Sample records for apatites

  1. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl

  2. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  3. The lunar apatite paradox.

    PubMed

    Boyce, J W; Tomlinson, S M; McCubbin, F M; Greenwood, J P; Treiman, A H

    2014-04-25

    Recent discoveries of water-rich lunar apatite are more consistent with the hydrous magmas of Earth than the otherwise volatile-depleted rocks of the Moon. Paradoxically, this requires H-rich minerals to form in rocks that are otherwise nearly anhydrous. We modeled existing data from the literature, finding that nominally anhydrous minerals do not sufficiently fractionate H from F and Cl to generate H-rich apatite. Hydrous apatites are explained as the products of apatite-induced low magmatic fluorine, which increases the H/F ratio in melt and apatite. Mare basalts may contain hydrogen-rich apatite, but lunar magmas were most likely poor in hydrogen, in agreement with the volatile depletion that is both observed in lunar rocks and required for canonical giant-impact models of the formation of the Moon.

  4. Apatite glass-ceramics: a review

    NASA Astrophysics Data System (ADS)

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham

    2016-12-01

    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  5. Fabrication of biporous low-crystalline apatite based on mannitol dissolution from apatite cement.

    PubMed

    Tajima, Shinya; Kishi, Yuji; Oda, Makoto; Maruta, Michito; Matsuya, Shigeki; Ishikawa, Kunio

    2006-09-01

    Biporous (macro- and microporous) calcium phosphate gains much attention as a bone substitute material because of its large surface area and that it improves cell penetration. In the present study, we evaluated the feasibility of biporous, low-crystalline apatite based on dissolution of mannitol from self-setting apatite cement (Biopex). Mannitol--known as a biocompatible, easily dissolved monosaccharide alcohol--was recrystallized to obtain larger crystals. It was crushed with pestle and mortar, sieved to obtain crystals which passed through a 500-microm mesh but which remained against a 300-microm mesh, and then used as porogen. Although Biopex containing 60 wt% mannitol was not able to be taken out of the mold, addition of mannitol caused no initial setting inhibition to Biopex if the amount was 40 wt% or less. Similarly, transformation to apatitic product was confirmed when the apatite cement was immersed in 0.9% saline kept at 37 degrees C for seven days. The set mass became low-crystalline, biporous apatite with approximately 60% porosity.

  6. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds

    PubMed Central

    2013-01-01

    Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of “analogs” through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of “bone-like” apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the “bioactivity” of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the “actual” conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a “bone-like carbonate apatite layer” as is sometimes too hastily concluded: “all that glitters is not gold.” The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making “bone-like apatites.” PMID:23984373

  7. Apatite-Melt Partitioning of Volatiles in Basaltic Systems: Implications for Determining Volatile Abundances in Planetary Bodies from Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.

    2017-01-01

    Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials, and due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources [i.e., 1]. Experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in basaltic systems [e.g., 2- 3], reporting that apatite-melt partitioning of volatiles is best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, exchange coefficients may vary as a function of temperature, pressure, melt composition, and/or oxygen fugacity. Furthermore, exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite [3]. In these regions of ternary space, we anticipate that crystal chemistry could influence partitioning behavior. Consequently, we conducted experiments to investigate the effect of apatite crystal chemistry on apatite-melt partitioning of F, Cl, and OH.

  8. U-Pb Ages of Lunar Apatites

    NASA Technical Reports Server (NTRS)

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles

    2006-01-01

    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  9. Factors controlling sulfur concentrations in volcanic apatite

    USGS Publications Warehouse

    Peng, G.; Luhr, J.F.; McGee, J.J.

    1997-01-01

    Apatite crystals from two types of samples were analyzed by electron microprobe for 15 major and trace elements: (1) apatite in H2O- and S-saturated experimental charges of the 1982 El Chicho??n trachyandesite and (2) apatite in volcanic rocks erupted from 20 volcanoes. The SO3 contents of the experimental apatite increase with increasing oxygen fugacity (fo2), from ???0.04 wt% in reduced charges buffered by fayalite-magnetite-quartz (FMQ), to 1.0-2.6 wt% in oxidized charges buffered by manganosite-hausmanite (MNH) or magnetite-hematite (MTH). The SO3 contents of MNH- and MTH-buffered apatite also generally increase with increasing pressure from 2 to 4 kbar and decreasing temperature from 950 to 800??C. The partition coefficient for SO3 between apatite and oxidized melt increases with decreasing temperature but appears to be independent of pressure. Apatites in volcanic rocks show a wide range of SO3 contents (<0.04 to 0.63 wt%). Our sample set includes one group known to contain primary anhydrite and a second group inferred to have been free of primary anhydrite. No systematic differences in apatite S contents are observed between these two groups. Our study was initiated to define the factors controlling S contents in apatite and to evaluate the hypothesis that high S contents in apatite could be characteristic of S-rich anhydrite-bearing magmas such as those erupted from El Chicho??n in 1982 and Pinatubo in 1991. This hypothesis is shown to be invalid, probably chiefly a consequence of the slow intra-crystaline diffusion that limits re-equilibration between early formed apatite and the evolving silicate melt. Contributing factors include early crystallization of most apatite over a relatively small temperature interval, common late-stage magmatic enrichment of S, progressive oxidation during magmatic evolution, and strong controls on S contents in apatite exerted fo2, temperature, and pressure.

  10. ID ICPMS Lu-Hf Geochronology of Apatite from Iron-Oxide Apatite (IOA) Deposits, Northern Chilean Iron Belt.

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Vervoort, J. D.; Barra, F.; Palma, G.

    2017-12-01

    Determining the age of mineralization of ore deposits is important for understanding the mechanisms and timing of ore formation. In many cases, however, conventional dateable mineral phases (e.g., zircon, monazite) are lacking in the ore mineral assemblages. For example, Iron Oxide Apatite (IOA) and Iron Oxide Gold Copper Gold (IOCG) deposits have the remaining fundamental question as to whether they have formed by hydrothermal or magmatic processes, or some combination of the two. In these deposits, the mineralization of iron oxide is often accompanied by the growth of apatites, which typically have REE concentrations of tens to several thousand ppm and which makes them potentially amenable to dating by the Lu-Hf isochron method. These apatites, however, also have very low concentrations of Hf, which makes determination of precise Hf isotope compositions challenging. In this study, we attempted to date these deposits using the apatite Lu-Hf isochron method, using procedures modified from that of Münker et al., 2001 and Barfod et al., 2003 and report the first Lu-Hf ages for apatites from Carmen, Fresia, and Mariela IOA deposits in northern Chilean Iron Belt. The concentration of Hf in analyzed apatite is 0.001 ppm. To ensure at least 0.5ng of Hf is collected for MS analysis, 0.5g apatite was dissolved for each sample. A single stage of Ln-spec resin chromatographic columns was used to separate Hf from REEs as multi stages of separation columns would decrease the Hf yield considerably. Using these procedures, we determined a Lu-Hf apatite age for the Carmen deposit of 130.0±1.7 Ma, which is in accordance with a previously published U-Pb apatite age of 131.0±1.0 Ma (Gelcich et al., 2005). The apatites from Fresia and Mariela yield Lu-Hf ages of 132.8±5.3 Ma and 117.3±0.4 Ma respectively. The lower points on the isochrons are either a low Lu/Hf phase (actinolite, magnetite) or bulk earth ratios. These are some of the first Lu-Hf ages of directly dating apatite

  11. The volatile content of Vesta: Clues from apatite in eucrites

    NASA Astrophysics Data System (ADS)

    Sarafian, Adam Robert; Roden, Michael F.; PatiñO-Douce, Alberto E.

    2013-11-01

    Apatite was analyzed by electron microprobe in 3 cumulate and 10 basaltic eucrites. Eucritic apatite is fluorine-rich with minor chlorine and hydroxyl (calculated by difference). We confirmed the hydroxyl content by measuring hydroxyl directly in apatites from three representative eucrites using secondary ionization mass spectroscopy. Overall, most eucritic apatites resemble fluorine-rich lunar mare apatites, but intriguing OH- and Cl-rich apatites suggest a role for water and/or hydrothermal fluids in the Vestan interior or on other related differentiated asteroids. Most late-stage apatite found in mesostasis has little hydroxyl or chlorine and is thought to have crystallized from a degassed magma; however, several apatites exhibit atypical compositions and/or textural characteristics. For example, the isotopically anomalous basaltic eucrite Pasamonte has apatite in the mesostasis with significant OH. Apatites in Juvinas also have significant OH and occur as veinlets crosscutting silicates. Euhedral apatites in the Moore County cumulate eucrite occur as inclusions in pyroxene and are also hydroxyl-rich (0.62 wt% OH). The OH was confirmed by SIMS analysis and this apatite clearly points to the presence of water, at least locally, in the Vestan interior. Portions of Elephant Moraine (EET) 90020 have large and abundant apatites, which may be the product of apatite accumulation in a zone of melt-rock reaction. Relatively chlorine-rich apatites occur in basaltic eucrite Graves Nunataks (GRA) 98098 (approximately 1 wt% Cl). Particularly striking is the compositional similarity between apatite in GRA 98098 and apatites in lunar KREEP, which may indicate the presence of residual magmas from an asteroid-wide magma ocean on Vesta.

  12. Modification of electrochemically deposited apatite using supercritical water.

    PubMed

    Ban, S; Hasegawa, J

    2001-12-01

    Supercritical water was used as a modification method of electrochemically deposited apatite on pure titanium. The apatites were coated on a commercially pure titanium plate using a hydrothermal-electrochemical method. A constant direct current at 12.5 mA/cm2 was loaded for 1 hr at 25, 60, 100, 150 and 200 degrees C in an electrolyte containing calcium and phosphate ions. The deposited apatite on the titanium substrate was stored in supercritical water at 450 degrees C under 45 MPa for 8 hr. With this treatment, the crystallinity of the apatites increased, sharp edges of the deposited apatites were rounded off, and the bonding strength of the titanium substrate to the deposited apatites significantly increased. On the other hand, weight loss in 0.01 N HCl decreased and the weight gain rate in a simulated body fluid also decreased with this treatment. It is suggested that the modification using supercritical water improved the mechanical strength of the deposited apatite, but worsened its bioactivity.

  13. The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation

    PubMed Central

    Gopinathan, Gokul; Jin, Tianquan; Liu, Min; Li, Steve; Atsawasuwan, Phimon; Galang, Maria-Therese; Allen, Michael; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate

  14. Ascorbate-apatite composite and ascorbate-FGF-2-apatite composite layers formed on external fixation rods and their effects on cell activity in vitro.

    PubMed

    Wang, Xiupeng; Ito, Atsuo; Sogo, Yu; Li, Xia; Tsurushima, Hideo; Oyane, Ayako

    2009-09-01

    Ascorbate-apatite and ascorbate-fibroblast growth factor-2 (FGF-2)-apatite composite layers were successfully formed on anodically oxidized Ti rods clinically used for external fixation by a one-step procedure at 25 degrees C, using a metastable supersaturated calcium phosphate solution supplemented with l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg) and FGF-2. The AsMg-apatite and AsMg-FGF-2-apatite composite layers were evaluated in vitro using fibroblastic NIH3T3 and osteoblastic MC3T3-E1 cells. The AsMg-FGF-2-apatite composite layer markedly enhanced the NIH3T3 cell proliferation and procollagen type capital I, Ukrainian gene expression. Without FGF-2, the AsMg-apatite composite layer whose ascorbate content was 3.64+/-1.27microgcm(-2) obviously enhanced osteoblastic proliferation and differentiation. However, the AsMg-FGF-2-apatite composite layers whose FGF-2 contents were from 0.15+/-0.03 to 0.31+/-0.04microgcm(-2) inhibited osteoblastic differentiation in vitro. Thus, the AsMg-FGF-2-apatite composite layer should be precipitated on the surface of external fixators attached to skin and soft tissue. On the other hand, the AsMg-apatite composite layer should be precipitated at the part attached to bone tissue.

  15. Time and the crystallization of apatite in seawater

    USGS Publications Warehouse

    Gulbrandsen, R.A.; Roberson, C.E.; Neil, S.T.

    1984-01-01

    Carbonate fluorapatite has been synthesized in seawater in an experiment of nearly 10-years duration. The addition of phosphate to seawater whose fluoride concentration had been increased to 7.6 mg/l brought about an initial amorphous phosphate precipitate. After 20 months, a crystalline magnesium phosphate phase developed within the amorphous phosphate. Crystallization of apatite, which occurred during the last 3 years of the experiment, was accompanied by dissolution of the crystalline magnesium phosphate phase. The MgO content of the apatite (1.9 percent) is high in comparison to Tertiary and older apatite but similar to some young apatite; the CO2 content (3.6 percent) is medium, and the fluorine content (2.2 percent) is low but again similar to some young apatite. The hydroxyl ion (OH-) likely fills the need for additional fluorine-position atoms. The mole ratio of Ca plus substituent elements to P plus substituent elements (1.50) is low in comparison to the expected ratio of 1.67. The substitution of the hydronium ion (H3O+) for Ca may account for this difference. The synthesis of apatite in seawater demonstrates that the factor of time overcomes the well known inhibiting effect of magnesium upon the crystallization of apatite. It also implies that given an adequate supply of phosphate, apatite can form in most ocean environments and likely plays a major pan in the control of the phosphate content of seawater. ?? 1984.

  16. Apatite Mineral Chemistry From IOA Deposits in Northern Chile

    NASA Astrophysics Data System (ADS)

    Palma, G.; Barra, F.; Reich, M.; Valencia, V.; Simon, A. C.; Vervoort, J. D.

    2017-12-01

    The Carmen, Fresia and Mariela iron-oxide apatite (IOA) deposits of Cretaceous age, located in the Coastal Cordillera of northern Chile, comprise massive bodies of magnetite with minor apatite and actinolite crystals spatially related to diorite intrusions. In order to provide new insights on the origin of Andean IOA deposits, we provide geochemical data of apatite grains collected from these three deposits. All studied apatite grains are zoned with respect to Cl and F, and show a decoupled behaviour between fluorapatite and chlorapatite. Carmen apatite grains are mostly F-rich, whereas in Mariela apatite grains are Cl-rich. Fresia apatite grains show a variable composition between fluorapatite and chlorapatite. Carmen apatite grains show a high REE content reaching up to 7000 ppm, and both Fresia and Mariela have lower REE content (<1400 ppm). REE patterns for all analyzed apatite grains show the typical LREE enrichment relative to the HREE and pronounced negative Eu anomaly, which indicates crystallization of plagioclase in the source magmas [1]. Chlorapatite zones are characterized by high S, Na, Sr and Fe content relative to fluorapatite zones. Notably S and Na show a coupled behaviour with Cl. Conversely LREE are depleted in chlorapatite zones, which is compatible with metasomatism through dissolution-reprecipitation mechanism and formation of monazite inclusions [2]. These results indicate a magmatic origin for fluorapatite in these Andean IOA deposits followed by variable degrees of hydrothermal overprint which resulted in the formation of Cl-rich apatites.[1] Frietsch & Perdahl (1995) Ore Geology Rev. 9 489-510. [2]Harlov et al. (2005) Contrib Mineral Petrol 150: 268-286

  17. Inverted Apatite (U-Th)/He and Fission-track Dates from the Rae craton, Baffin Island, Canada and Implications for Apatite Radiation Damage-He Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.

    2015-12-01

    Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at

  18. The oxidation state of sulfur in apatite: A new oxybarometer?

    NASA Astrophysics Data System (ADS)

    Fiege, A.; Konecke, B.; Kim, Y.; Simon, A. C.; Becker, U.; Parat, F.

    2016-12-01

    Oxygen fugacity (fO2) of magmatic and hydrothermal systems influences, for instance, crystallization and degassing processes as well as metal solubilities in melts and fluids. Apatite is a ubiquitous mineral in magmatic and hydrothermal environments that can record and preserve volatile zonation. It can contain several thousand μg/g of the redox sensitive element sulfur (S), making S-in-apatite a potential fO2 sensor. Despite the polyvalent properties of S (e.g., S2-, S4+, S6+), the oxidation state and incorporation mechanisms of S in the apatite structure are poorly understood. In this study, the oxidation state of S-in-apatite as a function of fO2 is investigated using X-ray absorption near-edge structures (XANES) spectroscopy at the S K-edge. Apatites crystallized from lamproitic melts at 1000°C, 300 MPa and over a broad range of fO2 and sulfur fugacities (fS2) were measured. Peaks corresponding to S6+ ( 2482 eV), S4+ ( 2478 eV) and S2- ( 2470 eV) were identified in apatite. The integrated S6+/STotal (STotal = S6+ + S4+ + S2-) peak area ratios show a distinct positive correlation with fO2, increasing from 0.17 at FMQ+0 to 0.96 at FMQ+3. Ab-initio calculations were performed to further understand the energetics and geometry of incorporation of S6+, S4+ and S2- into the apatite (F-, Cl-, OH-) end-members. The results confirm that apatite can contain three different oxidations states of S (S6+, S4+, S2-) as a function of fO2. This makes apatite probably the first geologically relevant mineral to incorporate reduced (S2-), intermediate (S4+), and oxidized (S6+) S in variable proportions. We emphasize that the strong dependence of the S oxidation state in apatite as a function of fO2 is also coupled with changing S content of apatite and co-existing melt (i.e., with changing fS2), resulting in a complex correlation between [1] apatite-melt (or fluid) partitioning, [2] redox conditions and [3] the melt and/or fluid composition, making the application of previously

  19. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    PubMed Central

    Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro

    2016-01-01

    Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite

  20. Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates

    NASA Astrophysics Data System (ADS)

    Kasioptas, Argyrios; Geisler, Thorsten; Perdikouri, Christina; Trepmann, Claudia; Gussone, Nikolaus; Putnis, Andrew

    2011-06-01

    Aragonite and calcite single crystals can be readily transformed into polycrystalline hydroxyapatite pseudomorphs by hydrothermal treatment in a (NH 4) 2HPO 4 solution. Scanning electron microscopy of the reaction products showed that the transformation of aragonite to apatite is characterised by the formation of a sharp interface between the two phases and by the development of intracrystalline porosity in the hydroxyapatite phase. In addition, electron backscattered diffraction (EBSD) imaging showed that the c-axis of apatite is predominantly oriented perpendicular to the reaction front with no crystallographic relationship to the aragonite lattice. However, the Ca isotopic composition of the parent aragonite, measured by thermal ionization mass spectrometry was inherited by the apatite product. Hydrothermal experiments conducted with use of phosphate solutions prepared with water enriched in 18O (97%) further revealed that the 18O from the solution is incorporated in the product apatite, as measured by micro-Raman spectroscopy. Monitoring the distribution of 18O with Raman spectroscopy was possible because the incorporation of 18O in the PO 4 group of apatite generates four new Raman bands at 945.8, 932, 919.7 and 908.8 cm -1, in addition to the ν1(PO 4) symmetric stretching band of apatite located at 962 cm -1, which can be assigned to four 18O-bearing PO 4 species. The relative intensities of these bands reflect the 18O content in the PO 4 group of the apatite product. By using equilibrated and non-equilibrated solutions, with respect to the 18O distribution between aqueous phosphate and water, we could show that the concentration of 18O in the apatite product is linked to the degree of 18O equilibration in the solution. The textural and chemical observations are indicative of a coupled mechanism of aragonite dissolution and apatite precipitation taking place at a moving reaction interface.

  1. The Perils of Electron Microprobe Analysis of Apatite

    NASA Astrophysics Data System (ADS)

    Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.

    2010-12-01

    Accurate electron microprobe analysis of apatite is problematic, especially for F and Cl, whose concentrations are essential in calculating a non-analyzable OH component. The issues include beam-induced sample damage and temporal variation of F and Cl X-rays; both effects are mainly dependent on beam current, beam spot size and apatite orientation [1]. To establish a rigorous analytical procedure, several oriented apatite samples, including the well-known Durango and Wilberforce fluorapatites, were analyzed for a large suite of elements, including oxygen. Careful X-ray spectroscopy was performed, including selection of appropriate analytical standards, background measurement positions and comparison of area peak factors. Polarized infrared spectra on oriented apatite samples were also collected for complementary information. The results show that when apatite samples are oriented with the c-axis parallel to the electron beam, there is significant nonlinear variation (an increase or decrease, depending on measurement conditions) of F and Cl X-ray intensities during analyses, and systematically higher-than-expected F apparent concentrations, despite the careful selection of electron beam conditions from a series of X-ray time scans and zero-time count rate extrapolation. On the other hand, when the electron beam is oriented perpendicular to the c-axis, with a ≤ 15 nA beam current and a ≥ 5 µm diameter defocused beam, F and Cl X-ray intensities do not vary or vary slowly and predictably with time, yielding quantitative analysis results for the Durango and Wilberforce apatites (both containing little OH) which are in good agreement with published wet chemical analyses. Furthermore, the OH and CO2 contents inferred for three other analyzed apatite samples are roughly consistent with infrared analyses. For example, for an apatite from Silver Crater Mine in Ontario, significant deficiency in the P site, as well as extra F, was inferred from microprobe analyses

  2. Apatite sulfur systematics and crystal population in the 1991 Pinatubo magmas

    NASA Astrophysics Data System (ADS)

    van Hoose, A. E.; Streck, M. J.; Pallister, J. S.

    2010-12-01

    On June 15, 1991, Mount Pinatubo, Philippines, ejected 20 mega-tonnes of sulfur dioxide into the atmosphere, significantly impacting global climate and stratospheric ozone. Recharging basaltic magma mixed into the 50 km3 dacitic magma reservoir 6 to 11 km beneath Mount Pinatubo, and triggered the 1991 eruption. The result of the magma mixing was a hybrid andesite with quenched basalt inclusions that erupted as a dome between June 7 and June 12. On June 15, approximately 5 km3 of anhydrite bearing magma was erupted from the main phenocryst-rich dacitic reservoir. We are using this extraordinary framework of the 1991 Pinatubo eruption to investigate the systematics of sulfur uptake by apatite in order to further develop apatite as a monitor for magmatic sulfur. In the dacite and hybrid andesite, apatite occurs as individual phenocrysts (up to ~200 μm diameter) or included within anhydrite, hornblende, and plagioclase phenocrysts. In the basaltic magmatic inclusions, apatite is found as acicular microphenocrysts. Electron microprobe data collected on apatite yield low- (<0.3 SO3 wt.%), medium- (0.3-0.7 SO3 wt.%), and high-sulfur (>0.7 SO3 wt.%) apatites in all juvenile products, and show that two distinct populations of apatites exist. Apatites crystallizing from silicic melt have predominantly low- to medium-sulfur contents, but high-sulfur apatites with as much as 1.2-1.6 wt.% SO3 occur sporadically and are always found in close proximity to anhydrite. Except for a few low-sulfur apatites, apatite in the basalt is always sulfur-rich with compositions forming a continuous array between 0.9 to 2.4 wt.% SO3. The population of apatite that crystallized from silicic melt has elevated cerium, fluorine, and chlorine and lower magnesium concentrations (average dacite values in wt.%: 0.22 Ce2O3; 1.4 F; 1.1 Cl, 0.14 MgO ;) relative to the population of apatite from the basalt (average basalt values in wt.%: 0.08 Ce2O3; 0.9 F; 0.9 Cl, 0.20 MgO). These compositional

  3. Structurally bound sulfide and sulfate in apatite from the Philips Mine iron oxide - apatite deposit, New York, USA: A tracer of redox changes

    NASA Astrophysics Data System (ADS)

    Sadove, G.; Konecke, B.; Fiege, A.; Simon, A. C.

    2017-12-01

    Multiple competing hypotheses attempt to explain the genesis of iron oxide-apatite (IOA) ore deposits. Many studies have investigated the chemistry of apatite because the abundances of F and Cl can distinguish magmatic vs. hydrothermal processes. Recent experiments demonstrate that apatite incorporates S6+, S4+, and S2-, and that total sulfur (∑S) as well as the S6+/∑S ratio in apatite vary systematically as a function of oxygen fugacity [1], providing information about sulfur budget and redox. Here, we present results from X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, electron microprobe analyses, cathodoluminescence (CL) imaging, and element mapping of apatite from the Philip's Mine IOA deposit, southern Adirondack Mountains, USA. The Philip's Mine apatite contains inclusions of pyrite and pyrrhotite, where the latter includes iron oxide and Ni-rich domains. The apatite also contains inclusions of monazite, and exhibits complex CL zonation coincident with variations in the abundances of REE and S. The presence of monazite fingerprints fluid-mediated dissolution-reprecipitation of originally REE-enriched apatite [2]. The S XANES spectra reveal varying proportions of structurally bound S6+ and S2-, as the S6+/∑S ratio ranges from sulfide-only to sulfate-only. Notably, sulfide-dominated domains contain higher S contents than sulfate-dominated regions. These observations are consistent with co-crystallization of apatite and monosulfide solid solution (MSS) at reducing conditions, followed by decomposition of MSS to pyrrhotite, pyrite and intermediate solid solution (ISS, which is not preserved; [3]). Metasomatism of that assemblage by an oxidized fluid resulted in formation of monazite in apatite and iron oxide domains in pyrrhotite. We conclude that the deposit formed by a H2S-Fe-rich volatile phase, possibly evolved from a rather primitive magmatic source, which is consistent with the low Ti content of magnetite. The deposit was

  4. Can Polyphosphate Biochemistry Affect Biological Apatite Saturation?

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Matsuura, N.; Gorelikov, I.; Wynnyckyj, C.; Grynpas, M. D.

    2010-12-01

    Phosphorus (P) is an important and limiting element for life. One strategy for storing ortho phosphates (Pi) is polymerization. Polymerized Pi's (polyphosphates: (PO3-)n: polyPs) serve as a Pi bank, as well as a catiion chelator, energy source, & regulator of responses to stresses in the stationary phase of culture growth and development1. PolyP biochemistry has been investigated in yeasts, bacteria & plants2. Bigeochemical cycling of P includes the condensation of Pi into pyro (P2O7-4), & polyPs, & the release of Pi from these compounds by the hydrolytic degradation of Pi from phosphomonoester bonds. Alkaline phosphatase (ALP) is one of the predominate enzymes for regenerating Pi in aquatic systems3, & it cleaves Pi from polyPs. ALP is also the enzyme associated with apatite biomineralization in vertebrates4. PolyP was proposed to be the ALP substrate in bone mineralization5. Where calcium ions are plentiful in many aquatic environments, there is no requirement for aquatic life to generate Ca-stores. However, terrestrial vertebrates benefit from a bioavailable Ca-store such as apatite. The Pi storage strategy of polymerizing PO4-3 into polyPs dovetails well with Ca-banking, as polyPs sequester Ca, forming a neutral calcium polyphosphate (Ca-polyP: (Ca(PO3)2)n) complex. This neutral complex represents a high total [Ca+2] & [PO4-3], without the threat of inadvertent apatite precipitation, as the free [Ca+2] & [PO4-3], and therefore apatite saturation, are zero. Recent identification of polyP in regions of bone resorption & calcifying cartilage5 suggests that vertebrates may use polyP chemistry to bank Ca+2 and PO4-3. In vitro experiments with nanoparticulate Ca-polyP & ALP were undertaken to determine if carbonated apatite could precipitate from 1M Ca-polyP in Pi-free “physiological fluid” (0.1 M NaCl, 2 mM Ca+2, 0.8 mM Mg+2, pH ~8.0 ±0.5, 37 °C), as this is estimated to generate the [Ca+2] & [PO4-3] required to form the apatite content of bone tissue

  5. Apatite mineralization in elasmobranch skeletons via a polyphosphate intermediate

    NASA Astrophysics Data System (ADS)

    Omelon, Sidney; Lacroix, Nicolas; Lildhar, Levannia; Variola, Fabio; Dean, Mason

    2014-05-01

    All vertebrate skeletons are stiffened with apatite, a calcium phosphate mineral. Control of apatite mineralization is essential to the growth and repair of the biology of these skeletons, ensuring that apatite is deposited in the correct tissue location at the desired time. The mechanism of this biochemical control remains debated, but must involve increasing the localized apatite saturation state. It was theorized in 1923 that alkaline phosphatase (ALP) activity provides this control mechanism by increasing the inorganic phosphate (Pi) concentration via dephosphorylation of phosphorylated molecules. The ALP substrate for biological apatite is not known. We propose that polyphosphates (polyPs) produced by mitochondria may be the substrate for biological apatite formation by ALP activity. PolyPs (PO3-)n, also known as condensed phosphates, represent a concentrated, bioavailable Pi-storage strategy. Mitochondria import Pi and synthesize phosphate polymers through an unknown biochemical mechanism. When chelated with calcium and/or other cations, the effective P-concentration of these neutrally charged, amorphous, polyP species can be very high (~ 0.5 M), without inducing phosphate mineral crystallization. This P-concentration in the low Pi-concentration biological environment offers a method of concentrating P well above an apatite supersaturation required for nucleation. Bone is the most studied mineralized skeletal tissue. However, locating and analyzing active mineralizing areas is challenging. We studied calcified cartilage skeletons of elasmobranch fishes (sharks, stingrays and relatives) to analyse the phosphate chemistry in this continually mineralizing skeleton. Although the majority of the elasmobranch skeleton is unmineralized cartilage, it is wrapped in an outer layer of mineralized tissue comprised of small tiles called tesserae. These calcified tesserae continually grow through the formation of new mineral on their borders. Co-localization of ALP and

  6. Calibration for Infrared Measurements of OH in Apatite

    NASA Astrophysics Data System (ADS)

    Wang, K. L.; Naab, F.; Zhang, Y.

    2010-12-01

    Apatite is a common accessory mineral, and OH in apatite can indicate the fluid conditions of crystal formation. Previously, water (OH) concentration in apatite has often been estimated through electron microprobe analyses combined with mineral stoichiometry. However, the detection limit, precision, and accuracy of this method are not high. In this work, we calibrated the infrared spectroscopy (IR) method for measurement of OH concentration in apatite by using elastic recoil detection (ERD) analysis to obtain the absolute OH concentration. Large apatite wafers were cut perpendicular to the c-axis of each crystal and doubly polished. ERD measurements were carried out in the Michigan Ion Beam Laboratory at the University of Michigan to determine the hydrogen concentration in each sample. Each ERD spectrum was fitted and a hydrogen standard was used to quantify the hydrogen concentrations. Polarized transmission IR was used on apatite sections that were cut parallel to the c-axis, and doubly polished. IR measurements were made for E-vector parallel to the c-axis. Because the OH peak is intense, very thin samples must be used to avoid absorbance saturation; the thinnest sample (corresponding to the highest OH content) used was 17 µm thick. Four different apatite crystals were successfully analyzed using both the IR and ERD methods. Two were from Durango, Mexico; one from Imilchil, High Atlas Mountains, Morocco; and one from an unknown locality, purchased online from gem dealers. The OH peak near 3550 cm-1 was a relatively simple peak in all four samples. Therefore peak height was used for the absorbance value, A. Using the Beer-Lambert Law, a calibration line was established (R2= 0.95, for IR aperture of 50 µm x 50 µm) where the weight % of H2O is 0.013 times A/d, where d is the thickness in mm. The detection limit of H2O concentration in apatite by IR approaches ppm level for 0.1 mm wafers, the precision is better than 1% relative (depending on H2O content), and

  7. Immobilization of uranium in contaminated soil by natural apatite addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa

    2007-07-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uraniummore » determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)« less

  8. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants.

    PubMed

    Sharma, Smriti; Soni, Vivek P; Bellare, Jayesh R

    2009-07-01

    A novel bioactive porous apatite-wollastonite/chitosan composite coating was prepared by electrophoretic deposition. The influence of synthesis parameters like pH of suspension and current density was studied and optimized. X-ray diffraction confirmed crystalline phase of apatite-wollastonite in powder as well as composite coating with coat crystallinity of 65%. Scanning electron microscope showed that the porosity had interconnections with good homogeneity between the phases. The addition of chitosan increased the adhesive strength of the composite coating. Young's modulus of the coating was found to be 9.23 GPa. One of our key findings was sheet-like apatite growth unlike ball-like growth found in bioceramics. Role of chitosan was studied in apatite growth mechanism in simulated body fluid. In presence of chitosan, dense negatively charged surface with homogenous nucleation was the primary factor for sheet-like evolution of apatite layer. The results suggest that incorporation of chitosan with apatite-wollastonite in composite coating could provide excellent in vitro bioactivity with enhanced mechanical properties.

  9. Combined apatite fission track and U-Pb dating by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Chew, D. M.; Donelick, R. A.

    2012-04-01

    Apatite is a common accessory mineral in igneous, metamorphic and clastic sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, is common in metamorphic rocks of pelitic, carbonate, basaltic, and ultramafic composition and is virtually ubiquitous in clastic sedimentary rocks. In contrast to the polycyclic behavior of the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and has limited mechanical stability in sedimentary transport systems. Apatite has many potential applications in provenance studies, particularly as it likely represents first-cycle detritus. Fission track and U-Pb dating are very powerful techniques in apatite provenance studies. They yield complementary information, with the apatite fission-track system yielding low-temperature exhumation ages and the U-Pb system yielding high-temperature cooling ages which constrain the timing of apatite crystallization. This study focuses on integrating apatite fission track and U-Pb dating by the LA-ICPMS method. Our approach is intentionally broad in scope, and is applicable to any quadrupole or rapid-scanning magnetic-sector LA-ICPMS system. Calculating uranium concentrations in fission-track dating by LA-ICPMS increases the speed of analysis and sample throughput compared to the conventional external detector method and avoids the need for neutron irradiation (Hasebe et al., 2004). LA-ICPMS-based uranium measurements in apatite are measured relative to an internal concentration standard (typically 43Ca). Ca in apatite is not always stochiometric as minor cations (Mn2+, Sr2+, Ba2+ and Fe2+) and REE can substitute with Ca2+. These substitutions must be quantified by multi-elemental LA-ICPMS analyses. Such data are also useful for discriminating between different apatite populations in sedimentary or volcaniclastic rocks based on their trace-element chemistry. Low U, Th and radiogenic Pb concentrations, elevated common Pb / radiogenic Pb ratios and U-Pb elemental

  10. Laser ablation U-Th-Sm/He dating of detrital apatite

    NASA Astrophysics Data System (ADS)

    Guest, B.; Pickering, J. E.; Matthews, W.; Hamilton, B.; Sykes, C.

    2016-12-01

    Detrital apatite U-Th-Sm/He thermochronology has the potential to be a powerful tool for conducting basin thermal history analyses as well as complementing the well-established detrital zircon U-Pb approach in source to sink studies. A critical roadblock that prevents the routine application of detrital apatite U-Th-Sm/He thermochronology to solving geological problems is the costly and difficult whole grain approach that is generally used to obtain apatite U-Th-Sm/He data. We present a new analytical method for laser ablation thermochronology on apatite. Samples are ablated using a Resonetics™ 193 nm excimer laser and liberated 4He is measured using an ASI (Australian Scientific Instruments) Alphachron™ quadrupole mass spectrometer system; collectively known as the Resochron™. The ablated sites are imaged using a Zygo ZescopeTM optical profilometer and ablated pit volume measured using PitVol, a custom MatLabTM algorithm. The accuracy and precision of the method presented here was confirmed using well-characterized Durango apatite and Fish Canyon Tuff (FCT) apatite reference materials, with Durango apatite used as a primary reference and FCT apatite used as a secondary reference. The weighted average of our laser ablation Durango ages (30.5±0.35 Ma) compare well with ages obtained using conventional whole grain degassing and dissolution U-Th-Sm/He methods (32.56±0.43 Ma) (Jonckheere et.al., 1 993; Farley, 2000; McDowell et.al., 2005) for chips of the same Durango crystal. These Durango ages were used to produce a K-value to correct the secondary references and unknown samples. After correction, FCT apatite has a weighted average age of 28.37 ± 0.96 Ma, which agrees well with published ages. As a further test of this new method we have conducted a case study on a set of samples from the British Mountains of the Yukon Territory in NW Canada. Sandstone samples collected across the British Mountains were analyzed using conventional U-Th-Sm/He whole grain

  11. Site-specific equilibrium isotopic fractionation of oxygen, carbon and calcium in apatite

    NASA Astrophysics Data System (ADS)

    Aufort, Julie; Ségalen, Loïc; Gervais, Christel; Paulatto, Lorenzo; Blanchard, Marc; Balan, Etienne

    2017-12-01

    The stable isotope composition of biogenic apatite is an important geochemical marker that can record environmental parameters and is widely used to infer past climates, biomineralization processes, dietary preferences and habitat of vertebrates. In this study, theoretical equilibrium isotopic fractionation of oxygen, carbon and calcium in hydroxyapatite and carbonate-bearing hydroxyapatite is investigated using first-principles methods based on density-functional theory and compared to the theoretical isotopic fractionation properties of calcite, CO2 and H2O. Considering the variability of apatite crystal-chemistry, special attention is given to specific contributions of crystal sites to isotopic fractionation. Significant internal fractionation is calculated for oxygen and carbon isotopes in CO3 between the different structural sites occupied by carbonate groups in apatite (typically 7‰ for both 18O/16O and 13C/12C fractionation at 37 °C). Compared with calcite-water oxygen isotope fractionation, occurrence of A-type substitution in apatite structure, in addition to the main B-type substitution, could explain the larger temperature dependence of oxygen isotope fractionation measured at low temperature between carbonate in apatite and water. Theoretical internal fractionation of oxygen isotopes between carbonate and phosphate in B-type carbonated apatite (∼8‰ at 37 °C) is consistent with experimental values obtained from modern and well-preserved fossil bio-apatites. Concerning calcium, theoretical results suggest a small fractionation between apatite and calcite (-0.17‰ at 37 °C). Internal fractionation reaching 0.8‰ at 37 °C occurs between the two Ca sites in hydroxyapatite. Furthermore, the Ca isotopic fractionation properties of apatite are affected by the occurrence of carbonate groups, which could contribute to the variability observed on natural samples. Owing to the complexity of apatite crystal-chemistry and in light of the theoretical

  12. Laser depth profiling of diffusion and alpha ejection profiles in Durango apatite: testing the fundamental parameters of apatite (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.

    2009-12-01

    Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed

  13. Selenite sorption by carbonate substituted apatite

    DOE PAGES

    Moore, Robert C.; Rigali, Mark J.; Brady, Patrick

    2016-08-31

    The sorption of selenite, SeO 3 2–, by carbonate substituted hydroxylapatite was investigated using batch kinetic and equilibrium experiments. The carbonate substituted hydroxylapatite was prepared by a precipitation method and characterized by SEM, XRD, FT-IR, TGA, BET and solubility measurements. The material is poorly crystalline, contains approximately 9.4% carbonate by weight and has a surface area of 210.2 m 2/g. Uptake of selenite by the carbonated hydroxylapatite was approximately an order of magnitude higher than the uptake by uncarbonated hydroxylapatite reported in the literature. Distribution coefficients, K d, determined for the carbonated apatite in this work ranged from approximately 4200more » to over 14,000 L/kg. A comparison of the results from kinetic experiments performed in this work and literature kinetic data indicates the carbonated apatite synthesized in this study sorbed selenite 23 times faster than uncarbonated hydroxylapatite based on values normalized to the surface area of each material. Furthermore, the results indicate carbonated apatite is a potential candidate for use as a sorbent for pump-and-treat technologies, soil amendments or for use in permeable reactive barriers for the remediation of selenium contaminated sediments and groundwaters.« less

  14. Removal of lead by apatite and its stability in the presence of organic acids.

    PubMed

    Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi

    2016-12-01

    In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.

  15. Understanding the evolution of S- and I-type granitic plutons through analysis of apatite.

    NASA Astrophysics Data System (ADS)

    Hess, B. L.; Fiege, A.; Tailby, N.

    2017-12-01

    The major and trace element composition of apatites from the Lachlan fold belt (LFB) S- and I-type granitoids (Australia) and the Central French Massif (CFM) S-type leucogranites (France) were analyzed to investigate their compositional and redox variation. Apatite is a common accessory mineral in magmatic systems that can incorporate a variety of trace elements, including the polyvalent elements sulfur (S), iron (Fe), and manganese (Mn). It was recently discovered that apatite can incorporate three oxidation states of S (S6+, S4+, S2-) into its structure as a function of oxygen fugacity [1]. However, the oxidation states of Mn and Fe in apatite are essentially unknown (2+ and/or 3+). In this study, we collected many electron probe line transects across apatites in several different host phases from a variety of S- and I-type plutons. The F-H-Cl contents of the S- and I-type LFB samples were similar ( 2.9 wt% F, 0.4 wt% Cl, 0.5 wt% OH). The CFM S-types contained virtually no Cl and ranged from near-endmember OH-apatite to near-endmember F-apatite. The apatites of all studied the S- and I-type plutons are characterized by similar ranges of Fe content (<1.5 wt% Fe), while Mn reaches much higher concentrations in the S-type when compared to I-type apatites (<6.5 wt% Mn). The S content of the apatites varies significantly, from <50 ppm S in the LFB S-types, up to 2,000 ppm S in the LFB I-types, and reaching 1,650 ppm S in the CFM S-types. The elevated S contents in the LFB I-type and CFM S-type apatites allowed us to measure the S oxidation states by using X-ray absorption near-edge structure (XANES) spectroscopy. The spectra show variability in S oxidation states ranging from mostly sulfate down to nearly equal S6+/S2- ratios, indicating redox variations during apatite formation. The S-type Mn + Fe content plots in a 1:1 ratio against calcium (Ca) in atoms per formula unit, while the I-type apatites have too low Mn and Fe to show a clear trend. Thus, divalent Mn and

  16. Intra-grain Common Pb Correction and Detrital Apatite U-Pb Dating via LA-ICPMS Depth Profiling

    NASA Astrophysics Data System (ADS)

    Boyd, P. D.; Galster, F.; Stockli, D. F.

    2017-12-01

    Apatite is a common accessory phase in igneous and sedimentary rocks. While apatite is widely employed as a low-temperature thermochronometric tool, it has been increasingly utilized to constrain moderate temperature cooling histories by U-Pb dating. Apatite U-Pb is characterized by a thermal sensitivity window of 375-550°C. This unique temperature window recorded by the apatite U-Pb system, and the near-ubiquitous presence of apatite in igneous and clastic sedimentary rocks makes it a powerful tool able to illuminate mid-crustal tectono-thermal processes. However, as apatite incorporates only modest amounts of U and Th (1-10s of ppm) the significant amounts of non-radiogenic "common" Pb incorporated during its formation presents a major hurdle for apatite U-Pb dating. In bedrock samples common Pb in apatite can be corrected for by the measurement of Pb in a cogenetic mineral phase, such as feldspar, that does not incorporate U or from determination of a common Pb composition from multiple analyses in Tera-Wasserburg space. While these methods for common Pb correction in apatite can work for igneous samples, they cannot be applied to detrital apatite in sedimentary rocks with variable common Pb compositions. The obstacle of common Pb in apatite has hindered the application of detrital apatite U-Pb dating in provenance studies, despite the fact that it would be a powerful tool. This study presents a new method for the in situ correction of common Pb in apatite through the utilization of novel LA-ICP-MS depth profiling, which can recover U-Pb ratios at micron-scale spatial resolution during ablation of a grain. Due to the intra-grain U variability in apatite, a mixing line for a single grain can be generated in Tera-Wasserburg Concordia space. As a case study, apatite from a Variscan alpine granite were analyzed using both the single and multi-grain method, with both methods giving identical results. As a second case study the intra-grain method was then performed

  17. Amelogenin as a promoter of nucleation and crystal growth of apatite

    NASA Astrophysics Data System (ADS)

    Uskoković, Vuk; Li, Wu; Habelitz, Stefan

    2011-02-01

    Human dental enamel forms over a period of 2-4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of amelogenin and the products of its selective proteolytic digestion are presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aimed to establish the physicochemical and biochemical conditions for the growth of apatite crystals under the control of a recombinant amelogenin matrix (rH174) in combination with a programmable titration system. The growth of apatite substrates was initiated in the presence of self-assembling amelogenin particles. A series of constant titration rate experiments was performed that allowed for a gradual increase of the calcium and/or phosphate concentrations in the protein suspensions. We observed a significant amount of apatite crystals formed on the substrates following the titration of rH174 sols that comprised the initial supersaturation ratio equal to zero. The protein layers adsorbed onto the substrate apatite crystals were shown to act as promoters of nucleation and growth of calcium phosphates subsequently formed on the substrate surface. Nucleation lag time experiments have showed that rH174 tends to accelerate precipitation from metastable calcium phosphate solutions in proportion to its concentration. Despite their mainly hydrophobic nature, amelogenin nanospheres, the size and surface charge properties of which were analyzed using dynamic light scattering, acted as a nucleating agent for the crystallization of apatite. The biomimetic experimental setting applied in this study proves as convenient for gaining insight into the fundamental nature of the process of amelogenesis.

  18. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem

    2013-06-01

    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle

  19. Preparation of a bonelike apatite-polymer fiber composite using a simple biomimetic process.

    PubMed

    Yokoyama, Yoshiro; Oyane, Ayako; Ito, Atsuo

    2008-08-01

    A bonelike apatite-polymer fiber composite may be useful as an implant material to replace bone, the enthesis of a tendon, and the joint part of a ligament. We treated an ethylene-vinyl alcohol copolymer (EVOH) plate and knitted EVOH fibers with an oxygen plasma to produce oxygen-containing functional groups on their surfaces. The plasma-treated samples were alternately dipped in alcoholic calcium and phosphate ion solutions three times to deposit apatite precursors onto their surfaces. The surface-modified samples formed a dense and uniform bonelike surface apatite layer after immersion for 24 h in a simulated body fluid with ion concentrations approximately equal to those of human blood plasma. The adhesive strength between the apatite layer and the sample's surface increased with increasing power density of the oxygen plasma. The apatite-EVOH fiber composite obtained by our process has similarities to natural bone in that apatite crystals are deposited on organic polymer fibers. The resulting composite would possess osteoconductivity due to the apatite phase. With proper polymer selection and optimized synthesis techniques, a composite could be made that would have bonelike mechanical properties. Hence, the present surface modification and coating process would be a promising route to obtain new implant materials with bonelike mechanical properties and osteoconductivity. (c) 2007 Wiley Periodicals, Inc.

  20. Synthesis, characterization and electrical properties of a lead sodium vanadate apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun-Ouadhour, E.; Ternane, R.; Hassen-Chehimi, D. Ben

    2008-08-04

    The lacunary lead sodium vanadate apatite Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} was synthesized by the solid-state reaction method. The compound was characterized by X-ray powder diffraction, infrared (IR) absorption spectroscopy and Raman scattering spectroscopy. By comparing the effect of vanadate and phosphate ions on electrical properties, it was concluded that Pb{sub 8}Na{sub 2}(VO{sub 4}){sub 6} apatite is better conductor than Pb{sub 8}Na{sub 2}(PO{sub 4}){sub 6} apatite.

  1. Plant-driven weathering of apatite--the role of an ectomycorrhizal fungus.

    PubMed

    Smits, M M; Bonneville, S; Benning, L G; Banwart, S A; Leake, J R

    2012-09-01

    Ectomycorrhizal (EcM) fungi are increasingly recognized as important agents of mineral weathering and soil development, with far-reaching impacts on biogeochemical cycles. Because EcM fungi live in a symbiotic relationship with trees and in close contact with bacteria and archaea, it is difficult to distinguish between the weathering effects of the fungus, host tree and other micro-organisms. Here, we quantified mineral weathering by the fungus Paxillus involutus, growing in symbiosis with Pinus sylvestris under sterile conditions. The mycorrhizal trees were grown in specially designed sterile microcosms in which the supply of soluble phosphorus (P) in the bulk media was varied and grains of the calcium phosphate mineral apatite mixed with quartz, or quartz alone, were provided in plastic wells that were only accessed by their fungal partner. Under P limitation, pulse labelling of plants with (14)CO(2) revealed plant-to-fungus allocation of photosynthates, with 17 times more (14)C transferred into the apatite wells compared with wells with only quartz. Fungal colonization increased the release of P from apatite by almost a factor of three, from 7.5 (±1.1) × 10(-10) mol m(-2) s(-1) to 2.2 (±0.52) × 10(-9) mol m(-2) s(-1). On increasing the P supply in the microcosms from no added P, through apatite alone, to both apatite and orthophosphate, the proportion of biomass in roots progressively increased at the expense of the fungus. These three observations, (i) proportionately more plant energy investment in the fungal partner under P limitation, (ii) preferential fungal transport of photosynthate-derived carbon towards patches of apatite grains and (iii) fungal enhancement of weathering rate, reveal the tightly coupled plant-fungal interactions underpinning enhanced EcM weathering of apatite and its utilization as P source. © 2012 Blackwell Publishing Ltd.

  2. Experimental Constraints on the Partitioning Behavior of F, Cl, and OH Between Apatite and Basaltic Melt

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Barnes, Jessica J.; Vander Kaaden, Kathleen E.; Boyce, Jeremy W.; Ustunisik, Gokce; Whitson, Eric S.

    2017-01-01

    The mineral apatite is present in a wide range of planetary materials. The presence of volatiles (F, Cl, and OH) within its crystal structure (X-site) have motivated numerous studies to investigate the partitioning behavior of F, Cl, and OH between apatite and silicate melt with the end goal of using apatite to constrain the volatile contents of planetary magmas and mantle sources. A number of recent experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in magmatic systems. Apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, the partitioning behavior is likely to change as a function of temperature, pressure, oxygen fugacity, apatite composition, and melt composition. In the present study, we have conducted experiments to assess the partitioning behavior of F, Cl, and OH between apatite and silicate melt over a pressure range of 0-6 gigapascals, a temperature range of 950-1500 degrees Centigrade, and a wide range of apatite ternary compositions. All of the experiments were conducted between iron-wustite oxidation potentials IW minus 1 and IW plus 2 in a basaltic melt composition. The experimental run products were analyzed by a combination of electron probe microanalysis and secondary ion mass spectrometry (NanoSIMS). Temperature, apatite crystal chemistry, and pressure all play important roles in the partitioning behavior of F, Cl, and OH between apatite and silicate melt. In portions of apatite ternary space that undergo ideal mixing of F, Cl, and OH, exchange coefficients remain constant at constant temperature and pressure. However, exchange coefficients vary at constant temperature (T) and pressure (P) in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. The variation in exchange coefficients exhibited by apatite that does not undergo ideal mixing far exceeds the variations

  3. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    NASA Astrophysics Data System (ADS)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  4. Formation of an ascorbate-apatite composite layer on titanium.

    PubMed

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-09-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 degrees C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 microg mm(-2), which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  5. Sulfur-in-apatite: An indicator of the volatile evolution during lunar magmatism

    NASA Astrophysics Data System (ADS)

    Konecke, B.; Fiege, A.; Simon, A. C.; Holtz, F.

    2017-12-01

    The volatile content of lunar magmas remains controversial despite nearly five decades of interrogating samples from the NASA Apollo missions. Recently, the mineral apatite in lunar mare basalts has been investigated owing to its potential to constrain the volatile (F, Cl, H, S) budget of magmas [1-3]. The F-Cl-H signatures of lunar apatite were interpreted to record fractional crystallization, with nucleation and growth of apatite from a late-stage, interstitial, nearly anhydrous (<10 μg/g H2O), rhyolitic melt that evolved from a sulfide-undersaturated mare basalt [1]. The enigmatic S signature reported for those apatite grains was not interpreted due to the absence of published thermodynamic (partitioning) data for S. Here, we report new experimentally determined apatite/melt partition coefficients for S (DSap/m) at conditions applicable to lunar systems. The DSap/m values and thermodynamically modeled S content (XS) of lunar residual melt were used to constrain plausible S contents of lunar apatite produced by crystal fractionation (Sap = XS * DSap/m). Our results demonstrate that apatite crystallizing under lunar-like conditions from rhyolitic melt cannot obtain the reported 430 μg/g of S [2] by fractional crystallization. The results indicate that 5-35x higher S contents than feasible in sulfide-undersaturated, hydrous and dry rhyolitic melt, respectively, would be required to support crystal fractionation models [1]. Even elevated water concentrations in a sulfide-saturated rhyolitic melt cannot explain the S contents of lunar apatite rims. We propose two plausible scenarios: (A) The necessary concentration of S in rhyolitic melts may be achieved at >5 orders of magnitude higher fO2 (>ΔFMQ+1.2) than reported for lunar magmas, where S6+ is the prevalent oxidation state of S in rhyolitic melt, related to the significant degassing and preferential loss of H2 that drives oxidation of the residual melt [4]. (B) The volatile (F-Cl-H-S) signatures of lunar

  6. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.

    2016-01-01

    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  7. Sub-µm structure and volatile distribution of shocked lunar apatite

    NASA Astrophysics Data System (ADS)

    Cernok, A.; White, L. F.; Darling, J.; Dunlop, J.; Fougerouse, D.; William, R. D. A.; Reddy, S.; Saxey, D. W.; Zhao, X.; Franchi, I.; Anand, M.

    2017-12-01

    Apatite is a key mineral broadly used for studying volatiles in planetary materials. Most studies in this recent frontier of planetary exploration focus on volatile content and respective isotopic composition in apatite. However, there is an imperative to contextualize geochemical data with impact-induced features, given that most planetary materials experienced at least some shock deformation. This study aims at understanding the effect of high-level shock deformation on volatile distribution in apatite from lunar highlands samples. Combining Electron Backscatter Diffraction (EBSD), NanoSIMS and Atom Probe Microscopy (APM) analyses we are gaining an insight into the µm- and nm-scale structural variation in apatite from a shocked, maskelynite- and impact-melt-bearing norite. EBSD revealed degraded crystallinity, high density of low angle grain boundaries and domains of sub-µm granular features that appear amorphous at this length scales ( 80 x 40 nm). Texture component maps show up to 25° misorientation within a single grain - evidence of severe crystal-plastic deformation, but with no obvious evidence of recrystallization. APM revealed complex microstructure of the apparently amorphous domains defined by well developed, straight to slightly curved grain boundaries meeting at 120° triple junctions. This equilibrium texture is probably accommodated by annealing and recrystallization of apatite due to the post-shock heating. Crystallites range in size from 50 to 100 nm. Grain boundaries are defined by segregation of Mg, Si and Fe impurities, which possibly originate from surrounding phases. Cl and F show homogenous distribution over the length scale of the APM analysis (1 to 500 nm). H2O content measurements of 250-600 ppm by NanoSIMS are consistent with the lower range of previously reported values for this rock, with no obvious correlation with the level of crystallinity. δD values are confirmed to be terrestrial-like and relatively constant. These preliminary

  8. Dissolution mechanism of calcium apatites in acids: A review of literature

    PubMed Central

    Dorozhkin, Sergey V

    2012-01-01

    Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions. PMID:25237611

  9. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  11. Endogenous Lunar Volatiles: Insights into the Abundances of Volatiles in the Moon from Lunar Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis

    2016-01-01

    At the time of publication of New Views of the Moon, it was thought that the Moon was bone dry with less than about 1 ppb H2O. However in 2007, initial reports at the 38th Lunar and Planetary Science Conference speculated that H-species were present in both apatites and pyroclastic volcanic lunar glasses. These early reports were later confirmed through peer-review, which motivated many subsequent studies on magmatic volatiles in and on the Moon within the last decade. Some of these studies have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. The mineral apatite has been one of the pillars of this new field of study, and it will be the primary focus of this abstract. Although apatite has been used both to understand the abundances of volatiles in lunar systems as well as the isotopic compositions of those volatiles, the focus here will be on the abundances of F, Cl, and H2O. This work demonstrates the utility of apatite in advancing our understanding of lunar volatiles, hence apatite should be among the topics covered in the endogenous lunar volatile chapter in NVM II. Truncated ternary plot of apatite X-site occupancy (mol%) from highlands apatite and mare basalt apatite plotted on the relative volatile abundance diagram from. The solid black lines delineate fields of relative abundances of F, Cl, and H2O (on a weight basis) in the melt from which the apatite crystallized. The diagram was constructed using available apatite/melt partitioning data for fluorine, chlorine, and hydroxyl.

  12. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment.

    PubMed

    Al-Kattan, Ahmed; Girod-Fullana, Sophie; Charvillat, Cédric; Ternet-Fontebasso, Hélène; Dufour, Pascal; Dexpert-Ghys, Jeannette; Santran, Véronique; Bordère, Julie; Pipy, Bernard; Bernad, José; Drouet, Christophe

    2012-02-14

    Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. [Comparative studies on the material performances of natural bone-like apatite from different bone sources].

    PubMed

    Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang

    2014-04-01

    The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.

  14. Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yang, Bingqiao; Huang, Pengliang; Song, Shaoxian; Luo, Huihua; Zhang, Yi

    2018-06-01

    In this work, the hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions has been investigated through the measurement of agglomeration degree and fractal dimension. The results showed that the agglomeration degree of apatite fines and agglomerates morphology was strongly depended on sodium oleate concentration, pH, stirring speed and time. Better agglomeration degree and more regular agglomerates were achieved at sodium oleate concentration of 5 × 10-5 mol/L under neutral condition. The critical stirring speed for agglomerates rupture was 1000 rev/min, above which, prolonged stirring time would cause breakage and restructure of the agglomerates after a certain stirring time, resulting in lower agglomeration degree and more regular agglomerates. The agglomeration degree of apatite fines could be greatly enhanced with the addition of emulsified kerosene, but only if the apatite surface was hydrophobic enough.

  15. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Zaitsev, Anatoly N.; Couëslan, Christopher; Xu, Cheng; Kynický, Jindřich; Mumin, A. Hamid; Yang, Panseok

    2017-03-01

    Apatite-group phosphates are nearly ubiquitous in carbonatites, but our understanding of these minerals is inadequate, particularly in the areas of element partitioning and petrogenetic interpretation of their compositional variation among spatially associated rocks and within individual crystals. In the present work, the mode of occurrence, and major- and trace-element chemistry of apatite (sensu lato) from calcite and dolomite carbonatites, their associated cumulate rocks (including phoscorites) and hydrothermal parageneses were studied using a set of 80 samples from 50 localities worldwide. The majority of this set represents material for which no analytical data are available in the literature. Electron-microprobe and laser-ablation mass-spectrometry data ( 600 and 400 analyses, respectively), accompanied by back-scattered-electron and cathodoluminescence images and Raman spectra, were used to identify the key compositional characteristics and zoning patterns of carbonatitic apatite. These data are placed in the context of phosphorus geochemistry in carbonatitic systems and carbonatite evolution, and compared to the models proposed by previous workers. The documented variations in apatite morphology and zoning represent a detailed record of a wide range of evolutionary processes, both magmatic and fluid-driven. The majority of igneous apatite from the examined rocks is Cl-poor fluorapatite or F-rich hydroxylapatite (≥ 0.3 apfu F) with 0.2-2.7 wt.% SrO, 0-4.5 wt.% LREE2O3, 0-0.8 wt.% Na2O, and low levels of other cations accommodated in the Ca site (up to 1000 ppm Mn, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which show meaningful correlation with the host-rock type. Silicate, (SO4)2 - and (VO4)3 - anions, substituting for (PO4)3 -, tend to occur in greater abundance in crystals from calcite carbonatites (up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and 660 ppm V). Although (CO3)2 - groups are very likely present in some samples, Raman micro

  16. Thermodynamic Mixing Behavior Of F-OH Apatite Crystalline Solutions

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.

    2011-12-01

    It is important to establish a thermodynamic data base for accessory minerals and mineral series that are useful in determining fluid composition during petrologic processes. As a starting point for apatite-system thermodynamics, Hovis and Harlov (2010, American Mineralogist 95, 946-952) reported enthalpies of mixing for a F-Cl apatite series. Harlov synthesized all such crystalline solutions at the GFZ-Potsdam using a slow-cooled molten-flux method. In order to expand thermodynamic characterization of the F-Cl-OH apatite system, a new study has been initiated along the F-OH apatite binary. Synthesis of this new series made use of National Institute of Standards and Technology (NIST) 2910a hydroxylapatite, a standard reference material made at NIST "by solution reaction of calcium hydroxide with phosphoric acid." Synthesis efforts at Lafayette College have been successful in producing fluorapatite through ion exchange between hydroxylapatite 2910a and fluorite. In these experiments, a thin layer of hydroxylapatite powder was placed on a polished CaF2 disc (obtained from a supplier of high-purity crystals for spectroscopy), pressed firmly against the disc, then annealed at 750 °C (1 bar) for three days. Longer annealing times did not produce further change in unit-cell dimensions of the resulting fluorapatite, but it is uncertain at this time whether this procedure produces a pure-F end member (chemical analyses to be performed in the near future). It is clear from the unit-cell dimensions, however, that the newly synthesized apatite contains a high percentage of fluorine, probably greater than 90 mol % F. Intermediate compositions for a F-OH apatite series were made by combining 2910a hydroxylapatite powder with the newly synthesized fluorapatite in various proportions, then conducting chemical homogenization experiments at 750 °C on each mixture. X-ray powder diffraction data indicated that these experiments were successful in producing chemically homogeneous

  17. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods.

    PubMed

    Wu, P; Zeng, Y Z; Wang, C M

    2004-03-01

    Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.

  18. Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites?

    NASA Astrophysics Data System (ADS)

    Prokopyev, Ilya R.; Doroshkevich, Anna G.; Redina, Anna A.; Obukhov, Andrey V.

    2018-04-01

    The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296-308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium-low concentrated chloride-sulphate and oxidized carbonate-ferrous.

  19. Apatite: A New Tool For Understanding The Temporal Variability Of Magmatic Volatile Contents

    NASA Astrophysics Data System (ADS)

    Stock, M. J.; Humphreys, M.; Smith, V.; Pyle, D. M.; Isaia, R.

    2015-12-01

    The apatite crystal structure is capable of incorporating H2O, F and Cl, as well as trace CO2 and sulphur. These can be related to parental magma compositions through application of a series of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994), permitting apatite crystals to preserve a record of all major volatile species in the melt. Furthermore, due to the general incompatibility of P in other rock-forming minerals, apatite is ubiquitous in igneous systems and often begins crystallising early, such that apatite inclusions within phenocrysts record melt volatile contents throughout magmatic differentiation. In this work, we compare the compositions of apatite inclusions and microphenocrysts with pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy. These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to determine a time-series of magmatic volatile evolution in the build-up to eruption. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset during ascent, due to rapid H diffusion through the phenocryst hosts (Woods et al., 2000). Given the rapid diffusivity of volatiles in apatite (Brenan, 1993), preservation of undersaturated compositions in microphenocrysts suggests that saturation was only achieved a few days to months before eruption and that it may have been the transition into a volatile-saturated state that ultimately triggered eruption. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Gualda et al., 2012

  20. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    PubMed

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  1. The impact of bacteria of circulating water on apatite-nepheline ore flotation.

    PubMed

    Evdokimova, G A; Gershenkop, A Sh; Fokina, N V

    2012-01-01

    A new phenomenon has been identified and studied-the impact of bacteria on the benefication process of non-sulphide ores using circulating water supply-a case study of apatite-nepheline ore. It is shown that bacteria deteriorate the floatability of apatite due to their interaction with active centres of calcium-containing minerals and intense flocculation, resulting in a decrease of the flotation process selectivity thus deteriorating the quality of concentrate. Based on the comparative analysis of primary sequences of 16S rRNA genes, there have been identified dominating bacteria species, recovered from the circulating water used at apatite-nepheline concentrating mills, and their phylogenetic position has been determined. All the bacteria were related to γ-Proteobacteria, including the Acinetobacter species, Pseudomonas alcaliphila, Ps. plecoglossicida, Stenotrophomonas rhizophila. A method of non-sulphide ores flotation has been developed with consideration of the bacterial factor. It consists in use of small concentrations of sodium hypochlorite, which inhibits the development of bacteria in the flotation of apatite-nepheline ores.

  2. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2more » Project. The plan is designed to be used exclusively by project staff.« less

  3. The determination of uranium (IV) in apatite

    USGS Publications Warehouse

    Clarke, Roy S.; Altschuler, Zalman S.

    1956-01-01

    Geologic and mineralogic evidence indicate that the uranium present in apatite may proxy for calcium in the mineral structure as U(IV). An experimental investigation was conducted and chemical evidence was obtained that establishes the presence of U(IV) in apatite. The following analytical procedure was developed for the determination of U(IV). Carbonate-fluorapatite is dissolved in cold 1.5M orthophosphoric acid and fluorapatite is dissolved in cold 1.2M hydrochloric acid containing 1.5 g of hydroxylamine hydrochloride per 100 ml. Uranium (IV) is precipitated by cupferron using titanium as a carrier. The uranium in the precipitate is separated by use of the ethyl acetate extraction procedure and determined fluorimetrically. The validity and the limitations of the method have been established by spike experiments.

  4. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development.

    PubMed

    Landi, Elena; Tampieri, Anna; Celotti, Giancarlo; Langenati, Ratih; Sandri, Monica; Sprio, Simone

    2005-06-01

    The effectiveness of synthetic body fluids (SBF) as biomimetic sources to synthesize carbonated hydroxyapatite (CHA) powder similar to the biological inorganic phase, in terms of composition and microstructure, was investigated. CHA apatite powders were prepared following two widely experimented routes: (1) calcium nitrate tetrahydrate and diammonium hydrogen phosphate and (2) calcium hydroxide and ortophosphoric acid, but using SBF as synthesis medium instead of pure water. The characteristics of the as-prepared powders were compared, also with the features of apatite powders synthesized via pure water-based classical methods. The powder thermal resistance and behaviour during densification were studied together with the mechanical properties of the dense samples. The sponge impregnation process was used to prepare porous samples having morphological and mechanical characteristics suitable for bone substitution. Using this novel synthesis was it possible to prepare nanosized (approximately equal to 20 nm), pure, carbonate apatite powder containing Mg, Na, K ions, with morphological and compositional features mimicking natural apatite and with improved thermal properties. After sintering at 1250 degrees C the carbonate-free apatite porous samples showed a surprising, high compressive strength together with a biomimetic morphology.

  5. Compositional Variation of Terrestrial Mantle Apatites and Implications for the Halogen and Water Budgets of the Terrestrial Mantle

    NASA Astrophysics Data System (ADS)

    Roden, M.; Patino Douce, A. E.; Chaumba, J. B.; Fleisher, C.; Yogodzinski, G. M.

    2011-12-01

    Apatite in ultramafic xenoliths from various tectonic enviroments including arc (Kamchatka), plume (Hawaii), and intraplate (Lunar Crater, Nunivak, Colorado Plateau) were analyzed by electron microprobe with the aim of characterizing the Cl and F contents, and from these measured compositions to infer the nature of fluids/melts that the apatites equilibrated with. The impetus for the study derived from the generalization of O'Reilly and Griffin (1) that mantle-derived metasomatic apatites tend to be Cl-rich and mantle-derived igneous apatites tend to be F-rich. Our work largely corroborates their generalization with Cl- and/or H2O-rich compositions characterizing the apatites from Nunivak and Kamchatka while apatites from igneous or Group II xenoliths tend to be Cl-poor and be either nearly pure fluorapatite or a mix of hydroxylapatite and fluorapatite. We attribute the Cl-rich nature of the Kamchatka apatites to formation from Cl-rich fluids generated from subducted lithosphere; however the Nunivak occurrence is far removed from subducted lithosphere and may reflect a deep seated source for Cl as also indicated by brine inclusions in diamonds, Cl-rich apatites in carbonate-bearing xenoliths and a Cl-rich signature in some plumes such as Iceland, Azores and Samoa. One curious aspect of mantle-derived apatite compositions is that xenoliths with evidence of carbonatitic metasomatism commonly have Cl-rich apatites while apatites from carbonatites are invariably Cl-poor - perhaps reflecting loss of Cl in fluids evolved from the carbonatitic magma. Apatites from Group II xenoliths at Hawaii are solid solutions between fluorapatite and hydroxylapatite and show no evidence for deep-seated Cl at Hawaii. Samples of the terrestrial mantle are almost uniformly characterized by mineral assemblages with a single Ca-rich phosphate phase but the mantles of Mars, Vesta and the Moon have two Ca-rich phosphates, apatite and volatile-poor merrillite - apatite compositions existing

  6. Apatite (U-Th)/He thermochronology dataset interpretation: New insights from physical point of view

    NASA Astrophysics Data System (ADS)

    Gautheron, Cécile; Mbongo-Djimbi, Duval; Gerin, Chloé; Roques, Jérôme; Bachelet, Cyril; Oliviero, Erwan; Tassan-Got, Laurent

    2015-04-01

    The apatite (U-Th)/He (AHe) system has rapidly become a very popular thermochronometer to constrain burial and exhumation phases in a variety of geological contexts. However, the interpretation of AHe data depends on a precise knowledge of He diffusion in apatite. Several studies suggest that radiation damage generated by U and Th decay can create traps for He atoms, increasing He retention for irradiated minerals. The radiation damage also anneals with temperature and the amount of damage in an apatite crystal is at any time a balance between production and annealing, controlled by U-Th concentration, grain chemistry and thermal history (Flowers et al., 2009; Gautheron et al., 2009; 2013). However the models are not well constrained and do not fully explain the mechanism of He retention. In order to have a deeper insight on this issue, multidisciplinary studies on apatite combining diffusion experiments by Elastic Recoil Diffusion Analysis (ERDA) with a multi-scale theoretical diffusion calculation based on Density Functional Theory (DFT) and Kinetic Monte Carlo were performed. ERDA experiments were conducted on different macro-crystals, and we probed the shape of a He profile implanted into a planar and polished surface of the crystal. The helium profile evolves with temperature and allows quantifying the He diffusivity and damage impact. Additionally, DFT calculations of a damage-free crystal of apatite with different F and Cl compositions, in similar proportion as natural ones, have been run to find the favored paths of a helium atom between interstitial sites, leading to a computation of the activation energy and the diffusion coefficient. We show that damage free apatite crystals are characterized by low retention behavior and closure temperature range from 33-36°C for pure F-apatite to higher value for Cl riche apatite (up to 12°C higher), for typical grain size and cooling rate (Mbongo-Djimbi et al., in review). Using ERDA and DFT approaches, we

  7. [The effects of surface morphology of calcium phosphate ceramics on apatite formation in dynamic SBF].

    PubMed

    Duan, Yourong; Lü, Wanxin; Wang, Chaoyuan; Chen, Jiyong; Zhang, Xingdong

    2002-06-01

    Bone-like apatite formation on the surface of calcium phosphate ceramics has been believed to be the prerequisite of new bone growth on ceramics and to be related to the osteoinductivity of the material. The research of the factors effecting bone-like apatite formation is a great help in understanding the mechanism of osteoinduction. This paper is aimed to a comparative study of in vitro formation of bone-like apatite on the surface of dense and rough calcium phosphate ceramics with SBF flowing at different rates. The results showed that the rough surface was beneficial to the formation of bone-like apatite, and the apatite formed faster in 1.5 SBF than in SBF. Rough surface, namely, larger surface area, increased the dissolution of Ca2+ and HPO4(2-) and higher concentration of Ca2+ and HPO4(2-) ions of SBF and was in turn advantageous to the accumulation of Ca2+, HPO4(2-), PO4(3-) near the ceramic surface. Local supersaturating concentration of Ca2+, HPO4(2-), PO4(3-) near sample surface was essential to nucleation of apatite on the surface of sample.

  8. Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaughn, John S.

    Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate

  9. Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures.

    PubMed

    Pramanik, Rocky; Asplin, John R; Jackson, Molly E; Williams, James C

    2008-10-01

    Apatite and brushite kidney stones share calcium and phosphate as their main inorganic components. We tested the hypothesis that these stone types differ in the amount of proteins present in the stones. Intact stones were intensively analyzed by microcomputed tomography (micro CT) for both morphology (including the volume of voids, i.e., space devoid of X-ray dense material) and mineral type. To extract all proteins present in kidney stones in soluble form we developed a three-step extraction procedure using the ground stone powder. Apatite stones had significantly higher levels of total protein content and void volume compared to brushite stones. The void volume was highly correlated with the total protein contents in all stones (r2 = 0.61, P < 0.0001), and brushite stones contained significantly fewer void regions and proteins than did apatite stones (3.2 +/- 4.5% voids for brushite vs. 10.8 +/- 11.2% for apatite, P < 0.005; 4.1 +/- 1.6% protein for brushite vs. 6.0 +/- 2.4% for apatite, P < 0.03). Morphological observations other than void volume did not correlate with protein content of stones, and neither did the presence or absence of minor mineral components. Our results show that protein content of brushite and apatite stones is higher than that was previously thought, and also suggest that micro CT-visible void regions are related to the presence of protein.

  10. Using Apatite to Model Chlorine Contents of High SiO2 Magmas: An Enhanced Methodological Approach

    NASA Astrophysics Data System (ADS)

    Flesch, R.; Webster, J. D.; Nadeau, P. A.

    2015-12-01

    Hydrothermal experiments were conducted on high-silica (73-75 wt% SiO2), fluid-saturated melts at 844-862°C and ca. 50 MPa using crushed glass of the Los Posos rhyolite. Water and salts including NaCl, KCl, Ca(OH)2, and CaHPO4 and HCl were added proportionally to the experiments to restrict the variability of the aluminosity of the melt. The Durango apatite, which contains 3.53 wt% F and 0.41% Cl, was added as "seeds"<5µm in diameter to stimulate apatite growth during the experiments. Samples were loaded into gold capsules and run in cold-seal pressure vessels for durations of 286-1008 hours. Temperature was cycled at ±20˚C to promote apatite crystallization. Electron microprobe analyses of run-product glasses and embedded apatite grains support calculation of a range of partition coefficients ( = wt% Cl in apatite/wt% Cl in melt) of 4.7 to 15.9. The mole fraction of Cl in experimental apatites, or XCl, ranges from 0.19 to 0.56, while XF ranges from 0.08 to 0.63. The computed values for XOH range from 0.24 to 0.38. We find that normalizing XCl to XOH of apatites dramatically improves the precision when using apatite compositions to model Cl contents of melts. We compare our Los Posos rhyolite experiments with published data on 50 MPa rhyodacite experiments and find that Cl partitioning is significantly different in each system. Given the importance of chlorine in fluid equilibria, ore transport, and magma evolution, applications of apatite as a proxy for Cl contents in melts are unbounded. It is found that in order to accurately use the volatile composition of natural and synthetic apatites to calculate the volatile composition of melts in felsic systems, several chemical factors, including wt% SiO2 and the aluminosity/alkalinity of melts, should be incorporated as parameters to enhance relevant modeling. This allows geochemists to place better constraints on processes associated with crystallizing Cl-bearing magmatic systems.

  11. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  12. Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration.

    PubMed

    Saska, Sybele; Teixeira, Lucas Novaes; de Castro Raucci, Larissa Moreira Spinola; Scarel-Caminaga, Raquel Mantuaneli; Franchi, Leonardo Pereira; Dos Santos, Raquel Alves; Santagneli, Silvia Helena; Capela, Marisa Veiga; de Oliveira, Paulo Tambasco; Takahashi, Catarina Satie; Gaspar, Ana Maria Minarelli; Messaddeq, Younès; Ribeiro, Sidney José Lima; Marchetto, Reinaldo

    2017-10-01

    Despite advances in the field of biomaterials for bone repair/regeneration, some challenges for developing an ideal bone substitute need to be overcome. Herein, this study synthesized and evaluated in vitro a nanocomposite based on bacterial cellulose (BC), collagen (COL), apatite (Ap) and osteogenic growth peptide (OGP) or its C-terminal pentapeptide [OGP(10-14)] for bone regeneration purposes. The BC-COL nanocomposites were successfully obtained by carbodiimide-mediated coupling as demonstrated by spectroscopy analysis. SEM, FTIR and 31 P NMR analyses revealed that in situ synthesis to apatite was an effective route for obtaining of bone-like apatite. The OGP-containing (BC-COL)-Ap stimulated the early development of the osteoblastic phenotype. Additionally, the association among collagen, apatite, and OGP peptides enhanced cell growth compared with OGP-containing BC-Ap. Furthermore, none of the nanocomposites showed cytotoxic, genotoxic or mutagenic effects. These promising results suggest that the (BC-COL)-Ap associated with OGP peptides might be considered a potential candidate for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca M.; Ketcham, Richard A.; Shuster, David L.; Farley, Kenneth A.

    2009-04-01

    Helium diffusion from apatite is a sensitive function of the volume fraction of radiation damage to the crystal, a quantity that varies over the lifetime of the apatite. Using recently published laboratory data we develop and investigate a new kinetic model, the radiation damage accumulation and annealing model (RDAAM), that adopts the effective fission-track density as a proxy for accumulated radiation damage. This proxy incorporates creation of crystal damage proportional to α-production from U and Th decay, and the elimination of that damage governed by the kinetics of fission-track annealing. The RDAAM is a version of the helium trapping model (HeTM; Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249, 148-161), calibrated by helium diffusion data in natural and partially annealed apatites. The chief limitation of the HeTM, now addressed by RDAAM, is its use of He concentration as the radiation damage proxy for circumstances in which radiation damage and He are not accumulated and lost proportionately from the crystal. By incorporating the RDAAM into the HeFTy computer program, we explore its implications for apatite (U-Th)/He thermochronometry. We show how (U-Th)/He dates predicted from the model are sensitive to both effective U concentration (eU) and details of the temperature history. The RDAAM predicts an effective He closure temperature of 62 °C for a 28 ppm eU apatite of 60 μm radius that experienced a 10 °C/Ma monotonic cooling rate; this is 8 °C lower than the 70 °C effective closure temperature predicted using commonly assumed Durango diffusion kinetics. Use of the RDAAM is most important for accurate interpretation of (U-Th)/He data for apatite suites that experienced moderate to slow monotonic cooling (1-0.1 °C/Ma), prolonged residence in the helium partial retention zone, or a duration at temperatures appropriate for radiation

  14. Xe- and U-tracks in apatite and muscovite near the etching threshold

    NASA Astrophysics Data System (ADS)

    Wauschkuhn, Bastian; Jonckheere, Raymond; Ratschbacher, Lothar

    2015-01-01

    Ion irradiation of a wedge-shaped Durango apatite backed by a mica detector allows investigating ion track ranges and etching properties at different points along the tracks. Transmission profiles obtained by irradiation with 2 × 106 cm-2 11.1 MeV/amu 132Xe and 2 × 106 cm-2 11.1 MeV/amu 238U parallel to the apatite c-axis correspond to ranges calculated with SRIM (Xe: 76.3 μm; U: 81.1 μm). However, the measured profiles show much greater etchable track-length variations than the calculated longitudinal straggles. The probable cause is that the length deficit exhibits significant variation from track to track. The measured length deficit in muscovite is in agreement with most existing data. In contrast, the length deficit in apatite appears to be close to zero, which is in conflict with all earlier estimates. This probably results from the etching properties of the apatite basal face, which permit surface-assisted sub-threshold etching of track sections in the nuclear stopping regime. These sections are not accessible from the opposite direction, i.e. by etching towards the endpoint of the tracks or in the direction of the ion beam. This conclusion is supported by the fact that linear dislocations are revealed in apatite basal faces and by the observation of imperfect etch pits that are separated from the etched ion track channel by a section that appears unetched under the microscope.

  15. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  16. Pseudomorphic 2A--> 2M--> 2H phase transitions in lanthanum strontium germanate electrolyte apatites.

    PubMed

    Pramana, Stevin S; White, T J; Schreyer, Martin K; Ferraris, Cristiano; Slater, Peter R; Orera, Alodia; Bastow, T J; Mangold, Stefan; Doyle, Stephen; Liu, Tao; Fajar, Andika; Srinivasan, Madhavi; Baikie, Tom

    2009-10-21

    Apatite-like materials are of considerable interest as potential solid oxide fuel cell electrolytes, although their structural vagaries continue to attract significant discussion. Understanding these features is crucial both to explain the oxide ion conduction process and to optimise it. As the composition of putative P6(3)/m apatites with ideal formula [A(I)(4)][A(II)(6)][(BO(4))(6)][X](2) is varied the [A(I)(4)(BO(4))(6)] framework will flex to better accommodate the [A(II)(6)X(2)] tunnel component through adjustment of the A(I)O(6) metaprism twist angle (varphi). The space group theory prescribes that framework adaptation during phase changes must lead to one of the maximal non-isomorphic subgroups of P6(3)/m (P2(1), P2(1)/m, P1[combining macron]). These adaptations correlate with oxygen ion conduction, and become crucial especially when the tunnels are filled by relatively small ions and/or partially occupied, and if interstitial oxygens are located in the framework. Detecting and completely describing these lower symmetry structures can be challenging, as it is difficult to precisely control apatite stoichiometry and small departures from the hexagonal metric may be near the limits of detection. Using a combination of diffraction and spectroscopic techniques it is shown that lanthanum strontium germanate oxide electrolytes crystallise as triclinic (A), monoclinic (M) and hexagonal (H) bi-layer pseudomorphs with the composition ranges: [La(10-x)Sr(x)][(GeO(4))(5+x/2)(GeO(5))(1-x/2)][O(2)] (0 apatite-2A[La(10-x)Sr(x)][(GeO(4))(5+x/2)(GeO(5))(1-x/2)][O(2)] (1 apatite-2M[La(10-x)Sr(x)][(GeO(4))(6)][O(2)][H(delta)] (2 apatite-2M[La(10-x)Sr(x)][(GeO(4))(6)][O(2)][H(delta)] (2.96 apatite-2HFurthermore, at typical fuel cell operating temperatures apatite-2A and apatite-2M will transform to apatite-2H, with the latter showing the highest conduction. The results show that small twist angles and high symmetry

  17. Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid.

    PubMed

    Nge, Thi Thi; Sugiyama, Junji

    2007-04-01

    The apatite forming ability of biopolymer bacterial cellulose (BC) has been investigated by soaking different BC specimens in a simulated body fluid (1.5 SBF) under physiological conditions, at 37 degrees C and pH 7.4, mimicking the natural process of apatite formation. From ATR-FTIR spectra and ICP-AES analysis, the crystalline phase nucleated on the BC microfibrils surface was calcium deficient carbonated apatite through initial formation of octacalcium phosphate (OCP) or OCP like calcium phosphate phase regardless of the substrates. Morphology of the deposits from SEM, FE-SEM, and TEM observations revealed the fine structure of thin film plates uniting together to form apatite globules of various size (from <1 mum to 3 mum) with respect to the substrates. Surface modification by TEMPO (2,2,6,6-tetramethylpyperidine-1-oxyl)-mediated oxidation, which can readily form active carboxyl functional groups upon selective oxidation of primary hydroxyl groups on the surface of BC microfibrils, enhanced the rate of apatite nucleation. Ion exchanged treatment with calcium chloride solution after TEMPO-mediated oxidation was found to be remarkably different from other BC substrates with the highest deposit weight and the smallest apatite globules size. The role of BC substrates to induce mineralization rate differs according to the nature of the BC substrates, which strongly influences the growth behavior of the apatite crystals. (c) 2006 Wiley Periodicals, Inc.

  18. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  19. Postmagmatic magnetite-apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia

    NASA Astrophysics Data System (ADS)

    Apukhtina, Olga B.; Kamenetsky, Vadim S.; Ehrig, Kathy; Kamenetsky, Maya B.; McPhie, Jocelyn; Maas, Roland; Meffre, Sebastien; Goemann, Karsten; Rodemann, Thomas; Cook, Nigel J.; Ciobanu, Cristiana L.

    2016-01-01

    An assemblage of magnetite and apatite is common worldwide in different ore deposit types, including disparate members of the iron-oxide copper-gold (IOCG) clan. The Kiruna-type iron oxide-apatite deposits, a subtype of the IOCG family, are recognized as economic targets as well. A wide range of competing genetic models exists for magnetite-apatite deposits, including magmatic, magmatic-hydrothermal, hydrothermal(-metasomatic), and sedimentary(-exhalative). The sources and mechanisms of transport and deposition of Fe and P remain highly debatable. This study reports petrographic and geochemical features of the magnetite-apatite-rich vein assemblages in the dolerite dykes of the Gairdner Dyke Swarm (~0.82 Ga) that intruded the Roxby Downs Granite (~0.59 Ga), the host of the supergiant Olympic Dam IOCG deposit. These symmetrical, only few mm narrow veins are prevalent in such dykes and comprise besides usually colloform magnetite and prismatic apatite also further minerals (e.g., calcite, quartz). The genetic relationships between the veins and host dolerite are implied based on alteration in the immediate vicinity (~4 mm) of the veins. In particular, Ti-magnetite-ilmenite is partially to completely transformed to titanite and magmatic apatite disappears. We conclude that the mafic dykes were a local source of Fe and P re-concentrated in the magnetite-apatite veins. Uranium-Pb ages for vein apatite and titanite associated with the vein in this case study suggest that alteration of the dolerite and healing of the fractures occurred shortly after dyke emplacement. We propose that in this particular case the origin of the magnetite-apatite assemblage is clearly related to hydrothermal alteration of the host mafic magmatic rocks.

  20. Composition dependent thermal annealing behaviour of ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.

    2016-07-01

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  1. Calcium Apatite Deposition Disease: Diagnosis and Treatment

    PubMed Central

    2016-01-01

    Calcium apatite deposition disease (CADD) is a common entity characterized by deposition of calcium apatite crystals within and around connective tissues, usually in a periarticular location. CADD most frequently involves the rotator cuff. However, it can theoretically occur in almost any location in the musculoskeletal system, and many different locations of CADD have been described. When CADD presents in an unexpected location it can pose a diagnostic challenge, particularly when associated with pain or swelling, and can be confused with other pathologic processes, such as infection or malignancy. However, CADD has typical imaging characteristics that usually allows for a correct diagnosis to be made without additional imaging or laboratory workup, even when presenting in unusual locations. This is a review of the common and uncommon presentations of CADD in the appendicular and axial skeleton as well as an updated review of pathophysiology of CADD and current treatments. PMID:28042481

  2. ­­­Experimental Quantifications of Radiation Damage Annealing and Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Shuster, D. L.

    2017-12-01

    (U-Th)/He thermochronology in apatite requires a quantitative description of He diffusivity as a function of temperature and through geologic time. Although variability in diffusion kinetics across a range of natural apatite samples has revealed that higher concentrations of alpha-recoil radiation damage correlates with lower He diffusivity (i.e., at a given temperature, [1]), only one published study has experimentally quantified the effects of annealing for a single apatite specimen (Durango apatite, [2]). Although these effects have been incorporated into now widely applied numerical models, underlying assumptions in these models—in particular, that He diffusivity in all apatite crystals responds with the same rate of damage annealing—have been called into question, and further evaluation is warranted (e.g., [3], [4]). Here, we will describe a suite of experiments conducted on apatite from a single hand sample of granite from Sierra Nevada, CA as well as Durango apatite, to establish whether these two apatites with different chemical compositions and thermal pasts exhibit the same response to annealing conditions. Crystals from both samples were heated under vacuum to temperatures between 220 and 500 °C for 1, 10, 100 or 1000 hours. The samples were then irradiated with 220 MeV protons to produce spallation 3He, the diffusant used in subsequent step-heating degassing experiments. Our preliminary results indicate different minima in closure temperatures of 55 oC and 65 oC for the Durango and Sierra apatite, respectively, when exposed to sufficiently high temperatures (>350 oC) for durations > 1 hour, yet similar transitions from low diffusivities at T <200 oC (and higher activation energy, Ea) to higher diffusivity (lower Ea) across a range of experimental annealing temperatures and durations. We will interpret these results with a new model framework for describing the effects of annealing on diffusivity, and will discuss potential implications of our

  3. Thermodynamic basis for evolution of apatite in calcified tissues (Invited)

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Drouet, C.; Rollin-Martinet, S.; Champion, E.; Grossin, D.

    2013-12-01

    Bone remodeling and tooth enamel maturation are biological processes which alter the physico-chemical features of biominerals with time. However, although the ubiquity of bone remodeling is clear, why is well crystallized bone mineral systematically replaced by immature nanocrystalline inorganic material? In enamel, a clear evolution is also seen from the first mineral formed during the secretory stage to its mature well crystalline form, which then changes little in the adult tooth. This contribution provides the thermodynamic basis underlying these biological processes. We determined the energetics of biomimetic apatites corresponding to an increasing degree of maturation. Our data point out the progressive evolution of the enthalpy (ΔHf°) and free energy (ΔGf°) of formation toward more negative values upon maturation. Entropy contributions to ΔGf° values are small compared to enthalpy contributions. ΔHf° varies from -12058.9 × 12.2 to -12771.0 × 21.4 kJ/mol for maturation times increasing from 20 min to 3 weeks, approaching the value for stoichiometric hydroxyapatite, -13431.0 × 22.7 kJ/mol. Apatite thermodynamic stability increases as its composition moved toward stoichiometry. These findings imply diminishing aqueous solubility of calcium and phosphate ions as well as decreased surface reactivity. Such thermodynamically-driven maturation is favorable for enamel maturation since this biomineral must resist external aggressions such as contact with acids. In contrast, maintaining a metastable highly reactive and soluble form of apatite is essential to the effective participation of bone as a source of calcium and phosphate for homeostasis. Therefore our data strongly suggest that, far from being trivial, the intrinsic thermodynamic properties of apatite represent a critical driving force for continuous bone remodeling, in contrast to current views favoring a purely biologically driven cycle. These thermodynamic data may prove helpful in other domains

  4. Partitioning of F and Cl Between Apatite and a Synthetic Shergottite Liquid (QUE 94201) at 4 Gpa from 1300 TO 1500 C

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Vander Kaaden, K. E.; Boyce, J. W.

    2017-01-01

    Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (Xsite), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to accurately determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multicomponent silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al., recently reported that the exchange coefficients vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing, and McCubbin et al. reported substantial deviations in the Cl-F exchange Kd along the F-Cl apatite join that could be explained by the preferential incorporation of F into apatite. In the present study, we assess the effect of apatite crystal chemistry on F-Cl exchange equilibria between apatite and melt at 4 GPa over the temperature range of 1300-1500 C. The goal of these experiments is to assess the variation in the Ap-melt Cl-F exchange Kd over a broad range of F:Cl ratios in apatite. The results of these experiments could be used to understand at what

  5. Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility.

    PubMed

    Yi, Deliang; Wu, Chengtie; Ma, Bing; Ji, Heng; Zheng, Xuebin; Chang, Jiang

    2014-05-01

    Previous studies have shown that bredigite (Ca7MgSi4O16) bioceramics possessed excellent biocompatibility, apatite-mineralization ability and mechanical properties. In this paper, the bredigite coating on Ti-6Al-4 V substrate was prepared by plasma spraying technique. The main compositions of the coating were bredigite crystal phase with small parts of amorphous phases. The bonding strength of the coating to Ti-6Al-4 V substrate reached 49.8 MPa, which was significantly higher than that of hydroxyapatite coating and other silicate-based bioceramic coatings prepared by same method. After immersed in simulated body fluid for 2 days, a distinct apatite layer was deposited on the surface of bredigite coating, indicating that the prepared bredigite coating has excellent apatite-mineralization ability. The prepared bredigite coating supported the attachment and proliferation of rabbit bone marrow stem cells. The proliferation level of bone marrow stem cells was significantly higher than that on the hydroxyapatite coating. Our further study showed that the released SiO4 (4-) and Mg(2+) ions from bredigite coating as well as the formed nano-apatite layer on the coating surface might mainly contribute to the improvement of cell proliferation. The results indicated that the bredigite coating may be applied on orthopedic implants due to its excellent bonding strength, apatite mineralization and cytocompatibility.

  6. Crystal growth of carbonate apatite using a CaCO3 flux.

    PubMed

    Suetsugu, Y; Tanaka, J

    1999-09-01

    Single crystals of carbonate apatite were grown using a CaCO3 flux under an Ar gas pressure of 55 MPa. The crystals obtained were observed by scanning electron microscopy, optical microscopy and X-ray diffraction. Electron probe microanalyses and thermal analyses were performed. CO3 ions in planar triangle form replaced both OH sites and PO4 tetrahedral sites in the apatite structure: in particular, the OH sites were perfectly substituted by CO3 ions using this method.

  7. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible

    PubMed Central

    Bentov, Shmuel; Zaslansky, Paul; Al-Sawalmih, Ali; Masic, Admir; Fratzl, Peter; Sagi, Amir; Berman, Amir; Aichmayer, Barbara

    2012-01-01

    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. PMID:22588301

  8. Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate.

    PubMed

    Daitou, Fumikazu; Maruta, Michito; Kawachi, Giichiro; Tsuru, Kanji; Matsuya, Shigeki; Terada, Yoshihiro; Ishikawa, Kunio

    2010-05-01

    In this study, we investigated a novel method for fabrication of carbonate apatite block without ionic movement between precursor and solution by using precursor that includes all constituent ions of carbonate apatite. A powder mixture prepared from dicalcium phosphate anhydrous and calcite at appropriate Ca/P ratios (1.5, 1.67, and 1.8) was used as starting material. For preparation of specimens, the slurry made from the powder mixture and distilled water was packed in a split stainless steel mold and heat - treated, ranging from 60 degrees C to 100 degrees C up to 48 hours at 100% humidity. It appeared that carbonate apatite could be obtained above 70 degrees C and monophasic carbonate apatite could be obtained from the powder mixture at Ca/P ratio of 1.67. Carbonate content of the specimen was about 5-7%. Diametral tensile strength of the carbonate apatite blocks slightly decreased with increasing treatment temperature. The decrease in diametral tensile strength is thought to be related to the crystal size of the carbonate apatite formed.

  9. The quantitative determination of calcite associated with the carbonate-bearing apatites

    USGS Publications Warehouse

    Silverman, Sol R.; Fuyat, Ruth K.; Weiser, Jeanne D.

    1951-01-01

    The CO2 combined as calcite in carbonate-bearing apatites as been distinguished from that combined as carbonate-apatite, or present in some form other than calcite, by use of X-ray powder patterns, differential thermal analyses, and differential solubility tests. These methods were applied to several pure apatite minerals, to one fossil bone, and to a group of phosphorites from the Phosphoria formation of Permian age from Trail Canyon and the Conda mine, Idaho, and the Laketown district, Utah. With the exceptions of pure fluorapatite, pure carbonate-flueorapatite, and one phosphorite from Trail Canyon, these substances contain varying amounts of calcite, but in all the samples an appreciable part of the carbonite content is not present as calcite. The results of solubility tests, in which the particle size of sample and the length of solution time were varied, imply that the carbonate content is not due to shielded calcite entrapped along an internal network of surfaces.

  10. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoming; Tang, Qian; Sun, Weidong; Xu, Li; Zhai, Wei; Liang, Jinlong; Liang, Yeheng; Shen, Kun; Zhang, Zeming; Zhou, Bing; Wang, Fangyue

    2007-06-01

    We have identified abundant exsolutions in apatite aggregates from eclogitic drillhole samples of the Chinese Continental Scientific Drilling (CCSD) project. Electron microscope and laser Raman spectroscopy analyses show that the apatite is fluorapatite, whereas exsolutions that can be classified into four types: (A) platy to rhombic monazite exsolutions; (B) needle-like hematite exsolutions; (C) irregular magnetite and hematite intergrowths; and (D) needle-like strontian barite exsolutions. The widths and lengths of type A monazite exsolutions range from about 6-10 μm (mostly 6 μm) and about 50-75 μm, respectively. Type B exsolutions are parallel with the C axis of apatite, with widths ranging from 0.5 to 2 μm, with most around 1.5 μm, and lengths that vary dramatically from 6 to 50 μm. Type C exsolutions are also parallel with the C axis of apatite, with lengths of ˜30-150 μm and widths of ˜10 to 50 μm. Type D strontian barite exsolutions coexist mostly with type B hematite exsolutions, with widths of about 9 μm and lengths of about 60-70 μm. Exsolutions of types B, C and D have never been reported in apatites before. Most of the exsolutions are parallel with the C axis of apatite, implying that they were probably exsolved at roughly the same time. Dating by the chemical Th-U-total Pb isochron method (CHIME) yields an U-Pb isochron age of 202 ± 28 Ma for monazite exsolutions, suggesting that these exsolutions were formed during recrystallization and retrograde metamorphism of the exhumed ultrahigh pressure (UHP) rocks. Quartz veins hosting apatite aggregates were probably formed slightly earlier than 202 Ma. Abundant hematite exsolutions, as well as coexistence of magnetite/hematite and barite/hematite in the apatite, suggest that the oxygen fugacity of apatite aggregates is well above the sulfide-sulfur oxide buffer (SSO). Given that quartz veins host these apatite aggregates, they were probably deposited from SiO 2-rich hydrous fluids formed during

  11. Phosphorylation-dependent mineral-type specificity for apatite-binding peptide sequences.

    PubMed

    Addison, William N; Miller, Sharon J; Ramaswamy, Janani; Mansouri, Ahmad; Kohn, David H; McKee, Marc D

    2010-12-01

    Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation--a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of the VTKHLNQISQSY peptide (VTK peptide) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled phosphorylated VTK peptide (pVTK) did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral-binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion

  12. The adsorption of preferential binding peptides to apatite-based materials

    PubMed Central

    Segvich, Sharon J.; Smith, Hayes C.; Kohn, David H.

    2009-01-01

    The objective of this work was to identify peptide sequences with high affinity to bone-like mineral (BLM) to provide alternative design methods for functional bone regeneration peptides. Adsorption of preferential binding peptide sequences on four apatite-based substrates [BLM and three sintered apatite disks pressed from powders containing 0% CO32− (HA), 5.6% CO32− (CA5), 10.5% CO32− (CA10)] with varied compositions and morphologies was investigated. A combination of phage display, ELISA, and computational modeling was used to elucidate three 12-mer peptide sequences APWHLSSQYSRT (A), STLPI-PHEFSRE (S), and VTKHLNQISQSY (V), from 243 candidates with preferential adsorption on BLM and HA. Overall, peptides S and V have a significantly higher adsorption to the apatite-based materials in comparison to peptide A (for S vs. A, BLM p = 0.001, CA5 p < 0.001, CA10 p < 0.001, HA p = 0.038; for V vs. A, BLM p = 0.006, CA5 p = 0.033, CA10 p = 0.029). FT-IR analysis displayed carbonate levels in CA5 and CA10 dropped to approximately 1.1–2.2% after sintering, whereas SEM imaging displayed CA5 and CA10 possess distinct morphologies. Adsorption results normalized to surface area indicate that small changes in carbonate percentage at a similar morphological scale did not provide enough carbonate incorporation to show statistical differences in peptide adsorption. Because the identified peptides (S and V) have preferential binding to apatite, their use can now be investigated in bone and dentin tissue engineering, tendon and ligament repair, and enamel formation. PMID:19095299

  13. Annealing behaviour of ion tracks in olivine, apatite and britholite

    NASA Astrophysics Data System (ADS)

    Afra, B.; Lang, M.; Bierschenk, T.; Rodriguez, M. D.; Weber, W. J.; Trautmann, C.; Ewing, R. C.; Kirby, N.; Kluth, P.

    2014-05-01

    Ion tracks were created in olivine from San Carlos, Arizona (95% Mg2SiO4), apatite (Ca5(PO4)3(F,Cl,O)) from Durango, Mexico, and synthetic silicates with the apatite structure: Nd8Sr2(SiO4)6O2 and Nd8Ca2(SiO4)6O2 using 1.6 and 2.2 GeV Au ions. The morphology and annealing behaviour of the tracks were investigated by means of synchrotron based small angle X-ray scattering in combination with ex situ annealing. Tracks in olivine annealed above ∼400 °C undergo a significant change in track radius due to recrystallisation of the damage tracks. At temperatures higher than 620 °C, the scattering images indicate fragmentation of the track cylinders into smaller subsections. Ion tracks were annealed at elevated temperatures up to 400 °C in the Durango and Ca-britholite, and up to 560 °C in Sr-britholite. While there was a significant change in the track radii in the Durango apatite, tracks in the two synthetic samples remained almost unchanged.

  14. Fast synthesis of La-substituted apatite by the dry mechanochemical method and analysis of its structure

    NASA Astrophysics Data System (ADS)

    Bulina, Natalia V.; Chaikina, Marina V.; Prosanov, Igor Yu.; Dudina, Dina V.; Solovyov, Leonid A.

    2017-08-01

    Compared to pure apatite, La-substituted apatites have improved thermal, mechanical and biological characteristics. In this article, a fast synthesis of La-substituted apatites by a dry mechanochemical method is presented. Structural studies by X-ray diffraction and Fourier transform infrared spectroscopy indicated the formation of a single-phase nanosized product after 30 min of high-energy ball milling of the reaction mixtures. The dry mechanochemical method is technologically attractive for the preparation of La-substituted apatites, as it allows reducing the processing time down to half an hour and does not require prolonged high-temperature annealing normally used in the synthesis practice of the substituted apatite. As the mechanochemically synthesized samples are nanosized, it is difficult to determine the details of their crystal structure by the Rietveld refinement method. Therefore, a series of the mechanochemically synthesized samples with different concentrations of lanthanum were annealed at 1000°C for 5 h. It was found that the annealed powders are microcrystalline La-substituted apatites Ca10-xLax(PO4)6Ox(OH)2-x, where 0 ≤ x ≤2. In their structure, the Ca2+ ions are replaced by the La3+ ions localized near the Ca2 sites, and the OH- groups are replaced by the O2- ions in the hexagonal channels.

  15. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).

    PubMed

    Gu, Y W; Khor, K A; Cheang, P

    2004-08-01

    Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simulated body fluid (SBF) for various periods (maximum of 28 days). The structural changes in HA post-SBF were analyzed with scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. It was found that a layer consisting microcrystalline carbonate-containing hydroxyapatite was formed on the surface of HA compacts after soaking for 24h. The formation mechanism of apatite on the surface of HA compacts after soaking in SBF was attributed to the ion exchange between HA compacts and the SBF solution. The increase in ionic concentration of calcium and phosphorus as well as the increase in pH after SBF immersion resulted in an increase in ionic activity product of apatite in the solution, and provided a specific surface with a low interface energy that is conducive to the nucleation of apatite on the surface of HA compacts.

  16. Biogenic hydroxyapatite (Apatite II™) dissolution kinetics and metal removal from acid mine drainage.

    PubMed

    Oliva, J; Cama, J; Cortina, J L; Ayora, C; De Pablo, J

    2012-04-30

    Apatite II™ is a biogenic hydroxyapatite (expressed as Ca(5)(PO(4))OH) derived from fish bone. Using grains of Apatite II™ with a fraction size between 250 and 500 μm, batch and flow-through experiments were carried out to (1) determine the solubility constant for the dissolution reaction Ca(5)(PO(4))(3)(OH) ⇔ 5Ca(2+) + 3PO(4)(3-) + OH(-), (2) obtain steady-state dissolution rates over the pH range between 2.22 and 7.14, and (3) study the Apatite II™'s mechanisms to remove Pb(2+), Zn(2+), Mn(2+), and Cu(2+) from metal polluted water as it dissolves. The logK(S) value obtained was -50.8±0.82 at 25 °C. Far-from-equilibrium fish-bone hydroxyapatite dissolution rates decrease by increasing pH. Assuming that the dissolution reaction is controlled by fast adsorption of a proton on a specific surface site that dominates through the pH range studied, probably ≡PO(-), followed by a slow hydrolysis step, the dissolution rate dependence is expressed in mol m(-2) s(-1) as where Rate(25 °C) = -8.9 × 10(-10) × [9.96 × 10(5) × a(H+)]/[1 + 9.96 × 10(5) × a(H+)] where a(H+) is the proton activity in solution. Removal of Pb(2+), Zn(2+), Mn(2+) and Cu(2+) was by formation of phosphate-metal compounds on the Apatite II™ substrate, whereas removal of Cd(2+) was by surface adsorption. Increase in pH enhanced the removal of aqueous heavy metals. Using the kinetic parameters obtained (e.g., dissolution rate and pH-rate dependence law), reactive transport simulations reproduced the experimental variation of pH and concentrations of Ca, P and toxic divalent metal in a column experiment filled with Apatite II™ that was designed to simulate the Apatite II™-metal polluted water interaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5⿲ triphosphate (ATP)

    NASA Astrophysics Data System (ADS)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe

    2016-01-01

    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, ⿦), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m < 1 suggests that the ATP/apatite adsorption process is mostly guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard οGads ° was estimated to only ⿿4 kJ/mol, the large value of Nmax led to significantly negative effective οGads values down to ⿿33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, ⿦).

  18. Sulfur concentration and isotopic variation in apatites from granitic to granodioritic plutons of a Cretaceous Cordilleran Batholith

    NASA Astrophysics Data System (ADS)

    Economos, R. C.

    2012-12-01

    Apatite is a common igneous accessory mineral with a high saturation temperature which can therefore crystallize over a significant portion of magmatic compositional space. Sulfur presents an opportunity to identify zoning in apatites. Unlike other trace elements, sulfur is relatively immobile in the apatite crystal structure and can be present in typical concentrations up to 1500 - 2000 ppm (or 0.5 to 1 wt% SO3). Sulfur concentration zoning in igneous apatites from ore producing magmatic systems has been identified (Streck and Dilles, 1998), but the interpretation of the cause of this zoning remains an open question. δ34S isotopic ratios of whole apatites have been used to track isotopic evolution associated with changes in magma fO2 and eruptive degassing (Rye, 2005). The presented work combines sulfur concentration mapping in zoned apatite crystals with in-situ SIMS 34S and 32S isotope measurements. Apatites were extracted from granite to granodiorite samples from the Cadiz Valley Batholith in the central Mojave Desert. This batholith is related to the pulse of Cretaceous Cordilleran magmatism that generated large batholiths in the Sierra Nevada and the Penninsular Ranges. The Mojave segment of the Cretaceous arc is unique in their construction into a full thickness of continental crust which exerted a strong influence on magmatic compositions. Apatite grains were mounted parallel to C axes, ground until grains were approximately bisected, and analyzed by Electron Microprobe at UCLA, for CaO, P2O5, SO3 and SiO2. Grains were surveyed and those yielding anomalous SO3 contents were investigated by micron-scale concentration mapping. Typical SO3 concentrations of apatites from all samples were ~0.2 wt%, while 8 to 10% of apatite grains from two samples contained cores with concentrations ranging up to 0.5 wt%. The sulfur zoning in these samples is oscillatory, in some grains representing 5 to 6 repetitions of high and low concentrations. Based on these textures

  19. Ionic Substitutions in Non-Apatitic Calcium Phosphates

    PubMed Central

    Laskus, Aleksandra; Kolmas, Joanna

    2017-01-01

    Calcium phosphate materials (CaPs) are similar to inorganic part of human mineralized tissues (i.e., bone, enamel, and dentin). Owing to their high biocompatibility, CaPs, mainly hydroxyapatite (HA), have been investigated for their use in various medical applications. One of the most widely used ways to improve the biological and physicochemical properties of HA is ionic substitution with trace ions. Recent developments in bioceramics have already demonstrated that introducing foreign ions is also possible in other CaPs, such as tricalcium phosphates (amorphous as well as α and β crystalline forms) and brushite. The purpose of this paper is to review recent achievements in the field of non-apatitic CaPs substituted with various ions. Particular attention will be focused on tricalcium phosphates (TCP) and “additives” such as magnesium, zinc, strontium, and silicate ions, all of which have been widely investigated thanks to their important biological role. This review also highlights some of the potential biomedical applications of non-apatitic substituted CaPs. PMID:29186932

  20. Developing biogeochemical tracers of apatite weathering by ectomycorrhizal fungi

    NASA Astrophysics Data System (ADS)

    Vadeboncoeur, M. A.; Bryce, J. G.; Hobbie, E. A.; Meana-Prado, M. F.; Blichert-Toft, J.

    2012-12-01

    Chronic acid deposition has depleted calcium (Ca) from many New England forest soils, and intensive harvesting may reduce phosphorus (P) available to future rotations. Thin glacial till soils contain trace amounts of apatite, a primary calcium phosphate mineral, which may be an important long-term source of both P and Ca to ecosystems. The extent to which ECM fungi enhance the weathering rate of primary minerals in soil which contain growth-limiting nutrients remains poorly quantified, in part due to biogeochemical tracers which are subsequently masked by within-plant fractionation. Rare earth elements (REEs) and Pb isotope ratios show some potential for revealing differences in soil apatite weathering rates across forest stands and silvicultural treatments. To test the utility of these tracers, we grew birch seedlings semi-hydroponically under controlled P-limited conditions, supplemented with mesh bags containing granite chips. Our experimental design included nonmycorrhizal (NM) as well as ectomycorrhizal cultures (Cortinarius or Leccinum). Resulting mycorrhizal roots and leachates of granite chips were analyzed for these tracers. REE concentrations in roots were greatly elevated in treatments with granite relative to those without granite, demonstrating uptake of apatite weathering products. Roots with different mycorrhizal fungi accumulated similar concentrations of REEs and were generally elevated compared to the NM cultures. Ammonium chloride leaches of granite chips grown in contact with mycorrhizal hyphae show elevated REE concentrations and significantly radiogenic Pb isotope signatures relative to bulk rock, also supporting enhanced apatite dissolution. Our results in culture are consistent with data from field-collected sporocarps from hardwood stands in the Bartlett Experimental Forest in New Hampshire, in which Cortinarius sporocarp Pb isotope ratios were more radiogenic than those of other ectomycorrhizal sporocarps. Taken together, the experimental

  1. Advantages and challenges in automated apatite fission track counting

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.; Ehlers, T. A.

    2012-04-01

    Fission track thermochronometer data are often a core element of modern tectonic and denudation studies. Soon after the development of the fission track methods interest emerged for the developed an automated counting procedure to replace the time consuming labor of counting fission tracks under the microscope. Automated track counting became feasible in recent years with increasing improvements in computer software and hardware. One such example used in this study is the commercial automated fission track counting procedure from Autoscan Systems Pty that has been highlighted through several venues. We conducted experiments that are designed to reliably and consistently test the ability of this fully automated counting system to recognize fission tracks in apatite and a muscovite external detector. Fission tracks were analyzed in samples with a step-wise increase in sample complexity. The first set of experiments used a large (mm-size) slice of Durango apatite cut parallel to the prism plane. Second, samples with 80-200 μm large apatite grains of Fish Canyon Tuff were analyzed. This second sample set is characterized by complexities often found in apatites in different rock types. In addition to the automated counting procedure, the same samples were also analyzed using conventional counting procedures. We found for all samples that the fully automated fission track counting procedure using the Autoscan System yields a larger scatter in the fission track densities measured compared to conventional (manual) track counting. This scatter typically resulted from the false identification of tracks due surface and mineralogical defects, regardless of the image filtering procedure used. Large differences between track densities analyzed with the automated counting persisted between different grains analyzed in one sample as well as between different samples. As a result of these differences a manual correction of the fully automated fission track counts is necessary for

  2. Apatite U-Pb thermochronolgy applied to complex geological settings - insights from geo/thermochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Paul, Andre; Spikings, Richard; Ulyanov, Alexey; Chew, David

    2016-04-01

    Application of high temperature (>350oC) thermochronology is limited to the U-Pb system of accessory minerals, such as apatite, under the assumption that radiogenic lead is lost to thermally activated volume diffusion into an infinite reservoir. Cochrane et al. (2015) have demonstrated a working example from the northern Andes of South America. Predictions from volume diffusion theory were compared with measured single grain U-Pb date correlated to shortest diffusion radius and in-situ profiles measured by LA-ICP-MS. Results from both techniques were found to be in agreement with predictions from thermally activated, volume diffusion. However, outliers from the ID-TIMS data suggested some complexity, as grains were found to be too young relative to their diffusion radius. Interaction of multiple processes can be responsible for the alteration of apatite U-Pb dates such as: (1) metamorphic (over)growth, (2) fluid aided alteration/recrystallization and (3) metamictization and fracturing of the grain. Further, predictions from volume diffusion rely on the input parameters: (a) diffusivity, (b) activation energy and (c) shortest diffusion radius. Diffusivity and activation energy are potentially influenced by the chemical composition and subsequent changes in crystal structure. Currently there is one value for diffusion parameter and activation energy established for (Durango) apatite (Cherniak et al., 1991). Correlation between diffusivity/activation energy and composition has not been established. We investigate if correlations exist between diffusivity/activation energy and composition by obtaining single grain apatite U-Pb date and chemical compostion and correlating these to their diffusion radius. We test the consistency of apatite closure temperature, by comparing the apatite U-Pb dates with lower temperature thermochronometers such as white mica and K-feldspar Ar/Ar and by petrographic observations. We test if chemical information can be a proxy to identify

  3. LA-ICP-MS depth profile analysis of apatite: Protocol and implications for (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Johnstone, Samuel; Hourigan, Jeremy; Gallagher, Christopher

    2013-05-01

    Heterogeneous concentrations of α-producing nuclides in apatite have been recognized through a variety of methods. The presence of zonation in apatite complicates both traditional α-ejection corrections and diffusive models, both of which operate under the assumption of homogeneous concentrations. In this work we develop a method for measuring radial concentration profiles of 238U and 232Th in apatite by laser ablation ICP-MS depth profiling. We then focus on one application of this method, removing bias introduced by applying inappropriate α-ejection corrections. Formal treatment of laser ablation ICP-MS depth profile calibration for apatite includes construction and calibration of matrix-matched standards and quantification of rates of elemental fractionation. From this we conclude that matrix-matched standards provide more robust monitors of fractionation rate and concentrations than doped silicate glass standards. We apply laser ablation ICP-MS depth profiling to apatites from three unknown populations and small, intact crystals of Durango fluorapatite. Accurate and reproducible Durango apatite dates suggest that prolonged exposure to laser drilling does not impact cooling ages. Intracrystalline concentrations vary by at least a factor of 2 in the majority of the samples analyzed, but concentration variation only exceeds 5x in 5 grains and 10x in 1 out of the 63 grains analyzed. Modeling of synthetic concentration profiles suggests that for concentration variations of 2x and 10x individual homogeneous versus zonation dependent α-ejection corrections could lead to age bias of >5% and >20%, respectively. However, models based on measured concentration profiles only generated biases exceeding 5% in 13 of the 63 cases modeled. Application of zonation dependent α-ejection corrections did not significantly reduce the age dispersion present in any of the populations studied. This suggests that factors beyond homogeneous α-ejection corrections are the dominant

  4. Apatite-forming PEEK with TiO2 surface layer coating.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2015-01-01

    Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.

  5. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite

    NASA Astrophysics Data System (ADS)

    Shuster, David L.; Farley, Kenneth A.

    2009-01-01

    Recent work [Shuster D. L., Flowers R. M. and Farley K. A. (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett.249(3-4), 148-161] revealing a correlation between radiogenic 4He concentration and He diffusivity in natural apatites suggests that helium migration is retarded by radiation-induced damage to the crystal structure. If so, the He diffusion kinetics of an apatite is an evolving function of time and the effective uranium concentration in a cooling sample, a fact which must be considered when interpreting apatite (U-Th)/He ages. Here we report the results of experiments designed to investigate and quantify this phenomenon by determining He diffusivities in apatites after systematically adding or removing radiation damage. Radiation damage was added to a suite of synthetic and natural apatites by exposure to between 1 and 100 h of neutron irradiation in a nuclear reactor. The samples were then irradiated with a 220 MeV proton beam and the resulting spallogenic 3He used as a diffusant in step-heating diffusion experiments. In every sample, irradiation increased the activation energy ( E a) and the frequency factor ( D o/ a2) of diffusion and yielded a higher He closure temperature ( T c) than the starting material. For example, 100 h in the reactor caused the He closure temperature to increase by as much as 36 °C. For a given neutron fluence the magnitude of increase in closure temperature scales negatively with the initial closure temperature. This is consistent with a logarithmic response in which the neutron damage is additive to the initial damage present. In detail, the irradiations introduce correlated increases in E a and ln( D o/a 2) that lie on the same array as found in natural apatites. This strongly suggests that neutron-induced damage mimics the damage produced by U and Th decay in natural apatites. To investigate the potential consequences of annealing of radiation damage, samples of

  6. Ion microprobe U-Pb dating and strontium isotope analysis of biogenic apatite

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Toyoshima, K.; Takahata, N.; Shirai, K.

    2012-12-01

    Conodonts are micro-fossils chemically composed of apatite which occurred in the body of one animal. They are guide fossils to show formation ages of sedimentary sequences with the highest resolution [1] and good samples to verify the dating method. We developed the ion microprobe U-Pb dating of apatite [2] and applied the method to a Carboniferous conodont [3] by using a SHRIMP II installed at Department of Earth and Planetary Sciences, Hiroshima University. Recently we have developed the NanoSIMS U-Pb dating method and successfully measured the formation ages of monazite [4] and zircon [5] at Atmosphere and Ocean Research Institute, University of Tokyo. In this work we carried out the NanoSIMS U-Pb dating of biogenic apatite such as conodont. Since the spot size of NanoSIMS is smaller than SHRIMP II, it is easier to have multi-spots on the single fragment of biogenic apatite. Based on the isochron method of U-Pb system, we have calculated the formation ages. They are consistent with those in literature. In order to study the chemical evolution of ocean during the past 600 Million years, strontium isotopes (87Sr/86Sr) of fossil marine carbonate such as coral skeletons and foraminifera tests were measured and compiled [6]. However they are not robust when the age is older than 500Ma, partly due to post-depositional histories. Apatite is more stable and more resistant to the alteration than carbonate [7]. Recently we have developed the method of NanoSIMS strontium isotopic analysis of a fish otolith, which composed of aragonite [8]. In this work we carried out the strontium isotopic analysis of biogenic apatite. The advantage of the ion microprobe technique over the TIMS (thermal ionization mass spectrometer) and MC-ICP-MS (multi-collector inductively coupled argon plasma mass spectrometer) method is preservation of the important textural context and to provide an opportunity for other simultaneous analytical work with high spatial resolution. This is the case for

  7. [A study of bone-like apatite formation on calcium phosphate ceramics in different kinds of animals in vivo].

    PubMed

    Duan, Yourong; Wu, Yao; Wang, Chaoyuan; Chen, Jiyong; Zhang, Xingdong

    2003-03-01

    Bone-like apatite formation on the surface of calcium phosphate ceramics has been believed to be necessary for new bone to grow on the ceramics and to be related to the osteoinductivity of the material. The research of bone-like apatite formation is a great help to understanding the mechanism of osteoinduction. Synthetic porous calcium phosphate ceramics (HA/TCP = 70/30) were implanted intramuscularly in pigs, dogs, rabbits and rats to make a comparative study of the bone-like apatite formation onto the porous HA/TCP ceramics in different animals. Specimens were harvested at 14 days after implantation. Samples were detected for the surface morphology with SEM. The chemical composition of the sample surface after implantation was analyzed with reflection infrared (R-IR). Obvious bone-like apatite formation could be detected in the sections of porous specimens harvested from all animals after 14 days intramuscular implantation. Crystal deposition could be only observed on the surface of the concave regions of the samples collected from dogs, rabbits and rat. On the contrary, evenly distributed flake-shaped crystal could be found on the pore surface and also on the outer surface of the materials implanted in pigs. The morphology of bone-like apatite in pigs was different from that in the others animals. Bone-like apatite was not observed in dense specimen implanted intramuscularly. Bone-like apatite formed faster on specimens implanted in rabbit than that in other animals. This formation sequence is different from the sequence of osteoinductivity of biphasic calcium phosphate ceramics implanted in these animals. The results demonstrated that the formation of bone-like apatite on materials is a prerequisite condition to their osteoinduction but other factors also play important roles in osteoinduction.

  8. Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature

    NASA Astrophysics Data System (ADS)

    Liu, Weihua; Mei, Yuan; Etschmann, Barbara; Brugger, Joël; Pearce, Mark; Ryan, Chris G.; Borg, Stacey; Wykes, Jeremey; Kappen, Peter; Paterson, David; Boesenberg, Ulrike; Garrevoet, Jan; Moorhead, Gareth; Falkenberg, Gerald

    2017-01-01

    Element substitution that occurs during fluid-rock interaction permits assessment of fluid composition and interaction conditions in ancient geological systems, and provides a way to fix contaminants from aqueous solutions. We conducted a series of hydrothermal mineral replacement experiments to determine whether a relationship can be established between arsenic (As) distribution in apatite and fluid chemistry. Calcite crystals were reacted with phosphate solutions spiked with As(V), As(III), and mixed As(III)/As(V) species at 250 °C and water-saturated pressure. Arsenic-bearing apatite rims formed in several hours, and within 48 h the calcite grains were fully replaced. X-ray Absorption Near-edge Spectroscopy (XANES) data show that As retained the trivalent oxidation state in the fully-reacted apatite grown from solutions containing only As(III). Extended X-ray Fine Spectroscopy (EXAFS) data reveal that these As(III) ions are surrounded by about three oxygen atoms at an Assbnd O bond length close to that of an arsenate group (AsO43-), indicating that they occupy tetrahedral phosphate sites. The three-coordinated As(III)-O3 structure, with three oxygen atoms and one lone electron pair around As(III), was confirmed by geometry optimization using ab initio molecular simulations. The micro-XANES imaging data show that apatite formed from solutions spiked with mixed As(III) and As(V) retained only As(V) after completion of the replacement reaction; in contrast, partially reacted samples revealed a complex distribution of As(V)/As(III) ratios, with As(V) concentrated in the center of the grain and As(III) towards the rim. Most natural apatites from the Ernest Henry iron oxide copper gold deposit, Australia, show predominantly As(V), but two grains retained some As(III) in their core. The As-anomalous amphibolite-facies gneiss from Binntal, Switzerland, only revealed As(V), despite the fact that these apatites in both cases formed under conditions where As(III) is

  9. Reproducibility of apatite fission-track length data and thermal history reconstruction

    NASA Astrophysics Data System (ADS)

    Ketcham, Richard A.; Donelick, Raymond A.; Balestrieri, Maria Laura; Zattin, Massimiliano

    2009-07-01

    The ability to derive detailed thermal history information from apatite fission-track analysis is predicated on the reliability of track length measurements. However, insufficient attention has been given to whether and how these measurements should be standardized. In conjunction with a fission-track workshop we conducted an experiment in which 11 volunteers measured ~ 50 track lengths on one or two samples. One mount contained Durango apatite with unannealed induced tracks, and one contained apatite from a crystalline rock containing spontaneous tracks with a broad length distribution caused by partial resetting. Results for both mounts showed scatter indicative of differences in measurement technique among the individual analysts. The effects of this variability on thermal history inversion were tested using the HeFTy computer program to model the spontaneous track measurements. A cooling-only scenario and a reheating scenario more consistent with the sample's geological history were posed. When a uniform initial length value from the literature was used, results among analysts were very inconsistent in both scenarios, although normalizing for track angle by projecting all lengths to a c-axis parallel crystallographic orientation improved some aspects of congruency. When the induced track measurement was used as the basis for thermal history inversion congruency among analysts, and agreement with inversions based on data previously collected, was significantly improved. Further improvement was obtained by using c-axis projection. Differences among inversions that persisted could be traced to differential sampling of long- and short-track populations among analysts. The results of this study, while demonstrating the robustness of apatite fission-track thermal history inversion, nevertheless point to the necessity for a standardized length calibration schema that accounts for analyst variation.

  10. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max).

    PubMed

    Liu, Ruiqiang; Lal, Rattan

    2014-07-14

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 ± 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication.

  11. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)

    PubMed Central

    Liu, Ruiqiang; Lal, Rattan

    2014-01-01

    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 ± 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication. PMID:25023201

  12. Modeling and Measuring the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2016-12-01

    Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and

  13. Prospects for Practical Laser Ablation U/Pb and (U-Th)/He Double-Dating (LADD) of Detrital Apatite

    NASA Astrophysics Data System (ADS)

    Horne, A.; Hodges, K. V.; Van Soest, M. C.

    2017-12-01

    A laser ablation micro-analytical technique for (U-Th)/He dating has been shown to be an effective approach to the thermochronologic study of detrital zircons (Tripathy-Lang et al., J. Geophys. Res., 2013), while Evans et al. (J. Anal. At. Spectrom., 2015) and Horne et al. (Geochim. Cosmochim. Acta, 2016) demonstrated how the technique could be modified to enable laser ablation U/Pb and (U-Th)/He double-dating (LADD) of detrital zircon and titanite. These successes beg the question of whether or not LADD is viable for another commonly encountered detrital mineral: apatite. Exploratory LADD studies in Arizona State University's Group 18 Laboratories - using Durango fluorapatite, apatite from the Fish Canyon tuff, and detrital apatite from modern fluvial sediments in the eastern Sierra Nevada of California - illustrate that the method is indeed viable for detrital apatite. However, the method may not be appropriate for all detrital samples. For example, many apatite grains encountered in detrital samples from young orogenic settings have low concentrations of U and Th and small crystal sizes. This can lead to imprecise laser ablation (U-Th)/He dates, especially for very young grains potentially obscuring or inhibiting relevant interpretations of the data set.

  14. Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials.

    PubMed

    Pino, M; Stingelin, N; Tanner, K E

    2008-11-01

    The skirt of an artificial cornea must integrate the implant to the host sclera, a major failure of present devices. Thus, it is highly desirable to encourage the metabolic activity of the cornea by using more bioactive, flexible skirt materials. Here we describe attempts to increase the bioactivity of polyether ether ketone (PEEK), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) films. The effectiveness of different strength NaOH pre-treatments to initiate apatite deposition on PEEK, HDPE and UHMWPE is investigated. We find that exposure of PEEK, HDPE and UHMWPE films to NaOH solutions induces the formation of potential nuclei for apatite (calcium phosphate), from which the growth of an apatite coating is stimulated when subsequently immersing the polymer films in 1.5 strength Simulated Body Fluid (SBF). As immersion time in SBF increases, further nucleation and growth produces a thicker and more compact apatite coating that can be expected to be highly bioactive. Interestingly, the apatite growth is found to also be dependent on both the concentration of NaOH solution and the structure of the polymer surface.

  15. Co-variability of S 6+ , S 4+ , and S 2- in apatite as a function of oxidation state: Implications for a new oxybarometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konecke, Brian A.; Fiege, Adrian; Simon, Adam C.

    In this study, we use micro-X-ray absorption near-edge structures (μ-XANES) spectroscopy at the S K-edge to investigate the oxidation state of S in natural magmatic-hydrothermal apatite (Durango, Mexico, and Mina Carmen, Chile) and experimental apatites crystallized from volatile-saturated lamproitic melts at 1000 °C and 300 MPa over a broad range of oxygen fugacities [( Embedded Image , FMQ+1.2, FMQ+3; FMQ = fayalite-magnetite-quartz solid buffer]. The data are used to test the hypothesis that S oxidation states other than S6+ may substitute into the apatite structure. Peak energies corresponding to sulfate S6+ (~2482 eV), sulfite S4+ (~2478 eV), and sulfide S2-more » (~2470 eV) were observed in apatite, and the integrated areas of the different sulfur peaks correspond to changes in Embedded Image and bulk S content. Here, multiple tests confirmed that the S oxidation state in apatite remains constant when exposed to the synchrotron beam, at least for up to 1 h exposure (i.e., no irradiation damages). To our knowledge, this observation makes apatite the first mineral to incorporate reduced (S2-), intermediate (S4+), and oxidized (S6+) S in variable proportions as a function of the prevailing Embedded Image of the system. Apatites crystallized under oxidizing conditions (FMQ+1.2 and FMQ+3), where the S6+/STotal peak area ratio in the coexisting glass (i.e., quenched melt) is ~1, are dominated by S6+ with a small contribution of S4+, whereas apatites crystallizing at reduced conditions (FMQ) contain predominantly S2-, lesser amounts of S6+, and possibly traces of S4+. A sulfur oxidation state vs. S concentration analytical line transect across hydrothermally altered apatite from the Mina Carmen iron oxide-apatite (IOA) deposit (Chile) demonstrates that apatite can become enriched in S4+ relative to S6+, indicating metasomatic overprinting via a SO2-bearing fluid or vapor phase. This XANES study demonstrates that as the Embedded Image increases from FQM to FMQ+1

  16. Experimental evidence regarding the pressure dependence of fission track annealing in apatite

    NASA Astrophysics Data System (ADS)

    Schmidt, J. S.; Lelarge, M. L. M. V.; Conceicao, R. V.; Balzaretti, N. M.

    2014-03-01

    The main purposes of fission track thermochronology are unravelling the thermal histories of sedimentary basins, determining uplift and denudation rates, identifying the structural evolution of orogenic belts, determining sedimentary provenance, and dating volcanic rocks. The effect of temperature on fission tracks is well known and is used to determine the thermal history; however, the effect of pressure on the stability of tracks is still under debate. The present work aims to understand the role of pressure on the annealing kinetics of apatite fission tracks. The samples of Durango apatite used in our experiments were chosen for their international recognition as a calibration standard for geological dating. Neutron irradiation of the samples, after total annealing of their spontaneous tracks, produced induced tracks with homogeneous densities and lengths. The effect of pressure associated with temperature on fission track annealing was verified by experimental procedures using a hydraulic press of 1000 t with a toroidal chamber profile. The experiments consisted of a combination of applying 2 and 4 GPa with 20,150,190,235, and 290 °C for 1 and 10 h. The annealing rate was analysed by measuring the lengths of the fission tracks after each experiment using optical microscopy. The results demonstrate that the annealing of apatite fission tracks has a pressure dependence for samples subjected to 2 and 4 GPa. However, when extrapolated to pressures of ⩽150 MPa, compatible with the normal geological context in which apatite fission track methodology is broadly used, this dependence becomes insignificant compared to the temperature effect.

  17. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Wang, Jiecheng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H 3PO 4) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  18. A temporal record of pre-eruptive magmatic volatile contents at Campi Flegrei: Insights from texturally-constrained apatite analyses

    NASA Astrophysics Data System (ADS)

    Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.

    2016-04-01

    Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875

  19. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.

    2016-04-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite.

  20. A Sequential Leach Method and Pb Isotope Approach to Studying Apatite Weathering in Granitoid Soils at Hubbard Brook Experimental Forest, NH, USA

    NASA Astrophysics Data System (ADS)

    Nezat, C. A.; Blum, J. D.

    2005-12-01

    Easily dissolved minerals such as calcite and apatite can be important in controlling stream and ground water chemistry even though these minerals are only present in trace amounts in granitoid rocks. Because of its solubility, apatite, a calcium phosphate mineral, may be a significant source of essential nutrients (especially phosphorous) for vegetation, and has been shown to strongly influence stream and soil water composition (e.g, calcium, strontium and rare earth elements). There are additional sources of Ca (e.g., feldspars, hornblende) and P (e.g., organic matter or bound to Fe and Al oxides) in granitoid soils. In order to distinguish the chemical constituents of apatite from other pools in the bulk soil, we selectively dissolved apatite with a dilute acid leach, and measured Pb isotopic ratios of apatite, feldspar, and leachates. We tested the leaching procedure on mineral separates and verified that a dilute nitric solution primarily dissolves apatite. Silicates were dissolved in subsequent steps by successively stronger acids. We then applied this method to bulk soils collected from several soil pits across a small watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, to determine the spatial distribution of Ca and P pools, and determine the depth of apatite depletion in the soil. We also measured Pb isotope ratios in the soil leachates to distinguish among the various sources of Pb (e.g., apatite, feldspars and anthropogenic sources). We found that Pb in the dilute nitric leach of the HBEF organic soils is dominated by anthropogenic sources and that Pb from apatite becomes increasingly important with depth.

  1. An inversion-based self-calibration for SIMS measurements: Application to H, F, and Cl in apatite

    NASA Astrophysics Data System (ADS)

    Boyce, J. W.; Eiler, J. M.

    2011-12-01

    Measurements of volatile abundances in igneous apatites can provide information regarding the abundances and evolution of volatiles in magmas, with applications to terrestrial volcanism and planetary evolution. Secondary ion mass spectrometry (SIMS) measurements can produce accurate and precise measurements of H and other volatiles in many materials including apatite. SIMS standardization generally makes use of empirical linear transfer functions that relate measured ion ratios to independently known concentrations. However, this approach is often limited by the lack of compositionally diverse, well-characterized, homogeneous standards. In general, SIMS calibrations are developed for minor and trace elements, and any two are treated as independent of one another. However, in crystalline materials, additional stoichiometric constraints may apply. In the case of apatite, the sum of concentrations of abundant volatile elements (H, Cl, and F) should closely approach 100% occupancy of their collective structural site. Here we propose and document the efficacy of a method for standardizing SIMS analyses of abundant volatiles in apatites that takes advantage of this stoichiometric constraint. The principle advantage of this method is that it is effectively self-standardizing; i.e., it requires no independently known homogeneous reference standards. We define a system of independent linear equations relating measured ion ratios (H/P, Cl/P, F/P) and unknown calibration slopes. Given sufficient range in the concentrations of the different elements among apatites measured in a single analytical session, solving this system of equations allows for the calibration slope for each element to be determined without standards, using only blank-corrected ion ratios. In the case that a data set of this kind lacks sufficient range in measured compositions of one or more of the relevant ion ratios, one can employ measurements of additional apatites of a variety of compositions to

  2. Inhibition of precipitation of carbonate apatite by trisodium citrate analysed in base of the formation of chemical complexes in growth solution

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Olszynski, Marcin; Mielniczek-Brzóska, Ewa

    2015-11-01

    Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca2+ ions and causes the formation of CaCit- and Ca10(PO4)6CO3 complexes. Trisodium citrate binds Ca2+ ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed.

  3. 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone

    PubMed Central

    Bini, Fabiano; Pica, Andrada; Marinozzi, Andrea; Marinozzi, Franco

    2017-01-01

    Bone tissue at nanoscale is a composite mainly made of apatite crystals, collagen molecules and water. This work is aimed to study the diffusion within bone nanostructure through Monte-Carlo simulations. To this purpose, an idealized geometric model of the apatite-collagen structure was developed. Gaussian probability distribution functions were employed to design the orientation of the apatite crystals with respect to the axes (length L, width W and thickness T) of a plate-like trabecula. We performed numerical simulations considering the influence of the mineral arrangement on the effective diffusion coefficient of water. To represent the hindrance of the impermeable apatite crystals on the water diffusion process, the effective diffusion coefficient was scaled with the tortuosity, the constrictivity and the porosity factors of the structure. The diffusion phenomenon was investigated in the three main directions of the single trabecula and the introduction of apatite preferential orientation allowed the creation of an anisotropic medium. Thus, different diffusivities values were observed along the axes of the single trabecula. We found good agreement with previous experimental results computed by means of a genetic algorithm. PMID:29220377

  4. Framework 'interstitial' oxygen in La(10)(GeO(4))(5-)(GeO(5))O(2) apatite electrolyte.

    PubMed

    Pramana, Stevin S; Klooster, Wim T; White, T J

    2007-08-01

    Oxygen conduction at low temperatures in apatites make these materials potentially useful as electrolytes in solid-oxide fuel cells, but our understanding of the defect structures enabling ion migration is incomplete. While conduction along [001] channels is dominant, considerable inter-tunnel mobility has been recognized. Using neutron powder diffraction of stoichiometric 'La(10)(GeO(4))(6)O(3)', it has been shown that this compound is more correctly described as an La(10)(GeO(4))(5-)(GeO(5))O(2) apatite, in which high concentrations of interstitial oxygen reside within the channel walls. It is suggested that these framework interstitial O atoms provide a reservoir of ions that can migrate into the conducting channels of apatite, via a mechanism of inter-tunnel oxygen diffusion that transiently converts GeO(4) tetrahedra to GeO(5) distorted trigonal bipyramids. This structural modification is consistent with known crystal chemistry and may occur generally in oxide apatites.

  5. Influence of Common Bean (Phaseolus vulgaris) Grown in Elevated CO2 on Apatite Dissolution

    NASA Astrophysics Data System (ADS)

    Olsen, A. A.; Morra, B.

    2016-12-01

    We ran a series of experiments to test the hypothesis that release of plant nutrients contained in apatite will be accelerated by the growth of Langstrath Stringless green bean in the presence of atmospheric CO2 meant to simulate possible future atmospheric conditions due a higher demand of nutrients and growth rate caused by elevated CO2. We hypothesize that elevated atmospheric CO2 will lead to both increased root growth and organic acid exudation. These two traits will lead to improved acquisition of P derived from apatite. Experiments were designed to investigate the effect of these changes on soil mineral weathering using plants grown under two conditions, ambient CO2 (400ppm) and elevated CO2 (1000ppm). Plants were grown in flow-through microcosms consisting of a mixture of quartz and apatite sands. Mini-greenhouses were utilized to control CO2 levels. Plant growth was sustained by a nutrient solution lacking in Ca and P. Calcium and P content of the leachate and plant tissue served as a proxy for apatite dissolution. Plants were harvested biweekly during the eight-week experiment and analyzed for Ca and P to calculate apatite dissolution kinetics. Preliminary results suggest that approximately four times more P and Ca are present in the leachate from experiments containing plants under both ambient and elevated CO2 levels than in abiotic experiments; however, the amounts of both P and Ca released in experiments conducted under both ambient and elevated CO2 levels are similar. Additionally, the amount of P in plant tissue grown under ambient and elevated CO2 conditions is similar. Plants grown in elevated CO2 had a greater root to shoot ratio. The planted microcosms were found to have a lower pH than abiotic controls most likely due to root respiration and exudation of organic acids.

  6. Neutron Diffraction Studies of Carbonate Apatite

    NASA Astrophysics Data System (ADS)

    Moghaddam, Hadi Y.; Leventouri, Theodora; Chakoumakos, Bryan C.

    1998-11-01

    Moghaddam H.Y., Leventouri Th.* (Dept. of Physics & Alloy Research Center, Florida Atlantic Univ.) Chakoumakos B.C. (Solid State Division, Oak Ridge National Lab.**,kou@ornl.gov) We report Rietveld structural refinements of neutron diffraction data of a highly crystalline, single-phase natural carbonate apatite,(francolite of Epirus, Greece), in order to elucidate the details of carbonate substitution in the apatites. The composition is Ca9.56Na0.38Mg0.08(PO4)4.82(CO3)0.946(SO4)0.2F2.34, as determined by electron microprobe analysis. We report refinements of data for the native francolite as a function of temperature between 296K and 10K after the material had been heated at 750 °C to drive off adsorbed water and CO2. The neutron diffractioii@data were collected using a wavelength 1.0912 A on the HB4 high resolution powder diffractometer at the High Flux Isotope Reactor at Oak Ridge National Laboratory. Analysis of the temperature dependence of the anisotropic displacement parameters can reveal the contribution from the temperature independent static positional disorder. Difference displacement parameters evaluated along various bonding directions are being used to describe the mechanics and dynamics of the carbonate for phosphate substitution.*Supported by a SURA-ORNL Summer Cooperative Research Program 1998.**Supported by the Division of Materials Sciences,U.S. D.O.E. (contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation).

  7. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  8. Calibration of the Fluorine, Chlorine and Hydrogen Content of Apatites With the ChemCam LIBS Instrument

    NASA Technical Reports Server (NTRS)

    Meslin, P.-Y.; Cicutto, L.; Forni, O.; Drouet, C.; Rapin, W.; Nachon, M.; Cousin, A.; Blank, J. G.; McCubbin, F. M.; Gasnault, O.; hide

    2016-01-01

    Determining the composition of apatites is important to understand the behavior of volatiles during planetary differentiation. Apatite is an ubiquitous magmatic mineral in the SNC meteorites. It is a significant reservoir of halogens in these meteorites and has been used to estimate the halogen budget of Mars. Apatites have been identified in sandstones and pebbles at Gale crater by ChemCam, a Laser-Induced Breakdown Spectroscometer (LIBS) instrument onboard the Curiosity rover. Their presence was inferred from correlations between calcium, fluorine (using the CaF molecular band centered near 603 nm, whose detection limit is much lower that atomic or ionic lines and, in some cases, phosphorus (whose detection limit is much larger). An initial quantification of fluorine, based on fluorite (CaF2)/basalt mixtures and obtained at the LANL laboratory, indicated that the excess of F/Ca (compared to the stoichiometry of pure fluorapatites) found on Mars in some cases could be explained by the presence of fluorite. Chlorine was not detected in these targets, at least above a detection limit of 0.6 wt% estimated from. Fluorapatite was later also detected by X-ray diffraction (with CheMin) at a level of approx.1wt% in the Windjana drill sample (Kimberley area), and several points analyzed by ChemCam in this area also revealed a correlation between Ca and F. The in situ detection of F-rich, Cl-poor apatites contrasts with the Cl-rich, F-poor compositions of apatites found in basaltic shergottites and in gabbroic clasts from the martian meteorite NWA 7034, which were also found to be more Cl-rich than apatites from basalts on Earth, the Moon, or Vesta. The in situ observations could call into question one of the few possible explanations brought forward to explain the SNC results, namely that Mars may be highly depleted in fluorine. The purpose of the present study is to refine the calibration of the F, Cl, OH and P signals measured by the ChemCam LIBS instrument, initiated

  9. Fluoride and apatite formation in vivo and in vitro.

    PubMed

    Aoba, Takaaki; Shimazu, Yoshihito; Taya, Yuji; Soeno, Yuuichi; Sato, Kaori; Miake, Yasuo

    2003-01-01

    In recent years, the biomineralization process has attracted much interest from academics and industries for potential technological application. The rule in biomineralization is to have a variety of interfaces and surfaces which can act as nucleators. The ultimate step in any biomineralization process, i.e. the deposition of mineral, must conform to the driving forces operating on the system. A new paradigm in the assessment of the driving force for biomineralization is that a variety of ions existing in the mineralizing milieu are not a bystander, but are instead an active player that directly regulates the precipitation process and nature of biogenic apatites. Thus, the most putative stoichiometric model of a biomineral is (Ca)(5-x)(Mg)q(Na)u(HPO4)v(CO3)w(PO4)(3-y)(OH,F)(1-z). Fluoride participates in many aspects of calcium phosphate formation in vivo and has enormous effects on its process and on the nature and properties of the final products. In the development of biogenic apatites, fluoride ion in the mineralizing media is supposed to accelerate the hydrolysis of acidic precursor(s) and increase the growth rates by augmenting the driving force for precipitation. Inhibitory activities of ions and molecules are related to their adsorption onto the apatite surfaces. From theoretical and practical points of view, it is of paramount importance to elucidate and predict the effect and outcome of fluoride (accelerator) and inhibitors of biological relevance, because of their use in combination for healthcare in dentistry and medicine, e.g. prevention of dental caries and calculus deposition and in the formulation of antiosteoporosis treatments.

  10. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates.

    PubMed

    Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi

    2015-02-01

    Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation. © 2014 Wiley Periodicals, Inc.

  11. Formation of apatite layers on modified canasite glass-ceramics in simulated body fluid.

    PubMed

    Miller, C A; Kokubo, T; Reaney, I M; Hatton, P V; James, P F

    2002-03-05

    Canasite glass-ceramics were modified by either increasing the concentration of calcium in the glass, or by the addition of P2O5. Samples of these novel materials were placed in simulated body fluid (SBF), along with a control material (commercial canasite), for periods ranging from 12 h to 28 days. After immersion, surface analysis was performed using thin film X-ray diffraction, Fourier transform infrared reflection spectroscopy, and scanning electron microscopy equipped with energy dispersive X-ray detectors. The concentrations of sodium, potassium, calcium, silicon, and phosphorus in the SBF solution were measured using inductively coupled plasma emission spectroscopy. No apatite was detected on the surface of commercial canasite, even after 28 days of immersion in SBF. A crystalline apatite layer was formed on the surface of a P2O5-containing canasite after 5 days, and after 3 days for calcium-enriched canasite. Ion release data suggested that the mechanism for apatite deposition was different for P2O5 and non-P2O5-containing glass-ceramics. Copyright 2001 John Wiley & Sons, Inc.

  12. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    NASA Astrophysics Data System (ADS)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and

  13. Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets.

    PubMed

    Akisaka, Toshitaka; Yoshida, Atsushi

    2015-05-01

    Osteoclasts are highly polarized cells from both morphological and functional points of view. Using quick-freeze, rotary-replication methods combined with cell-shearing, we clarified the variability of cytoplasmic surface of the polarized membranes of osteoclasts seeded on apatite. As to the organization of actin filaments and clathrin sheets, we confirmed almost the same ventral membrane specializations of osteoclasts on apatite as seen on glass plates. The organized actin filaments and membrane-associated particles supported the ruffled border membranes. Inside the actin sealing zone, membrane specializations were not always occupied with the ruffled border but also with other types of membranes. Some osteoclasts formed an actin ring but lacked the ruffled border projections. We report a unique and distinctive membrane modification of apatite-attached osteoclasts, i.e., the presence of dense aggregates of membrane-associated particles and related structures not found in the osteoclasts seeded on glass plates. Actin filament polarity in the podosomes was determined by decoration with myosin S1. The actin filament polarity within podosome appears to be oriented predominantly with its barbed ends toward the core, whereas the interconnecting F-actin appears to be mixed oriented. Two different types of clathrin plaques displayed different distributions: clathrin-dependent endocytosis was observed in the ruffled border regions, whereas flat clathrin sheets were found in the leading edge of lamellipodia and near podosomes. The clathrin sheets adhered to the apatite surface tightly on the ventral membranes overlaying the resorption lacunae. All these membrane specializations as mentioned above may indicate the functional variability of osteoclasts seeded on apatite.

  14. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].

    PubMed

    Duan, You-rong; Liu, Ke-wei; Chen, Ji-yong; Zhang, Xing-dong

    2002-06-01

    Objective. Bone-like apatite formation on the surface of calcium phosphate ceramics was believed to be the necessary step that new bone grows on the ceramics and to be relative to the osteoinductivity of the material. This study aimed at investigating the influence of the flow rate of simulated body fluid (SBF) (2 ml/min) in skeletal muscle upon the formation of bone-like apatite on porous calcium phosphate ceramics. Method. The dynamic condition was realized by controlling the SBF flowing in/out of the sample chamber of 100 ml. The flow rate of 2 ml/min is close to that in human muscle environment. The pH and inorganic ionic composition of SBF are close to those of human body fluid. Result. Bone-like apatite formation was relatively easier to occur in static SBF than in dynamic SBF. Experiment with flowing SBF (dynamic SBF) is better in mimicking the living body fluid than static SBF. Conclusion. The results from dynamic SBF may more truly show the relation between apatite layer formation and osteoinduction in biomaterials than that from in vitro experiments before.

  15. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Azaïs, Thierry; Robin, Marc; Vallée, Anne; Catania, Chelsea; Legriel, Patrick; Pehau-Arnaudet, Gérard; Babonneau, Florence; Giraud-Guille, Marie-Madeleine; Nassif, Nadine

    2012-08-01

    The involvement of collagen in bone biomineralization is commonly admitted, yet its role remains unclear. Here we show that type I collagen in vitro can initiate and orientate the growth of carbonated apatite mineral in the absence of any other vertebrate extracellular matrix molecules of calcifying tissues. We also show that the collagen matrix influences the structural characteristics on the atomic scale, and controls the size and the three-dimensional distribution of apatite at larger length scales. These results call into question recent consensus in the literature on the need for Ca-rich non-collagenous proteins for collagen mineralization to occur in vivo. Our model is based on a collagen/apatite self-assembly process that combines the ability to mimic the in vivo extracellular fluid with three major features inherent to living bone tissue, that is, high fibrillar density, monodispersed fibrils and long-range hierarchical organization.

  16. Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somrani, Saida; Banu, Mihai; Jemal, Mohamed

    2005-05-15

    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 deg. C has been studied by microcalorimetry and several physical-chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatiticmore » phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO{sub 4}{sup 2-} ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coatings.« less

  17. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid.

    PubMed

    Kim, Hyun-Min; Himeno, Teruyuki; Kokubo, Tadashi; Nakamura, Takashi

    2005-07-01

    The surfaces of two hydroxyapatites (HA), which have been sintered at different temperatures of 800 and 1200 degrees C, was investigated as a function of soaking time in simulated body fluid (SBF) using transmission electron microscopy (TEM) attached with energy-dispersive spectrometry (EDX) and laser electrophoresis spectroscopy. The TEM-EDX indicated that after soaking in SBF, both the HAs form bonelike apatite by undergoing the same surface structural change, i.e., formations of a Ca-rich amorphous or nano-crystalline calcium phosphate (ACP) and a Ca-poor ACP, which eventually crystallized into bonelike apatite. Zeta potential characterized by the electrophoresis indicated that during exposure to SBF, the HA surfaces reveal negative surface charge, thereby interacting with the positive calcium ions in the fluid to form the Ca-rich ACP, which gains positive surface charge. The Ca-rich ACP on the HAs then interacts with the negative phosphate ions in the fluid to form the Ca-poor ACP, which stabilizes by being crystallized into bonelike apatite with a low solubility in the SBF. The exposure times for formations of these phases of the Ca-rich ACP, the Ca-poor ACP as well as the apatite were, however, all late on HA sintered at 1200 degrees C, compared with the HA sintered at 800 degrees C. This phenomenon was attributed to a lower initial negative surface charge of the HA sintered at 800 degrees C than of that one sintered at 1200 degrees C, owing to poverty in surface hydroxyl and phosphate groups which are responsible for the surface negativity of the HA. These indicate that sintered temperature of HA might influence not in terms of the process but in terms of the rate of formation of biologically active bonelike apatite on its surface, through which the HA integrates with living bone.

  18. A taxonomy of apatite frameworks for the crystal chemical design of fuel cell electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramana, Stevin S.; Klooster, Wim T.; Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602

    2008-08-15

    Apatite framework taxonomy succinctly rationalises the crystallographic modifications of this structural family as a function of chemical composition. Taking the neutral apatite [La{sub 8}Sr{sub 2}][(GeO{sub 4}){sub 6}]O{sub 2} as a prototype electrolyte, this classification scheme correctly predicted that 'excess' oxygen in La{sub 9}SrGe{sub 6}O{sub 26.5} is tenanted in the framework as [La{sub 9}Sr][(GeO{sub 4}){sub 5.5}(GeO{sub 5}){sub 0.5}]O{sub 2}, rather than the presumptive tunnel location of [La{sub 9}Sr][(GeO{sub 4}){sub 6}]O{sub 2.5}. The implication of this approach is that in addition to the three known apatite genera-A{sub 10}(BO{sub 3}){sub 6}X{sub 2}, A{sub 10}(BO{sub 4}){sub 6}X{sub 2}, A{sub 10}(BO{sub 5}){sub 6}X{sub 2}-hybrid electrolytesmore » of the types A{sub 10}(BO{sub 3}/BO{sub 4}/BO{sub 5}){sub 6}X{sub 2} can be designed, with potentially superior low-temperature ion conduction, mediated by the introduction of oxygen to the framework reservoir. - Graphical abstract: Apatite framework taxonomy succinctly rationalises the crystallographic modifications of this structural family as a function of chemical composition. Neutron diffraction identified that the excess oxygen in La{sub 9}SrGe{sub 6}O{sub 26.5} is tenanted in the framework as [La{sub 9}Sr][(GeO{sub 4}){sub 5.5}(GeO{sub 5}){sub 0.5}]O{sub 2}. The implication of this approach is that in addition to the three known apatite genera-A{sub 10}(BO{sub 3}){sub 6}X{sub 2}, A{sub 10}(BO{sub 4}){sub 6}X{sub 2}, A{sub 10}(BO{sub 5}){sub 6}X{sub 2}-hybrid electrolytes of the types A{sub 10}(BO{sub 3}/BO{sub 4}/BO{sub 5}){sub 6}X{sub 2} can be designed.« less

  19. Inhibition of precipitation of carbonate apatite by trisodium citrate analysed in base of the formation of chemical complexes in growth solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prywer, Jolanta, E-mail: jolanta.prywer@p.lodz.pl; Olszynski, Marcin; Mielniczek-Brzóska, Ewa

    2015-11-15

    Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation ofmore » carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.« less

  20. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation.

    PubMed

    Stefanic, Martin; Ward, Kevin; Tawfik, Harvey; Seemann, Ralf; Baulin, Vladimir; Guo, Yachong; Fleury, Jean-Baptiste; Drouet, Christophe

    2017-09-01

    Cryopreservation of red blood cells (RBC) is an important method for maintaining an inventory of rare RBC units and managing special transfusion circumstances. Currently, in a clinical setting, glycerol is used as cryoprotectant against freezing damage. After thawing and before transfusion, glycerol must however be removed to avoid intravascular hemolysis, via a complex and time-consuming deglycerolization process which requires specialized equipment. Improved cryopreservation methods using non-toxic agents are required to increase biocompatibility and decrease processing time. Biocompatible cryoprotectants (e.g. trehalose) were proposed, but their low permeation through RBC membranes limits their cryoprotection efficacy. Herein, we report for the first time a glycerol-free cryopreservation approach, using colloidal bioinspired apatite nanoparticles (NP) as bioactive promoters of RBC cryopreservation mediated by trehalose. Addition of apatite NP in the medium tremendously increases RBC cryosurvival, up to 91% (42% improvement compared to a control without NP) which is comparable to FDA-approved cryoprotection protocol employing glycerol. NP concentration and incubation conditions strongly modulate the NP bioactivity. Complementary experimental and computational analyses of the interaction between apatite NP and model lipid bilayers revealed complex events occurring at the NP-bilayer interface. Apatite NP do not cross the bilayer but momentarily modulate its physical status. These changes affect the membrane behavior, and promote the permeation of trehalose and a model fluorescent molecule (FITC). This approach is a new alternative to using toxic glycerol for cells cryopreservation, and the identification of this enhancing no-pore permeation mechanism of apatite NP appears as an original delivery pathway for cryoprotectant agents and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Altered self-assembly and apatite binding of amelogenin induced by N-terminal proline mutation

    PubMed Central

    Zhu, Li; Uskoković, Vuk; Le, Thuan; DenBesten, Pamela; Huang, Yulei; Habelitz, Stefan; Li, Wu

    2012-01-01

    Objective A single Pro-70 to Thr (p.P70T) mutation of amelogenin is known to result in hypomineralized amelogenesis imperfecta (AI). This study aims to test the hypothesis that the given mutation affects the self-assembly of amelogenin molecules and impairs their ability to conduct the growth of apatite crystals. Design Recombinant human full-length wild-type (rh174) and p.P70T mutated amelogenins were analyzed using dynamic light scattering (DLS), protein quantification assay and atomic force microscopy (AFM) before and after the binding of amelogenins to hydroxyapatite crystals. The crystal growth modulated by both amelogenins in a dynamic titration system was observed using AFM. Results As compared to rh174 amelogenin, p.P70T mutant displayed significantly increased sizes of the assemblies, higher binding affinity to apatite, and decreased crystal height. Conclusions Pro-70 plays an important structural role in the biologically relevant amelogenin self-assembly. The disturbed regularity of amelogenin nanospheres by this single mutation resulted in an increased binding to apatite and inhibited crystal growth. PMID:21081224

  2. SAXS study of ion tracks in San Carlos olivine and Durango apatite

    NASA Astrophysics Data System (ADS)

    Afra, B.; Rodriguez, M. D.; Lang, M.; Ewing, R. C.; Kirby, N.; Trautmann, C.; Kluth, P.

    2012-09-01

    Ion tracks were generated in crystalline San Carlos olivine (Mg,Fe)2SiO4 and Durango apatite Ca10(PO4)6F2 using different heavy ions (58Ni, 101Ru, 129Xe, 197Au, and 238U) with energies ranging between 185 MeV and 2.6 GeV. The tracks and their annealing behavior were studied by means of synchrotron based small angle X-ray scattering in combination with in situ annealing. Track radii vary as a function of electronic energy loss but are very similar in both minerals. Furthermore, the annealing behavior of the track radii has been investigated and preliminary results reveal a lower recovery rate of the damaged area in olivine compared with apatite.

  3. Insight into He diffusion in apatite by ion beam experiments and quantum calculations: implication for the (U-Th)/He thermochronometer

    NASA Astrophysics Data System (ADS)

    Gautheron, C.; Mbongo-Djimbi, D.; Gerin, C.; Roques, J.; Bachelet, C.; Oliviero, E.; Tassan-Got, L.

    2015-12-01

    The apatite (U-Th)/He (AHe) system has rapidly become a very popular thermochronometer, however, interpretation of AHe age depends on a precise knowledge of He diffusion. Several studies suggest that He retention is function of the amount of damage that is controlled by U-Th concentration, grain chemistry and thermal history. Still, the models are not well constrained and do not fully explain the mechanism of He retention. In order to have a deeper insight into this issue, a multidisciplinary study on apatite combining physical methods such as multi-scale theoretical diffusion calculations based on Density Functional Theory (DFT) with diffusion experiments by ion beam Elastic Recoil Diffusion Analysis (ERDA) were performed. Quantum calculations permit to quantify He diffusivity base level for damage-free crystal and to estimate the additional energy cost to extract He atoms trapped in point defects (i.e. vacancies). On the other hand ion beam ERDA experiments allow to measure He diffusivity in artificially damaged crystals. We show that damage-free apatite crystals are characterized by low retention behavior and closure temperature of ~35°C for pure F-apatite to higher value for Cl rich apatite (up to 12°C higher), for typical grain size and cooling rate (Mbongo-Djimbi et al., 2015). Our computed closure temperature is slightly lower than previously reported experimental values (~50°C). Using ERDA and DFT modeling of damage, we show how He diffusivity is influenced by damage. Finally, we are able to propose a new modeling of He diffusion incorporating mechanisms not included in classical damage models, and taking into account the level of damage and apatite chemistry. We show that it could affect significantly AHe age interpretation. Mbongo-Djimbi D. et al. 2015. Apatite composition effect on (U-Th)/He thermochronometer: an atomistic point of view. Geohimica Cosmochim. Acta.

  4. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    PubMed

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  5. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. He, U, and Th Depth Profiling of Apatite and Zircon Using Laser Ablation Noble Gas Mass Spectrometry and SIMS

    NASA Astrophysics Data System (ADS)

    Monteleone, B. D.; van Soest, M. C.; Hodges, K. V.; Hervig, R.; Boyce, J. W.

    2008-12-01

    Conventional (U-Th)/He thermochronology utilizes single or multiple grain analyses of U- and Th-bearing minerals such as apatite and zircon and does not allow for assessment of spatial variation in concentration of He, U, or Th within individual crystals. As such, age calculation and interpretation require assumptions regarding 4He loss through alpha ejection, diffusive redistribution of 4He, and U and Th distribution as an initial condition for these processes. Although models have been developed to predict 4He diffusion parameters, correct for the effect of alpha ejection on calculated cooling ages, and account for the effect of U and Th zonation within apatite and zircon, measurements of 4He, U, and Th distribution have not been combined within a single crystal. We apply ArF excimer laser ablation, combined with noble gas mass spectrometry, to obtain depth profiles within apatite and zircon crystals in order to assess variations in 4He concentration with depth. Our initial results from pre-cut, pre-heated slabs of Durango apatite, each subjected to different T-t schedules, suggest a general agreement of 4He profiles with those predicted by theoretical diffusion models (Farley, 2000). Depth profiles through unpolished grains give reproducible alpha ejection profiles in Durango apatite that deviate from alpha ejection profiles predicted for ideal, homogenous crystals. SIMS depth profiling utilizes an O2 primary beam capable of sputtering tens of microns and measuring sub-micron resolution variation in [U], [Th], and [Sm]. Preliminary results suggest that sufficient [U] and [Th] zonation is present in Durango apatite to influence the form of the 4He alpha ejection profile. Future work will assess the influence of measured [U] and [Th] zonation on previously measured 4He depth profiles. Farley, K.A., 2000. Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., B Solid Earth Planets 105 (2), 2903-2914.

  7. Formation of A-type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Yan; Li, He; Ding, Xing; Wu, Kai; Guo, Jia; Liu, Ji-Qiang; Sun, Wei-Dong

    2018-04-01

    Apatite is ubiquitous in A-type granites, and can be used to elucidate the volatile contents of the silicate melt, which reflect its source characteristics. A-type granites have been recognized as a distinct group of granites. A1- and A2-type subgroups are produced under different extensional settings. However, the details of the mechanisms behind the distinctive geochemical characteristics of A1- and A2-type granites remain obscure. Belts of Cretaceous A1- and A2-type granites occur along the Lower Yangtze River Belt in eastern China. Here we investigated the major and trace element compositions of apatites from contemporary A1- and A2-type granites at different localities along the Lower Yangtze River Belt, in order to decipher their discrepant source processes. Apatites from A1- and A2-type granites show similar major and trace elements, but differ in their F and Cl concentrations. Apatites from A1-type granites in the eastern part of the Lower Yangtze River Belt have much lower F and higher Cl concentrations compared to A2-type granites in the western part. Moreover, from the east to the west, the F concentrations of apatites from A1-type granites increase, while the Cl concentrations decline. In a subducted plate, F is retained by amphibole, chlorite, serpentine and mica minerals through the amphibolite stage, and finally by phengite and lawsonite during the eclogite stage, whereas, Cl is controlled by amphibole, chlorite and serpentine. The high and varied Cl concentrations in A1 subgroup apatites, therefore, may be attributed to the breakdown of amphibole, chlorite and/or serpentine decomposition during partial melting of subducted oceanic crust releasing a large amount of Cl at shallower depth. In contrast, F is transported to deeper depths in the subducted oceanic crust, and released through breakdown of phengite and lawsonite, making an important contribution to the formation of A2-type granites. Apatites from A1- and A2-type granite samples show regular

  8. Possible secondary apatite fission track age standard from altered volcanic ash beds in the middle Jurassic Carmel Formation, Southwestern Utah

    USGS Publications Warehouse

    Kowallis, B.J.; Christiansen, E.H.; Everett, B.H.; Crowley, K.D.; Naeser, C.W.; Miller, D.S.; Deino, A.L.

    1993-01-01

    Secondary age standards are valuable in intra- and interlaboratory calibration. At present very few such standards are available for fission track dating that is older than Tertiary. Several altered volcanic ash beds occur in the Middle Jurassic Carmel Formation in southwestern Utah. The formation was deposited in a shallow marine/sabhka environment. Near Gunlock, Utah, eight ash beds have been identified. Sanidines from one of the ash beds (GUN-F) give a single-crystal laser-probe 40Ar/39Ar age of 166.3??0.8 Ma (2??). Apatite and zircon fission track ages range from 152-185 Ma with typically 15-20 Ma errors (2??). Track densities in zircons are high and most grains are not countable. Apatites are fairly common in most of the ash beds and have reasonable track densities ranging between 1.2-1.5 ?? 106 tracks/cm2. Track length distributions in apatites are unimodal, have standard deviations <1??m, and mean track lengths of about 14-14.5 ??m. High Cl apatites (F:Cl:OH ratio of 39:33:28) are particularly abundant and large in ash GUN-F, and are fairly easy to concentrate, but the concentrates contain some siderite, most of which can be removed by sieving. GUN-F shows evidence of some reworking and detriaal contamination based on older single grain 40Ar/39Ar analyses and some rounding of grains, but the apatite population appears to be largely uncontaminated. At present BJK has approximately 12 of apatite separate from GUN-F. ?? 1993.

  9. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate.

    PubMed

    Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A

    2014-01-01

    The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.

  10. F-Cl-OH partitioning between biotite and apatite

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Sverjensky, Dimitri A.

    1992-09-01

    An assessment of F-C1-OH partitioning between natural apatite and biotite in a variety of rocks was used to evaluate reciprocal (Mg, Fe 2+, Al VI) (F, Cl, OH) mixing properties for biotite according to the reciprocal salt solution model of WOOD and NICHOLLS (1978). Ideal mixing of F-C1-OH and Fe-Mg-Al VI in the hydroxyl and octahedral sites is assumed for biotites with dilute Cl concentrations. The reciprocal interaction parameters, in terms of Gibbs free energies, for the reactions KMg3[ AlSi3O10]( OH) 2 + KFe3[ AlSi3O10]( F) 2 = KMg3[ AlSi3O10]( F) 2 + KFe3[ AlSi3O10]( OH) 2 Phl Fann Fphl Ann and KMg3[ AlSi3O10]( Cl) 2 + KFe3[ AlSi3O10]( OH) 2 = KMg3[ AlSi3O10]( OH) 2 + KFe3[ AlSi3O10] ( Cl) 2 Clphl Ann Phl Clann are about -10 kcal/mol and -4.5 kcal/mol, respectively. These mixing properties are consistent with standard state thermodynamic properties for F and Cl endmember phases from ZHU and SVERJENSKY (1991). The approach of studying F-C1-OH partitioning between biotite and apatite permits distinguishing the reciprocal effects from the effects of temperature, pressure, and fluid composition. The resultant mixing properties are consistent with observations both in hydrothermal experiments and in natural mineral assemblages. The mixing properties presented in this study enable us now to predict F and Cl concentrations of hydrothermal fluids from the measured F and Cl concentrations in biotite with variable Fe-Mg-Al VI proportions. A case study of the Santa Rita porphyry copper deposits, New Mexico, shows that hydrothermal fluids responsible for the phyllic alteration had a salinity about 3 molal Cl -, in agreement with fluid inclusion studies. Our internally consistent standard thermodynamic properties and solid solution models also lead to recalibration of the apatite-biotite geothermometer. The revised geothermometer predicts temperatures that agree with those estimated from other independent geothermometers. The large reciprocal effects in biotite also point

  11. U-Pb Data On Apatites With Common Lead Correction : Exemples From The Scottish Caledonides

    NASA Astrophysics Data System (ADS)

    Jewison, E.; Deloule, E.; Villeneuve, J.; Bellahsen, N.; Labrousse, L.; Rosenberg, C.; Pik, R.; Chew, D.

    2017-12-01

    Apatite is a widely used mineral in low-temperature thermochronology (U-Th/He and AFT). The use of apatite in U-Pb geochronology has a great potential, given its closure temperature around 450°C, for orogen thermostructural evolution studies. However, since apatite can accumulate significant amount of initial Pb in its structure, its use can be hindered by the lack of 204 Pb estimations. To work around this, two options are commonly used : either use a ploting sytem that does not require corrected ratios, or use a proxy to estimate 204Pb and use it to correct the ratios. In this study we use a SIMS to mesure 204Pb in order to compare Tera-Wasserburg diagram and corrected ages to examine the cooling pattern in the northern Highlands of Scotland. The Highlands is an extensively studied caledonian collision wedge which results from the closure of the Iapétus Ocean during the Orodivician-Silurian. Two orogenic events are related to this closing, the grampian event (480-460Ma) and the scandian event (435-415 Ma) that culminated in the stacking of major ductile thrusts. The thermal history of thoses nappes are hence complex and the cooling pattern poorly constrained. Corrected apatite U-Pb ages provide new constrains on ductile wedge building and improve our understanding of mid to lower-crustal deformation and orogenic exhumation. Thoses corrected ages yield equivalent errors and mean ages from the classic method. Those data suggest a global cooling younger than previously thought and a sequence departing from a simple forward sequence. We thus present a refined thermal evolution and conceptualize a model of ductile wedge evolution.

  12. Project Work Plan: Sequestration of Strontium-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of an Apatite Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, Jim E.

    2006-04-30

    We propose to develop an infiltration strategy that defines the precipitation rate of an apatite-forming solution and Sr-90 sequestration processes under variably saturated (low water content) conditions. We will develop this understanding through small-scale column studies, intermediate-scale two-dimensional (2-D) experiments, and numerical modeling to quantify individual and coupled processes associated with apatite formation and Sr-90 transport during and after infiltration of the Ca-citrate-PO4 solution. Development of capabilities to simulate these coupled biogeochemical processes during both injection and infiltration will be used to determine the most cost-effective means to emplace an in situ apatite barrier with a longevity of 300 yearsmore » to permanently sequester Sr-90 until it decays. Biogeochemical processes that will be investigated are citrate biodegradation and apatite precipitation rates at varying water contents as a function of water content. Coupled processes that will be investigated include the influence of apatite precipitation (which occupies pore space) on the hydraulic and transport properties of the porous media during infiltration.« less

  13. The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30).

    PubMed

    Qu, Xue; Cui, Wenjin; Yang, Fei; Min, Changchun; Shen, Hong; Bei, Jianzhong; Wang, Shenguo

    2007-01-01

    In this study, biodegradable poly(lactide-co-glycolide) (PLGA) (70/30) films and scaffolds were first treated with oxygen plasma and then incubated in a modified simulated body fluid 1.5SBF0 to prepare a bone-like apatite layer. The formation of the apatite and its influence on osteoblast-like cells growth were investigated. It was found that the bone-like apatite formability of PLGA(70/30) was enhanced by plasma pretreatment. The changes of surface chemistry and surface topography induced by oxygen plasma treatment were both effective for apatite formation. The apatite formability increased with increasing plasma-treating time. Under a treating condition of 20 W for 30 min, oxygen plasma treatment could penetrate into the inner scaffold. After 6 days incubation, the apatite formed in plasma-treated scaffold was better distributed than in untreated scaffold, and the weight and mechanical strength of the plasma-treated scaffold were both enhanced. Compared with PLGA(70/30), the apatite layer formed on oxygen plasma-treated PLGA(70/30) surface enhanced adhesion and proliferation of OCT-1 osteoblast-like cell, but had no significant effect on cell's ALP activity at day 7. A prolonged investigation is being in process to further verify the bone-like apatite effects on osteogenic differentiation.

  14. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  15. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2017-07-01

    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl 2 ·2H 2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.

  16. An apatite-rich, ferroan, mafic lithology from lunar meteorite ALHA81005

    NASA Technical Reports Server (NTRS)

    Goodrich, C. A.; Taylor, G. J.; Keil, K.

    1985-01-01

    Antarctic meteorite Allan Hills A81005 is a polymict, anorthositic regolith breccia of lunar origin. Most lithic clasts in the meteorite 81005 are similar to those from other lunar rocks. However, some, such as 'hyperferroan' anorthosites, have not been reported before the discovery of 81005. On the basis of the composition of some granulitic polymict breccia clasts, it appears possible that other new lithologies are present. In the present paper, a description is provided of an unusual, apatite-rich, ferroan, mafic lithology, and its origin is discussed. Three clasts which appeared to contain two minerals were separated as samples ,32 ,28 and ,27. It is found in a study that the clast in ,32 and ,28 is an apatite-rich ferroan anorthositic troctolite which is probably pristine. This rock is unique among lunar samples. On the basis of an evaluation of the significance of the results of the study, it is concluded that complex processes were apparently involved in the evolution of the primitive lunar crust.

  17. Determination of the oxidation state of uranium in apatite and phosphorite deposits

    USGS Publications Warehouse

    Clarke, R.S.; Altschuler, Z.S.

    1958-01-01

    Geological and mineralogical evidence indicate that the uranium present in apatite may proxy for calcium in the mineral structure as U(IV). An experimental investigation was conducted and chemical evidence was obtained that establishes the presence of U(IV) in apatite. The following analytical procedure was developed for the determination of U(IV). Carbonatefluorapatite is dissolved in 1.5 M orthophosphoric acid at a temperature of 5??C or slightly below and fluorapatite is dissolved in cold 1.2 M hydrochloric acid (approximately 5??C) containing 1.5 g of hydroxylamine hydrochloride per 100 ml. Uranium(IV) is precipitated by cupferron using titanium as a carrier. The uranium in the precipitate is separated by use of the ethyl acetate extraction procedure and determined fluorimetrically. The validity and the limitations of the method have been established by spike experiments. ?? 1958.

  18. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  19. Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Olszynski, Marcin

    2013-07-01

    The effect of disodium EDTA, as an additive, on the crystallization of struvite and carbonate apatite was studied. The growth of struvite crystals and carbonate apatite occurred in the solution of artificial urine at 37 °C and at the condition emulating real urinary tract infection. The results demonstrate that the addition of disodium EDTA increases the induction time and decreases the growth efficiency compared to the baseline (without disodium EDTA). The struvite crystal mean and median diameters were found to decrease in the presence of disodium EDTA but the crystal morphology and habit remain almost unchanged. Disodium EDTA has demonstrated its potential to be further investigated in the presence of bacteria and in vivo conditions.

  20. The influence of channel anion identity on the high-pressure crystal structure, compressibility, and stability of apatite

    NASA Astrophysics Data System (ADS)

    Skelton, Richard; Walker, Andrew M.

    2018-03-01

    The material properties of the common phosphate mineral apatite are influenced by the identity of the channel anion, which is usually F-, Cl-, or (OH)-. Density functional theory calculations have been used to determine the effect of channel anion identity on the compressibility and structure of apatite. Hydroxyapatite and fluorapatite are found to have similar zero pressure bulk moduli, of 79.2 and 82.1 GPa, respectively, while chlorapatite is considerably more compressible, with K 0 = 55.0 GPa. While the space groups of hydroxyapatite and fluorapatite do not change between 0 and 25 GPa, symmetrization of the Cl- site in chlorapatite at 7.5 GPa causes the space group to change from P2 1 /b to P6 3 /m. Examination of the valence electron density distribution in chlorapatite reveals that this symmetry change is associated with a change in the coordination of the Cl- anion from threefold to sixfold coordinated by Ca. We also calculate the pressure at which apatite decomposes to form tuite, a calcium orthophosphate mineral, and find that the transition pressure is sensitive to the identity of the channel anion, being lowest for fluorapatite (13.8 GPa) and highest for chlorapatite (26.9 GPa). Calculations are also performed within the DFT-D2 framework to investigate the influence of dispersion forces on the compressibility of apatite minerals.

  1. Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration

    USGS Publications Warehouse

    Fuller, C.C.; Bargar, J.R.; Davis, J.A.

    2003-01-01

    Uranium binding to bone charcoal and bone meal apatite materials was investigated using U LIII-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations ??? 5500 ??g U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 A?? was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U-P distance at 3.5-3.6 A?? was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations ??? 5500 ??g U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12 300 ??g U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U

  2. Growth and dissolution of apatite precipitates formed in vivo on the surface of a bioactive glass coating film and its relevance to bioactivity

    NASA Astrophysics Data System (ADS)

    Jallot, E.; Benhayoune, H.; Kilian, L.; Irigaray, J. L.; Balossier, G.; Bonhomme, P.

    2000-11-01

    Development of bioactive glasses for use as a coating on Ti6Al4V prostheses requires a better understanding of reactions at the bone/bioactive glass interface. Indeed, the bioactive glasses bond to bone through physico-chemical reactions. In vivo, an apatite rich layer is built up on top of a pure silica rich layer at the bioactive glass periphery. In this paper, we have studied Ti6Al4V cylinders coated with a bioactive glass and implanted in sheep femora for two, three and six months. At each time period, the samples were analysed with scanning transmission electron microscopy coupled with energy dispersive x-ray spectroscopy. In vivo, the bioactive glass dissolution led to the formation on its surface of spherical particles with different sizes. The distributions of Si, Al, Ca, P and Mg concentrations across the particles reveal precipitation of apatite with the incorporation of magnesium. Apatite precipitation is governed by diffusion through an Si layer and occurs under specific supersaturation conditions. Measurements of supersaturation for Ca and P demonstrate that the largest precipitates grow and the smallest dissolve. These results allow us to study the growth and dissolution rate of the apatite precipitates and their relevance to bioactivity. Particles with a radius twice the average radius () grow the fastest and, if the radius increases, the rate of growth decreases. Before three months, the growth of apatite precipitates (≈1 µm) leads to the growth of a Ca-P interfacial layer. After three months, is of the order of 0.5 µm, and the majority of the apatite layer dissolves. The effects of aluminium and magnesium on apatite generation are also studied.

  3. Increase of apatite dissolution rate by Scots pine roots associated or not with Burkholderia glathei PML1(12)Rp in open-system flow microcosms

    NASA Astrophysics Data System (ADS)

    Calvaruso, Christophe; Turpault, Marie-Pierre; Frey-Klett, Pascale; Uroz, Stéphane; Pierret, Marie-Claire; Tosheva, Zornitza; Kies, Antoine

    2013-04-01

    The release of nutritive elements through apatite dissolution represents the main source of phosphorus, calcium, and several micronutrients (e.g., Zn, Cu) for organisms in non-fertilized forest ecosystems. The aim of this study was to quantify, for the first time, the dissolution rate of apatite grains by tree roots that were or were not associated with a mineral weathering bacterial strain, and by various acids known to be produced by tree roots and soil bacterial strains in open-system flow microcosms. In addition, we explored whether the mobilization of trace elements (including rare earth elements) upon apatite dissolution was affected by the presence of trees and associated microorganisms. The dissolution rate of apatite by Scots pine plants that were or were not inoculated with the strain Burkholderia glathei PML1(12)Rp, and by inorganic (nitric) and organic (citric, oxalic and gluconic) acids at pH 5.5, 4.8, 3.8, 3.5, 3.0, and 2.0 was monitored in two controlled experiments: "plant-bacteria interaction" and "inorganic and organic acids". Analyses of the outlet solutions in the "plant-bacteria interaction" experiment showed that Scots pine roots and B. glathei PML1(12)Rp produced protons and organic acids such as gluconate, oxalate, acetate, and lactate. The weathering budget calculation revealed that Scots pines (with or without PML1(12)Rp) significantly increased (factor > 10) the release of Ca, P, As, Sr, Zn, U, Y, and rare earth elements such as Ce, La, Nd from apatite, compared to control abiotic treatment. Scanning electron microscopy observation confirmed traces of apatite dissolution in contact of roots. Most dissolved elements were taken up by Scots pine roots, i.e., approximately 50% of Ca, 70% of P, 30% of As, 70% of Sr, 90% of Zn, and 100% of U, Y, and rare earth elements. Interestingly, no significant additional effect due to the bacterial strain PML1(12)Rp on apatite dissolution and Scots pine nutrition and growth was observed. The "inorganic

  4. Fabrication and Characterization of Biomimetic Collagen-Apatite Scaffolds with Tunable Structures for Bone Tissue Engineering

    PubMed Central

    Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei

    2013-01-01

    The objective of the current study is to prepare a biomimetic collagen-apatite (Col-Ap) scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in a range 0–54 wt% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, bone forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. PMID:23567944

  5. The effect of secondary apatite on the initial 87Sr/86Sr ratio determination in granitic rocks: a case study of the Tadamigawa pluton, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Wakasugi, Y.; Ichino, K.; Tanioka, Y.; Wakaki, S.; Tsuboi, M.; Ishikawa, T.

    2017-12-01

    Apatite is a major accessory mineral in igneous rocks. Because Rb contents in apatite are very low, 87Sr/86Sr ratios of magmatic apatite are useful to estimate the initial 87Sr/86Sr ratio (SrI) of igneous rocks. Secondary post-magmatic event such as hydrothermal alteration may also crystallize secondary apatite, which may inhibit the estimation of SrI of igneous rocks. In this study, we examine the effects of secondary apatite on the initial 87Sr/86Sr ratio determination of granitic rocks by using acid leaching technique. Leached apatite samples were first separated from the whole rock powder as a heavy mineral fraction by heavy liquid technique, and the heavy mineral fraction was then leached by 3 M HNO3. The isotopic ratios of Sr and the concentrations of Rb and Sr were analyzed by TIMS and ICP-MS at Kochi Core Center, respectively. The Tadamigawa Older-stage granites, which locate in the Taishaku Mountains at the northeastern part of Japan, intrude into the Ashio Jurassic complex, and the ages of these rocks are late Cretaceous to Paleogene. The U-Pb ages of zircon and the K-Ar ages of biotite for these rocks are c. 100 Ma [1, 2]. Rb-Sr whole-rock isochron age of the pluton is 96.5 ± 1.3 Ma (SrI = 0.70534 ± 0.00003) and it is concordant with other radiometric ages. Rb-Sr mineral isochron ages range from 84.4 to 97.3 Ma and these ages are relatively younger than the Rb-Sr whole-rock isochron age. The difference among radiometric ages may reflect the difference of the closure temperature in each isotopic system. The Tadamigawa Older-stage granites have SrI for Rb-Sr mineral isochron range from 0.7053 to 0.7061 and are very similar to that (0.70534) for Rb-Sr whole-rock isochron. These may suggest that the Tadamigawa Older-stage granites are generated from same parental magma. However, 87Sr/86Sr ratios of the leached apatite samples were 0.70544-0.70856 and are relatively higher than SrI obtained from the Rb-Sr mineral isochrons (0.7053-0.7061). This result

  6. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  7. Quantification of octacalcium phosphate, authigenic apatite and detrital apatite in coastal sediments using differential dissolution and standard addition

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-06-01

    Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In situ relationships between liquid- and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determining particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions, and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP > HAP > CFAP (4.5% CO3) > CFAP (3.4% CO3) > CFAP (2.2% CO3) > FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the coastal sediments analyzed, which supports the hypothesis of apatite formation by an OCP precursor mechanism.

  8. Quantification of octacalcium phosphate, authigenic apatite and detrital apatite in coastal sediments using differential dissolution and standard addition

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-01-01

    Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In-situ relationships between liquid and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determination of particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions; and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP > HAP > CFAP (4.5% CO3) > CFAP (3.4% CO3) > CFAP (2.2% CO3) > FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the analyzed coastal sediments which supports the hypothesis of apatite formation by an OCP precursor.

  9. Interim Report: 100-NR-2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mark D.; Fritz, Brad G.; Mendoza, Donaldo P.

    2008-07-11

    Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N Area will include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary (most likely phytoremediation). Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing Sr-90 flux to the river at a reasonable cost. In July 2005, aqueous injection, (i.e., the introduction of apatite-formingmore » chemicals into the subsurface) was endorsed as the interim remedy and selected for field testing. Studies are in progress to assess the efficacy of in situ apatite formation by aqueous solution injection to address both the vadose zone and the shallow aquifer along the 300 ft of shoreline where Sr-90 concentrations are highest. This report describes the field testing of the shallow aquifer treatment.« less

  10. Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S

    NASA Astrophysics Data System (ADS)

    Ibsen, Casper Jon Steenberg; Birkedal, Henrik

    2010-11-01

    The formation of nanocrystals in biomineralization such as in bone occurs under the influence of organic molecules. Prompted by this fact, the effect of alizarin red S, a dye used in in vivo bone labeling methods, on bone-like carbonated apatite nanocrystal formation was investigated as a function of alizarin red S additive concentration. The obtained nanoparticles were investigated by powder X-ray diffraction (XRD), FTIR as well thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) while the kinetics of nanoparticle formation was investigated by in situ pH and synchrotron XRD measurements. Increasing alizarin red S concentration lead to amorphous particles over a threshold concentration and to smaller crystallites in a dose-dependent fashion. Alizarin red S induced a macroscopic lattice strain that scaled linearly with the alizarin red S concentration; this effect is reminiscent of that seen in biogenic calcium carbonates. TGA showed that the amorphous particles contained significantly more water than the crystalline samples and the DSC data showed that crystallization occurs after loss of most of the included organic material. The in situ studies showed that the formation of apatite goes via the very rapid formation of an amorphous precursor that after a certain nucleation time crystallizes into apatite. This nucleation time increased exponentially with alizarin red S concentration showing that this additive strongly stabilizes the amorphous precursor phase.

  11. COMPARISON OF APATITE II™ TREATMENT SYSTEM AT TWO MINES FOR METALS REMOVAL

    EPA Science Inventory

    Two abandoned lead-zinc mine sites, the Nevada Stewart Mine (NSM) and Success Mine, are located within the Coeur d'Alene Mining District, in northern Idaho. An Apatite II™ Treatment System (ATS) was implemented at each site to treat metal-laden water, mainly zinc. In the ATS, f...

  12. The thermal history of the Miocene Ibar Basin (Southern Serbia): new constraints from apatite and zircon fission track and vitrinite reflectance data

    NASA Astrophysics Data System (ADS)

    Andrić, Nevena; Fügenschuh, Bernhard; Životić, Dragana; Cvetković, Vladica

    2015-02-01

    The Ibar Basin was formed during Miocene large scale extension in the NE Dinaride segment of the Alpine- Carpathian-Dinaride system. The Miocene extension led to exhumation of deep seated core-complexes (e.g. Studenica and Kopaonik core-complex) as well as to the formation of extensional basins in the hanging wall (Ibar Basin). Sediments of the Ibar Basin were studied by apatite and zircon fission track and vitrinite reflectance in order to define thermal events during basin evolution. Vitrinite reflectance (VR) data (0.63-0.90 %Rr) indicate a bituminous stage for the organic matter that experienced maximal temperatures of around 120-130 °C. Zircon fission track (ZFT) ages indicate provenance ages. The apatite fission track (AFT) single grain ages (45-6.7 Ma) and bimodal track lengths distribution indicate partial annealing of the detrital apatites. Both vitrinite reflectance and apatite fission track data of the studied sediments imply post-depositional thermal overprint in the Ibar Basin. Thermal history models of the detritial apatites reveal a heating episode prior to cooling that began at around 10 Ma. The heating episode started around 17 Ma and lasted 10-8 Ma reaching the maximum temperatures between 100-130 °C. We correlate this event with the domal uplift of the Studenica and Kopaonik cores where heat was transferred from the rising warm footwall to the adjacent colder hanging wall. The cooling episode is related to basin inversion and erosion. The apatite fission track data indicate local thermal perturbations, detected in the SE part of the Ibar basin (Piskanja deposit) with the time frame ~7.1 Ma, which may correspond to the youngest volcanic phase in the region.

  13. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Chelle-Michou, Cyril; Chiaradia, Massimo

    2017-12-01

    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic-hydrothermal systems such as the Coroccohuayco Fe-Cu-Au porphyry-skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2- to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20-200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2-0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100-200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the

  14. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering.

    PubMed

    Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei

    2013-07-01

    The objective of the current study is to prepare a biomimetic collagen-apatite scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0-54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    ScienceCinema

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2018-01-16

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  16. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2015-10-20

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  17. Synthesis and characterization of nanocrystalline apatites from solution modeling human blood

    NASA Astrophysics Data System (ADS)

    Solodyankina, Anna; Nikolaev, Anton; Frank-Kamenetskaya, Olga; Golovanova, Olga

    2016-09-01

    Present paper is devoted to the research of the calcification processes in the blood plasma of human body. Spontaneous crystallization from the solution modeling the inorganic part of the blood plasma has been carried out. Obtained precipitates were studied by the various instrumental methods (X-ray powder diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, electron probe microanalysis and gas-volumetric method). All gathered data allow to summarize that nonstoichiometric carbonated hydroxyapatite with low crystallinity (CSD lengths 18-28 nm), high water content and small amount of chlorine ion was obtained throughout the syntheses. Part of vacancies at the Ca sites varies from 0.17 to 0.87; the value of the Cat/(P + C) ratio-from 1.52 to 1.64 (where Cat = Ca2+ + Na+ + K+ + Mg2+). The poor crystallized synthetic apatites with high carbonate ion content (from 4.34 to 5.54 wt%) and c parameter (6.888-6.894 Å) are analogues of the apatites of the pathological cardiovascular deposits. They can be obtained from the solution modeling human blood plasma by the inorganic components with calcium phosphate supersaturation 25 and 50 and with 10 and 12 weeks experiment time.

  18. Multi-scale simulations of apatite-collagen composites: from molecules to materials

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2017-03-01

    We review scale-bridging simulation studies for the exploration of atomicto-meso scale processes that account for the unique structure and mechanic properties of apatite-protein composites. As the atomic structure and composition of such complex biocomposites only partially is known, the first part (i) of our modelling studies is dedicated to realistic crystal nucleation scenarios of inorganic-organic composites. Starting from the association of single ions, recent insights range from the mechanisms of motif formation, ripening reactions and the self-organization of nanocrystals, including their interplay with growth-controlling molecular moieties. On this basis, (ii) reliable building rules for unprejudiced scale-up models can be derived to model bulk materials. This is exemplified for (enamel-like) apatite-protein composites, encompassing up to 106 atom models to provide a realistic account of the 10 nm length scale, whilst model coarsening is used to reach μm length scales. On this basis, a series of deformation and fracture simulation studies were performed and helped to rationalize biocomposite hardness, plasticity, toughness, self-healing and fracture mechanisms. Complementing experimental work, these modelling studies provide particularly detailed insights into the relation of hierarchical composite structure and favorable mechanical properties.

  19. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite

    NASA Astrophysics Data System (ADS)

    Joachimski, M. M.; Breisig, S.; Buggisch, W.; Talent, J. A.; Mawson, R.; Gereke, M.; Morrow, J. R.; Day, J.; Weddige, K.

    2009-07-01

    Conodonts, microfossils composed of carbonate-fluor apatite, are abundant in Palaeozoic-Triassic sediments and have a high potential to preserve primary oxygen isotope signals. In order to reconstruct the palaeotemperature history of the Devonian, the oxygen isotope composition of apatite phosphate was measured on 639 conodont samples from sequences in Europe, North America and Australia. The Early Devonian (Lochkovian; 416-411 Myr) was characterized by warm tropical temperatures of around 30 °C. A cooling trend started in the Pragian (410 Myr) with intermediate temperatures around 23 to 25 °C reconstructed for the Middle Devonian (397-385 Myr). During the Frasnian (383-375 Myr), temperatures increased again with temperatures to 30 °C calculated for the Frasnian-Famennian transition (375 Myr). During the Famennian (375-359 Myr), surface water temperatures slightly decreased. Reconstructed Devonian palaeotemperatures do not support earlier views suggesting the Middle Devonian was a supergreenhouse interval, an interpretation based partly on the development of extensive tropical coral-stromatoporoid communities during the Middle Devonian. Instead, the Devonian palaeotemperature record suggests that Middle Devonian coral-stromatoporoid reefs flourished during cooler time intervals whereas microbial reefs dominated during the warm to very warm Early and Late Devonian.

  20. Geodynamic risk magnitude as an objective indicator of rockburst prevention effectiveness (in terms of apatite mines in Khibiny)

    NASA Astrophysics Data System (ADS)

    Fedotova Panin, YuV, VI

    2018-03-01

    The results of the statistical retrospective analysis of the officially recorded geodynamic events in mines of Apatit Company within the Khibiny Massif are presented. The risks and aftereffects of geodynamic events have been calculated. Under discussion are the results of three calculation variants taking into account the scale of human impact on rock mass. The analysis shows that the main damage due to geodynamic events is different-degree destruction of mine workings while the remaining aftereffects account for less than ten percent. That is, the geodynamic risk in apatite mines can be identified as technological.

  1. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    PubMed

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

    NASA Astrophysics Data System (ADS)

    Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.

    2017-11-01

    The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.

  3. Effect of white mineral trioxide aggregate compared with biomimetic carbonated apatite on dentine bridge formation and inflammatory response in a dental pulp model.

    PubMed

    Danesh, F; Vahid, A; Jahanbani, J; Mashhadiabbas, F; Arman, E

    2012-01-01

      To evaluate the effects of apatite precipitation on the biocompatibility and hard tissue induction properties of white mineral trioxide aggregate (WMTA) in a dental pulp model.   Pulp exposures were created on the axial walls of 32 sound canine teeth of eight dogs. Four additional sound teeth served as controls. The pulps were capped either with WMTA or apatite derivatives [biomimetic carbonated apatite (BCAp)] in the interaction of WMTA with a synthetic tissue fluid and restored with zinc oxide-eugenol cement. After 7 and 70 days, the animals were killed, and the histological specimens taken from the teeth were stained with haematoxylin and eosin for histomorphological evaluation. The Brown and Brenn technique was employed to stain bacteria. The data were subjected to nonparametric Kruskall-Wallis analysis and Mann-Whitney U_tests.   Biomimetic carbonated apatite did not induce hard tissue bridge formation. WMTA performed significantly better than BCAp in this respect at both periods (P < 0.05). BCAp was associated with a significantly greater inflammatory response as compared with WMTA after 7 days (P < 0.05). Both materials were associated with similar reactions after 70 days (P >0.05).   White mineral trioxide aggregate induced hard tissue formation via a mechanism other than that postulated via apatite formation. © 2011 International Endodontic Journal.

  4. Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments.

    PubMed

    Oliva, Josep; De Pablo, Joan; Cortina, José-Luis; Cama, Jordi; Ayora, Carlos

    2011-10-30

    Apatite II™, a biogenic hydroxyapatite, was evaluated as a reactive material for heavy metal (Cd, Cu, Co, Ni and Hg) removal in passive treatments. Apatite II™ reacts with acid water by releasing phosphates that increase the pH up to 6.5-7.5, complexing and inducing metals to precipitate as metal phosphates. The evolution of the solution concentration of calcium, phosphate and metals together with SEM-EDS and XRD examinations were used to identify the retention mechanisms. SEM observation shows low-crystalline precipitate layers composed of P, O and M. Only in the case of Hg and Co were small amounts of crystalline phases detected. Solubility data values were used to predict the measured column experiment values and to support the removal process based on the dissolution of hydroxyapatite, the formation of metal-phosphate species in solution and the precipitation of metal phosphate. Cd(5)(PO(4))(3)OH(s), Cu(2)(PO(4))OH(s), Ni(3)(PO(4))(2)(s), Co(3)(PO(4))(2)8H(2)O(s) and Hg(3)(PO(4))(2)(s) are proposed as the possible mineral phases responsible for the removal processes. The results of the column experiments show that Apatite II™ is a suitable filling for permeable reactive barriers. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology

    NASA Astrophysics Data System (ADS)

    Malusà, Marco G.; Wang, Jiangang; Garzanti, Eduardo; Liu, Zhi-Chao; Villa, Igor M.; Wittmann, Hella

    2017-10-01

    Detrital thermochronology is often employed to assess the evolutionary stage of an entire orogenic belt using the lag-time approach, i.e., the difference between the cooling and depositional ages of detrital mineral grains preserved in a stratigraphic succession. The impact of different eroding sources to the final sediment sink is controlled by several factors, including the short-term erosion rate and the mineral fertility of eroded bedrock. Here, we use apatite fertility data and cosmogenic-derived erosion rates in the Po river catchment (Alps-Apennines) to calculate the expected percentage of apatite grains supplied to the modern Po delta from the major Alpine and Apenninic eroding sources. We test these predictions by using a cutting-edge dataset of trace-element and Nd-isotope signatures on 871 apatite grains from 14 modern sand samples, and we use apatite fission-track data to validate our geochemical approach to provenance discrimination. We found that apatite grains shed from different sources are geochemically distinct. Apatites from the Lepontine dome in the Central Alps show relative HREE enrichment, lower concentrations in Ce and U, and higher 147Sm/144Nd ratios compared to apatites derived from the External Massifs. Derived provenance budgets point to a dominant apatite contribution to the Po delta from the high-fertility Lepontine dome, consistent with the range independently predicted from cosmonuclide and mineral-fertility data. Our results demonstrate that the single-mineral record in the final sediment sink can be largely determined by high-fertility source rocks exposed in rapidly eroding areas within the drainage. This implies that the detrital thermochronology record may reflect processes affecting relatively small parts of the orogenic system under consideration. A reliable approach to lag-time analysis would thus benefit from an independent provenance discrimination of dated mineral grains, which may allow to proficiently reconsider many

  6. H-Isotopic Composition of Apatite in Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  7. Annealing kinetics of latent particle tracks in Durango apatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afra, B.; Rodriguez, M. D.; Giulian, R.

    2011-02-01

    Using synchrotron small-angle x-ray scattering we determine the ''latent'' track morphology and the track annealing kinetics in the Durango apatite. The latter, measured during ex situ and in situ annealing experiments, suggests structural relaxation followed by recrystallization of the damaged material. The resolution of fractions of a nanometer with which the track radii are determined, as well as the nondestructive, artefact-free measurement methodology shown here, provides an effective means for in-depth studies of ion-track formation in natural minerals under a wide variety of geological conditions.

  8. Annealing kinetics of latent particle tracks in Durango apatite

    NASA Astrophysics Data System (ADS)

    Afra, B.; Lang, M.; Rodriguez, M. D.; Zhang, J.; Giulian, R.; Kirby, N.; Ewing, R. C.; Trautmann, C.; Toulemonde, M.; Kluth, P.

    2011-02-01

    Using synchrotron small-angle x-ray scattering we determine the “latent” track morphology and the track annealing kinetics in the Durango apatite. The latter, measured during ex situ and in situ annealing experiments, suggests structural relaxation followed by recrystallization of the damaged material. The resolution of fractions of a nanometer with which the track radii are determined, as well as the nondestructive, artefact-free measurement methodology shown here, provides an effective means for in-depth studies of ion-track formation in natural minerals under a wide variety of geological conditions.

  9. Apatite and sodalite based glass-bonded waste forms for immobilization of 129I and mixed halide radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; McCloy, John S.; Riley, Brian J.

    The goal of the project was to utilize the knowledge accumulated by the team, in working with minerals for chloride wastes and biological apatites, toward the development of advanced waste forms for immobilizing 129I and mixed-halide wastes. Based on our knowledge, experience, and thorough literature review, we had selected two minerals with different crystal structures and potential for high chemical durability, sodalite and CaP/PbV-apatite, to form the basis of this project. The focus of the proposed effort was towards: (i) low temperature synthesis of proposed minerals (iodine containing sodalite and apatite) leading to the development of monolithic waste forms, (ii)more » development of a fundamental understanding of the atomic-scale to meso-scale mechanisms of radionuclide incorporation in them, and (iii) understanding of the mechanism of their chemical corrosion, alteration mechanism, and rates. The proposed work was divided into four broad sections. deliverables. 1. Synthesis of materials 2. Materials structural and thermal characterization 3. Design of glass compositions and synthesis glass-bonded minerals, and 4. Chemical durability testing of materials.« less

  10. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments

    PubMed Central

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-01-01

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti–6Al–4V, Ti–15Mo–5Zr–3Al and Ti–15Zr–4Nb–4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone. PMID:28946646

  11. Yb3+/Ho3+ Co-Doped Apatite Upconversion Nanoparticles to Distinguish Implanted Material from Bone Tissue.

    PubMed

    Li, Xiyu; Chen, Haifeng

    2016-10-07

    The exploration of bone reconstruction with time requires the combination of a biological method and a chemical technique. Lanthanide Yb 3+ and Ho 3+ co-doped fluorapatite (FA:Yb 3+ /Ho 3+ ) and hydroxyapatite (HA:Yb 3+ /Ho 3+ ) particles with varying dopant concentrations were prepared by hydrothermal synthesis and thermal activation. Controllable green and red upconversion emissions were generated under 980 nm near-infrared excitation; the FA:Yb 3+ /Ho 3+ particles resulted in superior green luminescence, while HA:Yb 3+ /Ho 3+ dominated in red emission. The difference in the green and red emission behavior was dependent on the lattice structure and composition. Two possible lattice models were proposed for Yb 3+ /Ho 3+ co-doped HA and FA along the hydroxyl channel and fluorine channel of the apatite crystal structure. We first reported the use of the upconversion apatite particles to clearly distinguish implanted material from bone tissue on stained histological sections of harvested in vivo samples. The superposition of the tissue image and material image is a creative method to show the material-tissue distribution and interrelation. The upconversion apatite particles and image superposition method provide a novel strategy for long-term discriminable fluorescence tracking of implanted material or scaffold during bone regeneration.

  12. Calcium Solubility In Zeolite Synthetic-Apatite Mixtures

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, R.; Ming, D. W.

    1999-01-01

    Life support systems at a lunar or martian outpost will require the ability to produce food growing in 1) treated lunar or martian regolith; 2) a synthetic soil, or 3) some combination of both. Zeoponic soil, composed of NH4 (-) and K-exchanged clinoptilolite (Cp) and synthetic apatite (Ap), can provide slow-release fertilization via dissolution and ion-exchange. Equilibrium studies indicate that KNH4, P, and Mg are available to plants at sufficient levels, however, Ca is deficient. Ca availability can be increased by adding a second Ca-bearing mineral: calcite (Cal); dolomite (Dol); or wollastonite (Wol). Additions of Cal, Dol, and Wol systematically change the concentrations of Ca and P in solution. Cal has the greatest effect, Dol the least, and Wol is intermediate.

  13. Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite

    NASA Astrophysics Data System (ADS)

    Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan

    2016-07-01

    Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.

  14. Helium diffusion in apatite assessed by ERDA and implications for (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    Stuebner, K.; Jonckheere, R.; Ratschbacher, L.

    2006-12-01

    The strength of a low-temperature geochronometer, like (U-Th)/He(apatite), lies in the low activation energy of He-diffusion, which makes the system sensitive to temperatures <100°C. A thorough understanding of the diffusion kinetics of He in apatite is crucial for the interpretation of (U-Th)/He ages. Diffusion parameters derived from high temperature step heating experiments and reported in the literature span a broad range: E_a=30-40 kcal/mol (1σ-error ~2 kcal/mol); ln(D0/a2)=8-26 s^-^1 or ln(D0)=8- 130 cm2/s and with the standard experimental setup it is not possible to determine the grain size independent parameter D0. We employ a new approach using Elastic Recoil Detection Analysis (ERDA) to characterise He diffusion at low temperatures. ERDA allows to measure element-concentration profiles across the upper 2 μm of 1x1cm plane surface samples. Implantation of high-dose (5E+15 ions cm2), low- energy Helium ions (50-250 keV) in polished thin sections of a large Durango apatite crystal produces narrow, near-Gaussian distribution of Helium at a depth <1 μm beneath the crystal surface. Diffusion results in normally distributed concentration-profiles across the initial layer. The He-profile is approximated by a Gaussian curve with variance σ2 = 2 D t = D0 exp(-E_a/RT) t. Dt increases exponentially with T and linearly with t, so that knowledge of the t-T conditions of a set of samples allows to calculate the diffusion parameters from the fitted Gauss-distributions. With this approach Helium diffusion is observed on a sub-μm scale, which allows not only a precise determination of E_a and D0, but also circumvents assumptions that are necessary for the step-heating approach (spherical diffusion geometry, dimension of the diffusion domain) and is independent of grain size or shape. It facilitates investigation of the dependence of diffusion on the crystallographic direction, on the anion composition (OH, F, Cl) of apatite and on the degree of radiogenic lattice

  15. In-Situ Apatite Laser Ablation U-Th-Sm/He Dating, Methods and Challenges

    NASA Astrophysics Data System (ADS)

    Pickering, J. E.; Matthews, W.; Guest, B.; Hamilton, B.; Sykes, C.

    2015-12-01

    In-situ, laser ablation U-Th-Sm/He dating is an emerging technique in thermochronology that has been proven as a means to date zircon and monzonite1-5. In-situ U-Th-Sm/He thermochronology eliminates many of the problems and inconveniences associated with traditional, whole grain methods, including; reducing bias in grain selection based on size, shape and clarity; allowing for the use of broken grains and grains with inclusions; avoiding bad neighbour effects; and eliminating safety hazards associated with dissolution. In-situ apatite laser ablation is challenging due to low concentrations of U and Th and thus a low abundance of radiogenic He. For apatite laser ablation to be effective the ultra-high-vacuum (UHV) line must have very low and consistent background levels of He. To reduce He background, samples are mounted in a UHV stable medium. Our mounting process uses a MicroHePP (Microscope Mounted Heated Platen Press) to press samples into FEP (fluorinated ethylene propylene) bonded to an aluminum backing plate. Samples are ablated using a Resonetics 193 nm excimer laser and liberated He is measured using a quadrupole mass spectrometer on the ASI Alphachron noble gas line; collectively this system is known as the Resochron. The ablated sites are imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol, a custom MatLab algorithm developed to enable precise and unbiased measurement of the ablated pit geometry. We use the well-characterized Durango apatite to demonstrate the accuracy and precision of the method. He liberated from forty-two pits, having volumes between 1700 and 9000 um3, were measured using the Resochron. The ablated sites were imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol. U, Th and Sm concentrations were measured by laser ablation and the U-Th-Sm/He age calculated by standard age equation. An age of 33.8±0.31 Ma was determined and compares well with conventional

  16. Using apatite to discriminate synchronous ore-associated and barren granitoid rocks: A case study from the Edong metallogenic district, South China

    NASA Astrophysics Data System (ADS)

    Duan, Deng-Fei; Jiang, Shao-Yong

    2018-06-01

    In order to find criteria to discriminate the synchronous ore-associated and barren granitoid rocks, we have determined apatite chemistry associated with ore-associated (Cu-Au) and barren granitoid rocks in the Edong district of the Middle and Lower Yangtze River metallogenic belt, South China. Both rock types give zircon U-Pb ages between 135.0 and 138.7 Ma. Apatite has a higher volatile and Li content (Cl: 0.19-0.57 wt%, average 0.35 wt%, SO3: 0.08-0.71 wt%, average 0.32 wt%, Li: 0.49-7.99 ppm, average 3.23 ppm) in ore-associated rocks than those in barren rocks (Cl: 0.09-0.31 wt%, average 0.16 wt%, SO3: 0.06-0.28 wt%, average 0.16 wt%, Li: 0.15-0.89 ppm, average 0.36 ppm). Apatite (La/Yb)N ratios and Eu/Eu* values are relatively high and show wider variation in ore-associated rocks than those in barren rocks. Apatite (La/Sm)N and (Yb/Sm)N show positive correlation in ore-associated rocks but negative in barren rocks. The higher volatile content occurs in ore-associated magma, favoring Cu-Au transportation and deposition. Furthermore, amphibole fractional crystallization in ore-associated magma further enriched the ore elements in the residual melt. Barren rocks may have undergone fluid exsolution before emplacement, which makes it barren in Cl, S and ore elements (Cu, S). These signatures emphases the significance of volatile and magma evolution in mineralization and indicate that analyses of magmatic apatite can serve to distinguish ore-associated from barren intrusions.

  17. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders.

    PubMed

    Visan, A; Stan, G E; Ristoscu, C; Popescu-Pelin, G; Sopronyi, M; Besleaga, C; Luculescu, C; Chifiriuc, M C; Hussien, M D; Marsan, O; Kergourlay, E; Grossin, D; Brouillet, F; Mihailescu, I N

    2016-09-10

    Chitosan/biomimetic apatite thin films were grown in mild conditions of temperature and pressure by Combinatorial Matrix-Assisted Pulsed Laser Evaporation on Ti, Si or glass substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. A KrF* excimer (λ=248nm, τFWHM=25ns) laser source was used in all experiments. The nature and surface composition of deposited materials and the spatial distribution of constituents were studied by SEM, EDS, AFM, GIXRD, FTIR, micro-Raman, and XPS. The antimicrobial efficiency of the chitosan/biomimetic apatite layers against Staphylococcus aureus and Escherichia coli strains was interrogated by viable cell count assay. The obtained thin films were XRD amorphous and exhibited a morphology characteristic to the laser deposited structures composed of nanometric round shaped grains. The surface roughness has progressively increased with chitosan concentration. FTIR, EDS and XPS analyses indicated that the composition of the BmAp-CHT C-MAPLE composite films gradually modified from pure apatite to chitosan. The bioevaluation tests indicated that S. aureus biofilm is more susceptible to the action of chitosan-rich areas of the films, whilst the E. coli biofilm proved more sensible to areas containing less chitosan. The best compromise should therefore go, in our opinion, to zones with intermediate-to-high chitosan concentration which can assure a large spectrum of antimicrobial protection concomitantly with a significant enhancement of osseointegration, favored by the presence of biomimetic hydroxyapatite. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. An ab-initio study of the energetics and geometry of sulfide, sulfite and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Konecke, B.; Fiege, A.; Simon, A. C.; Becker, U.

    2017-12-01

    We use ab-initio calculations to investigate the energetics and geometry of incorporation of S with its oxidation states S6+, S4+, and S2- into the apatite end-members fluor-, chlor-, and hydroxylapatite, [Ca10(PO4)6(F,Cl,OH)2]. The reaction energy of the balanced equation indicates the stability of the modeled S-incorporated apatite relative to the host apatite, the source, and sink phases. One possible coupled substitution mechanism involves the replacement of La3+ + PO43- ↔ Ca2+ + SO42-. Our results show that the incorporation of SO42- into La- and Na-bearing apatite, Ca8NaLa(PO4)6(F,Cl,OH)2, is energetically favored over the incorporation into La- and Si-bearing apatite, Ca9La(PO4)5(SiO4)(F,Cl,OH)2. Co-incorporation of SO42- and SO32- is energetically favored when the lone pair electrons of SO32- face towards the anion column site, compared to facing away from it. Full or partial incorporation of S2- is favored on the column anion site in the form of [Ca10(PO4)6S] and [Ca20(PO4)12SX2)], where X = F, Cl, or OH. Upon full incorporation (i.e., replacing all column ions by sulfide ions), S2- is positioned in the anion column at z = 0.5 (half way between the mirror planes at z = 1/4 and z = 3/4) in the energy-optimized structure. The calculated energies for partial incorporation of S2- demonstrate that in an energy-optimized structure, S2- is displaced from the mirror plane at z = 1/4 or 3/4, by 1.0 to 1.6 Å, depending on the surrounding species (F-, Cl- or OH-); however, the probability for S2- to be incorporated into the apatite structure is highest for chlorapatite end-members. Our results describe energetically feasible incorporation mechanisms for all three oxidations states of S (S6+, S4+, S2-) in apatite, along with structural distortion and concurring electronic structure changes. These observations are consistent with recently published experimental results (Konecke et al. 2017) that demonstrate S6+, S4+ and S2- incorporation into apatite, where the

  19. Trace Element Geochemistry of Magnetite and Accesory Phases from El Romeral Iron Oxide-Apatite Deposit, Northern Chile

    NASA Astrophysics Data System (ADS)

    Barra, F.; Rojas, P.; Reich, M.; Deditius, A.; Simon, A. C.

    2017-12-01

    Iron oxide-apatite (IOA) or "Kiruna-type" deposits are an important source of Fe, P, REE, among other essential elements for society. Three main hypotheses have been proposed to explain the genesis of these controversial deposits, which invoke liquid immiscibility, hydrothermal replacement or a magmatic-hydrothermal origin driven by flotation of magnetite-bubble pairs. Here we focus on the El Romeral, one of the largest IOA deposits located in the southernmost part of the Cretaceous Chilean Iron Belt. We combined SEM observations and EMPA analyses of magnetite, actinolite, pyrite, and apatite, with micro-Raman determinations of mineral inclusions within magnetite grains. Two textural types of magnetite were identified at El Romeral: (i) inclusion-rich magnetite (Mag I), and (ii) inclusion-poor magnetite (Mag II) that are commonly surrounding the inclusion-rich Mag I grains. Mag I is characterized by high V ( 2500-2800 ppm) and Ti (300-1000 ppm) contents with high-temperature mineral inclusions such as ilmenite, Ti-pargasite and clinochlore at depth, and quartz and phlogopite inclusions in shallower samples. These characteristics are consistent with a magmatic origin for Mag I. Inclusion-poor magnetite (Mag II) have high V (2400-2600 ppm) and lower Ti (70-200 ppm) contents than Mag I, which point to chemical changes of the mineralizing fluid(s). An increase in thermal gradient with depth is evidenced by the presence of high-temperature (low #Fe) actinolite, as well as F-rich apatite and pyrite with high Co:Ni (>1) in the deep zones. In contrast, lower Co:Ni ratios (<0.5) in pyrite and higher Cl contents in OH-rich apatite are detected in samples from shallower levels. This vertical chemical variation supports a magmatic-hydrothermal origin for the El Romeral deposit, and point to compositional changes driven by decompression of a magnetite-fluid suspension.

  20. The shape of ion tracks in natural apatite

    NASA Astrophysics Data System (ADS)

    Schauries, D.; Afra, B.; Bierschenk, T.; Lang, M.; Rodriguez, M. D.; Trautmann, C.; Li, W.; Ewing, R. C.; Kluth, P.

    2014-05-01

    Small angle X-ray scattering measurements were performed on natural apatite of different thickness irradiated with 2.2 GeV Au swift heavy ions. The evolution of the track radius along the full ion track length was estimated by considering the electronic energy loss and the velocity of the ions. The shape of the track is nearly cylindrical, slightly widening with a maximum diameter approximately 30 μm before the ions come to rest, followed by a rapid narrowing towards the end within a cigar-like contour. Measurements of average ion track radii in samples of different thicknesses, i.e. containing different sections of the tracks are in good agreement with the shape estimate.

  1. The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Wang, Feng; Han, Yong

    2016-01-01

    In this study, the tantalum oxide coatings were formed on pure tantalum (Ta) by micro-arc oxidation (MAO) in electrolytic solutions of calcium acetate and β-glycerophosphate disodium, and the effect of the applied voltage on the microstructure and bond strength of the MAO coatings was systematically investigated. The effect of annealing treatment on the microstructure, bond strength and apatite-inducing ability of the MAO coatings formed at 350 and 450 V was also studied. The study revealed that during the preparation of tantalum oxide coatings on Ta substrate by MAO, the applied voltage considerably affected the phase components, morphologies and bond strength of the coatings, but had little effect on surface chemical species. After annealing treatment, newly formed CaTa4O11 phase mainly contributed to the much more stronger apatite-inducing ability of the annealed tantalum oxide coatings than those that were not annealed. The better apatite-inducing ability of the MAO coatings formed at 450 V compared to those formed at 350 V was attributed to the less amorphous phase and more crystalline phase as well as more Ca and P contained in the MAO coatings with increasing the applied voltage.

  2. Quantitative Identification of the Annealing Degree of Apatite Fission Tracks Using Terahertz Time Domain Spectroscopy (THz-TDS).

    PubMed

    Wu, Hang; Wu, Shixiang; Qiu, Nansheng; Chang, Jian; Bao, Rima; Zhang, Xin; Liu, Nian; Liu, Shuai

    2018-01-01

    Apatite fission-track (AFT) analysis, a widely used low-temperature thermochronology method, can provide details of the hydrocarbon generation history of source rocks for use in hydrocarbon exploration. The AFT method is based on the annealing behavior of fission tracks generated by 238 U fission in apatite particles during geological history. Due to the cumbersome experimental steps and high expense, it is imperative to find an efficient and inexpensive technique to determinate the annealing degree of AFT. In this study, on the basis of the ellipsoid configuration of tracks, the track volume fraction model (TVFM) is established and the fission-track volume index is proposed. Furthermore, terahertz time domain spectroscopy (THz-TDS) is used for the first time to identify the variation of the AFT annealing degree of Durango apatite particles heated at 20, 275, 300, 325, 450, and 500 ℃ for 10 h. The THz absorbance of the sample increases with the degree of annealing. In addition, the THz absorption index is exponentially related to annealing temperature and can be used to characterize the fission-track volume index. Terahertz time domain spectroscopy can be an ancillary technique for AFT thermochronological research. More work is urgently needed to extrapolate experimental data to geological conditions.

  3. Crystallization, fluoridation and some properties of apatite thin films prepared through rf-sputtering from CaO-P2O5 glasses.

    PubMed

    Yamashita, K; Matsuda, M; Arashi, T; Umegaki, T

    1998-07-01

    Using calcium phosphate glass targets with the CaO/P2O5 molar ratios of 1.50-0.50, much lower than the stoichiometric value of 3.3 for hydroxyapatite, thin films of stoichiometric hydroxy-, nonstoichiometric oxyhydroxy- and Ca-deficient oxyhydroxy-apatites were prepared on alumina ceramic substrates by rf-sputtering followed by post-annealing. Based on the present results, a phase diagram for CaO-P2O5 at low temperatures in the ambience of air was depicted for thin films. The ambient H2O vapor had an influence on the phase diagram: Tricalcium phosphate was changed to apatite in the presence of H2O vapor. Dense fluorohydroxyapatite thin films were prepared by fluoridation of those apatite thin films at a low temperature such as 200 degrees C. In the present report, some functional properties of thin films thus prepared were also shown.

  4. Strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.

    PubMed

    Querido, William; Campos, Andrea P C; Martins Ferreira, Erlon H; San Gil, Rosane A S; Rossi, Alexandre M; Farina, Marcos

    2014-09-01

    We evaluate the effects of strontium ranelate on the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures, a system that gave us the advantage of obtaining mineral samples produced exclusively during treatment. Cells were treated with strontium ranelate at concentrations of 0.05 and 0.5 mM Sr(2+). Mineral substances were isolated and analyzed by using a combination of methods: Fourier transform infrared spectroscopy, solid-state (1)H nuclear magnetic resonance, X-ray diffraction, micro-Raman spectroscopy and energy dispersive X-ray spectroscopy. The minerals produced in all cell cultures were typical bone-like apatites. No changes occurred in the local structural order or crystal size of the minerals. However, we noticed several relevant changes in the mineral produced under 0.5 mM Sr(2+): (1) increase in type-B CO3 (2-) substitutions, which often lead to the creation of vacancies in Ca(2+) and OH(-) sites; (2) incorporation of Sr(2+) by substituting slightly less than 10 % of Ca(2+) in the apatite crystal lattice, resulting in an increase in both lattice parameters a and c; (3) change in the PO4 (3-) environments, possibly because of the expansion of the lattice; (4) the Ca/P ratio of this mineral was reduced, but its (Ca+Sr)/P ratio was the same as that of the control, indicating that its overall cation/P ratio was preserved. Thus, strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.

  5. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    PubMed

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi

    2008-04-01

    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  6. Apatite-coated Silk Fibroin Scaffolds to Healing Mandibular Border Defects in Canines

    PubMed Central

    Zhao, Jun; Zhang, Zhiyuan; Wang, Shaoyi; Sun, Xiaojuan; Zhang, Xiuli; Chen, Jake; Kaplan, David L.; Jiang, Xinquan

    2010-01-01

    Tissue engineering has become a new approach for repairing bony defects. Highly porous osteoconductive scaffolds perform the important role for the success of bone regeneration. By biomimetic strategy, apatite-coated porous biomaterial based on silk fibroin scaffolds (SS) might provide an enhanced osteogenic environment for bone-related outcomes. To assess the effects of apatite-coated silk fibroin (mSS) biomaterials for bone healing as a tissue engineered bony scaffold, we explored a tissue engineered bony graft using mSS seeded with osteogenically induced autologous bone marrow stromal cells (bMSCs) to repair inferior mandibular border defects in a canine model. The results were compared with those treated with bMSCs/SS constructs, mSS alone, SS alone, autologous mandibular grafts and untreated blank defects. According to radiographic and histological examination, new bone formation was observed from 4 weeks post-operation, and the defect site was completely repaired after 12 months for the bMSCs/mSS group. In the bMSCs/SS group, new bone formation was observed with more residual silk scaffold remaining at the center of the defect compared with the bMSCs/mSS group. The engineered bone with bMSCs/mSS achieved satisfactory bone mineral densities (BMD) at 12 months post-operation close to those of normal mandible (p>0.05). The quantities of newly formed bone area for the bMSCs/mSS group was higher than the bMSCs/SS group (p<0.01), but no significant differences were found when compared with the autograft group (p>0.05). In contrast, bony defects remained in the center with undegraded silk fibroin scaffold and fibrous connective tissue, and new bone only formed at the periphery in the groups treated with mSS or SS alone. The results suggested apatite-coated silk fibroin scaffolds combined with bMSCs could be successfully used to repair mandibular critical size border defects and the premineralization of these porous silk fibroin protein scaffolds provided an

  7. Phosphorous availability influences the dissolution of apatite by soil fungi

    NASA Astrophysics Data System (ADS)

    Rosling, A.; Suttle, K. B.; Johansson, E.; van Hees, P. W.; Banfield, J. F.

    2007-12-01

    We conducted mineral dissolution experiments using fungi isolated from a grassland soil in northern California to determine the response of fungi to different levels of phosphorus availability and to identify pathways of apatite dissolution by fungal exudates. Fluorapatite dissolution experiments were performed either with fungi present or under abiotic conditions using cell-free liquid media conditioned by fungal growth at different phosphorus and calcium availabilities. Among biogeochemically active soil fungal isolates apatite dissolution was either active in response to phosphorus limiting growth conditions or passive as a result of mycelial growth. Zygomycete isolates in the order of Mucorales acidify their growth media substrate in the presence of phosphorus, mainly through production of oxalic acid. Cell-free exudates induced fluorapatite dissolution at a rate of 10 -0.9 ± 0.14 and 10 -1.2 ± 0.22 mmol P/m2/s. The Ascomycete isolate, in the family Trichocomaceae, induced fluorapatite dissolution at a rate of 10 - 1.1 ± 0.05 mmol P/m2/s by lowering the pH of the media under phosphorus-limited conditions, without producing significant amounts of low molecular weight organic acids (LMWOAs). Oxalate strongly etches fluorapatite along channels parallel to [001], forming needle like features, while exudates from Trichocomaceae induced surface rounding. We conclude that while LMWOAs are well-studied weathering agents these does not appear to be produced by fungi in response to phosphorus limiting growth conditions.

  8. Design and properties of novel gallium-doped injectable apatitic cements.

    PubMed

    Mellier, Charlotte; Fayon, Franck; Boukhechba, Florian; Verron, Elise; LeFerrec, Myriam; Montavon, Gilles; Lesoeur, Julie; Schnitzler, Verena; Massiot, Dominique; Janvier, Pascal; Gauthier, Olivier; Bouler, Jean-Michel; Bujoli, Bruno

    2015-09-01

    Different possible options were investigated to combine an apatitic calcium phosphate cement with gallium ions, known as bone resorption inhibitors. Gallium can be either chemisorbed onto calcium-deficient apatite or inserted in the structure of β-tricalcium phosphate, and addition of these gallium-doped components into the cement formulation did not significantly affect the main properties of the biomaterial, in terms of injectability and setting time. Under in vitro conditions, the amount of gallium released from the resulting cement pellets was found to be low, but increased in the presence of osteoclastic cells. When implanted in rabbit bone critical defects, a remodeling process of the gallium-doped implant started and an excellent bone interface was observed. The integration of drugs and materials is a growing force in the medical industry. The incorporation of pharmaceutical products not only promises to expand the therapeutic scope of biomaterials technology but to design a new generation of true combination products whose therapeutic value stem equally from both the structural attributes of the material and the intrinsic therapy of the drug. In this context, for the first time an injectable calcium phosphate cement containing gallium was designed with properties suitable for practical application as a local delivery system, implantable by minimally invasive surgery. This important and original paper reports the design and in-depth chemical and physical characterization of this groundbreaking technology. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Magmatic apatite - a window into melt evolution of the Dalgety pluton.

    NASA Astrophysics Data System (ADS)

    Pope, M. D.; Tailby, N.; Webster, J. D.

    2017-12-01

    The Dalgety Pluton is located in the Lachlan Fold Belt in southeastern Australia, and is a coarse grained, peraluminous, S-type, biotite granodiorite. Historically, pluton emplacement has been thought of as cooling from a single, large body of magma over a geologically quick period. Current studies suggest issues with this model and propose a slower, incremental model of emplacement in some settings (Glazner et al., 2004). This work proposes that the emplacement of the Dalgety Pluton occurred in incremental phases demonstrated through halogen, minor, and trace element concentrations in apatites. Apatites from 13 samples collected along a north-south transect of the pluton were analyzed using a 5-spectrometer Cameca SX-100 calibrated for seventeen elements (F, Na, Cl, P, Mg, Al, Si, Ca, S, K, Ti, Mn, Fe, Sr, Ba, La, and Ce) at the American Museum of Natural History. The majority of apatites are fluorapatites, having >50 % F, <15 % Cl, and <25 % OH (calculated from Ketchum et al., 2015). However, the concentrations of the halogens vary throughout the pluton with the highest Cl concentrations near the southern edge. Two of the minor elements, Mn and Fe, also show distinct variation with the lowest concentrations being 0.35 wt% in Mn and 0.25 wt% in Fe and the highest being 1.10 wt% and 0.95 wt%, respectively. Trace elements Ce and La vary as well with their highest concentrations being 0.29 wt% and 0.11 wt% and their lowest for both being below the detection limit of the electron probe. Elemental variation across the pluton is seen in the concentration of minor elements and halogens with a sharp increases at 10,000 meters and again at 21,000 meters from the southern rim of the pluton. Similar shifts in concentration are also seen in the trace elements, however the concentrations decrease at these distances. These wholesale elemental fluctuations in composition are indicative of a dramatic shift in melt composition supporting the hypothesis of multiple melt injection

  10. In-situ measurement of sulfur isotopic ratios in zoned apatite crystals via SIMS: a new tool for interpreting dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Boehnke, P.; Burgisser, A.

    2017-12-01

    Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  11. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations.

    PubMed

    Ceci, Andrea; Kierans, Martin; Hillier, Stephen; Persiani, Anna Maria; Gadd, Geoffrey Michael

    2015-08-01

    Fungi play important roles in biogeochemical processes such as organic matter decomposition, bioweathering of minerals and rocks, and metal transformations and therefore influence elemental cycles for essential and potentially toxic elements, e.g., P, S, Pb, and As. Arsenic is a potentially toxic metalloid for most organisms and naturally occurs in trace quantities in soil, rocks, water, air, and living organisms. Among more than 300 arsenic minerals occurring in nature, mimetite [Pb5(AsO4)3Cl] is the most stable lead arsenate and holds considerable promise in metal stabilization for in situ and ex situ sequestration and remediation through precipitation, as do other insoluble lead apatites, such as pyromorphite [Pb5(PO4)3Cl] and vanadinite [Pb5(VO4)3Cl]. Despite the insolubility of mimetite, the organic acid-producing soil fungus Aspergillus niger was able to solubilize mimetite with simultaneous precipitation of lead oxalate as a new mycogenic biomineral. Since fungal biotransformation of both pyromorphite and vanadinite has been previously documented, a new biogeochemical model for the biogenic transformation of lead apatites (mimetite, pyromorphite, and vanadinite) by fungi is hypothesized in this study by application of geochemical modeling together with experimental data. The models closely agreed with experimental data and provided accurate simulation of As and Pb complexation and biomineral formation dependent on, e.g., pH, cation-anion composition, and concentration. A general pattern for fungal biotransformation of lead apatite minerals is proposed, proving new understanding of ecological implications of the biogeochemical cycling of component elements as well as industrial applications in metal stabilization, bioremediation, and biorecovery. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations

    PubMed Central

    Ceci, Andrea; Kierans, Martin; Hillier, Stephen; Persiani, Anna Maria

    2015-01-01

    Fungi play important roles in biogeochemical processes such as organic matter decomposition, bioweathering of minerals and rocks, and metal transformations and therefore influence elemental cycles for essential and potentially toxic elements, e.g., P, S, Pb, and As. Arsenic is a potentially toxic metalloid for most organisms and naturally occurs in trace quantities in soil, rocks, water, air, and living organisms. Among more than 300 arsenic minerals occurring in nature, mimetite [Pb5(AsO4)3Cl] is the most stable lead arsenate and holds considerable promise in metal stabilization for in situ and ex situ sequestration and remediation through precipitation, as do other insoluble lead apatites, such as pyromorphite [Pb5(PO4)3Cl] and vanadinite [Pb5(VO4)3Cl]. Despite the insolubility of mimetite, the organic acid-producing soil fungus Aspergillus niger was able to solubilize mimetite with simultaneous precipitation of lead oxalate as a new mycogenic biomineral. Since fungal biotransformation of both pyromorphite and vanadinite has been previously documented, a new biogeochemical model for the biogenic transformation of lead apatites (mimetite, pyromorphite, and vanadinite) by fungi is hypothesized in this study by application of geochemical modeling together with experimental data. The models closely agreed with experimental data and provided accurate simulation of As and Pb complexation and biomineral formation dependent on, e.g., pH, cation-anion composition, and concentration. A general pattern for fungal biotransformation of lead apatite minerals is proposed, proving new understanding of ecological implications of the biogeochemical cycling of component elements as well as industrial applications in metal stabilization, bioremediation, and biorecovery. PMID:25979898

  13. Pressures of skarn formation at Casting Copper NV, USA, based on Raman spectroscopy and elastic modeling of apatite inclusions in garnet

    NASA Astrophysics Data System (ADS)

    Steele-MacInnis, M.; Barkoff, D. W.; Ashley, K.

    2017-12-01

    Thermobarometry of metasomatic rocks is commonly challenging, owing to the high variance of hydrothermal mineral assemblages, thermodynamic disequilibrium and overprinting by subsequent hydrothermal episodes. Here, we estimate formation pressures of a Cu-Fe-sulfide-bearing andradite-diopside skarn deposit at Casting Copper (Yerington district, NV) using Raman spectroscopy and elastic modeling of apatite inclusions in garnet. Andradite garnet from the Casting Copper skarn contains inclusions of hydroxyl-fluorapatite, calcite, hematite, magnetite, and ilmenite. Raman spectroscopy reveals that the apatite inclusions are predominantly under tension of -23 to -123 MPa at ambient conditions. Elastic modeling of apatite-in-garnet suggest entrapment occurred at 10 to 115 MPa, assuming a trapping temperature of 400 °C, which is consistent with paleodepth estimates of 2-3 km. These results provide independent constraints on the conditions of hydrothermal skarn formation at Casting Copper, and suggest that this approach may be applied to other, less-constrained skarn systems.

  14. Phanerozoic burial and unroofing history of the western Slave craton and Wopmay orogen from apatite (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Ault, Alexis K.; Flowers, Rebecca M.; Bowring, Samuel A.

    2009-06-01

    Low temperature thermochronometry of cratonic regions can illuminate relationships among burial and unroofing patterns, surface subsidence and uplift, and lithosphere-asthenosphere interactions. The Slave craton, initially stabilized by the development of a thick lithospheric mantle root in late Archean time, is an excellent location in which to examine these connections. Although the Slave craton currently lacks Phanerozoic cover, Phanerozoic sedimentary xenoliths entrained in ca. 610 to 45 Ma kimberlites indicate that the region underwent a more dynamic history of burial and unroofing than widely recognized. We report new apatite (U-Th)/He thermochronometry data along a southeast to northwest transect from the interior of the Slave craton into the adjacent Paleoproterozoic Wopmay orogen to resolve the region's depositional and denudational history. Six samples from the western Slave craton and three samples from Wopmay orogen yield mean dates from 296 ± 41 Ma to 212 ± 39 Ma. Individual apatite dates are broadly uniform over a wide span of apatite [eU], and this pattern can be used to more tightly restrict the spectrum of viable temperature-time paths that can explain the dataset. When coupled with geologic and stratigraphic information, temperature-time simulations of the thermochronometry results suggest complete He loss from the apatites at minimum peak temperatures of ~ 88 °C in Devonian-Pennsylvanian time, cooling to near-surface conditions by the Early Cretaceous, followed by reheating to ≤ 72 °C during Cretaceous-Early Tertiary time. Consideration of modern and ancient geotherm constraints implies ≥ 3.3 km of burial during the first Phanerozoic heating phase, with an ancillary phase of reburial in late Mesozoic-Cenozoic time. The uniformity of the apatite (U-Th)/He dates indicates that the rocks encompassed by our > 250 km-long sample transect experienced similar Phanerozoic thermal histories. Despite the distinctly different lithospheric

  15. Screening apatites for (U-Th)/He thermochronometry via continuous ramped heating: He age components and implications for age dispersion

    NASA Astrophysics Data System (ADS)

    McDannell, Kalin T.; Zeitler, Peter K.; Janes, Darwin G.; Idleman, Bruce D.; Fayon, Annia K.

    2018-02-01

    Old slowly-cooled apatites often yield dispersed (U-Th)/He ages for a variety of reasons, some well understood and some not. Analytical protocols like careful grain selection can reduce the impact of this dispersion but add costs in time and resources and too often have proven insufficient. We assess a new analytical protocol that utilizes static-gas measurement during continuous ramped heating (CRH) as a means to rapidly screen apatite samples. In about the time required for a conventional total-gas analysis, this method can discriminate between samples showing expected volume-diffusion behavior and those showing anomalous release patterns inconsistent with their direct use in thermochronologic applications. This method also appears able to discriminate between the radiogenic and extraneous 4He fractions released by a sample, potentially allowing ages to be corrected. Well-behaved examples such as the Durango standard and other apatites with good age reproducibility show the expected smooth, sigmoidal gas-release curves predicted for volume diffusion using typical apatite kinetics, with complete exhaustion by ∼900 °C for linear heating at 20 °C/min. Secondary factors such as U and Th zoning and alpha-loss distribution have a relatively minor impact on such profiles. In contrast, samples having greater age dispersion show significant He release in the form of outgassing spikes and He release deferred to higher temperatures. Screening results for a range of samples permit us to assess the degree to which CRH screening can identify misbehaving grains, give insight into the source of extraneous He, and suggest that in some cases it may be possible to correct ages for the presence of such components.

  16. Petrography and the REE-composition of apatite in the Paleoproterozoic Pilgujärvi Sedimentary Formation, Pechenga Greenstone Belt, Russia

    NASA Astrophysics Data System (ADS)

    Joosu, Lauri; Lepland, Aivo; Kreitsmann, Timmu; Üpraus, Kärt; Roberts, Nick M. W.; Paiste, Päärn; Martin, Adam P.; Kirsimäe, Kalle

    2016-08-01

    The first globally significant phosphorous-rich deposits appear in the Paleoproterozoic at around 2 Ga, however, the specific triggers leading to apatite precipitation are debated. We examine phosphorous-rich rocks (up to 8 wt% P2O5) in 1.98-1.92 Ga old Pilgujärvi Sedimentary Formation, Pechenga Greenstone Belt, Russia. Phosphates in these rocks occur as locally derived and resedimented sand-to-gravel/pebble sized grains consisting of apatite-cemented muddy sediments. Phosphatic grains can be subdivided into four petrographic types (A-D), each has a distinct REE signature reflecting different early-to-late diagenetic conditions and/or metamorphic overprint. Pyrite containing petrographic type D, which typically has a flat REE pattern, negative Ce anomaly and positive Eu anomaly, is the best preserved of the four types and best records conditions present during apatite precipitation. Type D phosphatic grains precipitated under (sub)oxic basinal conditions with a significant hydrothermal influence. These characteristics are similar to Zaonega Formation phosphates of NW Russia's Onega Basin, and consistent with phosphogenesis triggered by the development of anoxic(sulfidic)-(sub)oxic redoxclines at shallow sediment depth during the Paleoproterozoic.

  17. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    PubMed

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  18. δ18O of apatite phosphate in small pelagic fish: insights from wild-caught and tank-grown specimens

    NASA Astrophysics Data System (ADS)

    Lambert, T.; Javor, B.; Paytan, A.

    2011-12-01

    Oxygen isotope ratios of mineralized structures in fish reflect the temperature and isotopic composition of the water in which they grow. For bulk samples (e.g., whole scales, bones, and otoliths), understanding how this signal is integrated across time and space is critical, especially for organisms exposed to high variability in growth conditions. Here, we assess the response of fish scale δ18O (from apatite phosphate) to experimentally manipulated water conditions. Wild-caught sardines were grown at controlled temperatures (13°C, 17°C, and 21°C) for 11 months. Higher growth temperatures correlated to lower δ18O values, representing a combination of scale apatite deposited before and after the temperature manipulation. Models that account for both biomineral allometry and exposure to varying water properties (e.g., by overlaying migration routes, isoscapes, and temperature maps) have the potential to quantify the varying contributions of minerals grown under different conditions. We use this method to predict δ18O of apatite phosphate for small pelagic fish found in California coastal waters, then compare expected values to those obtained from collected samples. Since phosphate oxygen is relatively resistant to diagenesis, this modern calibration establishes a framework for paleo studies.

  19. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  20. The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation.

    PubMed

    Chen, Xiao-Bo; Li, Yun-Cang; Hodgson, Peter D; Wen, Cuie

    2009-07-01

    The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20min, 2h, 5h and 8h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti-OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89+/-0.76microm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79+/-0.31 to 10.25+/-0.39microm.

  1. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions.

    PubMed

    Gandolfi, Maria Giovanna; Taddei, Paola; Tinti, Anna; De Stefano Dorigo, Elettra; Rossi, Piermaria Luigi; Prati, Carlo

    2010-12-01

    The bioactivity of calcium silicate mineral trioxide aggregate (MTA) cements has been attributed to their ability to produce apatite in presence of phosphate-containing fluids. This study evaluated surface morphology and chemical transformations of an experimental accelerated calcium-silicate cement as a function of soaking time in different phosphate-containing solutions. Cement discs were immersed in Dulbecco's phosphate-buffered saline (DPBS) or Hank's balanced salt solution (HBSS) for different times (1-180 days) and analysed by scanning electron microscopy connected with an energy dispersive X-ray analysis (SEM-EDX) and micro-Raman spectroscopy. SEM-EDX revealed Ca and P peaks after 14 days in DPBS. A thin Ca- and P-rich crystalline coating layer was detected after 60 days. A thicker multilayered coating was observed after 180 days. Micro-Raman disclosed the 965-cm(-1) phosphate band at 7 days only on samples stored in DPBS and later the 590- and 435-cm(-1) phosphate bands. After 60-180 days, a layer approximately 200-900 μm thick formed displaying the bands of carbonated apatite (at 1,077, 965, 590, 435 cm(-1)) and calcite (at 1,088, 713, 280 cm(-1)). On HBSS-soaked, only calcite bands were observed until 90 days, and just after 180 days, a thin apatite-calcite layer appeared. Micro-Raman and SEM-EDX demonstrated the mineralization induction capacity of calcium-silicate cements (MTAs and Portland cements) with the formation of apatite after 7 days in DPBS. Longer time is necessary to observe bioactivity when cements are immersed in HBSS.

  2. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation

    PubMed Central

    Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D.; McComb, David W.; Porter, Alexandra E.; Stevens, Molly M.

    2012-01-01

    Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization. PMID:22879397

  3. Tectono-thermal evolution of north Kuqa Depression and South Tian Shan: constraints from apatite (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; Qiu, N.; Chang, J.

    2017-12-01

    The Kuqa Depression, located between Tarim Basin and South Tian Shan Orogen, is considered the most promising site for study the tectono-thermal evolution of the Central Asia Orogenic Belt (CAOB). (U-Th)/He is a new dating method and apatite He ages can record the cooling histories at low temperature between 40 ° 75°1. At present, the low temperature thermochronological data, especially the (U-Th)/He, from north Kuqa Depression are scarce, resulting in controversial issues regarding the cooling history of the upper crust and the latest uplift of South Tian Shan. We present new apatite (U-Th)/He (AHe) thermochronologic data from kuqa depression, aiming to provide insights into exhumation and thermal history of the north kuqa depression. In this study, we firstly present 43 apatite (U-Th)/He ages of 9 samples in north rim of Kuqa Depression. The (U-Th)/He ages range from 1.4±1.0Ma to 17.9±1.2Ma, which are obviously both younger than both the depositional ages and the corresponding AFT ages. To better understand the deformation evolution and thermal history of north Tarim Basin, we use these thermochronological data as inputs for HeFTy software implemented with radiation damage accumulation and annealing model (RDAAM) for time-temperature reconstruction1,2. The relationship between AHe or AFT ages and the relative stratigraphic ages shows that the AHe ages are young and almost about 10 Ma.Thermal modeling using apatite (U-Th)/He ages and geological background information in the same area allow us to obtain a cooling history. The sample T-03 suffered a cooling between 170 and 130Ma, they were re-heated at around 100° between 100 and 40Ma then rapidly cooled and exhumed to reach the surface temperature at around 5Ma. The thermal modeling results indicated the north Kuqa Depression experienced a Miocene rapid cooling event initialed at 12Ma and continued to 5Ma, resulting from far field effect of India-Asia collision. References1. Ketcham, R.A. Forward and reverse

  4. Carbon Concentration Excursions in Apatite Phenocrysts from the Cerro Galan Ignimbrite: A SIMS View into the Transient pre-Eruptive Volatile History of a Supervolcano

    NASA Astrophysics Data System (ADS)

    Boyce, J. W.; Hervig, R. L.

    2006-12-01

    In nearly all igneous rock compositions, apatite is the most abundant mineral that regularly incorporates significant quantities of volatile elements into its structure, making it a potentially useful tool for exploring magmatic processing of volatiles (as well as REEs, Sr, Nd, and Pb isotopes, all of which are typically abundant in apatite). We have developed an analytical protocol that permits measurement of C, H, F, S, and Cl in ~8μm diameter regions of apatite using the Cameca 6f SIMS. A primary Cs+ beam (4-10 nA) is used in conjunction with electron gun charge-compensation to sputter negative ions from polished sections and unpolished crystal faces mounted in volatile-free indium mounts. We operated at mass resolving powers sufficient to separate all potential interferences (such as ^{31}PH and 16O2 from ^{32}S, and 17O from 16OH). Quantifying the SIMS data requires a set of standards that are 1) homogeneous at the few-micron scale; and 2) well-calibrated with multiple, reliable, independent volatile content measurements. Using values combed from the literature and other unpublished sources, we have assembled a set of apatite standards, none of which are proven to meet either criteria. Nevertheless, these materials allow us to create calibration curves for all of the volatile elements listed above. Traverses across polished basal sections of apatite phenocrysts from the ~1000 km3 Cerro Galan ignimbrite, Argentina (courtesy of C. Schirnick) yield the following results: Apatites are fluorine-rich, and contain significant and reproducible intracrystalline variations in C, H, S, and Cl. Positive carbon concentration excursions (up to 360 ppm) are factors of 2-7 greater than apatite baseline concentrations (40-60 ppm), the largest of which correlate with position in different grains. In the majority of the traverses, these carbon excursions also correlate spatially with 25-30% increases in sulfur concentration. We suggest that these dramatic increases in carbon

  5. A helium-based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite

    NASA Astrophysics Data System (ADS)

    Willett, Chelsea D.; Fox, Matthew; Shuster, David L.

    2017-11-01

    Widely used to study surface processes and the development of topography through geologic time, (U-Th)/He thermochronometry in apatite depends on a quantitative description of the kinetics of 4He diffusion across a range of temperatures, timescales, and geologic scenarios. Empirical observations demonstrate that He diffusivity in apatite is not solely a function of temperature, but also depends on damage to the crystal structure from radioactive decay processes. Commonly-used models accounting for the influence of thermal annealing of radiation damage on He diffusivity assume the net effects evolve in proportion to the rate of fission track annealing, although the majority of radiation damage results from α-recoil. While existing models adequately quantify the net effects of damage annealing in many geologic scenarios, experimental work suggests different annealing rates for the two damage types. Here, we introduce an alpha-damage annealing model (ADAM) that is independent of fission track annealing kinetics, and directly quantifies the influence of thermal annealing on He diffusivity in apatite. We present an empirical fit to diffusion kinetics data and incorporate this fit into a model that tracks the competing effects of radiation damage accumulation and annealing on He diffusivity in apatite through geologic time. Using time-temperature paths to illustrate differences between models, we highlight the influence of damage annealing on data interpretation. In certain, but not all, geologic scenarios, the interpretation of low-temperature thermochronometric data can be strongly influenced by which model of radiation damage annealing is assumed. In particular, geologic scenarios involving 1-2 km of sedimentary burial are especially sensitive to the assumed rate of annealing and its influence on He diffusivity. In cases such as basement rocks in Grand Canyon and the Canadian Shield, (U-Th)/He ages predicted from the ADAM can differ by hundreds of Ma from those

  6. Apatite/Melt Partitioning Experiments Reveal Redox Sensitivity to Cr, V, Mn, Ni, Eu, W, Th, and U

    NASA Technical Reports Server (NTRS)

    Righter, K.; Yang, S.; Humayun, M.

    2016-01-01

    Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.

  7. Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions.

    PubMed

    Oyane, Ayako; Kawashita, Masakazu; Nakanishi, Kazuki; Kokubo, Tadashi; Minoda, Masahiko; Miyamoto, Takeaki; Nakamura, Takashi

    2003-05-01

    An ethylene-vinyl alcohol copolymer (EVOH) was treated with a silane coupling agent and calcium silicate solutions, and then soaked in a simulated body fluid (SBF) with ion concentrations approximately equal to those of human blood plasma. A smooth and uniform bonelike apatite layer was successfully formed on both the EVOH plate and the EVOH-knitted fibers in SBF within 2 days. Part of the structure of the resulting apatite-EVOH fiber composite was similar to that of natural bone. If this kind of composite can be fabricated into a three-dimensional structure similar to natural bone, the resultant composite is expected to exhibit both mechanical properties analogous to those of natural bone and bone-bonding ability. Hence, it has great potential as a bone substitute. Copyright 2003 Elsevier Science Ltd.

  8. Helium diffusion experiments on synthetic apatite crystals and single-grain fragments: can we retrieve the He diffusion profiles?

    NASA Astrophysics Data System (ADS)

    Kasanzu, C.; Beucher, R.; Brown, R. W.; Persano, C.; Stuart, F.

    2011-12-01

    Apatite (U-Th)/he thermochronometry is one of the most widely used methods of quantifying thermal histories of rocks within the vicinity of the surface. Theoretical and practical development carried out during the last decade, among which was the release of affordable LASERs, have led to standard practice of analyzing single grain rather than multigrain aliquots. The standard theoretical basis for interpreting these ages assumes that the technique is used on full grains. However, the natural weak cleavage of apatite leads to fragmentation of these individual prismatic crystals during the rock crushing and mineral separation process. Apatites are most often broken along a weak cleavage perpendicular to the c-axis. It is therefore common practice to analyze fragments of whole grains, not complete crystals. It is also well known that dating often leads to single ages being more dispersed than expected whatever the efforts to avoid perturbations on the He system. Using a theoretical numerical model and considering both axial and radial diffusion, we demonstrate thata largepart (most?) of the dispersion is due to analyses of single apatite fragments. This effect is larger for older grains which have exprienced a slow cooling history and have well rounded diffusive profiles. Ages are a strongfunction of the fragment size (length specifically), we show that ages from apatite fragments with 1 prismatic termination (1T) can be used to retrieve the helium diffusion profile, provided a sufficient number of single fragment analyses are carried out. The shape of the helium diffusion profile provides a strong constraint on the style of the thermal history and so we propose to use single crystal fragment analyses to extract a mean diffusion profile, and deduce the thermal history of the sample. In order to test these ideas, we performed a set of experiments with natural samples and semi-synthetic grains of apatite. Synthetic grains are obtained by drilling cores of various length

  9. Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria - results of in-situ LA-MC-ICP-MS analysis

    NASA Astrophysics Data System (ADS)

    Kozlik, Michael; Gerdes, Axel; Raith, Johann G.

    2016-02-01

    The in-situ Sr isotopic systematics of scheelite and apatite from the Felbertal W deposit and a few regional Variscan orthogneisses ("Zentralgneise") have been determined by LA-MC-ICP-MS. The 87Sr/86Sr ratios of scheelite and apatite from the deposit are highly radiogenic and remarkably scattering. In the early magmatic-hydrothermal scheelite generations (Scheelite 1 and 2) the 87Sr/86Sr ratios range from 0.72078 to 0.76417 and from 0.70724 to 0.76832, respectively. Metamorphic Scheelite 3, formed by recrystallisation and local mobilisation of older scheelite, is characterised by even higher 87Sr/86Sr values between 0.74331 and 0.80689. Statistics allows discriminating the three scheelite generations although there is considerable overlap between Scheelite 1 and 2; they could be mixtures of the same isotopic reservoirs. The heterogeneous and scattering 87Sr/86Sr ratios of the two primary scheelite generations suggest modification of the Sr isotope system due to fluid-rock interaction and isotopic disequilibrium. Incongruent release of 87Sr from micas in the Early Palaeozoic host rocks of the Habach Complex contributed to the solute budget of the hydrothermal fluids and may explain the radiogenic Sr isotope signature of scheelite. Spatially resolved analyses revealed isotopic disequilibrium even on a sub-mm scale within zoned Scheelite 2 crystals indicating scheelite growth in an isotopic dynamical hydrothermal system. Zoned apatite from the W mineralised Early Carboniferous K1-K3 orthogneiss in the western ore field yielded 87Sr/86Sr of 0.72044-0.74514 for the cores and 0.74535-0.77937 for the rims. Values of magmatic apatite cores from the K1-K3 orthogneiss are comparable to those of primary Scheelite 1; they are too radiogenic to be magmatic. The Sr isotopic composition of apatite cores was therefore equally modified during the hydrothermal mineralisation processes, therefore supporting the single-stage genetic model in which W mineralisation is associated with

  10. Thermodynamic Properties of Sulfatian Apatite: Constraints on the Behavior of Sulfur in Calc-Alkaline Magmas

    NASA Astrophysics Data System (ADS)

    Core, D.; Essene, E. J.; Luhr, J. F.; Kesler, S. E.

    2004-12-01

    The Gibbs free energy of hydroxyellestadite [Ca10(SiO4)3(SO4)3(OH)2] was estimated using mineral equilibria applied to analyzed assemblages from the experimental charges of Luhr (1990). The apatite analyses of Peng et al. (1997) were used in conjunction with new analyses of the oxides and silicates in this study. An ideal mixing model was employed for apatite combined with mixing models from MELTS (Ghiorso & Sack, 1994) and Gibbs free energy data from Robie & Hemingway (1995) for the other crystalline phases. The resultant equation of the Gibbs free energy vs. T for hydroxyellestadite is as follows: DG°T(elem) = [2.817(T - 273) - 11831]/1000 kJ/mol, T in K. The calculated entropy for hydroxyellestadite is 1944 J/mol.K at 1073 K and 2151 J/mol.K at 1227 K. Independent estimates of the entropy of hydroxyellestadite obtained with the method of Robinson & Haas (1983) are within 5% of these values. The thermodynamic data on hydroxyellestadite were used to calculate the locus of the reactions: 2Ca10(SiO4)3(SO4)3(OH)2 + 7S2 + 21O2 = 20CaSO4 + 6SiO2 + 2H2O 6Ca10(SiO4)3(SO4)3(OH)2 + 102SiO2 + 20Fe3O4 = 60CaFeSi2O6 + 6H2O + 9S2 + 37O2 2Ca10(SiO4)3(SO4)3(OH)2 + 10Mg2Si2O6 + 14SiO2 = 20CaMgSi2O6 + 2H2O + 3S2 + 9O2 in fO2-fS2 space at fixed P-T. Application of these equilibria to apatite zoned in sulfate from oxidized granitoids reflects a drop in fS2 by more than 1 log unit during its growth. The zoning is interpreted to represent the removal of a magmatic vapor phase during crystallization of these plutons. Removal of sulfur from magmas by hydrothermal fluids is important to the ore-forming process and to the production of acid sulfate aerosols during eruption of oxidized magmas. Preservation of sulfatian apatite may yield data on the sulfidation states of ancient flood basalts such as the Deccan Traps of India and the Parana basalts of Brazil to address the environmental impact of these giant eruptions.

  11. Apatite-hosted melt inclusions in Damiao massif anorthosite complex, North China

    NASA Astrophysics Data System (ADS)

    Wang, M.; Veksler, I. V.; Zhang, Z.

    2014-12-01

    Models for the nelsonite formation are currently highly contentious, with liquid immiscibility and fractional crystallization as frequently proposed formation mechanisms. The nelsonites in the Damiao massif anorthosite complex in the North China Craton and experimental evidence are revisited for the existence of silica-free CaO-FeO-Fe2O3-TiO2-P2O5 immiscible nelsonitic liquids. Our results of differential scanning calorimetry (DSC) demonstrate that nelsonite with the composition of one-third apatite and two-thirds Fe-Ti oxides by weight completely melts well above 1450 ºC, which is in good agreement with numerous experimental studies of the CaO-P2O5-FexO system in connection to metallurgy. Thus, the composition cannot be molten at temperatures relevant for crystallization of the Damiao magma. A review of experimental studies of liquid immiscibility and analyses of natural immiscible glasses show that all the liquids on the Fe- and P-rich side of the miscibility gap have at least 20 wt. % of aluminosilicate components. Main results of this study come from the analyses of apatite-hosted melt inclusions in Damiao nelsonite. The inclusions range from ~3 to 200 μm in diameter. They are ubiquitous and meet all the morphological criteria of primary melt inclusions crystallised into assemblages of daughter minerals. Almost all of them contain vermiculite and chlorite, and some contain biotite, amphibole, phlogopite and Fe-Ti oxides. Out of dozens analysed inclusions, only three have high contents of SiO2 (62.1-73.8 wt. %) and low contents of FeO (0.25-2.35 wt. %). Bulk compositions of other inclusions show large variations in SiO2 (20.79-50.16 wt. %) and FeOt (13.44-32.78 wt. %). With a few exceptions, the inclusions are very low in CaO (0.04-1.51 wt. %, and high in Al2O3 (10-21.17 wt. %). Despite the high Fe content, the compositions differ from those of the typical immiscible Fe-rich melts. It appears that the cumulus apatite crystallised from Fe-rich, hydrated

  12. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    NASA Astrophysics Data System (ADS)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of

  13. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    PubMed

    Lim, Poon Nian; Chang, Lei; Thian, Eng San

    2015-08-01

    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Flotation selectivity of novel alkyl dicarboxylate reagents for apatite-calcite separation.

    PubMed

    Karlkvist, Tommy; Patra, Anuttam; Rao, Kota Hanumantha; Bordes, Romain; Holmberg, Krister

    2015-05-01

    The investigation aims to demonstrate the conceptual thoughts behind developing mineral specific reagents for use in flotation of calcium containing ores. For this purpose, a series of dicarboxylate-based surfactants with varying distance between the carboxylate groups (one, two or three methylene groups) was synthesized. A surfactant with the same alkyl chain length but with only one carboxylate group was also synthesized and evaluated. The adsorption behavior of these new reagents on pure apatite and pure calcite surfaces was studied using Hallimond tube flotation, FTIR and ζ potential measurements. The relation between the adsorption behavior of a given surfactant at a specific mineral surface and its molecular structure over a range of concentrations and pH values, as well as the region of maximum recovery, was established. It was found that one of the reagents, with a specific distance between the carboxylate groups, was much more selective for a particular mineral surface than the other homologues. For example, out of the four compounds synthesized, only the one where the carboxylate groups were separated by a single methylene group floated apatite but not calcite, whereas calcite was efficiently floated with the monocarboxylic reagent, but not with the other reagents synthesized. This selective adsorption of a given surfactant to a particular mineral surface relative to other mineral surfaces as evidenced in the flotation studies was substantiated by ζ potential and infra-red spectroscopy data. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Apatite ore mine tailings as an amendment for remediation of a lead-contaminated shooting range soil.

    PubMed

    Venäläinen, Salla H

    2011-10-01

    This study investigated the use of tailings from apatite ore beneficiation in the remediation of a heavily contaminated shooting range soil. The tailings originating in Siilinjärvi carbonatite complex, Finland, consist of apatite residues accompanied by phlogopite and calcite. In a pot experiment, organic top layer of a boreal forest soil predisposed to pellet-derived lead (Pb) was amended with tailings of various particle-sizes (Ø>0.2mm, Ø<0.2mm and unsieved material) differing in their mineralogical composition. After 9-, 10-, 14- and 21-month incubation, the samples were monitored for tailings-induced changes in the different Pb pools by means of sequential fractionation. Following the incubation, the samples were extracted with water and the extracts were analyzed for Pb species distribution by means of a cation exchange resin. The results revealed that Pb was continuously released from the shotgun pellet fragments due to weathering. However, the apatite and calcite compartments in the tailings counteracted the mobility of the released Pb through the formation of sparingly soluble fluorpyromorphite and cerussite. Furthermore, the tailings efficiently reduced the bioavailability of Pb by transferring it from the water-soluble and exchangeable pools into the organic one. The material also increased the proportion of the less toxic non-cationic Pb to the total dissolved Pb from the initial level of 5% to 9-12%. The results suggest that the tailings-induced stabilization of Pb may be an environmentally sound remediation technique at polluted sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure.

    PubMed

    Matsugaki, Aira; Aramoto, Gento; Ninomiya, Takafumi; Sawada, Hiroshi; Hata, Satoshi; Nakano, Takayoshi

    2015-01-01

    Morphological and directional alteration of cells is essential for structurally appropriate construction of tissues and organs. In particular, osteoblast alignment is crucial for the realization of anisotropic bone tissue microstructure. In this article, the orientation of a collagen/apatite extracellular matrix (ECM) was established by controlling osteoblast alignment using a surface geometry with nanometer-sized periodicity induced by laser ablation. Laser irradiation induced self-organized periodic structures (laser-induced periodic surface structures; LIPSS) with a spatial period equal to the wavelength of the incident laser on the surface of biomedical alloys of Ti-6Al-4V and Co-Cr-Mo. Osteoblast orientation was successfully induced parallel to the grating structure. Notably, both the fibrous orientation of the secreted collagen matrix and the c-axis of the produced apatite crystals were orientated orthogonal to the cell direction. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy is controllable, including the characteristic organization of a collagen/apatite composite orthogonal to the osteoblast orientation, by controlling the cell alignment using periodic surface geometry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, southeast Missouri, USA

    USGS Publications Warehouse

    Childress, Tristan; Simon, Adam C.; Day, Warren C.; Lundstrom, Craig C.; Bindeman, Ilya N.

    2016-01-01

    New O and Fe stable isotope ratios are reported for magnetite samples from high-grade massive magnetite of the Mesoproterozoic Pea Ridge and Pilot Knob magnetite-apatite ore deposits and these results are compared with data for other iron oxide-apatite deposits to shed light on the origin of the southeast Missouri deposits. The δ18O values of magnetite from Pea Ridge (n = 12) and Pilot Knob (n = 3) range from 1.0 to 7.0 and 3.3 to 6.7‰, respectively. The δ56Fe values of magnetite from Pea Ridge (n = 10) and Pilot Knob (n = 6) are 0.03 to 0.35 and 0.06 to 0.27‰, respectively. These δ18O and the δ56Fe values suggest that magnetite crystallized from a silicate melt (typical igneous δ56Fe ranges 0.06–0.49‰) and grew in equilibrium with a magmatic-hydrothermal aqueous fluid. We propose that the δ18O and δ56Fe data for the Pea Ridge and Pilot Knob magnetite-apatite deposits are consistent with the flotation model recently proposed by Knipping et al. (2015a), which invokes flotation of a magmatic magnetite-fluid suspension and offers a plausible explanation for the igneous (i.e., up to ~15.9 wt % TiO2 in magnetite) and hydrothermal features of the deposits.

  18. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells

    PubMed Central

    Mehbuba Hossain, Sultana; Chowdhury, Ezharul Hoque

    2018-01-01

    Biodegradable inorganic apatite-based particle complex is popular for its pH-sensitivity at the endosomal acidic environment to facilitate drug release following cellular uptake. Despite being a powerful anticancer drug, doxorubicin shows severe off-target effects and therefore would need a carrier for the highest effectiveness. We aimed to chemically modify carbonate apatite (CA) with Krebs cycle intermediates, such as citrate and succinate in order to control the growth of the resultant particles to more efficiently carry and transport the anticancer drug into the cancer cells. Citrate- or succinate-modified CA particles were synthesized with different concentrations of sodium citrate or sodium succinate, respectively, in the absence or presence of doxorubicin. The drug loading efficiency of the particles and their cellular uptake were observed by quantifying fluorescence intensity. The average diameter and surface charge of the particles were determined using Zetasizer. Cell viability was assessed by MTT assay. Citrate-modified carbonate apatite (CMCA) exhibited the highest (31.38%) binding affinity for doxorubicin and promoted rapid cellular uptake of the drug, leading to the half-maximal inhibitory concentration 1000 times less than that of the free drug in MCF-7 cells. Hence, CMCA nanoparticles with greater surface area enhance cytotoxicity in different breast cancer cells by enabling higher loading and more efficient cellular uptake of the drug. PMID:29534497

  19. A mechanistic study of the interaction of water-soluble borate glass with apatite-bound heterocyclic nitrogen-containing bisphosphonates.

    PubMed

    Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for

  20. Asymmetric Exhumation Patterns Revealed through Apatite-Zircon Thermochronology of the Santa Lucia Range, Central California

    NASA Astrophysics Data System (ADS)

    Mere, A.; Steely, A.; Hourigan, J. K.

    2016-12-01

    Previous thermochronological analyses of crystalline bedrock in the central Santa Lucia range have yielded surprisingly rapid rates of surface uplift and bedrock extrusion despite lack of modern seismicity along nearby faults. We use 8 new apatite and zircon (U-Th)/He dates in order to better constrain the history of bedrock extrusion in response to the transpressional North American-Pacific plate boundary. Granitic samples were collected along coastal fault blocks bounded by the Palo Colorado (PCF), Sur-Nacimiento (SNF), and San Gregorio Hosgri faults (SGHF); as well as one sample from Salinian Basement >25km NE of the SGHF. Helium was extracted and analyzed using a quadrupole equipped multi-sample laser microfurnace and U/Th content was measured using high precision isotope-dilution ICP mass spectrometry. Rapid late Cretaceous unroofing is captured in Salinian basement zircon and apatite by the respective 67Ma and 63Ma dates. Zircon along coastal silvers proximal to PCF and SNF record 28-31Ma dates while zircon in close proximity to SGHF record ages as young as 6.5Ma. Apatite ages proximal to PCF and SNF range between 6-9Ma and are as young as 1.5Ma directly NE of the SGHF. These data reflect increased exhumation beginning as recently as the Miocene and additionally indicate rates of modern (<2Ma) uplift exceeding 1.3 mm/yr. These results indicate that stresses caused by the active plate boundary are accommodated by the SGHF and associated faults as vertical deformation despite low rates of modern seismicity. We suggest that the SGHF and nearby faults are more active, or behave differently, that previously acknowledged. The pattern of focused exhumation within narrow fault blocks appears to be related to underplating of low strength schist that is thought to be synchronous with late Cretaceous unroofing of Salinian basement.

  1. Osteogenic Response to BMP-2 of hMSCs Grown on Apatite-Coated Scaffolds

    PubMed Central

    Davis, Hillary E.; Case, Erin M.; Miller, Stephanie L.; Genetos, Damian C.; Leach, J. Kent

    2011-01-01

    Osteoconductive materials play a critical role in promoting integration with surrounding bone tissue and resultant bone repair in vivo. However, the impact of 3D osteoconductive substrates coupled with soluble signals on progenitor cell differentiation is not clear. In this study, we investigated the influence of bone morphogenetic protein-2 (BMP-2) concentration on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) when seeded in carbonated apatite-coated polymer scaffolds. Mineralized scaffolds were more hydrophilic and adsorbed more BMP-2 compared to nonmineralized scaffolds. Changes in alkaline phosphatase (ALP) activity within stimulated hMSCs were dependent on the dose of BMP-2 and the scaffold composition. We detected more cell-secreted calcium on mineralized scaffolds at all time points, and higher BMP-2 concentrations resulted in increased ALP and calcium levels. RUNX2 and IBSP gene expression within hMSCs was affected by both substrate and soluble signals, SP7 by soluble factors, and SPARC by substrate-mediated cues. The present data indicate that a combination of apatite and BMP-2 do not simply enhance the osteogenic response of hMSCs, but act through multiple pathways that may be both substrate- and growth factor-mediated. Thus, multiple signaling strategies will likely be necessary to achieve optimal bone regeneration. PMID:21656707

  2. Assessment of copper removal from highway stormwater runoff using Apatite II(TM) and compost : laboratory and field testing.

    DOT National Transportation Integrated Search

    2015-03-01

    -Stormwater runoff introduces heavy metals to surface waters that are harmful to aquatic organisms, : including endangered salmon. This work evaluates Apatite II, a biogenic fish bone based adsorbent, for removing metal : from stormwater. The meta...

  3. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  4. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  5. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has

  6. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb8Na2(PO4)6.

    PubMed

    Get'man, Evgeni I; Loboda, Stanislav N; Ignatov, Alexey V; Prisedsky, Vadim V; Abdul Jabar, Mohammed A B; Ardanova, Lyudmyla I

    2016-03-07

    The substitution of rare-earth elements (REEs) for Pb in the lacunary apatite Pb8Na2(PO4)6 with void structural channels was studied by means of powder X-ray diffraction (including the Rietveld refinement), scanning electron microscopy, energy-dispersive X-ray microanalysis, and IR spectroscopy and also measurements of the electrical conductivity. The substitution limits (xmax in Pb8-xLnxNa2(PO4)6Ox/2) at 800 °C were found to decrease with the atomic number of the REE from 1.40 for La to 0.12 for Yb with a rapid drop from light to heavy lanthanides (between Gd and Tb). The REE atoms substitute for Pb predominantly at Pb2 sites of the apatite structure according to the scheme 2Pb(2+) + □ → 2Ln(3+) + O(2-), where □ is a vacancy in the structural channel. The substitution in lacunary apatite produces quite different changes in the structural parameters compared with broadly studied alkaline-earth hydroxyapatites. In spite of the much lower ionic radii of REE than that of Pb(2+), the mean distances ⟨Pb1-O⟩ somewhat increase, whereas the distances ⟨Pb2-Pb2⟩ and ⟨Pb2-O4⟩ do not change considerably with the degree of substitution. This implies control of the substitution by not only spatial and charge accommodation of REE ions but also the availability of a stereochemically active 6s(2) electron pair on Pb(2+). The high-temperature electrical conductivity shows dependence on the degree of substitution with a minimum at x = 0.2 indicative of a possible change of the type of conductivity.

  7. Experimental Study into the Partitioning Behavior of Fluorine, Chlorine, Hydroxyl, and Sulfur (S2-) Between Apatite and a Synthetic Kreep Basalt Melt

    NASA Technical Reports Server (NTRS)

    Turner, Amber; Vander Kaaden, Kathleen; McCubbin, Francis; Danielson, Lisa R.

    2017-01-01

    The mineral apatite (Ca5 (PO4)3(F, Cl, OH)) is known for its ability to constrain the petrogenesis of the rock in which it is hosted and for its ubiquity throughout the Solar System, as it is found in lunar, martian, and terrestrial rocks alike (McCubbin et. al, 2015). The abundance of volatile elements, and for this particular study, the elevated abundance of sulfur (S2-) in high-Al basalt samples bearing apatite, could provide more insight for inquiries posed about the behavior of volatiles in lunar and martian magmatic systems (Boyce et. al, 2010). Oxygen fugacity will be an important parameter for these experiments, as the Moon, Mars, and Earth have different redox states (Herd, 2008). The objective of this experimental endeavor is to determine apatite-melt partition coefficients for the volatile elements (F-, Cl-, OH-, S2-) that make up the X-site (i.e., the typically monovalent anion site) in the mineral apatite in a lunar melt composition under lunar oxygen fugacity conditions approx.1-2 log units below the iron-wüstite buffer). All experiments will be conducted at NASA, Johnson Space Center in the High Pressure Experimental Petrology Laboratory. In order to conduct apatite-melt partition experiments with oxygen fugacity as an additional parameter, we will create a synthetic mix of the lunar KREEP basalt 15386, a sample retrieved during Apollo 15 that is believed to represent an indigenous volcanic melt derived from the lunar interior (Rhodes, J.M et. al, 2006). Other geochemically significant elements including C, Co, Ni, Mo, and rare earth elements will be included in the mix at trace abundances in order to assess their partitioning behavior without effecting the overall behavior of the system. The synthetic mix will then be loaded into a piston cylinder, an apparatus used to simulate high-pressure/high-temperature conditions of planetary interiors, and exposed to 0.5 GPa of pressure, the pressure observed in the upper mantle of the Moon, and heated to

  8. Geochemistry of sapphirine-apatite-calcite-bearing gabbroic dykes from the Finero Phlogopite Peridotite (Ivrea-Verbano Zone): evidence for multistage interaction with the ambient peridotite

    NASA Astrophysics Data System (ADS)

    Tommaso, Giovanardi; Alberto, Zanetti; Maurizio, Mazzucchelli; Tomoaki, Morishita; Antonio, Langone

    2016-04-01

    The Finero Phlogopite-Peridotite (FPP) is a mantle unit outcropping in the northernmost tip of the Ivrea-Verbano Zone (IVZ, Southern Alps). It shows a virtually complete recrystallization due to pervasive to channelled melt migration. The pervasive metasomatism formed a main lithologic association constituted by phlogopite harzburgites associated to phlogopite pyroxenites (mainly olivine-websterites, websterites and orthopyroxenites). These lithologies are also rich in amphibole and do not show significant chemical gradients among them (Zanetti et al., 1999). The channelled migration stages formed dunite bodies, which sometimes contain stratiform chromitites and, more rarely, pyroxenite layers similar to those associated to phlogopite harzburgite. The FPP also shows a discrete number of other, subordinate rock-types, which are characterised by the presence of apatite usually associated to carbonates (i.e. calcite or dolomite) and exhibit marked modal and chemical gradients with respect to the host phlogopite harzburgite. Examples of these lithologies are apatite-dolomite-bearing wehrlites and harzburgites (e.g. Zanetti et al. 1999; Morishita et al., 2008), apatite-calcite zircon-syenites and hornblendites. Ar-Ar amphibole analysis and U-Pb zircon and apatite data return Triassic ages for these rocks, which have been considered to document the time of melt/fluid injection. Notwithstanding the apparent mineralogical and chemical differences with the main lithologic sequences, apatite-carbonates-bearing rocks have been frequently interpreted as cogenetic to phlogopite harzburgites. To debate the petrogenesis of these rocks, a detailed field, petrological and geochemical investigation has been carried out on a swarm of apatite-calcite-bearing gabbroic veins that randomly cut the main lithologic association. Preliminary investigation evidenced as these veins show complex metasomatic haloes and a symmetric internal layering, characterised by crystallisation of magmatic

  9. Apatite triple dating of Andrill AND-2A sediments (McMurdo Sound, Antarctica)

    NASA Astrophysics Data System (ADS)

    Andreucci, B.; Zattin, M.; Reiners, P. W.; Sandroni, S.; Talarico, F.; Thomson, S. N.

    2011-12-01

    The Andrill AND-2A drill core documents the last 20 myr of the geological history of the Ross Sea region. In this work we date detrital apatites from the upper 1000 m by three different techniques on the same grain: U-Pb (UPb), fission-track (AFT) and U-Th/He (AHe) analysis. The UPb data clearly indicate that most of apatites derive from a crystalline source that cooled at about 500 Ma. Similar intrusion ages are compatible with UPb data on zircon which are widespread along the Transantarctic Mountains (TAM) and are related to Ross Orogeny that took place in the Early Paleozoic. Most of the AFT ages from the core are younger than 40 Ma, thus suggesting the presence of active tectonics (Zattin et al., Terra Nova, 2010) or re-heating events at the end of the Oligocene. Most of the AHe data on these samples are only slightly younger than AFT ages, thus documenting high rates of cooling. Furthermore, as AHe ages are nearly all older than 20 Ma, these data document very low erosion rates from Miocene onwards, confirming what observed on bedrock data (Fitzgerald et al, Chem. Geol., 2006). A significant group of apatite crystals, nearly all from a sample collected from the deepest section of the core, has been dated by the UPb method at 30 Ma. The same grains yield AFT and AHe ages some Myr younger. These data are not related to exhumation but provide the evidence for the occurrence of a magmatic event which is much older than the Miocene alkaline volcanism of the McMurdo Volcanic Group. Actually, volcanoclastic sediments and tephra found in other drill cores extend the history of alkaline volcanism back to 26 Ma (e.g. Sandroni & Talarico, Terra Antarctica, 2004) but late Eocene-Oligocene plutons and dikes occur only along the Northern Victoria Land (Rocchi et al., JGR, 2002). Therefore, these ages raise the issue of location of this magmatic source. According to petrographic and AFT data, main provenance is from the Mulock-Skelton Glacier area but the possible presence

  10. REE Mineralization in Kiruna-type Magnetite-Apatite Ore Deposits: Magmatism and Metasomatism

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.

    2015-12-01

    Magnetite-apatite ore bodies of the Kiruna type occur worldwide and are generally associated with volcanic rocks or volcanism. They also show strong evidence of extensive metasomatism over a wide P-T range. Notable examples include the Kiirunavaara ore body, northern Sweden (Harlov et al., 2002, Chem. Geol., 191, 47-72); the Grängesberg ore body, central Sweden (Jonsson et al., 2010, NGF abstracts, vol 1, 88-89); the Mineville ore body, Adirondacks, New York, USA (McKeown and Klemc, 1956, U.S. Geol Sur Bull (1956), pp. 9-23); the Pea Ridge ore body, SE Missouri, USA (Kerr, 1998, MS Thesis, Univ. Windsor, Windsor, Ontario, Canada 113 pp); the Jurassic Marcona ore body in south-central Peru (Chen et al., 2010, Econ Geol, 105, 1441-1456); and a collection of ore bodies from the Bafq Region, central Iran (Daliran et al., 2010, Geol. Assoc. Canada, Short Course Notes, v. 20, p.147-159). In these ore bodies, low Th and U monazite, xenotime, allanite, REE carbonates, and/or REE fluorides are commonly associated with the apatite as inclusions, rim grains, or as independent grains in the surrounding mineral matrix. High contrast BSE imaging, coupled with EMPA and LA-ICPMS, indicates that the apatite has experienced fluid-induced alteration in the form of (Y+REE) + Na + Si + Cl depletion implying that it served as the source for the (Y+REE) (e.g. Kiirunavaara, northern Sweden; Harlov et al., 2002). Formation of monazite and xenotime associated with fluorapatite, as inclusions or rim grains, has experimentally been demonstrated to originate from the fluorapatite as the result of fluid-aided, coupled dissolution-reprecipitation processes (Harlov et al., 2005, Contrib. Mineral. Petrol. 150, 268-286). This is explains the low Th and U content of the monazite and xenotime. Fluid sources could range from 700-900 °C, residual, acidic (HCl, H2HSO4) grain boundary fluids, remaining after the last stages of ore body crystallization, to later stage, cooler (< 600 °C) (H2O-CO2-(Na

  11. Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure

    NASA Astrophysics Data System (ADS)

    Liu, J.; Glasmacher, U. A.; Lang, M.; Trautmann, C.; Voss, K.-O.; Neumann, R.; Wagner, G. A.; Miletich, R.

    2008-04-01

    Durango apatite was irradiated with energetic U ions of 2.64 GeV and Kr ions of 2.1 GeV, with and without simultaneous exposure to a pressure of 10.5 GPa. Analysis by confocal Raman spectroscopy gives evidence of vibrational changes being marginal for fluences below 5×1011 ions/cm2 but becoming dominant when increasing the fluence to 8×1012 ions/cm2. Samples irradiated with U ions experience severe strain resulting in crystal cracking and finally breakage at high fluences. These radiation effects are directly linked to the formation of amorphous tracks and the fraction of amorphized material increasing with fluence. Raman spectroscopy of pressurized irradiated samples shows small shifts of the band positions with decreasing pressure but without a significant change of the Grüneisen parameter. Compared to irradiations at ambient conditions, the Raman spectra of apatite irradiated at 10.5 GPa exhibit fewer modifications, suggesting a higher radiation stability of the lattice by the pressure applied.

  12. Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water

    PubMed Central

    Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji

    2016-01-01

    Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329

  13. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite)

    NASA Astrophysics Data System (ADS)

    Zhong, Shihua; Feng, Chengyou; Seltmann, Reimar; Li, Daxin; Dai, Zhihui

    2017-12-01

    The Weibao copper-lead-zinc skarn deposit is located in the northern East Kunlun terrane, NW China. Igneous intrusions in this deposit consist of barren diorite porphyry (U-Pb zircon age of 232.0 ± 2.0 Ma) and ore-bearing quartz diorite and pyroxene diorite (U-Pb zircon ages of 223.3 ± 1.5 and 224.6 ± 2.9 Ma, respectively). Whole-rock major and trace element and accessory mineral (zircon and apatite) composition from these intrusions are studied to examine the different geochemical characteristics of ore-bearing and barren intrusions. Compared to the barren diorite porphyry, the ore-bearing intrusions have higher Ce4+/Ce3+ ratios of zircon and lower Mn contents of apatite, indicating higher oxidation state. Besides, apatite from the ore-bearing intrusions shows higher Cl contents and lower F/Cl ratios. These characteristics collectively suggest the higher productivity of ore-bearing quartz diorite and pyroxene diorite. When compared with ore-bearing intrusions from global porphyry Cu deposits, those from Cu-Pb-Zn skarn deposits display lower Ce4+/Ce3+ and EuN/EuN* ratios of zircon and lower Cl and higher F/Cl ratios of apatite. We conclude that these differences reflect a general geochemical feature, and that zircon and apatite composition is a sensitive tool to infer economic potential of magmas and the resulting mineralization types in intrusion-related exploration targets.

  14. Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4.

    PubMed

    Tas, A C; Aldinger, F

    2005-02-01

    Poorly crystalline, apatitic calcium phosphate powders have been synthesized by slowly adding a Na- and K-containing reference phosphate solution with a pH value of 7.4 to an aqueous calcium nitrate solution at 37 degrees C. Nano-particulated apatitic powders obtained were shown to contain small amounts of Na and K, which render them more similar in chemical composition to that of the bone mineral. Precipitated and dried powders were found to exhibit self-hardening cement properties when kneaded in a mortar with a sodium citrate- and sodium phosphate-containing starter solution. The same phosphate solution used in powder synthesis was found to be able to partially convert natural, white and translucent marble pieces of calcite (CaCO3) into calcium-deficient hydroxyapatite upon aging the samples in that solution for 3 days at 60 degrees C. Sample characterization was performed by using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, inductively-coupled plasma atomic emission spectroscopy, and simultaneous thermogravimetry and differential thermal analysis.

  15. A first report of hydroxylated apatite as structural biomineral in Loasaceae - plants’ teeth against herbivores

    NASA Astrophysics Data System (ADS)

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-05-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix.

  16. Protein-free formation of bone-like apatite: New insights into the key role of carbonation

    PubMed Central

    Deymier, Alix C.; Nair, Arun K.; Depalle, Baptiste; Qin, Zhao; Arcot, Kashyap; Drouet, Christophe; Yoder, Claude H.; Buehler, Markus J.; Thomopoulos, Stavros; Genin, Guy M.; Pasteris, Jill D.

    2017-01-01

    The nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials. PMID:28279923

  17. Biomimetic whisker-shaped apatite coating of titanium powder.

    PubMed

    Sim, Young Uk; Kim, Jong Hee; Yang, Tae Young; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    Biomimetic apatite coatings on chemically modified titanium powder have been processed and the resulting coating layers evaluated in terms of morphology, composition and structure, using TF-XRD, XPS, SEM, TEM and FTIR analysis. After 7 days immersion in a simulated body fluid (SBF), nanometer-sized fine precipitates with an amorphous whisker-like phase and a Ca/P atomic ratio of 1.94 were obtained on the external surface of the titanium particles. When the immersion time in SBF was extended to 16 days, the coating layer consisted of the whisker-like nanostructured crystals of carbonated hydroxyapatite with a atomic ratio of 3; in such a case, a double coating layer was developed. The double layer could be divided into two regions and could be clearly distinguished: an inner dense region (approximately 200 nm in thickness) which may include hard agglomerated crystals and an outer less dense region (> 500 nm in thickness) in which crystals are loosely distributed.

  18. 100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.

    2010-09-01

    Following an evaluation of potential strontium-90 (90Sr) treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, the U.S. Department of Energy (DOE), Fluor Hanford, Inc. (now CH2M Hill Plateau Remediation Company [CHPRC]), Pacific Northwest National Laboratory, and the Washington State Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area should include apatite as the primary treatment technology. This agreement was based on results from an evaluation of remedial alternatives that identified the apatite permeable reactive barrier (PRB) technology as the approach showing the greatest promise for reducing 90Sr flux to the Columbia River atmore » a reasonable cost. This letter report documents work completed to date on development of a high-concentration amendment formulation and initial field-scale testing of this amendment solution.« less

  19. Tectono-thermal evolution of the southwestern Alxa Tectonic Belt, NW China: Constrained by apatite U-Pb and fission track thermochronology

    NASA Astrophysics Data System (ADS)

    Song, Dongfang; Glorie, Stijn; Xiao, Wenjiao; Collins, Alan S.; Gillespie, Jack; Jepson, Gilby; Li, Yongchen

    2018-01-01

    The Central Asian Orogenic Belt (CAOB) is regarded to have undergone multiple phases of intracontinental deformation during the Meso-Cenozoic. Located in a key position along the southern CAOB, the Alxa Tectonic Belt (ATB) connects the northernmost Tibetan Plateau with the Mongolian Plateau. In this paper we apply apatite U-Pb and fission track thermochronological studies on varieties of samples from the southwestern ATB, in order to constrain its thermal evolution. Precambrian bedrock samples yield late Ordovician-early Silurian ( 430-450 Ma) and late Permian ( 257 Ma) apatite U-Pb ages; the late Paleozoic magmatic-sedimentary samples yield relatively consistent early Permian ages from 276 to 290 Ma. These data reveal that the ATB experienced multiple Paleozoic tectono-thermal events, as the samples passed through the apatite U-Pb closure temperature ( 350-550 °C). We interpret these tectonic events to record the long-lived subduction-accretion processes of the Paleo-Asian Ocean during the formation of the southern CAOB, with possible thermal influence of the Permian Tarim mantle plume. Apatite fission track (AFT) data and thermal history modelling reveal discrete low-temperature thermal events for the ATB, inducing cooling/reheating through the AFT partial annealing zone ( 120-60 °C). During the Permian, the samples underwent rapid cooling via exhumation or denudation from deep crustal levels to temperatures < 200 °C. Subsequent thermal events in the Triassic were thought to be associated with the final amalgamation of the CAOB or the closure of the Paleotethys. During the Jurassic-Cretaceous the study area experienced heating by burial, followed by renewed cooling, which may be related with the construction and subsequent collapse of the Mongol-Okhotsk Orogeny, or the Lhasa-Eurasia collision and subsequent slab break-off. These results indicate that the ATB may have been stable after late Cretaceous in contrast to the Qilian Shan and Tianshan. Finally, our

  20. High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses

    NASA Astrophysics Data System (ADS)

    Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.

    2000-03-01

    The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.

  1. Tracking hydrothermal alteration and mineralization in rock-forming and accessory minerals from the Lyon Mountain Granite and related iron oxide apatite (IOA) ores from the Adirondack Mountains, New York State

    NASA Astrophysics Data System (ADS)

    Buchanan, A.; Hanchar, J. M.; Steele-MacInnis, M. J.; Crowley, J. L.; Valley, P. M.; Fisher, C. M.; Fedo, C.; Piccoli, P. M.; Fournelle, J.

    2012-12-01

    The Lyon Mountain granite (LMG) is located in the northeastern Adirondack Mountains in New York State and hosts several low-titanium iron oxide apatite (IOA) ore deposits. The ores are predominately hosted by perthite bearing granite, which has been extensively altered to albite and microcline granite by Na and K metasomatism. This alteration results in several distinct groups of rocks that are dominated by either K or Na addition and a group composed of mixed Na and K addition. The different groups of altered perthite also lie on a trend suggestive of addition of Fe to each, consistent with a secondary mineralization origin. Previous work showed that the host rocks of the IOA ores have zircon with ~1150 Ma cores and 1060-1050 Ma rims and whole grains. This study aims to further constrain the timing of LMG emplacement, subsequent hydrothermal alteration, and Fe mineralization through geochemical analysis of the major, minor, and accessory phases and geochronology of accessory phases. SIMS analyses of zircon from several of the IOA ores reveal at least two periods of growth after LMG magmatism, at 1039 +/- 4.4 Ma and 1016 +/- 7 Ma to 1000 +/- 9 Ma. In situ EMPA and LA-ICPMS trace element analyses of the zircon rims and cores reveal that in two samples the zircon rims are enriched in rare earth elements (REE) compared to their cores, potentially pointing to a hydrothermal origin. Apatite has unusually high REE and Y concentrations (some total REE2O3 > 20 wt. % oxide and up to 8 wt. % oxide Y2O3), as does titanite, which allowed for the in situ analysis of Sm-Nd in apatite and titanite by LA-MC-ICP-MS. Initial Nd isotopic composition of both ore and host rock apatite and host rock titanite are consistent with published Adirondack initial Nd whole rock data, suggesting a local source for REE in these ores. EMPA and LA-ICPMS trace-element analyses of the major rock-forming minerals indicate that the feldspar have undergone Na-metasomatism and are depleted in REEs

  2. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    PubMed

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  3. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    PubMed Central

    Dorozhkin, Sergey V.

    2009-01-01

    Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites) of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  4. A bio-recognition device developed onto nano-crystals of carbonate apatite for cell-targeted gene delivery.

    PubMed

    Chowdhury, E H; Akaike, Toshihiro

    2005-05-20

    The DNA delivery to mammalian cells is an essential tool for analyzing gene structure, regulation, and function. The approach holds great promise for the further development of gene therapy techniques and DNA vaccination strategies to treat and control diseases. Here, we report on the establishment of a cell-specific gene delivery and expression system by physical adsorption of a cell-recognition molecule on the nano-crystal surface of carbonate apatite. As a model, DNA/nano-particles were successfully coated with asialofetuin to facilitate uptake by hepatocyte-derived cell lines through the asialoglycoprotein receptor (ASGPr) and albumin to prevent non-specific interactions of the particles with cell-surface. The resulting composite particles with dual surface properties could accelerate DNA uptake and enhance expression to a notable extent. Nano-particles coated with transferrin in the same manner dramatically enhanced transgene expression in the corresponding receptor-bearing cells and thus our newly developed strategy represents a universal phenomenon for anchoring a bio-recognition macromolecule on the apatite crystal surface for targeted gene delivery, having immediate applications in basic research laboratories and great promise for gene therapy. (c) 2005 Wiley Periodicals, Inc.

  5. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less

  6. Resolving the chronology of the South African landscape through joint inverse modelling of AFT and apatite (U-Th)/He data

    NASA Astrophysics Data System (ADS)

    Wildman, Mark; Brown, Roderick; Beucher, Romain; Persano, Cristina; Stuart, Finlay

    2013-04-01

    Application of Low temperature thermochronometry (LTT) is a powerful method of constraining thermal history information on samples as they pass through isotherms in the upper crust. Inverse modelling of LTT data generates thermal history information which can then be correlated with independent datasets to infer geological processes that are responsible for producing the observed thermal history held in the thermochronometry record. A critical consideration when choosing which LTT method to use are the closure temperatures associated with each system. In order to generate more complete and robust thermal histories a single sample can be analysed using multiple low temperature thermochronometers that are sensitive over different but complimentary temperature ranges. The main focus of LTT work in South Africa has been on apatite fission track (AFT) analysis which is a world renowned method of constraining thermal history information between c. 60 and 110±10°C. The general conclusions that have been drawn from the South African AFT dataset is that the present day regional topography represents an eroded remnant of an elevated interior that experienced a significant uplift event with km-scale erosion in the Cretaceous following the break-up of Gondwana [1]. The exact nature of Cretaceous uplift and erosion varies both spatially and temporally, especially in south western Africa where at least two distinct denudation events are recorded at c. 130Ma and 90 Ma [2]. There are, however, alternative views suggesting significant epeirogenic-style uplift and subsequent erosion throughout the Cenozoic [3]. A key aspect of this debate which is yet to be fully resolved is the influence of mantle dynamics on the evolution of the overlying topography. To further investigate the timing and amount of Cenozoic uplift and erosion and to what degree this can be ascribed to dynamic topography, efforts have been made to complement the existing AFT record with Apatite (U-Th)/He analysis

  7. Determining the origin of enigmatic bedrock structures using apatite (U-Th)/He thermochronology: Alabama and Poverty Hills, Owens Valley, California

    NASA Astrophysics Data System (ADS)

    Ali, G. A.; Reiners, P. W.; Ducea, M.

    2008-12-01

    The Alabama and Poverty Hills are enigmatic, topographic highs of crystalline basement surrounded by Neogene sediments in Owens Valley, California. The 150-km long Owens Valley, the westernmost graben of the Basin and Range Province, initiated at about 3 Ma, creating ~2-4 km of vertical relief from the Sierra Nevada and White/Inyos crests to the valley floor. Along the valley, the active right-lateral Owens Valley Fault Zone (OVFZ) accommodates a significant portion of Pacific-North American plate motion, creating an oblique dextral fault zone, with localized transpression along minor left-stepovers. The dominantly granitic Mesozoic rocks of the Alabama Hills are bounded by the OVFZ to the east, and the granitic and metavolcanic Mesozoic rocks of the Poverty Hills are located along an apparent 3-km left stepover of the OVFZ. The tectonic origin and geodynamic significance of both these structures are not known, but previously published hypotheses include: 1) transpressional uplifts as OVFZ-related flower structures; 2) down-dropped normal fault blocks; and 3) giant landslides from adjacent ranges. We measured apatite (U-Th)/He ages on 15 samples from the Alabama and Poverty Hills to understand the history of shallow crustal exhumation of these structures, and to potentially correlate them to rocks from adjacent ranges. Apatite He dating typically yields cooling ages corresponding to closure temperatures of ~55-65 °C, corresponding roughly to depths of ~2-3 km in the crust. The majority of apatite He ages from the Alabama Hills ranged from 58-70 Ma, but the far eastern, and lowest elevation sample showed ages of 51-55 Ma. The Poverty Hills shows younger ages of 40-65 Ma and no recognizable spatial pattern. Although the data do not conclusively rule out a transpressional uplift origin of the Poverty Hills, the rocks within them could not have been exhumed from depths greater than ~2-3 km in Owens Valley. Data from both structures are most consistent with down

  8. Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2-TiO2 hybrids derived from sol-gel processing.

    PubMed

    Miyata, Noboru; Fuke, Ken-ichi; Chen, Qi; Kawashita, Masakazu; Kokubo, Tadashi; Nakamura, Takashi

    2004-01-01

    Hydrolysis and polycondensation of triethoxysilane end-capped Poly (tetramethylene oxide) (Si-PTMO), tetraethoxysilane (TEOS), tetraisopropyltitanate (TiPT) and calcium nitrate (Ca(NO(3))(2)) gave transparent monolithics of PTMO-modified CaO-SiO(2)-TiO(2) hybrids. The samples with (TiPT)/(TEOS+TiPT) molar ratios from 0 to 0.20 under constant ratio of (Si-PTMO)/(TEOS+TiPT) of 2/3 in weight were prepared. It was found that the incorporation of TiO(2) component into a PTMO-CaO-SiO(2) hybrid results in an increase in the apatite-forming ability in a simulated body fluid: the hybrids with (TiPT)/(TEOS+TiPT) of 0.10 and 0.20 in mol formed an apatite on their surfaces within only 0.5 day. It seemed that, within the range of compositions studied, the TiO(2) content little affects the overall mechanical properties: Young's modulus were 52-55MPa, tensile strength, 7-9MPa, and strain at failure, about 30%. Thus, the organic-inorganic hybrids exhibiting both fairly high apatite-forming ability and high capability for deformation were obtained. These hybrid materials may be useful as new kind of bioactive bone-repairing materials.

  9. Investigation of the stability of Co-doped apatite ionic conductors in NH 3

    NASA Astrophysics Data System (ADS)

    Headspith, D. A.; Orera, A.; Slater, P. R.; Young, N. A.; Francesconi, M. G.

    2010-12-01

    Hydrogen powered solid oxide fuel cells (SOFCs) are of enormous interest as devices for the efficient and clean production of electrical energy. However, a number of problems linked to hydrogen production, storage and transportation are slowing down the larger scale use of SOFCs. Identifying alternative fuel sources to act as intermediate during the transition to the full use of hydrogen is, therefore, of importance. One excellent alternative is ammonia, which is produced on a large scale, is relatively cheap and has the infrastructure for storage and transportation already in place. However, considering that SOFCs operate at temperatures higher than 500 °C, a potential problem is the interaction of gaseous ammonia with the materials in the cathode, anode and solid electrolyte. In this paper, we extend earlier work on high temperature reactions of apatite electrolytes with NH 3 to the transition metal (Co) doped systems, La 9.67Si 5CoO 26 and La 10(Si/Ge) 5CoO 26.5. A combination of PXRD, TGA and XAFS spectroscopy data showed a better structural stability for the silicate systems. Apatite silicates and germanates not containing transition metals tend to substitute nitride anions for their interstitial oxide anions, when reacted with NH 3 at high temperature and, consequentially, lower the interstitial oxide content. In La 9.67Si 5CoO 26 and La 10(Si/Ge) 5CoO 26.5 reduction of Co occurs as a competing process, favouring lower levels of nitride-oxide substitution.

  10. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S., E-mail: para_kanna@yahoo.com

    2015-11-15

    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and β-Ca{sub 3}(PO{sub 4}){sub 2} after heat treatment at 1000 °C with the preferential occupancy of Mg{sup 2+} at the crystal lattice of β-Ca{sub 3}(PO{sub 4}){sub 2}. The concentration of Mg{sup 2+} uptake in β-Ca{sub 3}(PO{sub 4}){sub 2} is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometricmore » value [(Ca+Mg)/P>1.67], Mg{sup 2+} precipitates as Mg(OH){sub 2} and thereafter gets converted to MgO during heat treatment. Any kind of Mg{sup 2+} uptake in the crystal lattice of Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} is discarded from the investigation. - Highlights: • Aqueous co-precipitation of calcium deficient apatites with excess magnesium (Mg{sup 2+}) additions. • Heat treatments beyond 800 °C results in the formation of biphasic apatite mixtures. • Mg{sup 2+} gets accommodated at the β-Ca{sub 3}(PO{sub 4}){sub 2} lattice of biphasic mixtures. • Mg{sup 2+} additions exceeding stoichiometric value (Ca/P>1.67) results in its formation as MgO. • Mg{sup 2+} occupancy at β-Ca{sub 3}(PO{sub 4}){sub 2} lattice delays its allotropic conversion α-Ca{sub 3}(PO{sub 4}){sub 2} till 1350 °C.« less

  11. Surface-Modification of Carbonate Apatite Nanoparticles Enhances Delivery and Cytotoxicity of Gemcitabine and Anastrozole in Breast Cancer Cells

    PubMed Central

    Mozar, Fitya Syarifa; Chowdhury, Ezharul Hoque

    2017-01-01

    pH sensitive nanoparticles of carbonate apatite (CA) have been proven to be effective delivery vehicles for DNA, siRNAs and proteins. More recently, conventional anti-cancer drugs, such as doxorubicin, methotrexate and cyclophosphamide have been successfully incorporated into CA for intracellular delivery to breast cancer cells. However, physical and chemical properties of drug molecules appeared to affect their interactions with CA, with hydrophillic drug so far exhibiting better binding affinity and cellular uptakes compared to hydrophobic drugs. In this study, anastrozole, a non-steroidal aromatase inhibitor which is largely hydrophobic, and gemcitabine, a hydrophilic nucleoside inhibitor were used as solubility models of chemotherapy drug. Aggregation tendency of poorly soluble drugs resulting in larger particle-drug complex size might be the main factor hindering their delivery effectiveness. For the first time, surface modification of CA with poly(ethylene glycol) (PEG) has shown promising result to drastically reduce anastrozole- loaded CA particle size, from approximately 1000 to 500 nm based on zeta sizer analysis. Besides PEG, a cell specific ligand, in this case fibronectin, was attached to the particles in order to facilitate receptor mediated endocytosis based on fibronectin–integrin interaction. High-performance liquid chromatography (HPLC) was performed to measure uptake of the drugs by breast cancer cells, revealing that surface modification increased the drug uptake, especially for the hydrophobic drug, compared to the uncoated particles and the free drug. In vitro chemosensitivity assay and in vivo tumor regression study also showed that coated apatite/drug nanoparticle complexes presented higher cytotoxicity and tumor regression effects than uncoated apatite/drug nanoparticles and free drugs, indicating that surface modification successfully created optimum particles size with the consequence of more effective uptake along with favorable

  12. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas

    2016-11-01

    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  13. In-Situ U-Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science.

    PubMed

    Terada, Kentaro; Sano, Yuji

    2012-01-01

    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U-Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U-Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years.

  14. In-Situ U–Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science

    PubMed Central

    Terada, Kentaro; Sano, Yuji

    2012-01-01

    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U–Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U–Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years. PMID:24349912

  15. Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite.

    PubMed

    Zaman, Chowdury Tanira; Takeuchi, Akari; Matsuya, Shigeki; Zaman, Q H M Shawket; Ishikawa, Kunio

    2008-09-01

    B-type carbonate apatite (CO3Ap) block may be an ideal artificial bone substitute because it is closer in chemical composition to bone mineral. In the present study, the feasibility to fabricate CO3Ap blocks was investigated using compositional transformation, which was based on the dissolution-precipitation reaction of a gypsum-calcite composite with free-molding behavior. For the compositional change, or phosphorization, gypsum-calcite composites of varying CaCO3 contents were immersed in 1 mol/L (NH4)3PO4 aqueous solution at 100 degrees C for 24 hours. No macroscopic changes were found after the treatment, whereas microscopic change was observed at SEM level. X-ray diffraction, Fourier transform infrared spectroscopy and CHN analysis indicated that the composites were B-type CO3Ap containing approximately 6-7 wt% of CO3, a value similar to that of biological bone apatite. Diametral tensile strength of the CO3Ap block was approximately 1-3 MPa. Based on the results obtained, it was therefore concluded that gypsum-calcite was a good candidate for the fabrication of CO3Ap blocks, coupled with the advantage that the composite can be molded to any shape by virtue of the setting property of gypsum.

  16. A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants’ teeth against herbivores

    PubMed Central

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-01-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix. PMID:27194462

  17. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran

    NASA Astrophysics Data System (ADS)

    Heidarian, Hassan; Lentz, David; Alirezaei, Saeed; Peighambari, Sima; Hall, Douglas

    2016-12-01

    Textural and compositional data are presented for different types of magnetite in the Chadormalu iron deposit to discern the genesis of various styles of mineralization. Samples were chosen according to their paragenetic relations to apatite and their host setting: magnetite-apatite veins in the altered host rocks, disseminated magnetite-apatite assemblages in the marginal parts of the main ore body, and massive magnetite associated with irregular apatite veinlets from internal part of the main ore body. Scanning electron microscopy - back scatter electron (SEM-BSE) images reveal that there are three main generations of magnetite in each of the different magnetite-apatite assemblages. Primary magnetite (Mag1) features abundant porosity and a dark appearance. A second generation of magnetite (Mag2) replacing Mag1 shows a lighter appearance with both sharp and gradational contacts with the primary magnetite crystals. The two magnetite types are related to dissolution-precipitation processes due to changing physico-chemical parameters of the ore fluids. A third type of magnetite (Mag3) with a recrystallized appearance and foam-like triple junctions was mostly observed in magnetite-apatite veins in the main ore body and in veins hosted by altered rocks. Electron probe microanalyses (EPMA) were utilized to discriminate the various magnetite generations in the different magnetite-apatite assemblages. Applying published elemental discrimination diagrams shows that most primary magnetites fall into the hydrothermal- and Kiruna-type fields. Primary magnetite contains lower FeO (88.77-93.65 wt.%; average 91.5 wt.%), and higher SiO2 (0.21-2.26 wt.%; ave. 0.32 wt.%), Al2O3 (0.001-0.45 wt.%; ave. 0.053 wt.%), and CaO (0.002-0.48 wt.%; ave. 0.078 wt.%) contents, which might be related to magmatically derived fluids. Secondary magnetites have higher FeO (89.23-93.49 wt.%; ave. 92.11 wt.%), lower SiO2 (0.037-0.189 wt.%; ave. 0.072 wt.%), Al2O3 (0.004-0.072 wt.%; ave. 0.019 wt

  18. Vacuum-sintered body of a novel apatite for artificial bone

    NASA Astrophysics Data System (ADS)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  19. High temperature (>350 °C) thermal histories of the long lived (>500 Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U-Pb thermochronology

    NASA Astrophysics Data System (ADS)

    Paul, Andre N.; Spikings, Richard A.; Ulianov, Alexey; Ovtcharova, Maria

    2018-05-01

    Quantitative reconstruction of thermal histories can be a powerful tool to study numerous natural processes such as tectonic plate interaction, cratonic stability and extra-terrestrial phenomena such as asteroid ejection. A majority of thermochronological studies have focused on temperatures lower than 300 °C. Few previous studies have demonstrated that U-Pb data from apatite and other accessory phases can be used to recover thermal history information at T > 350 °C. We present U-Pb data from apatite, to constrain the thermal histories of Triassic peralluminous anatectites from the Northern Andes between the temperatures of ∼350-550 °C. The accuracy of the thermal history models is assessed by comparisons with previous geological models, and comparisons with pre-existing and newly acquired U/Pb (titanite and rutile), 40Ar/39Ar (muscovite) and low temperature thermochronological data. This study also examines the feasibility of using a large, regionally dispersed apatite U-Pb data set to obtain continuous thermal history paths along a long-lived (>500 Ma) active margin. A second aim of this study is to further test the hypothesis that the dominant mechanism for Pb displacement through apatite is volume diffusion, as opposed to aqueous fluid interaction. The thermal history models derived from the Triassic anatectites exposed in the Andes of Colombia and Ecuador are entirely consistent with lower temperature thermochronological constraints, and previously established geochronological and geochemical constraints. They reveal and quantify trench parallel changes in the amount of Jurassic - Early Cretaceous extension, significantly bolstering and adding to previous tectonic interpretations. Confirmation of the utility of U-Pb thermochronology provides geologists with a powerful tool for investigating the high-temperature thermal evolution of accessory minerals.

  20. Multiple cooling episodes in the Central Tarim (Northwest China) revealed by apatite fission track analysis and vitrinite reflectance data

    NASA Astrophysics Data System (ADS)

    Chang, Jian; Qiu, Nansheng; Song, Xinying; Li, Huili

    2016-06-01

    Apatite fission track and vitrinite reflectance are integrated for the first time to study the cooling history in the Central Tarim, northwest China. The paleo-temperature profiles from vitrinite reflectance data of the Z1 and Z11 wells showed a linear relationship with depth, suggesting an approximately 24.8 °C/km paleo-geothermal gradient and 2700-3900 m of erosion during the Early Mesozoic. The measured apatite fission track ages from well Z2 in the Central Tarim range from 39 to 159 Ma and effectively record the Meso-Cenozoic cooling events that occurred in Central Tarim. Moreover, two cooling events at 190-140 Ma in the Early Jurassic-Early Cretaceous and 80-45 Ma in the Late Cretaceous-Paleocene revealed by measured AFT data and thermal modeling results are related to the collisions of the Qiangtang-Lhasa terranes and the Greater India Plate with the southern margin of the Eurasian Plate, respectively. This study provides new insights into the tectonic evolution of the Tarim Basin (and more broadly Central Asia) and for hydrocarbon generation and exploration in the Central Tarim.

  1. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: Effect of surface reactivity and interfacial hydration.

    PubMed

    D'Elia, Noelia L; Gravina, Noel; Ruso, Juan M; Marco-Brown, Jose L; Sieben, Juan M; Messina, Paula V

    2017-05-15

    The bioactivity of an implant is displayed on its ability to induce heterogeneous nucleation of biogenic apatite onto its surface upon immersion in body fluids; forming, through this layer, a stable bond with the host tissue. The present article evaluates the bioactivity of different nanostructured substrates based on synthetic hydroxyapatite (HA) and titania (TiO 2 ) nanoparticles, where we extend the debate regarding the selective roles played by the presence of albumin on the biogenic apatite coating evolution. The substrates bone-bonding potential was evaluated by keeping the materials in contact with Simulated Body Fluid, while the influence of the presence of Bovine Serum Albumin in bioactivity was analyzed by a spectrophotometric technique. Our results show that materials' surface reactivity and their interfacial hydration are responsible for the bonding-site alteration and surface charge density distribution, which in turn, regulate the protein adsorption process. As a matter of fact, variations on the protein adsorbed density have a directly proportional impact on calcium binding sites, which should be responsible for the initiation of the mineralization process, disturbing the deposition of the interfacial calcium phosphate (Ca-P) mineralized coating. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Appearance of cell-adhesion factor in osteoblast proliferation and differentiation of apatite coating titanium by blast coating method.

    PubMed

    Umeda, Hirotsugu; Mano, Takamitsu; Harada, Koji; Tarannum, Ferdous; Ueyama, Yoshiya

    2017-08-01

    We have already reported that the apatite coating of titanium by the blast coating (BC) method could show a higher rate of bone contact from the early stages in vivo, when compared to the pure titanium (Ti) and the apatite coating of titanium by the flame spraying (FS) method. However, the detailed mechanism by which BC resulted in satisfactory bone contact is still unknown. In the present study, we investigated the importance of various factors including cell adhesion factor in osteoblast proliferation and differentiation that could affect the osteoconductivity of the BC disks. Cell proliferation assay revealed that Saos-2 could grow fastest on BC disks, and that a spectrophotometric method using a LabAssay TM ALP kit showed that ALP activity was increased in cells on BC disks compared to Ti disks and FS disks. In addition, higher expression of E-cadherin and Fibronectin was observed in cells on BC disks than Ti disks and FS disks by relative qPCR as well as Western blotting. These results suggested that the expression of cell-adhesion factors, proliferation and differentiation of osteoblast might be enhanced on BC disks, which might result higher osteoconductivity.

  4. Reconciling Conflicting Geologic and Thermochronologic Interpretations Via Multiple Apatite Thermochronometers (AHe, AFT, and 4He/3He): 6 Ma Incision of the Westernmost Grand Canyon

    NASA Astrophysics Data System (ADS)

    Winn, C.; Karlstrom, K. E.; Shuster, D. L.; Kelley, S.; Fox, M.

    2017-12-01

    The application of low-temperature apatite thermochronology to the incision history of the Grand Canyon has led to conflicting hypotheses of either a 70 Ma ("old") or <6 Ma ("young") Grand Canyon. This controversy is best captured in the westernmost segment of the Grand Canyon, where several lines of evidence favor a "young" Canyon: 1) North-derived Paleocene Hindu Fanglomerate was deposited across the present track of the Canyon; 2) The Separation Point basalt (19 Ma) is stranded between high relief tributaries and the main stem of the Colorado River; 3) Relief generation in tributaries and on plateaus adjacent to the Canyon took place after 17 Ma; and 4) The late Miocene-Pliocene Muddy Creek Formation shows that no far-traveled materials entered the Grand Wash Trough until after 6 Ma. Some interpretations of apatite thermochronology data conflict with these lines of evidence and indicate a much older ( 70 Ma) westernmost Grand Canyon. We reconcile this conflict by applying apatite (U-Th)/He ages (AHe), 4He/3He thermochronometry, and apatite fission track ages and lengths (AFT) to the same sample at a key location. Using HeFTy, t-T paths that predict these data show cooling from ˜100 °C to 40-60 °C at 70-50 Ma, long-term residence at 40-60 °C from 50-10 Ma, and cooling to surface temperatures after 10 Ma, indicating young incision. New AFT (5) and AHe (3) datasets are also presented here. When datasets are examined separately, AHe data show t-T paths that cool to surface temperatures during the Laramide, consistent with an "old" Canyon. When multiple methods are applied, t-T paths instead show young incision. This inconsistency demonstrates the age of the Grand Canyon controversy. Here we reconcile the difference in t-T paths by adjusting model parameters to account for uncertainty in the rate of radiation damage annealing in apatite during burial heating and the resulting variations in He retentivity. In this area, peak burial conditions during the Laramide

  5. Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Cao, Ling; Zhao, Laishi; Algeo, Thomas J.; Chen, Zhong-Qiang; Li, Zhihong; Lv, Zhengyi; Wang, Xiangdong

    2017-08-01

    Conodont apatite has long been used in paleoenvironmental studies, often with minimal evaluation of the influence of diagenesis on measured elemental and isotopic signals. In this study, we evaluate diagenetic influences on conodonts using an integrated set of analytical techniques. A total of 92 points in 19 coniform conodonts from Ordovician marine units of South China were analyzed by micro-laser Raman spectroscopy (M-LRS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), high-resolution X-ray microdiffraction (HXRD), and secondary ion mass spectrometry (SIMS). Each conodont element was analyzed along its full length, including the albid crown, hyaline crown, and basal body, in either a whole specimen (i.e., reflecting the composition of its outer layer) or a split specimen (i.e., reflecting the composition of its interior). In the conodonts of this study, the outer surfaces consist of hydroxyfluorapatite and the interiors of strontian hydroxyfluorapatite. Ionic substitutions resulted in characteristic Raman spectral shifts in the position (SS1) and width (SS2) of the ν1-PO43- stretching band. Although multiple elements were enriched (Sr2+, Mg2+) and depleted (Fe3+, Mn2+, Ca2+) during diagenesis, geochemical modeling constraints and known Raman spectral patterns suggest that Sr uptake was the dominant influence on diagenetic redshifts of SS1. All study specimens show lower SS2 values than modern bioapatite and synthetic apatite, suggesting that band width decreases with time in ancient bioapatite, possibly through an annealing process that produces larger, more uniform crystal domains. Most specimens consist mainly of amorphous or poorly crystalline apatite, which is inferred to represent the original microstructure of conodonts. In a subset of specimens, some tissues (especially albid crown) exhibit an increased degree of crystallinity developed through aggrading neomorphism. However, no systematic relationship was observed between

  6. Histological Comparison in Rats between Carbonate Apatite Fabricated from Gypsum and Sintered Hydroxyapatite on Bone Remodeling

    PubMed Central

    Ayukawa, Yasunori; Suzuki, Yumiko; Tsuru, Kanji; Koyano, Kiyoshi; Ishikawa, Kunio

    2015-01-01

    Carbonate apatite (CO3Ap), the form of apatite found in bone, has recently attracted attention. The purpose of the present study was to histologically evaluate the tissue/cellular response toward the low-crystalline CO3Ap fabricated using a dissolution-precipitation reaction with set gypsum as a precursor. When set gypsum was immersed in a 100°C 1 mol/L Na3PO4 aqueous solution for 24 h, the set gypsum transformed into CO3Ap. Both CO3Ap and sintered hydroxyapatite (s-HAp), which was used as a control, were implanted into surgically created tibial bone defects of rats for histological evaluation. Two and 4 weeks after the implantation, histological sections were created and observed using light microscopy. The CO3Ap granules revealed both direct apposition of the bone matrix by osteoblasts and osteoclastic resorption. In contrast, the s-HAp granules maintained their contour even after 4 weeks following implantation which implied that there was a lack of replacement into the bone. The s-HAp granules were sometimes encapsulated with fibrous tissue, and macrophage polykaryon was occasionally observed directly apposed to the implanted granules. From the viewpoint of bone remodeling, the CO3Ap granules mimicked the bone matrix, suggesting that CO3Ap may be an appropriate bone substitute. PMID:26504813

  7. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement.

    PubMed

    Yamamoto, S; Han, L; Noiri, Y; Okiji, T

    2017-12-01

    To evaluate the Ca 2+ -releasing, alkalizing and apatite-like surface precipitate-forming abilities of a prototype tricalcium silicate cement, which was mainly composed of synthetically prepared tricalcium silicate and zirconium oxide radiopacifier. The prototype tricalcium silicate cement, white ProRoot MTA (WMTA) and TheraCal LC (a light-cured resin-modified calcium silicate-filled material) were examined. The chemical compositions were analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with an image observation function (SEM-EPMA). The pH and Ca 2+ concentrations of water in which the set materials had been immersed were measured, and the latter was assessed with the EDTA titration method. The surface precipitates formed on the materials immersed in phosphate-buffered saline (PBS) were analysed with SEM-EPMA and X-ray diffraction (XRD). Kruskal-Wallis tests followed by Mann-Whitney U-test with Bonferroni correction were used for statistical analysis (α = 0.05). The prototype cement contained Ca, Si and Zr as major elemental constituents, whereas it did not contain some metal elements that were detected in the other materials. The Ca 2+ concentrations and pH of the immersion water samples exhibited the following order: WMTA = prototype cement > TheraCal LC (P < 0.05). All three materials produced Ca- and P-containing surface precipitates after PBS immersion, and the precipitates produced by TheraCal LC displayed lower Ca/P ratios than those formed by the other materials. XRD peaks corresponding to hydroxyapatite were detected in the precipitates produced by the prototype cement and WMTA. The prototype tricalcium silicate cement exhibited similar Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities to WMTA. The Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities of TheraCal LC were lower than those of the other materials. © 2016 International Endodontic Journal. Published

  8. Elaboration, Rietveld refinements and vibrational spectroscopic study of Na₁-xKxCaPb₃(PO₄)₃ lacunar apatites (0 ⩽ x ⩽ 1).

    PubMed

    Lahrich, S; Elmhammedi, M A; Manoun, B; Tamraoui, Y; Mirinioui, F; Azrour, M; Lazor, P

    2015-06-15

    Synthesis of apatites, Na1-xKxCaPb3(PO4)3 0 ⩽ x ⩽ 1, with anion vacancy were carried out using solid state reactions. The solid solution of apatite-type structure crystallize in the hexagonal system, space group P63/m (No. 176). Rietveld refinements showed that around 90% of Pb(2+) cations are located in the (6h) sites, the left amount of Pb(2+) cations are located in the (4f) sites; 27-31% of Ca(2+) cations are located in the (6h) sites, the left amount of Ca(2+) cations are located in the (4f) sites. The ninefold coordination sites (4f) are also occupied by the K(+) and Na(+) monovalent ions. The structure can be described as built up from [PO4](3-) tetrahedra and Pb(2+)/Ca(2+) of sixfold coordination cavities (6h positions), which delimit void hexagonal tunnels running along [001]. These tunnels are connected by cations of mixed sites (4f) which are half occupied by Pb(2+)/Ca(2+) and half by Na(+)/K(+) mixed cations. The assignment of the observed frequencies in the Raman and infrared spectra is discussed on the basis of a unit cell group analysis and by comparison with other apatites. Vibrational spectra of all the compositions are similar and show some linear shifts of the frequencies as a function of the composition toward lower values due the substitutions of Na(+) by K(+) with a larger radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Calcium phosphate composite cements based on simple mixture of brushite and apatite phases

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.; Fedotov, A. Yu; Pereloma, I. S.; Teterina, A. Yu; Sergeeva, N. S.; Sviridova, I. K.; Kirsanova, V. A.; Akhmedova, S. A.; Nesterova, A. V.; Reshetov, I. V.; Barinov, S. M.; Komlev, V. S.

    2018-04-01

    The composite cements based on simple mixtures brishite and apatite with ratio 70/30, 50/50, 30/70 were developed. The processes of phase formation, microstructure and mechanical properties were studied. The kinetics of degradation in simulated body fluid depending on the microstructure and the materials phase composition was carried out. The biological test in vitro were performed using the MTT-test on the human fibroblast immortalized (hFB) cell line and the human osteosarcoma cell line MG-63. The materials didn’t have acute cytoxicity and possessed surface matrix properties. It was determined that the both line of cells actively proliferated, with viable cells values higher 20-60 % then control at all observation periods.

  10. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.

    PubMed

    Penel, G; Delfosse, C; Descamps, M; Leroy, G

    2005-05-01

    Microcharacterization of biominerals allows a better understanding of the pathophysiological events that occur in calcified tissues and synthetic biomaterials. Different methods have been extensively used to conduct such investigations. A new model for the intravital study of the composition and structure of membranous bone by Raman microspectroscopy is described. Titanium bone chambers equipped with a fused-silica optical window were implanted transcutaneously in the calvaria of New Zealand rabbits. The implanted optical windows were well tolerated, and spectral acquisitions were performed without any additional invasive procedure. Bone and implanted apatitic biomaterials were analyzed at different times after surgery. All Raman bands were unambiguously identified in the bone and biomaterial spectra. The main PO4 and CO3 Raman bands in bone spectra were consistent with those found in the carbonated apatite spectrum. The major collagen bands were always observed around 1200-1300 (amide III) and 1600-1700 (amide I) delta cm(-1) and, 1400-1470 and 2800-3100 delta cm(-1) (bending and stretching modes of CH groups, respectively). The phenylalanine (Phe) band was identified in all spectra at 1003 delta cm(-1) and overlapped that of the weak HPO4(2-) ion. The CH bands frequently overlapped the lipid bands. However a distinct protein and lipid bands were detected at 2950 and 2852 delta cm(-1), respectively. In bone areas close to blood vessels, the Raman signature of hemoglobin was detected with a characteristic band at 754 delta cm(-1). The changes observed in bone varied as a function of time and location. The composition and structure of all of the biomaterials studied--including those that were resorbable--seemed to remain stable over time and location. We report for the first time the complete intravital study of Raman spectra of bone and calcium phosphate biomaterials over a period of 8 months. This new approach does not require specimen preparation and allows

  11. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    NASA Astrophysics Data System (ADS)

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M. J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43-ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO32- range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.

  12. Possible Roles of Fluoride and Carbonate in Biochemical Carbonated Apatite Formation

    NASA Astrophysics Data System (ADS)

    Meouch, Orysia; Omelon, Sidney

    2016-04-01

    Marine phosphorites are predominantly composed of carbonated fluorapatite (CFA = Ca10-a-b-cNaaMgb(PO4)6-x(CO3)x-y-z(CO3.F)y(SO4)zF2, where x=y+a+2c, and c represents the number of Ca vacancies, with a P2O5 content that ranges from 18-40 %. Sulphur-oxidizing bacteria of the Beggiatoa genus concentration phosphorous as intracellular polyphosphate ((PO3-)n) which is depolymerized into inorganic orthophosphate (Pi). Consequently, an increase in pore water Pi concentration favours carbonated apatite precipitation. The carbonate and fluoride that is characteristic of phosphorite CFA is also located in the vertebrate skeleton. This similarity suggests a biochemical pathway for CFA precipitation. Preliminary Raman spectroscopy and powder x-ray diffraction results that suggest a role for fluoride, and possibly carbonate, in the biochemical depolymerisation of polyphosphates with alkaline phosphatase will be presented.

  13. Comparative in vitro studies on disodium EDTA effect with and without Proteus mirabilis on the crystallization of carbonate apatite and struvite

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Olszynski, Marcin; Torzewska, Agnieszka; Mielniczek-Brzóska, Ewa

    2014-06-01

    Effect of disodium EDTA (salt of ethylenediamine tetraacetic acid) on the crystallization of struvite and carbonate apatite was studied. To evaluate such an effect we performed an experiment of struvite and carbonate apatite growth from artificial urine. The crystallization process was induced by Proteus mirabilis to mimic the real urinary tract infection, which usually leads to urinary stone formation. The results demonstrate that disodium EDTA exhibits the effect against P. mirabilis retarding the activity of urease - an enzyme produced by these microorganisms. The spectrophotometric results demonstrate that, with and without P. mirabilis, the addition of disodium EDTA increases the induction time and decreases the growth efficiency compared to the baseline (without disodium EDTA). These results are discussed from the standpoint of speciation of complexes formed in the solution of artificial urine in the presence of disodium EDTA. The size of struvite crystals was found to decrease in the presence of disodium EDTA. However, struvite crystals are larger in the presence of bacteria while the crystal morphology and habit remain unchanged.

  14. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam

    PubMed Central

    Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji

    2016-01-01

    Carbonate apatite (CO3Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO3Ap foam for bone replacement, CO3Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO3Ap foam was 74 kPa whereas that of the gelatin-reinforced CO3Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO3Ap foam. PMID:28773832

  15. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam.

    PubMed

    Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji

    2016-08-23

    Carbonate apatite (CO₃Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO₃Ap foam for bone replacement, CO₃Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO₃Ap foam was 74 kPa whereas that of the gelatin-reinforced CO₃Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO₃Ap foam.

  16. Biomechanical Evaluation of a Novel Apatite-Wollastonite Ceramic Cage Design for Lumbar Interbody Fusion: A Finite Element Model Study

    PubMed Central

    Şenköylü, Alpaslan; Aktaş, Erdem; Sarıkaya, Baran; Sipahioğlu, Serkan; Gürbüz, Rıza; Timuçin, Muharrem

    2018-01-01

    Objectives Cage design and material properties play a crucial role in the long-term results, since interbody fusions using intervertebral cages have become one of the basic procedures in spinal surgery. Our aim is to design a novel Apatite-Wollastonite interbody fusion cage and evaluate its biomechanical behavior in silico in a segmental spinal model. Materials and Methods Mechanical properties for the Apatite-Wollastonite bioceramic cages were obtained by fitting finite element results to the experimental compression behavior of a cage prototype. The prototype was made from hydroxyapatite, pseudowollastonite, and frit by sintering. The elastic modulus of the material was found to be 32 GPa. Three intact lumbar vertebral segments were modelled with the ANSYS 12.0.1 software and this model was modified to simulate a Posterior Lumbar Interbody Fusion. Four cage designs in different geometries were analyzed in silico under axial loading, flexion, extension, and lateral bending. Results The K2 design had the best overall biomechanical performance for the loads considered. Maximum cage stress recorded was 36.7 MPa in compression after a flexion load, which was within the biomechanical limits of the cage. Conclusion Biomechanical analyses suggest that K2 bioceramic cage is an optimal design and reveals essential material properties for a stable interbody fusion. PMID:29581974

  17. Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis

    NASA Astrophysics Data System (ADS)

    Kraal, Peter; Dijkstra, Nikki; Behrends, Thilo; Slomp, Caroline P.

    2017-05-01

    Sedimentary burial of the essential nutrient phosphorus (P) under anoxic and sulfidic conditions is incompletely understood. Here, we use chemical and micro-scale spectroscopic methods to characterize sedimentary P burial along a water column redox transect (six stations, 78-2107 m water depth) in the Black Sea from the shelf with its oxygenated waters to the anoxic and sulfidic deep basin. Organic P is an important P pool under all redox regimes, accounting for up to 60% of P burial. We find a general down-core increase in the relative importance of organic P, especially on the shelf where P bound to iron (Fe) and manganese (Mn) (oxyhydr)oxides is abundant in the uppermost sediment but rapidly declines in concentration with sediment depth. Our chemical and spectroscopic data indicate that the carbonate-rich sediments (Unit I, ∼3000 years, ∼0-30 cm depth) of the sulfidic deep Black Sea contain three major P pools: calcium phosphate (apatite), organic P and P that is strongly associated with CaCO3 and possibly clay surfaces. Apatite concentrations increase from 5% to 25% of total P in the uppermost centimeters of the deep basin sediments, highlighting the importance of apatite formation for long-term P burial. Iron(II)-associated P (ludlamite) was detected with X-ray absorption spectroscopy but was shown to be a minor P pool (∼5%), indicating that lateral Fe-P transport from the shelf ("shuttling") likely occurs but does not impact the P burial budget of the deep Black Sea. The CaCO3-P pool was relatively constant throughout the Unit I sediment interval and accounted for up to 55% of total P. Our results highlight that carbonate-bound P can be an important sink for P in CaCO3-rich sediments of anoxic, sulfidic basins and should also be considered as a potential P sink (and P source in case of CaCO3 dissolution) when reconstructing past ocean P dynamics from geological records.

  18. Preparation and properties of calcium-silicate filled resins for dental restoration. Part I: chemical-physical characterization and apatite-forming ability.

    PubMed

    Profeta, Andrea Corrado

    2014-11-01

    The aim of this study was to measure dimensional changes due to hygroscopic expansion and the bioactivity of two experimental methacrylate-based dental adhesives either incorporating Bioglass 45S5 (3-E&RA/BG) or MTA (3-E&RA/WMTA). 3-E&RA/BG, 3-E&RA/WMTA and a control filler-free resin blend (3-E&RA) were formulated from commercially available monomers. Water sorption (WS) and solubility (SL) behaviour were evaluated by weighing material disks at noted intervals; the relationship between degree of hydration and the glass transition temperature (Tg) was investigated by using differential scanning calorimetry (DSC). In vitro apatite-forming ability as a function of soaking time in phosphate-containing solutions was also determined. Kruskal-Wallis analysis of variance (ANOVA) was used to evaluate differences between groups for maximum WS, SL, net water uptake and the percentage change in Tg values. Post-ANOVA pair-wise comparisons were conducted using Mann-Whitney-U tests. 3-E&RA/BG and 3-E&RA/WMTA exhibited values of maximum WS and net water uptake that were significantly higher when compared to 3-E&RA. However, no statistically significant differences were observed in terms of SL between all the adhesives. The addition of the Bioglass 45S5 and MTA to the 3-E&RA showed no reduction of the Tg after 60 days of storage in deionized water. ATR Fourier Transform Infrared Spectroscopy (ATR-FTIR) of the filled resin disks soaked in DPBS for 60 days showed the presence of carbonate ions in different chemical phases. Dentine bonding agents comprising calcium-silicates are not inert materials in a simulated oral environment and apatite formation may occur in the intra-oral conditions. A bioactive dental material which forms apatite on the surface would have several benefits including closure of gaps forming at the resin-dentine interface and potentially better bond strength over time (less degradation of bond).

  19. In vitro apatite formation on nano-crystalline titania layer aligned parallel to Ti6Al4V alloy substrates with sub-millimeter gap.

    PubMed

    Hayakawa, Satoshi; Matsumoto, Yuko; Uetsuki, Keita; Shirosaki, Yuki; Osaka, Akiyoshi

    2015-06-01

    Pure titanium substrates were chemically oxidized with H2O2 and subsequent thermally oxidized at 400 °C in air to form anatase-type titania layer on their surface. The chemically and thermally oxidized titanium substrate (CHT) was aligned parallel to the counter specimen such as commercially pure titanium (cpTi), titanium alloy (Ti6Al4V) popularly used as implant materials or Al substrate with 0.3-mm gap. Then, they were soaked in Kokubo's simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days. XRD and SEM analysis showed that the in vitro apatite-forming ability of the contact surface of the CHT specimen decreased in the order: cpTi > Ti6Al4V > Al. EDX and XPS surface analysis showed that aluminum species were present on the contact surface of the CHT specimen aligned parallel to the counter specimen such as Ti6Al4V and Al. This result indicated that Ti6Al4V or Al specimens released the aluminum species into the SBF under the spatial gap. The released aluminum species might be positively or negatively charged in the SBF and thus can interact with calcium or phosphate species as well as titania layer, causing the suppression of the primary heterogeneous nucleation and growth of apatite on the contact surface of the CHT specimen under the spatial gap. The diffusion and adsorption of aluminum species derived from the half-sized counter specimen under the spatial gap resulted in two dimensionally area-selective deposition of apatite particles on the contact surfaces of the CHT specimen.

  20. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    PubMed

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  2. A prolonged Cenozoic erosional period in East Kunlun (Western China): Constraints of detrital apatite (U-Th)/He ages on the onset of mountain building along the northern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Shi, Wenbei; Wang, Fei; Wu, Lin; Yang, Liekun; Zhang, Weibin; Wang, Yinzhi

    2018-01-01

    The timing of the development of the highland topography along the northern margin of the Tibetan Plateau is the key to understanding the manner of Tibetan growth and the far-field effects of the collision between India and Eurasia. Although various studies have investigated the exhumation and uplift of the basement rocks, thermochronological studies on the detritus from a continuous depositional sequence inan intermontane basin are lacking but might shed light on this issue. In this study, a set of detrital apatites from an upper Eocene to Pliocene depositional sequence in the Kumukol Basin, the largest intermontane basin in the East Kunlun, were dated by using the (U-Th)/He technique. The detrital apatites had consistent ages of ∼40 Ma for all deposit formations from bottom to top, which were older than the depositional ages. The ages and their consistency suggested that these detrital apatites were not reset and that the ages represented the original ages in the provenance region. These detrital apatite ages from the upper Eocene to Pliocene formations strongly suggested that the high mountains surrounding the Kumukol Basin formed at or before ∼40 Ma and have remained high since then. The process of mountain building resulted in a prolonged period of erosion from ∼40 to 2.6 Ma. The coupling of mountain and basin at ∼40 Ma was widespread along the East Kunlun. Our present results constrain the time of onset of the mountain building along the northern margin of the Tibetan Plateau, which may represent a rapid response to the India-Eurasian collision.

  3. Lu-Hf isotope systematics of fossil biogenic apatite and their effects on geochronology

    NASA Astrophysics Data System (ADS)

    Herwartz, Daniel; Münker, Carsten; Tütken, Thomas; Hoffmann, J. Elis; Wittke, Andreas; Barbier, Bruno

    2013-01-01

    Reliable methods for direct dating of biogenic apatite from pre-Pleistocene fossils are currently not available, and recent attempts using the Lu-Hf decay system yielded highly inaccurate ages for both bones and teeth. The geological processes accounting for this poor accuracy of Lu-Hf chronometry are not yet understood. Here we explore Lu-Hf systematics in fossil bones and teeth in detail, by applying five different sample digestion techniques that are tested on bones and composites of bone and sediment. Our current dataset implies that dissolution methods only slightly affect the resulting Lu-Hf ages, while clear differences between the individual digestion techniques became apparent for element concentrations. By analysing the insoluble leftovers from incomplete sample dissolution, four main reservoirs of Hf in fossil bones were identified: (1) a radiogenic end-member associated with apatite; (2) an unradiogenic end-member represented by the authigenic minerals or the embedding sediment; (3) a highly unradiogenic end-member that can be attributed to detrital zircon; and (4) a moderately soluble phase (probably a Zr(Hf)-phosphate) that yielded very low Lu/Hf but a highly radiogenic Hf isotope composition at the same time. This Zr(Hf)-phase must have been precipitated within the fossil bone sample at a late stage of burial history, thereby incorporating radiogenic 176Hf released from apatite surfaces over geological timescales. A second focus of our study is the effect of different sediment matrices and of crystal size on the preservation of pristine Lu-Hf isotope compositions in bioapatite. Because near-depositional Lu-Hf ages of phosphate fossils have previously been reported for the London Clay (England) and a calcareous marl from Tendaguru (Tanzania), we herein investigate specimens fossilised in carbonate matrices (calcareous marl from Oker, Germany; carbonate concretions from the Santana Formation, Brazil; carbonate from the Eifel, Germany) and argillaceous

  4. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

    PubMed

    Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung

    2015-04-01

    This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Photoactive chitosan switching on bone-like apatite deposition.

    PubMed

    Chiono, Valeria; Gentile, Piergiorgio; Boccafoschi, Francesca; Carmagnola, Irene; Ninov, Momchil; Georgieva, Ventsislava; Georgiev, George; Ciardelli, Gianluca

    2010-02-08

    The work was focused on the synthesis and characterization of the chitosan-g-fluorescein (CHFL) conjugate polymer as a biocompatible amphiphilic water-soluble photosensitizer, able to stimulate hydroxyapatite deposition upon visible light irradiation. Fluorescein (FL) grafting to chitosan (CH) chains was confirmed by UV-vis analysis of water solutions of FL and CHFL and by Fourier transform infrared spectroscopy (FTIR-ATR) analysis of CHFL and CH. Smooth CHFL cast films with 4 microm thickness were obtained by solvent casting. Continuous exposure to visible light for 7 days was found to activate the deposition of calcium phosphate crystals from a conventional simulated body fluid (SBF 1.0x) on the surface of CHFL cast films. EDX and FTIR-ATR analyses confirmed the apatite nature of the deposited calcium phosphate crystals. CHFL films preincubated in SBF (1.0x) solution under visible light irradiation and in the dark for 7 days were found to support the in vitro adhesion and proliferation of MG63 osteoblast-like cells (MTT viability test; 1-3 days culture time). On the other hand, the mineralization ability of MG63 osteoblast-like cells was significantly improved on CHFL films preincubated under visible light exposure (alkaline phosphatase activity (ALP) test for 1, 3, 7, and 14 days). The use of photoactive biocompatible conjugate polymer, such as CHFL, may lead to new therapeutic options in the field of bone/dental repair, exploiting the photoexcitation mechanism as a tool for biomineralization.

  6. Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach

    PubMed Central

    Kim, Jongryul; Arola, Dwayne D.; Gu, Lisha; Kim, Young Kyung; Mai, Sui; Liu, Yan; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    Natural biominerals are formed through metastable amorphous precursor phases via a bottom-up, nanoparticle-mediated mineralization mechanism. Using an acid-etched human dentin model to create a layer of completely-demineralized collagen matrix, a bio-inspired mineralization scheme has been developed based on the use of dual biomimetic analogs. These analogs help to sequester fluidic amorphous calcium phosphate nanoprecursors and function as templates for guiding homogeneous apatite nucleation within the collagen fibrils. By adopting this scheme for remineralizing adhesive resin-bonded, completely-demineralized dentin, we have been able to redeposit intrafibrillar and extrafibrillar apatites in completely-demineralized collagen matrices that are imperfectly infiltrated by resins. This study utilizes a spectrum of completely- and partially-demineralized dentin collagen matrices to further validate the necessity for using a biomimetic analog-containing medium for remineralizing resin-infiltrated partially-demineralized collagen matrices in which remnant seed crystallites are present. In control specimens in which biomimetic analogs are absent from the remineralization medium, remineralization could only be seen in partially-demineralized collagen matrices probably by epitaxial growth via a top-down crystallization approach. Conversely, in the presence of biomimetic analogs in the remineralization medium, intrafibrillar remineralization of completely-demineralized collagen matrices via a bottom-up crystallization mechanism can additionally be identified. The latter is characterized by the transition of intrafibrillar minerals from an inchoate state of continuously-braided microfibrillar electron-dense amorphous strands to discrete nanocrystals, and ultimately into larger crystalline platelets within the collagen fibrils. Biomimetic remineralization via dual biomimetic analogs has the potential to be translated into a functional delivery system for salvaging failing

  7. Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach.

    PubMed

    Kim, Jongryul; Arola, Dwayne D; Gu, Lisha; Kim, Young Kyung; Mai, Sui; Liu, Yan; Pashley, David H; Tay, Franklin R

    2010-07-01

    Natural biominerals are formed through metastable amorphous precursor phases via a bottom-up, nanoparticle-mediated mineralization mechanism. Using an acid-etched human dentin model to create a layer of completely demineralized collagen matrix, a bio-inspired mineralization scheme has been developed based on the use of dual biomimetic analogs. These analogs help to sequester fluidic amorphous calcium phosphate nanoprecursors and function as templates for guiding homogeneous apatite nucleation within the collagen fibrils. By adopting this scheme for remineralizing adhesive resin-bonded, completely demineralized dentin, we have been able to redeposit intrafibrillar and extrafibrillar apatites in completely demineralized collagen matrices that are imperfectly infiltrated by resins. This study utilizes a spectrum of completely and partially demineralized dentin collagen matrices to further validate the necessity for using a biomimetic analog-containing medium for remineralizing resin-infiltrated partially demineralized collagen matrices in which remnant seed crystallites are present. In control specimens in which biomimetic analogs are absent from the remineralization medium, remineralization could only be seen in partially demineralized collagen matrices, probably by epitaxial growth via a top-down crystallization approach. Conversely, in the presence of biomimetic analogs in the remineralization medium, intrafibrillar remineralization of completely demineralized collagen matrices via a bottom-up crystallization mechanism can additionally be identified. The latter is characterized by the transition of intrafibrillar minerals from an inchoate state of continuously braided microfibrillar electron-dense amorphous strands to discrete nanocrystals, and ultimately into larger crystalline platelets within the collagen fibrils. Biomimetic remineralization via dual biomimetic analogs has the potential to be translated into a functional delivery system for salvaging failing

  8. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    PubMed

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cementsapatite nano-spherulites; (2) the alpha-TCP doped cement aged for 28 days displayed the highest bioactivity and cell proliferation; (3) the deleterious effect of bismuth on cell

  9. Effect of strontium addition and chitosan concentration variation on cytotoxicity of chitosan-alginate-carbonate apatite based bone scaffold

    NASA Astrophysics Data System (ADS)

    Perkasa, Rilis Eka; Umniati, B. Sri; Sunendar, Bambang

    2017-09-01

    Bone scaffold is one of the most important component in bone tissue engineering. Basically, bone scaffold is a biocompatible structure designed to replace broken bone tissue temporarily. Unlike conventional bone replacements, an advanced bone scaffold should be bioactive (e.g: supporting bone growth) and biodegradable as new bone tissue grow, while retain its mechanical properties similarity with bone. It is also possible to add more bioactive substrates to bone scaffold to further support its performance. One of the substrate is strontium, an element that could improve the ability of the bone to repair itself. However, it must be noted that excessive consumption of strontium could lead to toxicity and diseases, such as osteomalacia and hypocalcemia. This research aimed to investigate the effect of strontium addition to the cytotoxic property of chitosan-alginate-carbonate apatite bone scaffold. The amount of strontium added to the bone scaffold was 5% molar of the carbonate apatite content. As a control, bone scaffold without stronsium (0% molar) were also made. The effect of chitosan concentration variation on the cytotoxicity were also observed, where the concentration varies on 1% and 3% w/v of chitosan solution. The results showed an optimum result on bone scaffold sample with 5% molar of strontium and 3% chitosan, where 87.67% cells in the performed MTS-Assay cytotoxicity testing survived. This showed that the use of up to 5% molar addition of strontium and 3% chitosan could enhance the survivability of the cell.

  10. The function of Sn(II)-apatite as a Tc immobilizing agent

    NASA Astrophysics Data System (ADS)

    Asmussen, R. Matthew; Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G.; Lukens, Wayne W.; Qafoku, Nikolla P.

    2016-11-01

    At the U.S. Department of Energy Hanford Site, Tc-99 is a component of low-activity waste (LAW) fractions of the nuclear tank waste and removal of Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant through batch sorption testing and solid phase characterization using tin (II) apatite (Sn-A) and SnCl2. Sn-A showed higher levels of Tc removal from both DIW and LAW simulant. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray absorption spectroscopy (XAS) of reacted Sn-A in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI).

  11. Innovative Delivery of siRNA to Solid Tumors by Super Carbonate Apatite

    PubMed Central

    Wu, Xin; Yamamoto, Hirofumi; Nakanishi, Hiroyuki; Yamamoto, Yuki; Inoue, Akira; Tei, Mitsuyoshi; Hirose, Hajime; Uemura, Mamoru; Nishimura, Junichi; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Hossain, Sharif; Akaike, Toshihiro; Matsuura, Nariaki; Doki, Yuichiro; Mori, Masaki

    2015-01-01

    RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors. PMID:25738937

  12. Prompt isothermal decay of thermoluminescence in an apatite exhibiting strong anomalous fading

    NASA Astrophysics Data System (ADS)

    Sfampa, I. K.; Polymeris, G. S.; Tsirliganis, N. C.; Pagonis, V.; Kitis, G.

    2014-02-01

    Anomalous fading (AF) is one of the most serious drawbacks in thermoluminescence (TL) and optically stimulated luminescence (OSL) dating. In the present work the isothermal decay of TL signals from Durango apatite is studied for temperatures located on the rising part of the main TL peak. This material is known to exhibit strong AF phenomena, and its isothermal TL decay properties have not been studied previously. The experimental results show that the characteristic decay time of the isothermal signal does not depend of the temperature, and that this signal does not exhibit the strong temperature dependence expected from conventional TL kinetic theories. This is further direct experimental evidence for the possible presence of tunneling phenomena in this material. The isothermal decay curves are analyzed and discussed within the framework of conventional theories of TL, as well as within the context of a recently developed tunneling kinetic model for random distributions of electron-hole pairs in luminescent materials.

  13. Innovative delivery of siRNA to solid tumors by super carbonate apatite.

    PubMed

    Wu, Xin; Yamamoto, Hirofumi; Nakanishi, Hiroyuki; Yamamoto, Yuki; Inoue, Akira; Tei, Mitsuyoshi; Hirose, Hajime; Uemura, Mamoru; Nishimura, Junichi; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Hossain, Sharif; Akaike, Toshihiro; Matsuura, Nariaki; Doki, Yuichiro; Mori, Masaki

    2015-01-01

    RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors.

  14. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface.

    PubMed

    Shah, Furqan A; Zanghellini, Ezio; Matic, Aleksandar; Thomsen, Peter; Palmquist, Anders

    2016-02-01

    The orientation of nanoscale mineral platelets was quantitatively evaluated in relation to the shape of lacunae associated with partially embedded osteocytes (osteoblastic-osteocytes) on the surface of deproteinised trabecular bone of adult sheep. By scanning electron microscopy and image analysis, the mean orientation of mineral platelets at the osteoblastic-osteocyte lacuna (Ot.Lc) floor was found to be 19° ± 14° in the tibia and 20° ± 14° in the femur. Further, the mineral platelets showed a high degree of directional coherency: 37 ± 7% in the tibia and 38 ± 9% in the femur. The majority of Ot.Lc in the tibia (69.37%) and the femur (74.77%) exhibited a mean orientation of mineral platelets between 0° and 25°, with the largest fraction within a 15°-20° range, 17.12 and 19.8% in the tibia and femur, respectively. Energy dispersive X-ray spectroscopy and Raman spectroscopy were used to characterise the features observed on the anorganic bone surface. The Ca/P (atomic %) ratio was 1.69 ± 0.1 within the Ot.Lc and 1.68 ± 0.1 externally. Raman spectra of NaOCl-treated bone showed peaks associated with carbonated apatite: ν1, ν2 and ν4 PO4(3-), and ν1 CO3(2-), while the collagen amide bands were greatly reduced in intensity compared to untreated bone. The apatite-to-collagen ratio increased considerably after deproteinisation; however, the mineral crystallinity and the carbonate-to-phosphate ratios were unaffected. The ~19°-20° orientation of mineral platelets in at the Ot.Lc floor may be attributable to a gradual rotation of osteoblasts in successive layers relative to the underlying surface, giving rise to the twisted plywood-like pattern of lamellar bone.

  15. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    NASA Astrophysics Data System (ADS)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  16. Surface chemistry and flotation behavior of monazite, apatite, ilmenite, quartz, rutile, and zircon using octanohydroxamic acid collector

    NASA Astrophysics Data System (ADS)

    Nduwa Mushidi, Josue

    Global increase in rare earth demand and consumption has led to further understanding their beneficiation and recovery. Monazite is the second most important rare earth mineral that can be further exploited. In this study, the surface chemistry of monazite in terms of zeta potential, adsorption density, and flotation response by microflotation using octanohydroxamic acid is determined. Apatite, ilmenite, quartz, rutile, and zircon are minerals that frequently occur with monazite among other minerals. Hence they were chosen as gangue minerals in this study. The Iso Electric Point (IEP) of monazite, apatite, ilmenite, quartz, rutile, and zircon are 5.3, 8.7, 3.8, 3.4, 6.3, and 5.1 respectively. The thermodynamic parameters of adsorption were also evaluated. Ilmenite, rutile and zircon have high driving forces for adsorption with DeltaGads. = 20.48, 22.10, and 22.4 kJ/mol respectively. The free energy of adsorption is 14.87 kJ/mol for monazite. Adsorption density testing shows that octanohydroxamic acid adsorbs on negatively charged surfaces of monazite and its gangue minerals which indicates chemisorption. This observation was further confirmed by microflotation experiments. Increasing the temperature to 80°C raises the adsorption and flotability of monazite and gangue minerals. This does not allow for effective separation. Sodium silicate appeared to be most effective to depress associated gangue minerals. Finally, the fundamentals learned were applied to the flotation of monazite ore from Mt. Weld. However, these results showed no selectivity due to the presence of goethite as fine particles and due to a low degree of liberation of monazite in the ore sample.

  17. Tectonomorphic evolution of the Eastern Cordillera fold-thrust belt, Colombia: New insights based on apatite and zircon (U-Th)/He thermochronometers

    NASA Astrophysics Data System (ADS)

    Ghorbal, B.; Stockli, D. F.; Mora, A.; Horton, B. K.; Blanco, V.; Sanchez, N.

    2010-12-01

    The Eastern Cordillera (EC) of Colombia marks the eastern boundary of Cenozoic fold-thrust deformation in the northern Andes. It is a classic example of an inversion belt formed in the retro-arc region, in this case superimposed on a Triassic/Jurassic to Cretaceous intracontinental rift system of northern South America. Ongoing thrust reactivation (inversion) in this contractional orogen provides an excellent opportunity to study the patterns of deformation and influence of preexisting anisotropies (Mora et al., 2006). The objective of this detailed (U-Th)/He study is to unravel the tectonic and thermal evolution of the EC from the Magdalena Valley basin in the west to the Llanos foreland basin in the east and reconstruct the temporal and spatial progression of deformation in the EC fold-thrust belt. Furthermore, the Subandean or foothills zone of Colombia is key for understanding the petroleum systems in the complex frontal zone of the inverted fold-thrust belt. We present detailed apatite and zircon (U-Th)/He thermochronometric data from surface samples along a ~220 km WNW-ESE transect across the EC from the frontal fold-thrust belt at the edge of the Llanos basin to the western edge of the EC, the Magdalena basin. Surface and borehole zircon and apatite (U-Th)/He data, integrated with structural data, show that the EC fold-thrust belt propagated foreland-ward from the axial zone to the modern edges of the fold-thrust belt from at least the early Oligocene to the early Miocene. Detailed apatite and zircon (U-Th)/He data from surface samples and borehole samples in the foothills-Llanos transition zone and the Middle Magdalena Valley basin, between the large-displacement Guaicaramo and Pajarito-Chámeza thrusts in the east and the La Salina fault system in the west show a temporally complex evolution. The frontal fold-thrust belt was characterized by continued progressive foreland-ward migration of deformation and an apparent phase of major out-of-sequence motion

  18. Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger; Chudy, Thomas; McFarlane, Christopher R. M.; Wu, Fu-Yuan

    2017-08-01

    Apatites from the Verity, Fir, Gum, Howard Creek and Felix carbonatites of the Blue River (British Columbia, Canada) area have been investigated with respect to their paragenesis, cathodoluminescence, trace element and Sr-Nd isotopic composition. Although all of the Blue River carbonatites were emplaced as sills prior to amphibolite grade metamorphism and have undergone deformation, in many instances magmatic textures and mineralogy are retained. Attempts to constrain the U-Pb age of the carbonatites by SIMS, TIMS and LA-ICP-MS studies of zircon and titanite were inconclusive as all samples investigated have experienced significant Pb loss during metamorphism. The carbonatites are associated with undersaturated calcite-titanite amphibole nepheline syenite only at Howard Creek although most contain clasts of disaggregated phoscorite-like rocks. Apatite from each intrusion is characterized by distinct, but wide ranges, in trace element composition. The Sr and Nd isotopic compositions define an array on a 87Sr/86Sr vs²Nd diagram at 350 Ma indicating derivation from depleted sub-lithospheric mantle. This array could reflect mixing of Sr and Nd derived from HIMU and EM1 mantle sources, and implies that depleted mantle underlies the Canadian Cordillera. Although individual occurrences of carbonatites in the Blue River region are mineralogically and geochemically similar they are not identical and thus cannot be considered as rocks formed from a single batch of parental magma at the same stage of magmatic evolution. However, a common origin is highly probable. The variations in the trace element content and isotopic composition of apatite from each occurrence suggest that each carbonatite represents a combination of derivation of the parental magma(s) from mineralogically and isotopically heterogeneous depleted mantle sources coupled with different stages of limited differentiation and mixing of these magmas. We do not consider these carbonatites as primary direct

  19. Authigenic apatite and octacalcium phosphate formation due to adsorption-precipitation switching across estuarine salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2015-02-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain largely unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation across salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a low P site. Octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite, CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Gradients in sediment pH strongly affected P fractions across ecosystems and independent of the site-specific total P status. We found a pronounced switch from adsorbed Al/Fe-P to mineral Ca-P with decreasing acidity from land to sea. This switch occurred at near-neutral sediment pH and has possibly been enhanced by redox-driven phosphate desorption from iron oxyhydroxides. The seaward decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. Correspondingly, two location-dependent accumulation mechanisms occurred at the high P site due to the switch, leading to elevated Al/Fe-P at pH < 6.6 (landward; adsorption) and elevated Ca-P at pH > 6.6 (seaward; precipitation). Enhanced Ca-P precipitation by increased P loads was also evident from disproportional accumulation of metastable Ca-P (Ca-Pmeta) at the high P site. Here, sediments contained on average 6-fold higher Ca-Pmeta levels compared with the low P site, although these sediments contained only 2-fold more total Ca-P than the low P sediments. Phosphorus species distributions indicated that these elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP in nearshore areas. Formation of CFAP as well as its precursor, OCP, results in P retention in coastal zones and can thus lead to substantial inorganic P accumulation in response to anthropogenic P input.

  20. FIELD TEST INSTRUCTION 100-NR-2 OPERABLE UNIT DESIGN OPTIMIZATION STUDY FOR SEQUESTRATION OF SR-90 SATURATED ZONE APATITE PERMEABLE REACTIVE BARRIER EXTENSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOWLES NA

    2010-10-06

    The objective of this field test instruction is to provide technical guidance for aqueous injection emplacement of an extension apatite permeable reactive barrier (PRE) for the sequestration of strontium-90 (Sr-90) using a high concentration amendment formulation. These field activities will be conducted according to the guidelines established in DOE/RL-2010-29, 100-NR-2 Design Optimization Study, hereafter referred to as the DOS. The DOS supports the Federal Facility Agreement Consent Order (EPA et al., 1989), Milestone M-16-06-01, and 'Complete Construction of a Permeable Reactive Barrier at 100-N.' Injections of apatite precursor chemicals will occur at an equal distance intervals on each end ofmore » the existing PRE to extend the PRB from the existing 91 m (300 ft) to at least 274 m (900 ft). Field testing at the 100-N Area Apatite Treatability Test Site, as depicted on Figure 1, shows that the barrier is categorized by two general hydrologic conceptual models based on overall well capacity and contrast between the Hanford and Ringold hydraulic conductivities. The upstream portion of the original barrier, shown on Figure 1, is characterized by relatively low overall well specific capacity. This is estimated from well development data and a lower contrast in hydraulic conductivity between the Hanford formation and Ringold Formations. Comparison of test results from these two locations indicate that permeability contrast between the Hanford formation and Ringold Formation is significantly less over the upstream one-third of the barrier. The estimated hydraulic conductivity for the Hanford formation and Ringold Formation over the upstream portion of the barrier based on observations during emplacement of the existing 91 m (300 ft) PRB is approximately 12 and 10 m/day (39 and 32 ft/day), respectively (PNNL-17429). However, these estimates should be used as a rough guideline only, as significant variability in hydraulic conductivity is likely to be observed in

  1. A multidisciplinary analysis to constrain exhumation and recent erosion history of the Tethyan Himalaya, based on apatite (U-Th-Sm)/He and cosmogenic nuclides dates from Central Nepal (Takkhola graben and the Mustang granite)

    NASA Astrophysics Data System (ADS)

    Rosenkranz, Ruben; Sahragard Sohi, Mohammad; Spiegel, Cornelia

    2015-04-01

    The exhumation of the Himalayan arc has been studied intensively throughout the last decades. For the Tethyan Himalaya, however, the youngest exhumation history is still unclear, mostly because of the lack of a significant apatite content in most Tethyan sediments (Crouzet et al. 2007). For this study we are using apatite (U-Th-Sm)/He thermochronology and cosmogenic nuclides for investigating exhumation and denudation of the Tethyan Himalaya back through time. Apatite (U-Th-Sm)/He thermochronology is sensitive to temperatures of ~40 to 85°C and thus to movements within the upper ~1.5 to 3 km of the earth's crust. During a recent field campaign, we sampled the Mustang granite, that intrudes the Tethyan marine sediments and the Takkhola-Graben. The graben can be seen as an inusual southern part of the normal faulting system affecting the whole Tibetan Plateau (Colchen, 1999). The timing of the activation of these faulting is still highly debated. The syntectonics filling of the Takkhola-Mustag graben consists of Mio-Pliocene fluvio-lacustrine deposits (Garzione et al. 2003). These were described as containing significant amounts of apatite, derived from the past erosion of the Mustang granitic body (Adhikari and Wagreich, 2011). Being only up to 1km thick, a post depositional thermal resetting of the apatite (U-Th-Sm)/He system is unlikely, so that the (U-Th-Sm)/He dates of the sediments are expected to have retained their information regarding source area exhumation. We took several sand samples from the Kali Gandaki River draining the present-day exposure of the Mustang granite. Furthermore, we sampled different stratigraphic levels of the Mio-Pliocene sedimentary rocks, i.e., from the Tetang and Takkahola formation deposited between 11 and 7 Ma. This sampling approach will not only provide information about the youngest denudation history of the Mustang granite /Tethyan Himalaya, but will also reveal insights into its past denudation and changes of denudation

  2. In-situ Strontium Isotopes Analysis on Single Conodont Apatite by LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhang, L.; Chen, Z. Q.; Ma, D.; Qiu, H.; Lv, Z.; Hu, Z.; Wang, F.

    2014-12-01

    Strontium isotope played an important role in stratigraphic chronology and sedimentary geochemistry research (McArthur et al., 2001). Conodonts is a kind of extinct species of marine animals and widely distributed in marine sediments all over the world. Rich in radiogenic Sr contents and difficulty to be affected during diagenesis alteration makes conodonts a good choice in seawater Sr isotope composition studies (John et al., 2008). Conodont samples were collected from 24th to 39th layer across Permian-Triassic boundary at Meishan D section (GSSP), Zhejiang Province, South China (Yin et al., 2001). Conodonts was originated from fresh limestone and only conodont elements with CAI<2 were chosen for in-situ strontium isotope analysis using laser-ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Conodont samples are from totally 25 layers in seven conodont zones making it possible for a high resolution 87Sr/ 86Sr curve reconstruction during the Permian-Triassic transition. 87Sr/ 86Sr ratio kept a relatively high value (0.70752) in the middle part of the Clarkina yini zone and a lower value (0.70634) in the upperpart of Clarkina taylorae zone. Of which, 87Sr/ 86Sr ratio emerged a rapid decrease within the Clarkina taylorae zone. After a subsequent increase, 87Sr/ 86Sr ratio dropped to 0.70777 in the Isarcicella staeschei zone. These results helps providing reference data for the biological mass extinction events during the Permian-Triassic transition. Our study also makes is possible for high resolution 87Sr/ 86Sr ratio testing on the single conodont apatite and riched the in-situ studies on the conodont apatite, which of great significance for the future conodont Sr isotope research (Zhao et al., 2009; Zhao et al., 2013). Keywords: Conodonts, Strontium isotope, LA-MC-ICP-MS, Permian-Triassic transition, Meishan D section [1] John et al., 2008 3P[2] McArthur et al., 2001 J. of Geology [3] Yin et al., 2001 Episodes [4] Zhao et al

  3. Low-Temperature Thermochronology Investigation in Uruguay and Southernmost Brazil: Apatite (U-Th)/He Results

    NASA Astrophysics Data System (ADS)

    Machado, J. P.; Bicca, M. M.

    2017-12-01

    Low-temperature thermochronology has successfully allowed one to reveal exhumation histories of many orogenic belts across the Earth, and lately these techniques have been applied in cratonic regions. The present study aims to constrain thermal history and exhumation of the South Atlantic Passive Margin, between Uruguay and Southernmost Brazil, a region scarce of thermochronological data. This location has become relatively stable after the Neoproterozoic Brasiliano Orogeny, being more intensely disturbed by tectonics during the Gondwana Breakup and consequent opening of the Atlantic Ocean (Jurassic - Cretaceous). Both apatite and zircon (U-Th)/He methods are being applied on basement rocks, and since those have a long cooling history, radiation damage is expected to play an important role in crystal ages. A total of 25 samples were analyzed, and preliminary apatite (U-Th)/He results reveals unweighted sample ages ranging from Permian to Lower-Cretaceous in Southernmost Brazil, with a couple of outliers with Devonian - Carboniferous ages. In Uruguay results can be grouped in two different clusters: one of samples with Jurassic to Lower-Cretaceous ages, and another of Devonian to Permian ages. This wide range of results can be assign to variations in the uranium content of the grains, due the presence of inclusions, compositional zonation or substantial radiation damage of the crystalline lattice. In most cases, ages tend to increase with crystal eU content. No clear relationship between ages and tectonic terranes has been found so far, neither between ages and elevation, since the region does not have significant topographic variations. Younger ages are commonly found closer to the coastal region, possibly in response to the rift shoulders uplift during Gondwana breakup and further exhumation and denudation at higher rates. An anomalous concentration of older ages in the southern region of the Pelotas Batholith, close to the Brazil - Uruguay border, suggests a

  4. Detrital zircon and apatite (U-Th)/He geochronology of intercalated baked sediments: A new approach to dating young basalt flows

    NASA Astrophysics Data System (ADS)

    Cooper, Frances J.; van Soest, Matthijs C.; Hodges, Kip V.

    2011-07-01

    Simple numerical models suggest that many basaltic lava flows should sufficiently heat the sediments beneath them to reset (U-Th)/He systematics in detrital zircon and apatite. This result suggests a useful way to date such flows when more conventional geochronological approaches are either impractical or yield specious results. We present here a test of this method on sediments interstratified with basalt flows of the Taos Plateau Volcanic Field of New Mexico. Nineteen zircons and apatites from two samples of baked sand collected from the uppermost 2 cm of a fluvial channel beneath a flow of the Upper Member of the Servilleta Basalt yielded an apparent age of 3.487 ± 0.047 Ma (2 SE confidence level), within the range of all published 40Ar/39Ar dates for other flows in the Upper Member (2.81-3.72 Ma) and statistically indistinguishable from the 40Ar/39Ar dates for basal flows of the Upper Member with which the studied flow is broadly correlative (3.61 ± 0.13 Ma). Given the high yield of 4He from U and Th decay, this technique may be especially useful for dating Pleistocene basalt flows. Detailed studies of the variation of (U-Th)/He detrital mineral dates in sedimentary substrates, combined with thermal modeling, may be a valuable tool for physical volcanologists who wish to explore the temporal and spatial evolution of individual flows and lava fields.

  5. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  6. Phanerozoic polycyclic evolution of the southwestern Angola margin: New insights for apatite fission track and (U-Th)/He methodologies

    NASA Astrophysics Data System (ADS)

    Venancio da Silva, Bruno; Hackspacher, Peter; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton

    2016-04-01

    The low-temperature thermochronology has been an important tool to quantify geological process in passive continental margins. In this context, the Angolan margin shows evidence of a polycyclic post-rift evolution marked by different events of uplift, basin inversion and changes in sedimentation rates to the marginal basins, which have controlled the salt tectonics and the hydrocarbon deposits (1,2,3,4). To understand the post break-up evolution of the southwestern Angola margin, it were collected outcrop samples for apatite fission track (AFT) and (U-Th)/He analysis ranging in elevation from 79 m to 1675 m from the coast toward the interior plateau in a profile between Namibe and Lubango cities. The area lies on the edge of Central and Southern Atlantic segments a few kilometers northward the Walvis ridge and encompasses the Archean and Proterozoic basement rocks of the Congo craton. The AFT ages ranging from 120.6 ± 8.9 Ma to 328.8 ± 28.5 Ma and they show a trend of increasing age toward the Great Escarpment with some exceptions. The partial mean track lengths (MTLs) vary between 11.77 ± 1.82 μm to 12.34 ± 1.13 μm with unimodal track length distributions (TDLs). The partial (U-Th)/He ages ranging from 104.85 ± 3.15 Ma to 146.95 ± 4.41 Ma and show the same trend of increasing ages landward, little younger than the AFT ages, which could be interpreted as a fast exhumation episode in Late Jurassic - Early Cretaceous times. The thermal histories modelling has been constrained with the kinetic parameters Dpar (5) and c-axis angle (6) by the software Hefty (7). Both AFT and (U-Th)/He thermal histories modelling indicate three episodes of denudation/uplift driven cooling: (a) from Late Jurassic to Early Cretaceous, (b) a smallest one in the Late Cretaceous and (c) from Oligocene-Miocene to recent, which are compatible with geophysical data of the offshore Namibe basin that estimate the greater thickness of sediments formed in the first and third episodes

  7. Multiple, discrete inversion episodes revealed by apatite fission track analysis along the southernmost Atlantic margin of South Africa

    NASA Astrophysics Data System (ADS)

    Wildman, M.; Brown, R. W.; Persano, C.; Stuart, F. M.

    2013-12-01

    The morpho-tectonic history of the western South African continental margin and interior plateau remains enigmatic. Recent investigations of offshore sediment accumulation and interpretations of onshore structural and geomorphological observations have highlighted the complex geological evolution of South Africa throughout the Mesozoic and Cenozoic. Moreover, advances in geodynamic modelling approaches have explored the crustal response to varying styles of rifting and the influence of mantle upwelling beneath the African plate. These geological observations and models, however, require validation from quantitative constraints on the surface response (i.e. uplift and erosion) to syn- and post rift thermal and tectonic processes Over the last two decades, low temperature thermochronometry, particularly apatite fission track analysis (AFTA) and apatite (U-Th)/He, have been effective tools in providing these constraints by tracking the time-temperature history of rocks through c. 60 - 110°C and 80 - 40°C, respectively. The unique ability of AFTA to constrain both the timing and nature of sample cooling rests largely on the sensitivity of fission track annealing to temperature. Here, we present new AFT data from a suite of samples across the entire western continental margin of South Africa which contributes to a now extensive AFT dataset spanning the entire sub-continent. This dataset broadly invokes at least two discrete episodes of cooling driven by km scale denudation at c. 130 Ma, following rifting and break up of West Gondwana, and 90 Ma as a response to renewed tectonic uplift. However, the apparent lack of correlation of AFT age with elevation or with distance from the coast highlight the spatial and temporal variability of post-rift cooling that may be related to Mid-Cretaceous structural reactivation along the margin. We also present thermal history modelling using the Bayesian transdimensional inverse modelling approach of QTQt (Gallagher, 2012). Modelling

  8. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Amiot, Romain; Lécuyer, Christophe; Buffetaut, Eric; Escarguel, Gilles; Fluteau, Frédéric; Martineau, François

    2006-06-01

    The much debated question of dinosaur thermophysiology has not yet been conclusively solved despite numerous attempts. We used the temperature-dependent oxygen isotope fractionation between vertebrate body water (δ 18O body water) and phosphatic tissues (δ 18O p) to compare the thermophysiology of dinosaurs with that of non-dinosaurian ectothermic reptiles. Present-day δ 18O p values of vertebrate apatites show that ectotherms have higher δ 18O p values than endotherms at high latitudes due to their lower body temperature, and conversely lower δ 18O p values than endotherms at low latitudes. Using a data set of 80 new and 49 published δ 18O p values, we observed similar and systematic differences in δ 18O p values (Δ 18O) between four groups of Cretaceous dinosaurs (theropods, sauropods, ornithopods and ceratopsians) and associated fresh water crocodiles and turtles. Expressed in terms of body temperatures ( Tb), these Δ 18O values indicate that dinosaurs maintained rather constant Tb in the range of endotherms whatever ambient temperatures were. This implies that high metabolic rates were widespread among Cretaceous dinosaurs belonging to widely different taxonomic groups and suggest that endothermy may be a synapomorphy of dinosaurs, or may have been acquired convergently in the studied taxa.

  9. From Texas to the Northwest Territories: Low temperature history of the North American craton using a radiation damage model for apatite He diffusion

    NASA Astrophysics Data System (ADS)

    Flowers, R. M.; Ault, A. K.; Wolin, E.; Kelley, S.; Bowring, S. A.

    2009-12-01

    The radiation damage accumulation and annealing model (RDAAM) for apatite He diffusion helps resolve previously enigmatic characteristics of apatite (U-Th)/He data in cratonic regions. First, nonlinear positive date-eU correlations are predicted for many T-t paths, thus explaining excessive scatter in some (U-Th)/He datasets. Second, under common circumstances, the RDAAM predicts (U-Th)/He dates that are older than corresponding apatite fission-track (AFT) dates, helping reconcile previous data in which (U-Th)/He dates were older than expected using Durango He diffusion kinetics. We present five apatite (U-Th)/He datasets, three with co-existing AFT data, from the North American craton that can quantitatively be explained by the RDAAM. These datasets include three from the Canadian shield (Trans-Hudson Orogen, Lake Athabasca region, Slave Craton) and two from the U.S. midcontinent (Kansas, Texas panhandle). All samples are Precambrian (4.0-1.6 Ga) basement, except for Triassic-Jurassic sandstones analyzed in the Texas study. We use the results of these studies to evaluate broad thermal history patterns across the North American craton. Although each dataset yields a distinct thermal history, all can be accounted for by varying the magnitudes of two well-documented episodes of burial and unroofing in Paleozoic-Mesozoic and Cretaceous-Tertiary times. The oldest consistent (U-Th)/He and AFT dates of these studies are early Paleozoic and are preserved in the Trans-Hudson Orogen. Together with a strong (U-Th)/He date-eU correlation and dates as young as Jurassic in the Lake Athabasca region, as well as widespread Permo-Triassic dates from the Slave craton, the three Canadian shield datasets are most simply explained by increased magnitudes of burial toward the northwest in Paleozoic-Mesozoic time, with less significant burial in the Cretaceous. In contrast, (U-Th)/He data from Kansas yield a date-eU correlation and a cluster of Cretaceous dates, (U-Th)/He dates from the

  10. Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.

    PubMed

    Taira, M; Wakasa, K; Yamaki, M; Matsui, A

    1990-09-01

    Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.

  11. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates.

    PubMed

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    The local structure of apatite-type lanthanum silicates of general formula La 9.33+x (SiO 4 ) 6 O 2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO 4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  12. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates

    PubMed Central

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    Abstract The local structure of apatite-type lanthanum silicates of general formula La9.33+x(SiO4)6O2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions. PMID:28970872

  13. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-12-01

    The local structure of apatite-type lanthanum silicates of general formula La9.33+x(SiO4)6O2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  14. Bone-like apatite growth on controllable macroporous titanium scaffolds coated with microporous titania.

    PubMed

    Rao, Xi; Li, Jing; Feng, Xue; Chu, Chenglin

    2018-01-01

    In this study, a simple, cost-effective approach of polymeric foam replication was used to produce three-dimensionally macroporous titanium scaffolds with controllable porosities and mechanical properties. Two kinds of porous titanium scaffolds with different porosities (74.7% and 87.6%) and pore sizes (360µm and 750µm) were fabricated. Both of the scaffolds exhibit good compressive strength (24.5MPa and 13.5MPa) with a low elastic modulus (0.23GPa and 0.11GPa), approximating the mechanical properties of nature human cancellous bone (E = 10-50MPa, σ = 0.01-3.0GPa). Thereafter, the scaffolds were surface modified using plasma electrolyte oxidation (PEO) process to gain a bioactive porous titania ceramic coating. The SBF immersion test indicates PEO treated scaffolds show excellent bioactivity as the apatite rapidly nucleates and grows on the scaffold surface during 3-28 days. The results suggest that the highly porous titanium scaffolds with titania bioactive coatings are promising in cancellous bone replacement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile

    NASA Astrophysics Data System (ADS)

    Broughm, Shannon G.; Hanchar, John M.; Tornos, Fernando; Westhues, Anne; Attersley, Samuel

    2017-12-01

    Interpretation of the mineralizing environment of magnetite-apatite deposits remains controversial with theories that include a hydrothermal or magmatic origin or a combination of those two processes. To address this controversy, we have analyzed the trace element content of magnetite from precisely known geographic locations and geologic environments from the Precambrian magnetite-apatite ore and host rocks in Kiruna, Sweden, and the Pliocene-Holocene El Laco volcano in the Atacama desert of Chile. Magnetite samples from Kiruna have low trace element concentrations with little chemical variation between the ore, host, and related intrusive rocks. Magnetite from andesite at El Laco, and dacite from the nearby Láscar volcano, has high trace element concentrations typical of magmatic magnetite. El Laco ore magnetite have low trace element concentrations and displays growth zoning in incompatible elements (Si, Ca, and Ce), compatible elements (Mg, Al, and Mn), large-ion lithophile element (Sr), and high field strength element (Y, Nb, and Th). The El Laco ore magnetite are similar in composition to magnetite that has been previously interpreted to have crystallized from hydrothermal fluids; however, there is a significant difference in the internal zoning patterns. At El Laco, each zoned element is either enriched or depleted in the same layers, suggesting the magnetite crystallized from a volatile-rich, iron-oxide melt. In general, the compositions of magnetite from these two deposits plot in very wide fields that are not restricted to the proposed fields in published discriminant diagrams. This suggests that the use of these diagrams and genetic models based on them should be used with caution.

  16. Apatite (U-Th)/He Thermochronometry as an innovative Geothermal Exploration Tool - A case study from the Wassuk Range, Hawthorne, Nevada

    NASA Astrophysics Data System (ADS)

    Gorynski, K. E.; Stockli, D. F.; Walker, J. D.

    2010-12-01

    A utility-grade geothermal system requires increased, near-surface temperatures (>120°C), water to transfer heat, and structural or sedimentological fluid conduits. In extensional tectonic settings, geothermal anomalies often occur in areas with recent, high strain accumulation and complex faulting (i.e., cross-faults, accommodation zones) where exhumation and uplift of footwall rocks transfer heat, via advection, to the near-surface which is further carried by water through structural fluid conduits. Apatite helium (AHe) thermochronometric footwall age mapping can be used in conjunction with these genetic occurrence models to further focus regional-scale geothermal exploration efforts to areas of probabilistic increased fracture permeability and most recent, rapid footwall exhumation. Furthermore, partially reset apatites resulting from interaction with hydrothermal fluids (>40°C) will show which areas have been hottest most recently. This case study in the Wassuk Range, Hawthrone, NV confirms the utility of AHe thermochronometry as a geothermal exploration tool. A dense grid of footwall samples were collected adjacent to the Hawthorne geothermal anomaly (>85°C BHT) located in the hanging wall of the Wassuk Range block. Our data show that the location of the present-day geothermal anomaly correlates with the location of 1) the most recent episode of rapid footwall exhumation at 3.5-4 Ma, 2) km scale accommodation zones between differentially tilted Wassuk Range blocks, and 3) an elevated Miocene geothermal gradient. Furthermore, anomalously young AHe ages (<3.5 Ma) mimic the lateral extent of the Hawthorne geothermal anomaly and likely resulted from interaction with a deep-seated geothermal cell or hot hydrothermal fluids.

  17. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    PubMed Central

    Bsat, Suzan; Amin Yavari, Saber; Munsch, Maximilian; Valstar, Edward R.; Zadpoor, Amir A.

    2015-01-01

    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH) treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M) and immersion times (6, 24 h) of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF) immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface. PMID:28788021

  18. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    NASA Astrophysics Data System (ADS)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  19. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability.

    PubMed

    Bsat, Suzan; Yavari, Saber Amin; Munsch, Maximilian; Valstar, Edward R; Zadpoor, Amir A

    2015-04-08

    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH) treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M) and immersion times (6, 24 h) of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF) immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200-300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  20. Apatitic connecting rings in moulds of Baculites sp. from the middle part of the Smoky Hill Member, Niobrara Chalk (Santonian), of western Kansas

    USGS Publications Warehouse

    Hasenmueller, W.A.; Hattin, D.E.

    1985-01-01

    Moulds of Baculites sp. are common in the Smoky Hill Member but only five known specimens contain connecting rings that have been preserved because of mineralisation by carbonate apatite. Analysis of four of these specimens suggests that the connecting rings were originally composed of organic material and were mineralised during early diagenesis. Thin sections and scanning electron microscopy demonstrate that the connecting rings had a two-layered structure consisting of a thick siphuncular wall and a thin pellicle. ?? 1985.

  1. The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dental use.

    PubMed

    Fathi, Hawa M; Johnson, Anthony

    2016-02-01

    The aim of this study was to evaluate the effect of TiO2 concentration on the properties of apatite-mullite glass-ceramics namely strength and the chemical solubility to comply with the ISO standard recommendations for dental ceramics (BS EN ISO 6872-2008). Ten novel glass-ceramic materials were produced based on the general formula (4.5SiO2-3Al2O3-1.5P2O5-3CaO-CaF2-xTiO2) where x varied from 0.5 to 5 wt%. Glass with no TiO2 added (HG1T0.0) was used as a reference. Discs of 12 mm diameter and 1.6 mm (±0.2 mm) thickness were prepared for both biaxial flexural strength (BFS) and chemical solubility testing, in accordance with the BS EN ISO 6872-2008 for dental ceramics. All produced materials were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Energy dispersive X-ray analysis (EDS) was also carried out on some samples to identify the element composition of samples. Increasing the concentration of TiO2 from 0.5 wt% to 2 wt% significantly (P<0.05) increased the chemical solubility of the material. With the material containing 2.5 wt% of TiO2, the solubility significantly reduced (P<0.05) and resulted in a solubility value of 228.3 μm/cm(2) and BFS value of 197.9 MPa. Increasing the TiO2 concentration more than 2.5 wt%, led to a significant (P<0.05) increase in solubility and a reduction in BFS. TiO2 is an effective agent for improving the durability and the mechanical properties of an apatite-mullite glass-ceramic only up to 2.5 wt% concentration. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. The function of Sn(II)-apatite as a Tc immobilizing agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, R. Matthew; Neeway, James J.; Lawter, Amanda R.

    2016-11-01

    Technetium-99 is a radioactive contaminant of high concern at many nuclear waste storage sites. At the U.S. Department of Energy Hanford Site, 99Tc is a component of low-activity waste (LAW) fractions of the nuclear tank waste, which are highly caustic, high ionic strength and have high concentrations of chromate. Removal of 99Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of 99Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant using two solid sorbents, tin (II) apatite (Sn-A) and SnCl2 through batch sorption testing and solid phase characterization. Sn-Amore » showed higher levels of removal of Tc from both DIW and LAW simulant compared with the SnCl2. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray adsorption spectroscopy (XAS) of Sn-A following batch experiments in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface with no incorporation into the lattice structure of Sn-A. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI) over Tc(VII).« less

  3. New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data

    NASA Astrophysics Data System (ADS)

    Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter

    2017-04-01

    New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data Krob, F.C.1, Stippich, C. 1, Glasmacher, U.A.1, Hackspacher, P.C.2 (1) Institute of Earth Sciences, Research Group Thermochronology and Archaeometry, Heidelberg University, INF 234, 69120, Heidelberg, Germany (2) Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Av. 24-A, 1515 Rio Claro, SP, 13506-900, Brazil Passive continental margins are important geoarchives related to mantle dynamics, the breakup of continents, lithospheric dynamics, and other processes. The main concern yields the quantifying long-term lithospheric evolution of the continental margin between São Paulo and Laguna in southeastern Brazil since the Neoproterozoic. We put special emphasis on the reactivation of old fracture zones running into the continent and their constrains on the landscape evolution. In this contribution, we represent already consisting thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4) Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 427.6 (1.8) Ma whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0) Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.52) and 92.0 (1.86) Ma. These thermochronological ages from metamorphic, sedimentary and intrusive rocks show six distinct blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos) with different evolution cut by old fracture zones. Furthermore, models of time-temperature evolution illustrate the differences in Pre- to post-rift exhumation histories of these blocks. The presented data will provide an insight into the complex exhumation history of the continental margin based on the existing literature data on the evolution of the Paraná basin in Brazil and the latest

  4. Apatite (U-Th-Sm)/He age dispersion arising from analysis of variable grain sizes and broken crystals - examples from the Scottish Southern Uplands

    NASA Astrophysics Data System (ADS)

    Łuszczak, Katarzyna; Persano, Cristina; Stuart, Finlay; Brown, Roderick

    2016-04-01

    Apatite (U-Th-Sm)/He (AHe) thermochronometry is a powerful technique for deciphering denudation of the uppermost crust. However, the age dispersion of single grains from the same rock is typical, and this hampers establishing accurate thermal histories when low grain numbers are analysed. Dispersion arising from the analysis of broken crystal fragments[1] has been proposed as an important cause of age dispersion, along with grain size and radiation damage. A new tool, Helfrag[2], allows constraints to be placed on the low temperature history derived from the analysis of apatite crystal fragments. However, the age dispersion model has not been fully tested on natural samples yet. We have performed AHe analysis of multiple (n = 20-25) grains from four rock samples from the Scottish Southern Uplands, which were subjected to the same exhumation episodes, although, the amount of exhumation varied between the localities. This is evident from the range of AFT ages (˜60 to ˜200 Ma) and variable thermal histories showing either strong, moderate and no support for a rapid cooling event at ˜60 Ma. Different apatite size and fragment geometry were analysed in order to maximise age dispersion. In general, the age dispersion increases with increasing AFT age (from 47% to 127%), consistent with the prediction from the fragmentation model. Thermal histories obtained using Helfrag were compared with those obtained by standard codes based on the spherical approximation. In one case, the Helfrag model was capable of resolving the higher complexity of the thermal history of the rock, constraining several heating/cooling events that are not predicted by the standard models, but are in good agreement with the regional geology. In other cases, the thermal histories are similar for both Helfrag and standard models and the age predictions for the Helfrag are only slightly better than for standard model, implying that the grain size has the dominant role in generating the age dispersion

  5. Rare earth elements in apatite: Uptake from H{sub 2}O-bearing phosphate-fluoride melts and the role of volatile components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleet, M.E.; Pan, Yuanming

    The partitioning of rare earth elements (REEs) between fluorapatite (FAp) and H{sub 2}O- bearing phosphate-fluoride melts has been studied at about 700 and 800{degrees}C and 0.10-0.15 GPa. REE uptake patterns, i.e., plots of D(REE:FAp/melt), are convex upwards and peak near Nd for single-REE substituted FAp at minor (0.03-0.25 wt% REE{sub 2}O{sub 3}) abundances, and binary (LREE + HREE)-substituted FAp, and hexa-REE-substituted FAp at minor to major (0.25-7.8 wt% REE{sub 2}O{sub 3}) abundances. Partition coefficients for minor abundances of REE and depolymerized phosphate melts are about 5, 8, and 1 for La, Nd, and Lu, respectively and broadly comparable to thosemore » for early fluorapatite in the fractionation of melts of basaltic composition. The Ca2 site exerts marked control on the selectivity of apatite for REE because it preferentially incorporates LREE and its effective size varies with substitution of the A-site volatile anion component (F, Cl, OH). Using simple crystal-chemical arguments, melt(or fluid)-normalized REE patterns are predicted to peak near Nd for fluorapatite and be more LREE-enriched for chlorapatite. These predictions are consistent with data from natural rocks and laboratory experiments. The wide variation in D(REE:apatite/melt) in nature (from <1 for whitlockite-bearing lunar rocks to about 100 for evolved alkalic rocks) is attributed largely to the influence of the volatile components. 49 refs., 8 figs., 3 tabs.« less

  6. Lead apatites: structural variations among Pb 5( BO 4) 3 Cl with B = P (pyromorphite), As (mimetite) and V (vanadinite)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Dhaliwal, Inayat

    The crystal structure of four Pb apatite samples, Pb 5(BO 4) 3Cl, was refined with synchrotron high-resolution powder X-ray diffraction data, Rietveld refinements, space groupP6 3/mandZ= 2. For this isotypic series,B= P 5+ is pyromorphite,B= As 5+is mimetite andB= V 5+is vanadinite. The ionic radius for As 5+(0.355 Å) is similar to that of V 5+(0.335 Å), and this is twice as large as that for P 5+(0.170 Å). However, thecunit-cell parameter for mimetite is surprisingly different from that of vanadinite, although their unit-cell volumes,V, are almost equal to each other. No explanation was available for this peculiarc-axis value for mimetite. Structural parameters such as averagemore » $$\\langle$$B—O$$\\rangle$$ [4], $$\\langle$$Pb1—O 9$$\\rangle$$ [9] and $$\\langle$$Pb2—O 6Cl 2$$\\rangle$$ [8] distances increase linearly withV (the coordination numbers for the cations are given in square brackets). Mimetite has a short Pb2—O1 distance, so the O1 oxygen atom interacts with the 6s 2lone-pair electrons of the Pb 2+ cation that causes the Cl—Cl distance (=c/2) to increase to the largest value in the series because of repulsion, which causes thec-axis to increase anomalously. Although Pb apatite minerals occur naturally in ore deposits, they are also formed as scaly deposits in lead water pipes that give rise to lead in tap water, as was found recently in Flint, Michigan, USA. It is important to identify Pb-containing phases in water-pipe deposits.« less

  7. Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden

    NASA Astrophysics Data System (ADS)

    Guenthner, William R.; Reiners, Peter W.; Drake, Henrik; Tillberg, Mikael

    2017-07-01

    Craton cores far from plate boundaries have traditionally been viewed as stable features that experience minimal vertical motion over 100-1000 Ma time scales. Here we show that the Fennoscandian Shield in southeastern Sweden experienced several episodes of burial and exhumation from 1800 Ma to the present. Apatite, titanite, and zircon (U-Th)/He ages from surface samples and drill cores constrain the long-term, low-temperature history of the Laxemar region. Single grain titanite and zircon (U-Th)/He ages are negatively correlated (104-838 Ma for zircon and 160-945 Ma for titanite) with effective uranium (eU = U + 0.235 × Th), a measurement proportional to radiation damage. Apatite ages are 102-258 Ma and are positively correlated with eU. These correlations are interpreted with damage-diffusivity models, and the modeled zircon He age-eU correlations constrain multiple episodes of heating and cooling from 1800 Ma to the present, which we interpret in the context of foreland basin systems related to the Neoproterozoic Sveconorwegian and Paleozoic Caledonian orogens. Inverse time-temperature models constrain an average burial temperature of 217°C during the Sveconorwegian, achieved between 944 Ma and 851 Ma, and 154°C during the Caledonian, achieved between 366 Ma and 224 Ma. Subsequent cooling to near-surface temperatures in both cases could be related to long-term exhumation caused by either postorogenic collapse or mantle dynamics related to the final assembly of Rodinia and Pangaea. Our titanite He age-eU correlations cannot currently be interpreted in the same fashion; however, this study represents one of the first examples of a damage-diffusivity relationship in this system, which deserves further research attention.

  8. Insight into Bone-Derived Biological Apatite: Ultrastructure and Effect of Thermal Treatment

    PubMed Central

    Liu, Quan; Pan, Haobo; Chen, Zhuofan; Matinlinna, Jukka Pekka

    2015-01-01

    Objectives. This study aims at examining the ultrastructure of bone-derived biological apatite (BAp) from a series of small vertebrates and the effect of thermal treatment on its physiochemical properties. Materials and Methods. Femurs/fin rays and vertebral bodies of 5 kinds of small vertebrates were firstly analyzed with X-ray microtomography. Subsequently, BAp was obtained with thermal treatment and low power plasma ashing, respectively. The properties of BAp, including morphology, functional groups, and crystal characteristics were then analyzed. Results. The bones of grouper and hairtail were mainly composed of condensed bone. Spongy bone showed different distribution in the bones from frog, rat, and pigeon. No significant difference was found in bone mineral density of condensed bone and trabecular thickness of spongy bone. Only platelet-like crystals were observed for BAp obtained by plasma ashing, while rod-like and irregular crystals were both harvested from the bones treated by sintering. A much higher degree of crystallinity and larger crystal size but a lower content of carbonate were detected in the latter. Conclusion. Platelet-like BAp is the common inorganic component of vertebrate bones. BAp distributing in condensed and spongy bone may exhibit differing thermal reactivity. Thermal treatment may alter BAp's in vivo structure and composition. PMID:25695088

  9. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants.

    PubMed

    Ballo, Ahmed M; Xia, Wei; Palmquist, Anders; Lindahl, Carl; Emanuelsson, Lena; Lausmaa, Jukka; Engqvist, Håkan; Thomsen, Peter

    2012-07-07

    The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone-implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation.

  10. REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley

    USGS Publications Warehouse

    Macdonald, R.; Baginski, B.; Belkin, H.E.; Dzierzanowski, P.; Jezak, L.

    2009-01-01

    Electron microprobe analyses are presented for fluorapatite phenocrysts from a benmoreite-peralkaline rhyolite volcanic suite from the Kenya Rift Valley. The rocks have previously been well characterized petrographically and their crystallization conditions are reasonably well known. The REE contents in the M site increase towards the rhyolites, with a maximum britholite component of ~35 mol.%. Chondrite-normalized REE patterns are rather flat between La and Sm and then decrease towards Yb. Sodium and Fe occupy up to 1% and 4%, respectively, of the M site. The major coupled substitution is REE3+ + Si4+ ??? Ca2+ + P5+. The substitution REE3+ + Na+ ??? 2Ca2+ has been of minor importance. The relatively large Fe contents were perhaps facilitated by the low fo2 conditions of crystallization. Zoning is ubiquitous and resulted from both fractional crystallization and magma mixing. Apatites in some rhyolites are relatively Y-depleted, perhaps reflecting crystallization from melts which had precipitated zircon. Mineral/glass (melt) ratios for two rhyolites are unusually high, with maxima at Sm (762, 1123). ?? 2008 The Mineralogical Society.

  11. Tectonic significance of precambrian apatite fission-track ages from the midcontinent United States

    USGS Publications Warehouse

    Crowley, K.D.; Naeser, C.W.; Babel, C.A.

    1986-01-01

    Apparent apatite fission-track ages from drill core penetrating basement on the flank of the Transcontinental Arch in northwestern Iowa range from 934 ?? 86 to 641 ?? 90 Ma. These ages, the oldest reported in North America, record at least two thermal events. The 934 Ma age, which is synchronous with KAr ages in the Grenville Province and many KAr whole-rock and RbSr isochron ages from the Lake Superior region, may document basement cooling caused by regional uplift and erosion of the crust. The remaining fission-track ages are products of a more recent thermal event, relative to the age of the samples, which raised temperatures into the zone of partial annealing. Heating may have occurred between the Middle Ordovician and Middle Cretaceous by burial of the basement with additional sediment. It is estimated that burial raised temperatures in the part of the basement sampled by the core to between 50 and 75??C. These temperature estimates imply paleogeothermal gradients of about 20??C/km, approximately two and one-half times present-day values, and burial of the basement by an additional 2-3 km of sediment. ?? 1986.

  12. Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer

    NASA Astrophysics Data System (ADS)

    Brown, Roderick W.; Beucher, Romain; Roper, Steven; Persano, Cristina; Stuart, Fin; Fitzgerald, Paul

    2013-12-01

    Over the last decade major progress has been made in developing both the theoretical and practical aspects of apatite (U-Th)/He thermochronometry and it is now standard practice, and generally seen as best practice, to analyse single grain aliquots. These individual prismatic crystals are often broken and are fragments of larger crystals that have broken during mineral separation along the weak basal cleavage in apatite. This is clearly indicated by the common occurrence of only 1 or no clear crystal terminations present on separated apatite grains, and evidence of freshly broken ends when grains are viewed using a scanning electron microscope. This matters because if the 4He distribution within the whole grain is not homogeneous, because of partial loss due to thermal diffusion for example, then the fragments will all yield ages different from each other and from the whole grain age. Here we use a numerical model with a finite cylinder geometry to approximate 4He ingrowth and thermal diffusion within hexagonal prismatic apatite crystals. This is used to quantify the amount and patterns of inherent, natural age dispersion that arises from analysing broken crystals. A series of systematic numerical experiments were conducted to explore and quantify the pattern and behaviour of this source of dispersion using a set of 5 simple thermal histories that represent a range of plausible geological scenarios. In addition some more complex numerical experiments were run to investigate the pattern and behaviour of grain dispersion seen in several real data sets. The results indicate that natural dispersion of a set of single fragment ages (defined as the range divided by the mean) arising from fragmentation alone varies from c. 7% even for rapid (c. 10 °C/Ma), monotonic cooling to over 50% for protracted, complex histories that cause significant diffusional loss of 4He. The magnitude of dispersion arising from fragmentation scales with the grain cylindrical radius, and is of

  13. From waste to high-value product: Jackfruit peel derived pectin/apatite bionanocomposites for bone healing applications.

    PubMed

    Govindaraj, Dharman; Rajan, Mariappan; Hatamleh, Ashraf A; Munusamy, Murugan A

    2018-01-01

    Public requirements encouraged by the current asset framework drive industry to expand its general effectiveness by enhancing existing procedures or finding new uses for waste. Thus, the aim of this study was the isolation, fabrication, and characterization of pectin derived from jackfruit (Artocarpus heterophyllus) peels and the generation of hybrid of pectin (P)/apatite (HA) (P/HA) bionanocomposites. In this process, the natural pectin polymer derived from the peel of jackfruits was used in different concentrations for the fabrication of HA bionanocomposites. Characterization of the isolated pectin and bionanocomposites samples was performed with 1 H NMR and 13 C NMR, FTIR, XRD, SEM-EDX, and HR-TEM. Cytocompatibility, ALP, fibroblast stem cells, anti-inflammatory and cell adhesion testing of the fabricated bionanocomposites was showed good biocompatibility. Our results signify that the fabricated bionanocomposites might be applicable as bone graft materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS

    NASA Astrophysics Data System (ADS)

    Willigers, B. J. A.; Baker, J. A.; Krogstad, E. J.; Peate, D. W.

    2002-03-01

    To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (≪1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ

  15. The effect of ZrO2 and TiO 2 on solubility and strength of apatite-mullite glass-ceramics for dental applications.

    PubMed

    Fathi, Hawa M; Miller, Cheryl; Stokes, Christopher; Johnson, Anthony

    2014-03-01

    The effect of ZrO2 and TiO2 on the chemical and mechanical properties of apatite-mullite glass-ceramics was investigated after sample preparation according to the ISO (2768:2008) recommendations for dental ceramics. All materials were characterized using differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. X-ray fluorescence spectroscopy was used to determine the concentrations of elements present in all materials produced. The chemical solubility test and the biaxial flexural strength (BFS) test were then carried out on all the samples. The best solubility value of 242 ± 61 μg/cm(2) was obtained when HG1T was heat-treated for 1 h at the glass transition temperature plus 20 °C (Tg + 20 °C) followed by 5 h at 1200 °C. The highest BFS value of 174 ± 38 MPa was achieved when HG1Z and HG1Z+T were heat-treated for 1 h at the Tg + 20 °C followed by 7 h at 1200 °C. The present study has demonstrated that the addition of TiO2 to the reference composition showed promise in both the glass and heat-treated samples. However, ZrO2 is an effective agent for developing the solubility or the mechanical properties of an apatite-mullite glass-ceramic separately but does not improve the solubility and the BFS simultaneously.

  16. Timing of Exhumation of the Mesozoic Blue Nile Rift, Ethiopia: A New Study from Apatite Fission Track Thermochronology

    NASA Astrophysics Data System (ADS)

    Gani, N. D.; Bowden, S. M.

    2017-12-01

    At present, tectonic features of Ethiopia are dominated by the 2.5 km high Ethiopian Plateau, and the NE-SW striking continental rift, the East African Rift System (EARS) that dissected the plateau into the northwest and southeast plateaus. The stress direction of the EARS is nearly perpendicular to the stress direction of the Mesozoic rifts of the Central African Rift System (CARS), located mostly in Sudan, Ethiopia and Kenya. During the Gondwana splitting in Mesozoic, active lithospheric extension within the CARS resulted in several NW-SE striking continental rifts including the Blue Nile, Muglad, Melut and Anza that are well documented in Sudan and Kenya, from a combination of geophysical and drill core analysis and field investigations. However, the timing and evolution of the poorly documented Blue Nile Rift in Ethiopia, now hidden in the subsurface of the Ethiopian Plateau and the EARS, is largely unknown. This study investigates, for the first time, the timing of tectono-thermal evolution of the Blue Nile Rift from cooling ages deduced from apatite fission track (AFT) thermochronology to understand the rift flank exhumation. Here, we report the AFT results from basement samples collected in a vertical transect from the Ethiopian Plateau. The fission track ages of the samples show a general trend of increasing cooling ages with elevations. The time-temperature simulations of the fission track ages illustrate that the cooling started at least 80 Ma ago with a significant amount of rapid cooling between 80 and 70 Ma, followed by a slow cooling after 70 Ma and then another accelerated cooling starting around 10 Ma. The Cretaceous rapid cooling event likely related to the flank uplift of the Blue Nile Rift and associated faulting, during which much of the exhumation occurred. Today, the Blue Nile Rift is buried under the thick cover of Mesozoic sedimentary rocks and Cenozoic volcanics. The late Neogene rapid cooling agrees well with our previous thermal model

  17. The interaction between cations and anionic groups inducing SHG enhancement in a series of apatite-like crystals: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Qun; University of Chinese Academy of Sciences, Beijing 100049; Department of Physics, School of Science, Shihezi University, Shihezi 832000

    2014-11-15

    It is an interesting topic to reveal the origin of the SHG intensity enhancement after substitution from alkali and alkali-earth metal atoms to cadmium in a series of apatite-like borates KSr{sub 4}(BO{sub 3}){sub 3}, Ca{sub 5}(BO{sub 3}){sub 3}F, Cd{sub 5}(BO{sub 3}){sub 3}F. Combined with the first-principles method, SHG-density method and real-space atom-cutting method, the electronic structure, the optical properties and the contribution of respective ion and ion groups have been investigated. Second harmonic generation (SHG) responses are mainly attributed to BO{sub 3} groups with π conjugated configuration and their alignment framework. The contributions of A site are more important inmore » CaBOF and CdBOF compounds than in KSrBO. It is also demonstrated that the strong covalent interactions between the boron–oxygen groups and the cadmium atoms contribute the enhancement of SHG responses after substitution from alkali and alkali-earth metal atoms. - graphical abstract: Combined with the first-principles method, SHG-density method and real-space atom-cutting method, the enhancement of SHG response are attributed to the interaction between cadmium and BO{sub 3} groups. - Highlights: • SHG response on a series of apatite-like borates was studied by a SHG-density method. • SHG responses are mainly attributed to BO{sub 3} groups and their alignment framework. • The contributions of A site are more important in CaBOF and CdBOF than in KSrBO. • Covalent interaction between BO and Cd is responsible for SHG of CdBOF.« less

  18. The in vitro antibiotic release from anti-washout apatite cement using chitosan.

    PubMed

    Takechi, Masaaki; Miyamoto, Youji; Momota, Yukihiro; Yuasa, Tetsuya; Tatehara, Seikou; Nagayama, Masaru; Ishikawa, Kunio; Suzuki, Kazuomi

    2002-10-01

    The in vitro antibiotic release from anti-washout apatite cement using chitosan (aw-AC(chi)) was investigated in a preliminary evaluation. Flomoxef sodium was employed as the antibiotic and was incorporated into the powder phase aw-AC(chi) at up to 10%. The setting times were measured for aw-AC(chi) containing various amounts of flomoxef sodium. X-ray diffraction (XRD) analysis was also conducted for the identification of products. To evaluate the drug release profile, set aw-AC was immersed in saline and the released flomoxef sodium was determined at regular intervals. The setting time was prolonged slightly with the addition of flomoxef sodium. The difference at 10% flomoxef sodium (0% vs. 10%) was not significant (p>0.05), and can be negligible in clinic. The XRD analysis revealed that formation of hydroxyapatite (HAP) from aw-AC(chi) was reduced, even after 24 h, when the aw-AC(chi) contained flomoxef sodium at 8% or more. The flomoxef sodium release from aw-AC(chi) showed the typical profile observed in skeleton type drug delivery system (DDS). Changing the concentration of chitosan can control the rate of drug release from aw-AC. Therefore, we conclude that aw-AC(chi) is a good candidate for potential use as a DDS carrier that may be useful in surgical operations.

  19. The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Tropper, Peter; Kaindl, Reinhard

    2013-04-01

    In this study we report P-rich olivine and the tric-calcium phosphate (TCP) stanfieldite in partially molten quartzphyllites from the ritual immolation site at the Goldbichl, near Innsbruck in the Tyrol, Austria. During partial melting, foamy patches of dark glassy material formed at the surface of the rocks and also as layers within the rocks. The pyrometamorphic rocks contain mostly the mineral assemblage olivine + orthopyroxene + plagioclase + spinel + glass. During the investigation of slag samples from this prehistoric ritual immolation site, extremely P-rich, apatite-bearing micro-domains were found. In these domains phosphoran olivine was found whose P contents are approaching the maximum P contents in olivine according to the experimental investigations of Boesenberg and Hewins (Geochim Cosmochim Acta 74:1923-1941, 2010). The textures within these domains indicate strongly disequilibrium conditions. The phosphoran olivines formed due to reactions involving apatite and the mineral assemblage of the quartzphyllites, and coexist with plagioclase and a tri-calcium phosphate phase (TCP) showing stanfieldite Ca4(Mg, Fe2+, Mn2+)5(PO4)6 composition. In terms of its chemical composition, olivine shows a wide range in composition with P ranging from 0.3 to 0.54 a.p.f.u, which corresponds to maximal 23 wt.% P2O5. These are the highest P-contents in olivine reported from rocks so far. The incorporation of P correlates with decreasing Si contents according to the charge balancing scheme 2{{P}^{5+ }}+□{{M}_{1,2 }}=2S{{i}^{4+ }}+{{( {Mg,Fe} )}^{2+ }}{{M}_{1,2 }} . Therefore P can only be incorporated in combination with a vacancy on the M1,2 position. Micro-Raman spectroscopy of phosphoran olivines indicates that these olivines can easily be identified with this method due to the strong signals of the SiO4 and PO4 vibrations. The external vibrations of the M1,2 sites at low wave-numbers are more complex than for P-free olivine. This might be due to the effect of P5+ on

  20. Peri-apatite coating decreases uncemented tibial component migration: long-term RSA results of a randomized controlled trial and limitations of short-term results.

    PubMed

    Van Hamersveld, Koen T; Marang-Van De Mheen, Perla J; Nelissen, Rob G H H; Toksvig-Larsen, Sören

    2018-05-09

    Background and purpose - Biological fixation of uncemented knee prostheses can be improved by applying hydroxyapatite coating around the porous surface via a solution deposition technique called Peri-Apatite (PA). The 2-year results of a randomized controlled trial, evaluating the effect of PA, revealed several components with continuous migration in the second postoperative year, particularly in the uncoated group. To evaluate whether absence of early stabilization is diagnostic of loosening, we now present long-term follow-up results. Patients and methods - 60 patients were randomized to PA-coated or uncoated (porous only) total knee arthroplasty of which 58 were evaluated with radiostereometric analysis (RSA) performed at baseline, at 3 months postoperatively and at 1, 2, 5, 7, and 10 years. A linear mixed-effects model was used to analyze the repeated measurements. Results - PA-coated components had a statistically significantly lower mean migration at 10 years of 0.94 mm (95% CI 0.72-1.2) compared with the uncoated group showing a mean migration of 1.72 mm (95% CI 1.4-2.1). Continuous migration in the second postoperative year was seen in 7 uncoated components and in 1 PA-coated component. All of these implants stabilized after 2 years except for 2 uncoated components. Interpretation - Peri-apatite enhances stabilization of uncemented components. The number of components that stabilized after 2 years emphasizes the importance of longer follow-up to determine full stabilization and risk of loosening in uncemented components with biphasic migration profiles.

  1. New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry

    NASA Astrophysics Data System (ADS)

    Witt, C.; Brichau, S.; Carter, A.

    2012-12-01

    The timing and source of deformation responsible for formation of the Sierra Madre de Chiapas (south Mexico) are unclear. To address this, apatite fission track and U-Th-He thermochronometry, combined with zircon U-Pb dating, were performed on bedrock and sedimentary samples of the Sierra Madre de Chiapas to discern timing of exhumation and identify sediment source areas. The U-Pb results show that Paleocene-Eocene terrigenous units outcropping at the northern section of the Sierra were mostly derived from Grenville (˜1 Ga) basement whereas the internal sections of the chain yield mainly Permian to Triassic ages (circa 270-230 Ma) typical of the Chiapas massif complex. Grenville-sourced sediments are most probably sourced by the Oaxacan block or the Guichicovi complex and were deposited to the north of the Sierra in a foreland setting related to a Laramide deformation front. Other possibly source areas may be related to metasedimentary units widely documented at the south Maya block such as the Baldi unit. The apatite fission track and U-Th-He data combined with previously published results record three main stages in exhumation history: (1) slow exhumation between 35 and 25 Ma affecting mainly the Chiapas massif complex; (2) fast exhumation between 16 and 9 Ma related to the onset of major strike-slip deformation affecting both the Chiapas massif complex and Chiapas fold-and-thrust belt; and (3) a 6 to 5 Ma period of rapid cooling that affected the Chiapas fold-and-thrust belt, coincident with the landward migration of the Caribbean-North America plate boundaries. These data suggest that most of the topographic growth of the Sierra Madre de Chiapas took place in the middle to late Miocene. The new thermochronological evidence combined with stratigraphic and kinematic information suggests that the left-lateral strike-slip faults bounding the Chiapas fold-and-thrust belt to the west may have accommodated most of the displacement between the North American and

  2. Partitioning in REE-saturating minerals - Theory, experiment, and modelling of whitlockite, apatite, and evolution of lunar residual magmas

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Haskin, Larry A.; Colson, Russell O.; Wadhwa, Meenakshi

    1993-01-01

    Compositions, including REEs determined by ion microprobe, of apatite and whitlockite in lunar rock assemblages rich in incompatible trace elements, are presented. Concentrations of REEs in lunar whitlockites are high, ranging from about 1.2 to 2.1 REEs (lanthanides + Y) per 56 oxygens. This slightly exceeds the level of two REE atoms per 56 oxygens at which the dominant substitution theoretically becomes saturated. This saturation effect leads to whitlockite REE(3+) D values at typical lunar whitlockite REE concentrations which are 30-40 percent lower than the D values at low concentrations. The halogen-to-phosphorous ratio in lunar melts is a key factor determining the REE distribution with crystalline assemblages. As long as P and REE concentrations of melts are in KREEP-like proportions, one or both of the phosphates will saturate in melts at similar REE concentrations.

  3. Fission-track ages of apatites from the Precambrian of Rwanda and Burundi - Relationship to East African rift tectonics

    NASA Astrophysics Data System (ADS)

    van den Haute, P.

    1984-11-01

    Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.

  4. Tracing the oxygen triple isotopic composition of tropospheric molecular oxygen in biogenic apatite - a new tool for palaeoclimatology

    NASA Astrophysics Data System (ADS)

    Pack, A.; Süssenberger, A.; Gehler, A.; Wotzlaw, J.

    2009-04-01

    It has been demonstrated that tropospheric molecular oxygen posses a significant isotope anomaly [1, 2 and refs. therein]. Relative to the rocks- and minerals-defined terrestrial fractionation line (TFL), tropospheric O2 has an anomaly of -0.35‰ [2]. Because almost all oxygen on Earth is contained in rocks, we suggest that the rocks- and minerals-defined TFL [3] should be used as reference when reporting isotope anomalies with ∆17O = δ'17OSMOW - βTFL δ'18OSMOW. We have developed a new technique for the determination of δ17O and δ18O of silicates by means of laser fluorination GC-CF-irmMS. We have determined βTFL to 0.5247 (N > 100), which is identical to the value reported by other laboratories and techniques [2, 3]. The uncertainty in ∆17O is ±0.03 (1σ) for a single analysis. It was suggested that ∆17O of tropospheric O2 can be used as proxy for the global bioactivity rate [GBR, 1] as well as for past atmospheric CO2 concentrations [4]. Past ∆17O of tropospheric O2 can be determined by analyzing O2 trapped in ice [1, 5] or by analyzing sulfates from terrestrial sulphide oxidation [4]. Disadvantage of ice core data is the limitation in time back <1 Myrs. The sulfate approach is used to trace ∆17O of air O2 back to Proterozoic times. Disadvantage of this technique is the uncertainty in the proportion of oxygen from O2 and oxygen from ambient water during oxidation of the sulphides. We suggest that oxygen from tooth and bone phosphate can be used as proxy for the ∆17O of air O2. Mass balance calculations [e.g. 6] suggest that a considerable portion of oxygen in biogenic apatite sources from respired air O2. We have analyzed tooth (enamel, dentine) and bone material by means of direct fluorination for their δ17O and δ18O. We have chosen material of mammals of different body mass (Mb) from Northern Germany (except Indian Elephant). The ∆17O of apatite varies between -0.16‰ for a wood mouse (Apodemus sylvaticus) and +0.04‰ for a wild boar

  5. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".

    PubMed

    Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio

    2017-08-01

    Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .

  6. Impact of mineral fertility and bedrock erosion on single-mineral detrital studies: insights from trace-element and Nd-isotope systematics of detrital apatite from the Po River catchment

    NASA Astrophysics Data System (ADS)

    Malusa', Marco Giovanni; Wang, Jiangang; Garzanti, Eduardo; Villa, Igor M.; Wittman, Hella

    2017-04-01

    The detrital record provides an archive of mountain erosion that preserves key information for paleotectonic and paleoclimatic reconstructions. Detrital studies are often based on single-mineral analyses (e.g., geo/thermochronologic analyses on apatite and zircon). Their geologic interpretation can be challenging, because the impact of each eroding source on the detrital record is controlled by a range of factors including the rate of erosion and the fertility of chosen minerals in eroded bedrock. Here, we combine (i) a state-of-the art dataset of trace element and Nd isotope fingerprints of detrital apatite, (ii) a comprehensive dataset of apatite-fertility measurements (Malusà et al. 2016), (iii) fission-track data, and (iv) cosmogenic-derived erosion rates from the Po River catchment (Wittmann et al. 2016), to test the impact of mineral fertility and bedrock erosion on the single-mineral detrital signal preserved in the final sediment sink. Our results show that the information provided by accessory minerals, when complemented with accurate mineral fertility measurements, are fully consistent with information provided by the analysis of more abundant framework minerals. We found that trace element and Nd isotope analyses provide a reliable tool to disentangle the complex single-mineral record of orogenic erosion, and demonstrate that such a record is largely determined by high-fertility source rocks exposed within the drainage. Detrital thermochronology studies based on the lag-time approach should thus preferably include independent provenance discriminations and a full mineral fertility characterization of the potential source areas, in order to ensure a correct identification of the sediment sources and of the exogenic and endogenic processes monitored in the stratigraphic archive. Malusà M.G., Resentini A., Garzanti E., 2016. Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res., 31, 1-19 Wittmann H., Malusà M.G., Resentini

  7. Fabrication of low-crystalline carbonate apatite foam bone replacement based on phase transformation of calcite foam.

    PubMed

    Maruta, Michito; Matsuya, Shigeki; Nakamura, Seiji; Ishikawa, Kunio

    2011-01-01

    Carbonate apatite (CO(3)Ap) foam may be an ideal bone substitute as it is sidelined to cancellous bone with respect to its chemical composition and structure. However, CO(3)Ap foam fabricated using α-tricalcium phosphate foam showed limited mechanical strength. In the present study, feasibility of the fabrication of calcite which could be a precursor of CO(3)Ap was studied. Calcite foam was successfully fabricated by the so-called "ceramic foam" method using calcium hydroxide coated polyurethane foam under CO(2)+O(2) atmosphere. Then the calcite foam was immersed in Na(2)HPO(4) aqueous solution for phase transformation based on dissolution-precipitation reaction. When CaO-free calcite foam was immersed in Na(2)HPO(4) solution, low-crystalline CO(3)Ap foam with 93-96% porosity and fully interconnected porous structure was fabricated. The compressive strength of the foam was 25.6 ± 6 kPa. In light of these results, we concluded that the properties of the precursor foam were key factors for the fabrication of CO(3)Ap foams.

  8. Bi-layered zirconia/fluor-apatite bridges supported by ceramic dental implants: a prospective case series after thirty months of observation.

    PubMed

    Spies, Benedikt Christopher; Witkowski, Siegbert; Butz, Frank; Vach, Kirstin; Kohal, Ralf-Joachim

    2016-10-01

    The aim of this study was to determine the success and survival rate of all-ceramic bi-layered implant-supported three-unit fixed dental prostheses (IS-FDPs) 3 years after implant placement. Thirteen patients (seven males, six females; age: 41-78 years) received two one-piece ceramic implants (alumina-toughened zirconia) each in the region of the premolars or the first molar and were finally restored with adhesively cemented bi-layered zirconia-based IS-FDPs (3 in the maxilla, 10 in the mandible) composed of CAD/CAM-fabricated zirconia frameworks pressed-over with fluor-apatite glass-ceramic ingots. At prosthetic delivery and the follow-ups after 1, 2 and 3 years, the restorations were evaluated using modified United States Public Health Service (USPHS) criteria. Restorations with minor veneer chippings, a small-area occlusal roughness, slightly soundable restoration margins, minimal contour deficiencies and tolerable color deviations were regarded as success. In case of more distinct defects that could, however, be repaired to a clinically acceptable level, IS-FDPs were regarded as surviving. Kaplan-Meier plots were used for the success/survival analyses. To verify an impact on subjective patients' perceptions, satisfaction was evaluated by visual analog scales (VAS). All patients were seen 3 years after implant installation. No IS-FDP had to be replaced, resulting in 100% survival after a mean observation period of 29.5 months (median: 30.7). At the 3-year follow-up, 7/13 IS-FDPs showed a veneer chipping, 13/13 an occlusal roughness and 12/13 minimal deficiencies of contour/color. Since six restorations showed a major chipping and/or a major occlusal roughness, the Kaplan-Meier success rate was 53.8%. However, patients' significantly improved perceptions of function, esthetics, sense, and speech at prosthetic delivery remained stable over time. Bi-layered zirconia/fluor-apatite IS-FDPs entirely survived the observation period but showed a high frequency of

  9. Lead bioaccumulation in Opuntia ficus-indica following foliar or root exposure to lead-bearing apatite.

    PubMed

    El Hayek, Eliane; El Samrani, Antoine; Lartiges, Bruno; Kazpard, Veronique; Aigouy, Thierry

    2017-01-01

    The contamination of edible leafy vegetables by atmospheric heavy metal-bearing particles is a major issue in environmental toxicology. In this study, the uptake of lead by cladodes of Opuntia ficus-indica (Ofi), traditionally used in Mexican cuisine and in livestock fodder, is investigated after a 4-months exposure of either cladodes or roots to synthetic Pb-fluorapatite particles. Atomic Absorption Spectroscopy (AAS) for the quantitative analysis of Pb levels, Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) for the examination of the cladode surface and fate of particles, and Micro-X-ray fluorescence (μXRF) measurements for elemental mapping of Pb in cladodes, were used. The results evidence that foliar contamination may be a major pathway for the transfer of Pb within Ofi cladodes. The stomata, areoles, and cuticle of cladode surface, play an obvious role in the retention and the incorporation of lead-bearing apatite, thus revealing the hazard of eating contaminated cladodes. The possibility of using series of successive cladodes for biomonitoring the atmospheric pollution in arid and semi-arid regions is also rapidly discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones.

    PubMed

    Piccirillo, C; Silva, M F; Pullar, R C; Braga da Cruz, I; Jorge, R; Pintado, M M E; Castro, P M L

    2013-01-01

    Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 °C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca10(PO4)6(OH)2 and β-Ca(PO4)3) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca10(PO4)6Cl2) and fluorapatite (Ca10(PO4)6F2) were obtained using CaCl2 and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Tectonic and thermal history of the western Serrania del Interior foreland fold and thrust belt and Guarico Basin, north central Venezuela: Implications of new apatite fission track analysis and seismic interpretation

    NASA Astrophysics Data System (ADS)

    Perez de Armas, Jaime Gonzalo

    Structural analysis, interpretation of seismic reflection lines, and apatite fission-track analysis in the Western Serrania del Interior fold and thrust belt and in the Guarico basin of north-central Venezuela indicate that the area underwent Mesozoic and Tertiary-to-Recent deformation. Mesozoic deformation, related to the breakup of Pangea, resulted in the formation of the Espino graben in the southernmost portion of the Guarico basin and in the formation of the Proto-Caribbean lithosphere between the diverging North and South American plates. The northern margin of Venezuela became a northward facing passive margin. Minor normal faults formed in the Guarico basin. The most intense deformation took place in the Neogene when the Leeward Antilles volcanic island arc collided obliquely with South America. The inception of the basal foredeep unconformity in the Late Eocene-Early Oligocene marks the formation of a perisutural basin on top of a buried graben system. It is coeval with minor extension and possible reactivation of Cretaceous normal faults in the Guarico basin. It marks the deepening of the foredeep. Cooling ages derived from apatite fission-tracks suggest that the obduction of the fold and thrust belt in the study area occurred in the Late Oligocene through the Middle Miocene. Field data and seismic interpretations suggest also that contractional deformation began during the Neogene, and specifically during the Miocene. The most surprising results of the detrital apatite fission-track study are the ages acquired in the sedimentary rocks of the easternmost part of the study area in the foreland fold and thrust belt. They indicate an Eocene thermal event. This event may be related to the Eocene NW-SE convergence of the North and South American plates that must have caused the Proto-Caribbean lithosphere to be shortened. This event is not related to the collision of the arc with South America, as the arc was far to the west during the Eocene.

  12. Alteration, oxygen isotope, and fluid inclusion study of the Meishan iron oxide-apatite deposit, SE China

    NASA Astrophysics Data System (ADS)

    Yu, Jinjie; Che, Linrui; Wang, Tiezhu

    2015-10-01

    The Meishan deposit (338 Mt at 39 % Fe) comprises massive ores in the main orebody and stockwork and disseminated ores along the main orebody. Four stages of mineralization and related alteration have been identified. The second stage of mineralization, which was the main stage of iron mineralization, formed stringer, disseminated iron ores, as well as the main Meishan orebody. The fourth stage formed small pyrite and/or gold orebodies above or alongside the main magnetite orebody. Stage 2 apatites have homogenization temperatures of 257-485 °C and salinities of 7.3-11 wt% NaCleq. Calculated δ18Ofluid values of magnetite and apatite from the disseminated ores vary between 7.7 and 14.9 ‰, which is similar to values observed in the massive ores (8.1-12.9 ‰). The high-18O fluids at Meishan have been interpreted as being of magmatic-hydrothermal origin. These fluids are indicative of the boiling of ore-forming fluids. Quartz, occurring as cavity fillings, gives homogenization temperatures from 202 to 344 °C, with most values lying between 250 and 330 °C. Corresponding salinities are ˜5 wt% NaCleq. Calculated δ18Ofluid values are +6.4 to +6.8 ‰. These values indicate that the lower-temperature (250-330 °C) quartz was deposited from a cooling magmatic-hydrothermal fluid. Stage 3 siderites contain fluid inclusions that homogenized between 190 and 310 °C, mainly between 210 and 290 °C. Corresponding salinities are 4-8 wt% NaCleq. Stage 4 quartz-carbonate veinlets contain fluid inclusions that homogenized at moderate to low temperatures (150-230 °C) and exhibit low salinities (2-10 wt% NaCl eq). δ18Ofluid values of the mineralizing fluids for the quartz and calcite can be calculated to vary from -0.7 to +5.6 ‰ and +6.3 to +10.2 ‰, respectively. While there is some overlap, the δ18O values of the fluids are generally lower than those observed in the massive and disseminated magnetite ores. δD values for the quartz and calcite vary between -154 and -123

  13. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    NASA Astrophysics Data System (ADS)

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S.

    2015-11-01

    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca10(PO4)6(OH)2 and β-Ca3(PO4)2 after heat treatment at 1000 °C with the preferential occupancy of Mg2+ at the crystal lattice of β-Ca3(PO4)2. The concentration of Mg2+ uptake in β-Ca3(PO4)2 is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometric value [(Ca+Mg)/P>1.67], Mg2+ precipitates as Mg(OH)2 and thereafter gets converted to MgO during heat treatment. Any kind of Mg2+ uptake in the crystal lattice of Ca10(PO4)6(OH)2 is discarded from the investigation.

  14. 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate / hydroxyl apatite nano particle scaffolds: Potential materials for bone regeneration applications

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas; Bhatia, Gaurav; Nim, Lovedeep; Kaur, Manpreet; Arora, Daljit Singh

    2017-05-01

    Bioresorbable and bioactive scaffolds are promising materials for various biomedical applications including bone regeneration and drug delievrery. Authors present bioactive scaffolds prepared from 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) (PBSu-DCH) with different amount of hydroxyl apatite nanoparticles (nHAp) by solvent casting and particulate leaching techniques. Different weight ratios of nHAp (i.e. 0, 5 and 10 wt %) with fixed weight ratio (i.e. 10 wt %) of PBSu-DCH polymer have been prepared. Scaffolds have been assessed for their morphology, bioactivity, degradation, drug release and biological properties including cytotoxicity, cell attachment using MG-63 cell line and antimicrobial activity. Effectual drug release has been measured by incorporating gentamycin as an antibiotic in the scaffolds. The study is aimed at developing new biodegradable scaffolds to be used in skull, jaw and tooth socket for preserving bone mass.

  15. The KTB apatite fission-track profiles: Building on a firm foundation?

    NASA Astrophysics Data System (ADS)

    Wauschkuhn, B.; Jonckheere, R.; Ratschbacher, L.

    2015-10-01

    Deep boreholes serve as natural laboratories for testing thermochronometers under geological conditions. The Kontinentale Tiefbohrung (KTB) is an interesting candidate because the geological evidence suggests that approximate isothermal holding since the last documented exhumation in the Late Cretaceous to Palaeocene is a reasonable assumption for the thermal histories of the KTB samples. We report 30 new apatite fission-track ages and 50 new mean confined track lengths determined on cores from the 4 km deep pilot hole. The ϕ- and ζ-external detector ages are consistent with the population ages from earlier studies and together define a clear age profile. The mean track lengths from this and earlier studies reveal the effects of experimental factors. The measured age and length profiles are compared with the predictions of 24 annealing models for isothermal holding. There are clear discrepancies between the measured and calculated profiles. Down to 1.5 km depth, the measured mean track lengths are shorter than the predicted. The balance of methodological evidence indicates that this is due to seasoning, i.e., a shortening of the fossil confined tracks without attendant age reduction. From 2.5 to 4.0 km depth, the mean track lengths are longer than the predictions. This suggests that the bias model that weights the probabilities of observing tracks of different length and which is based on experiments relating surface track densities to mean track lengths is not appropriate for confined tracks. Experimental and methodological factors are sometimes difficult to disentangle, but present a sufficient margin for there to be no need to go against the independent geological evidence. Unknown geological events cannot be ruled out but their existence cannot be inferred from the fission-track data alone, much less can the nature or magnitude of such events be specified.

  16. Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications.

    PubMed

    Solìs Moré, Yaimara; Panella, Gloria; Fioravanti, Giulia; Perrozzi, Francesco; Passacantando, Maurizio; Giansanti, Francesco; Ardini, Matteo; Ottaviano, Luca; Cimini, Annamaria; Peniche, Carlos; Ippoliti, Rodolfo

    2018-06-01

    Novel two-dimensional films and three-dimensional (3D) scaffolds based on chitosan (CHI), apatite (Ap), and graphene oxide (GO) were developed by an in situ synthesis in which self-assembly process was conducted to direct partial reduction of GO by CHI in acidic medium. Physical-chemical characterization was carried out by optical microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. In vitro biological studies using murine fibroblast (MC3T3) and human neuroblastoma (SH-SY5Y) cell lines were also performed. Cell growth and adherence on composites was also checked using SEM. Live and death staining by confocal microscope and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium of the samples were investigated. The results confirmed the incorporation of both Ap and GO sheets, into CHI polymeric matrix. Furthermore, it was confirmed a physical integration between inorganic Ap and organic CHI and strong chemical interaction between CHI and GO in the obtained composites. SH-SY5Y cell line showed preferential adherence on CHI/GO films surface while MC3T3 cell line displayed a good compatibility for all 3D scaffolds. This study confirms the biocompatibility of materials based on CHI, Ap, and GO for future tissues applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1585-1594, 2018. © 2018 Wiley Periodicals, Inc.

  17. Using apatite fission track thermochronology to document the deformation sequence in an exhumed foreland basin: an example from the southern Pyrenees.

    NASA Astrophysics Data System (ADS)

    Meresse, F.; Labaume, P.; Jolivet, M.; Teixell, A.

    2009-04-01

    Université Montpellier 2, INSU-CNRS, Laboratoire Géosciences Montpellier, cc060, 34095 Montpellier Cedex 5, France florian.meresse@gm.univ-montp2.fr The study of foreland basins provides important constraints on the evolution of orogenic wedges. In particular, the study of tectonics-sedimentation relationships is essential to date the tectonic activity. However, processes linked to wedge growth are not always completely recorded by the tecto-sedimentary markers, and thermochronological study of the basin-fill can provide further insights. In this work, we have combined apatite fission track analysis (apatite FTA) with structural analysis to precise the timing of the deformation sequence and to characterise the coupling between thrust activity, burial and denudation in the south-Pyrenean foreland basin, a proximal foredeep of the Pyrenees that has been incorporated in the Pyrenean thrust wedge. We have focused the study on a NNE-SSW cross-section of the south-vergent thrust system from the southern flank of the Axial Zone to the South-Pyrenean Frontal Thrust (SPFT), in the west-central part of the belt. This section provides a complete transverse of the South-Pyrenean Zone, here corresponding to the Ainsa and Jaca basins. Apatite FTA provides important new constraints on the south-Pyrenean foreland basin evolution: (i) Data show the southward decrease of the fission track reset level, from a total reset (indicating heating at Tmax>110°C) in the Paleozoic of the Axial Zone, to a partial reset (110°C>Tmax>60°C) in the lower-middle Eocene Hecho Group turbidites in the northern part of the Jaca basin, and to the absence of reset (Tmax<60°C) in the middle Eocene-Oligocene continental sediments of the southern part of the Jaca basin. This indicates a decreasing amount of denudation going southwards, from more than 4.5 km in the north to less than 2.5 km in the south if we assume an average geothermal gradient around 25°/km. The structural setting of the Jaca basin

  18. LENMODEL: A forward model for calculating length distributions and fission-track ages in apatite

    NASA Astrophysics Data System (ADS)

    Crowley, Kevin D.

    1993-05-01

    The program LENMODEL is a forward model for annealing of fission tracks in apatite. It provides estimates of the track-length distribution, fission-track age, and areal track density for any user-supplied thermal history. The program approximates the thermal history, in which temperature is represented as a continuous function of time, by a series of isothermal steps of various durations. Equations describing the production of tracks as a function of time and annealing of tracks as a function of time and temperature are solved for each step. The step calculations are summed to obtain estimates for the entire thermal history. Computational efficiency is maximized by performing the step calculations backwards in model time. The program incorporates an intuitive and easy-to-use graphical interface. Thermal history is input to the program using a mouse. Model options are specified by selecting context-sensitive commands from a bar menu. The program allows for considerable selection of equations and parameters used in the calculations. The program was written for PC-compatible computers running DOS TM 3.0 and above (and Windows TM 3.0 or above) with VGA or SVGA graphics and a Microsoft TM-compatible mouse. Single copies of a runtime version of the program are available from the author by written request as explained in the last section of this paper.

  19. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    NASA Astrophysics Data System (ADS)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  20. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution

    USGS Publications Warehouse

    Saltzman, M. R.; Edwards, C. T.; Leslie, S. A.; Dwyer, Gary S.; Bauer, J. A.; Repetski, John E.; Harris, A. G.; Bergstrom, S. M.

    2014-01-01

    The Ordovician 87Sr/86Sr isotope seawater curve is well established and shows a decreasing trend until the mid-Katian. However, uncertainties in calibration of this curve to biostratigraphy and geochronology have made it difficult to determine how the rates of 87Sr/86Sr decrease may have varied, which has implications for both the stratigraphic resolution possible using Sr isotope stratigraphy and efforts to model the effects of Ordovician geologic events. We measured 87Sr/86Sr in conodont apatite in North American Ordovician sections that are well studied for conodont biostratigraphy, primarily in Nevada, Oklahoma, the Appalachian region, and Ohio Valley. Our results indicate that conodont apatite may provide an accurate medium for Sr isotope stratigraphy and strengthen previous reports that point toward a significant increase in the rate of fall in seawater 87Sr/86Sr during the Middle Ordovician Darriwilian Stage. Our 87Sr/86Sr results suggest that Sr isotope stratigraphy will be most useful as a high-resolution tool for global correlation in the mid-Darriwilian to mid-Sandbian, when the maximum rate of fall in 87Sr/86Sr is estimated at ∼5.0–10.0 × 10–5 per m.y. Variable preservation of conodont elements limits the precision for individual stratigraphic horizons. Replicate conodont analyses from the same sample differ by an average of ∼4.0 × 10–5 (the 2σ standard deviation is 6.2 × 10–5), which in the best case scenario allows for subdivision of Ordovician time intervals characterized by the highest rates of fall in 87Sr/86Sr at a maximum resolution of ∼0.5–1.0 m.y. Links between the increased rate of fall in 87Sr/86Sr beginning in the mid-late Darriwilian (Phragmodus polonicus to Pygodus serra conodont zones) and geologic events continue to be investigated, but the coincidence with a long-term rise in sea level (Sauk-Tippecanoe megasequence boundary) and tectonic events (Taconic orogeny) in North America provides a plausible

  1. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study

    NASA Astrophysics Data System (ADS)

    Fernandes, Paulo; Cogné, Nathan; Chew, David M.; Rodrigues, Bruno; Jorge, Raul C. G. S.; Marques, João; Jamal, Daud; Vasconcelos, Lopo

    2015-12-01

    The Moatize-Minjova Basin is a Karoo-aged rift basin located in the Tete Province of central Mozambique along the present-day Zambezi River valley. In this basin the Permian Moatize and Matinde formations consist of interbedded carbonaceous mudstones and sandstones with coal seams. The thermal history has been determined using rock samples from two coal exploration boreholes (ca. 500 m depth) to constrain the burial and exhumation history of the basin. Organic maturation levels were determined using vitrinite reflectance and spore fluorescence/colour. Ages and rates of tectonic uplift and denudation have been assessed by apatite fission track analysis. The thermal history was modelled by inverse modelling of the fission track and vitrinite reflectance data. The Moatize Formation attained a coal rank of bituminous coals with low to medium volatiles (1.3-1.7%Rr). Organic maturation levels increase in a linear fashion downhole in the two boreholes, indicating that burial was the main process controlling peak temperature maturation. Calculated palaeogeothermal gradients range from 59 °C/km to 40 °C/km. According to the models, peak burial temperatures were attained shortly (3-10 Ma) after deposition. Apatite fission track ages [146 to 84 Ma (Cretaceous)] are younger than the stratigraphic age. Thermal modelling indicates two episodes of cooling and exhumation: a first period of rapid cooling between 240 and 230 Ma (Middle - Upper Triassic boundary) implying 2500-3000 m of denudation; and a second period, also of rapid cooling, from 6 Ma (late Miocene) onwards implying 1000-1500 m of denudation. The first episode is related to the main compressional deformation event within the Cape Fold Belt in South Africa, which transferred stress northwards on pre-existing transtensional fault systems within the Karoo rift basins, causing tectonic inversion and uplift. During the Mesozoic and most of the Cenozoic the basin is characterized by very slow cooling. The second period

  2. Deciphering Past and Present Tectonics of the Rio Grande Rift in New Mexico Utilizing Apatite Fission Track Thermochronology, Geochronology, Quaternary Faulting, and Cross-Section Restoration

    NASA Astrophysics Data System (ADS)

    Ricketts, J. W.; Karlstrom, K. E.; Kelley, S. A.; Priewisch, A.; Crossey, L. J.; Asmerom, Y.; Polyak, V.; Selmi, M.

    2011-12-01

    The Rio Grande rift provides an excellent laboratory for understanding styles and processes of extensional tectonics, and their driving forces. We apply apatite fission track (AFT) thermochronology, geochronology, fracture analysis, and cross-section restoration to decipher past and present tectonics of the Rio Grande rift. AFT data has been compiled from rift flank uplifts along the Rio Grande rift in an attempt to recognize long wavelength spatial and temporal patterns. AFT ages record time of cooling of rocks below ~110°C and, when cooling is due to exhumation, age elevation traverses can record upward advection of rocks through paleo 110°C isotherms. The relatively passive sides of half-grabens (e.g. Manzanos and Santa Fe Range) preserve Laramide AFT ages ranging from 45-70 Ma, indicating they were cooled during the Laramide Orogeny and have remained cooler than 110°C since then. Rift flanks on the tectonically active sides of half-grabens, (e.g. Sierra Ladrones, Sandias, Taos Range, and Sierra Blanca) have AFT ages that range from 35 Ma to <10 Ma, and record cooling that initiated with the Oligocene ignimbrite flare-up and continues through the Neogene. Our analysis tracks the approximate elevation of paleo 110°C isotherms in 10 Ma intervals from the Laramide to the present and shows that reconstructed paleoisotherms have been differentially uplifted, warped, and faulted since their time of formation, and hence serve as markers of uplift history and its mechanisms. AFT data at Ladron Peak, an active rift flank along the western margin of the Rio Grande rift in central New Mexico, indicates that it was rapidly unroofed between 20-10 Ma. Preliminary apatite helium data gives a similar age vs. elevation trend, but apatites have highly radiogenically damaged lattices and hence have corrected closure temperatures tens of degrees higher than AFT ages. The style of faulting at Ladron Peak is unusual because it is bounded by the anomalously low-angle (~15°) Jeter

  3. Fabrication of carbonate apatite blocks from set gypsum based on dissolution-precipitation reaction in phosphate-carbonate mixed solution.

    PubMed

    Nomura, Shunsuke; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki; Takahashi, Ichiro; Ishikawa, Kunio

    2014-01-01

    Carbonate apatite (CO3Ap), fabricated by dissolution-precipitation reaction based on an appropriate precursor, is expected to be replaced by bone according to bone remodeling cycle. One of the precursor candidates is gypsum because it shows self-setting ability, which then enables it to be shaped and molded. The aim of this study, therefore, was to fabricate CO3Ap blocks from set gypsum. Set gypsum was immersed in a mixed solution of 0.4 mol/L disodium hydrogen phosphate (Na2HPO4) and 0.4 mol/L sodium hydrogen carbonate (NaHCO3) at 80-200°C for 6-48 h. Powder X-ray diffraction patterns and Fourier transform infrared spectra showed that CO3Ap block was fabricated by dissolution-precipitation reaction in Na2HPO4-NaHCO3 solution using set gypsum in 48 h when the temperature was 100°C or higher. Conversion rate to CO3Ap increased with treatment temperature. CO3Ap block containing a larger amount of carbonate was obtained when treated at lower temperature.

  4. Microbial weathering of apatite and wollastonite in a forest soil: Evidence from minerals buried in a root-free zone

    NASA Astrophysics Data System (ADS)

    Nezat, C. A.

    2011-12-01

    Mineral weathering is an important process in biogeochemical cycling because it releases nutrients from less labile pools (e.g., rocks) to the food chain. A field experiment was undertaken to determine the degree to which microbes - both fungi and bacteria - are responsible for weathering of Ca-bearing minerals. The experiment was performed at the Hubbard Brook Experimental Forest (HBEF) in the northeastern USA, where acid deposition has leached plant-available calcium from soils for decades. Trees obtain soil nutrients through root uptake as well as through mycorrhizal fungi with which they are symbiotically associated. These fungi extend their hyphae from the tree roots into the soil and exude organic acids that may enhance mineral dissolution. The two most common types of symbiotic fungal-tree associations are ectomycorrhizae, which are associated with spruce (Picea), fir (Abies), and beech (Fagus); and arbuscular mycorrhizae which are commonly associated with angiosperms, such as maples (Acer). To examine the role of fungi and bacteria in weathering of Ca- and/or P-bearing minerals, mesh bags containing sand-sized grains of quartz (as a control), quartz plus 1% wollastonite (CaSiO3), or quartz plus 1% apatite (Ca5(PO4)3F) were buried ~15 cm deep in mineral soil beneath American beech, sugar maple, and mixed spruce and balsam fir stands at the HBEF. Half of the bags were constructed of 50-μm mesh to exclude roots but allow fungal hyphae and bacteria to enter the bags; the remaining bags had 1-μm mesh to exclude fungi and roots but allow bacteria to enter. The bags were retrieved ~ 1, 2 or 4 years after burial. Microbial community composition and biomass in the mesh bags and surrounding soil were characterized and quantified using phospholipid fatty acid (PLFA) analysis. Fungal biomass in the soil and control bags did not differ significantly among stand types. In contrast, the degree of fungal colonization in apatite- and wollastonite-amended bags varied

  5. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil.

    PubMed

    Liu, Ruiqiang; Zhao, Dongye

    2013-04-01

    Phosphate compounds and the related materials are effective agents for in situ immobilization of heavy metals in contaminated soils. Problems associated with using these phosphate materials include difficulties in delivering the solid phosphate minerals to the deep contaminated zones or risks of eutrophication with applying soluble phosphates. Therefore, a new class of apatite nanoparticles was synthesized using carboxymethyl cellulose as a stabilizer in order to increase the dispersion rate of phosphate in soils but without introducing significant amount of soluble phosphate into the environment. The product was confirmed by XRD as chlorapatite (Ca5(PO4)3Cl) with poor crystallinity. TEM and SEM revealed that the particles were spherical or irregular in shape with sizes spanning from a few nm to around 200 nm. FTIR spectra suggested that Ca(II) cations formed outer-sphere bonds with carboxyl and hydroxyl groups in cellulose molecules, thus inhibiting further agglomeration of the particles. Dry combustion data supported a formula of [C6H7O2(OH)2OCH2COOCa5(PO4)3Cl]n for the nano-apatite composite. Laboratory tests showed that the nanoparticles could effectively decrease the TCLP-leachable Pb fraction in a Pb-contaminated soil from 66% to 10% after one-month amendment with a ratio of 2 mL solution to 1g soil and the resultant Pb content in the TCLP solution was reduced to 12 from 94 mg L(-1). When the amendment ratio was increased by 5 times, the leachable Pb was further reduced to 3.8 mg L(-1) with only about 3% of the soil Pb leachable. The soil sample, containing an average of 2.7×10(3)mg Pb kg(-1), was taken from a shooting-range in Southern USA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    NASA Astrophysics Data System (ADS)

    Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied

    2010-12-01

    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  7. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Liu, Shu-gen; Li, Zhi-wu; Jansa, Luba F.; Liu, Shun; Wang, Guo-zhi; Sun, Wei

    2013-04-01

    New apatite fission-track (AFT) ages from Mesozoic sediments in the Sichuan basin, combined with previous fission-track data, demonstrate differential uplift and exhumation across the basin. Particularly significant change in exhumation (at least ~ 2000 m) was found across the Huaying Mts. Modeled temperature-time histories and the Boomerang plot of AFT dataset across the basin suggest rapid cooling and exhumation events during 120-80 Ma and at 20-10 Ma. They reflect the start of the basin-scale differential uplift and exhumation which effected the eastern growth of Tibetan Plateau. In particular, nested old-age center separated by Huaying Mts. was found in the center-to-northwest part of the Sichuan basin. A simplified one-dimensional, steady-state solution model was developed to calculate the mean exhumation rate, which is 0.05-0.2 mm/yr in most parts of the basin. It suggests a slow exhumation across much of the basin. The regional pattern of AFT age, length and erosion rate supports a progressive change from the nested old-age center towards the southwest. This pattern supports the idea of a prolonged, steady-state uplift and exhumation process across the basin, controlled by cratonic basin structure. The eastern growth of the Tibetan Plateau has exerted a significant effect on the rapid exhumation of the southwestern part of the Sichuan basin, but not on all of the basin during the Late Cenozoic.

  8. In situ TEM observation of alpha-particle induced annealing of radiation damage in Durango apatite.

    PubMed

    Li, Weixing; Shen, Yahui; Zhou, Yueqing; Nan, Shuai; Chen, Chien-Hung; Ewing, Rodney C

    2017-10-26

    A major issue in thermochronology and U-Th-Pb dating is the effect of radiation damage, created by α-recoils from α-decay events, on the diffusion of radiogenic elements (e.g., He and Pb) in host mineral. Up until now, thermal events have been considered as the only source of energy for the recovery of radiation-damage. However, irradiation, such as from the α-particle of the α-decay event, can itself induce damage recovery. Quantification of radiation-induced recovery caused by α-particles during α-decay events has not been possible, as the recovery process at the atomic-scale has been difficult to observe. Here we present details of the dynamics of the amorphous-to-crystalline transition process during α-particle irradiations using in situ transmission electron microscopy (TEM) and consecutive ion-irradiations: 1 MeV Kr 2+ (simulating α-recoil damage), followed by 400 keV He + (simulating α-particle annealing). Upon the He + irradiation, partial recrystallization of the original, fully-amorphous Durango apatite was clearly evident and quantified based on the gradual appearance of new crystalline domains in TEM images and new diffraction maxima in selected area electron diffraction patterns. Thus, α-particle induced annealing occurs and must be considered in models of α-decay event damage and its effect on the diffusion of radiogenic elements in geochronology and thermochronology.

  9. Fabrication of Carbonate Apatite Block through a Dissolution-Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor.

    PubMed

    Tsuru, Kanji; Yoshimoto, Ayami; Kanazawa, Masayuki; Sugiura, Yuki; Nakashima, Yasuharu; Ishikawa, Kunio

    2017-03-31

    Carbonate apatite (CO₃Ap) block, which is a bone replacement used to repair defects, was fabricated through a dissolution-precipitation reaction using a calcium hydrogen phosphate dihydrate (DCPD) block as a precursor. When the DCPD block was immersed in NaHCO₃ or Na₂CO₃ solution at 80 °C, DCPD converted to CO₃Ap within 3 days. β-Tricalcium phosphate was formed as an intermediate phase, and it was completely converted to CO₃Ap within 2 weeks when the DCPD block was immersed in Na₂CO₃ solution. Although the crystal structures of the DCPD and CO₃Ap blocks were different, the macroscopic structure was maintained during the compositional transformation through the dissolution-precipitation reaction. CO₃Ap block fabricated in NaHCO₃ or Na₂CO₃ solution contained 12.9 and 15.8 wt % carbonate, respectively. The diametral tensile strength of the CO₃Ap block was 2 MPa, and the porosity was approximately 57% regardless of the carbonate solution. DCPD is a useful precursor for the fabrication of CO₃Ap block.

  10. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    NASA Astrophysics Data System (ADS)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  11. Influence of substituting B2O3 for CaF2 on the bonding behaviour to bone of glass-ceramics containing apatite and wollastonite.

    PubMed

    Kitsugi, T; Yamamuro, T; Nakamura, T; Yoshii, S; Kokubo, T; Takagi, M; Shibuya, T

    1992-01-01

    Glass-ceramics containing crystalline oxy-fluoroapatite (Ca10(PO4)6(O,F2)) and wollastonite (CaSiO3) (designated AWGC) are reported to have a fairly high mechanical strength as well as the capability of forming a chemical bond with bone tissue. The chemical composition is MgO 4.6, CaO 44.9, SiO2 34.2, P2O5 16.3, and CaF2 0.5 in weight ratio. In this study the influence of substituting B2O3 for CaF2 on the bonding behaviour of glass-ceramics containing apatite and wollastonite to bone tissue was investigated. Two kinds of glass-ceramics containing apatite and wollastonite were prepared. CaF2 0.5 was replaced with B2O3 at 0.5 and 2.0 in weight ratio (designated AWGC-0.5B and AWGC-2.0B). Rectangular ceramic plates (15 x 10 x 2 mm, abraded with No. 2000 alumina powder) were implanted into a rabbit tibia. The failure load, when an implant detached from the bone, or the bone itself broke, was measured. The failure load of AWGC-0.5B was 8.00 +/- 1.82 kg at 10 weeks after implantation and 8.16 +/- 1.36 kg at 25 weeks after implantation. The failure load of AWGC-2B was 8.08 +/- 1.70 kg at 10 weeks after implantation and 9.92 +/- 2.46 kg at 25 weeks after implantation. None of the loads for the two kinds of glass-ceramics decreased as time passed. Giemsa surface staining and contact microradiography revealed direct bonding between glass-ceramics and bone. SEM-EPMA showed a calcium-phosphorus rich layer (reaction zone) at the interface of ceramics and bone tissue. The thickness of the reaction zone was 10 to -15 microns and did not increase as time passed.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Exhumation History of the North Queensland Segment of Australia's Elevated Passive Margin Escarpment as Revealed by (U-Th)/He Analysis of Apatite and Zircon

    NASA Astrophysics Data System (ADS)

    Abbott, L. D.; Glass, J.; Flowers, R. M.; Metcalf, J. R.

    2016-12-01

    Australia's east coast constitutes an elevated passive continental margin that developed in response to Cretaceous-Paleogene rifting during opening of the Tasman and Coral seas. Typical of elevated passive margins around the world, Australia's east coast consists of a high plateau bounded by an abrupt escarpment, known as the Great Escarpment. We employed the apatite (AHe) and zircon (ZHe) (U-Th)/He low temperature thermochronometers to explore the exhumation history of the North Queensland segment of the Great Escarpment. Our 1500m vertical transect was conducted up the southeast flank of Mount Bartle Frere, which exposes the Bartle Frere pluton of the ca. 280 Ma Bellenden Ker Batholith. A previous apatite fission track (AFT) study determined that an outcrop of the Bartle Frere pluton at Josephine Falls, which constitutes the base of our transect, cooled through 110 °C at 142.3 ±9.9Ma. Our preliminary ZHe analysis of the same outcrop reveals that it passed through 180 °C at ca. 155 Ma. These data point to an episode of relatively rapid exhumation during the latest Jurassic to earliest Cretaceous, which brought the Bartle Frere pluton from approximately 6 km burial depth to 3.5 km depth (assuming a 30 °C/km geothermal gradient). Samples throughout our entire transect yield AHe dates that range between 72Ma and 182Ma, with no apparent elevation-date relationship. These data suggest that the pluton cooled below 65 °C during the Cretaceous, indicating unroofing to less than 2 km depth by that time. The data scatter makes it difficult to resolve the details of this Cretaceous cooling episode. However, the fact that we obtain Cretaceous AHe dates across the entire 1500 m height of the transect suggests that the Great Escarpment in North Queensland has existed at approximately its current location and height since at least the Late Cretaceous. The Cretaceous age for this segment of the Great Escarpment is similar to the age determined by other AHe workers for the

  13. Triple energy transfer and color tuning in Tb3+ and Eu3+-coactivated apatite-type gadolinium-containing phosphors

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Liang, Qimeng; Li, Shuo; Ouyang, Ruizhuo; Lü, Wei

    2017-11-01

    A family of apatite-type fluorophosphate phosphors with general formula Sr3Gd(1-m-n)Na(PO4)3F:mTb3+,nEu3+ (SGN:mTb3+,nEu3+) have been synthesized via the high-temperature solid-state reaction method. Triple energy transfer processes from Gd3+ in the host to both Tb3+ and Eu3+, as well as from Tb3+ to Eu3+ have been verified by the photoluminescence spectra. Under the excitation of UV light, both green line from the transitions of Tb3+ and red line origin from the transitions of Eu3+ have been simultaneously observed in a single phase phosphor, which makes a promise for tunable color emissions from yellowish-green through yellow and ultimately to reddish-orange by simply adjusting the Eu3+ content (n) in SGN:0.20Tb3+,nEu3+ phosphors. Additionally, the energy transfer from the Tb3+ to the Eu3+ ions has been demonstrated to be a resonant type via a quadrupole-quadrupole mechanism based on the Dexter's theoretical model, and the energy transfer efficiency increases with an increase in Eu3+ concentration.

  14. Denudation and uplift of the Mawson Escarpment (eastern Lambert Graben, Antarctica) as indicated by apatite fission track data and geomorphological observation

    USGS Publications Warehouse

    Lisker, F.; Gibson, H.; Wilson, C.J.; Läufer, A.

    2007-01-01

    Analysis of three vertical profiles from the southern Mawson Escarpment (Lambert Graben) reveals apatite fission track (AFT) ages ranging from 102±20 to 287±23 Ma and mean lengths of 12.2 to 13.0 μm. Quantitative thermal histories derived from these data consistently indicate onset of slow cooling below 110°C began sometime prior to 300 Ma, and a second stage of rapid cooling from paleotemperatures up to ≤100°C to surface temperatures occurred in the Late Cretaceous – Paleocene. The first cooling phase refers to Carboniferous – Jurassic basement denudation up to 5 km associated with the initial rifting of the Lambert Graben. The presence of the ancient East Antarctic Erosion Surface and rapid Late Cretaceous – Paleocene cooling indicate a second denudational episode during which up to 4.5 km of sedimentary cover rocks were removed, and that is likely linked to the Cretaceous Gondwana breakup between Antarctica and India and subsequent passive continental margin formation.

  15. On the influence of etch pits in the overall dissolution rate of apatite basal sections

    NASA Astrophysics Data System (ADS)

    Alencar, Igor; Guedes, Sandro; Palissari, Rosane; Hadler, Julio C.

    2015-09-01

    Determination of efficiencies for particle detection plays a central role for proper estimation of reaction rates. If chemical etching is employed in the revelation of latent particle tracks in solid-state detectors, dissolution rates and etchable lengths are important factors governing the revelation and observation. In this work, the mask method, where a reference part of the sample is protected during dissolution, was employed to measure step heights in basal sections of apatite etched with a nitric acid, HNO, solution at a concentration of 1.1 M and a temperature of 20 °C. We show a drastic increase in the etching velocity as the number of etch pits in the surface augments, in accordance with the dissolution stepwave model, where the outcrop of each etch pit generates a continuous sequence of stepwaves. The number of etch pits was varied by irradiation with neutrons and perpendicularly incident heavy ions. The size dependence of the etch-pit opening with etching duration for ion (200-300 MeV 152Sm and 238U) tracks was also investigated. There is no distinction for the etch pits between the different ions, and the dissolution seems to be governed by the opening velocity when a high number of etch pits are present in the surface. Measurements of the etchable lengths of these ion tracks show an increase in these lengths when samples are not pre-annealed before irradiation. We discuss the implications of these findings for fission-track modelling.

  16. Calcium-deficient apatite synthesized by ammonia hydrolysis of dicalcium phosphate dihydrate: influence of temperature, time, and pressure.

    PubMed

    Obadia, Laetitia; Rouillon, Thierry; Bujoli, Bruno; Daculsi, Guy; Bouler, Jean Michel

    2007-01-01

    In this work, calcium-deficient apatites (CDA) were synthesized by ammonia hydrolysis reaction of dicalcium phosphate dihydrate (DCPD; CaHPO4 x 2 H2O) to obtain biphasic calcium phosphates (BCP) without any extraionic substitution. The influence of three parameters was studied: temperature of the reaction (70 and 100 degrees C), time of the reaction (4 and 18 h), and the pressure (open and closed system). Experiments were made according to a factorial design method (FDM) allowing optimization of the number of samples as well as statistical analysis of results. Moreover, the influence of temperature (until 200 degrees C) was investigated. The crystal size of CDA was determined according to the Scherrer's formula and from Rietveld refinements taking the CDA anisotropy into account. The last method seems to be a reliable method to determine crystallite sizes of CDA, since crystallite sizes of CDA along <00l> and directions were accessible. The results describe the hydroxyapatite % (HA%) in BCP by a first-order polynomial equation in the experimental area studied and the HA content was found to increase by raising time and temperature of the reaction. Moreover, the type of reaction system (open/closed vessel) appeared to have little influence on HA%. 2006 Wiley Periodicals, Inc.

  17. Optimisation of the enamelling of an apatite-mullite glass-ceramic coating on Ti6Al4V.

    PubMed

    O'Flynn, Kevin P; Stanton, Kenneth T

    2011-09-01

    Apatite-mullite glass-ceramics (AMGCs) are under investigation as a potential alternative to hydroxyapatite (HA) as a coating for cementless fixation of orthopaedic implants. These materials have tailorable mechanical and chemical properties that make them attractive for use as bioactive coatings. Here, AMGC coatings on Ti(6)Al(4)V were investigated to determine an improved heat treatment regime using a systematic examination of the different inputs: composition of glass, nucleation hold and crystallisation hold. An upper limit to the heat treatment temperature was determined by the α + β --> β of Ti(6)Al(4)V at 970°C. The glass composition was modified to produce different crystallisation temperatures and sintering characteristics. A glass was found that is fully crystalline below 970°C and has good sinterability. The effects of different heat treatment time and temperature combinations on the coating and substrate morphologies were examined and the most suitable combination determined. This sample was further investigated and was found to have qualitatively good adhesion and evidence of an interfacial reaction region between the coating and substrate indicating that a chemical reaction had occurred. Oxygen infiltration into the substrate was quantified and the new route was shown to result in a 63% reduction in penetration depth.

  18. The Transantarctic Mountains of southern Victoria Land: The application of Apatite fission track analysis to a rift shoulder uplift

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Paul G.

    1992-06-01

    A fission track study of the Transantarctic Mountains (TAM) in the Granite Harbour and Wilson Piedmont Glacier areas of southern Victoria Land reveals information on the timing of uplift, the amount of uplift and erosion, and the structure of the mountains, especially the onshore Transantarctic Mountain Front (TAM Front), which represents the boundary between East and West Antarctica. Apatite ages are < 175 Ma and represent a thermal regime established after heating accompanying Jurassic magmatism. An apatite age profile from Mount England records a break in slope indicating uplift began at ˜55 Ma. Horizontal sampling traverses, plus fieldwork, delineate the structure of the TAM Front as a zone of north-south striking, steeply dipping normal faults, with displacements, dominantly down to the east, of 40-1000 m. The overall structure of the mountains in the area studied can be envisaged as a large tilt block or flexure. Its westerly limb dips gently under the ice cap, compared to its faulted eastern edge, the TAM Front. The bounding structure to the south is the Ferrar fault and to the north is a graben through which the Mackay Glacier drains the polar plateau. The edge of the flexure, or axis of maximum uplift, lies at Mount Termination, ˜30 km west of the McMurdo Sound coast. There has been ˜6 km of uplift since the early Cenozoic and 4.5-5 km of erosion along this axis. The amount of uplift decreases to the west at the same rate as the decrease in dip of the Kukri Peneplain, but the amount of erosion decreases more quickly as indicated by the increasing height of the mountains to the west. The axis of maximum uplift is traced north to Granite Harbour. The axis does not parallel the coast but has a more northerly trend. North-south striking longitudinal faults that delineate the structure of the TAM Front lie at an acute angle to the axis, indicating a dextral component to the dominantly east-west extension in the Ross Embayment. Architecture of the TAM

  19. Influence of inherited structures on the growth of basement-cored ranges, basin inversion and foreland basin development in the Central Andes, from apatite fission-track and apatite Helium thermochronology.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Sobel, E. R.; Del Papa, C.; Jelinek, A. R.; Muruaga, C.

    2017-12-01

    The Central Andes in NW of Argentina is part of a long-lived subduction zone, active since the Paleozoic. This region experienced several tectonic cycles; each of which created an unique set of structures and may have reactivated preexisting structures. These inherited structures may exert a first-order control over the different foreland deformational styles observed along the strike in the Central Andes. Our study area is located between 26°S and 28°S on the transition between the broken foreland (Santa Barbara system), which expresses a combination of thin-skin and thick-skin styles, and the Sierras Pampeanas, which is deform in a thick-skin style. The Cumbres Calchaquies range and the associated Choromoro Basin are located in the northern part of the study area, and are the southern expression of the Santa Barbara system. Published thermochronology data suggest that the rocks from the basement experienced Late Cretaceous and Late Miocene exhumation; the associated sedimentary rocks within the Choromoro basin experienced Paleogene and Late Miocene deformational phases. In contrast, the Sierra Aconquija range, located immediately south on the transition to the Sierras Pampeanas (thick skin) foreland basin, exhibit larger amounts of Miocene exhumation and lack of Cretaceous exhumation; the associated sedimentary rocks from the Tucuman basin have not been deformed since the Cretaceous. Our goal is to understand the evolution of the structural blocks and the structures responsible for the along strike changes in foreland basin deformational styles and their relation with inherited structures from previous tectonic cycles. We are obtaining new apatite U-Th/He and fission track data to reconstruct the thermal history of the basement, accompanied by U-Pb geochronology and stratigraphy to constrain the evolution of the associated sedimentary basins. Preliminary results combined with published data suggest that inherited structures within the study area have evolved

  20. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys.

    PubMed

    Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K

    2016-02-01

    Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.

  1. Apatite fission-track thermochronometric constraints on the exhumation and evolution of the southeastern Indian (Tamil Nadu) passive margin and the role of structural inheritance

    NASA Astrophysics Data System (ADS)

    De Grave, Johan; Glorie, Stijn; Singh, Tejpal; Van Ranst, Gerben; Nachtergaele, Simon

    2017-04-01

    After rifting from Gondwana in the Late Jurassic - Early Cretaceous, and subsequent opening of the Indian Ocean basin, the continental margins of India developed into typical passive margins. Extensional tectonic forces and thermal subsidence gave rise to the formation of both on-shore and off-shore basins along the southeastern passive margin of the Indian continent, along the Tamil Nadu coast. There, basins such as the Cauvery and Krishna-Godavari basin, accumulated Meso- and Cenozoic (Early Cretaceous to recent) detrital sediments coming off the rifted blocks and the Tamil Nadu hinterland. In places, deep rift basins have accumulated up to over 3000 m of sediments. The continental basement of Tamil Nadu is chiefly composed of metamorphic rocks of the Archean to Palaeoproterozoic Eastern Dharwar Craton and the coeval Southern Granulite Terrane (e.g. Peucat et al., 2013). Several crustal scale shear zones crosscut this assemblage and at least some are considered to represent Gondwanan sutures (Santosh et al., 2012). Smaller, younger granitoid plutons intrude the basement at several locations and most of these are of Late Neoproterozoic age (Glorie et al., 2014). In this work metamorphic basements rocks and the younger granitoids were sampled for a apatite fission-track (AFT) thermochronometric study. A North-South profile from Chennai to Thanjavur mainly transects the Salem block of the Southern Granulite Terrane, and crosscuts several crustal scale shear zones, such as the Cauvery, Salem-Attur and Gangavalli shear zones. Apatites from over 30 samples were used in this study. AFT ages all range between about 190 and 120 Ma (Jurassic - Early Cretaceous). These mainly represent the slow, shallow exhumation of the basement during the rift and early drift phase of the Indian plate from Gondwana. AFT mean track lengths vary between 11 and 13 µm and are typical of slowly exhumed basement. Thermal history modelling (using the QTQt software by Gallagher, 2012) confirms

  2. Phanerozoic burial and exhumation history of southernmost Norway estimated from apatite fission-track analysis data and geological observations

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.; Rasmussen, Erik S.

    2016-04-01

    We present new apatite fission-track analysis (AFTA) data from 27 basement samples from Norway south of ~60°N. The data define three events of cooling and exhumation that overlap in time with events defined from AFTA in southern Sweden (Japsen et al. 2015). The samples cooled below palaeotemperatures of >100°C in a major episode of Triassic cooling as also reported by previous studies (Rohrman et al. 1995). Our study area is just south of the Hardangervidda where Cambrian sediments and Caledonian nappes are present. We thus infer that these palaeotemperatures reflect heating below a cover that accumulated during the Palaeozoic and Triassic. By Late Triassic, this cover had been removed from the Utsira High, off SW Norway, resulting in deep weathering of a granitic landscape (Fredin et al. 2014). Our samples were therefore at or close to the surface at this time. Palaeotemperatures reached ~80°C prior to a second phase of cooling and exhumation in the Jurassic, following a phase of Late Triassic - Jurassic burial. Upper Jurassic sandstones rest on basement near Bergen, NW of our study area (Fossen et al. 1997), and we infer that the Jurassic event led to complete removal of any remaining Phanerozoic cover in the region adjacent to the evolving rift system prior to Late Jurassic subsidence and burial. The data reveal a third phase of cooling in the early Miocene when samples that are now near sea level cooled below palaeotemperatures of ~60°C. For likely values of the palaeogeothermal gradient, such palaeotemperatures correspond to burial below rock columns that reach well above the present-day landscape where elevations rarely exceed 1 km above sea level. This implies that the present-day landscape was shaped by Neogene erosion. This is in agreement with the suggestion of Lidmar-Bergström et al. (2013) that the near-horizontal Palaeic surfaces of southern Norway are the result of Cenozoic erosion to sea level followed by uplift to their present elevations in a

  3. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres.

    PubMed

    Ishikawa, Kunio; Arifta, Tya Indah; Hayashi, Koichiro; Tsuru, Kanji

    2018-03-26

    Carbonate apatite (CO 3 Ap) blocks have attracted considerable attention as an artificial bone substitute material because CO 3 Ap is a component of and shares properties with bone, including high osteoconductivity and replacement by bone similar to autografts. In this study, we fabricated an interconnected porous CO 3 Ap block using α-tricalcium phosphate (TCP) spheres and evaluated the tissue response to this material in a rabbit tibial bone defect model. Interconnected porous α-TCP, the precursor of interconnected porous CO 3 Ap, could not be fabricated directly by sintering α-TCP spheres. It was therefore made via a setting reaction with α-TCP spheres, yielding interconnected porous calcium-deficient hydroxyapatite that was subjected to heat treatment. Immersing the interconnected porous α-TCP in Na-CO 3 -PO 4 solution produced CO 3 Ap, which retained the interconnected porous structure after the dissolution-precipitation reaction. The diametral tensile strength and porosity of the porous CO 3 Ap were 1.8 ± 0.4 MPa and 55% ± 3.2%, respectively. Both porous and dense (control) CO 3 Ap showed excellent tissue response and good osteoconductivity. At 4 weeks after surgery, approximately 15% ± 4.9% of the tibial bone defect was filled with new bone when reconstruction was performed using porous CO 3 Ap; this amount was five times greater than that obtained with dense CO 3 Ap. At 12 weeks after surgery, for porous CO 3 Ap, approximately 47% of the defect was filled with new bone as compared to 16% for dense CO 3 Ap. Thus, the interconnected porous CO 3 Ap block is a promising artificial bone substitute material for the treatment of bone defects caused by large fractures or bone tumor resection. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  4. Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO(2)2+ and Th4+.

    PubMed

    Ulusoy, Ulvi; Akkaya, Recep

    2009-04-15

    Micro-composite of polyacrylamide (PAA) and apatite (Apt) was prepared by direct polymerization of acrylamide in a suspension of Apt and characterized by means of FT-IR, XRD, SEM and BET analysis. The adsorptive features of PAA-Apt and Apt were then investigated for Pb(2+), UO(2)(2+) and Th(4+) in view of dependency on ion concentration, temperature, kinetics, ion selectivity and reusability. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. Apt in PAA-Apt had higher adsorption capacity (0.81, 1.27 and 0.69 mol kg(-1)) than bare Apt (0.28, 0.41 and 1.33 mol kg(-1)) for Pb(2+) and Th(4+), but not for UO(2)(2+). The affinity to PAA-Apt increased for Pb(2+) and UO(2)(2+) but not changed for Th(4+). The values of enthalpy and entropy changed were positive for all ions for both Apt and PAA-Apt. Free enthalpy change was DeltaG<0. Well compatibility of adsorption kinetics to the pseudo-second-order model predicated that the rate-controlling step was a chemical sorption. This was consistent with the free energy values derived from DR model. The reusability tests for Pb(2+) for five uses proved that the composite was reusable to provide a mean adsorption of 53.2+/-0.7% from 4x10(-3)M Pb(2+) solution and complete recovery of the adsorbed ion was possible (98+/-1%). The results of this investigation suggested that the use of Apt in the micro-composite form with PAA significantly enhanced the adsorptive features of Apt.

  5. Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects.

    PubMed

    Kanazawa, Masayuki; Tsuru, Kanji; Fukuda, Naoyuki; Sakemi, Yuta; Nakashima, Yasuharu; Ishikawa, Kunio

    2017-06-01

    This study aimed to evaluate in vivo behavior of a carbonate apatite (CO 3 Ap) block fabricated by compositional transformation via a dissolution-precipitation reaction using a calcium hydrogen phosphate dihydrate [DCPD: CaHPO 4 ·2H 2 O] block as a precursor. These blocks were used to reconstruct defects in the femur and tibia of rabbits, using sintered dense hydroxyapatite (HAp) blocks as the control. Both the CO 3 Ap and HAp blocks showed excellent tissue response and good osteoconductivity. HAp block maintained its structure even after 24 weeks of implantation, so no bone replacement of the implant was observed throughout the post-implantation period in either femoral or tibial bone defects. In contrast, CO 3 Ap was resorbed with increasing time after implantation and replaced with new bone. The CO 3 Ap block was resorbed approximately twice as fast at the metaphysis of the proximal tibia than at the epiphysis of the distal femur. The CO 3 Ap block was resorbed at an approximately linear change over time, with complete resorption was estimated by extrapolation of data at approximately 1-1.5 years. Hence, the CO 3 Ap block fabricated in this study has potential value as an ideal artificial bone substitute because of its resorption and subsequent replacement by bone.

  6. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    PubMed

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparison of the effect of resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on surface hardness and streptococcus mutans adhesion to artificial enamel lesions.

    PubMed

    Aziznezhad, Mahdiye; Alaghemand, Homayoon; Shahande, Zahra; Pasdar, Nilgoon; Bijani, Ali; Eslami, Abdolreza; Dastan, Zohre

    2017-03-01

    Dental caries is a major public health problem, and Streptococcus mutans is considered the main causal agent of dental caries. This study aimed to compare the effect of three re-mineralizing materials: resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on the surface hardness and adhesion of Streptococcus mutans as noninvasive treatments for initial enamel lesions. This experimental study was conducted from December 2015 through March 2016 in Babol, Iran. Artificial enamel lesions were created on 60 enamel surfaces, which were divided into two groups: Group A and Group B (30 subjects per group). Group A was divided into three subgroups (10 samples in each subgroup), including fluoride varnish group, nano-hydroxy apatite paste group (Nano P paste), and resin infiltrant group (Icon-resin). In Group A, the surface hardness of each sample was measured in three stages: First, on an intact enamel (baseline); second, after creating artificial enamel lesions; third, after application of re-mineralizing materials. In Group B, the samples were divided into five subgroups, including intact enamel, demineralized enamel, demineralized enamel treated with fluoride varnish, Nano P paste, and Icon-resin. In Group B, standard Streptococcus mutans bacteria adhesion (PTCC 1683) was examined and reported in terms of colony forming units (CFU/ml). Then, data were analyzed using ANOVA, Kruskal-Wallis, Mann-Whitney, and post hoc tests. In Group A, after treatment with re-mineralizing materials, the Icon-resin group had the highest surface hardness among the studied groups, then the Nano P paste group and fluoride varnish group, respectively (p = 0.035). In Group B, in terms of bacterial adhesion, fluoride varnish group had zero bacterial adhesion level, and then the Nano P paste group, Icon-resin group, intact enamel group, and the de-mineralized enamel group showed bacterial adhesion increasing in order (p < 0.001). According to the study among the examined materials

  8. Exhumation of Basement-cored Uplifts: Example of the Kyrgyz Range Quantified with Apatite Fission-track Thermochronology

    NASA Technical Reports Server (NTRS)

    Sobel, Edward R.; Oskin, Michael; Burbank, Douglas; Mikolaichuk, Alexander

    2005-01-01

    The Kyrgyz Range, the northernmost portion of the Kyrgyzstan Tien Shan, displays topographic evidence for lateral propagation of surface uplift and exhumation. The highest and most deeply dissected segment lies in the center of the range. To the east, topography and relief decrease, and preserved remnants of a Cretaceous regional erosion surface imply minimal amounts of bedrock exhumation. The timing of exhumation of range segments defines the lateral propagation rate of the range-bounding reverse fault and quantifies the time and erosion depth needed to transform a mountain range from a juvenile to a mature morphology. New apatite fission-track (AFT) data from three transects from the eastern Kyrgyz Range, combined with published AFT data, demonstrate that the range has propagated over 110 km eastwards over the last 7-11 Myr. Based on the thermal and topographic evolutionary history, we present a model for a time-varying exhumation rate driven by rock uplift and changes in erodability and the time scale of geomorphic adjustment to surface uplift. Easily eroded, Cenozoic sedimentary rocks overlying resistant basement control early, rapid exhumation and slow surface upliftrates. As increasing amounts of resistant basement are exposed, exhumation rates decrease while surface uplift rates are sustained or increase, thereby growing topography. As the range becomes high enough to cause ice accumulation and develop steep river valleys, fluvial and glacial erosion become more powerful and exhumation rates once again increase. Independently determined range-noma1 shortening rates have also varied over time, suggesting a feedback between erosional efficiency and shortening rate.

  9. Synthesis and characterization of pure strontium apatite particles and nanoporous scaffold prepared by dextrose-templated method

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Liu, Yongjia; Zhu, Bangshang

    2018-02-01

    Strontium shows an increasing interest on bone formation and bone resorption prevention. Here, pure apatite strontium (Ap-SrOH) [Sr5(PO4)3(OH), strontium hydroxyapatite] particles were prepared by the precipitation method using Sr(NO3)2 · 6H2O and (NH4)2HPO4 as reagents. Scanning electron microscope, transmission electron microscope combined with electron diffraction, X-ray diffraction, Fourier transform infrared spectra (FTIR), variable temperature FTIR and thermo gravimetric analysis were employed to evaluate the crystalline structure, chemical composition, and thermal stability of the Ap-SrOH particles. The results show that phase pure Ap-SrOH particles were prepared by wet precipitation. The obtained Ap-SrOH particles are single crystal in phase structure, they have hexagonal fusiform shape, and their size is about 30-180 nm in diameter, and 0.4-2.5 μm in length. The cell MTT assay evaluations indicate that Ap-SrOH particles have very low cytotoxicity. Furthermore, nanoporous Ap-SrOH scaffolds were synthesized by anhydrous dextrose template method. After mixed 5-10 wt% of anhydrous dextrose with Ap-SrOH particles, pressed into discs, and sintered in microwave muffle furnace at 600 °C, the scaffolds with both nanoporous and nanotopography were formed. Cell culture of MC3T3-E1 osteoblasts in vitro show cells grow well on nanoporous Ap-SrOH scaffold. Therefore, Ap-SrOH particles and their nanoporous scaffolds are promising biomaterials for bone repairing and bone disease (e.g. osteoporosis) healing.

  10. Study of the interfacial reactions between a bioactive apatite-mullite glass-ceramic coating and titanium substrates using high angle annular dark field transmission electron microscopy.

    PubMed

    Stanton, Kenneth T; O'Flynn, Kevin P; Nakahara, Shohei; Vanhumbeeck, Jean-François; Delucca, John M; Hooghan, Bobby

    2009-04-01

    Glass of generic composition SiO(2) . Al(2)O(3) . P(2)O(5) . CaO . CaF(2) will crystallise predominantly to apatite and mullite upon heat-treatment. Such ceramics are bioactive, osseoconductive, and have a high resistance to fracture. As a result, they are under investigation for use as biomedical device coatings, and in particular for orthopaedic implants. Previous work has shown that the material can be successfully enamelled to titanium with an interfacial reaction zone produced during heat treatment. The present study uses high angle annular dark field transmission electron microscopy (HAADF-TEM) to conduct a detailed examination of this region. Results show evidence of complex interfacial reactions following the diffusion of titanium into an intermediate layer and the production of titanium silicides and titanium phosphides. These results confirm previously hypothesised mechanisms for the bonding of silicate bioceramics with titanium alloys.

  11. Development of an automated experimental setup for the study of ionic-exchange kinetics. Application to the ionic adsorption, equilibrium attainment and dissolution of apatite compounds.

    PubMed

    Thomann, J M; Gasser, P; Bres, E F; Voegel, J C; Gramain, P

    1990-02-01

    An ion-selective electrode and microcomputer-based experimental setup for the study of ionic-exchange kinetics between a powdered solid and the solution is described. The equipment is composed of easily available commercial devices and a data acquisition and regularization computer program is presented. The system, especially developed to investigate the ionic adsorption, equilibrium attainment and dissolution of hard mineralized tissues, provides good reliable results by taking into account the volume changes of the reacting solution and the electrode behaviour under different experimental conditions, and by avoiding carbonation of the solution. A second computer program, using the regularized data and the experimental parameters, calculates the quantities of protons consumed and calcium released in the case of equilibrium attainment and dissolution of apatite-like compounds. Finally, typical examples of ion-exchange and dissolution kinetics under constant pH of enamel and synthetic hydroxyapatite are examined.

  12. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region

    USGS Publications Warehouse

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.

    2016-01-01

    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  13. Mid-Late Miocene deformation of the northern Kuqa fold-and-thrust belt (southern Chinese Tian Shan): An apatite (U-Th-Sm)/He study

    NASA Astrophysics Data System (ADS)

    Chang, Jian; Tian, Yuntao; Qiu, Nansheng

    2017-01-01

    The Kuqa fold-and-thrust belt developed in response to Cenozoic southward shortening between the Chinese Tian Shan and the Tarim Basin. This study aims to constrain the timing of the Late Cenozoic deformation by determining the onset time of enhanced rock cooling using apatite (U-Th-Sm)/He thermochronometry. Eight sedimentary samples were collected from Triassic to Cretaceous strata exposed along a 17 km N-S transect, cross-cutting the northern Kuqa fold-and-thrust belt. Single-grain AHe ages from these samples mostly cluster around 8-16 Ma and are younger than their depositional ages. Older AHe ages show a positive relationship with [eU], a proxy for radiation damage. Modelling of the observed age-eU relationships suggest a phase of enhanced cooling and erosion initiated at Mid-Late Miocene time (10-20 Ma) in the northern Kuqa fold-and-thrust belt. This result is consistent with a coeval abrupt increase of sedimentation rate in the foreland Kuqa depression, south of the study area, indicating a Mid-Late Miocene phase of shortening in the northern Kuqa fold-and-thrust belt.

  14. Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant.

    PubMed

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K

    2016-05-01

    A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer.

    PubMed

    Sekita, Aiko; Matsugaki, Aira; Nakano, Takayoshi

    2017-04-01

    Prostate cancer (PCa) frequently metastasizes to the bone, generally inducing osteoblastic alterations that increase bone brittleness. Although there is growing interest in the management of the physical capability of patients with bone metastasis, the mechanism underlying the impairment of bone mechanical function remains unclear. The alignment of both collagen fibrils and biological apatite (BAp) c-axis, together with bone mineral density, is one of the strongest contributors to bone mechanical function. In this study, we analyzed the bone microstructure of the mouse femurs with and without PCa cell inoculation. Histological assessment revealed that the bone-forming pattern in the PCa-bearing bone was non-directional, resulting in a spongious structure, whereas that in the control bone was unidirectional and layer-by-layer, resulting in a compact lamellar structure. The degree of preferential alignment of collagen fibrils and BAp, which was evaluated by quantitative polarized microscopy and microbeam X-ray diffraction, respectively, were significantly lower in the PCa-bearing bone than in the control bone. Material parameters including Young's modulus and toughness, measured by the three-point bending test, were simultaneously decreased in the PCa-bearing bone. Specifically, there was a significant positive correlation between the degree of BAp c-axis orientation and Young's modulus. In conclusion, the impairment of mechanical function in the PCa-bearing bone is attributable to disruption of the anisotropic microstructure of bone in multiple phases. This is the first report demonstrating that cancer bone metastasis induces disruption of the collagen/BAp alignment in long bones, thereby impairing their mechanical function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Desensitizing efficacy of nano-carbonate apatite dentifrice and Er,Cr:YSGG laser: a randomized clinical trial.

    PubMed

    Lee, Su-Young; Jung, Hoi-In; Jung, Bock-Young; Cho, Young-Sik; Kwon, Ho-Keun; Kim, Baek-Il

    2015-01-01

    The aim of this study was to evaluate the desensitizing effects of a dentifrice containing nano-carbonate apatite (n-CAP) and Er,Cr:YSGG laser in the treatment of dentin hypersensitivity. Most studies of hypersensitivity treatment have been conducted with different methods of professional treatment and self-care in each study. Moreover, clinical studies that compare self-care and professional treatment have not yet been published. Eighty-two patients with dentin hypersensitivity were divided randomly into three groups: (1) a control group with strontium chloride dentifrice (SC), (2) n-CAP dentifrice (n-CAP), and (3) an Er,Cr:YSGG laser (laser) group. The study was conducted for 4 weeks: a treatment period of 2 weeks and a maintenance period of 2 subsequent weeks. The SC and n-CAP groups were instructed to brush their teeth twice a day for 1 min. The laser group visited twice at 1 week intervals for irradiation of the sensitive teeth. The desensitizing effect was evaluated by assessing the tactile sensitivity using the visual analogue scale (VAS), and evaporative air sensitivity was determined using an air blast score (ABS). The n-CAP group and the laser group showed significantly different desensitizing effects in VAS after 4 weeks (69% and 63%, respectively) and a 33% (p<0.05) and 3% (p>0.05) desensitizing effect, respectively, in VAS during the maintenance period. The n-CAP and the laser were effective in reducing dentin hypersensitivity. The laser had a superior desensitizing effect at the initial stage, whereas the n-CAP maintained its effect for a relatively longer time in clinical situations.

  17. Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Xin; Wang, Sea-Fue; Hsu, Yung-Fu; Wang, Chi-Hua

    2018-03-01

    In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm-2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.

  18. 100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.

    resistivity change and the associated change in moisture content so that 4D images of moisture content change can be generated. Results from this field test will be available for any future Ca-citrate-PO4 amendment infiltration tests, which would be designed to evaluate the efficacy of using near surface application of amendments to form apatite mineral phases in the upper portion of the zone of water table fluctuation.« less

  19. In Situ Immobilization of Selenium in Sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert C.; Stewart, Thomas Austin

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is verymore » little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.« less

  20. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier.more » Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.« less

  1. Uncoupled vs. coupled thrust belt-foreland deformation: a model for northern Patagonia inferred from U-Th/He and apatite fission track dating

    NASA Astrophysics Data System (ADS)

    Savignano, Elisa; Mazzoli, Stefano; Zattin, Massimiliano; Gautheron, Cécile; Franchini, Marta

    2017-04-01

    The study of the Cretaceous - Cenozoic evolution of the Patagonian Andes represents a great opportunity to investigate the effects of coupling between deep lithospheric processes and near-surface deformation. Low-temperature thermochronological systems are ideally suited for detecting events involving rocks in the uppermost part of the crust because they record time and rates of cooling related to exhumation of the top few kilometers of the crust. The Patagonia region, although characterized by a general continuity of the Andean orogen along its strike, shows an appreciable internal tectonic segmentation (marked by a variable position of the magmatic arc and of the deformation front in the retroarc area) at various latitudes. This complex structural architecture has been interpreted as the result of different processes acting since the Late Cretaceous. The present-day configuration of the southern Andes is interpreted to have been controlled by alternating stages of flat- and steep-slab subduction, which produced shortening and upper plate extension episodes,, respectively. Furthermore, the deformation in this whole retroarc sector varied not only in time (i.e. with major 'cycles' of mountain building and orogenic collapse), but also in space, due to the variable transmission of horizontal compressive stress away from the orogen, that produced an irregular unroofing pattern. In this study, we have integrated field structural observations with new apatite (U-Th)/He data (AHe) and apatite fission-track (AFT) ages in the north Patagonia region (at latitudes between 40° and 44°S) in order to analyse and compare the exhumation patterns from the frontal part of the orogen and from the adjacent foreland sector, as well as to gain new insights into the timing and modes of coupling vs. uncoupling of the deformation between the northern Patagonian fold and thrust belt and its foreland. The obtained data indicate a markedly different unroofing pattern between the 'broken

  2. Crystallographic orientation of the c-axis of biological apatite as a new index of the quality of subchondral bone in knee joint osteoarthritis.

    PubMed

    Lee, Jee-Wook; Kobayashi, Akio; Nakano, Takayoshi

    2017-05-01

    The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.

  3. Slow-release fertilizer

    NASA Technical Reports Server (NTRS)

    Golden, Dadigamuwage C. (Inventor); Ming, Douglas W. (Inventor)

    1995-01-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  4. Slow-release fertilizer

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Golden, D. C. (Inventor)

    1992-01-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  5. Slow-release fertilizer

    NASA Astrophysics Data System (ADS)

    Ming, Douglas W.; Golden, D. C.

    1992-10-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  6. Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning.

    PubMed

    Tica, D; Udovic, M; Lestan, D

    2013-03-01

    Remediation soil is exposed to various environmental factors over time that can affect the final success of the operation. In the present study, we assessed Pb bioaccessibility and microbial activity in industrially polluted soil (Arnoldstein, Austria) stabilized with 5% (w/w) of Slovakite and 5% (w/w) of apatite soil after exposure to two earthworm species, Lumbricus terrestris and Dendrobaena veneta, used as model environmental biotic soil factors. Stabilization resulted in reduced Pb bioaccessibility, as assessed with one-step extraction tests and six-step sequential extraction, and improved soil functioning, mirrored in reduced β-glucosidase activity in soil. Both earthworm species increased Pb bioaccessibility, thus decreasing the initial stabilization efficacy and indicating the importance of considering the long-term fate of remediated soil. The earthworm species had different effects on soil enzyme activity, which can be attributed to species-specific microbial populations in earthworm gut acting on the ingested soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Apatite fission-track evidence of widespread Eocene heating and exhumation in the Yukon-Tanana Upland, interior Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Murphy, J.M.

    2001-01-01

    We present an apatite fission-track (AFT) study of five plutonic rocks and seven metamorphic rocks across 310 km of the Yukon-Tanana Upland in east-central Alaska. Samples yielding ???40 Ma AFT ages and mean confined track lengths > 14 ??m with low standard deviations cooled rapidly from >120??C to 40 Ma suggest partial annealing and, therefore, lower maximum temperatures (???90-105??C). A few samples with single-grain ages of ???20 Ma apparently remained above ???50??C after initial cooling. Although the present geothermal gradient in the western Yukon-Tanana Upland is ???32??C/km, it could have been as high as 45??C/km during a widespread Eocene intraplate magmatic episode. Prior to rapid exhumation, samples with ???40 Ma AFT ages were >3.8-2.7 km deep and samples with >50 Ma AFT ages were >3.3-2.0 km deep. We calculate a 440-320 m/Ma minimum rate for exhumation of all samples during rapid cooling. Our AFT data, and data from rocks north of Fairbanks and from the Eielson deep test hole, indicate up to 3 km of post-40 Ma vertical displacement along known and inferred northeast-trending high-angle faults. The predominance of 40-50 Ma AFT ages throughout the Yukon-Tanana Upland indicates that, prior to the post-40 Ma relative uplift along some northeast-trending faults, rapid regional cooling and exhumation closely followed the Eocene extensional magmatism. We propose that Eocene magmatism and exhumation were somehow related to plate movements that produced regional-scale oroclinal rotation, northward translation of outboard terranes, major dextral strike-slip faulting, and subduction of an oceanic spreading ridge along the southern margin of Alaska.

  8. Apatite (U-Th)/He thermochronometry as an innovative geothermal exploration tool: A case study from the southern Wassuk Range, Nevada

    NASA Astrophysics Data System (ADS)

    Gorynski, Kyle E.; Walker, J. Douglas; Stockli, Daniel F.; Sabin, Andrew

    2014-01-01

    Extensional-type geothermal systems are complicated by the interrelation between footwall advection during exhumation, and the subsequent redistribution of heat by migrating hydrothermal fluids in the hanging wall. The southern Wassuk Range (WR) hanging wall hosts a moderate-temperature, extensional-type geothermal system and is ideal for studying this duality by analyzing a suite of apatite (AHe) and zircon (ZHe) helium samples from the footwall and hanging wall of the southern WR. Young (~ 3-4 Ma) AHe ages along the WR front are concentrated along the SE corners of segmented footwall blocks, marking the location of focused Mio-Pliocene transtension, fracture dilation, and advection. Hydrothermally reset AHe ages along the footwall range front suggest that the Hawthorne geothermal system (85°-135° C) is long lived and has resided at a prominent structural boundary in the WR footwall marked by localized advection and range-front deformation. In contrast, the presence of both hydrothermally reset and non-reset AHe ages from a ~ 1.4 km deep borehole in the hanging-wall basin probably indicate that the geothermal plumbing system and current manifestation as a thermal anomaly (~ 113 °C) are juvenile and are controlled by the generation of newly formed faults in the hanging wall. AHe ages have been shown here to greatly enhance the focusing of regional-scale geothermal exploration efforts, and for the first time have been used to identify and estimate the temperature of unseen hydrothermal fluids.

  9. Optimization of a Biomimetic Apatite Nanoparticle Delivery System for Non-viral Gene Transfection---a Simulated Body Fluid Approach

    NASA Astrophysics Data System (ADS)

    Das, Debobrato

    Current methods for gene delivery utilize nanocarriers such as liposomes and viral vectors that may produce in vivo toxicity, immunogenicity, or mutagenesis. Moreover, these common high-cost systems have a low efficacy of gene-vehicle transport across the cell plasma membrane followed by inadequate release and weak intracellular stability of the genetic sequence. Thus, this study aims to maximize gene transfection while minimizing cytotoxicity by utilizing supersaturated blood-plasma ions derived from simulated body fluids (SBF). With favorable electrostatic interactions to create biocompatible calcium-phosphate nanoparticles (NPs) derived from biomimetic apatite (BA), results suggest that the SBF system, though naturally sensitive to reaction conditions, after optimization can serve as a tunable and versatile platform for the delivery of various types of nucleic acids. From a systematic exploration of the effects of nucleation pH, incubation temperature, and time on transfection efficiency, the study proposes distinct characteristic trends in SBF BA-NP morphology, cellular uptake, cell viability, and gene modulation. Specifically, with aggressive nucleation and growth of BA-NPs in solution (observed via scanning electron microscopy), the ensuing microenvironment imposes a more toxic cellular interaction (indicated by alamarBlue and BCA assays), limiting particle uptake (fluorescence experiments) and subsequent gene knockdown (quantitative loss of function assays). Controlled precipitation of BA-NPs function to increase particle accessibility by surrounding cells, and subsequently enhance uptake and transfection efficiency. By closely examining such trends, an optimal fabrication condition of pH 6.5-37C can be observed where particle growth is more tamed and less chaotic, providing improved, favorable cellular interactions that increase cell uptake and consequently maximize gene transfection, without compromising cellular viability.

  10. Late Cenozoic Vertical Motions of the Coachella Valley Using Apatite U-Th/He and 4/3He Thermochronometry

    NASA Astrophysics Data System (ADS)

    Mason, C. C.; Spotila, J. A.; Fame, M. L.; Dorsey, R. J.; Shuster, D. L.

    2015-12-01

    The Coachella Valley of southern California (USA) is a late Cenozoic transform-related sedimentary basin created by top-to-the-east extension on the West Salton detachment fault and dextral strike-slip offset on the San Andreas fault (Axen and Fletcher, 1998), which has continued to subside as a result of northeastward tilting since initiation of the San Jacinto fault ca. 1.2 Ma. Though it is generally agreed that these large regional faults are responsible for creation of high relief and deep subsidence in the Coachella Valley, the timing, magnitude, and geometries of fault offsets on these structures are still debated. This project applies an integrated source-to-sink approach to investigate tectonic models for evolution of the Pacific-North American plate boundary as recorded in the world-class natural laboratory of the Coachella Valley. In this study we integrate new thermochronometry-constrained kinematic models with tectonostratigraphic interpretations to help quantify the timing, rates, and magnitudes of tectonically driven vertical crustal motions and resulting mass fluxes. We sampled bedrock for U-Th/He (A-He) thermochronometry in the Mecca Hills, Santa Rosa, San Jacinto, and Little San Bernardino Mountains in both spatially focused and widely distributed areas. We also present new results from apatite 4/3He thermochronometry to help constrain the most recent exhumation histories. A-He results reveal spatially variable exhumation ages. The southwest Santa Rosa Mountains experienced late Miocene-early Pliocene exhumation along their southwest flank, while new A-He ages from ranges bounding Coachella Valley reveal complex uplift histories. We integrate our data set with previously published thermochronometric data to improve a regional synthesis of late Cenozoic vertical motions of the Coachella Valley.

  11. Absence of bacterial imprints on struvite-containing kidney stones: a structural investigation at the mesoscopic and atomic scale.

    PubMed

    Bazin, Dominique; André, Gilles; Weil, Raphael; Matzen, Guy; Emmanuel, Veron; Carpentier, Xavier; Daudon, M

    2012-04-01

    Bacterial imprints are always observed on highly carbonated apatite kidney stones but not struvite kidney stones. Struvite and carbonated apatite stones with a high CO(3)(2-)/PO(4)(3-) rate are believed to develop from infections, but their structural differences at the mesoscopic scale lack explanation. We investigated 17 urinary calculi composed mainly of struvite or carbonated apatite by Fourier transform infrared, scanning electron microscopy, and powder neutron diffraction techniques. Carbonated apatite but not struvite stones showed bacterial imprints. If the same stone contained both carbonated apatite and struvite components, bacterial imprints were observed on the carbonated apatite but not the struvite part. Moreover, neutron powder diffraction experiments revealed the crystal size of struvite stones were larger than that of carbonated apatite stones (250 ± 50 vs 50 nm). Bacterial imprints may appear more easily on kidney stones with small nanocrystals, such as carbonated apatite than with large nanocrystals, such as struvite. This approach may help identify bacteria contributing to stone formation, perhaps with negative results of urine culture. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Bioactivity of Sodium Free Fluoride Containing Glasses and Glass-Ceramics

    PubMed Central

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S.; Wilson, Rory M.; Hill, Robert G.; Karpukhina, Natalia

    2014-01-01

    The bioactivity of a series of fluoride-containing sodium-free calcium and strontium phosphosilicate glasses has been tested in vitro. Glasses with high fluoride content were partially crystallised to apatite and other fluoride-containing phases. The bioactivity study was carried out in Tris and SBF buffers, and apatite formation was monitored by XRD, FTIR and solid state NMR. Ion release in solutions has been measured using ICP-OES and fluoride-ion selective electrode. The results show that glasses with low amounts of fluoride that were initially amorphous degraded rapidly in Tris buffer and formed apatite as early as 3 h after immersion. The apatite was identified as fluorapatite by 19F MAS-NMR after 6 h of immersion. Glass degradation and apatite formation was significantly slower in SBF solution compared to Tris. On immersion of the partially crystallised glasses, the fraction of apatite increased at 3 h compared to the amount of apatite prior to the treatment. Thus, partial crystallisation of the glasses has not affected bioactivity significantly. Fast dissolution of the amorphous phase was also indicated. There was no difference in kinetics between Tris and SBF studies when the glass was partially crystallised to apatite before immersion. Two different mechanisms of apatite formation for amorphous or partially crystallised glasses are discussed. PMID:28788139

  13. Scaffolds of hydroxyl apatite nanoparticles disseminated in 1, 6-diisocyanatohexane-extended poly(1, 4-butylene succinate)/poly(methyl methacrylate) for bone tissue engineering.

    PubMed

    Kaur, Kulwinder; Singh, K J; Anand, Vikas; Bhatia, Gaurav; Kaur, Raminderjit; Kaur, Manpreet; Nim, Lovedeep; Arora, Daljit Singh

    2017-02-01

    Poly(1, 4-butyl succinate) extended 1, 6-diisocyanatohexane (PBSu-DCH) polymers and Polymethylmethacrylate (PMMA) scaffolds decorated with nano hydroxyl apatite have been prepared and characterized for regeneration of bone in cranio-maxillofacial region. Synthesized scaffolds revealed good response in bone regeneration and excellent cell viability in comparison to commercial available glass plate, which lead to better proliferation of MG-63 cell lines. Additionally, they demonstrate high porosity and excellent water retention ability. Moreover, controlled degradation (in pH=7.4) and sustained drug release in pH (4.5 and 7.4) are advantages of these scaffolds to serve as delivery vehicles for therapeutic drugs. Samples also provide the protection against Escherichia coli and Methicillin Resistant Staphylococcus aureus microorganisms which can be helpful for quick recovery of the patient. In-vitro inflammatory response has been assessed via adsorption of human plasma/serum proteins on the surface of the scaffolds. Results suggest that prepared scaffolds have good bone regeneration ability and provide friendly environment for the cell growth with the additional advantage of protection of the surrounding tissues from microbial infection. With all these features, it is speculated that these scaffolds will have wide utility in the area of tissue engineering and regenerative medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Apatite Fission-Track Analysis of the Middle Jurassic Todos Santos Formation from Chiapas, Mexico.

    NASA Astrophysics Data System (ADS)

    Abdullin, Fanis; Solé, Jesús; Shchepetilnikova, Valentina; Solari, Luigi; Ortega-Obregón, Carlos

    2014-05-01

    The Sierra de Chiapas (SCH), located in the south of Mexico, is a complex geological province that can be divided on four different lithological or tectonic areas: (1) the Chiapas Massif Complex (CMC); (2) the Central Depression; (3) the Strike-slip Fault Province, and (4) the Chiapas Fold-and-thrust Belt. The CMC mostly consists of Permian granitoids and meta-granitoids, and represents the basement of the SCH. During the Jurassic period red beds and salt were deposited on this territory, related to the main pulse of rifting and opening of the Gulf of Mexico. Most of the Cretaceous stratigraphy contains limestones and dolomites deposited on a marine platform setting during the postrift stage of the Gulf of Mexico rift. During the Cenozoic Era took place the major clastic sedimentation along the SCH. According the published low-temperature geochronology data (Witt et al., 2012), SCH has three main phases of thermo-tectonic history: (1) slow exhumation between 35 and 25 Ma, that affected mainly the basement (CMC) and is probably related to the migration of the Chortís block; (2) fast exhumation during the Middle-Late Miocene caused by strike-slip deformation that affects almost all Chiapas territory; (3) period of rapid cooling from 6 to 5 Ma, that affects the Chiapas Fold-and-thrust Belt, coincident with the landward migration of the Caribbean-North America plate boundaries. The two last events were the most significant on the formation of the present-day topography of the SCH. However, the stratigraphy of the SCH shows traces of the existence of earlier tectonic events. This study presents preliminary results of apatite fission-track (AFT) dating of sandstones from the Todos Santos Formation (Middle Jurassic). The analyses are performed with in situ uranium determination using LA-ICP-MS (e.g., Hasebe et al., 2004). The AFT data indicate that this Formation has suffered high-grade diagenesis (probably over 150 ºC) and the obtained cooling ages, about 70-60 Ma

  15. Developing bioactive composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  16. Testing the apatite depletion hypothesis for early Holocene ecosystem acidification using the lake sediment record at Krâkenes, Norway.

    NASA Astrophysics Data System (ADS)

    Thrasher, I. M.; Boyle, J. F.; Chiverrell, R. C.; Plater, A. J.

    2009-04-01

    Lakes created by retreating ice at the end of the last glaciation underwent rapid acidification during the first few thousand years of their existence, a phenomenon that has been attributed in part to progressive leaching of soil bases since it was discovered more than 80 years ago. Though a role for leaching is still acknowledged, the most recent studies see this as subordinate to the effects of biological and climatic changes initiated by deglaciation, chiefly primary vegetation succession and species immigration. However, we propose a simpler alternative explanation, based on the geochemical modelling of runoff acidity. This shows that the extent and timing of early Holocene lake acidification in eight published palaeoecological records can be explained by leaching of the calcium phosphate mineral apatite from the granitic till soils of their catchments, at a rate controlled by simple dissolution kinetic factors. If confirmed, this hypothesis has important implications for our understanding of long-term lake ecosystem development. Not only does it mean that the mechanism is inherently irreversible, in contrast to the alternative ecological and climatic mechanisms which are not. Also, it reinforces the view that long-term ecosystem modelling cannot safely neglect nutrient limitation, as is currently the practice in widely used global dynamic vegetation models. Here we present a NERC-funded programme of research that uses the sediment mineral record of Kråkenes (western Norway), the best studied early Holocene lake sediment sequence in the world, to provide a simple, critical and unambiguous test of this hypothesis.

  17. BENTHIC COMMUNITY RESPONSE TO SEDIMENT AMENDMENTS

    EPA Science Inventory

    The amendments apatite, organoclay, acetate, chitin, and geotextile reactive mats containing apatite and apatite + organoclay are currently under examination for remediation of contaminated sediments. The objective of this research is to evaluate toxicity to several estuarine an...

  18. Fabrication of hydroxyapatite block from gypsum block based on (NH4)2HPO4 treatment.

    PubMed

    Suzuki, Yumiko; Matsuya, Shigeki; Udoh, Koh-ichi; Nakagawa, Masaharu; Tsukiyama, Yoshihiro; Koyano, Kiyoshi; Ishikawa, Kunio

    2005-12-01

    The aim of this study was to evaluate the feasibility of fabricating low-crystalline, porous apatite block using set gypsum as a precursor based on the fact that apatite is thermodynamically more stable than gypsum. When the set gypsum was immersed in 1 mol/L diammonium hydrogen phosphate aqueous solution at 100 degrees C, it transformed to low-crystalline porous apatite retaining its original shape. The transformation reaction caused a release of sulfate ions due to an ion exchange with phosphate ions, thus leading to a decrease in the pH of the solution. Then, due to decreased pH, dicalcium phosphate anhydrous--which has similar thermodynamic stability at lower pH--was also produced as a by-product. Apatite formed in the present method was low-crystalline, porous B-type carbonate apatite that contained approximately 0.5 wt% CO3, even though no carbonate sources--except carbon dioxide from air--were added to the reaction system. We concluded therefore that this is a useful bone filler fabrication method since B-type carbonate apatite is the biological apatite contained in bone.

  19. Framework Guidance Manual for In Situ Wetland Restoration Demonstration

    DTIC Science & Technology

    2013-08-26

    within the laboratory include activated carbon, apatite, coke, organoclay, zeolites , and zero valent iron (Barth, 2008; Reible, 2004). Three of...apatite, coke, organoclay, zeolites , and zero-valent iron (Barth, 2008; Reible, 2004, Patmont et al., 2013). Activated carbon, apatite and organoclay

  20. Fluids on differentiated asteroids: Evidence from phosphates in differentiated meteorites GRA 06128 and GRA 06129

    NASA Astrophysics Data System (ADS)

    Shearer, Charles K.; Burger, Paul V.; Papike, James J.; Sharp, Zachary D.; McKeegan, Kevin D.

    2011-09-01

    Abstract- Paired meteorites Graves Nunatak 06128 and 06129 (GRA) represent an ancient cumulate lithology (4565.9 Ma ± 0.3) containing high abundances of sodic plagioclase. Textures and stable isotope compositions of GRA indicate that superimposed on the igneous lithology is a complex history of subsolidus reequilibration and low-temperature alteration that may have extended over a period of 150 Myr. In GRA, apatite is halogen-rich with Cl between 4.5 and 5.5 wt% and F between 0.3 and 0.9 wt%. The Cl/(Cl+F+OH) ratio of the apatite is between 0.65 and 0.82. The Cl and F are negatively correlated and are heterogeneously distributed in the apatite. Merrillite is low in halogens with substantial Na in the 6-fold coordinated Na-site (≈2.5%) and Mg in the smaller octahedral site. The merrillite has a negative Eu anomaly, whereas the apatite has a positive Eu anomaly. The chlorine isotope composition of the bulk GRA leachate is +1.2‰ relative to standard mean ocean chloride (SMOC). Ion microprobe chlorine isotope analyses of the apatite range between -0.5 and +1.2‰. Textural relationships between the merrillite and apatite, and the high-Cl content of the apatite, suggest that the merrillite is magmatic in origin, whereas the apatite is a product of the interaction between merrillite and a Cl-rich fluid. If the replacement of merrillite by apatite occurred at approximately 800 °C, the fluid composition is f(HCl)/f(H2O) = 0.0383 and a HCl molality of 2.13 and f(HCl)/f(HF) = 50-100. It is anticipated that the calculated f(HCl)/f(H2O) and a HCl molality are minimum values due to assumptions made on the OH component in apatite and basing the calculations on the apatite with the lowest XCl. The bulk δ37Cl of GRA is a >2σ outlier from chondritic meteorites and suggests that parent body processes resulted in fractionation of the Cl isotopes.

  1. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  2. Onshore and offshore apatite fission-track dating from the southern Gulf of California: Insights into the time-space evolution of the rifting

    NASA Astrophysics Data System (ADS)

    Balestrieri, Maria Laura; Ferrari, Luca; Bonini, Marco; Duque-Trujillo, Jose; Cerca, Mariano; Moratti, Giovanna; Corti, Giacomo

    2017-11-01

    We present the results of a apatite fission-track (AFT) study on intrusive rocks in the southern Gulf of California, sampled along the eastern margin of Baja California Sur (western rift margin), as well as from islands and submerged rifted blocks within the Gulf of California, and from the conjugate Mexican margin (Nayarit state). For most of the samples U-Pb zircon and 40Ar-39Ar mineral ages were already available (Duque-Trujillo et al., 2015). Coupled with the new AFT data these ages provide a more complete information on cooling after emplacement. Our samples span a wide range of ages between 5.5 ± 1.1 and 73.7 ± 5.8 Ma, and show a general spatial distribution, with late Miocene AFT ages (about 6 Ma) aligned roughly NW-SE along a narrow offshore belt, parallel to Baja California Peninsula, separating older ages on both sides. This pattern suggests that in Late Miocene, deformation due to plate transtension focused at the eastern rheological boundary of the Baja California block. Some Early Miocene AFT ages onshore Baja California could be related to plutons emplaced at shallow depths and thermal resetting associated with the onset of volcanism at 19 Ma in this part of the Peninsula. On the other hand, an early extensional event similar to that documented in the eastern Gulf cannot be ruled out in the westernmost Baja California.

  3. A review of phosphate mineral nucleation in biology and geobiology.

    PubMed

    Omelon, Sidney; Ariganello, Marianne; Bonucci, Ermanno; Grynpas, Marc; Nanci, Antonio

    2013-10-01

    Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation.

  4. Apatite fission-track evidence for regional exhumation in the subtropical Eocene, block faulting, and localized fluid flow in east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Bacon, Charles R.; O'Sullivan, Paul B.; Day, Warren C.

    2016-01-01

    The origin and antiquity of the subdued topography of the Yukon–Tanana Upland (YTU), the physiographic province between the Denali and Tintina faults, are unresolved questions in the geologic history of interior Alaska and adjacent Yukon. We present apatite fission-track (AFT) results for 33 samples from the 2300 km2 western Fortymile district in the YTU in Alaska and propose an exhumation model that is consistent with preservation of volcanic rocks in valleys that requires base level stability of several drainages since latest Cretaceous–Paleocene time. AFT thermochronology indicates widespread cooling below ∼110 °C at ∼56–47 Ma (early Eocene) and ∼44–36 Ma (middle Eocene). Samples with ∼33–27, ∼19, and ∼10 Ma AFT ages, obtained near a major northeast-trending fault zone, apparently reflect hydrothermal fluid flow. Uplift and erosion following ∼107 Ma magmatism exposed plutonic rocks to different extents in various crustal blocks by latest Cretaceous time. We interpret the Eocene AFT ages to suggest that higher elevations were eroded during the Paleogene subtropical climate of the subarctic, while base level remained essentially stable. Tertiary basins outboard of the YTU contain sediment that may account for the required >2 km of removed overburden that was not carried to the sea by the ancestral Yukon River system. We consider a climate driven explanation for the Eocene AFT ages to be most consistent with geologic constraints in concert with block faulting related to translation on the Denali and Tintina faults resulting from oblique subduction along the southern margin of Alaska.

  5. Effect of alkali earth oxides on hydroxy-carbonated apatite nano layer formation for SiO2-BaO-CaO-Na2O-P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kiran, P.; Ramakrishna, V.; Shashikala, H. D.; Udayashankar, N. K.

    2017-11-01

    Barium soda lime phosphosilicate [(58SiO2-(32 - x)BaO- xCao-6Na2O-4P2O5 (where x = 15, 20, 25 and 30 mol%)] samples were synthesised using conventional sol-gel method at 700 °C sintering temperature. Thermal, structural properties were studied using thermo gravimetric analysis and differential thermal analysis, X-ray diffraction, scanning electron microscopy, fourier transform infrared and Raman spectroscopy. Using Raman spectra non-bridging oxygen concentrations were estimated. The hydroxy-carbonated apatite (HCA) layer formation on samples was analysed for 7 days using simulated body fluid (SBF) soaked samples. The growth of HCA layers self-assembled on the sample surface was discussed as a function of NBO/BO ratio. Results indicated that the number of Ca2+ ions released into SBF solution in dissolution process and weight loss of SB-treated samples vary with NBO/BO ratio. The changes in NBO/BO ratios were observed to be proportional to HCA forming ability of barium soda lime phosphosilicate glasses.

  6. Hypothesis of Lithocoding: Origin of the Genetic Code as a "Double Jigsaw Puzzle" of Nucleobase-Containing Molecules and Amino Acids Assembled by Sequential Filling of Apatite Mineral Cellules.

    PubMed

    Skoblikow, Nikolai E; Zimin, Andrei A

    2016-05-01

    The hypothesis of direct coding, assuming the direct contact of pairs of coding molecules with amino acid side chains in hollow unit cells (cellules) of a regular crystal-structure mineral is proposed. The coding nucleobase-containing molecules in each cellule (named "lithocodon") partially shield each other; the remaining free space determines the stereochemical character of the filling side chain. Apatite-group minerals are considered as the most preferable for this type of coding (named "lithocoding"). A scheme of the cellule with certain stereometric parameters, providing for the isomeric selection of contacting molecules is proposed. We modelled the filling of cellules with molecules involved in direct coding, with the possibility of coding by their single combination for a group of stereochemically similar amino acids. The regular ordered arrangement of cellules enables the polymerization of amino acids and nucleobase-containing molecules in the same direction (named "lithotranslation") preventing the shift of coding. A table of the presumed "LithoCode" (possible and optimal lithocodon assignments for abiogenically synthesized α-amino acids involved in lithocoding and lithotranslation) is proposed. The magmatic nature of the mineral, abiogenic synthesis of organic molecules and polymerization events are considered within the framework of the proposed "volcanic scenario".

  7. Inaccurate reporting of mineral composition by commercial stone analysis laboratories: implications for infection and metabolic stones.

    PubMed

    Krambeck, Amy E; Khan, Naseem F; Jackson, Molly E; Lingeman, James E; McAteer, James A; Williams, James C

    2010-10-01

    We determined the accuracy of stone composition analysis at commercial laboratories. A total of 25 human renal stones with infrared spectroscopy determined composition were fragmented into aliquots and studied with micro computerized tomography to ensure fragment similarity. Representative fragments of each stone were submitted to 5 commercial stone laboratories for blinded analysis. All laboratories agreed on the composition of 6 pure stones. Only 2 of 4 stones (50%) known to contain struvite were identified as struvite at all laboratories. Struvite was reported as a component by some laboratories for 4 stones previously determined not to contain struvite. Overall there was disagreement regarding struvite in 6 stones (24%). For 9 calcium oxalate stones all laboratories reported some mixture of calcium oxalate but the quantity of subtypes differed significantly among laboratories. In 6 apatite containing stones apatite was missed by the laboratories in 20% of samples. None of the laboratories identified atazanavir in a stone containing that antiviral drug. One laboratory reported protein in every sample while all others reported it in only 1. Nomenclature for apatite differed among laboratories with 1 reporting apatite as carbonate apatite and never hydroxyapatite, another never reporting carbonate apatite and always reporting hydroxyapatite, and a third reporting carbonate apatite as apatite with calcium carbonate. Commercial laboratories reliably recognize pure calculi. However, variability in the reporting of mixed calculi suggests a problem with the accuracy of stone analysis results. There is also a lack of standard nomenclature used by laboratories. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Crystallographic nature of fluoride in enameloids of fish.

    PubMed

    LeGeros, R Z; Suga, S

    1980-01-01

    X-ray diffraction studies on calcified tissues (teeth and/or scales) of fish and of shark showed that the presence of fluoride affects the crystallite size and lattice parameters of the apatite phase. An inverse correlation between F contents (ranging from 0.2 to 3.8 wt% F) and alpha-axis dimensions (9.441 to 9.375 +/- 0.003 A) exists for both synthetic and enameloid apatites and is consistent with the F-for-OH substitution in the apatite, idealized as Ca10(PO4)6(OH)2 and Ca10(PO4)6F2, for fluoride-free and maximum fluoride-substituted apatite, respectively. In synthetic systems, the incorporation of F is found to be dependent on the F concentration of the media from which the apatite formed. This dependency is also observed between F content of the dentine apatites and the F concentration of the water from which the fish can (i.e., less than 0.08 ppmF in fresh water, about 1.3 ppm in seawater). However, no such dependency was observed between the F incorporation in fish enameloid apatite and the F concentration in the water of origin. In some cases, the F incorporated in the enameloid apatite is much in excess of what can be expected from the F concentration of water. These observations suggest that in some fish, a fluoride-concentrating mechanism is operative during the formation of the enameloid but not during the formation of the dentine, and this mechanism appears to be specie-related.

  9. Flotation of Magnetite Crystals upon Decompression - A Formation Model for Kiruna-type Iron Oxide-Apatite Deposits

    NASA Astrophysics Data System (ADS)

    Knipping, J. L.; Simon, A. C.; Fiege, A.; Webster, J. D.; Reich, M.; Barra, F.; Holtz, F.; Oeser-Rabe, M.

    2017-12-01

    Trace-element characteristics of magnetite from Kiruna-type iron oxide-apatite deposits indicate a magmatic origin. A possible scenario currently considered for the magmatic formation, apart from melt immiscibility, is related to degassing of volatile-rich magmas. Decompression, e.g., induced by magma ascent, results in volatile exsolution and the formation of a magmatic volatile phase. Volatile bubbles are expected to nucleate preferentially on the surface of oxides like magnetite which is due to a relatively low surface tension of oxide-bubble interfaces [1]. The "bulk" density of these magnetite-bubble pairs is typically lower than the surrounding magma and thus, they are expected to migrate upwards. Considering that magnetite is often the liquidus phase in fluid-saturated, oxidized andesitic arc magmas, this process may lead to the formation of a rising magnetite-bubble suspension [2]. To test this hypothesis, complementary geochemical analyses and high pressure experimental studies are in progress. The core to rim Fe isotopic signature of magnetite grains from the Los Colorados deposit in the Chilean Iron Belt was determined by Laser Ablation-MC-ICP-MS. The δ56Fe data reveal a systematic zonation from isotopically heavy Fe (δ56Fe: 0.25 ±0.07 ‰) in the core of magnetite grains to relatively light Fe (δ56Fe: 0.15 ±0.05 ‰) toward grain rims. This variation indicates crystallization of the magnetite cores at early magmatic stages from a silicate melt and subsequent growth of magnetite rims at late magmatic - hydrothermal stages from a free volatile phase. These signatures agree with the core to rim trace-element signatures of the same magnetite grains. The presence of Cl in the exsolved volatile phase and the formation of FeCl2 complexes is expected to enhance the transport of Fe in fluids and the formation of magmatic-hydrothermal magnetite [3]. First experiments (975 °C, 350 to 100 MPa, 0.025 MPa/s) show certain magnetite accumulation only 15 minutes

  10. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    PubMed

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  11. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    USGS Publications Warehouse

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  12. Igneous layering in the peralkaline intrusions ,Kola Peninsula :leading role of gravitational differentiation

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N..

    2012-04-01

    In the center of Kola Peninsula there are two large layered intrusions of agpaitic nepheline syenites - Khibina and Lovozero. . The Khibina alkaline massif (Kola Peninsula,Russia) hosts the world's largest and economically most important apatite deposit. The Khibina massif is a complex multiphase body built up from a number of ring-like and conical intrusions. The apatite bearing intrusion is ring-like and is represented by a layered body of ijolitic composition with a thickness of about 1 - 2 km. The upper zone is represented by different types of apatite ores. These rocks consist of 60-90% euhedral very small (tenths of mm)apatite crystals. The lower zone has mostly ijolitic composition. The lower zone grades into underlying massive urtite consisting of 75-90% large (several mm) euhedral nepheline. Our experimental studies of systems with apatite demonstrated the near-eutectic nature of the apatite-bearing intrusion, resulting in practically simultaneous crystallization of nepheline, apatite and pyroxene. The mathematical model of the formation of the layered apatite-bearing intrusion based on the processes of sedimentation under the conditions of steady state convection taking account of crystal sizes is proposed. Under the conditions of steady-state convection large crystals of nepheline continuously had been settling forming massive underlying urtite whereas smaller crystals of pyroxenes, nepheline and apatite had been stirred in the convecting melt. During the cooling the intensity of convection decreased causing a settling of smaller crystals of nepheline and pyroxene and later very small crystalls of apatite in the upper part of alkaline magma chamber. The Lovozero massif, the largest of the Globe layered peralkaline intrusion, comprises super-large rare-metal (Nb, Ta, REE) deposit. The main ore mineral is loparite (Na, Ce, Ca)2 (Ti, Nb)2O6 which was mined during many years. The composition of cumulus loparite changed systematically upward through the

  13. Sr-90 Immobilization by Infiltration of a Ca-Citrate-PO4 Solution into the Hanford 100-N Area Vadose Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, Jim E.; Fruchter, Jonathan S.; Burns, Carolyn A.

    This project was initiated to develop a strategy for infiltration of a Ca-citrate-PO4 solution in order to precipitate apatite [Ca6(PO4)10(OH)2] in desired locations in the vadose zone for Sr-90 remediation. Laboratory experiments have demonstrated that infiltration of a Ca-citrate-PO4 solution into sediments at low and high water saturation results in citrate biodegradation and formation of apatite. The citrate biodegradation rate was relatively uniform, in spite of the spatial variability of sediment microbial biomass, likely because of microbial transport processes that occur during solution infiltration. The precipitate was characterized as hydroxyapatite, and the Sr-90 substitution into apatite was shown to havemore » a half-life of 5.5 to 16 months. 1-D and 2-D laboratory infiltration experiments quantified the spatial distribution of apatite that formed during solution infiltration. Slow infiltration in 2-D experiments at low water saturation show the apatite precipitate concentrated in the upper third of the infiltration zone. More rapid 1-D infiltration studies show the apatite precipitate concentrated at greater depth.« less

  14. Sr-90 Immobilization by Infiltration of a Ca-Citrate-PO{sub 4} Solution into the Hanford 100-N Area Vadose Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, J.E.; Fruchter, J.S.; Burns, C.A.

    This project was initiated to develop a strategy for infiltration of a Ca-citrate-PO{sub 4} solution in order to precipitate apatite [Ca{sub 6}(PO{sub 4}){sub 10}(OH){sub 2}] in desired locations in the vadose zone for Sr-90 remediation. Laboratory experiments have demonstrated that infiltration of a Ca-citrate-PO{sub 4} solution into sediments at low and high water saturation results in citrate biodegradation and formation of apatite. The citrate biodegradation rate was relatively uniform, in spite of the spatial variability of sediment microbial biomass, likely because of microbial transport processes that occur during solution infiltration. The precipitate was characterized as hydroxyapatite, and the Sr-90 substitutionmore » into apatite was shown to have an incorporation half-life of 5.5 to 16 months. One and two dimensional (1-D and 2-D) laboratory infiltration experiments quantified the spatial distribution of apatite that formed during solution infiltration. Slow infiltration in 2-D experiments at low water saturation show the apatite precipitate concentrated in the upper third of the infiltration zone. More rapid 1-D infiltration studies show the apatite precipitate concentrated at greater depth. (authors)« less

  15. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method.

    PubMed

    Ning, C Q; Zhou, Y

    2002-07-01

    Traditionally, hydroxyapatite was used as a coating material on titanium substrate by various techniques. In the present work, a biocomposite was successfully fabricated from hydroxyapatite and titanium powders by powder metallurgy method. Bioactivity of the composite in a simulated body fluid (SBF) was investigated. Main crystal phases of the as-fabricated composite are found to be Ti2O, CaTiO3, CaO, alpha-Ti and a TiP-like phase. When the composite is immersed in the simulated body fluid for a certain time, a poor-crystallized, calcium-deficient, carbonate-containing apatite film will form on the surface of the composite. The time required to induce apatite nucleation is within 2 h. In addition, the apatite is also incorporated with a little magnesium and chlorine element. It is found that Ti2O has the ability to induce the formation of bone-like apatite in the SBF. And a dissolve of the CaO phase could also provide favorable conditions for the apatite formation, by forming open pores on the surface of the composite and increasing the degree of supersaturation of the SBF with respect to the apatite.

  16. Tertiary uplift of the Mt. Doonerak antiform, central Brooks Range, Alaska: Apatite fission track evidence from the Trans-Alaska Crustal Transect

    USGS Publications Warehouse

    O'Sullivan, P. B.; Moore, Thomas E.; Murphy, J.M.; Oldow, J.S.; Ave Lallemant, H.G.

    1998-01-01

    The Mt. Doonerak antiform is a northeast-trending, doubly plunging antiform located along the axial part of the central Brooks Range. This antiform is a crustal-scale duplex estimated to have a vertical displacement of ~15 km. The antiform folds the Amawk thrust, which separates relatively less displaced lower plate rocks in a window in the core of the antiform from allochthonous upper plate rocks of the Endicott Mountains allochthon. Because regional geological relations indicate that displacement on the Amawk thrust occurred between early Neocomian and early Albian time, uplift of the antiform is post-early Neocomian in age.Zircon fission-track data from the Mt. Doonerak antiform suggest -8-12 km of vertical denudation has occurred within the antiform region since -70-65 Ma. whereas apatite fission-track data indicate the antiform has experienced a minimum of -46 km of denudation since late Oligocene time. Following rapid denudation at -24 + 3 Ma, the rocks have experienced continued denudation to present surface conditions at a slower rate.We conclude from the relative relations and timing that the Mt. Doonerak duplex was constructed in part during the late Oligocene by reactivation of an older duplex formed during the latest Cretaceous to Paleocene. Deformation and uplift of Oligocene age for the axial part of the Brooks Range orogen is anomalously young, but it is the same age as the youngest episode of north-vergent contractional uplift in the northeastern Brooks Range. Because the Mt. Doonerak antiform displays structural characteristics similar to those of antiforms in the northeastern Brooks Range and because both regions experienced simultaneous rapid denudation, we suggest that the Mt. Doonerak antiform formed in response to an episode of contractional deformation that affected both areas in the late Oligocene.

  17. Formation conditions and REY enrichment of the 2060 Ma phosphorus mineralization at Schiel (South Africa): geochemical and geochronological constraints

    NASA Astrophysics Data System (ADS)

    Graupner, Torsten; Klemd, Reiner; Henjes-Kunst, Friedhelm; Goldmann, Simon; Behnsen, Helge; Gerdes, Axel; Dohrmann, Reiner; Barton, Jay M.; Opperman, Rehan

    2018-02-01

    Rocks of the rare-earth element (REY)-enriched apatite deposit in the eastern part of the Schiel Alkaline Complex (SAC; Southern Marginal Zone, Limpopo Belt) were studied for their whole-rock and mineral chemistry, REY mineral distribution and geochronology. Apart from phoscorite (sensu lato), pyroxenite and various syenitic rock types with quite variable apatite contents display P-REY enrichments. Field observations, mineralogical composition as well as major and trace element chemistry of soils make it possible to constrain the distribution of the hidden P-REY-rich rock types in the apatite deposit. Uranium-lead ages of zircon from phoscorite (sensu lato) and syenite are in the range of 2.06-2.05 Ga. Samarium-neodymium (ɛNd(t) -8.6 to -6.0) and in part Rb-Sr (87Sr/86Sr(t) 0.70819-0.70859) isotope data for whole-rock samples and mineral separates indicate an origin from an isotopically enriched and slightly variable source. Fluorapatite, early allanite and titanite are the main REY carriers at Schiel. Fluorapatite dominates the REY budget of pyroxenite and phoscorite, whereas early allanite hosts most of the REY in syenite. Three apatite types are distinguished based on their occurrence in the rocks, REYtotal contents and colouration in cathodoluminescence microscopy. Magmatic apatite in pyroxenite and in phoscorite (sensu lato) as well as early stage type I/II apatite in syenitic rocks have moderate to high REYtotal abundances (up to 3.2 wt%) with the mineral enriched in light REE. Early ferriallanite-(Ce) is strongly enriched in light REE and shows very high REYtotal values (13.7-26.4 wt%), while late allanite has lower REYtotal concentrations (6.9-14.9 wt%). Titanite is abundant in most syenitic rocks (REYtotal 1.7-6.4 wt%); chevkinite-(Ce) occurs locally and contributes to an REY enrichment in contact aureoles between syenite and different lithologies. Apatite-enriched rocks in the SAC in part contain significantly higher REYtotal concentrations in apatite

  18. Using slope-area and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Yizhou; Zheng, Dewen; Pang, Jianzhang; Zhang, Huiping; Wang, Weitao; Yu, Jingxing; Zhang, Zhuqi; Zheng, Wenjun; Zhang, Peizhen; Li, Youjuan

    2018-05-01

    Studies have shown that the growth of the Qilian Shan, the northeastern margin of the Tibetan Plateau, started 10 Ma ago. However, when and how it expanded northwards is still under debate. Here we focus on the rock uplift pattern of the Yumu Shan, an active fault-related fold in the Hexi Corridor north to the Qilian Shan. Normalized channel steepness achieved from the analysis of river longitudinal profiles shows a spatially variant rock uplift pattern, with higher rates in the middle part and lower rates towards the west and east tips. The compression of the mountain is typically accommodated by fault-fold related shortening and vertical thickening. Apatite fission track thermochronology reveals that the growth of the Yumu Shan started 4 Ma ago, similar to the work on active tectonics. Combining the onset ages of the growth of the Qilian Shan (10 Ma), Laojunmiao anticline (3-4 Ma), Baiyanghe anticline (3-4 Ma), Wenshu Shan (4.5 Ma) and Heli Shan (2 Ma), we draw an conclusion that the NE margin of the Tibetan Plateau initiated growth in the mid-Miocene and expanded to the Hexi Corridor and to the south of the Alxa block in the early Pleistocene.

  19. FTIR absorption reflection study of biomimetic growth of phosphates on titanium implants

    NASA Astrophysics Data System (ADS)

    Stoch, A.; Jastrzębski, W.; Brożek, A.; Stoch, J.; Szaraniec, J.; Trybalska, B.; Kmita, G.

    2000-11-01

    Titanium has been used for many medical applications; however, its joining to a living bone still is not satisfactorily good, challenging appropriate investigations. The aim of this work was to generate chemical modifications at its surface such that in vivo conditions, heterogeneous nucleation, and then growth of apatite from the body fluid could be easily induced and successfully performed. For this purpose, on the titanium samples, the oxide sublayers containing titanium, calcium and silicon (TCS) were deposited from a suitable solution using the sol-gel deep-coating procedure. Dried samples were heated at 400°C then cooled and thermostatically held in synthetic body fluids (SBF, SBFIII) under physiological conditions to mimic the natural process of apatite formation. Changes in surface composition of TCS sublayers caused by the heating were studied with XPS. Infrared spectroscopy and scanning electron microscopy monitored successive steps of apatite growth. It was found that in SBF, at the precoated titanium surface, nucleation and growth of the apatite containing carbonate took place. In SBFIII, for a higher concentration of calcium ions in comparison with SBF, a much-enhanced growth of the apatite free of carbonate was observed. TCS precoatings applied on stainless steel and Cr-Co-Mo alloy (Micromed) act also as bioactive interfaces with high ability to nucleation of biologically equivalent apatite. Biomimetic formation of this apatite on biologically inactive materials can be an important step in implant surgery.

  20. Parent zonation in thermochronometers - resolving complexity revealed by ID-TIMS U-Pb dates and implications for the application of decay-based thermochronometers

    NASA Astrophysics Data System (ADS)

    Navin Paul, Andre; Spikings, Richard; Chew, David; Daly, J. Stephen; Ulyanov, Alexey

    2017-04-01

    High temperature (>350℃) U-Pb thermochronometers primarily use accessory minerals such as apatite, titanite and rutile, and assume that daughter isotopes are lost by thermally activated volume diffusion while the parent remains immobile. Studies exploiting such behaviour have been successfully used to reconstruct thermal histories spanning several hundred million years (e.g. Cochrane et al., 2014). However, outliers in date (ID-TIMS) vs diffusion length space are frequently observed, and grains are frequently found to be either too young or too old for expected thermal history solutions using the diffusion data of Cherniak et al. (2010). These deviations of single grain apatite U-Pb dates from expected behaviour could be caused by a combination of i) metamorphic (over-)growth, ii) fluid-aided Pb mobilisation during alteration/recrystallization, iii) parent isotope zonation, iv) metamictisation, and v) changes in diffusion length with time (e.g. fracturing). We present a large data set from the northern Andes of South America, where we compare apatite U-Pb ID-TIMS-(TEA) data with LA-ICP-MS element maps and in-situ apatite U-Pb LA-(MC)-ICP-MS dates. These are combined with U-Pb zircon and 40Ar/39Ar (muscovite) data to attempt to distinguish between thermally activated volume diffusion and secondary overgrowth/recrystallization. We demonstrate that in young (e.g. Phanerozoic) apatites that have not recrystallized or experienced metasomatic overgrowths, U-Pb dates are dominantly controlled by volume diffusion and intra-crystal uranium zonation. This implies that ID-TIMS analyses of apatites with zoned parent isotope distributions will not usually recover accurate thermal history solutions, and an in-situ dating method is required. Recovering the uranium distribution during in-situ analysis provides a means to account for parent zonation, substantially increasing the accuracy of the modelled t-T-paths. We present in-situ data from apatites where scatter in date v

  1. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect.

    PubMed

    Olejnik, Cécile; Falgayrac, Guillaume; During, Alexandrine; Cortet, Bernard; Penel, Guillaume

    2016-08-01

    Due to their inhibitory effects on resorption, bisphosphonates are widely used in the treatment of diseases associated to an extensive bone loss. Yet, little is known about bisphosphonates effects on newly-formed bone quality. In the present study, adult male Sprague-Dawley rats (n=80) with a bone defect calvaria area were used and short-term effects of zoledronic acid (ZA) were studied on the healing bone area. Three ZA treatments were tested by using either: 1°) a low single dose (120μgZA/kg, n=10; equivalent to human osteoporosis treatment), 2°) a low fractionated doses (20μgZA/kg daily for 6days either a total of 120μg/kg, n=15), and 3°) a high fractionated doses, (100μgZA/kg weekly for 6weeks, n=15; equivalent to 6months of human bone metastasis treatment). For each treatment, a control "vehicle" treatment was performed (with an identical number of rats). After ZA administration, the intrinsic bone material properties were evaluated by quantitative backscattered electron imaging (qBEI) and Raman microspectroscopy. Neither single nor fractionated low ZA doses modify the intrinsic bone material properties of the newly-formed bone compared to their respective control animals. On the opposite, the high ZA treatment resulted in a significant decrease of the crystallinity (-25%, P< 0.05) and of the hydroxyproline-to-proline ratio (-30%, P<0.05) in newly-formed bones. Moreover, with the high ZA treatment, the crystallinity was positively correlated with the hydroxyproline-to-proline ratio (ρ=0.78, P<0.0001). The present data highlight new properties for ZA on bone formation in a craniofacial defect model. As such, ZA at high doses disrupted the apatite crystal organization. In addition, we report here for the first time that high ZA doses decreased the hydroxyproline-to-proline ratio suggesting that ZA may affect the early collagen organization during the bone healing. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  3. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Golden, Dadigamuwage C. (Inventor); Allen, Earl R. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  4. High temperature annealing of fission tracks in fluorapatite, Santa Fe Springs oil field, Los Angeles Basin, California

    USGS Publications Warehouse

    Naeser, Nancy D.; Crowley, Kevin D.; McCulloh, Thane H.; Reaves, Chris M.; ,

    1990-01-01

    Annealing of fission tracks is a kinetic process dependent primarily on temperature and to a laser extent on time. Several kinetic models of apatite annealing have been proposed. The predictive capabilities of these models for long-term geologic annealing have been limited to qualitative or semiquantitative at best, because of uncertainties associated with (1) the extrapolation of laboratory observations to geologic conditions, (2) the thermal histories of field samples, and (3) to some extent, the effect of apatite composition on reported annealing temperatures. Thermal history in the Santa Fe Springs oil field, Los Angeles Basin, California, is constrained by an exceptionally well known burial history and present-day temperature gradient. Sediment burial histories are continuous and tightly constrained from about 9 Ma to present, with an important tie at 3.4 Ma. No surface erosion and virtually no uplift were recorded during or since deposition of these sediments, so the burial history is simple and uniquely defined. Temperature gradient (???40??C km-1) is well established from oil-field operations. Fission-track data from the Santa Fe Springs area should thus provide one critical field test of kinetic annealing models for apatite. Fission-track analysis has been performed on apatites from sandstones of Pliocene to Miocene age from a deep drill hole at Santa Fe Springs. Apatite composition, determined by electron microprobe, is fluorapatite [average composition (F1.78Cl0.01OH0.21)] with very low chlorine content [less than Durango apatite; sample means range from 0.0 to 0.04 Cl atoms, calculated on the basis of 26(O, F, Cl, OH)], suggesting that the apatite is not unusually resistant to annealing. Fission tracks are preserved in these apatites at exceptionally high present-day temperatures. Track loss is not complete until temperatures reach the extreme of 167-178??C (at 3795-4090 m depth). The temperature-time annealing relationships indicated by the new data

  5. Exhumation history of the Anqing Orefield in the Lower Yangtze River Metallogenic Belt: Evidence from apatite fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Li, X.; Yang, X.

    2017-12-01

    The Lower Yangtze River Metallogenic Belt (LYRMB) is one of the most important Cu-Au-Fe polymetallic belts in China. These deposits along the Yangtze River region have been related to the Yanshanian intrusive rocks in the Mesozoic. The Anqing orefield is located in the northwestern Anqing, southwestern Anhui Province, eastern China, along the Lower Yangtze River Belt. Here, we report new apatite fission-track (AFT) thermochronology of the granitoids ( 130 Ma for zircon U-Pb age) associated with the Anqing orefields to reveal the exhumation history of the Anqing orefields in LYRMB, eastern China. AFT ages from 54.4±2.1 to 63.9±3.4 Ma with mean measured track lengths between 12.4±1.8 and 13.1±1.4 μm, were obtained for the granitoids sampled from the ore fields in the Anqing orefield, and AFT age of 36.3±1.3 Ma with mean track length of 12.3±2.3μm for the granitoids adjacent to the south Tan-Lu fault. A long, slow exhumation ( 60-15 Ma), and a short, rapid tectonic exhumation (15-0 Ma) have been identified in the study region based on the AFT data and modeling results for the samples from the ore fields. The results show that the granitoids underwent roughly similar cooling, and inferred exhumation pattern. Assuming a steady-state paleogeothermal gradient of 35ºC/km founded on geological setting, the exhumations of 570 m and 1140 m, were achieved in the Anqing orefield, during 60-15 Ma and 15-0 Ma, respectively. Further, the AFT age of the granitoids adjacent to the south Tan-Lu fault is less than the AFT ages of the granitoids associated with the ore fields, possibly owing to the activation of the Tan-Lu fault in the Cenozoic. The exhumation history of the Anqing orefields may be closely response to the Pacific Plate subduction in the Cenozoic, which could be implications for the preservation potential of ore bodies in the Anqing orefield. This work is supported by the National Natural Science Foundation of China (41372227), and the DREAM project of MOST

  6. Publications - GMC 422 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 422 Publication Details Title: Apatite fission track, magnetic susceptibility, and vitrinite Bibliographic Reference Dixit, N., and Tomsich, C.S., 2014, Apatite fission track, magnetic susceptibility, and

  7. Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating

    NASA Astrophysics Data System (ADS)

    Rojas Vera, E. A.; Mescua, J.; Folguera, A.; Becker, T. P.; Sagripanti, L.; Fennell, L.; Orts, D.; Ramos, V. A.

    2015-12-01

    The Chos Malal and Agrio fold and thrust belts are located in the western part of the Neuquén basin, an Andean retroarc basin of central-western Argentina. Both belts show evidence of tectonic inversion at the western part during Late Cretaceous times. The eastern part is dominated by late Miocene deformation which also partially reactivated the western structures. This work focuses on the study of the regional structure and the deformational event that shaped the relief of this part of the Andes. Based on new field work and structural data and previously published works a detailed map of the central part of the Neuquén basin is presented. Three regional structural cross sections were surveyed and balanced using the 2d Move™ software. In order to define a more accurate uplift history, new apatite fission track analyses were carried on selected structures. These data was used for new thermal history modeling of the inner part of the Agrio and Chos Malal fold and thrust belts. The results of the fission track analyses improve the knowledge of how these fold and thrust belts have grown trough time. Two main deformational events are defined in Late Cretaceous to Paleocene and Late Miocene times. Based on this regional structural analysis and the fission track data the precise location of the orogenic front for the Late Cretaceous-Paleocene times is reconstructed and it is proposed a structural evolution of this segment of the Andes. This new exhumation data show how the Late Cretaceous to Paleocene event was a continuous and uninterrupted deformational event.

  8. Solvent Extraction of Rare Earth Elements from a Nitric Acid Leach Solution of Apatite by Mixtures of Tributyl Phosphate and Di-(2-ethylhexyl) Phosphoric Acid

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Ali; Yoozbashizadeh, Hossein

    2017-12-01

    Solvent extraction of rare earths from nitrate leach liquor of apatite using mixtures of tributyl phosphate (TBP) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) was studied. The effects of nitrate and hydrogen ion concentration of the aqueous phase as well as the composition and concentration of extractants in the organic phase on the extraction behavior of lanthanum, cerium, neodymium, and yttrium were investigated. The distribution ratio of REEs increases by increasing the nitrate concentration in aqueous phase and concentration of extractants in organic phase, but the hydrogen ion concentration in aqueous phase has a decreasing effect. Yttrium as a heavy rare earth is more sensitive to these parameters than light rare earth elements. Although the composition of organic phase has a minor effect on the extraction of light rare earths, the percent of extraction of yttrium decreases dramatically by increasing the TBP content of organic phase. Mixtures of TBP and D2EHPA can show either synergism or antagonism extraction depending on the concentration and composition of extractants in organic phase. The best condition for separating rare earth elements in groups of heavy and light REEs can be achieved at high nitrate concentration, low H+ concentration, and high concentration of D2EHPA in organic phase. Separation of Ce and La by TBP and D2EHPA is practically impossible in the studied conditions; however, low nitrate concentration and high hydrogen ion concentration in aqueous phase and low concentration of extractants in organic phase favor the separation of Nd from other light rare earth elements.

  9. Maruyamaite, a new K-dominant tourmaline coexisting with diamond -an important accessory mineral in UHP rocks

    NASA Astrophysics Data System (ADS)

    Stock, M. J.; Humphreys, M.; Smith, V.; Pyle, D. M.; Isaia, R.

    2014-12-01

    The apatite crystal structure is capable of incorporating H2O, F and Cl, as well as trace CO2 and sulphur. These can be related to parental magma compositions through application of a series of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994), permitting apatite crystals to preserve a record of all major volatile species in the melt. Furthermore, due to the general incompatibility of P in other rock-forming minerals, apatite is ubiquitous in igneous systems and often begins crystallising early, such that apatite inclusions within phenocrysts record melt volatile contents throughout magmatic differentiation. In this work, we compare the compositions of apatite inclusions and microphenocrysts with pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy. These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to determine a time-series of magmatic volatile evolution in the build-up to eruption. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset during ascent, due to rapid H diffusion through the phenocryst hosts (Woods et al., 2000). Given the rapid diffusivity of volatiles in apatite (Brenan, 1993), preservation of undersaturated compositions in microphenocrysts suggests that saturation was only achieved a few days to months before eruption and that it may have been the transition into a volatile-saturated state that ultimately triggered eruption. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Gualda et al., 2012

  10. Stone formation and calcification by nanobacteria in the human body

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Bjorklund, Michael; Kajander, E. Olavi

    1998-07-01

    The formation of discrete and organized inorganic crystalline structures within macromolecular extracellular matrices is a widespread biological phenomenon generally referred to as biomineralization. Recently, bacteria have been implicated as factors in biogeochemical cycles for formation of many minerals in aqueous sediments. We have found nanobacterial culture systems that allow for reproducible production of apatite calcification in vitro. Depending on the culture conditions, tiny nanocolloid-sized particles covered with apatite, forming various size of aggregates and stones were observed. In this study, we detected the presence of nanobacteria in demineralized trilobit fossil, geode, apatite, and calcite stones by immunofluorescence staining. Amethyst and other quartz stones, and chalk gave negative results. Microorganisms are capable of depositing apatite outside the thermodynamic equilibrium in sea water. We bring now evidence that this occurs in the human body as well. Previously, only struvite kidney stones composed of magnesium ammonium phosphate and small amounts of apatite have been regarded as bacteria related. 90 percent of demineralized human kidney stones now screened, contained nanobacteria. At least three different distribution patterns of nanobacteria were conditions, and human kidney stones that are formed from small apatite units. Prerequisites for the formation of kidney stones are the supersaturation of urine and presence of nidi for crystallization. Nanobacteria are important nidi and their presence might be of special interest in space flights where supersaturation of urine is present due to the loss of bone. Furthermore, we bring evidence that nanobacteria may act as crystallization nidi for the formation of biogenic apatite structures in tissue calcification found in e.g., atherosclerotic plaques, extensive metastatic and tumoral calcification, acute periarthritis, malacoplakia, and malignant diseases. In nanaobacteria-infected fibroblasts

  11. Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin

    2016-10-01

    Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the

  12. Publications - GMC 220 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 220 Publication Details Title: Apatite fission track data derived from the following Barrow . Bibliographic Reference Murphy, J.M., 1994, Apatite fission track data derived from the following Barrow Arch

  13. Publications - GMC 180 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 180 Publication Details Title: Basic data for Apatite Fission Track analysis of cuttings (413 Reference Unknown, 1991, Basic data for Apatite Fission Track analysis of cuttings (413'-12375') from the

  14. Publications - GMC 149 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 149 Publication Details Title: Apatite fission track analysis of cuttings from the following 3 Unknown, 1990, Apatite fission track analysis of cuttings from the following 3 wells: Texaco Inc. Tulugak

  15. Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a Ca-Citrate-Phosphate Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, James E.; Rockhold, Mark L.; Oostrom, Martinus

    The objective of this project is to develop a method to emplace apatite precipitate in the 100N vadose zone, which results in sorption and ultimately incorporation of Sr-90 into the apatite structure. The Ca-citrate-PO4 solution can be infiltrated into unsaturated sediments to result in apatite precipitate to provide effective treatment of Sr-90 contamination. Microbial redistribution during solution infiltration and a high rate of citrate biodegradation for river water microbes (water used for solution infiltration) results in a relatively even spatial distribution of the citrate biodegradation rate and ultimately apatite precipitate in the sediment. Manipulation of the Ca-citrate-PO4 solution infiltration strategymore » can be used to result in apatite precipitate in the lower half of the vadose zone (where most of the Sr-90 is located) and within low-K layers (which are hypothesized to have higher Sr-90 concentrations). The most effective infiltration strategy to precipitate apatite at depth (and with sufficient lateral spread) was to infiltrate a high concentration solution (6 mM Ca, 15 mM citrate, 60 mM PO4) at a rapid rate (near ponded conditions), followed by rapid, then slow water infiltration. Repeated infiltration events, with sufficient time between events to allow water drainage in the sediment profile can be used to buildup the mass of apatite precipitate at greater depth. Low-K heterogeneities were effectively treated, as the higher residual water content maintained in these zones resulted in higher apatite precipitate concentration. High-K zones did not receive sufficient treatment by infiltration, although an alternative strategy of air/surfactant (foam) was demonstrated effective for targeting high-K zones. The flow rate manipulation used in this study to treat specific depths and heterogeneities are not as easy to implement at field scale due to the lack of characterization of heterogeneities and difficulty tracking the wetting front over a

  16. Bone regeneration performance of surface-treated porous titanium.

    PubMed

    Amin Yavari, Saber; van der Stok, Johan; Chai, Yoke Chin; Wauthle, Ruben; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Mulier, Michiel; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir Abbas

    2014-08-01

    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone

  17. Microbial Mineral Weathering for Nutrient Acquisition Releases Arsenic

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Alexandrova, E.; Keimowitz, A.; Wovkulich, K.; Freyer, G.; Stolz, J.; Kenna, T.; Pichler, T.; Polizzotto, M.; Dong, H.; Radloff, K. A.; van Geen, A.

    2008-12-01

    Tens of millions of people in Southeast Asia drink groundwater contaminated with naturally occurring arsenic. The process of arsenic release from the sediment to the groundwater remains poorly understood. Experiments were performed to determine if microbial mineral weathering for nutrient acquisition can serve as a potential mechanism for arsenic mobilization. We performed microcosm experiments with Burkholderia fungorum, phosphate free artificial groundwater, and natural apatite. Controls included incubations with no cells and with killed cells. Additionally, samples were treated with two spikes - an arsenic spike, to show that arsenic release is independent of the initial arsenic concentration, and a phosphate spike to determine whether release occurs at field relevant phosphate conditions. We show in laboratory experiments that phosphate-limited cells of Burkholderia fungorum mobilize ancillary arsenic from apatite as a by-product of mineral weathering for nutrient acquisition. The released arsenic does not undergo a redox transformation but appears to be solubilized from the apatite mineral lattice as arsenate during weathering. Apatite has been shown to be commonly present in sediment samples from Bangladesh aquifers. Analysis of apatite purified from the Ganges, Brahamputra, Meghna drainage basin shows 210 mg/kg of arsenic, which is higher than the average crustal level. Finally, we demonstrate the presence of the microbial phenotype that releases arsenic from apatite in Bangladesh sediments. These results suggest that microbial weathering for nutrient acquisition could be an important mechanism for arsenic mobilization.

  18. Beneficial use of meat and bone meal combustion residue: "an efficient low cost material to remove lead from aqueous effluent".

    PubMed

    Deydier, Eric; Guilet, Richard; Sharrock, Patrick

    2003-07-04

    Meat and bone meal (MBM) combustion residues, a natural apatite-rich substance, was evaluated as a low cost substitute for hydroxyapatite in lead sequestration from water effluents. The thermal behaviour of crude meat and bone meal was followed by TGA and 24% inorganic residue was collected. The resulting ashes were characterised by powder X-ray diffraction (XRD), particle size distribution, specific surface area (BET), and elemental analysis confirming apatite contents, with high level of phosphate (56.3%) and calcium (36.8%). Mechanism and kinetics of lead removal by this bioinorganic material were investigated and compared to mechanisms and kinetics involved with synthetic apatite. Batch metal removal experiments were carried out with 500 and 1500ppm (mg/kg) Pb(2+) solutions. Lead concentration, calcium and pH were monitored. We observed that the mechanism is similar to that occurring for pure apatite, and involved both surface complexation and calcium hydroyapatite (CaHA), Ca(10)(PO(4))(6)(OH)(2), dissolution followed by less soluble Pb(10)(PO(4))(6)(OH)(2) precipitation, as confirmed by XRD analysis of ashes after incubation with lead solution. Our results show that this natural apatite-rich material removes in a few minutes a large quantity of lead (275mg/g capacity) which remains however lower than the theoretical maximum capacity (if calcium were totally substituted by lead). Meat and bone meal combustion residues represent a valuable alternative apatite source for environmental application.

  19. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    PubMed

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H 2 SO 4 and CaCl 2 . Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H 2 SO 4 and CaCl 2 ; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled

    2014-01-01

    Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.

  1. Recognition of Cretaceous, Paleocene, and Neogene tectonic reactivation through apatite fission-track analysis in Precambrian areas of southeast Brazil: association with the opening of the south Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Tello Saenz, C. A.; Hackspacher, P. C.; Hadler Neto, J. C.; Iunes, P. J.; Guedes, S.; Ribeiro, L. F. B.; Paulo, S. R.

    2003-01-01

    Apatite fission-track analysis was used for the determination of thermal histories and ages in Precambrian areas of southeast Brazil. Together with geological and geomorphologic information, these ages enable us to quantify the thermal histories and timing of Mesozoic and Cenozoic epirogenic and tectonic processes. The collected samples are from different geomorphologic blocks: the high Mantiqueira mountain range (HMMR) with altitude above 1000 m, the low Mantiqueira mountain range (LMMR) under 1000 m, the Serra do Mar mountain range (SMMR), the Jundiaí and Atlantic Plateaus, and the coastline, all of which have distinct thermal histories. During the Aptian (˜120 Ma), there was an uplift of the HMMR, coincident with opening of the south Atlantic Ocean. Its thermal history indicates heating (from ˜60 to ˜80 °C) until the Paleocene, when rocks currently exposed in the LMMR reached temperatures of ˜100 °C. In this period, the Serra do Mar rift system and the Japi erosion surface were formed. The relief records the latter. During the Late Cretaceous, the SMMR was uplifted and probably linked to its origin; in the Tertiary, it experienced heating from ˜60 to ˜90 °C, then cooling that extends to the present. The SMMR, LMMR, and HMMR were reactivated mainly in the Paleocene, and the coastline during the Paleogene. These processes are reflected in the sedimentary sequences and discordances of the interior and continental margin basins.

  2. Apatite fission track evidence for Miocene denudation history in the Gangdese conglomerate belt and Yarlung Tsangpo River: Implications for the evolution of Southern Tibet

    NASA Astrophysics Data System (ADS)

    Song, Shiyu; Cao, Daiyong; Zhang, QingChao; Wang, Anming; Peng, Yangwen

    2018-07-01

    Low-temperature thermochronology is used widely in the Tibet plateau uplift. Some researches, however, have defined the time of rapid denudation as simply rock uplift and have neglected the fact that the rock denudation recorded by fission track (FT) data was controlled by both surface incision and rock uplift. The incision of the Yarlung Zangbo River had a significant influence on uplift history inversion in Southern Tibet. This paper simulated the bedrock denudation and river incision histories using apatite fission track (AFT) data sampled from the Gangdese conglomerate belt, which is located in the middle of Southern Tibet, and analyzed the geological meaning of the AFT age of each sample. The results showed the following: (1) In the early Miocene (22-16 Ma), both the value of the denudation rate and the incision rate were high (0.56 mm/yr and 0.24 mm/yr). (2) In the middle-late Miocene, the incision rate (0.12 mm/yr) was similar to the denudation rate (0.09-0.11 mm/yr). (3) The historical model between river incision and bedrock denudation revealed a significant difference in the denudation rate during the period ca. 8-6 Ma. Combining these data with previously published thermochronological ages and synthesizing these ages with regional geological, we arrived at the following conclusions: (1) In the early Miocene, the denudation event probably was caused by a combined result of Indian plate rollback and the incision of the Yarlung Zangbo River. (2) In the middle-late Miocene, the denudation rate was consistent with the incision rate, which suggested that the denudation episode was caused by climate change associated with Asian monsoon intensification. (3) After 8 Ma, the stable and slow incision rate indicated that regional drastic uplift had ceased. The paleo-elevation of the research area had approached, and even exceeded, the present-day elevation in the late Miocene.

  3. A Modern Analog to the Depositional Age Problem: Zircon and Apatite Fission Track and U-Pb Age Distributions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Donelick, H. M.; Donelick, M. B.; Donelick, R. A.

    2012-12-01

    Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.

  4. Artefactual nanoparticle activation of the inflammasome platform: in vitro evidence with a nano-formed calcium phosphate

    PubMed Central

    Pele, Laetitia; Haas, Carolin T; Hewitt, Rachel; Faria, Nuno; Brown, Andy; Powell, Jonathan

    2015-01-01

    Aim To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. Material & methods The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest and duration of particle exposure. Cell death and particle uptake were assessed, while IL-1β and caspase 1 responses, with and without lipopolysaccharide prestimulation, were evaluated as markers of inflammasome activation. Results Under carefully addressed experimental conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome platform, although both could be triggered through artefacts of experimentation. Conclusion In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are candidates for inflammasome activation and, hence, are toxic. However, the experimental setting must be very carefully considered as it may promote false-positive outcomes. PMID:24991724

  5. INACCURATE REPORTING OF MINERAL COMPOSITION BY COMMERCIAL STONE ANALYSIS LABORATORIES: IMPLICATIONS FOR INFECTION AND METABOLIC STONES

    PubMed Central

    Krambeck, Amy E.; Khan, Naseem F.; Jackson, Molly E.; Lingeman, James E.; McAteer, James A; Williams, James C.

    2011-01-01

    INTRODUCTION The goal of this study was to determine the accuracy of stone composition analysis by commercial laboratories. METHODS 25 human renal stones with infrared spectroscopy (IR) determined compositions were fragmented into aliquots and studied with micro-computed tomography (CT) to ensure fragment similarity. Representative fragments of each stone were submitted to 5 commercial stone laboratories for blinded analysis. RESULTS All laboratories agreed on composition for 6 pure stones. Of 4 stones known to contain struvite, only 2(50%) were identified as struvite by all laboratories. Struvite was reported as a component by some laboratories for 4 stones previously determined not to contain struvite. Overall, there was disagreement regarding struvite in 6(24%) stones. For 9 calcium oxalate (CaOx) stones, all laboratories reported some mixture of CaOx, but the quantities of subtypes differed significantly among laboratories. In 6 apatite containing stones, apatite was missed by the laboratories in 20% of the samples. None of the laboratories identified atazanavir in a stone containing that antiviral drug. One laboratory reported protein in every sample, while all others reported it in only 1 sample. Nomenclature for apatite differed among laboratories, with one reporting apatite as carbonate apatite (CA) and never hydroxyapatite (HA), another never reporting CA and always reporting HA, and a third reporting CA as apatite with calcium carbonate. CONCLUSIONS Commercial laboratories reliably recognize pure calculi; however, variability in reporting of mixed calculi suggests a problem with accuracy of stone analysis results. Furthermore, there is a lack of standard nomenclature used by laboratories. PMID:20728108

  6. Re-collection of Fish Canyon Tuff for fission-track standardization

    USGS Publications Warehouse

    Naeser, C.W.; Cebula, G.T.

    1984-01-01

    The PURPOSE of this note is to announce the availability of apatite and zircon from a third collection of the Oligocene Fish Canyon Tuff (FC-3). Apatite and zircon separated from the Fish Canyon Tuff have prove to be a useful standard for fission-track dating, both for interlaboratory comparisons and for checking procedures within a laboratory. In May 1981, about 540 kg of Fish Canyon Tuff were collected for mineral separation. Approximately 7. 5 g of apatite, 6. 5 g of zircon, and 89 g of sphene were recovered from this collection. This new material is now ready for distribution.

  7. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering.

    PubMed

    Meng, Z X; Li, H F; Sun, Z Z; Zheng, W; Zheng, Y F

    2013-03-01

    Surface mineralization is an effective method to produce calcium phosphate apatite coating on the surface of bone tissue scaffold which could create an osteophilic environment similar to the natural extracellular matrix for bone cells. In this study, we prepared mineralized poly(D,L-lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun nanofibers via depositing calcium phosphate apatite coating on the surface of these nanofibers to fabricate bone tissue engineering scaffolds by concentrated simulated body fluid method, supersaturated calcification solution method and alternate soaking method. The apatite products were characterized by the scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD) methods. A large amount of calcium phosphate apatite composed of dicalcium phosphate dihydrate (DCPD), hydroxyapatite (HA) and octacalcium phosphate (OCP) was deposited on the surface of resulting nanofibers in short times via three mineralizing methods. A larger amount of calcium phosphate was deposited on the surface of PLGA/gelatin nanofibers rather than PLGA nanofibers because gelatin acted as nucleation center for the formation of calcium phosphate. The cell culture experiments revealed that the difference of morphology and components of calcium phosphate apatite did not show much influence on the cell adhesion, proliferation and activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Bioactivity of gelatin coated magnetic iron oxide nanoparticles: in vitro evaluation.

    PubMed

    Gaihre, Babita; Khil, Myung Seob; Kang, Hyo Kyoung; Kim, Hak Yong

    2009-02-01

    Current research explores formation of bone like apatite on gelatin coated magnetic iron oxide nanoparticles (GIOPs) to evaluate the bioactivity of the material. The GIOPs were soaked in simulated body fluid (SBF) and the apatite formation on the surface was investigated in regular interval of time. Fourier transform-infrared (FT-IR) and x-ray diffraction spectroscopic (XRD) analyses were done to investigate the chemical changes and field emission-scanning electron microscopic (FE-SEM) analysis was done to investigate the morphological changes occurring on the surface of the GIOPs after soaking in different time intervals. The kinetic studies of the apatite growth in SBF suggest that initially calcium and phosphorous ions were deposited to the surface of the GIOPs from the SBF leading to formation of amorphous Ca/P particles. Later, after 9 days of the incubation the amorphous particles were fused to form needle and blade like crystalline structures of bone like apatite.

  9. The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts.

    PubMed

    López-Álvarez, M; Pérez-Davila, S; Rodríguez-Valencia, C; González, P; Serra, J

    2016-06-07

    Autologous bone is considered to be the gold standard for bone tissue regeneration, providing more highly efficient functional responses compared to synthetic materials, and avoiding the rejection risks of allogenic grafts. However, it presents limitations for certain types of surgery due to its high resorption levels and donor site morbidity. Different biphasic synthetic composites, based onnon-apatitic calcium phosphates enriched with apatitic phases-such as hydroxyapatite, and bioderived bone grafts of bovine and porcine origin-are proposed as lower resorption materials due to their higher crystalline structure. The present work proposes two new sources of bioapatites for bone filler applications obtained from the dentine and enameloid of shark teeth, respectively. These bioapatites each present a characteristic apatite-based composition and additional enrichments of specific trace elements, such as magnesium and fluorine, with proven roles in bone metabolism. Their processing and physicochemical characterization (SEM, FT-Raman and XRD) is presented, together with an in vitro evaluation of osteogenic activity compared to a commercial bovine mineralized matrix and synthetic HA/β TCP grafts. The results proved the globular morphology (0.5-1.5 μm) and porosity (~50 μm and ~0.5-1 μm) of shark dentine bioapatites with biphasic composition: apatitic (hydroxyapatite and apatite-(CaF)), non-apatitic (whitlockite), and an apatitic phase (fluorapatite), organized in oriented crystals in enameloid bioapatites. An evaluation of the pre-osteoblast MC3T3-E1 morphology revealed the colonization of pores in dentine bioapatites and an aligned cell growth in the oriented enameloid crystals. A higher proliferation (p  <  0.01) was detected at up to 21 d in both the shark bioapatites and synthetic biphasic graft with respect to the bovine mineralized matrix. Finally, the great potential of porous biphasic dentine bioapatites enriched with Mg and the aligned

  10. Characterization of helium diffusion behavior from continuous heating experiments: Sample screening and identification of multiple 4He components

    NASA Astrophysics Data System (ADS)

    McDannell, K. T.; Idleman, B. D.; Zeitler, P. K.

    2015-12-01

    Old, slowly cooled apatites often yield overdispersed helium ages due to factors such as parent zonation, He implantation, radiation damage, crystal defects, and fluid inclusions. Careful mineral selection and many replicate analyses can mitigate the impact of some of these effects. However, this approach adds unnecessary costs in time and resources when dating well-behaved apatites and is generally ineffective at identifying the root cause of age dispersion and providing suitable age corrections for poorly behaved samples. We assess a new technique utilizing static-gas measurement during continuous heating as a means to rapidly screen apatite samples. In about the time required for a conventional total-gas analysis, this method can discriminate between samples showing the volume-diffusion behavior expected for apatite and those showing anomalous release patterns, inconsistent with their use in thermochronologic applications. This method may also have the potential to quantify and discriminate between the radiogenic and extraneous 4He fractions released by a sample. Continuously heated samples that outgas by volume diffusion during a linear heating schedule should produce a characteristic sigmoidal 4He fractional loss profile, with the exact shape and position of these profiles (in loss vs. heating time space) controlled by sample kinetics, grain size, and heating rate. Secondary factors such as sample zoning and alpha-loss distribution have a relatively minor impact on such profiles. Well-behaved examples such as the Durango standard and other apatites with good age reproducibility show the expected smooth, sigmoidal gas release with complete exhaustion by temperatures predicted for volume diffusion using typical apatite kinetics (e.g., by ~900˚C for linear heating at 20˚C/minute). In contrast, "bad actor" samples that do not replicate well show significant degrees of helium release deferred to higher temperatures. We report on screening results for a range of

  11. Dual-functioning peptides discovered by phage display increase the magnitude and specificity of BMSC attachment to mineralized biomaterials.

    PubMed

    Ramaraju, Harsha; Miller, Sharon J; Kohn, David H

    2017-07-01

    Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/K D ) to apatite surfaces compared to VTK, phosphorylated VTK (VTK phos ), DPI-VTK phos , RGD-VTK, and peptide-free apatite surfaces (p < 0.01), while significantly increasing hBMSC adhesion strength (τ 50 , p < 0.01). MSCs demonstrated significantly greater adhesion strength to DPI-VTK compared to other cell types, while attachment of MC3T3 pre-osteoblasts and murine fibroblasts was limited (p < 0.01). MSCs on DPI-VTK coated surfaces also demonstrated increased spreading compared to pre-osteoblasts and fibroblasts. MSCs cultured on DPI-VTK coated apatite films exhibited significantly greater proliferation compared to controls (p < 0.001). Moreover, early and late stage osteogenic differentiation markers were elevated on DPI-VTK coated apatite films compared to controls. Taken together, phage display can identify non-obvious cell and material specific peptides to increase human MSC adhesion strength to specific biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material

  12. Constraining the age and magnitude of uplift in the northern National Petroleum Reserve in Alaska (NPRA)-apatite fission-track analysis of samples from three wells

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; O'Sullivan, Paul

    2011-01-01

    A broad, post-mid-Cretaceous uplift is defined in the northern National Petroleum Reserve in Alaska (NPRA) by regional truncation of Cretaceous strata, thermal maturity patterns, and amounts of exhumation estimated from sonic logs. Apatite fission-track (AFT) analysis of samples from three wells (South Meade No. 1, Topagoruk No. 1, and Ikpikpuk No. 1) across the eastern flank of the uplift indicates Tertiary cooling followed by Quaternary heating. Results from all three wells indicate that cooling, presumably caused by uplift and erosion, started about 75-65 Ma (latest Cretaceous-earliest Tertiary) and continued through the Tertiary Period. Data from South Meade indicate more rapid cooling after about 35-15 Ma (latest Eocene-middle Miocene) followed by a significant increase in subsurface temperature during the Quaternary, probably the result of increased heat flow. Data from Topagoruk and Ikpikpuk include subtle evidence of accelerated cooling starting in the latest Eocene-middle Miocene and possible evidence of increased temperature during the Quaternary. Subsurface temperature perturbations related to the insulating effect of permafrost may have been responsible for the Quaternary temperature increase at Topagoruk and Ikpikpuk and may have been a contributing factor at South Meade. Multiple lines of geologic evidence suggest that the magnitude of exhumation resulting from uplift and erosion is 5,000-6,500 ft at South Meade, 4,000-5,500 ft at Topagoruk, and 2,500-4,000 ft at Ikpikpuk. The results from these wells help to define the broad geometry of the uplift, which increases in magnitude from less than 1,000 ft at the Colville River delta to perhaps more than 7,000 ft along the northwestern coast of NPRA, between Point Barrow and Peard Bay. Neither the origin nor the offshore extent of the uplift, west and north of the NPRA coast, have been determined.

  13. New constraints on the thermochronologic evolution at the boundary between the Eastern and Western Alps - Vorarlberg, Austria

    NASA Astrophysics Data System (ADS)

    Bertrand, Audrey; Pomella, Hannah; Fügenschuh, Bernhard; Zerlauth, Michael; Ortner, Hugo

    2013-04-01

    The study area in the westernmost part of Austria is marked by the limit between the Western and the Eastern Alps that takes place along the Rhine Valley, south of the Lake Constance. The area is composed, form the north to the south and from lowermost to uppermost structural position, by the European basement together with its autochthonous Mesozoic cover, autochthonous Molasse, subalpine Molasse, the Helvetic and Ultra-Helvetic, the Penninic and the Austroalpine nappes. These units are stacked in a succession of nappes separated by large south-trending overthrusts. This study presenting new apatite and zircon fission track ages, together with a crustal-scale cross-section (Pomella et al., this session) addresses the thermotectonic evolution of this nappe stack. In comparison with similar studies from eastern Switzerland the boundary between Western and Eastern Alps should be enlightened. Zircon fissions track ages from the lower freshwater Molasse reveal different age populations. Since all zircon fission track ages are older than the stratigraphic age this clearly indicates that post-depositional temperatures were well below the zircon partial annealing zone (i.e. below 200 °C) and the different age populations can be attributed to different source areas derived from the coevally forming and eroding alpine chain. Preliminary fission track results on apatite from the lower freshwater Molasse indicate a strong dependence of apatite fission track single-grain ages on their annealing kinetics as inferred from Dpar analyses (Gleadow and Duddy, 1981). F-rich apatites systematically yielded younger ages compared to the Cl-rich grains. The younger ages derived from the F-rich apatites are consistently younger than the stratigraphic age and thus fully annealed while Cl-rich apatites display older ages than the stratigraphic one. The difference in annealing temperatures between Cl- and F-rich apatites (Ravenhurst and Donelick, 1992) thus constrains the maximum

  14. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  15. Modeling active capping efficacy. 1. Metal and organometal contaminated sediment remediation.

    PubMed

    Viana, Priscilla Z; Yin, Ke; Rockne, Karl J

    2008-12-01

    Cd, Cr, Pb, Ag, As, Ba, Hg, CH3Hg, and CN transport through sand, granular activated carbon (GAC), organoclay, shredded tires, and apatite caps was modeled by deterministic and Monte Carlo methods. Time to 10% breakthrough, 30 and 100 yr cumulative release were metrics of effectiveness. Effective caps prevented above-cap concentrations from exceeding USEPA acute criteria at 100 yr assuming below-cap concentrations at solubility. Sand caps performed best under diffusion due to the greater diffusive path length. Apatite had the best advective performance for Cd, Cr, and Pb. Organoclay performed best for Ag, As, Ba, CH3Hg, and CN. Organoclay and apatite were equally effective for Hg. Monte Carlo analysis was used to determine output sensitivity. Sand was effective under diffusion for Cr within the 50% confidence interval (CI), for Cd and Pb (75% CI), and for As, Hg, and CH3Hg (95% CI). Under diffusion and advection, apatite was effective for Cd, Pb, and Hg (75% CI) and organoclay was effective for Hg and CH3Hg (50% CI). GAC and shredded tires performed relatively poorly. Although no single cap is a panacea, apatite and organoclay have the broadest range of effectiveness. Cap performance is most sensitive to the partitioning coefficient and hydraulic conductivity, indicating the importance of accurate site-specific measurement for these parameters.

  16. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at Hanford, WA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, K. M.; Petersen, Scott W.; Fruchter, Jonathan S.

    2007-12-15

    Nine projects have been recently selected by the US Department of Energy (EM-22) to address groundwater contaminant migration at the Hanford Site. This paper summarizes the background and objectives of these projects. Five of the selected projects are targeted at hexavalent chromium contamination in Hanford 100 Area groundwater. These projects represent an integrated approach towards identifying the source of hexavalent chromium contamination in the Hanford 100-D Area and treating the groundwater contamination. Currently, there is no effective method to stop strontium-90 associated with the riparian zone sediments from leaching into the river. Phytoremediation may be a possible way to treatmore » this contamination. Its use at the 100-N Area will be investigated. Another technology currently being tested for strontium-90 contamination at the 100-N Area involves injection (through wells) of a calcium-citrate-phosphate solution, which will precipitate apatite, a natural calcium-phosphate mineral. Apatite will adsorb the strontium-90, and then incorporate it as part of the apatite structure, isolating the strontium-90 contamination from entering the river. This EM-22 funded apatite project will develop a strategy for infiltrating the apatite solution from ground surface or a shallow trench to provide treatment over the upper portion of the contaminated zone, which is unsaturated during low river stage.« less

  17. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex

    NASA Astrophysics Data System (ADS)

    Chen, W.; Simonetti, A.

    2012-12-01

    A detailed radiometric investigation is currently underway focusing on U-bearing accessory minerals apatite, perovskite, and niocalite from the Oka Carbonatite Complex (Canada). One of the main objectives is to obtain a comparative chronology of melt crystallization for the complex. Unlike other commonly adopted U-bearing minerals (e.g., zircon, monazite) for in-situ dating investigations, apatite, perovskite, and niocalite contain relatively high contents of common Pb. Hence, careful assessment of the proportion and composition of the common Pb, and usage of appropriate matrix-matched external standards are imperative. The Madagascar apatite was utilized as the external standard for apatite dating, and the Emerald Lake and Durango apatites were adopted as secondary standards; the latter yield ages of 92.6 ±1.8 and 32.2 ±1.1 Ma, respectively, and these are identical to their accepted ages. Pb/U ages for apatite from Oka were obtained for different rock types, including 8 carbonatites, 4 okaites, 3 ijolites and 3 alnoites, and these define a range of ages between ~105 and ~135 Ma; this result suggests a protracted crystallization history. In total, 266 individual analyses define two peaks at ~115 and ~125Ma. For perovskite dating, the Ice River perovskite standard was utilized as the external standard. The perovskites from one okaite sample yield an age of 112.2 ±1.9 Ma, and is much younger than the previously reported U-Pb perovskite age of 131 ±7 Ma. Hence, the combined U-Pb perovskite ages also suggest a rather prolonged time of melt crystallization. Niocalite is a rare, accessory silicate mineral that occurs within the carbonatites at Oka. The international zircon standard BR266 was selected for use as the external standard and rastering was employed to minimize the Pb-U fractionation. Two niocalite samples give young ages at 110.6 ±1.2 and 115.0 ±1.9 Ma, and are identical to their respective apatite ages (given associated uncertainties) from the same

  18. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite.

    PubMed

    Yabutsuka, Takeshi; Fukushima, Keito; Hiruta, Tomoko; Takai, Shigeomi; Yao, Takeshi

    2017-12-01

    When bioinert substrates with fine-sized pores are immersed in a simulated body fluid (SBF) and the pH value or the temperature is increased, fine particles of calcium phosphate, which the authors denoted as 'precursor of apatite' (PrA), are formed in the pores. By this method, hydroxyapatite formation ability can be provided to various kinds of bioinert materials. In this study, the authors studied fabrication methods of bioactive PEEK by using the above-mentioned process. First, the fine-sized pores were formed on the surface of the PEEK substrate by H 2 SO 4 treatment. Next, to provide hydrophilic property to the PEEK, the surfaces of the PEEK were treated with O 2 plasma. Finally, PrA were formed in the pores by the above-mentioned process, which is denoted as 'Alkaline SBF' treatment, and the bioactive PEEK was obtained. By immersing in SBF with the physiological condition, hydroxyapatite formation was induced on the whole surface of the substrate within 1day. The formation of PrA directly contributed to hydroxyapatite formation ability. By applying the O 2 plasma treatment, hydroxyapatite formation was uniformly performed on the whole surface of the substrate. The H 2 SO 4 treatment contributed to a considerable enhancement of adhesive strength of the formed hydroxyapatite layer formed in SBF because of the increase of surface areas of the substrate. As a comparative study, the sandblasting method was applied as the pores formation process instead of the H 2 SO 4 treatment. Although hydroxyapatite formation was provided also in this case, however, the adhesion of the formed hydroxyapatite layer to the substrate was not sufficient even if the O 2 plasma treatment was conducted. This result indicates that the fine-sized pores should be formed on the whole surface of the substrate uniformly to achieve high adhesive strength of the hydroxyapatite layer. Therefore, it is considered that the H 2 SO 4 treatment before the O 2 plasma and the 'Alkaline SBF' treatment

  19. PET fiber fabrics modified with bioactive titanium oxide for bone substitutes.

    PubMed

    Kokubo, Tadashi; Ueda, Takahiro; Kawashita, Masakazu; Ikuhara, Yuichi; Takaoka, Gikan H; Nakamura, Takashi

    2008-02-01

    A rectangular specimen of polyethylene terephthalate (PET) was soaked in a titania solution composed of titanium isopropoxide, water, ethanol and nitric acid at 25 degrees C for 1 h. An amorphous titanium oxide was formed uniformly on the surface of PET specimen, but did not form an apatite on its surface in a simulated body fluid (SBF) within 3 d. The PET plate formed with the amorphous titanium oxide was subsequently soaked in water or HCl solutions with different concentrations at 80 degrees C for different periods of time. The titanium oxide on PET was transformed into nano-sized anatase by the water treatment and into nano-sized brookite by 0.10 M HCl treatment at 80 degrees C for 8 d. The former did not form the apatite on its surface in SBF within 3 d, whereas the latter formed the apatite uniformly on its surface. Adhesive strength of the titanium oxide and apatite layers to PET plate was increased by pre-treatment of PET with 2 wt% NaOH solution at 40 degrees C for 2 h. A two-dimensional fabric of PET fibers 24 microm in diameter was subjected to the NaOH pre-treatment at 40 degrees C, titania solution treatment at 25 degrees C and subsequent 0.10 M HCl treatment at 80 degrees C. Thus treated PET fabric formed the apatite uniformly on surfaces of individual fibers constituting the fabric in SBF within 3 d. Two or three dimensional PET fabrics modified with the nano-sized brookite on surfaces of the individual fibers constituting the fabric by the present method are believed to be useful as flexible bone substitutes, since they could be integrated with living bone through the apatite formed on their constituent fibers.

  20. Rare earth elements in the phosphatic-enriched sediment of the Peru shelf

    USGS Publications Warehouse

    Piper, D.Z.; Baedecker, P.A.; Crock, J.G.; Burnett, W.C.; Loebner, B.J.

    1988-01-01

    Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 ?? 10-3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment. Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris. ?? 1988.