facial clefting, eye defects and branchial skin anomalies. Examination of multiple cases has suggested either simple haploinsufficiency or more complex genetic causes for BOFS, especially as the clinical manifestations are variable, with no clear genotype–phenotype correlation. Mutations occur throughout TFAP2A, but mostly within conserved sequences within the DNA contact domain of AP-2α. However, the consequences of the various mutations for AP-2α protein function have not been evaluated. Therefore, it remains unclear if all BOFS mutations result in similar changes to the AP-2α protein or if they each produce specific alterations that underlie the spectrum of phenotypes. Here, we have investigated the molecular consequences of the mutations that localize to the DNA-binding region. We show that although individual mutations have different effects on DNA binding, they all demonstrate significantly reduced transcriptional activities. Moreover, all mutant derivatives have an altered nuclear:cytoplasmic distribution compared with the predominantly nuclear localization of wild-type AP-2α and several can exert a dominant-negative activity on the wild-type AP-2α protein. Overall, our data suggest that the individual TFAP2A BOFS mutations can generate null, hypomorphic or antimorphic alleles and that these differences in activity, combined with a role for AP-2α in epigenetic events, may influence the resultant pathology and the phenotypic variability. PMID:23578821

  6. [Mechanism of action of neurotoxins acting on the inactivation of voltage-gated sodium channels].

    PubMed

    Benoit, E

    1998-01-01

    This review focuses on the mechanism(s) of action of neurotoxins acting on the inactivation of voltage-gated Na channels. Na channels are transmembrane proteins which are fundamental for cellular communication. These proteins form pores in the plasma membrane allowing passive ionic movements to occur. Their opening and closing are controlled by gating systems which depend on both membrane potential and time. Na channels have three functional properties, mainly studied using electrophysiological and biochemical techniques, to ensure their role in the generation and propagation of action potentials: 1) a highly selectivity for Na ions, 2) a rapid opening ("activation"), responsible for the depolarizing phase of the action potential, and 3) a late closing ("inactivation") involved in the repolarizing phase of the action potential. As an essential protein for membrane excitability, the Na channel is the specific target of a number of vegetal and animal toxins which, by binding to the channel, alter its activity by affecting one or more of its properties. At least six toxin receptor sites have been identified on the neuronal Na channel on the basis of binding studies. However, only toxins interacting with four of these sites (sites 2, 3, 5 et 6) produce alterations of channel inactivation. The maximal percentage of Na channels modified by the binding of neurotoxins to sites 2 (batrachotoxin and some alkaloids), 3 (alpha-scorpion and sea anemone toxins), 5 (brevetoxins and ciguatoxins) et 6 (delta-conotoxins) is different according to the site considered. However, in all cases, these channels do not inactivate. Moreover, Na channels modified by toxins which bind to sites 2, 5 and 6 activate at membrane potentials more negative than do unmodified channels. The physiological consequences of Na channel modifications, induced by the binding of neurotoxins to sites 2, 3, 5 and 6, are (i) an inhibition of cellular excitability due to an important membrane depolarization (site 2), (ii) a decrease of cellular excitability due to an important increase in the action potential duration (site 3) and (iii) an increase in cellular excitability which results in spontaneous and repetitive firing of action potentials (sites 5 and 6). The biochemical and electrophysiological studies performed with these toxins, as well as the determination of their molecular structure, have given basic information on the function and structure of the Na channel protein. Therefore, various models representing the different states of Na channels have been proposed to account for the neurotoxin-induced modifications of Na inactivation. Moreover, the localization of receptor binding sites 2, 3, 5 et 6 for these toxins on the neuronal Na channel has been deduced and the molecular identification of the recognition site(s) for some of them has been established on the alpha sub-unit forming the Na channel protein.

  7. Characterization of 4 years MagnetoTelluric monitoring data by studying the temporal behaviour of Alpha Stable Distribution Parameters

    NASA Astrophysics Data System (ADS)

    Siniscalchi, Agata; Romano, Gerardo; Barracano, Fabio; Balasco, Marianna; Tripaldi, Simona

    2017-04-01

    Analyzing a 4 years of a single site MT continuous monitoring data, a systematic variation of the MT transfer function estimates was observed in the [20-100 s] period range that was shown to be connected to the global geomagnetic activity, Ap index (Romano et al., 2014). The monitored period, from 2007 to 2011, includes the global minimum of solar activity which occurred in 2009 (low MT source amplitude). It was shown that the impedance robust estimations tend to stabilize when the Ap index exceed a value of 10. In order to exclude a possible dependence of the observed fluctuation on the presence of a local cultural noise source, for a shorter period ( 2 months) the monitoring data were also processed by using a remote site. Recently Chave (2012) demonstrated that MT data can be described by alpha stable distribution family that is characterized by four-parameters that must be empirically determined. The Gaussian distribution belongs to this family as a special case when one of the four parameter, α the tail thickness, is equal to 2. Following Chave (2016), MT data are typically stably distributed with the empirical observation that 0.8 ≤α ≤1.8. In order to better understand the observed dependence of the MT continuous monitoring on the global geomagnetic activity, here we present the results a re-analysis of the MT monitoring data with a two steps processing. In the first step, we characterize the time series of the Alpha Stable Distribution Parameters (ASDP) as obtained from the whole processing of the dataset with the aim of checking for possible connections between these last and the Ap index. In the second step, we estimate the ASDP by using only the samples which satisfy the mathematical range of existence of the normalized WAL (Weaver et al.,2000) considering these last as a diagnostic tool to detect which segments of the time series in the frequency domain are strongly contaminated by noise (WAL selection criterion). The comparison between the results of the two above mentioned steps, allow us to understand how the WAL based selection criterion performs.

  8. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonistmore » (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.« less

  9. HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail

    PubMed Central

    Roeth, Jeremiah F.; Williams, Maya; Kasper, Matthew R.; Filzen, Tracey M.; Collins, Kathleen L.

    2004-01-01

    To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the μ1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef–MHC-I complex is an important step required for inhibition of antigen presentation by HIV. PMID:15569716

  10. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    PubMed Central

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  11. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    PubMed

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  12. Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.

    PubMed

    de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J

    2002-09-01

    The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.

  13. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less

  14. Human Papillomavirus Type 16 E6 Induces Self-Ubiquitination of the E6AP Ubiquitin-Protein Ligase

    PubMed Central

    Kao, Wynn H.; Beaudenon, Sylvie L.; Talis, Andrea L.; Huibregtse, Jon M.; Howley, Peter M.

    2000-01-01

    The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is stabilized in HPV-positive cancer cells when expression of the viral oncoproteins is repressed. Expression of HPV16 E6 in cells results in a threefold decrease in the half-life of transfected E6AP. E6-mediated degradation of E6AP requires (i) the binding of E6 to E6AP, (ii) the catalytic activity of E6AP, and (iii) activity of the 26S proteasome, suggesting that E6-E6AP interaction results in E6AP self-ubiquitination and degradation. In addition, both in vitro and in vivo experiments indicate that E6AP self-ubiquitination results primarily from an intramolecular transfer of ubiquitin from the active-site cysteine to one or more lysine residues; however, intermolecular transfer can also occur in the context of an E6-mediated E6AP multimer. Finally, we demonstrate that an E6 mutant that is able to immortalize human mammary epithelial cells but is unable to degrade p53 retains its ability to bind and degrade E6AP, raising the possibility that E6-mediated degradation of E6AP contributes to its ability to transform mammalian cells. PMID:10864652

  15. delta 9-(16 alpha-/sup 125/I)iodo-19-nortestosterone: a gamma-emitting photoaffinity label for the progesterone receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, D.J.; Bullock, D.W.; Hoyte, R.M.

    1988-05-01

    We have synthesized 16 alpha-iodo-4,9-estradien-17 beta-ol-3-one (delta 9-16 alpha-iodo-19-nortestosterone (delta 9-INT)) labeled with 125I (delta 9-(16 alpha-125I)INT) to provide a new gamma-emitting photoaffinity ligand for the progesterone receptor that has many advantages over the currently available (3H)R5020. We have characterized the interaction of delta 9-(16 alpha-125I)INT with the rabbit uterine progesterone receptor and have demonstrated the usefulness of this compound for studies of receptor structure. The binding of 2 nM (3H)progesterone to receptor in rabbit uterine cytosol was specifically competed for by 19-nortestosterone, 16 alpha-iodo-19-nortestosterone, and delta 9-INT. Scatchard analysis demonstrated that delta 9-(16 alpha-125I)INT and (3H)progesterone estimated the samemore » number of binding sites in rabbit uterine cytosol, with a Kd for delta 9-(16 alpha-125I)INT of about 2.7 nM. The binding of delta 9-(16 alpha-125I)INT was inhibited by both progesterone and R5020, whereas testosterone, estradiol, and 5 alpha-dihydrotestosterone were ineffective. In cytosol, delta 9-(16 alpha-125I)INT covalently labeled the same mol wt receptor forms as (3H)R5020. Although the efficiency of cross-linking was similar for (3H)R5020 (3%) and delta 9-(16 alpha-125I)INT (4%), the radioactivity was 10-fold greater due to the higher specific activity of delta 9-(16 alpha-125I)INT and the lack of sample quench. The use of delta 9-(16 alpha-125I)INT greatly increases the sensitivity and efficiency of the photoaffinity labeling technique; it will provide a valuable tool for further studies of the progesterone receptor, allowing the detection of receptor in dilute cytosol after gel electrophoresis under denaturing conditions.« less

  16. Lanthanide ions induce hydrolysis of hemoglobin-bound 2,3-diphosphoglycerate (2,3-DPG), conformational changes of globin and bidirectional changes of 2,3-DPG-hemoglobin's oxygen affinity.

    PubMed

    Cheng, Y; Lin, H; Xue, D; Li, R; Wang, K

    2001-02-14

    The changes in structure and function of 2,3-diphosphoglycerate-hemoglobin (2,3-DPG-Hb) induced by Ln(3+) binding were studied by spectroscopic methods. The binding of lanthanide cations to 2,3-DPG is prior to that to Hb. Ln(3+) binding causes the hydrolysis of either one from the two phosphomonoester bonds in 2,3-DPG non-specifically. The results using the ultrafiltration method indicate that Ln(3+) binding sites for Hb can be classified into three categories: i.e. positive cooperative sites (N(I)), non-cooperative strong sites (N(S)) and non-cooperative weak sites (N(W)) with binding constants in decreasing order: K(I)>K(S)>K(W). The total number of binding sites amounts to about 65 per Hb tetramer. Information on reaction kinetics was obtained from the change of intrinsic fluorescence in Hb monitored by stopped-flow fluorometry. Fluctuation of fluorescence dependent on Ln(3+) concentration and temperature was observed and can be attributed to the successive conformational changes induced by Ln(3+) binding. The results also reveal the bidirectional changes of the oxygen affinity of Hb in the dependence on Ln(3+) concentration. At the range of [Ln(3+)]/[Hb]<2, the marked increase of oxygen affinity (P(50) decrease) with the Ln(3+) concentration can be attributed to the hydrolysis of 2,3-DPG, while the slight rebound of oxygen affinity in higher Ln(3+) concentration can be interpreted by the transition to the T-state of the Hb tetramer induced by Ln(3+) binding. This was indicated by the changes in secondary structure characterized by the decrease of alpha-helix content.

  17. ANKRD1 Acts as a Transcriptional Repressor of MMP13 via the AP-1 Site

    PubMed Central

    Almodóvar-García, Karinna; Kwon, Minjae; Samaras, Susan E.

    2014-01-01

    The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1−/− (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1fl/fl (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs. PMID:24515436

  18. Selective down-regulation of [(125)I]Y0-alpha-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine.

    PubMed

    Mugnaini, M; Garzotti, M; Sartori, I; Pilla, M; Repeto, P; Heidbreder, C A; Tessari, M

    2006-01-01

    Prolonged exposure to nicotine, as occurs in smokers, results in up-regulation of all the neuronal nicotinic acetylcholine receptor subtypes studied so far, the only differences residing in the extent and time course of the up-regulation. alpha6beta2*-Nicotinic acetylcholine receptors are selectively enriched in the mesostriatal dopaminergic system and may play a crucial role in nicotine dependence. Here we show that chronic nicotine treatment (3mg/kg/day for two weeks, via s.c. osmotic minipumps) caused a significant decrease (36% on average) in the binding of [(125)I]Y(0)-alpha-conotoxin MII (a selective ligand for alpha6beta2*-nicotinic acetylcholine receptors in this system) to all the five regions of the rat dopaminergic pathway analyzed in this study. After one week of withdrawal, binding was still lower than control in striatal terminal regions (namely the caudate putamen and the accumbens shell and core). In somatodendritic regions (the ventral tegmental area and the substantia nigra) the decrease was significant at the end of the treatment and recovered within one day of withdrawal. This effect was not due to displacement of [(125)I]Y(0)-alpha-conotoxin MII binding by residual nicotine. In fact the binding was not changed by 565 ng/g nicotine (obtained with a single injection of nicotine), a concentration much higher than that found in the brain of rats chronically treated with nicotine (240 ng/g). In addition, consistent with previous studies reporting an up-regulation of other subtypes of nicotinic acetylcholine receptors, we found that nicotine exposure significantly increased (40% on average) the binding of [(125)I]epibatidine (a non-selective agonist at most neuronal heteromeric nicotinic acetylcholine receptors) in three up to five regions containing only alpha-conotoxin MII-insensitive [(125)I]epibatidine binding sites, namely the primary motor, somatosensory and auditory cortices. In conclusion, this work is the first to demonstrate that alpha6beta2*-nicotinic acetylcholine receptors, unique within the nicotinic acetylcholine receptor family, are down-regulated following chronic nicotine treatment in rat dopaminergic mesostriatal pathway, a finding that may shed new light in the complex mechanisms of nicotine dependence.

  19. Genome-wide activity of unliganded estrogen receptor-α in breast cancer cells

    PubMed Central

    Caizzi, Livia; Ferrero, Giulio; Cutrupi, Santina; Cordero, Francesca; Ballaré, Cecilia; Miano, Valentina; Reineri, Stefania; Ricci, Laura; Friard, Olivier; Testori, Alessandro; Corà, Davide; Caselle, Michele; Di Croce, Luciano; De Bortoli, Michele

    2014-01-01

    Estrogen receptor-α (ERα) has central role in hormone-dependent breast cancer and its ligand-induced functions have been extensively characterized. However, evidence exists that ERα has functions that are independent of ligands. In the present work, we investigated the binding of ERα to chromatin in the absence of ligands and its functions on gene regulation. We demonstrated that in MCF7 breast cancer cells unliganded ERα binds to more than 4,000 chromatin sites. Unexpectedly, although almost entirely comprised in the larger group of estrogen-induced binding sites, we found that unliganded-ERα binding is specifically linked to genes with developmental functions, compared with estrogen-induced binding. Moreover, we found that siRNA-mediated down-regulation of ERα in absence of estrogen is accompanied by changes in the expression levels of hundreds of coding and noncoding RNAs. Down-regulated mRNAs showed enrichment in genes related to epithelial cell growth and development. Stable ERα down-regulation using shRNA, which caused cell growth arrest, was accompanied by increased H3K27me3 at ERα binding sites. Finally, we found that FOXA1 and AP2γ binding to several sites is decreased upon ERα silencing, suggesting that unliganded ERα participates, together with other factors, in the maintenance of the luminal-specific cistrome in breast cancer cells. PMID:24639548

  20. Direct interaction of the inhibitory gamma-subunit of Rod cGMP phosphodiesterase (PDE6) with the PDE6 GAFa domains.

    PubMed

    Muradov, Khakim G; Granovsky, Alexey E; Schey, Kevin L; Artemyev, Nikolai O

    2002-03-26

    Retinal rod and cone cGMP phosphodiesterases (PDE6 family) function as the effector enzyme in the vertebrate visual transduction cascade. The activity of PDE6 catalytic subunits is controlled by the Pgamma-subunits. In addition to the inhibition of cGMP hydrolysis at the catalytic sites, Pgamma is known to stimulate a noncatalytic binding of cGMP to the regulatory GAFa-GAFb domains of PDE6. The latter role of Pgamma has been attributed to its polycationic region. To elucidate the structural basis for the regulation of cGMP binding to the GAF domains of PDE6, a photoexcitable peptide probe corresponding to the polycationic region of Pgamma, Pgamma-21-45, was specifically cross-linked to rod PDE6alphabeta. The site of Pgamma-21-45 cross-linking was localized to Met138Gly139 within the PDE6alpha GAFa domain using mass spectrometric analysis. Chimeras between PDE5 and cone PDE6alpha', containing GAFa and/or GAFb domains of PDE6alpha' have been generated to probe a potential role of the GAFb domains in binding to Pgamma. Analysis of the inhibition of the PDE5/PDE6alpha' chimeras by Pgamma supported the role of PDE6 GAFa but not GAFb domains in the interaction with Pgamma. Our results suggest that a direct binding of the polycationic region of Pgamma to the GAFa domains of PDE6 may lead to a stabilization of the noncatalytic cGMP-binding sites.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, B.; Cousot, D.; Trzeciak, A.

    The platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa) is a member of the integrin receptor family that recognizes adhesive proteins containing the Arg-Gly-Asp (RGD) sequence. In the present study the binding characteristics of the synthetic hexapeptide Tyr-Asn-Arg-Gly-Asp-Ser (YNRGDS, a sequence present in the fibrinogen alpha-chain at position 570-575) to purified GP IIb-IIIa were determined by equilibrium dialysis. The binding of 125I-YNRGDS to GP IIb-IIIa was specific, saturable, and reversible. The apparent dissociation constant was 1.0 +/- 0.2 microM, and the maximal binding capacity was 0.92 +/- 0.02 mol of 125I-YNRGDS/mol of GP IIb-IIIa, indicating that GP IIb-IIIa contains a single bindingmore » site for RGD peptides. The binding of 125I-YNRGDS to purified GP IIb-IIIa showed many of the characteristics of fibrinogen binding to activated platelets: the binding was inhibited by fibrinogen, by the monoclonal antibody A2A9, and by the dodecapeptide from the C terminus of the fibrinogen gamma-chain. In addition, the binding of 125I-YNRGDS to GP IIb-IIIa was divalent cation-dependent. Our data suggest that two divalent cation binding sites must be occupied for YNRGDS to bind: one site is specific for calcium and is saturated at 1 microM free Ca2+, whereas the other site is less specific and reaches saturation at millimolar concentrations of either Ca2+ or Mg2+. The results of the present study support the hypothesis that the RGD domains within the adhesive proteins are responsible for their binding to GP IIb-IIIa.« less

  2. A peek into tropomyosin binding and unfolding on the actin filament.

    PubMed

    Singh, Abhishek; Hitchcock-Degregori, Sarah E

    2009-07-24

    Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven) increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering), and chain dissociation (analyzed using circular dichroism). This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest that local disorder is a property typical of coiled coil binding sites and proteins that have multiple binding partners, of which tropomyosin is one type.

  3. Increased actin polymerization reduces the inhibition of serum response factor activity by Yin Yang 1.

    PubMed Central

    Ellis, Peter D; Martin, Karen M; Rickman, Colin; Metcalfe, James C; Kemp, Paul R

    2002-01-01

    Recent evidence has implicated CC(A/T(richG))GG (CArG) boxes, binding sites for serum response factor (SRF), in the regulation of expression of a number of genes in response to changes in the actin cytoskeleton. In many cases, the activity of SRF at CArG boxes is modulated by transcription factors binding to overlapping (e.g. Yin Yang 1, YY1) or adjacent (e.g. ets) binding sites. However, the mechanisms by which SRF activity is regulated by the cytoskeleton have not been determined. To investigate these mechanisms, we screened for cells that did or did not increase the activity of a fragment of the promoter for a smooth-muscle (SM)-specific gene SM22alpha, in response to changes in actin cytoskeletal polymerization induced by LIM kinase. These experiments showed that vascular SM cells (VSMCs) and C2C12 cells increased the activity of promoters containing at least one of the SM22alpha CArG boxes (CArG near) in response to LIM kinase, whereas P19 cells did not. Bandshift assays using a probe to CArG near showed that P19 cells lacked detectable YY1 DNA binding to the CArG box in contrast with the other two cell types. Expression of YY1 in P19 cells inhibited SM22alpha promoter activity and conferred responsiveness to LIM kinase. Mutation of the CArG box to inhibit YY1 or SRF binding indicated that both factors were required for the LIM kinase response in VSMCs and C2C12 cells. The data indicate that changes in the actin cytoskeletal organization modify SRF activity at CArG boxes by modulating YY1-dependent inhibition. PMID:12023898

  4. Hypermethylation of AP-2Alpha as a Prognostic Marker for DCIS

    DTIC Science & Technology

    2008-05-01

    Unfortunately, among the methylation status of the AP2, CYCLIN D, ECAD , GSTP, and SSOCS genes, either as individual genes, or in combinations, no...0.61 to 4.10) 1.00 (referent) 0.35 ECAD M UM 0 100 3 97 GSTP M UM 40 60 24 76 2.02 (0.72 to 5.64) 1.00...Missing data: 1.4% for AP2, CYCLIN D, ECAD , GSTP; 4.2% for SSOCS; 2.8% for nuclear grade. §M=methylated; UM=unmethylated; +Two-sided

  5. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites onmore » the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.« less

  6. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: The possible role of montmorillonite clays

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin

    The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  7. Conformation of glycomimetics in the free and protein-bound state: structural and binding features of the C-glycosyl analogue of the core trisaccharide alpha-D-Man-(1 --> 3)-[alpha-D-Man-(1 --> 6)]-D-Man.

    PubMed

    Mikkelsen, Lise Munch; Hernáiz, María José; Martín-Pastor, M; Skrydstrup, Troels; Jiménez-Barbero, Jesús

    2002-12-18

    The conformational properties of the C-glycosyl analogue of the core trisaccharide alpha-D-Man-(1 --> 3)-[alpha-D-Man-(1 --> 6)]-D-Man in solution have been carefully analyzed by a combination of NMR spectroscopy and time-averaged restrained molecular dynamics. It has been found that both the alpha-1,3- and the alpha-1,6-glycosidic linkages show a major conformational averaging. Unusual Phi ca. 60 degrees orientations for both Phi torsion angles are found. Moreover, a major conformational distinction between the natural compound and the glycomimetic affects to the behavior of the omega(16) torsion angle around the alpha-1 --> 6-linkage. Despite this increased flexibility, the C-glycosyl analogue is recognized by three mannose binding lectins, as shown by NMR (line broadening, TR-NOE, and STD) and surface plasmon resonance (SPR) methods. Moreover, a process of conformational selection takes place, so that these lectins probably bind the glycomimetic similarly to the way they recognize the natural analogue. Depending upon the architecture and extension of the binding site of the lectin, loss or gain of binding affinity with respect to the natural analogue is found.

  8. CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network

    PubMed Central

    Thakar, Manjusha; Howard, Jason D.; Kagohara, Luciane T.; Krigsfeld, Gabriel; Ranaweera, Ruchira S.; Hughes, Robert M.; Perez, Jimena; Jones, Siân; Favorov, Alexander V.; Carey, Jacob; Stein-O'Brien, Genevieve; Gaykalova, Daria A.; Ochs, Michael F.; Chung, Christine H.

    2016-01-01

    Patients with oncogene driven tumors are treated with targeted therapeutics including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate interactions resulting from EGFR inhibitor use in cancer cells with these genetic alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measure gene expression after treating modified HaCaT cells with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene expression signature associated with the anticipated silencing of the EGFR network. It also infers a feedback signature with EGFR gene expression itself increasing in cells that are responsive to EGFR inhibitors. This feedback signature has increased expression of several growth factor receptors regulated by the AP-2 family of transcription factors. The gene expression signatures for AP-2alpha are further correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, the AP-2alpha gene expression signatures are also associated with inhibition of MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular Signatures (LINCS) data. These results suggest that AP-2 transcription factors are activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor resistance. PMID:27650546

  9. Stereochemical control over Mn(II)-Thio versus Mn(II)-Oxy coordination in adenosine 5 prime -O-(1-thiodiphosphate) complexes at the active site of creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smithers, G.W.; Sammons, R.D.; Goodhart, P.J.

    1989-02-21

    The stereochemical configurations of the Mn(II) complexes with the resolved epimers of adenosine 5{prime}-O-(1-thiodiphosphate) (ADP{alpha}S), bound at the active site of creatine kinase, have been determined in order to assess the relative strengths of enzymic stereoselectivity versus Lewis acid/base preferences in metal-ligand binding. Electron paramagnetic resonance (EPR) data have been obtained for Mn(II) in anion-stabilized, dead-end (transition-state analogue) complexes, in ternary enzyme-Mn{sup II}ADP{alpha}S complexes, and in the central complexes of the equilibrium mixture. The modes of coordination of Mn(II) at P{sub alpha} in the nitrate-stabilized, dead-end complexes with each epimer of ADP{alpha}S were ascertained by EPR measurements with (R{sub p})-({alpha}-{supmore » 17}O)ADP{alpha}S and (S{sub p})-({alpha}-{sup 17}O)ADP{alpha}S. A reduction in the magnitude of the {sup 55}Mn hyperfine coupling constant in the spectrum for the complex containing (S{sub p})-ADP{alpha}S is indicative of Mn(II)-thio coordination at P{sub alpha}. The results indicate that a strict discrimination for a unique configuration of the metal-nucleotide substrate is expressed upon binding of all of the substrates to form the active complex (or an analogue thereof). This enzymic stereoselectivity provides sufficient binding energy to overcome an intrinsic preference for the hard Lewis acid Mn(II) to coordinate to the hard Lewis base oxygen.« less

  10. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells.

    PubMed

    Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung

    2008-04-30

    A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

  11. T cell receptor (TCR) structure of autologous melanoma-reactive cytotoxic T lymphocyte (CTL) clones: tumor-infiltrating lymphocytes overexpress in vivo the TCR beta chain sequence used by an HLA-A2- restricted and melanocyte-lineage-specific CTL clone

    PubMed Central

    1993-01-01

    HLA-A2+ melanomas express common melanoma-associated antigens (Ags) recognized in vitro by autologous cytotoxic T lymphocytes (CTL). However, it is not known whether tumor Ags can drive in vivo a selective accumulation/expansion of Ag-specific, tumor-infiltrating T lymphocytes (TIL). Therefore, to evaluate this possibility, 39 CTL clones isolated from several independent mixed lymphocyte tumor cultures (MLTC) of TIL and peripheral blood lymphocytes (PBL) of an HLA- A2+ melanoma patient and selected for T cell receptor (TCR)-dependent, HLA-restricted tumor lysis, were used for analysis of TCR alpha and beta chain structure by the cDNA polymerase chain reaction (PCR) technique with variable gene-specific primers followed by sequencing. Despite absence of oligoclonality in fresh TIL and PBL, as well as in T cells of day 28 MLTC (day of cloning), sequence analysis of TCR alpha and beta chains of TIL clones revealed a dominance of a major category of melanoma-specific, HLA-A2-restricted T cells expressing a V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1 TCR. The same TCR was also found in 2 out of 14 PBL clones. The other PBL clones employed a V alpha 2.1 gene segment associated with either V beta 13.2, 14, or w22. Clones A81 (V alpha 2.1/J alpha IGRJ alpha 04/C alpha and V beta 14/D beta 1/J beta 1.2/C beta 1) and A21 (V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1), representative of the two most frequent TCR of PBL and TIL, respectively, expressed different lytic patterns, but both were HLA-A2 restricted and lysed only HLA-A2+ melanomas and normal melanocytes, thus indicating recognition of two distinct HLA-A2-associated and tissue-related Ags. Finally, by the inverse PCR technique, the specific TCR beta chain (V beta 2.1/D beta 1/J beta 1.1/C beta 1) expressed by the dominant TIL clone was found to represent 19 and 18.4% of all V beta 2 sequences expressed in the fresh tumor sample and in the purified TIL, respectively, but < 0.19% of V beta 2+ sequences expressed in PBL. These results are consistent with the hypothesis that a clonal expansion/accumulation of a melanocyte-lineage-specific and HLA-A2-restricted T cell clone occurred in vivo at the site of tumor growth. PMID:8376931

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Yohan; Chung, Kwang Chul, E-mail: kchung@yonsei.ac.kr

    Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of amore » DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.« less

  13. Affinity study on bovine serum albumin's peptides to amphiphilic gold nanoparticles: A test of epitopes and non-epitopes

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Li, Wanrong; Yang, Mingming; Huang, Xiufeng; Bai, Zhijun; Liu, Yushuang; Cai, Weijun; Wang, Yuqin; Zhang, Feng

    2017-09-01

    It is an inevitable event that nanoparticles (NPs) will encounter proteins/peptides in nano-medicine, so it has been significant to know their interaction mechanism before in vivo applications. Previously, a 105-amino-acid sequence had been reported as the binding site between bovine serum albumin (BSA) and amphiphilic polymer coated gold nanoparticles (AP-AuNPs) along with a mortise-tenon joint hypothesis. This article tested the affinity difference between two epitope peptide sequences such as: LGEYGFQNALIVR (S1), DAFLGSFLYEYSR (S2) and one non-epitope peptide sequence as: FDEHVKLVNELTEF (S3). With the photoluminescent amino acid residues, the fluorescence quenching method based on the nanometal surface energy transfer (NSET) principle was able to study the thermodynamics of the current binding system. The binding constants (Ka) were determined and followed the order as: Ka-S1 > Ka-S2 >> Ka-S3. Moreover, Hill constants indicated that cooperativity only presented in the interactions of AP-AuNP with either S1 or S2, but not for S3. Moreover, gel electrophoresis, surface plasmon resonance, atomic force microscopy and three dimensional fluorescence microscopy were all also used to comprehensively analyse the binding interaction mechanism. These results further provided useful information to better understand the mortise-tenon joint, which might find applications to nanofabrication and biomedicine.

  14. Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes

    PubMed Central

    Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.

    2005-01-01

    Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465

  15. Binding symmetry of extracellular divalent cations to conduction pore studied using tandem dimers of a CNG channel.

    PubMed

    Kwon, Ryuk-Jun; Ha, Tal Soo; Kim, Wonjae; Park, Chul-Seung

    2002-11-08

    Cyclic nucleotide-gated (CNG) channels are composed of the tetramer of alpha-subunit alone or alpha- and beta-subunits. The alpha-subunits of these channels have a conserved glutamate (Glu) residue within the pore-forming region and the residue determines the selectivity as well as the affinity for the extracellular divalent cations. Using the high-affinity mutant (E363D) of bovine retinal CNG channel in which the Glu at position 363 was replaced to Asp, we constructed tandem dimers and investigated the binding characteristics of divalent cations to the site. The gating and permeation characteristics of individual homomeric tandem dimers are indistinguishable to those of homo-tetramers formed by parental monomers. The heteromeric tandem dimers showed the binding affinity for Sr(2+) identical to the geometric mean of the affinities for two parent channels, indicating the energy additive and thus the simultaneous interaction. On the other hand, the binding affinity for Mg(2+) followed the harmonic mean of those parent channels indicating that Mg(2+) interacts more strongly with the subunit bearing Asp residue at the position. Thus the results strongly suggest that the Glu363 residues in the CNG channel pore be flexible enough to adapt different binding symmetries for different divalent cations. Moreover, the simultaneous interaction between the four Glu residues and Sr(2+) provides an important structural constraint to the CNG channel outer vestibule of unknown structure.

  16. Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation.

    PubMed

    Schneider, T D

    2001-12-01

    The sequence logo for DNA binding sites of the bacteriophage P1 replication protein RepA shows unusually high sequence conservation ( approximately 2 bits) at a minor groove that faces RepA. However, B-form DNA can support only 1 bit of sequence conservation via contacts into the minor groove. The high conservation in RepA sites therefore implies a distorted DNA helix with direct or indirect contacts to the protein. Here I show that a high minor groove conservation signature also appears in sequence logos of sites for other replication origin binding proteins (Rts1, DnaA, P4 alpha, EBNA1, ORC) and promoter binding proteins (sigma(70), sigma(D) factors). This finding implies that DNA binding proteins generally use non-B-form DNA distortion such as base flipping to initiate replication and transcription.

  17. Hyperoxia, unlike phorbol ester, induces glutathione peroxidase through a protein kinase C-independent mechanism.

    PubMed Central

    Jornot, L; Junod, A F

    1997-01-01

    Human selenium-dependent glutathione peroxidase (GP) is implicated as a mechanism of resistance against oxygen free radicals. The 5' flanking sequence upstream from the coding region of GP contained an oxygen-responsive element termed ORE1 that is responsive to hypoxia, as well as several copies of the activator protein-1 (AP-1)- and AP-1-like-binding sites. In this study, we sought to define the molecular events that lead to GP gene transcription in response to hyperoxia in human umbilical-vein endothelial cells, and asked whether such induction is mimicked and sustained by activation of protein kinase C (PKC) by phorbol esters. Treatment of cells with 100 nM phorbol 12,13-dibutyrate (PdBu) induced a delayed (24-48 h) but significant (2-fold) increase in steady-state GP mRNA levels. Steady-state GP mRNA levels also rose after exposure to 95% O2, again after considerable delay (48-72 h). For both PdBu and oxygen, induction was transcriptionally regulated, as demonstrated by nuclear run-on experiments. The simulations by PdBu and oxygen were additive. In contrast with PdBu, hyperoxia did not stimulate translocation of PKC from the cytosol to the particulate fraction, although the specific activity of both cytosolic and particulate-associated PKC was increased 2-fold in cells exposed to 95% O2 for 5 days. In addition, gel mobility-shift assays using double-stranded tumour-promoting-agent-responsive element (TRE) and nuclear extracts derived from phorbol- and oxygen-treated cells revealed that PdBu, but not hyperoxia, increased AP-1 DNA-binding activity. On the other hand, the up-regulation of GP expression by oxygen could not be accounted for by the ORE1 core sequence, since no specific protein-DNA binding activity could be detected using nuclear extracts from hyperoxic cells and ORE1. Taken together, these results suggest that there may be different molecular mechanisms controlling GP expression. After exposure to PdBu, GP undergoes transcriptional activation via a process that can be readily explained by a classic AP-1 interaction with the TRE sites in the GP promoter. During hyperoxia, GP also undergoes transcriptional activity, but via a process that appears to involve neither TRE nor ORE1. PMID:9337858

  18. Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.

    PubMed Central

    Bruno, S.; Bettati, S.; Manfredini, M.; Mozzarelli, A.; Bolognesi, M.; Deriu, D.; Rosano, C.; Tsuneshige, A.; Yonetani, T.; Henry, E. R.

    2000-01-01

    Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID:10794410

  19. Effect of novel negative allosteric modulators of neuronal nicotinic receptors on cells expressing native and recombinant nicotinic receptors: implications for drug discovery.

    PubMed

    González-Cestari, Tatiana F; Henderson, Brandon J; Pavlovicz, Ryan E; McKay, Susan B; El-Hajj, Raed A; Pulipaka, Aravinda B; Orac, Crina M; Reed, Damon D; Boyd, R Thomas; Zhu, Michael X; Li, Chenglong; Bergmeier, Stephen C; McKay, Dennis B

    2009-02-01

    Allosteric modulation of nAChRs is considered to be one of the most promising approaches for drug design targeting nicotinic acetylcholine receptors (nAChRs). We have reported previously on the pharmacological activity of several compounds that seem to act noncompetitively to inhibit the activation of alpha3beta4(*) nAChRs. In this study, the effects of 51 structurally similar molecules on native and recombinant alpha3beta4 nAChRs are characterized. These 51 molecules inhibited adrenal neurosecretion activated via stimulation of native alpha3beta4(*) nAChR, with IC(50) values ranging from 0.4 to 13.0 microM. Using cells expressing recombinant alpha3beta4 nAChRs, these molecules inhibited calcium accumulation (a more direct assay to establish nAChR activity), with IC(50) values ranging from 0.7 to 38.2 microM. Radiolabeled nAChR binding studies to orthosteric sites showed no inhibitory activity on either native or recombinant nAChRs. Correlation analyses of the data from both functional assays suggested additional, non-nAChR activity of the molecules. To test this hypothesis, the effects of the drugs on neurosecretion stimulated through non-nAChR mechanisms were investigated; inhibitory effects ranged from no inhibition to 95% inhibition at concentrations of 10 microM. Correlation analyses of the functional data confirmed this hypothesis. Several of the molecules (24/51) increased agonist binding to native nAChRs, supporting allosteric interactions with nAChRs. Computational modeling and blind docking identified a binding site for our negative allosteric modulators near the orthosteric binding site of the receptor. In summary, this study identified several molecules for potential development as negative allosteric modulators and documented the importance of multiple screening assays for nAChR drug discovery.

  20. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    PubMed

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  1. Early immune response and regulation of IL-2 receptor subunits

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J. B.; Cogoli, Augusto

    2005-01-01

    Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.

  2. Early immune response and regulation of IL-2 receptor subunits.

    PubMed

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J B; Cogoli, Augusto

    2005-09-01

    Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and MAPK pathways plays a role in early T-cell activation and induction of IL-2, IL-2R(alpha) and IFN(gamma) gene expression.

  3. Generation of Affibody ligands binding interleukin-2 receptor alpha/CD25.

    PubMed

    Grönwall, Caroline; Snelders, Eveline; Palm, Anna Jarelöv; Eriksson, Fredrik; Herne, Nina; Ståhl, Stefan

    2008-06-01

    Affibody molecules specific for human IL-2Ralpha, the IL-2 (interleukin-2) receptor alpha subunit, also known as CD25, were selected by phage-display technology from a combinatorial protein library based on the 58-residue Protein A-derived Z domain. The IL-2R system plays a major role in T-cell activation and the regulation of cellular immune responses. Moreover, CD25 has been found to be overexpressed in organ rejections, a number of autoimmune diseases and T-cell malignancies. The phage-display selection using Fc-fused target protein generated 16 unique Affibody molecules targeting CD25. The two most promising binders were characterized in more detail using biosensor analysis and demonstrated strong and selective binding to CD25. Kinetic biosensor analysis revealed that the two monomeric Affibody molecules bound to CD25 with apparent affinities of 130 and 240 nM respectively. The Affibody molecules were, on biosensor analysis, found to compete for the same binding site as the natural ligand IL-2 and the IL-2 blocking monoclonal antibody 2A3. Hence the Affibody molecules were assumed to have an overlapping binding site with IL-2 and antibodies targeting the IL-2 blocking Tac epitope (for example, the monoclonal antibodies Daclizumab and Basiliximab, both of which have been approved for therapeutic use). Furthermore, immunofluorescence microscopy and flow-cytometric analysis of CD25-expressing cells demonstrated that the selected Affibody molecules bound to CD4+ CD25+ PMBCs (peripheral-blood mononuclear cells), the IL-2-dependent cell line NK92 and phytohaemagglutinin-activated PMBCs. The potential use of the CD25-binding Affibody molecules as targeting agents for medical imaging and for therapeutic applications is discussed.

  4. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4.

    PubMed

    Wu, Kongming; Yang, Ying; Wang, Chenguang; Davoli, Maria A; D'Amico, Mark; Li, Anping; Cveklova, Kveta; Kozmik, Zbynek; Lisanti, Michael P; Russell, Robert G; Cvekl, Ales; Pestell, Richard G

    2003-12-19

    The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.

  5. Evidence for Lipid Packaging in the Crystal Structure of the GM2-Activator Complex with Platelet Activating Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Christine S.; Mi, Li-Zhi; Rastinejad, Fraydoon

    2010-11-16

    GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2 {angstrom} crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement ofmore » two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.« less

  6. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Cassera; M Ho; E Merino

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactionsmore » for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.« less

  7. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    PubMed

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  8. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.

    PubMed

    Hjörleifsson, Jens G; Ásgeirsson, Bjarni

    2017-09-26

    The effect of ionic strength on enzyme activity and stability varies considerably between enzymes. Ionic strength is known to affect the catalytic activity of some alkaline phosphatases (APs), such as Escherichia coli AP, but how ions affect APs is debated. Here, we studied the effect of various ions on a cold-adapted AP from Vibrio splendidus (VAP). Previously, we have found that the active form of VAP is extremely unstable at low ionic strengths. Here we show that NaCl increased the activity and stability of VAP and that the effect was pH-dependent in the range of pH 7-10. The activity profile as a function of pH formed two maxima, indicating a possible conformational change. Bringing the pH from the neutral to the alkaline range was accompanied by a large increase in both the K i for inorganic phosphate (product inhibition) and the K M for p-nitrophenyl phosphate. The activity transitions observed as the pH was varied correlated with structural changes as monitored by tryptophan fluorescence. Thermal and urea-induced inactivation was shown to be accompanied by neither dissociation of the active site metal ions nor dimer dissociation. This would suggest that the inactivation involved subtle changes in active site conformation. Furthermore, the VAP dimer equilibrium was studied for the first time and shown to highly favor dimerization, which was dependent on pH and NaCl concentration. Taken together, the data support a model in which anions bind to some specific acceptor in the active site of VAP, resulting in great stabilization and catalytic rate enhancement, presumably through a different mechanism.

  9. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  10. Levels and distributions of organic pollutants in subtidal sediments from the Loire estuary: Are there any relationships with TTR-binding activity?

    NASA Astrophysics Data System (ADS)

    Couderc, M.; Gandolfi, F.; Zalouk-Vergnoux, A.; Beyeler, N.; Malleret, L.; Ambidina, I.; Kamari, A.; Blanchet-Letrouvé, I.; Mouneyrac, C.; Hamers, T.; Poirier, L.

    2016-12-01

    The Loire estuary runs through important urban sites with shipping, industrial and agricultural activities, being the receptacle of diffusive pollutants comprising, a mixture of contaminants such as persistent organic pollutants (POPs). This work was set out to evaluate the occurrence of thyroid endocrine disruptors in sediments of this estuary. Sediments were collected in September 2012 and April 2013, in subtidal zones along the estuary. Targeted chemical analyses of five classes of pollutants, i.e. polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), and bisphenol A (BPA) were performed in sediment extracts. Extracts were further tested for their thyroid hormone (TH) disrupting potency to compete with TH for binding to its transporter protein transthyretin (TTR). The Haute-Indre site was characterized by a significant PAH contamination whereas Saint-Nazaire, Bellevue and Rezé would be particularly contaminated by PCBs. These observations could be linked to the different type of anthropogenic activities taking place close to these sites. Donges, Mindin and Paimboeuf were the sampling sites displaying the lowest contamination in PAHs, APs, PCBs and PBDEs. No inter-site difference could be observed for TTR-binding activity, which should be attributed to different compounds than the chemically analyzed compounds, as confirmed by PCA analyses. Furthermore, the TTR-binding potencies of the extracts were relatively low compared to data from literature. More investigations on the quantification of PCB and PBDE hydroxylated metabolites and other known endocrine disruptors such as pesticides or perfluorinated compounds could be considered, as well as bioassays highlighting other endocrine disrupting effects.

  11. X-ray Crystal Structure of Aristolochene Synthase from Aspergillus terreus and Evolution of Templates for the Cyclization of Farnesyl Diphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishova,E.; Di Costanzo, L.; Cane, D.

    2007-01-01

    Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 {angstrom} resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the {alpha}-helical class I terpene synthase fold with the active site in the 'open', solvent-exposed conformation. Intriguingly, the 2.15 {angstrom} resolution crystal structure of the complex with Mg{sup 2+}{sub 3}-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the 'closed' conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition frommore » the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved {alpha}-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry.« less

  12. Structural and Biochemical Basis for the Binding Selectivity of Peroxisome Proliferator-activated Receptor [gamma] to PGC-1[alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yong; Kovach, Amanda; Suino-Powell, Kelly

    2008-07-23

    The functional interaction between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and its coactivator PGC-1{alpha} is crucial for the normal physiology of PPAR{gamma} and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPAR{gamma} ligand-binding domain bound to rosiglitazone and to a large PGC-1{alpha} fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1{alpha} and the PPAR{gamma} coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifsmore » tested, and only this motif of the two LXXLL-related motifs in PGC-1{alpha} is capable of binding to PPAR{gamma}. Our studies reveal that the strong interaction of PGC-1{alpha} and PPAR{gamma} is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1{alpha} indicate that the first PGC-1{alpha} motif is necessary and sufficient for PGC-1{alpha} to coactivate PPAR{gamma} in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPAR{gamma} and PGC-1{alpha} in glucose homeostasis and adipocyte differentiation.« less

  13. Thermodynamic Characterization of Binding Oxytricha nova Single Strand Telomere DNA with the Alpha Protein N-terminal Domain

    PubMed Central

    Buczek, Pawel; Horvath, Martin P.

    2010-01-01

    The Oxytricha nova telomere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (ΔH), entropy (ΔS), and dissociation constant (KD-DNA) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T2G4), d(T4G4), d(G3T4G4), and d(G4T4G4) each formed monovalent protein complexes. In the case of d(T4G4T4G4), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity “A site” has a dissociation constant, KD-DNA(A)=13(±4) nM, while the low-affinity “B site” is characterized by KD-DNA(B)=5600(±600) nM at 25 °C. Nucleotide substitution variants verified that the A site corresponds principally with the 3′-terminal portion of d(T4G4T4G4). The relative contributions of entropy (ΔS) and enthalpy (ΔH) for binding reactions were DNA length-dependent as was heat capacity (ΔCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA–protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology. PMID:16678852

  14. Endothelial stress induces the release of vitamin D-binding protein, a novel growth factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, Marc-Andre; Desormeaux, Anik; Labelle, Andree

    2005-12-23

    Endothelial cells (EC) under stress release paracrine mediators that facilitate accumulation of vascular smooth muscle cells (VSCM) at sites of vascular injury. We found that medium conditioned by serum-starved EC increase proliferation and migration of VSCM in vitro. Fractionation of the conditioned medium followed by mass spectral analysis identified one bioactive component as vitamin D-binding protein (DBP). DBP induced both proliferation and migration of VSMC in vitro in association with increased phosphorylation of ERK 1/2. PD 98059, a biochemical inhibitor of ERK 1/2, abrogated these proliferative and migratory responses in VSMC. DBP is an important carrier for the vitamin-D sterols,more » 25-hydroxyvitamin-D, and 1{alpha},25-dihydroxyvitamin-D. Both sterols inhibited the activity of DBP on VSMC, suggesting that vitamin D binding sites are important for initiating the activities of DBP on VSMC. Release of DBP at sites of endothelial injury represents a novel pathway favoring accumulation of VSMC at sites of vascular injury.« less

  15. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure

    NASA Technical Reports Server (NTRS)

    Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.

    2004-01-01

    Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.

  16. Modeling of three dimensional structure of human alpha-fetoprotein complexed with diethylstilbestrol: docking and molecular dynamics simulation study.

    PubMed

    Terentiev, Alexander A; Moldogazieva, Nurbubu T; Levtsova, Olga V; Maximenko, Dmitry M; Borozdenko, Denis A; Shaitan, Konstantin V

    2012-04-01

    It has been long experimentally demonstrated that human alpha-fetoprotein (HAFP) has an ability to bind immobilized estrogens with the most efficiency for synthetic estrogen analog - diethylstilbestrol (DES). However, the question remains why the human AFP (HAFP), unlike rodent AFP, cannot bind free estrogens. Moreover, despite the fact that AFP was first discovered more than 50 years ago and is presently recognized as a "golden standard" among onco-biomarkers, its three-dimensional (3D) structure has not been experimentally solved yet. In this work using MODELLER program, we generated 3D model of HAFP on the basis of homology with human serum albumin (HSA) and Vitamin D-binding protein (VTDB) with subsequent molecular docking of DES to the model structure and molecular dynamics (MD) simulation study of the complex obtained. The model constructed has U-shaped structure in which a cavity may be distinguished. In this cavity the putative estrogen-binding site is localized. Validation by RMSD calculation and with the use of PROCHECK program showed good quality of the model and stability of extended region of four alpha-helical structures that contains putative hormone-binding residues. Data extracted from MD simulation trajectory allow proposing two types of interactions between amino acid residues of HAFP and DES molecule: (1) hydrogen bonding with involvement of residues S445, R452, and E551; (2) hydrophobic interactions with participation of L138, M448, and M548 residues. A suggestion is made that immobilization of the hormone using a long spacer provides delivery of the estrogen molecule to the binding site and, thereby, facilitates interaction between HAFP and the hormone.

  17. Dose-dependent EEG effects of zolpidem provide evidence for GABA(A) receptor subtype selectivity in vivo.

    PubMed

    Visser, S A G; Wolters, F L C; van der Graaf, P H; Peletier, L A; Danhof, M

    2003-03-01

    Zolpidem is a nonbenzodiazepine GABA(A) receptor modulator that binds in vitro with high affinity to GABA(A) receptors expressing alpha(1) subunits but with relatively low affinity to receptors expressing alpha(2), alpha(3), and alpha(5) subunits. In the present study, it was investigated whether this subtype selectivity could be detected and quantified in vivo. Three doses (1.25, 5, and 25 mg) of zolpidem were administered to rats in an intravenous infusion over 5 min. The time course of the plasma concentrations was determined in conjunction with the change in the beta-frequency range of the EEG as pharmacodynamic endpoint. The concentration-effect relationship of the three doses showed a dose-dependent maximum effect and a dose-dependent potency. The data were analyzed for one- or two-site binding using two pharmacodynamic models based on 1) the descriptive model and 2) a novel mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for GABA(A) receptor modulators that aims to separates drug- and system-specific properties, thereby allowing the estimation of in vivo affinity and efficacy. The application of two-site models significantly improved the fits compared with one-site models. Furthermore, in contrast to the descriptive model, the mechanism-based PK/PD model yielded dose-independent estimates for affinity (97 +/- 40 and 33,100 +/- 14,800 ng x ml(-1)). In conclusion, the mechanism-based PK/PD model is able to describe and explain the observed dose-dependent EEG effects of zolpidem and suggests the subtype selectivity of zolpidem in vivo.

  18. Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain.

    PubMed

    Smith, Donald F; Dyve, Suzan; Minuzzi, Luciano; Jakobsen, Steen; Munk, Ole L; Marthi, Katalin; Cumming, Paul

    2006-06-15

    We have developed [(11)C]mirtazapine as a ligand for PET studies of antidepressant binding in living brain. However, previous studies have determined neither optimal methods for quantification of [(11)C]mirtazapine binding nor the pharmacological identity of this binding. To obtain that information, we have now mapped the distribution volume (V(d)) of [(11)C]mirtazapine relative to the arterial input in the brain of three pigs, in a baseline condition and after pretreatment with excess cold mirtazapine (3 mg/kg). Baseline V(d) ranged from 6 ml/ml in cerebellum to 18 ml/ml in frontal cortex, with some evidence for a small self-displaceable binding component in the cerebellum. Regional binding potentials (pBs) obtained by a constrained two-compartment model, using the V(d) observation in cerebellum, were consistently higher than pBs obtained by other arterial input or reference tissue methods. We found that adequate quantification of pB was obtained using the simplified reference tissue method. Concomitant PET studies with [(15)O]-water indicated that mirtazapine challenge increased CBF uniformly in cerebellum and other brain regions, supporting the use of this reference tissue for calculation of [(11)C]mirtazapine pB. Displacement by mirtazapine was complete in the cerebral cortex, but only 50% in diencephalon, suggesting the presence of multiple binding sites of differing affinities in that tissue. Competition studies with yohimbine and RX 821002 showed decreases in [(11)C]mirtazapine pB throughout the forebrain; use of the multireceptor version of the Michaelis-Menten equation indicated that 42% of [(11)C]mirtazapine binding in cortical regions is displaceable by yohimbine. Thus, PET studies confirm that [(11)C]mirtazapine affects alpha(2)-adrenoceptor binding sites in living brain. (c) 2006 Wiley-Liss, Inc.

  19. Early stages of clathrin aggregation at a membrane in coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Giani, M.; den Otter, W. K.; Briels, W. J.

    2017-04-01

    The self-assembly process of clathrin coated pits during endocytosis has been simulated by combining and extending coarse grained models of the clathrin triskelion, the adaptor protein AP2, and a flexible network membrane. The AP2's core, upon binding to membrane and cargo, releases a motif that can bind clathrin. In conditions where the core-membrane-cargo binding is weak, the binding of this motif to clathrin can result in a stable complex. We characterize the conditions and mechanisms resulting in the formation of clathrin lattices that curve the membrane, i.e., clathrin coated pits. The mechanical properties of the AP2 β linker appear crucial to the orientation of the curved clathrin lattice relative to the membrane, with wild-type short linkers giving rise to the inward curving buds enabling endocytosis while long linkers produce upside-down cages and outward curving bulges.

  20. Downregulation of a tumor suppressor RECK by hypoxia through recruitment of HDAC1 and HIF-1alpha to reverse HRE site in the promoter.

    PubMed

    Lee, Kyung Ju; Lee, Kwang Youl; Lee, You Mie

    2010-05-01

    Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a tumor suppressor and the suppression of RECK is induced by Ras or Her-2/neu oncogenes. However, regulation of RECK under hypoxic microenvironment is largely unknown. Here, we identified that hypoxia significantly downregulates RECK mRNA and protein expression using semiquantitative RT-PCR, real-time RT-PCR and western blot analysis. This repression was reversed by the HDAC inhibitor, trichostatin A (TSA) and HIF-1 inhibitor, YC-1. Hypoxia-induced downregulation of RECK was abolished by knockdown of HDAC1 and HIF-1alpha with respective small interfering RNAs (siRNAs), whereas overexpression of HDAC1 and HIF-1alpha suppressed RECK expression similar to the level under hypoxic conditions. Transfection of a deletion mutant of the second reverse HRE (rHRE2, -2345 to -2333) site of RECK promoter completely removed RECK suppression under hypoxia, indicating that the rHRE2 site is responsible for the inhibition of RECK. Chromatin immunoprecipitation and DNA affinity precipitation assays demonstrated that HDAC1 and HIF-1alpha were recruited to the rHRE2 region of RECK promoter under hypoxic conditions, but the treatment of TSA or YC-1 inhibited their binding to the rHRE2 site. Moreover, TSA and YC-1 inhibited hypoxia-induced cancer cell migration, invasion and MMPs secretion. Taken together, we can conclude that hypoxia induces RECK downregulation through the recruitment of HDAC1 and HIF-1alpha to the rHRE2 site in the promoter and the inhibition of hypoxic RECK silencing would be a therapeutic and preventive target for early tumorigenesis. Copyright 2010 Elsevier B.V. All rights reserved.

  1. A dynamic alpha-beta inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening.

    PubMed

    Zhang, Rong; Dzhura, Igor; Grueter, Chad E; Thiel, William; Colbran, Roger J; Anderson, Mark E

    2005-09-01

    L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.

  2. RNA polymerases react differently at d(ApG) and d(GpG) adducts in DNA modified by cis-diamminedichloroplatinum(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corda, Y.; Job, D.; Anin, M.F.

    1992-02-25

    Two duplexes (20-mers) were constructed containing either a single cis-(Pt(NH{sub 3}){sub 2}(d(GpG))) or cis-(Pt(NH{sub 3}){sub 2}(d(ApG))) intrastrand cross-link, the major DNA adducts of the antitumor drug cis-diamminedichloroplatinum(II). These synthetic duplexes were multimerized and the resultant polymers used as templates in single-step addition reactions of condensation of a single nucleoside triphosphate substrate to a dinucleotide primer (abortive elongation reaction) catalyzed by prokaryotic or eukaryotic RNA polymerases. Primer-substrate combinations were selected so as to direct trinucleotide product formation within the platinated bases of the templates. Transcription experiments established that cis-DDP-DNA adducts formed at d(ApG) or d(GpG) sites are not an absolute blockmore » to formation of a single phosphodiester bond by either Escherichia coli RNA polymerase or wheat germ RNA polymerase II. Furthermore, the kinetic data indicate that single-step addition reactions are much more impeded at the platinated d(GpG) than at the platinated d(ApG) site and that the mechanisms of inhibition of RNA polymerase activity are different at the two platinated sites. In particular, binding affinity between E. coli RNA polymerase and the d(GpG)-containing platinated template is lowered, as the apparent K{sub m} of enzyme for the platinated polymer is increased by a factor of 4-5. These results are discussed in reaction to the distortions induced in DNA by the two adducts.« less

  3. Multiple Binding Modes between HNF4[alpha] and the LXXLL Motifs of PGC-1[alpha] Lead to Full Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.

    2010-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4{alpha} interacts, peroxisome proliferation-activated receptor {gamma} (PPAR{gamma}) coactivator 1{alpha} (PGC-1{alpha}) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1{alpha} recruitment, we have determined the crystal structure of HNF4{alpha} in complex with amore » fragment of PGC-1{alpha} containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4{alpha} toward the LXXLL motifs of PGC-1{alpha} could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators.« less

  4. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    PubMed Central

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  5. Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur alpha, Pur beta, and MSY1.

    PubMed

    Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J

    2002-03-08

    An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.

  6. Structures of yeast Apa2 reveal catalytic insights into a canonical AP₄A phosphorylase of the histidine triad superfamily.

    PubMed

    Hou, Wen-Tao; Li, Wen-Zhe; Chen, Yuxing; Jiang, Yong-Liang; Zhou, Cong-Zhao

    2013-08-09

    The homeostasis of intracellular diadenosine 5',5″'-P(1),P(4)-tetraphosphate (Ap4A) in the yeast Saccharomyces cerevisiae is maintained by two 60% sequence-identical paralogs of Ap4A phosphorylases (Apa1 and Apa2). Enzymatic assays show that, compared to Apa1, Apa2 has a relatively higher phosphorylase activity towards Ap3A (5',5″'-P(1),P(3)-tetraphosphate), Ap4A, and Ap5A (5',5″'-P(1),P(5)-tetraphosphate), and Ap4A is the favorable substrate for both enzymes. To decipher the catalytic insights, we determined the crystal structures of Apa2 in the apo-, AMP-, and Ap4A-complexed forms at 2.30, 2.80, and 2.70Å resolution, respectively. Apa2 is an α/β protein with a core domain of a twisted eight-stranded antiparallel β-sheet flanked by several α-helices, similar to the galactose-1-phosphate uridylyltransferase (GalT) members of the histidine triad (HIT) superfamily. However, a unique auxiliary domain enables an individual Apa2 monomer to possess an intact substrate-binding cleft, which is distinct from previously reported dimeric GalT proteins. This cleft is perfectly complementary to the favorable substrate Ap4A, the AMP and ATP moieties of which are perpendicular to each other, leaving the α-phosphate group exposed at the sharp turn against the catalytic residue His161. Structural comparisons combined with site-directed mutagenesis and activity assays enable us to define the key residues for catalysis. Furthermore, multiple-sequence alignment reveals that Apa2 and homologs represent canonical Ap4A phosphorylases, which could be grouped as a unique branch in the GalT family. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The Pseudomonas aeruginosa Catabolite Repression Control Protein Crc Is Devoid of RNA Binding Activity

    PubMed Central

    Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa. PMID:23717639

  8. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity.

    PubMed

    Milojevic, Tetyana; Grishkovskaya, Irina; Sonnleitner, Elisabeth; Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa.

  9. Conformational analysis of HAMLET, the folding variant of human alpha-lactalbumin associated with apoptosis.

    PubMed

    Casbarra, Annarita; Birolo, Leila; Infusini, Giuseppe; Dal Piaz, Fabrizio; Svensson, Malin; Pucci, Piero; Svanborg, Catharina; Marino, Gennaro

    2004-05-01

    A combination of hydrogen/deuterium (H/D) exchange and limited proteolysis experiments coupled to mass spectrometry analysis was used to depict the conformation in solution of HAMLET, the folding variant of human alpha-lactalbumin, complexed to oleic acid, that induces apoptosis in tumor and immature cells. Although near- and far-UV CD and fluorescence spectroscopy were not able to discriminate between HAMLET and apo-alpha-lactalbumin, H/D exchange experiments clearly showed that they correspond to two distinct conformational states, with HAMLET incorporating a greater number of deuterium atoms than the apo and holo forms. Complementary proteolysis experiments revealed that HAMLET and apo are both accessible to proteases in the beta-domain but showed substantial differences in accessibility to proteases at specific sites. The overall results indicated that the conformational changes associated with the release of Ca2+ are not sufficient to induce the HAMLET conformation. Metal depletion might represent the first event to produce a partial unfolding in the beta-domain of alpha-lactalbumin, but some more unfolding is needed to generate the active conformation HAMLET, very likely allowing the protein to bind the C18:1 fatty acid moiety. On the basis of these data, a putative binding site of the oleic acid, which stabilizes the HAMLET conformation, is proposed.

  10. Targeting a KH-domain protein with RNA decoys.

    PubMed

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-09-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins.

  11. Targeting a KH-domain protein with RNA decoys.

    PubMed Central

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-01-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins. PMID:12358435

  12. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM;more » ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.« less

  13. FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappaB and activating protein-1.

    PubMed

    Lungu, Gina; Covaleda, Lina; Mendes, Odete; Martini-Stoica, Heidi; Stoica, George

    2008-06-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tumor invasion and metastasis. Here, we investigate the effect of fibroblast growth factor-1 (FGF-1) on the expression of MMP-9 in ENU1564, an ethyl-N-nitrosourea-induced rat mammary adenocarcinoma cell line. We observed that FGF-1 induces a dose-dependent increase in MMP-9 mRNA, protein, and activity in ENU1564 cells. To gain insight into the molecular mechanism of MMP-9 regulation by FGF-1, we investigated the role of components of PI3K-Akt and MEK1/2-ERK signaling pathways in our system since NF-kappaB and AP-1 transcription factor binding sites have been characterized in the upstream region of the MMP-9 gene. We demonstrated that FGF-1 increases Akt phosphorylation, triggers nuclear translocation of NF-kappaBp65, and enhances degradation of cytoplasmic IkappaBalpha. Pretreatment of cells with LY294002, a PI3K inhibitor, significantly inhibited MMP-9 protein expression in FGF-1-treated cells. Conversely, our data show that FGF-1 increases ERK phosphorylation in ENU1564 cells, increases c-jun and c-fos mRNA expression in a time-dependent manner, and triggers nuclear translocation of c-jun. Pretreatment of cells with PD98059, a MEK1/2 inhibitor significantly inhibited MMP-9 protein expression in FGF-1 treated cells. Finally, we observed increased DNA binding of NF-kappaB and AP-1 in FGF-1-treated cells and that mutation of either NF-kappaB or AP-1 response elements prevented MMP-9 promoter activation by FGF-1. Taken together, these results demonstrated that FGF-1-induced MMP-9 expression in ENU1564 cells is associated with increasing DNA binding activities of NF-kappaB and AP-1 and involve activation of a dual signaling pathway, PI3K-Akt and MEK1/2-ERK. (c) 2007 Wiley-Liss, Inc.

  14. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rong; Pineda, Marco; Ajamian, Eunice

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+},more » which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.« less

  15. Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin.

    PubMed

    Lau, W F; Tabernero, L; Sack, J S; Iwanowicz, E J

    1995-08-01

    A novel series of retro-binding tripeptide thrombin active-site inhibitors was recently developed (Iwanowicz, E. I. et al. J. Med. Chem. 1994, 37, 2111(1)). It was hypothesized that the binding mode for these inhibitors is similar to that of the first three N-terminal residues of hirudin. This binding hypothesis was subsequently verified when the crystal structure of a member of this series, BMS-183,507 (N-[N-[N-[4-(Aminoiminomethyl)amino[-1-oxobutyl]-L- phenylalanyl]-L-allo-threonyl]-L-phenylalanine, methyl ester), was determined (Taberno, L.J. Mol. Biol. 1995, 246, 14). The methodology for developing the binding models of these inhibitors, the structure-activity relationships (SAR) and modeling studies that led to the elucidation of the proposed binding mode is described. The crystal structure of BMS-183,507/human alpha-thrombin is compared with the crystal structure of hirudin/human alpha-thrombin (Rydel, T.J. et al. Science 1990, 249,227; Rydel, T.J. et al. J. Mol Biol. 1991, 221, 583; Grutter, M.G. et al. EMBO J. 1990, 9, 2361) and with the computational binding model of BMS-183,507.

  16. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin

    PubMed Central

    Schwarz, Karin; Simons, Matias; Reiser, Jochen; Saleem, Moin A.; Faul, Christian; Kriz, Wihelm; Shaw, Andrey S.; Holzman, Lawrence B.; Mundel, Peter

    2001-01-01

    NPHS2 was recently identified as a gene whose mutations cause autosomal recessive steroid-resistant nephrotic syndrome. Its product, podocin, is a new member of the stomatin family, which consists of hairpin-like integral membrane proteins with intracellular NH2- and COOH-termini. Podocin is expressed in glomerular podocytes, but its subcellular distribution and interaction with other proteins are unknown. Here we show, by immunoelectron microscopy, that podocin localizes to the podocyte foot process membrane, at the insertion site of the slit diaphragm. Podocin accumulates in an oligomeric form in lipid rafts of the slit diaphragm. Moreover, GST pull-down experiments reveal that podocin associates via its COOH-terminal domain with CD2AP, a cytoplasmic binding partner of nephrin, and with nephrin itself. That podocin interacts with CD2AP and nephrin in vivo is shown by coimmunoprecipitation of these proteins from glomerular extracts. Furthermore, in vitro studies reveal direct interaction of podocin and CD2AP. Hence, as with the erythrocyte lipid raft protein stomatin, podocin is present in high-order oligomers and may serve a scaffolding function. We postulate that podocin serves in the structural organization of the slit diaphragm and the regulation of its filtration function. PMID:11733557

  17. Structure-based design of an osteoclast-selective, nonpeptide Src homology 2 inhibitor with in vivo antiresorptive activity

    PubMed Central

    Shakespeare, William; Yang, Michael; Bohacek, Regine; Cerasoli, Franklin; Stebbins, Karin; Sundaramoorthi, Raji; Azimioara, Mihai; Vu, Chi; Pradeepan, Selvi; Metcalf, Chester; Haraldson, Chad; Merry, Taylor; Dalgarno, David; Narula, Surinder; Hatada, Marcos; Lu, Xiaode; van Schravendijk, Marie Rose; Adams, Susan; Violette, Shelia; Smith, Jeremy; Guan, Wei; Bartlett, Catherine; Herson, Jay; Iuliucci, John; Weigele, Manfred; Sawyer, Tomi

    2000-01-01

    Targeted disruption of the pp60src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3′,4′-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 = 0.30 μM for AP22408 and 5.5 μM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model. PMID:10944210

  18. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M.

    1990-08-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate (({sup 3}H)BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of ({sup 3}H)BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited ({sup 3}H)BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealedmore » that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents.« less

  19. o,p'-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Hee; Kim, Ji Young; Kim, Hyung-Kyun

    Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E{sub 2} (PGE{sub 2}), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDTmore » dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-{kappa}B site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT.« less

  20. Crystal structures of eosinophil-derived neurotoxin (EDN) in complex with the inhibitors 5'-ATP, Ap3A, Ap4A, and Ap5A.

    PubMed

    Baker, Matthew D; Holloway, Daniel E; Swaminathan, G Jawahar; Acharya, K Ravi

    2006-01-17

    Eosinophil-derived neurotoxin (EDN) is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. To probe the importance of this enzymatic activity further, specific inhibitors will be of great aid. Derivatives of 5'-ADP are among the most potent inhibitors currently known. Here, we use X-ray crystallography to investigate the binding of four natural nucleotides containing this moiety. 5'-ATP binds in two alternative orientations, one occupying the B2 subsite in a conventional manner and one being a retro orientation with no ordered adenosine moiety. Diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) bind with one adenine positioned at the B2 subsite, the polyphosphate chain extending across the P1 subsite in an ill-defined conformation, and a disordered second adenosine moiety. Diadenosine pentaphosphate (Ap5A), the most avid inhibitor of this series, binds in a completely ordered fashion with one adenine positioned conventionally at the B2 subsite, the polyphosphate chain occupying the P1 and putative P(-1) subsites, and the other adenine bound in a retro-like manner at the edge of the B1 subsite. The binding mode of each of these inhibitors has features seen in previously determined structures of adenosine diphosphates. We examine the structure-affinity relationships of these inhibitors and discuss the implications for the design of improved inhibitors.

  1. Biophysical insights into the interaction of clofazimine with human alpha 1-acid glycoprotein: a multitechnique approach.

    PubMed

    Ajmal, Mohammad Rehan; Almutairi, Fahad; Zaidi, Nida; Alam, Parvez; Siddiqi, Mohammad Khursheed; Khan, Mohsin Vahid; Zaman, Masihuz; Ishtikhar, Mohd; Khan, Rizwan Hasan

    2018-04-25

    Alpha1-acid glycoprotein (AAG) is a major acute phase protein of human plasma. Binding of clofazimine to AAG is investigated using optical spectroscopy and molecular docking tools. We found significant quenching of intrinsic fluorescence of AAG upon the binding of clofazimine, binding mode is static with binding constant of 3.52 × 10 4 at 298 K. The Gibbs free energy change is found to be negative for the interaction of clofazimine with AAG indicating spontaneity of the binding process. Binding of clofazimine induced ordered structure in protein and lead to molecular compaction. Molecular docking results indicate the binding site is located in the central beta barrel, hydrogen bonding and hydrophobic interactions are main bonding forces between AAG-clofazimine.

  2. Structure of the G225P/G226P mutant of mouse 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) ternary complex: implications for the binding of inhibitor and substrate.

    PubMed

    Dhagat, Urmi; Endo, Satoshi; Mamiya, Hiroaki; Hara, Akira; El-Kabbani, Ossama

    2009-03-01

    3(17)alpha-Hydroxysteroid dehydrogenase (AKR1C21) is a unique member of the aldo-keto reductase (AKR) superfamily owing to its ability to reduce 17-ketosteroids to 17alpha-hydroxysteroids, as opposed to other members of the AKR family, which can only produce 17beta-hydroxysteroids. In this paper, the crystal structure of a double mutant (G225P/G226P) of AKR1C21 in complex with the coenzyme NADP(+) and the inhibitor hexoestrol refined at 2.1 A resolution is presented. Kinetic analysis and molecular-modelling studies of 17alpha- and 17beta-hydroxysteroid substrates in the active site of AKR1C21 suggested that Gly225 and Gly226 play an important role in determining the substrate stereospecificity of the enzyme. Additionally, the G225P/G226P mutation of the enzyme reduced the affinity (K(m)) for both 3alpha- and 17alpha-hydroxysteroid substrates by up to 160-fold, indicating that these residues are critical for the binding of substrates.

  3. alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases.

    PubMed Central

    Morvan, F; Rayner, B; Imbach, J L; Thenet, S; Bertrand, J R; Paoletti, J; Malvy, C; Paoletti, C

    1987-01-01

    This paper describes for the first time the synthesis of alpha-oligonucleotides containing the four usual bases. Two unnatural hexadeoxyribonucleotides: alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)], consisting only of alpha-anomeric nucleotide units, were obtained by an improved phosphotriester method, in solution. Starting material was the four base-protected alpha-deoxyribonucleosides 3a-d. Pyrimidine alpha-deoxynucleosides 3a and 3b were prepared by self-anomerization reactions followed by selective deprotection of sugar hydroxyles, while the two purine alpha-deoxynucleosides 3c and 3d were prepared by glycosylation reactions. In the case of guanine alpha-nucleoside derivative a supplementary base-protecting group: N,N-diphenylcarbamoyl was introduced on O6-position in order to avoid side-reactions during oligonucleotide assembling. The hexadeoxynucleotide alpha-[d(CpApTpGpCpG)] was tested as substrate of selected endo- and exonucleases. In conditions where the natural corresponding beta-hexamer was completely degradated by nuclease S1 and calf spleen phosphodiesterase, the alpha-oligonucleotide remained almost intact. PMID:3575096

  4. Prediction of the binding site of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in acetylcholinesterase by docking studies with the SYSDOC program

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    In the preceding paper we reported on a docking study with the SYSDOC program for predicting the binding sites of huperzine A in acetylcholinesterase (AChE) [Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669]. Here we present a prediction of the binding sites of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine (E2020) in AChE by the same method. E2020 is one of the most potent and selective reversible inhibitors of AChE, and this molecule has puzzled researchers, partly due to its flexible structure, in understanding how it binds to AChE. Based on the results of docking 1320 different conformers of E2020 into 69 different conformers of AChE and on the pharmacological data reported for E2020 and its analogs, we predict that both the R- and the S-isomer of E2020 span the whole binding cavity of AChE, with the ammonium group interacting mainly with Trp84, Phe330 and Asp72, the phenyl group interacting mainly with Trp84 and Phe330, and the indanone moiety interacting mainly with Tyr70 and Trp279. The topography of the calculated E2020 binding sites provides insights into understanding the high potency of E2020 in the inhibition of AChE and provides hints as to possible structural modifications for identifying improved AChE inhibitors as potential therapeutics for the palliative treatment of Alzheimer's disease.

  5. Flux variability in the K CA II and H-gamma lines of the AP stars 53 Cam, 41 Tau, Beta CrB, and Alpha(2) CVn

    NASA Astrophysics Data System (ADS)

    Kuvshinov, V. M.; Plachinda, S. I.

    The rapid variability of the relative fluxes in the nuclei of the K Ca II and H-gamma lines of four typical Ap stars, 53 Cam, 41 Tau, Beta CrB, and Alpha(2) CVn, was studied during the period December 1979 - June 1980. Observations were carried out using the scanner-magnetograph of the 2.6-m reflector of the Crimean Astrophysical Observatory. In addition to relative flux variations with the phase of the axial rotation period of the stars, fluctuations of relative fluxes with characteristic times of several minutes to several hours were detected. The upper probability limit for such fluctuations, which are mostly irregular, is estimated at 35 percent for 53 Cam (K Ca II) and 56 percent for Alpha(2) CVn (H-gamma).

  6. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5alpha-reductase activity.

  7. Identification of a GTP-binding protein. cap alpha. subunit that lacks an apparent ADP-ribosylation site for pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, H.K.W.; Yoshimoto, K.K.; Eversole-Cire, P.

    1988-05-01

    Recent molecular cloning of cDNA for the ..cap alpha.. subunit of bovine transducin (a guanine nucleotide-binding regulatory protein, or G protein) has revealed the presence of two retinal-specific transducins, called T/sub r/ and T/sub c/, which are expressed in rod or cone photoreceptor cells. In a further study of G-protein diversity and signal transduction in the retina, the authors have identified a G-protein ..cap alpha.. subunit, which they refer to as G/sub z/..cap alpha.., by isolating a human retinal cDNA clone that cross-hybridizes at reduced stringency with bovine T/sub r/ ..cap alpha..-subunit cDNA. The deduced amino acid sequence of G/submore » z/..cap alpha.. is 41-67% identical with those of other known G-protein ..cap alpha.. subunits. However, the 355-residue G/sub z/..cap alpha.. lacks a consensus site for ADP-ribosylation by pertussis toxin, and its amino acid sequence varies within a number of regions that are strongly conserved among all of the other G-protein ..cap alpha.. subunits. They suggest that G/sub z/..cap alpha.., which appears to be highly expressed in neural tissues, represents a member of a subfamily of G proteins that mediate signal transduction in pertussis toxin-insensitive systems.« less

  8. The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1).

    PubMed

    Ha, Sung Chul; Choi, Jongkeun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2009-02-01

    The Z-DNA conformation preferentially occurs at alternating purine-pyrimidine repeats, and is specifically recognized by Z alpha domains identified in several Z-DNA-binding proteins. The binding of Z alpha to foreign or chromosomal DNA in various sequence contexts is known to influence various biological functions, including the DNA-mediated innate immune response and transcriptional modulation of gene expression. For these reasons, understanding its binding mode and the conformational diversity of Z alpha bound Z-DNAs is of considerable importance. However, structural studies of Z alpha bound Z-DNA have been mostly limited to standard CG-repeat DNAs. Here, we have solved the crystal structures of three representative non-CG repeat DNAs, d(CACGTG)(2), d(CGTACG)(2) and d(CGGCCG)(2) complexed to hZ alpha(ADAR1) and compared those structures with that of hZ alpha(ADAR1)/d(CGCGCG)(2) and the Z alpha-free Z-DNAs. hZ alpha(ADAR1) bound to each of the three Z-DNAs showed a well conserved binding mode with very limited structural deviation irrespective of the DNA sequence, although varying numbers of residues were in contact with Z-DNA. Z-DNAs display less structural alterations in the Z alpha-bound state than in their free form, thereby suggesting that conformational diversities of Z-DNAs are restrained by the binding pocket of Z alpha. These data suggest that Z-DNAs are recognized by Z alpha through common conformational features regardless of the sequence and structural alterations.

  9. Structure and dynamics of calmodulin in solution.

    PubMed Central

    Wriggers, W; Mehler, E; Pitici, F; Weinstein, H; Schulten, K

    1998-01-01

    To characterize the dynamic behavior of calmodulin in solution, we have carried out molecular dynamics (MD) simulations of the Ca2+-loaded structure. The crystal structure of calmodulin was placed in a solvent sphere of radius 44 A, and 6 Cl- and 22 Na+ ions were included to neutralize the system and to model a 150 mM salt concentration. The total number of atoms was 32,867. During the 3-ns simulation, the structure exhibits large conformational changes on the nanosecond time scale. The central alpha-helix, which has been shown to unwind locally upon binding of calmodulin to target proteins, bends and unwinds near residue Arg74. We interpret this result as a preparative step in the more extensive structural transition observed in the "flexible linker" region 74-82 of the central helix upon complex formation. The major structural change is a reorientation of the two Ca2+-binding domains with respect to each other and a rearrangement of alpha-helices in the N-terminus domain that makes the hydrophobic target peptide binding site more accessible. This structural rearrangement brings the domains to a more favorable position for target binding, poised to achieve the orientation observed in the complex of calmodulin with myosin light-chain kinase. Analysis of solvent structure reveals an inhomogeneity in the mobility of water in the vicinity of the protein, which is attributable to the hydrophobic effect exerted by calmodulin's binding sites for target peptides. PMID:9545028

  10. Molecular cloning and nucleotide sequence of the alpha and beta subunits of allophycocyanin from the cyanelle genome of Cyanophora paradoxa.

    PubMed Central

    Bryant, D A; de Lorimier, R; Lambert, D H; Dubbs, J M; Stirewalt, V L; Stevens, S E; Porter, R D; Tam, J; Jay, E

    1985-01-01

    The genes for the alpha- and beta-subunit apoproteins of allophycocyanin (AP) were isolated from the cyanelle genome of Cyanophora paradoxa and subjected to nucleotide sequence analysis. The AP beta-subunit apoprotein gene was localized to a 7.8-kilobase-pair Pst I restriction fragment from cyanelle DNA by hybridization with a tetradecameric oligonucleotide probe. Sequence analysis using that oligonucleotide and its complement as primers for the dideoxy chain-termination sequencing method confirmed the presence of both AP alpha- and beta-subunit genes on this restriction fragment. Additional oligonucleotide primers were synthesized as sequencing progressed and were used to determine rapidly the nucleotide sequence of a 1336-base-pair region of this cloned fragment. This strategy allowed the sequencing to be completed without a detailed restriction map and without extensive and time-consuming subcloning. The sequenced region contains two open reading frames whose deduced amino acid sequences are 81-85% homologous to cyanobacterial and red algal AP subunits whose amino acid sequences have been determined. The two open reading frames are in the same orientation and are separated by 39 base pairs. AP alpha is 5' to AP beta and both coding sequences are preceded by a polypurine, Shine-Dalgarno-type sequence. Sequences upstream from AP alpha closely resemble the Escherichia coli consensus promoter sequences and also show considerable homology to promoter sequences for several chloroplast-encoded psbA genes. A 56-base-pair palindromic sequence downstream from the AP beta gene could play a role in the termination of transcription or translation. The allophycocyanin apoprotein subunit genes are located on the large single-copy region of the cyanelle genome. PMID:2987916

  11. Synthesis and biological evaluation of novel 2,3-disubstituted benzofuran analogues of GABA as neurotropic agents.

    PubMed

    Coaviche-Yoval, Arturo; Luna, Hector; Tovar-Miranda, Ricardo; Soriano-Ursua, Marvin Antonio; Trujillo-Ferrara, Jose G

    2018-05-23

    Benzofurans are heterocyclic compounds with neurotropic activity. Some have been developed for the treatment of acute and degenerative neuronal injuries. To evaluate the in silico binding of some promising benzofurans on the GABA receptors, and the in vivo neurotropic activity of benzofuran analogues (BZF 6-10) of gamma-aminobutyric acid (GABA) on a seizure model. The ligands with the best physicochemical attributes were docked on two GABA receptors (the alpha-1 subunit of GABAA-R and GBR1 subunit of GABAB-R). Selected benzofuran derivatives were synthesized by a multistep procedure and characterized. To examine the neurotropic effects, mice were pretreated with different concentrations of the compounds prior to PTZ- or 4-AP-induced seizures. We assessed acute toxicity, motor behavior, and the effects on seizures. The tested ligands that complied with Lipinski's rule of five were tested in silico with GABAA-R (ΔG = -5.51 to -5.84 kcal/mol) at the allosteric site for benzodiazepines. They bound to a similar cluster of residues as the reference compound (gaboxadol, ΔG = -5.51 kcal/mol). Synthesis was achieved with good overall yields (42-9.7%). Two compounds were selected for biological tests (BZF-7 and rac-BZF-10) on a mouse model of seizures, induced by pentylenetetrazol (PTZ) or 4-aminopyridine (4-AP). PTZ-induced seizures are associated with GABA receptors, and those 4-AP-induced with the blockage of the delayed rectifier-type potassium channel, which promotes the release of the NMDA-sensitive glutamatergic ionotropic receptor and other neurotransmitters. The biological assays demonstrated that BZF-7 and rac-BZF-10 do not protect against seizures. Indeed, BZF-7 increased the number of PTZ-induced seizures and decreased latency time. The 4-AP model apparently showed a potentiation of seizure effects after administration of the BZF-analogues, evidenced by the incidence and severity of the seizures and reduced latency time. The results suggest that the test compounds are GABAergic antagonists with stimulatory activity on the CNS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Topographic antigenic determinants recognized by monoclonal antibodies on human choriogonadotropin beta-subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidart, J.M.; Troalen, F.; Salesse, R.

    1987-06-25

    We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptidesmore » spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex.« less

  13. Binding-dependent disorder-order transition in PKI alpha: a fluorescence anisotropy study.

    PubMed

    Hauer, J A; Taylor, S S; Johnson, D A

    1999-05-25

    The conformational flexibility of peptidyl ligands may be an essential element of many peptide-macromolecular interactions. Consequently, the alpha-carbonyl backbone flexibility of the 8 kDa protein kinase inhibitor (PKI alpha) peptide of cAMP-dependent protein kinase (cAPK) free in solution and bound to cAPK was assessed by time-resolved fluorescence anisotropy. Specifically, three full-length, single-site PKI alpha mutants (V3C, S28C, and S59C) were prepared, and fluorescein iodoacetamide (FI) was selectively conjugated to the side chains of each substituted cysteine. The time-resolved anisotropy decay profiles of the labeled mutants were well fit to a model-free nonassociative biexponential equation. Free in solution, the three labeled proteins had very similar anisotropy decays arising primarily from local alpha-carbonyl backbone movements. Only a small fraction of the anisotropy decay was associated with slower, whole-body tumbling, confirming that PKI alpha is highly disordered at all three locations. Complexation of the mutants with the catalytic (C) subunit of cAPK decreased the rate of whole-body tumbling for all three mutants. The effects on the rapid decay processes, however, were dependent upon the site of conjugation. The anisotropy decay profiles of both FI-V3C- and FI-S28C-PKI alpha were associated with significantly reduced contributions from the fast decay processes, while that of FI-S59C-PKI alpha was largely unaffected by binding to the C-subunit. The results suggest that the cAPK-binding domain of PKI alpha extends from the its N-terminus to residues beyond Ser28 but does not include the segment around Ser59, which is still part of a highly flexible domain when bound to the C-subunit.

  14. Hepatocyte nuclear factor-4alpha is a central transactivator of the mouse Ntcp gene.

    PubMed

    Geier, Andreas; Martin, Ina V; Dietrich, Christoph G; Balasubramaniyan, Natarajan; Strauch, Sonja; Suchy, Frederick J; Gartung, Carsten; Trautwein, Christian; Ananthanarayanan, Meenakshisundaram

    2008-08-01

    Sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake system for conjugated bile acids. Deletions of hepatocyte nuclear factor (HNF)-1alpha and retinoid X receptor-alpha:retinoic acid receptor-alpha binding sites in the mouse 5'-flanking region corresponding to putatively central regulatory elements of rat Ntcp do not significantly reduce promoter activity. We hypothesized that HNF-4alpha, which is increasingly recognized as a central regulator of hepatocyte function, may directly transactivate mouse (mNtcp). A 1.1-kb 5'-upstream region including the mouse Ntcp promoter was cloned and compared with the rat promoter. In contrast to a moderate 3.5-fold activation of mNtcp by HNF-1alpha, HNF-4alpha cotransfection led to a robust 20-fold activation. Deletion analysis of mouse and rat Ntcp promoters mapped a conserved HNF-4alpha consensus site at -345/-326 and -335/-316 bp, respectively. p-475bpmNtcpLUC is not transactivated by HNF-1alpha but shows a 50-fold enhanced activity upon cotransfection with HNF-4alpha. Gel mobility shift assays demonstrated a complex of the HNF-4alpha-element formed with liver nuclear extracts that was blocked by an HNF-4alpha specific antibody. HNF-4alpha binding was confirmed by chromatin immunoprecipitation. Using Hepa 1-6 cells, HNF-4alpha-knockdown resulted in a significant 95% reduction in NTCP mRNA. In conclusion, mouse Ntcp is regulated by HNF-4alpha via a conserved distal cis-element independently of HNF-1alpha.

  15. Structure of human cytosolic phenylalanyl-tRNA synthetase: evidence for kingdom-specific design of the active sites and tRNA binding patterns.

    PubMed

    Finarov, Igal; Moor, Nina; Kessler, Naama; Klipcan, Liron; Safro, Mark G

    2010-03-10

    The existence of three types of phenylalanyl-tRNA synthetase (PheRS), bacterial (alphabeta)(2), eukaryotic/archaeal cytosolic (alphabeta)(2), and mitochondrial alpha, is a prominent example of structural diversity within the aaRS family. PheRSs have considerably diverged in primary sequences, domain compositions, and subunit organizations. Loss of the anticodon-binding domain B8 in human cytosolic PheRS (hcPheRS) is indicative of variations in the tRNA(Phe) binding and recognition as compared to bacterial PheRSs. We report herein the crystal structure of hcPheRS in complex with phenylalanine at 3.3 A resolution. A novel structural module has been revealed at the N terminus of the alpha subunit. It stretches out into the solvent of approximately 80 A and is made up of three structural domains (DBDs) possessing DNA-binding fold. The dramatic reduction of aminoacylation activity for truncated N terminus variants coupled with structural data and tRNA-docking model testify that DBDs play crucial role in hcPheRS activity.

  16. Modeling Tight Junction Dynamics and Oscillations

    PubMed Central

    Kassab, Fuad; Marques, Ricardo Paulino; Lacaz-Vieira, Francisco

    2002-01-01

    Tight junction (TJ) permeability responds to changes of extracellular Ca2+ concentration. This can be gauged through changes of the transepithelial electrical conductance (G) determined in the absence of apical Na+. The early events of TJ dynamics were evaluated by the fast Ca2+ switch assay (FCSA) (Lacaz-Vieira, 2000), which consists of opening the TJs by removing basal calcium (Ca2+ bl) and closing by returning Ca2+ bl to normal values. Oscillations of TJ permeability were observed when Ca2+ bl is removed in the presence of apical calcium (Ca2+ ap) and were interpreted as resulting from oscillations of a feedback control loop which involves: (a) a sensor (the Ca2+ binding sites of zonula adhaerens), (b) a control unit (the cell signaling machinery), and (c) an effector (the TJs). A mathematical model to explain the dynamical behavior of the TJs and oscillations was developed. The extracellular route (ER), which comprises the paracellular space in series with the submucosal interstitial fluid, was modeled as a continuous aqueous medium having the TJ as a controlled barrier located at its apical end. The ER was approximated as a linear array of cells. The most apical cell is separated from the apical solution by the TJ and this cell bears the Ca2+ binding sites of zonula adhaerens that control the TJs. According to the model, the control unit receives information from the Ca2+ binding sites and delivers a signal that regulates the TJ barrier. Ca2+ moves along the ER according to one-dimensional diffusion following Fick's second law. Across the TJ, Ca2+ diffusion follows Fick's first law. Our first approach was to simulate the experimental results in a semiquantitative way. The model tested against experiment results performed in the frog urinary bladder adequately predicts the responses obtained in different experimental conditions, such as: (a) TJ opening and closing in a FCSA, (b) opening by the presence of apical Ca2+ and attainment of a new steady-state, (c) the escape phase which follows the halt of TJ opening induced by apical Ca2+, (d) the oscillations of TJ permeability, and (e) the effect of Ca2+ ap concentration on the frequency of oscillations. PMID:12149284

  17. Modulation of KvAP Unitary Conductance and Gating by 1-Alkanols and Other Surface Active Agents

    PubMed Central

    Finol-Urdaneta, Rocio K.; McArthur, Jeffrey R.; Juranka, Peter F.; French, Robert J.; Morris, Catherine E.

    2010-01-01

    Abstract The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains. PMID:20197029

  18. Role of neutralizing antibodies and T-cells in pathogenesis of herpes simplex virus infection in congenitally athymic mice.

    PubMed

    Kapoor, A K; Buckmaster, A; Nash, A A; Field, H J; Wildy, P

    1982-11-01

    Congenitally athymic nude mice were infected with 10(4) p.f.u. herpes simplex type 1 (strain SC16). Following the passive transfer of neutralizing monoclonal antibodies (AP7, AP8 and AP12) it was observed that AP7 alone reduced the virus infectivity in the nervous system; AP8 and AP12 failed to protect mice probably due to poor in vivo binding to the neutralization site on the virus. Latent ganglionic infection could be established in nude mice following adoptive transfer of optimum number (2 x 10(7) cells/mouse) of immune lymph node cells from day 7 herpes virus-infected hairy immunocompetent donor mice. Moreover, in some of the immune lymph node cell protected nudes, latency could be maintained even in complete absence of neutralizing antibodies. Results of ear-ablation experiments revealed that removal of primary source of infection after day 5 of infection reduced the amount of virus in the ganglia and spinal cord. Acute neurological infection was not detected following transfer of protective anti-gp-D neutralizing antibody (LP2) in combination with removal of infected pinna. These data suggest that continuous seeding of virus occurs in related ganglia via the axonal route from infected ear pinna. It appears that local T-cell-mediated immune mechanisms are involved in maintenance of latency.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepor, H.; Rigaud, G.; Shapiro, E.

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greatermore » in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments.« less

  20. In vitro and in vivo binding of (E)- and (Z)-N-(iodoallyl)spiperone to dopamine D sub 2 and serotonin 5-HT sub 2 neuroreceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, J.R.; Scheffel, U.A.; Stathis, M.

    1990-01-01

    Apparent affinities (K{sub i}) of (E)- and (Z)-N-(iodoallyl)spiperone ((E)- and (Z)- NIASP) for dopamine D{sub 2} and serotonin 5-HT{sub 2} receptors were determined in competition binding assays. (Z)-NIASP (K{sub i} 0.35 nM, D{sub 2}; K{sub i} 1.75 nM, 5-HT{sub 2}) proved slightly more potent and selective for D{sub 2} sites in vitro than (E)-NIASP (K{sub i} 0.72 nM, D{sub 2}; K{sub i} 1.14 nM, 5-HT{sub 2}). In vivo, radioiodinated (E)- and (Z)-({sup 125}I)-NIASP showed regional distributions in mouse brain which are consonant with prolonged binding to dopamine D{sub 2} receptors accompanied by a minor serotonergic component of shorter duration. Stereoselective,more » dose-dependent blockade of (E)-({sup 125}I)-NIASP uptake was found for drugs binding to dopamine D{sub 2} sites, while drugs selective for serotonin 5-HT{sub 2}, {alpha}{sub 1}-adrenergic and dopamine D{sub 1} receptors did not inhibit radioligand binding 2 hr postinjection. Specific binding in striatal tissue was essentially irreversible over the time course of the study, and (E)-({sup 125}I)-NIASP gave a striatal to cerebellar tissue radioactivity concentration of 16.9 to 1 at 6 hr postinjection. Thus, (E)-({sup 125}I)-NIASP binds with high selectivity and specificity to dopamine D{sub 2} sites in vivo.« less

  1. Acetylcholine receptors in the human retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer ofmore » the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.« less

  2. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia.

    PubMed

    Boord, Jeffrey B; Maeda, Kazuhisa; Makowski, Liza; Babaev, Vladimir R; Fazio, Sergio; Linton, MacRae F; Hotamisligil, Gökhan S

    2002-10-01

    The adipocyte fatty acid-binding protein, aP2, has important effects on insulin resistance, lipid metabolism, and atherosclerosis. Its expression in macrophages enhances early foam cell formation and atherosclerosis in vivo. This study was designed to determine whether aP2 deficiency has a similar effect in the setting of advanced atherosclerosis and severe hypercholesterolemia. Mice deficient in aP2 and apolipoprotein E (aP2(-/-)apoE(-/-) mice) and apolipoprotein E-deficient control mice (apoE(-/-) mice) were fed a Western diet for 14 weeks. No significant differences in fasting serum levels of cholesterol, triglycerides, or free fatty acids were found between groups for each sex. Compared with apoE(-/-) control mice, male and female aP2(-/-)apoE(-/-) mice had significant reductions in mean atherosclerotic lesion size in the proximal aorta, en face aorta, and innominate/right carotid artery. Feeding the Western diet in the apoE-deficient background did not cause a significant reduction in insulin sensitivity in vivo, as determined by steady-state serum glucose levels and insulin tolerance testing. These data demonstrate an important role for aP2 expression in the advanced stages of atherosclerotic lesion formation. Thus, aP2 provides an important physiological link between different features of the metabolic syndrome and is a potential target for therapy of atherosclerosis.

  3. Segregation of two spectrin isoforms: polarized membrane-binding sites direct polarized membrane skeleton assembly.

    PubMed

    Dubreuil, R R; Maddux, P B; Grushko, T A; MacVicar, G R

    1997-10-01

    Spectrin isoforms are often segregated within specialized plasma membrane subdomains where they are thought to contribute to the development of cell surface polarity. It was previously shown that ankyrin and beta spectrin are recruited to sites of cell-cell contact in Drosophila S2 cells expressing the homophilic adhesion molecule neuroglian. Here, we show that neuroglian has no apparent effect on a second spectrin isoform (alpha beta H), which is constitutively associated with the plasma membrane in S2 cells. Another membrane marker, the Na,K-ATPase, codistributes with ankyrin and alpha beta spectrin at sites of neuroglian-mediated contact. The distributions of these markers in epithelial cells in vivo are consistent with the order of events observed in S2 cells. Neuroglian, ankyrin, alpha beta spectrin, and the Na,K-ATPase colocalize at the lateral domain of salivary gland cells. In contrast, alpha beta H spectrin is sorted to the apical domain of salivary gland and somatic follicle cells. Thus, the two spectrin isoforms respond independently to positional cues at the cell surface: in one case an apically sorted receptor and in the other case a locally activated cell-cell adhesion molecule. The results support a model in which the membrane skeleton behaves as a transducer of positional information within cells.

  4. NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class

    PubMed Central

    Haubrock, Martin; Hartmann, Fabian; Wingender, Edgar

    2016-01-01

    ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions. PMID:27517874

  5. Novel humic acid-bonded magnetite nanoparticles for protein immobilization.

    PubMed

    Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. PKC-dependent stimulation of the human MCT1 promoter involves transcription factor AP2.

    PubMed

    Saksena, Seema; Dwivedi, Alka; Gill, Ravinder K; Singla, Amika; Alrefai, Waddah A; Malakooti, Jaleh; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2009-02-01

    Monocarboxylate transporter (MCT1) plays an important role in the absorption of short-chain fatty acids (SCFA) such as butyrate in the human colon. Previous studies from our laboratory have demonstrated that phorbol ester, PMA (1 microM, 24 h), upregulates butyrate transport and MCT1 protein expression in human intestinal Caco-2 cells. However, the molecular mechanisms involved in the transcriptional regulation of MCT1 gene expression by PMA in the intestine are not known. In the present study, we showed that PMA (0.1 microM, 24 h) increased the MCT1 promoter activity (-871/+91) by approximately fourfold. A corresponding increase in MCT1 mRNA abundance in response to PMA was also observed. PMA-induced stimulation of MCT1 promoter activity was observed as early as 1 h and persisted until 24 h, suggesting that the effects of PMA are attributable to initial PKC activation. Kinase inhibitor and phosphorylation studies indicated that these effects may be mediated through activation of the atypical PKC-zeta isoform. 5'-deletion studies demonstrated that the MCT1 core promoter region (-229/+91) is the PMA-responsive region. Site-directed mutagenesis studies showed the predominant involvement of potential activator protein 2 (AP2) binding site in the activation of MCT1 promoter activity by PMA. In addition, overexpression of AP2 in Caco-2 cells significantly increased MCT1 promoter activity in a dose-dependent manner. These findings showing the regulation of MCT1 promoter by PKC and AP2 are of significant importance for an understanding of the molecular regulation of SCFA absorption in the human intestine.

  7. Use of polyclonal and monoclonal antibodies to study hCG-receptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milius, R.P.

    1985-01-01

    Although the glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) bind to different receptors, each contains an identical alpha subunit. Specificity is somehow endowed by theta subunits which are distinct for each hormone. Human choriogonadotropin (hCG) is a natural LH analog that contains a beta subunit nearly identical to that of LH. The roles of these subunits in the recognition and high affinity binding of hCG to receptor was examined. Polyclonal and monoclonal antibodies specific for the individual subunits of hCG were used to probe the hormone-receptor interaction. Conformation-specific and sequence-specific antibodies were examined for their abilities to bindmore » Triton X-100-solubilized /sup 125/I-hCG-receptor complex and to inhibit hormone binding to crude rat ovarian membranes containing receptor. Even though the immunoreactive sites are not located on the receptor binding surface of the beta subunit, most, but not all, of these polyclonal and monoclonal antibodies were able to inhibit /sup 125/I-hCG binding to receptor. Although the inhibition of binding may be due to steric interference due to the size of the antibody molecules, a two-step model for hCG binding to receptor is presented that also explains these results. In this model, the beta subunit initially binds with the receptor with a highly specific but low affinity interaction. This activates a site for the high affinity binding of the alpha subunit and stabilization of the complex. This is an attractive model as it may be applied to other glycoprotein hormones sharing an alpha subunit.« less

  8. A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell sublineages.

    PubMed Central

    Kim, S; Ip, H S; Lu, M M; Clendenin, C; Parmacek, M S

    1997-01-01

    The SM22alpha promoter has been used as a model system to define the molecular mechanisms that regulate smooth muscle cell (SMC) specific gene expression during mammalian development. The SM22alpha gene is expressed exclusively in vascular and visceral SMCs during postnatal development and is transiently expressed in the heart and somites during embryogenesis. Analysis of the SM22alpha promoter in transgenic mice revealed that 280 bp of 5' flanking sequence is sufficient to restrict expression of the lacZ reporter gene to arterial SMCs and the myotomal component of the somites. DNase I footprint and electrophoretic mobility shift analyses revealed that the SM22alpha promoter contains six nuclear protein binding sites (designated smooth muscle elements [SMEs] -1 to -6, respectively), two of which bind serum response factor (SRF) (SME-1 and SME-4). Mutational analyses demonstrated that a two-nucleotide substitution that selectively eliminates SRF binding to SME-4 decreases SM22alpha promoter activity in arterial SMCs by approximately 90%. Moreover, mutations that abolish binding of SRF to SME-1 and SME-4 or mutations that eliminate each SME-3 binding activity totally abolished SM22alpha promoter activity in the arterial SMCs and somites of transgenic mice. Finally, we have shown that a multimerized copy of SME-4 (bp -190 to -110) when linked to the minimal SM22alpha promoter (bp -90 to +41) is necessary and sufficient to direct high-level transcription in an SMC lineage-restricted fashion. Taken together, these data demonstrate that distinct transcriptional regulatory programs control SM22alpha gene expression in arterial versus visceral SMCs. Moreover, these data are consistent with a model in which combinatorial interactions between SRF and other transcription factors that bind to SME-4 (and that bind directly to SRF) activate transcription of the SM22alpha gene in arterial SMCs. PMID:9121477

  9. Binding and Inactivation Mechanism of a Humanized Fatty Acid Amide Hydrolase by [alpha]-Ketoheterocycle Inhibitors Revealed from Cocrystal Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mileni, Mauro; Garfunkle, Joie; DeMartino, Jessica K.

    The cocrystal X-ray structures of two isomeric {alpha}-ketooxazole inhibitors (1 (OL-135) and 2) bound to fatty acid amide hydrolase (FAAH), a key enzymatic regulator of endocannabinoid signaling, are disclosed. The active site catalytic Ser241 is covalently bound to the inhibitors electrophilic carbonyl groups, providing the first structures of FAAH bound to an inhibitor as a deprotonated hemiketal mimicking the enzymatic tetrahedral intermediate. The work also offers a detailed view of the oxyanion hole and an exceptional 'in-action' depiction of the unusual Ser-Ser-Lys catalytic triad. These structures capture the first picture of inhibitors that span the active site into the cytosolicmore » port providing new insights that help to explain FAAH's interaction with substrate leaving groups and their role in modulating inhibitor potency and selectivity. The role for the activating central heterocycle is clearly defined and distinguished from that observed in prior applications with serine proteases, reconciling the large electronic effect of attached substituents found unique to this class of inhibitors with FAAH. Additional striking active site flexibility is seen upon binding of the inhibitors, providing insights into the existence of a now well-defined membrane access channel with the disappearance of a spatially independent portion of the acyl chain-binding pocket. Finally, comparison of the structures of OL-135 (1) and its isomer 2 indicates that they bind identically to FAAH, albeit with reversed orientations of the central activating heterocycle, revealing that the terminal 2-pyridyl substituent and the acyl chain phenyl group provide key anchoring interactions and confirming the distinguishing role of the activating oxazole.« less

  10. Analogs of methyllycaconitine as novel noncompetitive inhibitors of nicotinic receptors: pharmacological characterization, computational modeling, and pharmacophore development.

    PubMed

    McKay, Dennis B; Chang, Cheng; González-Cestari, Tatiana F; McKay, Susan B; El-Hajj, Raed A; Bryant, Darrell L; Zhu, Michael X; Swaan, Peter W; Arason, Kristjan M; Pulipaka, Aravinda B; Orac, Crina M; Bergmeier, Stephen C

    2007-05-01

    As a novel approach to drug discovery involving neuronal nicotinic acetylcholine receptors (nAChRs), our laboratory targeted nonagonist binding sites (i.e., noncompetitive binding sites, negative allosteric binding sites) located on nAChRs. Cultured bovine adrenal cells were used as neuronal models to investigate interactions of 67 analogs of methyllycaconitine (MLA) on native alpha3beta4* nAChRs. The availability of large numbers of structurally related molecules presents a unique opportunity for the development of pharmacophore models for noncompetitive binding sites. Our MLA analogs inhibited nicotine-mediated functional activation of both native and recombinant alpha3beta4* nAChRs with a wide range of IC(50) values (0.9-115 microM). These analogs had little or no inhibitory effects on agonist binding to native or recombinant nAChRs, supporting noncompetitive inhibitory activity. Based on these data, two highly predictive 3D quantitative structure-activity relationship (comparative molecular field analysis and comparative molecular similarity index analysis) models were generated. These computational models were successfully validated and provided insights into the molecular interactions of MLA analogs with nAChRs. In addition, a pharmacophore model was constructed to analyze and visualize the binding requirements to the analog binding site. The pharmacophore model was subsequently applied to search structurally diverse molecular databases to prospectively identify novel inhibitors. The rapid identification of eight molecules from database mining and our successful demonstration of in vitro inhibitory activity support the utility of these computational models as novel tools for the efficient retrieval of inhibitors. These results demonstrate the effectiveness of computational modeling and pharmacophore development, which may lead to the identification of new therapeutic drugs that target novel sites on nAChRs.

  11. Genome-wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean

    PubMed Central

    Kavas, Musa; Kizildogan, Aslihan; Gökdemir, Gökhan; Baloglu, Mehmet Cengiz

    2015-01-01

    Apetala2-ethylene-responsive element binding factor (AP2-ERF) superfamily with common AP2-DNA binding domain have developmentally and physiologically important roles in plants. Since common bean genome project has been completed recently, it is possible to identify all of the AP2-ERF genes in the common bean genome. In this study, a comprehensive genome-wide in silico analysis identified 180 AP2-ERF superfamily genes in common bean (Phaseolus vulgaris). Based on the amino acid alignment and phylogenetic analyses, superfamily members were classified into four subfamilies: DREB (54), ERF (95), AP2 (27) and RAV (3), as well as one soloist. The physical and chemical characteristics of amino acids, interaction between AP2-ERF proteins, cis elements of promoter region of AP2-ERF genes and phylogenetic trees were predicted and analyzed. Additionally, expression levels of AP2-ERF genes were evaluated by in silico and qRT-PCR analyses. In silico micro-RNA target transcript analyses identified nearly all PvAP2-ERF genes as targets of by 44 different plant species' miRNAs were identified in this study. The most abundant target genes were PvAP2/ERF-20-25-62-78-113-173. miR156, miR172 and miR838 were the most important miRNAs found in targeting and BLAST analyses. Interactome analysis revealed that the transcription factor PvAP2-ERF78, an ortholog of Arabidopsis At2G28550, was potentially interacted with at least 15 proteins, indicating that it was very important in transcriptional regulation. Here we present the first study to identify and characterize the AP2-ERF transcription factors in common bean using whole-genome analysis, and the findings may serve as a references for future functional research on the transcription factors in common bean. PMID:27152109

  12. Estrogen and/or Estrogen Receptor α Inhibits BNIP3-Induced Apoptosis and Autophagy in H9c2 Cardiomyoblast Cells.

    PubMed

    Chen, Bih-Cheng; Weng, Yi-Jiun; Shibu, Marthandam Asokan; Han, Chien-Kuo; Chen, Yueh-Sheng; Shen, Chia-Yao; Lin, Yueh-Min; Viswanadha, Vijaya Padma; Liang, Hsin-Yueh; Huang, Chih-Yang

    2018-04-26

    The process of autophagy in heart cells maintains homeostasis during cellular stress such as hypoxia by removing aggregated proteins and damaged organelles and thereby protects the heart during the times of starvation and ischemia. However, autophagy can lead to substantial cell death under certain circumstances. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a hypoxia-induced marker, has been shown to induce both autophagy and apoptosis. A BNIP3-docked organelle, e.g., mitochondria, also determines whether autophagy or apoptosis will take place. Estrogen (E2) and estrogen receptor (ER) alpha (ERα) have been shown to protect the heart against mitochondria-dependent apoptosis. The aim of the present study is to investigate the mechanisms by which ERα regulates BNIP3-induced apoptosis and autophagy, which is associated with hypoxic injury, in cardiomyoblast cells. An in vitro model to mimic hypoxic injury in the heart by engineering H9c2 cardiomyoblast cells to overexpress BNIP3 was established. Further, the effects of E2 and ERα in BNIP3-induced apoptosis and autophagy were determined in BNIP3 expressing H9c2 cells. Results from TUNEL assay and Immunoflourecense assay for LC3 puncta formation, respectively, revealed that ERα/E2 suppresses BNIP3-induced apoptosis and autophagy. The Western blot analysis showed ERα/E2 decreases the protein levels of caspase 3 (apoptotic marker), Atg5, and LC3-II (autophagic markers). Co-immunoprecipitation of BNIP3 and immunoblotting of Bcl-2 and Rheb showed that ERα reduced the interaction between BNIP3 and Bcl-2 or Rheb. The results confirm that ERα binds to BNIP3 causing a reduction in the levels of functional BNIP3 and thereby inhibits cellular apoptosis and autophagy. In addition, ERα attenuated the activity of the BNIP3 promoter by binding to SP-1 or NFκB sites.

  13. Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Strzalka, J; Tronin, A

    2009-01-01

    We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescencemore » is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.« less

  14. Structural Basis for High Affinity Volatile Anesthetic Binding in a Natural 4-helix Bundle Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,R.; Loll, P.; Eckenhoff, R.

    2005-01-01

    Physiologic sites for inhaled anesthetics are presumed to be cavities within transmembrane 4-{alpha}-helix bundles of neurotransmitter receptors, but confirmation of binding and structural detail of such sites remains elusive. To provide such detail, we screened soluble proteins containing this structural motif, and found only one that exhibited evidence of strong anesthetic binding. Ferritin is a 24-mer of 4-{alpha}-helix bundles; both halothane and isoflurane bind with K{sub A} values of {approx}10{sup 5} M{sup -1, } higher than any previously reported inhaled anesthetic-protein interaction. The crystal structures of the halothane/apoferritin and isoflurane/apoferritin complexes were determined at 1.75 Angstroms resolution, revealing a commonmore » anesthetic binding pocket within an interhelical dimerization interface. The high affinity is explained by several weak polar contacts and an optimal host/guest packing relationship. Neither the acidic protons nor ether oxygen of the anesthetics contribute to the binding interaction. Compared with unliganded apoferritin, the anesthetic produced no detectable alteration of structure or B factors. The remarkably high affinity of the anesthetic/apoferritin complex implies greater selectivity of protein sites than previously thought, and suggests that direct protein actions may underlie effects at lower than surgical levels of anesthetic, including loss of awareness.« less

  15. Diadenosine Tetraphosphate Hydrolase Is Part of the Transcriptional Regulation Network in Immunologically Activated Mast Cells▿

    PubMed Central

    Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav

    2008-01-01

    We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap4A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap4A, suggesting that Ap4A is a second messenger in this context. For Ap4A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolize Ap4A, we provided here evidence that the “Nudix” type 2 gene product, Ap4A hydrolase, is responsible for Ap4A degradation following the immunological activation of mast cells. The knockdown of Ap4A hydrolase modulated Ap4A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap4A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the β-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap4A as a second messenger in the regulation of gene expression. PMID:18644867

  16. Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells.

    PubMed

    Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav

    2008-09-01

    We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap(4)A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap(4)A, suggesting that Ap(4)A is a second messenger in this context. For Ap(4)A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolyze Ap(4)A, we provided here evidence that the "Nudix" type 2 gene product, Ap(4)A hydrolase, is responsible for Ap(4)A degradation following the immunological activation of mast cells. The knockdown of Ap(4)A hydrolase modulated Ap(4)A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap(4)A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the beta-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap(4)A as a second messenger in the regulation of gene expression.

  17. Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Rates, Sara; Camarasa, Jordi; Escubedo, Elena

    2007-09-15

    Previous work from our group indicated that {alpha}7 nicotinic acetylcholine receptors ({alpha}7 nAChR) potentially play a role in methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. The aims of the present study were two-fold: (1) to demonstrate the interaction of METH and MDMA with homomeric {alpha}7 nAChR ([{sup 3}H]methyllycaconitine binding) and other heteromeric subtypes ([{sup 3}H]epibatidine binding); and (2) to show the effects of amphetamine derivative pretreatment on the density of binding sites. METH and MDMA displaced [{sup 3}H]methyllycaconitine and [{sup 3}H]epibatidine binding in membranes from NGF-differentiated PC 12 cells and mouse brain, with K{sub i} values in the micromolar range, MDMAmore » revealing a greater affinity than METH. In addition, METH and MDMA induced a time- and concentration-dependent increase in [{sup 3}H]methyllycaconitine and [{sup 3}H]epibatidine binding; which had already been apparent after 6 h of pretreatment, and which peaked in differentiated PC 12 cells after 48 h. The highest increases were found in [{sup 3}H]epibatidine binding, with MDMA inducing higher increases than METH. Treatment with METH and MDMA increased B{sub max} of high-affinity sites for both radioligands without affecting K{sub d}. The heightened binding was inhibited by pretreatment with cycloheximide, suggesting the participation of newly synthesised proteins while inhibition of protein trafficking to plasma membrane did not block up-regulation. The effects of protein kinase and cyclophilin inhibitors on such up-regulation were explored, revealing a rapid, differential and complex regulation, similar to that described for nicotinic ligands. All of these results demonstrate that METH and MDMA have affinity for, and can interact with, nAChR, inducing their up-regulation, specially when higher doses are used. Such effects may have a role in METH- and MDMA-induced neurotoxicity, cholinergic neurotransmission, and in processes related to addiction and dependence.« less

  18. Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin.

    PubMed

    Toulmé, Estelle; Soto, Florentina; Garret, Maurice; Boué-Grabot, Eric

    2006-02-01

    Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.

  19. Diadenosine polyphosphates induce intracellular Ca2+ mobilization in human neutrophils via a pertussis toxin sensitive G-protein.

    PubMed Central

    Gasmi, L; McLennan, A G; Edwards, S W

    1997-01-01

    The diadenosine polyphosphates diadenosine 5',5"'-P1,P3-triphosphate (Ap3A), diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A) and diadenosine 5',5"'-P1,P6-hexaphosphate (Ap6A) all stimulated increases in intracellular Ca2+ in human neutrophils. Maximal increases in intracellular Ca2+ of 650 nM were obtained at dinucleotide concentrations of 500-700 microM. These increases in intracellular, Ca2+ were completely abolished by pre-treatment of the neutrophils with pertussis toxin and were hardly affected when the extracellular buffer was devoid of Ca2+. On the other hand, adenosine triphosphate (ATP) could stimulate much greater increases in intracellular Ca2+ (up to 1.1 microM) at much lower concentrations (half maximal responses obtained at around 5 microM ATP). Receptor de-sensitization experiments indicate that human neutrophils may possess two types of P2-purinoceptors. The first of these may bind ATP (but not the dinucleotides) with high affinity whilst the second may bind the dinucleotides with lower affinity and also bind ATP. PMID:9038726

  20. Hydrogen bonds between the alpha and beta subunits of the F1-ATPase allow communication between the catalytic site and the interface of the beta catch loop and the gamma subunit.

    PubMed

    Boltz, Kathryn W; Frasch, Wayne D

    2006-09-19

    F(1)-ATPase mutations in Escherichia coli that changed the strength of hydrogen bonds between the alpha and beta subunits in a location that links the catalytic site to the interface between the beta catch loop and the gamma subunit were examined. Loss of the ability to form the hydrogen bonds involving alphaS337, betaD301, and alphaD335 lowered the k(cat) of ATPase and decreased its susceptibility to Mg(2+)-ADP-AlF(n) inhibition, while mutations that maintain or strengthen these bonds increased the susceptibility to Mg(2+)-ADP-AlF(n) inhibition and lowered the k(cat) of ATPase. These data suggest that hydrogen bonds connecting alphaS337 to betaD301 and betaR323 and connecting alphaD335 to alphaS337 are important to transition state stabilization and catalytic function that may result from the proper alignment of catalytic site residues betaR182 and alphaR376 through the VISIT sequence (alpha344-348). Mutations betaD301E, betaR323K, and alphaR282Q changed the rate-limiting step of the reaction as determined by an isokinetic plot. Hydrophobic mutations of betaR323 decreased the susceptibility to Mg(2+)-ADP-AlF(n)() inhibition and lowered the number of interactions required in the rate-limiting step yet did not affect the k(cat) of ATPase, suggesting that betaR323 is important to transition state formation. The decreased rate of ATP synthase-dependent growth and decreased level of lactate-dependent quenching observed with alphaD335, betaD301, and alphaE283 mutations suggest that these residues may be important to the formation of an alternative set of hydrogen bonds at the interface of the alpha and beta subunits that permits the release of intersubunit bonds upon the binding of ATP, allowing gamma rotation in the escapement mechanism.

  1. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions

    NASA Technical Reports Server (NTRS)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter

    2003-01-01

    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.

  2. The magnetic fields of Ap stars from high resolution Stokes IQUV spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Silvester, James

    In this thesis we describe the acquisition of high resolution time resolved spectropolarimetric observations of 7 (bright and well understood) Ap stars in Stokes IQUV using the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and the 2m Telescope Bernard Lyot at Pic du Midi Observatory. We compare these observations with those obtained a decade earlier using the MuSiCoS spectropolarimeter to confirm consistency with the older data and provide evidence that both ESPaDOnS and Narval perform as expected in all Stokes parameters. We demonstrate that our refined longitudinal magnetic field and linear polarisation measurements for these 7 stars are of much greater quality than was previously obtained with MuSiCoS and that the global magnetic properties of these stars are stable over a long timescale. The ultimate aim of these new data is to provide a basis from which mapping of both the magnetic field and abundance structures can be performed on our target stars. We then describe magnetic field mapping of the Ap star alpha 2 CVn using these data. This mapping is achieved with the use of tomographic inversion of Doppler-broadened Stokes IQUV profiles of a large variety of spectral lines using the INVERS10 Magnetic Doppler imaging code. We show that not only are the new magnetic field maps of alpha 2 CVn consistent with a previous generation of maps of alpha 2 CVn, but that the same magnetic field topology can be derived from a variety of atomic line sets. This indicates that the magnetic field we derive for alpha2 CVn is a realistic representation of the star's true magnetic topology. Finally we investigate surface abundance structures for alpha 2 CVn for various chemical elements. We investigate the correlation between the location of these abundance features and the magnetic field of alpha 2 CVn. We will demonstrate that whilst the magnetic field plays a role in the formation of abundance structures, the current theoretical framework does not fully explain what we find from our maps. Ultimately this work motivates future mapping of Ap stars by confirming the reliability of both the instrument and associated data and the mapping technique itself.

  3. Ovine cardiac Na,K-ATPase: isolation by means of selective solubilization in Lubrol and the effect of 1 alpha,2 alpha-epoxyscillirosidin on this enzyme.

    PubMed

    Venter, P A; Naudé, R J; Oelofsen, W; Swan, G E

    1997-01-01

    The inhibition of cardiac Na,K-ATPase by 1 alpha,2 alpha-epoxyscillirosidin is the principal cause of poisoning of cattle by the tulip, Homeria pallida. The ultimate goals of this study were to study the interaction between 1 alpha,2 alpha-epoxyscillirosidin and ovine Na,K-ATPase by means of inhibition and displacement binding studies. Ovine cardiac Na,K-ATPase was isolated in membrane-bound form by means of deoxycholate treatment, high-speed ultracentrifugation, NaI treatment and selective solubilization in Lubrol. The inhibition of ovine cardiac and commercial porcine cerebral cortex Na,K-ATPase by 1 alpha,2 alpha-epoxyscilirosidin and ouabain was studied using a discontinuous Na,K-ATPase assay. The binding of 1 alpha,2 alpha-epoxyscillirosidin, ouabain and digoxin to the above enzymes was compared using a displacement binding assay with [3H] oubain. The Lubrol-solubilized ovine cardiac Na,K-ATPase showed a specific activity of 0.3 U/mg with no ouabain insensitive activity. I50 values of 2.1 x 10(-8) and 2.7 x 10(-8) were obtained for the inhibition of this enzyme by 1 alpha,2 alpha-epoxyscillirosidin and ouabain, respectively. 1 alpha,2 alpha-Epoxyscillirosidin has a much higher KD value (1.5 x 10(-7) M), however, than ouabain (9.5 x 10(-9) M) and digoxin (1.7 x 10(-8) M) in displacement binding studies with [3H]ouabain. 1 alpha,2 alpha-Epoxyscillirosidin is a potent inhibitor of ovine cardiac Na,K-ATPase and is a slightly stronger inhibitor of the enzyme than ouabain. The anomalous result for the displacement of 1 alpha,2 alpha-epoxyscillirosidin from its receptor is either a result of different affinities that K+ has for the enzyme ouabain and enzyme-1 alpha,2 alpha-epoxyscillirosidin complexes or because of different complex stabilities of these complexes.

  4. 2-Substituted 7-trifluoromethyl-thiadiazolopyrimidones as alkaline phosphatase inhibitors. Synthesis, structure activity relationship and molecular docking study.

    PubMed

    Jafari, Behzad; Ospanov, Meirambek; Ejaz, Syeda Abida; Yelibayeva, Nazym; Khan, Shafi Ullah; Amjad, Sayyeda Tayyeba; Safarov, Sayfidin; Abilov, Zharylkasyn A; Turmukhanova, Mirgul Zh; Kalugin, Sergey N; Ehlers, Peter; Lecka, Joanna; Sévigny, Jean; Iqbal, Jamshed; Langer, Peter

    2018-01-20

    Alkaline Phosphatases (APs) play a key role in maintaining a ratio of phosphate to inorganic pyrophosphate (P i /PP i ) and thus regulate extracellular matrix calcification during bone formation and growth. Among different isozymes of AP, aberrant increase in the level of tissue non-specific alkaline phosphatase (TNAP) is strongly associated with vascular calcification and end-stage renal diseases. In this context, we synthesized a novel series of fluorinated pyrimidone derivatives, i.e., 2-bromo-7-trifluoromethyl-5-oxo-5H-1,3,4-thiadiazolepyrimidones. The bromine functionality was further used for derivatisation by nucleophilic aromatic substitution using amines as nucleophiles as well as by Palladium catalysed Suzuki-Miyaura reactions. The synthesized derivatives were found potent but non-selective inhibitors of both isozymes of AP. Arylated thiadiazolopyrimidones exhibited stronger inhibitory activities than 2-amino-thiadiazolopyrimidones. The binding modes and possible interactions of the most active inhibitor within the active site of the enzyme were observed by molecular docking studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Amphetamine-enhanced accumulation of ( sup 3 H)-spiperone in mouse corpus striatum in vivo: Modification by other drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorris, R.L.

    1989-01-01

    Other investigators have reported that amphetamine administered to rodents results in an increase in the in vivo accumulation of either the tritiated dopamine receptor ligand, spiperone or pimozide in the dopaminergic corpus striatum, (specific binding) while not altering that in the sparsely dopaminergically innervated cerebellum (non-specific binding). Experiments were undertaken to determine if the results could be replicated and if some other drugs would modify the effect. Male mice were injected with ({sup 3}H)-spiperone (20 {mu}Ci/Kg, 0.0003 mg/kg) s.c. and killed 2 hrs later for determination of radioactivity in corpus striatum and cerebellum. Amphetamine (20 mg/kg, i.p.) given 15 minmore » before ({sup 3}H)-spiperone, increased accumulation in striatum but not cerebellum. The increase was inhibited by {alpha} - methyltyrosine ({alpha}-MT), haloperidol, reserpine or amantadine. It is suggested that the amphetamine-induced increase in accumulation of ({sup 3}H)-spiperone in corpus striatum (specific binding) depends on release of large amounts of dopamine, which then must be able to interact with the dopamine receptor. The antagonism of the effect by {alpha}-MT or reserpine can be explained by dopamine depletion, that of haloperidol by antagonism for binding at the receptor site. It is suggested that amantadine acts by a dual mechanism: (1) as a low efficacy agonist, it competes for binding to the receptor and (2) it has some ability to block dopamine release.« less

  6. NKG2D and CD94 bind to multimeric alpha2,3-linked N-acetylneuraminic acid.

    PubMed

    Imaizumi, Yuzo; Higai, Koji; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro

    2009-05-08

    Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to alpha2,3-sialylated human alpha(1)-acid glycoprotein (AGP) but not to alpha2,6-sialylated AGP. Mutagenesis revealed that (152)Y of NKG2D and (144)F and (160)N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to alpha2,3-sialylated but not to alpha2,6-sialylated multi-antennary N-glycans.

  7. Analysis of In Vivo Chromatin and Protein Interactions of Arabidopsis Transcript Elongation Factors.

    PubMed

    Pfab, Alexander; Antosz, Wojciech; Holzinger, Philipp; Bruckmann, Astrid; Griesenbeck, Joachim; Grasser, Klaus D

    2017-01-01

    A central step to elucidate the function of proteins commonly comprises the analysis of their molecular interactions in vivo. For nuclear regulatory proteins this involves determining protein-protein interactions as well as mapping of chromatin binding sites. Here, we present two protocols to identify protein-protein and chromatin interactions of transcript elongation factors (TEFs) in Arabidopsis. The first protocol (Subheading 3.1) describes protein affinity-purification coupled to mass spectrometry (AP-MS) that utilizes suspension cultured cells as experimental system. This approach provides an unbiased view of proteins interacting with epitope-tagged TEFs. The second protocol (Subheading 3.2) depicts details about a chromatin immunoprecipitation (ChIP) procedure to characterize genomic binding sites of TEFs. These methods should be valuable tools for the analysis of a broad variety of nuclear proteins.

  8. Physical interaction between the strawberry allergen Fra a 1 and an associated partner FaAP: Interaction of Fra a 1 proteins and FaAP.

    PubMed

    Franz-Oberdorf, Katrin; Langer, Andreas; Strasser, Ralf; Isono, Erika; Ranftl, Quirin L; Wunschel, Christian; Schwab, Wilfried

    2017-10-01

    The strawberry fruit allergens Fra a 1.01E, Fra a 1.02 and Fra a 1.03 belong to the group of pathogenesis-related 10 (PR-10) proteins and are homologs of the major birch pollen Bet v 1 and apple allergen Mal d 1. Bet v 1 related proteins are the most extensively studied allergens but their physiological function in planta remains elusive. Since Mal d 1-Associated Protein has been previously identified as interaction partner of Mal d 1 we studied the binding of the orthologous Fra a 1-Associated Protein (FaAP) to Fra a 1.01E/1.02/1.03. As the C-terminal sequence of FaAP showed strong auto-activation activity in yeast 2-hybrid analysis a novel time resolved DNA-switching system was successfully applied. Fra a 1.01E, Fra a 1.02, and Fra a 1.03 bind to FaAP with K D of 4.5 ± 1.1, 15 ± 3, and 11 ± 2 nM, respectively. Fra a 1.01E forms a dimer, whereas Fra a 1.02 and Fra a 1.03 bind as monomer. The results imply that PR-10 proteins might be integrated into a protein-interaction network and FaAP binding appears to be essential for the physiological function of the Fra a 1 proteins. © 2017 Wiley Periodicals, Inc.

  9. AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis

    PubMed Central

    Gu, Mingyu; Liu, Qiang; Watanabe, Shigeki; Sun, Lin; Hollopeter, Gunther; Grant, Barth D; Jorgensen, Erik M

    2013-01-01

    The clathrin adaptor complex AP2 is thought to be an obligate heterotetramer. We identify null mutations in the α subunit of AP2 in the nematode Caenorhabditis elegans. α-adaptin mutants are viable and the remaining μ2/β hemicomplex retains some function. Conversely, in μ2 mutants, the alpha/sigma2 hemicomplex is localized and is partially functional. α-μ2 double mutants disrupt both halves of the complex and are lethal. The lethality can be rescued by expression of AP2 components in the skin, which allowed us to evaluate the requirement for AP2 subunits at synapses. Mutations in either α or μ2 subunits alone reduce the number of synaptic vesicles by about 30%; however, simultaneous loss of both α and μ2 subunits leads to a 70% reduction in synaptic vesicles and the presence of large vacuoles. These data suggest that AP2 may function as two partially independent hemicomplexes. DOI: http://dx.doi.org/10.7554/eLife.00190.001 PMID:23482940

  10. Structure-activity correlations for interactions of bicyclophosphorus esters and some polychlorocycloalkane and pyrethroid insecticides with the brain-specific t-butylbicyclophosphorothionate receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casida, J.E.; Lawrence, L.J.

    1985-09-01

    (/sup 35/S)t-Butylbicyclophosphorothionate or (/sup 35/S)TBPS is an improved radioligand for the picrotoxinin binding site in rat brain synaptic membranes. The toxic isomers of the hexachlorocyclohexanes, polychlorobornanes, and chlorinated cyclodienes displace (/sup 35/S)TBPS with a stereospecificity and potency generally correlated with their mammalian toxicity. In a few cases this correlation is improved by correction for metabolic activation or detoxification on using a coupled brain receptor/liver microsomal oxidase system. The alpha-cyano-3-phenoxybenzyl pyrethroids, although less potent, inhibit (/sup 35/S)TBPS binding in a stereospecific manner correlated with their toxicity. Scatchard analyses indicate that these three classes of polychlorocycloalkane insecticides act at the TBPS bindingmore » site within the gamma-aminobutyric acid (GABA) receptor-ionophore complex whereas the alpha-cyano pyrethroids interact with a closely associated site. These insecticides and TBPS analogs may serve as useful probes further to elucidate the topography of the TBPS binding site and its relationship to the chloride channel. 46 references.« less

  11. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes.

    PubMed

    Ali, Ramez M; Al Kury, Lina T; Yang, Keun-Hang Susan; Qureshi, Anwar; Rajesh, Mohanraj; Galadari, Sehamuddin; Shuba, Yaroslav M; Howarth, Frank Christopher; Oz, Murat

    2015-04-01

    Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  13. PKC412 (CGP41251) modulates the proliferation and lipopolysaccharide-induced inflammatory responses of RAW 264.7 macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyatake, Katsutoshi; Institute for Genome Research, The University of Tokushima, Tokushima; Inoue, Hiroshi

    2007-08-17

    PKC412 (CGP41251) is a multitarget protein kinase inhibitor with anti-tumor activities. Here, we investigated the effects of PKC412 on macrophages. PKC412 inhibited the proliferation of murine RAW 264.7 macrophages through induction of G2/M cell cycle arrest and apoptosis. At non-toxic drug concentrations, PKC412 significantly suppressed the lipopolysaccharide (LPS)-induced release of TNF-{alpha} and nitric oxide, while instead enhancing IL-6 secretion. PKC412 attenuated LPS-induced phosphorylations of MKK4 and JNK, as well as AP-1 DNA binding activities. Furthermore, PKC412 suppressed LPS-induced Akt and GSK-3{beta} phosphorylations. These results suggest that the anti-proliferative and immunomodulatory effects of PKC412 are, at least in part, mediated throughmore » its interference with the MKK4/JNK/AP-1 and/or Akt/GSK-3{beta} pathways. Since macrophages contribute significantly to the development of both acute and chronic inflammation, PKC412 may have therapeutic potential and applications in treating inflammatory and/or autoimmune diseases.« less

  14. Molecular Signatures of Peripheral Blood Mononuclear Cells during Chronic Interferon-alpha Treatment: Relationship with Depression and Fatigue

    PubMed Central

    Felger, Jennifer C.; Cole, Steve W.; Pace, Thaddeus W. W.; Hu, Fang; Woolwine, Bobbi J.; Doho, Gregory H.; Raison, Charles L.; Miller, Andrew H.

    2012-01-01

    Background Interferon (IFN)-alpha treatment for infectious disease and cancer causes high rates of depression and fatigue, and has been used to investigate the impact of inflammatory cytokines on brain and behavior. However, little is known about the transcriptional impact of chronic IFN-alpha on immune cells in vivo and its relationship to IFN-alpha-induced behavioral changes. Methods Genome-wide transcriptional profiling was performed on peripheral blood mononuclear cells from 21 patients with chronic hepatitis C either awaiting IFN-alpha therapy (n=10) or at 12 weeks of IFN-alpha treatment (n=11). Results Significance analysis of microarray data identified 252 up-regulated and 116 down-regulated gene transcripts. Of up-regulated genes, 2'-5'-oligoadenylate synthetase 2 (OAS2), a gene linked to chronic fatigue syndrome (CFS), was the only gene that was differentially expressed in patients with IFN-alpha-induced depression/fatigue, and correlated with depression and fatigue scores at 12 weeks (r=0.80, p=0.003 and r=0.70, p=0.017, respectively). Promoter-based bioinformatic analyses linked IFN-alpha-related transcriptional alterations to transcription factors involved in myeloid differentiation, IFN-alpha signaling, AP1 and CREB/ATF pathways, which were derived primarily from monocytes and plasmacytoid dendritic cells. IFN-alpha-treated patients with high depression/fatigue scores demonstrated up-regulation of genes bearing promoter motifs for transcription factors involved in myeloid differentiation, IFN-alpha and AP1 signaling, and reduced prevalence of motifs for CREB/ATF, which has been implicated in major depression. Conclusions Depression and fatigue during chronic IFN-alpha administration were associated with alterations in the expression (OAS2) and transcriptional control (CREB/ATF) of genes linked to behavioral disorders including CFS and major depression, further supporting an immune contribution to these diseases. PMID:22152193

  15. Isolation of a small molecule inhibitor of DNA base excision repair

    PubMed Central

    Madhusudan, Srinivasan; Smart, Fiona; Shrimpton, Paul; Parsons, Jason L.; Gardiner, Laurence; Houlbrook, Sue; Talbot, Denis C.; Hammonds, Timothy; Freemont, Paul A.; Sternberg, Michael J. E.; Dianov, Grigory L.; Hickson, Ian D.

    2005-01-01

    The base excision repair (BER) pathway is essential for the removal of DNA bases damaged by alkylation or oxidation. A key step in BER is the processing of an apurinic/apyrimidinic (AP) site intermediate by an AP endonuclease. The major AP endonuclease in human cells (APE1, also termed HAP1 and Ref-1) accounts for >95% of the total AP endonuclease activity, and is essential for the protection of cells against the toxic effects of several classes of DNA damaging agents. Moreover, APE1 overexpression has been linked to radio- and chemo-resistance in human tumors. Using a newly developed high-throughput screen, several chemical inhibitors of APE1 have been isolated. Amongst these, CRT0044876 was identified as a potent and selective APE1 inhibitor. CRT0044876 inhibits the AP endonuclease, 3′-phosphodiesterase and 3′-phosphatase activities of APE1 at low micromolar concentrations, and is a specific inhibitor of the exonuclease III family of enzymes to which APE1 belongs. At non-cytotoxic concentrations, CRT0044876 potentiates the cytotoxicity of several DNA base-targeting compounds. This enhancement of cytotoxicity is associated with an accumulation of unrepaired AP sites. In silico modeling studies suggest that CRT0044876 binds to the active site of APE1. These studies provide both a novel reagent for probing APE1 function in human cells, and a rational basis for the development of APE1-targeting drugs for antitumor therapy. PMID:16113242

  16. Alpha-crystallins are involved in specific interactions with the murine gamma D/E/F-crystallin-encoding gene.

    PubMed

    Pietrowski, D; Durante, M J; Liebstein, A; Schmitt-John, T; Werner, T; Graw, J

    1994-07-08

    The promoter of the murine gamma E-crystallin (gamma E-Cry) encoding gene (gamma E-cry) was analyzed for specific interactions with lenticular proteins in a gel-retardation assay. A 21-bp fragment immediately downstream of the transcription initiation site (DOTIS) is demonstrated to be responsible for specific interactions with lens extracts. The DOTIS-binding protein(s) accept only the sense DNA strand as target; anti-sense or double-stranded DNA do not interact with these proteins. The DOTIS sequence element is highly conserved among the murine gamma D-, gamma E- and gamma F-cry and is present at comparable positions in the orthologous rat genes. Only a weak or even no protein-binding activity is observed if a few particular bases are changed, as in the rat gamma A-, gamma C- and gamma E-cry elements. DOTIS-binding proteins were found in commercially available bovine alpha-Cry preparations. The essential participation of alpha-Cry in the DNA-binding protein complex was confirmed using alpha-Cry-specific monoclonal antibody. The results reported here point to a novel function of alpha-Cry besides the structural properties in the lens.

  17. Calcium binding to an elastic portion of connectin/titin filaments.

    PubMed

    Tatsumi, R; Maeda, K; Hattori, A; Takahashi, K

    2001-01-01

    Alpha-connectin/titin-1 exists as an elastic filament that links a thick filament with the Z-disk, keeping thick filaments centered within the sarcomere during force generation. We have shown that the connectin filament has an affinity for calcium ions and its binding site(s) is restricted to the beta-connectin/titin-2 portion. We now report the localization and the characterization of calcium-binding sites on beta-connectin. Purified beta-connectin was digested by trypsin into 1700- and 400-kDa fragments. which were then subjected to fluorescence calcium-binding assays. The 400-kDa fragment possesses calcium-binding activity; the binding constant was 1.0 x 10(7) M(-1) and the molar ratio of bound calcium ions to the 400-kDa fragment reached a maximum of 12 at a free calcium ion concentration of approximately 1.0 microM. Antibodies against the 400-kDa fragment formed a sharp dense stripe at the boundary of the A and the I bands, indicating that the calcium-binding domain constitutes the N-terminal region of beta-connectin, that is, the elastic portion of connectin filaments. Furthermore, we estimated the N-terminal location of beta-connectin of various origins (n = 26). Myofibrils were treated with a solution containing 0.1 mM CaCl2 and 70 microM leupeptin to split connectin filaments into beta-connectin and a subfragment, and chain weights of these polypeptides were estimated according to their mobility in 2% polyacrylamide slab gels. The subfragment exhibited a similar chain weight of 1200+/-33 kDa (mean+/-SD), while alpha- and beta-connectins were variable in size according to their origin. These results suggest that the apparent length of the 1200-kDa subfragment portion is almost constant in all instances, about 0.34 microm at the slack condition, therefore that the C-terminus of the 1200-kDa subfragment, that is, the N-terminus of the calcium-binding domain, is at the N2 line region of parent filaments in situ. Because the secondary structure of the 400-kDa fragment was changed by the binding of calcium ions, connectin filaments could be expected to alter their elasticity during the contraction-relaxation cycle of skeletal muscle.

  18. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    PubMed

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  19. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed Central

    Hou, Y.; Vavougios, G.; Hinek, A.; Wu, K. K.; Hechtman, P.; Kaplan, F.; Mahuran, D. J.

    1996-01-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8659543

  20. Two synthetic Sp1-binding sites functionally substitute for the 21-base-pair repeat region to activate simian virus 40 growth in CV-1 cells.

    PubMed Central

    Lednicky, J; Folk, W R

    1992-01-01

    The 21-bp repeat region of simian virus 40 (SV40) activates viral transcription and DNA replication and contains binding sites for many cellular proteins, including Sp1, LSF, ETF, Ap2, Ap4, GT-1B, H16, and p53, and for the SV40 large tumor antigen. We have attempted to reduce the complexity of this region while maintaining its growth-promoting capacity. Deletion of the 21-bp repeat region from the SV40 genome delays the expression of viral early proteins and DNA replication and reduces virus production in CV-1 cells. Replacement of the 21-bp repeat region with two copies of DNA sequence motifs bound with high affinities by Sp1 promotes SV40 growth in CV-1 cells to nearly wild-type levels, but substitution by motifs bound less avidly by Sp1 or bound by other activator proteins does not restore growth. This indicates that Sp1 or a protein with similar sequence specificity is primarily responsible for the function of the 21-bp repeat region. We speculate about how Sp1 activates both SV40 transcription and DNA replication. Images PMID:1328672

  1. The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning.

    PubMed

    Jung, Jae-Hoon; Lee, Sangmin; Yun, Ju; Lee, Minyoung; Park, Chung-Mo

    2014-02-01

    microRNA172 (miR172) regulates phase transition and floral patterning in Arabidopsis by repressing targets that encode the APETALA2 (AP2) and AP2-like transcription factors. The miR172-mediated repression of the AP2 gene restricts AGAMOUS (AG) expression. In addition, most miR172 targets, including AP2, redundantly act as floral repressors, and the overexpression of the target genes causes delayed flowering. However, how miR172 targets other than AP2 regulate both of the developmental processes remains unclear. Here, we demonstrate that miR172-mediated repression of the TARGET OF EAT 3 (TOE3) gene is critical for floral patterning in Arabidopsis. Transgenic plants that overexpress a miR172-resistant TOE3 gene (rTOE3-ox) exhibit indeterminate flowers with numerous stamens and carpelloid organs, which is consistent with previous observations in transgenic plants that overexpress a miR172-resistant AP2 gene. TOE3 binds to the second intron of the AG gene. Accordingly, AG expression is significantly reduced in rTOE3-ox plants. TOE3 also interacts with AP2 in the nucleus. Given the major role of AP2 in floral patterning, miR172 likely regulates TOE3 in floral patterning, at least in part via AP2. In addition, a miR156 target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 directly activates TOE3 expression, revealing a novel signaling interaction between miR156 and miR172 in floral patterning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Serine Phosphorylation of HIV-1 Vpu and Its Binding to Tetherin Regulates Interaction with Clathrin Adaptors

    PubMed Central

    Sumner, Jonathan C.; Pickering, Suzanne; Neil, Stuart J. D.

    2015-01-01

    HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions still exist about Vpu’s mechanism of action. Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antagonism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occurring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation. Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmembrane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu phosphoserine motif and adjacent acidic residues. Taken together these data explain the discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antagonism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promiscuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first step in tetherin antagonism. PMID:26317613

  3. The Reconstruction of Condition-Specific Transcriptional Modules Provides New Insights in the Evolution of Yeast AP-1 Proteins

    PubMed Central

    Goudot, Christel; Etchebest, Catherine

    2011-01-01

    AP-1 proteins are transcription factors (TFs) that belong to the basic leucine zipper family, one of the largest families of TFs in eukaryotic cells. Despite high homology between their DNA binding domains, these proteins are able to recognize diverse DNA motifs. In yeasts, these motifs are referred as YRE (Yap Response Element) and are either seven (YRE-Overlap) or eight (YRE-Adjacent) base pair long. It has been proposed that the AP-1 DNA binding motif preference relies on a single change in the amino acid sequence of the yeast AP-1 TFs (an arginine in the YRE-O binding factors being replaced by a lysine in the YRE-A binding Yaps). We developed a computational approach to infer condition-specific transcriptional modules associated to the orthologous AP-1 protein Yap1p, Cgap1p and Cap1p, in three yeast species: the model yeast Saccharomyces cerevisiae and two pathogenic species Candida glabrata and Candida albicans. Exploitation of these modules in terms of predictions of the protein/DNA regulatory interactions changed our vision of AP-1 protein evolution. Cis-regulatory motif analyses revealed the presence of a conserved adenine in 5′ position of the canonical YRE sites. While Yap1p, Cgap1p and Cap1p shared a remarkably low number of target genes, an impressive conservation was observed in the YRE sequences identified by Yap1p and Cap1p. In Candida glabrata, we found that Cgap1p, unlike Yap1p and Cap1p, recognizes YRE-O and YRE-A motifs. These findings were supported by structural data available for the transcription factor Pap1p (Schizosaccharomyces pombe). Thus, whereas arginine and lysine substitutions in Cgap1p and Yap1p proteins were reported as responsible for a specific YRE-O or YRE-A preference, our analyses rather suggest that the ancestral yeast AP-1 protein could recognize both YRE-O and YRE-A motifs and that the arginine/lysine exchange is not the only determinant of the specialization of modern Yaps for one motif or another. PMID:21695268

  4. Proteopedia: Rossmann Fold: A Beta-Alpha-Beta Fold at Dinucleotide Binding Sites

    ERIC Educational Resources Information Center

    Hanukoglu, Israel

    2015-01-01

    The Rossmann fold is one of the most common and widely distributed super-secondary structures. It is composed of a series of alternating beta strand (ß) and alpha helical (a) segments wherein the ß-strands are hydrogen bonded forming a ß-sheet. The initial beta-alpha-beta (ßaß) fold is the most conserved segment of Rossmann folds. As this segment…

  5. Research Resource: Aorta- and Liver-Specific ERα-Binding Patterns and Gene Regulation by Estrogen

    PubMed Central

    Gordon, Francesca K.; Vallaster, Caroline S.; Westerling, Thomas; Iyer, Lakshmanan K.; Brown, Myles

    2014-01-01

    Estrogen has vascular protective effects in premenopausal women and in women younger than 60 years who are receiving hormone replacement therapy. However, estrogen also increases the risks of breast and uterine cancers and of venous thromboses linked to up-regulation of coagulation factors in the liver. In mouse models, the vasculoprotective effects of estrogen are mediated by the estrogen receptor α (ERα) transcription factor. Here, through next-generation sequencing approaches, we show that almost all of the genes regulated by 17β-estradiol (E2) differ between mouse aorta and mouse liver, ex vivo, and that this difference is associated with a distinct genomewide distribution of ERα on chromatin. Bioinformatic analysis of E2-regulated promoters and ERα binding site sequences identify several transcription factors that may determine the tissue specificity of ERα binding and E2-regulated genes, including the enrichment of NF-κB, AML1, and AP1 sites in the promoters of E2 down-regulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggest ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. PMID:24992180

  6. Absence of specific binding of several putative neuro-transmitters to human fibroblasts.

    PubMed

    Berrettini, W H; Nadi, N S; Gershon, E S

    1983-01-01

    Fibroblasts were examined for specific binding sites of ten putative neurotransmitters to determine whether this tissue could be used in receptor studies of neurologic and psychiatric disorders. Stereospecific saturable binding was not found for any of the ligands: arginine vasopressin, neurotensin, somatostatin, angiotensin II, thyrotropin-releasing hormone (TRH), alpha-bungarotoxin, LSD, dihydromorphine, muscimol and spiperone.

  7. Electrostatic interactions guide the active site face of a structure-specific ribonuclease to its RNA substrate.

    PubMed

    Plantinga, Matthew J; Korennykh, Alexei V; Piccirilli, Joseph A; Correll, Carl C

    2008-08-26

    Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl

  8. Binding of calcium and target peptide to calmodulin-like protein CML19, the centrin 2 of Arabidopsis thaliana.

    PubMed

    La Verde, Valentina; Trande, Matteo; D'Onofrio, Mariapina; Dominici, Paola; Astegno, Alessandra

    2018-03-01

    Calmodulin-like protein 19 (CML19) is an Arabidopsis centrin that modulates nucleotide excision repair (NER) by binding to RAD4 protein, the Arabidopsis homolog of human Xeroderma pigmentosum complementation group C protein. Although the necessity of CML19 as a part of the RAD4 plant recognition complex for functional NER is known at a cellular level, little is known at a molecular level. Herein, we used a combination of biophysical and biochemical approaches to investigate the structural and ion and target-peptide binding properties of CML19. We found that CML19 possesses four Ca 2+ -specific binding sites, two of high affinity in the N-terminal domain and two of low affinity in the C-terminal domain. Binding of Ca 2+ to CML19 increases its alpha-helix content, stabilizes the tertiary structure, and triggers a conformational change, resulting in the exposure of a hydrophobic patch instrumental for target protein recognition. Using bioinformatics tools we identified a CML19-binding site at the C-terminus of RAD4, and through in vitro binding experiments we analyzed the interaction between a 17-mer peptide representing this site and CML19. We found that the peptide shows a high affinity for CML19 in the presence of Ca 2+ (stoichiometry 1:1) and the interaction primarily involves the C-terminal half of CML19. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ca(2+)-stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P2Y purinoceptor in adrenal chromaffin cells.

    PubMed Central

    Castro, E.; Pintor, J.; Miras-Portugal, M. T.

    1992-01-01

    1. Diadenosine tetraphosphate (Ap4A) evoked a concentration-dependent increase in cytosolic [Ca2+] in resting chromaffin cells. The EC50 value for this action was 28.2 +/- 6.6 microM. This effect was also produced by diadenosine pentaphosphate (Ap5A) with an EC50 of 50 +/- 7 microM. 2. In contrast with this effect, pretreatment with Ap4A or Ap5A induced a 30% reduction in Ca2+ entry following 10 microM dimethylphenylpiperazinium. 3. The elevation in cytosolic [Ca2+] induced by Ap4A was persistent in approximately 100 nM external [Ca2+] and was sensitive to depletion of internal Ca2+ stores by a bradykinin prepulse or whole cell depletion in Ca2+. 4. The effect of Ap4A was mimicked and desensitized by the agonist adenosine 5'-O-(2-thiodiphosphate), and blocked by the P2Y-receptor antagonist, cibachrome blue. The P2X-receptor agonist alpha,beta-methylene adenosine 5'-triphosphate was inactive both by itself or in combination with Ap4A. This is compatible with a P2Y-purinoceptor-mediated action. PMID:1393282

  10. Ca(2+)-stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P2Y purinoceptor in adrenal chromaffin cells.

    PubMed

    Castro, E; Pintor, J; Miras-Portugal, M T

    1992-08-01

    1. Diadenosine tetraphosphate (Ap4A) evoked a concentration-dependent increase in cytosolic [Ca2+] in resting chromaffin cells. The EC50 value for this action was 28.2 +/- 6.6 microM. This effect was also produced by diadenosine pentaphosphate (Ap5A) with an EC50 of 50 +/- 7 microM. 2. In contrast with this effect, pretreatment with Ap4A or Ap5A induced a 30% reduction in Ca2+ entry following 10 microM dimethylphenylpiperazinium. 3. The elevation in cytosolic [Ca2+] induced by Ap4A was persistent in approximately 100 nM external [Ca2+] and was sensitive to depletion of internal Ca2+ stores by a bradykinin prepulse or whole cell depletion in Ca2+. 4. The effect of Ap4A was mimicked and desensitized by the agonist adenosine 5'-O-(2-thiodiphosphate), and blocked by the P2Y-receptor antagonist, cibachrome blue. The P2X-receptor agonist alpha,beta-methylene adenosine 5'-triphosphate was inactive both by itself or in combination with Ap4A. This is compatible with a P2Y-purinoceptor-mediated action.

  11. NF-Y, a CCAAT box-binding protein, is one of the trans-acting factors necessary for the response of the murine ERp72 gene to protein traffic.

    PubMed

    Marcus, N; Green, M

    1997-09-01

    The accumulation of incompletely assembled immunoglobulin mu heavy chain in transfected COS cells stimulates the cellular response to protein traffic that results in the increased transcription and elevated synthesis of several ER chaperones, including ERP72, a member of the protein disulfide isomerase family of molecular chaperones. The ERp72 promoter contains an 82 bp ER protein traffic response element (ERPTRE) that is sufficient to mediate this response. Previously, it had been shown that the alteration of a putative AP-2 site and a CCAAT and inverted CCAAT site within the ERPTRE significantly decreased the response of ERp72 promoter to mu chain accumulation. We have extended these findings by demonstrating a role for NF-Y and a potentially novel DNA-binding protein in the regulation of transcription from the ERp72 promoter. The fact that NF-Y binding to the ERPTRE is observed in extracts from both control cells and cells in which the response to protein traffic has been activated indicates that the binding of NF-Y, while necessary, is not sufficient to account for the response. Each of the two CCAAT sites in the ERPTRE can bind NF-Y independently, but both sites must be intact for full ERPTRE function. A second protein can bind to the ERPTRE independently of NF-Y and at a site overlapping or close to the 3' end of the reverse CCAAT site. It is possible that interactions between NF-Y, this protein and perhaps other factors are responsible for the regulation of the protein traffic response.

  12. Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, M.; Allison, W.S.

    1986-05-05

    Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with (/sup 3/H)ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. (/sup 3/H)ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with (/sup 3/H)ADP in 30more » min with a Kd of 30 microM. (/sup 3/H)ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of (/sup 3/H)ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. (/sup 3/H)ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits.« less

  13. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    PubMed

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of interaction with several enzymes and adaptor proteins.

  14. Computational studies of H5N1 hemagglutinin binding with SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Minyong; Wang Binghe

    2006-09-01

    For influenza H5N1 hemagglutinin, a switch from SA-{alpha}-2, 3-Gal to SA-{alpha}-2, 6-Gal receptor specificity is a critical step leading to the conversion from avian-to-human to human-to-human infection. Therefore, the understanding of the binding modes of SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal to H5N1 hemagglutinin will be very important for the examination of possible mutations needed for going from an avian to a human flu virus. Based on the available H5N1 hemagglutinin crystal structure, the binding profiles between H5N1 hemagglutinin and two saccharide ligands, SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal, were investigated by ab initio quantum mechanics, molecular docking, molecular mechanics, and molecularmore » dynamics simulations. It was found that SA-{alpha}-2, 3-Gal has strong multiple hydrophobic and hydrogen bond interactions in its trans conformation with H5N1 hemagglutinin, whereas the SA-{alpha}-2, 6-Gal only shows weak interactions in a different conformation (cis type)« less

  15. Adipocyte Fatty Acid–Binding Protein, aP2, Alters Late Atherosclerotic Lesion Formation in Severe Hypercholesterolemia

    PubMed Central

    Boord, Jeffrey B.; Maeda, Kazuhisa; Makowski, Liza; Babaev, Vladimir R.; Fazio, Sergio; Linton, MacRae F.; Hotamisligil, Gökhan S.

    2014-01-01

    Objective The adipocyte fatty acid-binding protein, aP2, has important effects on insulin resistance, lipid metabolism, and atherosclerosis. Its expression in macrophages enhances early foam cell formation and atherosclerosis in vivo. This study was designed to determine whether aP2 deficiency has a similar effect in the setting of advanced atherosclerosis and severe hypercholesterolemia. Methods and Results Mice deficient in aP2 and apolipoprotein E (aP2−/−apoE−/− mice) and apolipoprotein E-deficient control mice (apoE−/− mice) were fed a Western diet for 14 weeks. No significant differences in fasting serum levels of cholesterol, triglycerides, or free fatty acids were found between groups for each sex. Compared with apoE−/− control mice, male and female aP2−/−apoE−/− mice had significant reductions in mean atherosclerotic lesion size in the proximal aorta, en face aorta, and innominate/right carotid artery. Feeding the Western diet in the apoE-deficient background did not cause a significant reduction in insulin sensitivity in vivo, as determined by steady-state serum glucose levels and insulin tolerance testing. Conclusions These data demonstrate an important role for aP2 expression in the advanced stages of atherosclerotic lesion formation. Thus, aP2 provides an important physiological link between different features of the metabolic syndrome and is a potential target for therapy of atherosclerosis. PMID:12377750

  16. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from themore » edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.« less

  17. Structure of alpha-glycerophosphate oxidase from Streptococcus sp.: a template for the mitochondrial alpha-glycerophosphate dehydrogenase.

    PubMed

    Colussi, Timothy; Parsonage, Derek; Boles, William; Matsuoka, Takeshi; Mallett, T Conn; Karplus, P Andrew; Claiborne, Al

    2008-01-22

    The FAD-dependent alpha-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the alpha-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpODelta, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 A resolution. Using the GlpODelta structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 A resolution. The first two domains of the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a betabetaalpha element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2alpha in GlpODelta, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpODelta is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Hidemi; Matsuura, Yoshiyuki, E-mail: matsuura.yoshiyuki@d.mbox.nagoya-u.ac.jp

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus inmore » unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.« less

  19. Diadenosine polyphosphates Ap3A and Ap4A, but not Ap5A or Ap6A, induce proliferation of vascular smooth muscle cells.

    PubMed

    Bobbert, Peter; Schlüter, Hartmut; Schultheiss, Heinz Peter; Reusch, Hans Peter

    2008-05-15

    Depending on the number of phosphate groups, diadenosine polyphosphates (ApnA, Ap3A, Ap4A, Ap5A and Ap6A) differ in properties such as proliferation, apoptosis, vasoconstriction and vasodilatation of vascular smooth muscle cells (VSMCs). Possible signaling pathways leading to effects such as proliferation are still unknown. This study examined the proliferative effects of diadenosine polyphosphates on VSMCs and their intracellular pathways. Proliferation of VSMCs was measured by the cell count and [(3)H] thymidine incorporation. Phosphorylation of the MAP kinases ERK1/2 was determined by Western blotting. Single-cell [Ca(2+)](i) measurements were done to determine the influence of [Ca(2+)](i) on intracellular signaling. Stress fiber formation was assessed by fluorescence microscopy to detect an influence of G alpha(12). Ap3A and Ap4A, but not Ap5A or Ap6A, were shown to increase proliferation of VSMCs by activating P2Y receptors, which leads to stimulation of the Ras-Raf-MEK-ERK1/2 cascade. Ap3A- and Ap4A-induced activation of the MAP kinases ERK1/2 was dependent on a signaling pathway that included the EGF receptor, PKC, PLCbeta and the increase of [Ca(2+)](i). In conclusion, Ap3A and Ap4A, but not Ap5A or Ap6A, induce proliferation of VSMCs by a signaling pathway that begins with activation of P2Y receptors and leads to stimulation of the MAP kinases ERK1/2.

  20. A photoaffinity scan maps regions of the p85 SH2 domain involved in phosphoprotein binding.

    PubMed

    Williams, K P; Shoelson, S E

    1993-03-15

    Src homology 2 (SH2) domains are modular phosphotyrosine binding pockets found within a wide variety of cytoplasmic signaling molecules. Here we develop a new approach to analyzing protein-protein interfaces termed photoaffinity scanning, and apply the method to map regions of the phosphatidylinositol 3-kinase p85 SH2 domain that participate in phospho-protein binding. Each residue except phosphotyrosine (pY) within a tightly binding, IRS-1-derived phosphopeptide (GNGDpYMPMSPKS) was substituted with the photoactive amino acid, benzoylphenylalanine (Bpa). Whereas most substitutions had little effect on binding affinity, Bpa substitution of either Met (+1 and +3 with respect to pY) reduced affinity 50-100-fold to confirm their importance in the pYMXM recognition motif. In three cases photolysis of SH2 domain/Bpa phosphopeptide complexes led to cross-linking of > 50% of the SH2 domain; cross-link positions were identified by microsequence, amino acid composition, and electrospray mass spectrometric analyses. Bpa-1 cross-links within alpha-helix I, whereas Bpa+1 and Bpa+4 cross-link the SH2 domain within the flexible loop C-terminal to alpha-helix II. Moreover, cross-linking at any position prevents SH2 domain cleavage at a trypsin-sensitive site within the flexible loop between beta-strands 1 and 2. Therefore, at least three distinct SH2 regions in addition to the beta-sheet participate in phosphoprotein binding; the loop cross-linked by phosphopeptide residues C-terminal to pY appears to confer specificity to the phosphoprotein/SH2 domain interaction.

  1. Synthesis and biological evaluation of new 2-(4,5-dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives.

    PubMed

    Touzeau, Frédérique; Arrault, Axelle; Guillaumet, Gérald; Scalbert, Elizabeth; Pfeiffer, Bruno; Rettori, Marie-Claire; Renard, Pierre; Mérour, Jean-Yves

    2003-05-08

    2-(4,5-Dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives and tricyclic analogues with a fused additional ring on the nitrogen atom of the benzoxazine moiety have been prepared and evaluated for their cardiovascular effects as potential antihypertensive agents. The imidazoline ring was generated by reaction of the corresponding ethyl ester with ethylenediamine. Affinities for imidazoline binding sites (IBS) I(1) and I(2) and alpha(1) and alpha(2) adrenergic receptors were evaluated as well as the effects on mean arterial blood pressure (MAP) and heart rate (HR) of spontaneously hypertensive rats. With few exceptions the most active compounds on MAP were those with high affinities for IBS and alpha(2) receptor. Among these, compound 4h was the most interesting and is now, together with its enantiomers, under complementary pharmacological evaluation.

  2. The lathyrus toxin, {beta}-N-oxalyl-L-{alpha},{beta}-diaminopropionic acid (ODAP), and homocysteic acid sensitize CA1 pyramidal neurons to cystine and L-2-amino-6-phosphonohexanoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase, L.A.; Peterson, N.L.; Koerner, J.F.

    2007-02-15

    A brief exposure of hippocampal slices to L-quisqualic acid (QUIS) sensitizes CA1 pyramidal neurons 30- to 250-fold to depolarization by certain excitatory amino acids analogues, e.g., L-2-amino-6-phosphonohexanoic acid (L-AP6), and by the endogenous compound, L-cystine. This phenomenon has been termed QUIS sensitization. A mechanism similar to that previously described for QUIS neurotoxicity has been proposed to describe QUIS sensitization. Specifically, QUIS has been shown to be sequestered into GABAergic interneurons by the System x{sub c} {sup -} and subsequently released by heteroexchange with cystine or L-AP6, resulting in activation of non-NMDA receptors. We now report two additional neurotoxins, the Lathyrusmore » excitotoxin, {beta}-N-oxalyl-L-{alpha},{beta}-diaminopropionic acid (ODAP), and the endogenous compound, L-homocysteic acid (HCA), sensitize CA1 hippocampal neurons > 50-fold to L-AP6 and > 10-fold to cystine in a manner similar to QUIS. While the cystine- or L-AP6-mediated depolarization can be inhibited by the non-NMDA receptor antagonist CNQX in ODAP- or QUIS-sensitized slices, the NMDA antagonist D-AP5 inhibits depolarization by cystine or L-AP6 in HCA-sensitized slices. Thus, HCA is the first identified NMDA agonist that induces phosphonate or cystine sensitization. Like QUIS sensitization, the sensitization evoked by either ODAP or HCA can be reversed by a subsequent exposure to 2 mM {alpha}-aminoadipic acid. Finally, we have demonstrated that there is a correlation between the potency of inducers for triggering phosphonate or cystine sensitivity and their affinities for System x{sub c} {sup -} and either the non-NMDA or NMDA receptor. Thus, the results of this study support our previous model of QUIS sensitization and have important implications for the mechanisms of neurotoxicity, neurolathyrism and hyperhomocystinemia.« less

  3. Genome-Wide Investigation and Expression Profiling of AP2/ERF Transcription Factor Superfamily in Foxtail Millet (Setaria italica L.)

    PubMed Central

    Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj

    2014-01-01

    The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses. PMID:25409524

  4. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.).

    PubMed

    Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj

    2014-01-01

    The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.

  5. Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore.

    PubMed

    Fry, H Christopher; Lehmann, Andreas; Saven, Jeffery G; DeGrado, William F; Therien, Michael J

    2010-03-24

    The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garman, S.C.; Sechi, S.; Kinet, J.-P.

    We have solved the structure of the human high affinity IgE receptor, Fc{var_epsilon}RI{alpha}, in six different crystal forms, showing the structure in 15 different chemical environments. This database of structures shows no change in the overall shape of the molecule, as the angle between domains 1 and 2 (D1 and D2) varies little across the ensemble. However, the receptor has local conformational variability in the C' strand of D2 and in the BC loop of D1. In every crystal form, a residue inserts between tryptophan residues 87 and 110, mimicking the position of a proline from the IgE ligand. Themore » different crystal forms reveal a distribution of carbohydrates lining the front and back surfaces of the structure. An analysis of crystal contacts in the different forms indicates regions where the molecule interacts with other proteins, and reveals a potential new binding site distal to the IgE binding site. The results of this study point to new directions for the design of molecules to inhibit the interaction of Fc{var_epsilon}RI{alpha} with its natural ligand and thus to prevent a primary step in the allergic response.« less

  7. Transcriptional activation of transforming growth factor alpha by estradiol: requirement for both a GC-rich site and an estrogen response element half-site.

    PubMed

    Vyhlidal, C; Samudio, I; Kladde, M P; Safe, S

    2000-06-01

    17beta-Estradiol (E2) induces transforming growth factor alpha (TGFalpha) gene expression in MCF-7 cells and previous studies have identified a 53 bp (-252 to -200) sequence containing two imperfect estrogen responsive elements (EREs) that contribute to E2 responsiveness. Deletion analysis of the TGFalpha gene promoter in this study identified a second upstream region of the promoter (-623 to -549) that is also E2 responsive. This sequence contains three GC-rich sites and an imperfect ERE half-site, and the specific cis-elements and trans-acting factors were determined by promoter analysis in transient transfection experiments, gel mobility shift assays and in vitro DNA footprinting. The results are consistent with an estrogen receptor alpha (ERalpha)/Sp1 complex interacting with an Sp1(N)(30) ERE half-site ((1/2)) motif in which both ERalpha and Sp1 bind promoter DNA. The ER/Sp1-DNA complex is formed using nuclear extracts from MCF-7 cells but not with recombinant human ERalpha or Sp1 proteins, suggesting that other nuclear factor(s) are required for complex stabilization. The E2-responsive Sp1(N)(x)ERE(1/2) motif identified in the TGFalpha gene promoter has also been characterized in the cathepsin D and heat shock protein 27 gene promoters; however, in the latter two promoters the numbers of intervening nucleotides are 23 and 10 respectively.

  8. ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf.

    PubMed

    Renosto, F; Patel, H C; Martin, R L; Thomassian, C; Zimmerman, G; Segel, I H

    1993-12-01

    Two forms of ATP sulfurylase were purified from spinach leaf. The major (chloroplast) form accounts for 85 to 90% of the total leaf activity (0.03 +/- 0.01 adenosine-5'-phosphosulfate (APS) synthesis units x gram fresh weight-1). Both enzyme forms appear to be tetramers composed of 49- to 50-kDa subunits with the minor (cytosolic) form being slightly larger than the chloroplast form. The specific activities (units x milligram protein-1) of the chloroplast form at pH 8.0, 30 degrees C, were as follows: APS synthesis, 16; molybdolysis, 229; ATP synthesis, 267; selenolysis, 4.1; fluorophosphate activation, 11. Kinetic constants for the physiological reaction were as follows: KmA = 0.046 mM, K(ia) = 0.85 mM, KmB = 0.25 mM, KmQ = 0.37 microM, K(iq) = 64-85 nM, and KmP = 10 microM, where A = MgATP, B = SO4(2-), P = total PPi at 5 mM Mg2+, and Q = APS. The kinetic constants for molybdolysis were similar to those of the APS synthesis reaction. The kinetic constants of the minor (cytosol) form were similar to those of the major form with two exceptions: (a) The molybdolysis activity was 120 units x milligram protein-1, yielding a Vmax (ATP synthesis)/Vmax (molybdolysis) ratio close to 2 (compared to about unity for the chloroplast form) and (b) KmA was greater (0.24 and 0.15 mM for APS synthesis and molybdolysis, respectively). Initial velocity measurements (made over an extended range of MgATP and SO4(2-) concentrations), product inhibition studies (by initial velocity methods and by reaction progress curve analyses), dead end inhibition studies (with monovalent and divalent oxyanions), and kcat/Km comparisons (for SO4(2-) and MoO4(2-) support a random AB-ordered PQ kinetic mechanism in which MgATP and SO4(2-) bind in a highly synergistic manner. Equilibrium binding studies indicated the presence of one APS site per subunit. HPLC elution profiles of chymotryptic and tryptic peptides were essentially the same for both enzyme forms. The N-terminal sequence of residues 5-20 of the cytosol enzyme was identical to residues 1-16 of the chloroplast enzyme.

  9. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549more » cells.« less

  10. Lysergic acid diethylamide (LSD) administration selectively downregulates serotonin2 receptors in rat brain.

    PubMed

    Buckholtz, N S; Zhou, D F; Freedman, D X; Potter, W Z

    1990-04-01

    A dosage regimen of lysergic acid diethylamide (LSD) that reliably produces behavioral tolerance in rats was evaluated for effects on neurotransmitter receptor binding in rat brain using a variety of radioligands selective for amine receptor subtypes. Daily administration of LSD [130 micrograms/kg (0.27 mumol/kg) intraperitoneally (IP)] for 5 days produced a decrease in serotonin2 (5-hydroxytryptamine2, 5-HT2) binding in cortex (measured 24 hours after the last drug administration) but did not affect binding to other receptor systems (5-HT1A, 5-HT1B, beta-adrenergic, alpha 1- or alpha 2-adrenergic, D2-dopaminergic) or to a recognition site for 5-HT uptake. The decrease was evident within 3 days of LSD administration but was not demonstrable after the first LSD dose. Following 5 days of LSD administration the decrease was still present 48 hours, but not 96 hours, after the last administration. The indole hallucinogen psilocybin [1.0 mg/kg (3.5 mumol/kg) for 8 days] also produced a significant decrease in 5HT2 binding, but neither the nonhallucinogenic analog bromo-LSD [1.3 mg/kg (2.4 mumol/kg) for 5 days] nor mescaline [10 mg/kg (40.3 mumol/kg) for 5 or 10 days] affected 5-HT2 binding. These observations suggest that LSD and other indole hallucinogens may act as 5-HT2 agonists at postsynaptic 5-HT2 receptors. Decreased 5-HT2 binding strikingly parallels the development and loss of behavioral tolerance seen with repeated LSD administration, but the decreased binding per se cannot explain the gamut of behavioral tolerance and cross-tolerance phenomena among the indole and phenylethylamine hallucinogens.

  11. Synaptosomal binding of 125I-labelled daboiatoxin, a new PLA2 neurotoxin from the venom of Daboia russelli siamensis.

    PubMed

    Maung-Maung-Thwin; Gopalakrishnakone, P; Yuen, R; Tan, C H

    1996-02-01

    Daboiatoxin (DbTx), the PLA2 neurotoxin from Daboia russelli siamensis venom, was shown to bind specifically and saturably to rat cerebrocortical synaptosomes and synaptic membrane fragments. Two families of binding sites were detected by equilibrium binding analysis in the presence and absence of Ca2+. Scatchard analysis of biphasic plateaus revealed Kdl 5 nM and Bmax1, 6 pmoles/mg protein, and Kd2 80 nM and Bmax2 20 pmoles/mg protein, respectively, for the high- and low-affinity binding sites. The binding of 125I-DbTx to synaptosomes did not show marked dependence on Ca2+, Mg2+, Co2+ and Sr2+. Native DbTx was the only strong competitor to 125I-DbTx synaptosomal binding (IC50 12.5 nM, KI 5.5 nM). Two other crotalid PLA2 neurotoxins, crotoxin CB and mojave toxin basic subunit, and nontoxic C. Atrox PLA2 enzyme, were relatively weaker inhibitors, while two viperid PLA2 neurotoxins, ammodytoxin A and VRV PL V, were very weak inhibitors. Crotoxin CA was a poor inhibitor even at microM concentrations, whereas no inhibitory effect at all was observed with crotoxin CACB, ammodytoxin C, VRV PL VIIIa, taipoxin, beta-bungarotoxin, or with PLA2 enzymes from N. naja venom, E. schistosa venom, bee venom and porcine pancreas. All other pharmacologically active ligands examined (epinephrine, norepinephrine, histamine, choline, dopamine, serotonin, GABA, naloxone, WB-4101, atropine, hexamethonium and alpha-bun-garotoxin) also failed to interfere with 125I-DbTx binding. As those competitors that showed partial inhibition were effective only at microM concentration range compared to the Kd (5 nM) of 125I-DbTx synaptosomal binding, DbTx could well recognize a different neuronal binding site. Rabbit anti-DbTx polyclonal antisera completely blocked the specific binding. When a range of Ca2+ and K+ channels modulators were examined, Ca2+ channel blockers (omega-conotoxins GVIA and MVIIC, taicatoxin, calciseptine and nitrendiprene) did not affect the binding even at high concentrations, while charybdotoxin was the only K+ channel effector that could partially displace 125I-DbTx synaptosomal binding amongst the K+ channel blockers tested (apamin, dendrotoxin-I, iberiotoxin, MCD-peptide, 4-aminopyridine and tetraethylammonium), suggesting that neither K+ nor Ca2+ channels are associated with DbTx binding sites.

  12. Ap4A is not an efficient Zn(II) binding agent. A concerted potentiometric, calorimetric and NMR study.

    PubMed

    Wszelaka-Rylik, Małgorzata; Witkiewicz-Kucharczyk, Aleksandra; Wójcik, Jacek; Bal, Wojciech

    2007-05-01

    Diadenosine 5',5''-P(1)P(4) tetraphosphate (Ap(4)A) has been considered as an intracellular partner for Zn(II). We applied potentiometry, ITC and NMR to study protonation equilibria of Ap(4)A and Zn(II) complexation by this dinucleotide. The values of binding constants obtained by these three techniques under various experimental conditions coherently demonstrated that Ap(4)A binds Zn(II) weakly, with an apparent binding constant of ca. 10(4) at neutral pH. Such a low stability of Zn(II) complexes with Ap(4)A excludes a possibility for interactions between these two agents in vivo.

  13. TNF-α modulates genome-wide redistribution of ΔNp63α/TAp73 and NF-κB cREL interactive binding on TP53 and AP-1 motifs to promote an oncogenic gene program in squamous cancer.

    PubMed

    Si, H; Lu, H; Yang, X; Mattox, A; Jang, M; Bian, Y; Sano, E; Viadiu, H; Yan, B; Yau, C; Ng, S; Lee, S K; Romano, R-A; Davis, S; Walker, R L; Xiao, W; Sun, H; Wei, L; Sinha, S; Benz, C C; Stuart, J M; Meltzer, P S; Van Waes, C; Chen, Z

    2016-11-03

    The Cancer Genome Atlas (TCGA) network study of 12 cancer types (PanCancer 12) revealed frequent mutation of TP53, and amplification and expression of related TP63 isoform ΔNp63 in squamous cancers. Further, aberrant expression of inflammatory genes and TP53/p63/p73 targets were detected in the PanCancer 12 project, reminiscent of gene programs comodulated by cREL/ΔNp63/TAp73 transcription factors we uncovered in head and neck squamous cell carcinomas (HNSCCs). However, how inflammatory gene signatures and cREL/p63/p73 targets are comodulated genome wide is unclear. Here, we examined how the inflammatory factor tumor necrosis factor-α (TNF-α) broadly modulates redistribution of cREL with ΔNp63α/TAp73 complexes and signatures genome wide in the HNSCC model UM-SCC46 using chromatin immunoprecipitation sequencing (ChIP-seq). TNF-α enhanced genome-wide co-occupancy of cREL with ΔNp63α on TP53/p63 sites, while unexpectedly promoting redistribution of TAp73 from TP53 to activator protein-1 (AP-1) sites. cREL, ΔNp63α and TAp73 binding and oligomerization on NF-κB-, TP53- or AP-1-specific sequences were independently validated by ChIP-qPCR (quantitative PCR), oligonucleotide-binding assays and analytical ultracentrifugation. Function of the binding activity was confirmed using TP53-, AP-1- and NF-κB-specific REs or p21, SERPINE1 and IL-6 promoter luciferase reporter activities. Concurrently, TNF-α regulated a broad gene network with cobinding activities for cREL, ΔNp63α and TAp73 observed upon array profiling and reverse transcription-PCR. Overlapping target gene signatures were observed in squamous cancer subsets and in inflamed skin of transgenic mice overexpressing ΔNp63α. Furthermore, multiple target genes identified in this study were linked to TP63 and TP73 activity and increased gene expression in large squamous cancer samples from PanCancer 12 TCGA by CircleMap. PARADIGM inferred pathway analysis revealed the network connection of TP63 and NF-κB complexes through an AP-1 hub, further supporting our findings. Thus, inflammatory cytokine TNF-α mediates genome-wide redistribution of the cREL/p63/p73, and AP-1 interactome, to diminish TAp73 tumor suppressor function and reciprocally activate NF-κB and AP-1 gene programs implicated in malignancy.

  14. Peptides based on alphaV-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation.

    PubMed

    Kaul, Dhananjay K; Liu, Xiao-du; Zhang, Xiaoqin; Mankelow, Tosti; Parsons, Stephen; Spring, Frances; An, Xiuli; Mohandas, Narla; Anstee, David; Chasis, Joel Anne

    2006-11-01

    Growing evidence shows that adhesion molecules on sickle erythrocytes interact with vascular endothelium leading to vaso-occlusion. Erythrocyte intercellular adhesion molecule-4 (ICAM-4) binds alphaV-integrins, including alphaVbeta3 on endothelial cells. To explore the contribution of ICAM-4 to vascular pathology of sickle cell disease, we tested the effects of synthetic peptides, V(16)PFWVRMS (FWV) and T(91)RWATSRI (ATSR), based on alphaV-binding domains of ICAM-4 and capable of inhibiting ICAM-4 and alphaV-binding in vitro. For these studies, we utilized an established ex vivo microvascular model system that enables intravital microscopy and quantitation of adhesion under shear flow. In this model, the use of platelet-activating factor, which causes endothelial oxidant generation and endothelial activation, mimicked physiological states known to occur in sickle cell disease. Infusion of sickle erythrocytes into platelet-activating factor-treated ex vivo rat mesocecum vasculature produced pronounced adhesion of erythrocytes; small-diameter venules were sites of maximal adhesion and frequent blockage. Both FWV and ATSR peptides markedly decreased adhesion, and no vessel blockage was observed with either of the peptides, resulting in improved hemodynamics. ATSR also inhibited adhesion in unactivated microvasculature. Although infused fluoresceinated ATSR colocalized with vascular endothelium, pretreatment with function-blocking antibody to alphaVbeta3-integrin markedly inhibited this interaction. Our data strengthen the thesis that ICAM-4 on sickle erythrocytes binds endothelium via alphaVbeta3 and that this interaction contributes to vaso-occlusion. Thus peptides or small molecule mimetics of ICAM-4 may have therapeutic potential.

  15. Desensitization of the nicotinic acetylcholine receptor by diisopropylfluorophosphate.

    PubMed

    Eldefrawi, M E; Schweizer, G; Bakry, N M; Valdes, J J

    1988-01-01

    The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-alpha-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh- or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.

  16. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    PubMed

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  17. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svensson, Jan, E-mail: jan.svensson@ki.se; Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm; Bergman, Ann-Charlotte

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirinmore » in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of fibrinogen.« less

  18. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking.

    PubMed

    Prasanna, Sivaprakasam; Daga, Pankaj R; Xie, Aihua; Doerksen, Robert J

    2009-02-01

    Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer's disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3alpha inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3alpha and GSK-3beta isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the beta isoform are the same in the alpha isoform, except that Asp133 in the beta isoform is replaced by Glu196 in the alpha isoform. We prepared a homology model for GSK-3alpha, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the beta isoform, and helped to explain the difference in their inhibitory activity.

  19. L-selectin-carbohydrate interactions: relevant modifications of the Lewis x trisaccharide.

    PubMed

    Sanders, W J; Katsumoto, T R; Bertozzi, C R; Rosen, S D; Kiessling, L L

    1996-11-26

    Protein-carbohydrate interactions are known to mediate cell-cell recognition and adhesion events. Specifically, three carbohydrate binding proteins termed selectins (E-, P-, and L-selectin) have been shown to be essential for leukocyte rolling along the vascular endothelium, the first step in the recruitment of leukocytes from the blood into inflammatory sites or into secondary lymphoid organs. Although this phenomenon is well-established, little is known about the molecular-level interactions on which it depends. All three selectins recognize sulfated and sialylated derivatives of the Lewis x [Le(x):Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and Lewis a [Le(a): Gal beta 1-->3(Fuc alpha 1-->4)GlcNAc] trisaccharide cores with affinities in the millimolar range, and it is believed that variants of these structures are the carbohydrate determinants of selectin recognition. Recently it was shown that the mucin GlyCAM-1, a secreted physiological ligand for L-selectin, is capped with sulfated derivatives of sialyl Lewis x [sLe(x): Sia alpha 2-->3Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and that sulfation is required for the high-affinity interaction between GlyCAM-1 and L-selectin. To elucidate the important sites of sulfation on Le(x) with respect to L-selectin recognition, we have synthesized six sulfated Le(x) analogs and determined their abilities to block binding of a recombinant L-selectin-Ig chimera to immobilized GlyCAM-1. Our results suggest that 6-sulfo sLe(x) binds to L-selectin with higher affinity than does sLe(x) or 6'-sulfo sLe(x) and that sulfation of sLe(x) capping groups on GlyCAM-1 at the 6-position is important for L-selectin recognition.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas J.; Markillie, Lye MENG.

    The thromboxane A{sub 2} (TXA{sub 2}) receptor (TP) is represented by two alternatively spliced forms, termed the platelet/placental (TP-P) and endothelial (TP-E) type receptors. Experimental evidence suggests that TP isoforms may be regulated by novel ligands termed the isoprostanes, which paradoxically act as TP agonists in smooth muscle and TP antagonists in platelet preparations. Here we have investigated whether prototypical isoprostanes (8-iso-PG{sub 2{sub {alpha}}} and 8-iso-PGE{sub 2}) regulate the activity of TP isoforms expressed in Chinese Hamster Ovary (CHO) cells using activator protein-1 (AP-1)-luciferase activity as a reporter. AP-1-luciferase activity was increased by a TP agonist (U46619) in CHO cellsmore » transfected with the human TP-P and TP-E receptors and this response was fully inhibited by TP antagonists (ISAP, SQ29,548). AP-1-luciferase activity was potently (nM) increased by 8-iso-PGE2 in CHO TP-P and TP-E cells, and this response was partially inhibited by cotreatment of cells with TP antagonists, while 8-iso-PGF{sub 2{sub {alpha}}} was without effect. Cyclooxygenase inhibitors did not abolish 8-iso-PGE{sub 2} mediated AP-1-luciferase activity, indicating that this response is not dependent on de novo TXA2 biosynthesis. Interestingly, 8-iso-PGE{sub 2}-mediated AP-1-luciferase activity was near maximal in naive cells between 1-10 nM concentrations, and this response was not inhibited by TP antagonist or reproduced by agonists for TP or EP1/EP3 receptors. These observations (1) support a role for novel ligands in the regulation of TP-dependent signaling, (2) indicate that TP-P and TP-E couple to AP-1, (3) provide further evidence that isoprostanes function as TP agonists in a cell-type specific fashion, and (4) indicate that additional targets regulated by 8-iso-PGE{sub 2} couple to AP-1.« less

Top