Loui, Hung; Strassner, II, Bernd H.
2018-03-20
The various embodiments presented herein relate to extraordinary electromagnetic transmission (EEMT) to enable multiple inefficient (un-matched) but coupled radiators and/or apertures to radiate and/or pass electromagnetic waves efficiently. EEMT can be utilized such that signal transmission from a plurality of antennas and/or apertures occurs at a transmission frequency different to transmission frequencies of the individual antennas and/or aperture elements. The plurality of antennas/apertures can comprise first antenna/aperture having a first radiating area and material(s) and second antenna/aperture having a second radiating area and material(s), whereby the first radiating/aperture area and second radiating/aperture area can be co-located in a periodic compound unit cell. Owing to mutual coupling between the respective antennas/apertures in their arrayed configuration, the transmission frequency of the array can be shifted from the transmission frequencies of the individual elements. EEMT can be utilized for an array of evanescent of inefficient radiators connected to a transmission line(s).
NASA Astrophysics Data System (ADS)
Kraus, Hal G.
1993-02-01
Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.
Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1996-01-01
An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.
Dark-field microscopic image stitching method for surface defects evaluation of large fine optics.
Liu, Dong; Wang, Shitong; Cao, Pin; Li, Lu; Cheng, Zhongtao; Gao, Xin; Yang, Yongying
2013-03-11
One of the challenges in surface defects evaluation of large fine optics is to detect defects of microns on surfaces of tens or hundreds of millimeters. Sub-aperture scanning and stitching is considered to be a practical and efficient method. But since there are usually few defects on the large aperture fine optics, resulting in no defects or only one run-through line feature in many sub-aperture images, traditional stitching methods encounter with mismatch problem. In this paper, a feature-based multi-cycle image stitching algorithm is proposed to solve the problem. The overlapping areas of sub-apertures are categorized based on the features they contain. Different types of overlapping areas are then stitched in different cycles with different methods. The stitching trace is changed to follow the one that determined by the features. The whole stitching procedure is a region-growing like process. Sub-aperture blocks grow bigger after each cycle and finally the full aperture image is obtained. Comparison experiment shows that the proposed method is very suitable to stitch sub-apertures that very few feature information exists in the overlapping areas and can stitch the dark-field microscopic sub-aperture images very well.
Multi-aperture digital coherent combining for free-space optical communication receivers.
Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A
2016-06-13
Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramania, Ganapathi Subramanian; Brener, Igal; Foteinopoulou, Stavroula
2017-08-01
A structure for broadband light funneling comprises a two-dimensional periodic array of connected ultrasubwavelength apertures, each aperture comprising a large sub-aperture that aids in the coupling of the incoming incident light and a small sub-aperture that funnels a significant fraction of the incident light power. The structure possesses all the capabilities of prior extraordinary optical transmission platforms, yet operates nonresonantly on a distinctly different mechanism. The structure demonstrates efficient ultrabroadband funneling of optical power confined in an area as small as .about.(.lamda./500).sup.2, where optical fields are enhanced, thus exhibiting functional possibilities beyond resonant platforms.
Aperture effects in squid jet propulsion.
Staaf, Danna J; Gilly, William F; Denny, Mark W
2014-05-01
Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.
A program for the calculation of paraboloidal-dish solar thermal power plant performance
NASA Technical Reports Server (NTRS)
Bowyer, J. M., Jr.
1985-01-01
A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.
Sweatt, W.C.
1998-09-08
A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.
NASA Astrophysics Data System (ADS)
Tugchin, B. N.; Janunts, N.; Steinert, M.; Dietrich, K.; Kley, E. B.; Tünnermann, A.; Pertsch, T.
2017-06-01
In this study, we investigate analytically and experimentally the roles of quasi-linearly polarized (LP), hybrid, plasmonic and photonic modes in optical detection and excitation with aperture tips in scanning near-field optical microscopy. Aperture tips are tapered and metal-coated optical fibers where small circular apertures are made at the apex. In aperture tips, there exist plasmonic modes that are bound at the interface of the metal cladding to the inner dielectric fiber and photonic modes that are guided in the area of the increased index in the dielectric fiber core. The fundamental photonic mode, although excited by the free-space Gaussian beam, experiences cutoff and turns into an evanescent mode. The photonic mode also becomes lossier than the plasmonic mode toward the tip aperture, and its power decay due to absorption and reflection is expected to be at least 10-9. In contrast, the fundamental plasmonic mode has no cutoff and thus reaches all the way to the tip aperture. Due to the non-adiabaticity of both modes’ propagations through the taper below a core radius of 600 nm, there occurs coupling between the modes. The transmission efficiency of the plasmonic mode, including the coupling efficiency and the propagation loss, is expected to be about 10-6 that is at least 3 orders of magnitude larger than that of the photonic mode. Toward the tip aperture, the longitudinal field of the photonic mode becomes stronger than the transverse ones while the transverse fields always dominate for the plasmonic mode. Experimentally, we obtain polarization resolved images of the near-field at the tip aperture and compare with the x- and y-components of the fundamental quasi-LP plasmonic and photonic modes. The results show that not only the pattern but also the intensity ratios of the x- and y-components of the aperture near-field match with that of the fundamental plasmonic mode. Consequently, we conclude that only the plasmonic mode reaches the tip aperture and thus governs the near-field interaction outside the tip aperture. Our conclusion remains valid for all aperture tips regardless of the cladding metal type that mainly influences the total transmission efficiency of the aperture tip.
Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee
2016-01-05
The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm(2).
Sweatt, William C.
1998-01-01
A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.
Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao
2016-06-10
The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.
NASA Astrophysics Data System (ADS)
Sidali, Tarik; Bou, Adrien; Coutancier, Damien; Chassaing, Elisabeth; Theys, Bertrand; Barakel, Damien; Garuz, Richard; Thoulon, Pierre-Yves; Lincot, Daniel
2018-03-01
In this paper, a new way of preparing semi-transparent solar cells using Cu(In1-xGax)Se2 (CIGS) chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 × 5 cm2) with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC) of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%, VOC of 460 mV, JSC of 24 mA.cm-2 in an area of 0.1 cm2 with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.
A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules
NASA Astrophysics Data System (ADS)
Chen, Han; Ye, Fei; Tang, Wentao; He, Jinjin; Yin, Maoshu; Wang, Yanbo; Xie, Fengxian; Bi, Enbing; Yang, Xudong; Grätzel, Michael; Han, Liyuan
2017-10-01
Recent advances in the use of organic-inorganic hybrid perovskites for optoelectronics have been rapid, with reported power conversion efficiencies of up to 22 per cent for perovskite solar cells. Improvements in stability have also enabled testing over a timescale of thousands of hours. However, large-scale deployment of such cells will also require the ability to produce large-area, uniformly high-quality perovskite films. A key challenge is to overcome the substantial reduction in power conversion efficiency when a small device is scaled up: a reduction from over 20 per cent to about 10 per cent is found when a common aperture area of about 0.1 square centimetres is increased to more than 25 square centimetres. Here we report a new deposition route for methyl ammonium lead halide perovskite films that does not rely on use of a common solvent or vacuum: rather, it relies on the rapid conversion of amine complex precursors to perovskite films, followed by a pressure application step. The deposited perovskite films were free of pin-holes and highly uniform. Importantly, the new deposition approach can be performed in air at low temperatures, facilitating fabrication of large-area perovskite devices. We reached a certified power conversion efficiency of 12.1 per cent with an aperture area of 36.1 square centimetres for a mesoporous TiO2-based perovskite solar module architecture.
Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee
2016-01-01
The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm2. PMID:26728507
Cho, Changsoon; Song, Jung Hoon; Kim, Changjo; Jeong, Sohee; Lee, Jung-Yong
2017-12-12
Bandgap tunability and broadband absorption make quantum-dot (QD) photovoltaic cells (PVs) a promising candidate for future solar energy conversion systems. Approaches to improving the electrical properties of the active layer increase efficiency in part. The present study focuses on optical room for enhancement in QD PVs over wide spectrum in the near-infrared (NIR) region. We find that ray-optical light trapping schemes rather than the nanophotonics approach may be the best solution for enhancing broadband QD PVs by suppressing the escape probability of internal photons without spectral dependency. Based on the theoretical study of diverse schemes for various bandgaps, we apply a V-groove structure and a V-groove textured compound parabolic trapper (VCPT) to PbS-based QD PVs along with the measurement issues for PVs with a light scattering layer. The efficiency of the best device is improved from 10.3% to 11.0% (certified to 10.8%) by a V-groove structure despite the possibility of underestimation caused by light scattering in small-area devices (aperture area: 0.0625 cm 2 ). By minimizing such underestimation, even greater enhancements of 13.6% and 15.6% in short circuit current are demonstrated for finger-type devices (0.167 cm 2 without aperture) and large-area devices (2.10 cm 2 with an aperture of 0.350 cm 2 ), respectively, using VCPT.
NASA Technical Reports Server (NTRS)
Owen, W. A.
1984-01-01
Low thermal efficiencies in solar receivers are discussed in terms of system design. It is recommended that careful attention be given to the overall thermal systems design, especially to conductive losses about the window and areas of relatively thin insulation. If the cavity design is carefully managed to insure a small, minimally reradiating aperture, the goal of a very high efficiency cavity receiver is a realistic one.
Design of precise assembly equipment of large aperture optics
NASA Astrophysics Data System (ADS)
Pei, Guoqing; Xu, Xu; Xiong, Zhao; Yan, Han; Qin, Tinghai; Zhou, Hai; Yuan, Xiaodong
2017-05-01
High-energy solid-state laser is an important way to achieve laser fusion research. Laser fusion facility includes thousands of various types of large aperture optics. These large aperture optics should be assembled with high precision and high efficiency. Currently, however, the assembly of large aperture optics is by man's hand which is in low level of efficiency and labor-intensive. Here, according to the characteristics of the assembly of large aperture optics, we designed three kinds of grasping devices. Using Finite Element Method, we simulated the impact of the grasping device on the PV value and the RMS value of the large aperture optics. The structural strength of the grasping device's key part was analyzed. An experiment was performed to illustrate the reliability and precision of the grasping device. We anticipate that the grasping device would complete the assembly of large aperture optics precisely and efficiently.
Jain, Deepak; Jung, Yongmin; Barua, Pranabesh; Alam, Shaiful; Sahu, Jayanta K
2015-03-23
In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700 um² (including bend induced effective area reduction) at a bend diameter of 32 cm from a 35 μm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1 dB/m while ensuring the higher order modes loss to be higher than 10 dB/m at a wavelength of 1060 nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35 μm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81%and aM² less than 1.1.
Solar receiver performance of point focusing collector system
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Wen, L. C.
1978-01-01
The solar receiver performance of cavity receivers and external receivers used in dispersed solar power systems was evaluated for the temperature range 300-1300 C. Several parameters of receiver and concentrator are examined. It was found that cavity receivers are generally more efficient than external receivers, especially at high temperatures which require a large heat transfer area. The effects of variation in the ratio of receiver area to aperture area are considered.
A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Xiong; Bi, Dongqin; Yi, Chenyi; Décoppet, Jean-David; Luo, Jingshan; Zakeeruddin, Shaik Mohammed; Hagfeldt, Anders; Grätzel, Michael
2016-07-01
Metal halide perovskite solar cells (PSCs) currently attract enormous research interest because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication costs, but their practical development is hampered by difficulties in achieving high performance with large-size devices. We devised a simple vacuum flash-assisted solution processing method to obtain shiny, smooth, crystalline perovskite films of high electronic quality over large areas. This enabled us to fabricate solar cells with an aperture area exceeding 1 square centimeter, a maximum efficiency of 20.5%, and a certified PCE of 19.6%. By contrast, the best certified PCE to date is 15.6% for PSCs of similar size. We demonstrate that the reproducibility of the method is excellent and that the cells show virtually no hysteresis. Our approach enables the realization of highly efficient large-area PSCs for practical deployment.
NASA Astrophysics Data System (ADS)
Agrawal, Navik; Davis, Christopher C.
2008-08-01
Omnidirectional free space optical communication receivers can employ multiple non-imaging collectors, such as compound parabolic concentrators (CPCs), in an array-like fashion to increase the amount of possible light collection. CPCs can effectively channel light collected over a large aperture to a small area photodiode. The aperture to length ratio of such devices can increase the overall size of the transceiver unit, which may limit the practicality of such systems, especially when small size is desired. New non-imaging collector designs with smaller sizes, larger field of view (FOV), and comparable transmission curves to CPCs, offer alternative transceiver designs. This paper examines how transceiver performance is affected by the use of different non-imaging collector shapes that are designed for wide FOV with reduced efficiency compared with shapes such as the CPC that are designed for small FOV with optimal efficiency. Theoretical results provide evidence indicating that array-like transceiver designs using various non-imaging collector shapes with less efficient transmission curves, but a larger FOV will be an effective means for the design of omnidirectional optical transceiver units. The results also incorporate the effects of Fresnel loss at the collector exit aperture-photodiode interface, which is an important consideration for indoor omnidirectional FSO systems.
NASA Astrophysics Data System (ADS)
Thorsnes, T.; Bjarnadóttir, L. R.
2017-12-01
Emerging platforms and tools like autonomous underwater vehicles and synthetic aperture sonars provide interesting opportunities for making seabed mapping more efficient and precise. Sediment grain-size maps are an important product in their own right and a key input for habitat and biotope maps. National and regional mapping programmes are tasked with mapping large areas, and survey efficiency, data quality, and resulting map confidence are important considerations when selecting the mapping strategy. Since 2005, c. 175,000 square kilometres of the Norwegian continental shelf and continental slope has been mapped with respect to sediments, habitats and biodiversity, and pollution under the MAREANO programme (www.mareano.no). At present the sediment mapping is based on a combination of ship-borne multibeam bathymetry and backscatter, visual documentation using a towed video platform, and grab sampling. We have now tested a new approach, using an Autonomous Underwater Vehicle (AUV) as the survey platform for the collection of acoustic data (Synthetic Aperture Sonar (SAS), EM2040 bathymetry and backscatter) and visual data (still images using a TFish colour photo system). This pilot project was conducted together the Norwegian Hydrographic Service, the Institute of Marine Research (biology observations) and the Norwegian Defence Research Establishment (operation of ship and AUV). The test site reported here is the Vesterdjupet area, offshore Lofoten, northern Norway. The water depth is between 170 and 300 metres, with sediments ranging from gravel, cobbles and boulders to sandy mud. A cold-water coral reef, associated with bioclastic sediments was also present in the study area. The presentation will give an overview of the main findings and experiences gained from this pilot project with a focus on geological mapping and will also discuss the relevance of AUV-based mapping to large-area mapping programmes like MAREANO.
Luo, Jin; Zhu, Yongqiang; Guo, Qinghai; Tan, Long; Zhuang, Yaqin; Liu, Mingliang; Zhang, Canhai; Xiang, Wei; Rohn, Joachim
2017-01-05
In this paper, the hydraulic and heat-transfer properties of two sets of artificially fractured granite samples are investigated. First, the morphological information is determined using 3D modelling technology. The area ratio is used to describe the roughness of the fracture surface. Second, the hydraulic properties of fractured granite are tested by exposing samples to different confining pressures and temperatures. The results show that the hydraulic properties of the fractures are affected mainly by the area ratio, with a larger area ratio producing a larger fracture aperture and higher hydraulic conductivity. Both the hydraulic apertureand the hydraulic conductivity decrease with an increase in the confining pressure. Furthermore, the fracture aperture decreases with increasing rock temperature, but the hydraulic conductivity increases owing to a reduction of the viscosity of the fluid flowing through. Finally, the heat-transfer efficiency of the samples under coupled hydro-thermal-mechanical conditions is analysed and discussed.
Luo, Jin; Zhu, Yongqiang; Guo, Qinghai; Tan, Long; Zhuang, Yaqin; Liu, Mingliang; Zhang, Canhai; Xiang, Wei; Rohn, Joachim
2017-01-01
In this paper, the hydraulic and heat-transfer properties of two sets of artificially fractured granite samples are investigated. First, the morphological information is determined using 3D modelling technology. The area ratio is used to describe the roughness of the fracture surface. Second, the hydraulic properties of fractured granite are tested by exposing samples to different confining pressures and temperatures. The results show that the hydraulic properties of the fractures are affected mainly by the area ratio, with a larger area ratio producing a larger fracture aperture and higher hydraulic conductivity. Both the hydraulic apertureand the hydraulic conductivity decrease with an increase in the confining pressure. Furthermore, the fracture aperture decreases with increasing rock temperature, but the hydraulic conductivity increases owing to a reduction of the viscosity of the fluid flowing through. Finally, the heat-transfer efficiency of the samples under coupled hydro-thermal-mechanical conditions is analysed and discussed. PMID:28054594
Aperture efficiency of integrated-circuit horn antennas
NASA Technical Reports Server (NTRS)
Guo, Yong; Lee, Karen; Stimson, Philip; Potter, Kent; Rutledge, David
1991-01-01
The aperture efficiency of silicon integrated-circuit horn antennas has been improved by optimizing the length of the dipole probes and by coating the entire horn walls with gold. To make these measurements, a new thin-film power-density meter was developed for measuring power density with accuracies better than 5 percent. The measured aperture efficiency improved from 44 percent to 72 percent at 93 GHz. This is sufficient for use in many applications which now use machined waveguide horns.
Hasinoff, Samuel W; Kutulakos, Kiriakos N
2011-11-01
In this paper, we consider the problem of imaging a scene with a given depth of field at a given exposure level in the shortest amount of time possible. We show that by 1) collecting a sequence of photos and 2) controlling the aperture, focus, and exposure time of each photo individually, we can span the given depth of field in less total time than it takes to expose a single narrower-aperture photo. Using this as a starting point, we obtain two key results. First, for lenses with continuously variable apertures, we derive a closed-form solution for the globally optimal capture sequence, i.e., that collects light from the specified depth of field in the most efficient way possible. Second, for lenses with discrete apertures, we derive an integer programming problem whose solution is the optimal sequence. Our results are applicable to off-the-shelf cameras and typical photography conditions, and advocate the use of dense, wide-aperture photo sequences as a light-efficient alternative to single-shot, narrow-aperture photography.
Initial Results of Aperture Area Comparisons for Exo-Atmospheric Total Solar Irradiance Measurements
NASA Technical Reports Server (NTRS)
Johnson, B. Carol; Litorja, Maritoni; Fowler, Joel B.; Butler, James J.
2009-01-01
In the measurement of exo-atmospheric total solar irradiance (TSI), instrument aperture area is a critical component in converting solar radiant flux to irradiance. In a May 2000 calibration workshop for the Total Irradiance Monitor (TIM) on the Earth Observing System (EOS) Solar Radiation and Climate Experiment (SORCE), the solar irradiance measurement community recommended that NASA and NISI coordinate an aperture area measurement comparison to quantify and validate aperture area uncertainties and their overall effect on TSI uncertainties. From May 2003 to February 2006, apertures from 4 institutions with links to the historical TSI database were measured by NIST and the results were compared to the aperture area determined by each institution. The initial results of these comparisons are presented and preliminary assessments of the participants' uncertainties are discussed.
Results of aperture area comparisons for exo-atmospheric total solar irradiance measurements.
Johnson, B Carol; Litorja, Maritoni; Fowler, Joel B; Shirley, Eric L; Barnes, Robert A; Butler, James J
2013-11-20
Exo-atmospheric solar irradiance measurements made by the solar irradiance community since 1978 have incorporated limiting apertures with diameters measured by a number of metrology laboratories using a variety of techniques. Knowledge of the aperture area is a critical component in the conversion of radiant flux measurements to solar irradiance. A National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) sponsored international comparison of aperture area measurements of limiting apertures provided by solar irradiance researchers was performed, the effort being executed by the National Institute of Standards and Technology (NIST) in coordination with the EOS Project Science Office. Apertures that had institutional heritage with historical solar irradiance measurements were measured using the absolute aperture measurement facility at NIST. The measurement technique employed noncontact video microscopy using high-accuracy translation stages. We have quantified the differences between the participating institutions' aperture area measurements and find no evidence to support the hypothesis that preflight aperture area measurements were the root cause of discrepancies in long-term total solar irradiance satellite measurements. Another result is the assessment of uncertainties assigned to methods used by participants. We find that uncertainties assigned to a participant's values may be underestimated.
NASA Astrophysics Data System (ADS)
Dobrynchenko, VV; Kokorinand, IS; Shebalkova, LV
2018-03-01
The authors discuss applicability of synthesized aperture radars to monitorthe ground surface displacement in mineral mining areas in terms of a synthesized-aperture interferometric radar. The operation principle of the interferometric method is demonstrated on studies of the ground surface displacements in areas of oil and gas reservoirs. The advantages of the synthetic aperture radar are substantiated.
Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.
Rumyantsev, Valery D
2010-04-26
High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.
Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, I. V.; Doronina-Amitonova, L. V.; Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125
2014-02-24
Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.
Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A
2016-09-05
Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.
Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.
2016-01-01
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605
Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V
2016-01-21
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.
NASA Astrophysics Data System (ADS)
Hayati, Noorlaila; Riedel, Björn; Niemeier, Wolfgang
2016-04-01
Ciloto is one of the most prone landslide hazard areas in Indonesia. Several landslides in 2012 and 2013 had been recorded in Ciloto and damaged infrastructure around the area. Investigating the history of ground movement along slope area before the landslide happened could support the hazard mitigation in the future. Considering to an efficient surveying method, space-borne SAR processing is the one appropriate way to monitor the phenomenon in past years. The purpose of this study is detecting ground movement using multi-temporal synthetic aperture radar images. We use 13 ALOS PALSAR images from 2007 to 2009 with combination Fine Beam Single (FBS) and Fine Beam Double (FBD) polarization to investigate the slow movement on slope topography. MAI (Multiple Aperture Interferometry) InSAR method is used to analyze the ground movement from both line-of-sight and along-track direction. We split the synthetic aperture into two-looking aperture so that along-track displacement could be created by the difference of forward-backward looking interferograms. With integration of both methods, we could more precisely detect the movement in prone landslide area and achieve two measurements produced by the same interferogram. However, InSAR requires smaller baseline and good temporal baseline between master and slave images to avoid decorellation. There are only several pairs that meet the condition of proper length and temporal baseline indeed the location is also on the agriculture area where is mostly covered by vegetation. The result for two years observation shows that there is insignificant slow movement along slope surface in Ciloto with -2 - -7 cm in range looks or line of sight and 9-40 cm in along track direction. Based on geometry SAR , the most visible detecting of displacement is on the north-west area due to utilization of ascending SAR images.
Realizable feed-element patterns and optimum aperture efficiency in multibeam antenna systems
NASA Technical Reports Server (NTRS)
Yngvesson, K. S.; Rahmat-Samii, Y.; Johansson, J. F.; Kim, Y. S.
1988-01-01
The results of an earlier paper by Rahmat-Samii et al. (1981), regarding realizable patterns from feed elements that are part of an array that feeds a reflector antenna, are extended. The earlier paper used a cos exp q theta model for the element radiation pattern, whereas here a parametric study is performed, using a model that assumes a central beam of cos exp q theta shape, with a constant sidelobe level outside the central beam. Realizable q-values are constrained by the maximum directivity based on feed element area. The optimum aperture efficiency (excluding array feed network losses) in an array-reflector system is evaluated as a function of element spacing using this model as well as the model of the earlier paper. Experimental data for tapered slot antenna (TSA) arrays are in agreement with the conclusions based on the model.
NASA Astrophysics Data System (ADS)
Sawada, A.; Takebe, A.; Sakamoto, K.
2006-12-01
Quantitative evaluation of the groundwater velocity in the fractures is a key part of contaminants transport assessment especially in the radioactive waste disposal programs. In a hydrogeological model such as the discrete fracture network model, the transport aperture of water conducting fracture is one of the important parameters for evaluating groundwater velocity. Tracer tests that measure velocity (or transport aperture) are few compared with flow tests that measure transmissivity (or hydraulic aperture). Thus it is useful to estimate transport properties from flow properties. It is commonly assumed that flow and transport aperture are the same, and that aperture is related to the cube root of transmissivity by the parallel-plate analog. Actual field experiments, however, show transport and hydraulic apertures are not always the same, and that transport aperture relates to an empirical constant times the square root of transmissivity. Compared with these field results, the cubic law underestimates transport aperture and overestimates velocity. A possible source of this discrepancy is in-plane heterogeneity of aperture and transmissivity. To study this behavior, numerical simulations using MAFIC were conducted for a single fracture model with a heterogeneous aperture distribution. The simulations varied three parameters - the mean geometrical aperture, JRC (Joint Roughness Coefficient), and the contact area ratio (fracture contact area divided by total fracture area). For each model we determined the equivalent transmissivity and cubic-law aperture under steady flow conditions. Then we simulated mass transport using particle tracking through the same fracture. The transport aperture was estimated from the particle peak arrival time at the downstream boundary. The results show that the mean geometrical aperture is the most sensitive parameter among the three variable parameters in this study. It is also found that the contact area ratio affects transmissivity more than the JRC, and while the JRC strongly affects the velocity and transport aperture. Based on these results, a correlation between the transmissivity, the hydraulic conductivity and the transport aperture will be discussed.
NASA Astrophysics Data System (ADS)
Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi
2014-01-01
The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.
Large-area PSPMT based gamma-ray imager with edge reclamation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, K-P; Nakae, L
2000-09-21
We describe a coded aperture, gamma-ray imager which uses a CsI(Na) scintillator coupled to an Hamamatsu R3292 position-sensitive photomultiplier tube (PSPMT) as the position-sensitive detector. We have modified the normal resistor divider readout of the PSPMT to allow use of nearly the full 10 cm diameter active area of the PSPMT with a single scintillator crystal one centimeter thick. This is a significant performance improvement over that obtained with the standard readout technique where the linearity and position resolution start to degrade at radii as small as 3.5 cm with a crystal 0.75 crn thick. This represents a recovery ofmore » over 60% of the PSPMT active area. The performance increase allows the construction of an imager with a field of view 20 resolution elements in diameter with useful quantum efficiency from 60-700 keV. In this paper we describe the readout technique, its implementation in a coded aperture imager and the performance of that imager.« less
Microfabricated high-bandpass foucault aperture for electron microscopy
Glaeser, Robert; Cambie, Rossana; Jin, Jian
2014-08-26
A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.
Hubble Space Telescope faint object spectrograph instrument handbook, version 5.0
NASA Technical Reports Server (NTRS)
Kinney, A. L. (Editor)
1994-01-01
This version of the FOS Instrument Handbook is for the refurbished telescope, which is affected by an increase in throughput, especially for the smaller apertures, a decrease in efficiency due to the extra reflections of the COSTAR optics, and a change in focal length. The improved PSF affects all exposure time calculations due to better aperture throughputs and increases the spectral resolution. The extra reflections of COSTAR decrease the efficiency by 10-20 percent. The change in focal length affects the aperture sizes as projected on the sky. The aperture designations that are already in use both in the exposure logsheets and in the project data base (PDB) have not been changed. Apertures are referred to here by their size, followed by the designation used on the exposure logsheet.
Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.
Rumyantsev, Valery D
2010-04-26
High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.
Metrology measurements for large-aperture VPH gratings
NASA Astrophysics Data System (ADS)
Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen
2013-09-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.
The development of inflatable array antennas
NASA Technical Reports Server (NTRS)
Huang, J.
2001-01-01
Inflatable array antennas are being developed to significantly reduce the mass, the launch vehicle's stowage volume, and the cost of future spacecraft systems. Three inflatable array antennas, recently developed for spacecraft applications, are a 3.3 m x 1.0 m L-band synthetic-aperture radar (SAR) array, a 1.0 m-diameter X-band telecom reflectarray, and a 3 m-diameter Ka-band telecom reflectarray. All three antennas are similar in construction, and each consists of an inflatable tubular frame that supports and tensions a multi-layer thin-membrane RF radiating surface with printed microstrip patches. The L-band SAR array achieved a bandwidth of 80 MHz, an aperture efficiency of 74%, and a total mass of 15 kg. The X-band reflectarray achieved an aperture efficiency of 37%, good radiation patterns, and a total mass of 1.2 kg (excluding the inflation system). The 3 m Ka-band reflectarray achieved a surface flatness of 0.1 mm RMS, good radiation patterns, and a total mass of 12.8 kg (excluding the inflation system). These antennas demonstrated that inflatable arrays are feasible across the microwave and millimeter-wave spectrums. Further developments of these antennas are deemed necessary, in particular, in the area of qualifying the inflatable structures for space-environment usage.
Development of high-sensitivity SWIR APD receivers
NASA Astrophysics Data System (ADS)
Bai, Xiaogang; Yuan, Ping; Chang, James; Sudharsanan, Rengarajan; Krainak, Michael; Yang, Guangning; Sun, Xiaoli; Lu, Wei
2013-06-01
Emerging short wavelength infrared (SWIR) LIght Detection And Ranging (LIDAR) and long range laser rangefinder systems, require large optical aperture avalanche photodiodes (APDs) receivers with high sensitivity and high bandwidth. A large optical aperture is critical to increase the optical coupling efficiency and extend the LIDAR sensing range of the above systems. Both APD excess noise and transimpedance amplifier (TIA) noise need to be reduced in order to achieve high receiver sensitivity. The dark current and capacitance of large area APDs increase with APD aperture and thus limit the sensitivity and bandwidth of receivers. Spectrolab has been developing low excess noise InAlAs/InGaAs APDs with impact ionization engineering (I2E) designs for many years and has demonstrated APDs with optical gain over 100 utilizing multiple period I2E structures in the APD multiplier. These high gain I2E APDs have an excess noise factor less than 0.15. With an optical aperture of 200 μm, low excess noise multiple periods I2E APDs have capacitances about 1.7 pF. In addition, optical gains of InAlAs based APDs show very little temperature dependence and will enable APD photoreceivers without thermal electric cooling.
Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing
Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang
2016-01-01
Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341
Rotatable Aperture Coronagraph for Exoplanetary Studies (RACES)
NASA Astrophysics Data System (ADS)
Chakrabarti, Supriya; Mendillo, Christopher; Mukherjee, Sunip; Martel, Jason; Cook, Timothy; Polidan, Ronald S.; Rafanelli, Gerard L.; Spencer, Susan B.; Wolfe, Douglas w.
2018-01-01
We present the design and expected performance of RACES, a suborbital mission concept to directly image exo-Jupiters with a rotatable non-circular aperture telescope. By using a high-aspect ratio elliptical or rectangular primary mirror (2.3m x 0.6m), this mission achieves the same angular resolution and inner working angle as a 2.3m dia telescope. Such an elliptical or rectangular system would fill the volume of a cylindrical launch vehicle more efficiently and by choosing the aspect ratio one can appropriately tailor its light gathering power. RACES can therefore serve as a pathfinder for future larger missions for exoplanetary explorations. For example, the system described here approaches the collecting area of the well studied EXO-C concept and exceeds its angular resolution. The mission concept, design studies, observation strategy and expected target yield for RACES will be presented, as well as simulations of the high contrast vector vortex coronagraph operating with an un-obscured elliptical aperture.
Implications of a 20-Hz Booster cycle-rate for Slip-stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
2014-06-10
We examine the potential impacts to slip-stacking from a change of the Booster cycle-rate from 15- to 20-Hz. We find that changing the Booster cycle-rate to 20-Hz would greatly increase the slip-stacking bucket area, while potentially requiring greater usage of the Recycler momentum aperture and additional power dissipation in the RF cavities. In particular, the losses from RF interference can be reduced by a factor of 4-10 (depending on Booster beam longitudinal parameters). We discuss the aspect ratio and beam emittance requirements for efficient slip-stacking in both cycle-rate cases. Using a different injection scheme can eliminate the need for greatermore » momentum aperture in the Recycler.« less
Effect of Clouds on Apertures of Space-based Air Fluorescence Detectors
NASA Technical Reports Server (NTRS)
Sokolsky, P.; Krizmanic, J.
2003-01-01
Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination and spectrum normalization. We study the possibility of using IR remote sensing data from MODIS and GOES satellites to delimit clear areas of the atmosphere. The efficiency for detecting ultra-high-energy cosmic rays whose showers do not intersect clouds is determined for real, night-time cloud scenes. We use the MODIS SST cloud mask product to define clear pixels for cloud scenes along the equator and use the OWL Monte Carlo to generate showers in the cloud scenes. We find the efficiency for cloud-free showers with closest approach of three pixels to a cloudy pixel is 6.5% exclusive of other factors. We conclude that defining a totally cloud-free aperture reduces the sensitivity of space-based fluorescence detectors to unacceptably small levels.
CuInSe2-Based Thin-Film Photovoltaic Technology in the Gigawatt Production Era
NASA Astrophysics Data System (ADS)
Kushiya, Katsumi
2012-10-01
The objective of this paper is to review current status and future prospect on CuInSe2 (CIS)-based thin-film photovoltaic (PV) technology. In CIS-based thin-film PV technology, total-area cell efficiency in a small-area (i.e., smaller than 1 cm2) solar cell with top grids has been over 20%, while aperture-area efficiency in a large-area (i.e., larger than 800 cm2 as definition) monolithic module is approaching to an 18% milestone. However, most of the companies with CIS-based thin-film PV technology still stay at a production research stage, except Solar Frontier K.K. In July, 2011, Solar Frontier has joined the gigawatt (GW) group by starting up their third facility with a 0.9-GW/year production capacity. They are keeping the closest position to pass a 16% module-efficiency border by transferring the developed technologies in the R&D and accelerating the preparation for the future based on the concept of a product life-cycle management.
Foucault imaging by using non-dedicated transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken
2012-08-27
An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.
Screening Efficiency Analysis of Vibrosieves with the Circular Vibrations
NASA Astrophysics Data System (ADS)
Djoković, Jelena M.; Tanikić, Dejan I.; Nikolić, Ružica R.; Kalinović, Saša M.
2017-06-01
The analysis of influence of factors that depend on construction characteristics of the vibrosieves with circular vibrations on screening efficiency is presented in this paper. The dependence of the screening efficiency on the aperture size, length and inclination of the screen, as well as on vibration amplitude, is considered. Based on obtained results, one can see that the screening efficiency increases with vibration amplitude and the screen length increase. Further, increases of the screen inclination and aperture size are causing an initial increase of the screening efficiency, which is later decreasing.
Lewin, Keith F.
1997-04-15
A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.
Lewin, K.F.
1997-04-15
A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.
Penalization of aperture complexity in inversely planned volumetric modulated arc therapy
Younge, Kelly C.; Matuszak, Martha M.; Moran, Jean M.; McShan, Daniel L.; Fraass, Benedick A.; Roberts, Donald A.
2012-01-01
Purpose: Apertures obtained during volumetric modulated arc therapy (VMAT) planning can be small and irregular, resulting in dosimetric inaccuracies during delivery. Our purpose is to develop and integrate an aperture-regularization objective function into the optimization process for VMAT, and to quantify the impact of using this objective function on dose delivery accuracy and optimized dose distributions. Methods: An aperture-based metric (“edge penalty”) was developed that penalizes complex aperture shapes based on the ratio of MLC side edge length and aperture area. To assess the utility of the metric, VMAT plans were created for example paraspinal, brain, and liver SBRT cases with and without incorporating the edge penalty in the cost function. To investigate the dose calculation accuracy, Gafchromic EBT2 film was used to measure the 15 highest weighted apertures individually and as a composite from each of two paraspinal plans: one with and one without the edge penalty applied. Films were analyzed using a triple-channel nonuniformity correction and measurements were compared directly to calculations. Results: Apertures generated with the edge penalty were larger, more regularly shaped and required up to 30% fewer monitor units than those created without the edge penalty. Dose volume histogram analysis showed that the changes in doses to targets, organs at risk, and normal tissues were negligible. Edge penalty apertures that were measured with film for the paraspinal plan showed a notable decrease in the number of pixels disagreeing with calculation by more than 10%. For a 5% dose passing criterion, the number of pixels passing in the composite dose distributions for the non-edge penalty and edge penalty plans were 52% and 96%, respectively. Employing gamma with 3% dose/1 mm distance criteria resulted in a 79.5% (without penalty)/95.4% (with penalty) pass rate for the two plans. Gradient compensation of 3%/1 mm resulted in 83.3%/96.2% pass rates. Conclusions: The use of the edge penalty during optimization has the potential to markedly improve dose delivery accuracy for VMAT plans while still maintaining high quality optimized dose distributions. The penalty regularizes aperture shape and improves delivery efficiency. PMID:23127107
Solar energy apparatus with apertured shield
NASA Technical Reports Server (NTRS)
Collings, Roger J. (Inventor); Bannon, David G. (Inventor)
1989-01-01
A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.
NASA Technical Reports Server (NTRS)
Buttgenbach, Thomas H.
1993-01-01
The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.
Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture
NASA Astrophysics Data System (ADS)
Lindquist, Nathan C.; Johnson, Timothy W.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun
2013-05-01
We demonstrate the design, fabrication and characterization of a near-field plasmonic nanofocusing probe with a hybrid tip-plus-aperture design. By combining template stripping with focused ion beam lithography, a variety of aperture-based near-field probes can be fabricated with high optical performance. In particular, the combination of large transmission through a C-shaped aperture aligned to the sharp apex (<10 nm radius) of a template-stripped metallic pyramid allows the efficient delivery of light--via the C-shaped aperture--while providing a nanometric hotspot determined by the sharpness of the tip itself.
Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho
2017-01-01
A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036
Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men Chunhua; Romeijn, H. Edwin; Jia Xun
2010-11-15
Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less
Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).
Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B
2010-11-01
To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B.Y.; Chen, H.H.; Tsai, H.Y.
2015-06-15
Purpose: To identify the radionuclides and quantify the activity of the patient apertures used in a 190-MeV proton beam of wobbling system. Methods: A proton beam of wobbling system in the first proton center in Taiwan, Chang Gung Memorial Hospital at Linkou, was used to bombard the patient apertures. The patient aperture was composed of 60.5 % copper, 39.4 % Zinc, 0.05 % iron, 0.05 % lead. A protable high-purity germanium (HPGe) coaxial detector was used to measure the spectra of the induced nuclides of patient apertures. The analysis of the spectra and the identification of the radionuclides were preliminarilymore » operated by the Nuclide Navigator III Master Library. On the basis of the results by Nuclide Navigator III Master Library, we manually selected the reliable nuclides by the gamma-ray energies, branching ratio, and half life. In the spectra, we can quantify the activity of radionuclides by the Monte Carlo efficiency transfer method. Results: In this study, the radioisotopes activated in patient apertures by the 190-MeV proton beam were divided into two categories. The first category is long half-life radionuclides, such as Co-56 (half life, 77.3 days). Other radionuclides of Cu-60, Cu-61, Cu-62, Cu-66, and Zn-62 have shorter half life. The radionuclide of Cu-60 had the highest activity. From calculation with the efficiency transfer method, the deviations between the computed results and the measured efficiencies were mostly within 10%. Conclusion: To identify the radionuclides and quantify the activity helps us to estimate proper time intervals for cooling the patient apertures. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)« less
NASA Astrophysics Data System (ADS)
Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.
2017-01-01
Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.
Tsumori, Nobuhiro; Takahashi, Motoki; Sakuma, Yoshiki; Saiki, Toshiharu
2011-10-10
We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6 μm. We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep
2017-12-01
Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager - Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.
Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez
2012-11-05
A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.
NASA Astrophysics Data System (ADS)
Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi
2015-01-01
The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.
Photometric Characterization of the Dark Energy Camera
Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.; ...
2018-04-02
We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >10 7 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20''. On cloudless nights, any departures ofmore » the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6'' and 8'' diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. Here, we find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less
Astrometric Calibration and Performance of the Dark Energy Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, G. M.; Armstrong, R.; Plazas, A. A.
2017-05-30
We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520~Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry ofmore » $>10^7$ stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the RMS variation in aperture magnitudes of bright stars on cloudless nights down to 2--3 mmag, with <1 mmag of correlated photometric errors for stars separated by $$\\ge20$$". On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding >1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6" and 8" diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2-degree field drifts over months by up to $$\\pm7$$ mmag, in a nearly-wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less
Photometric Characterization of the Dark Energy Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.
We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >10 7 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20''. On cloudless nights, any departures ofmore » the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6'' and 8'' diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. Here, we find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less
Photometric Characterization of the Dark Energy Camera
NASA Astrophysics Data System (ADS)
Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.; Burke, D. L.; Diehl, H. T.; Gruendl, R. A.; Johnson, M. D.; Li, T. S.; Rykoff, E. S.; Walker, A. R.; Wester, W.; Yanny, B.
2018-05-01
We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >107 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20″. On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6″ and 8″ diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.
The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture
Favorite, Jeffrey A.
2016-01-13
It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.
Revolutionary astrophysics using an incoherent synthetic optical aperture
NASA Astrophysics Data System (ADS)
Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas; Newman, Arthur; Polidan, Ronald; Chakrabarti, Supriya
2017-09-01
We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.
Revolutionary Astrophysics using an Incoherent Synthetic Optical Aperture
NASA Astrophysics Data System (ADS)
Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas w.; Newman, Arthur M.; Polidan, Ronald S.; Chakrabarti, Supriya
2018-01-01
We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.
Yang, Yan; Geng, Chao; Li, Feng; Huang, Guan; Li, Xinyang
2017-10-30
Multi-aperture receiver with optical combining architecture is an effective approach to overcome the turbulent atmosphere effect on the performance of the free-space optical (FSO) communications, in which how to combine the multiple laser beams received by the sub-apertures efficiently is one of the key technologies. In this paper, we focus on the combining module based on fiber couplers, and propose the all-fiber coherent beam combining (CBC) with two architectures by using active phase locking. To validate the feasibility of the proposed combining module, corresponding experiments and simulations on the CBC of four laser beams are carried out. The experimental results show that the phase differences among the input beams can be compensated and the combining efficiency can be stably promoted by active phase locking in CBC with both of the two architectures. The simulation results show that the combining efficiency fluctuates when turbulent atmosphere is considered, and the effectiveness of the combining module decreases as the turbulence increases. We believe that the combining module proposed in this paper has great potential, and the results can provide significant advices for researchers when building such a multi-aperture receiver with optical combining architecture for FSO commutation systems.
NASA Technical Reports Server (NTRS)
Wilson, R. Gale
1994-01-01
The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.
A Spherical Active Coded Aperture for 4π Gamma-ray Imaging
Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...
2017-09-22
Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Götstedt, Julia; Karlsson Hauer, Anna; Bäck, Anna, E-mail: anna.back@vgregion.se
Purpose: Complexity metrics have been suggested as a complement to measurement-based quality assurance for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). However, these metrics have not yet been sufficiently validated. This study develops and evaluates new aperture-based complexity metrics in the context of static multileaf collimator (MLC) openings and compares them to previously published metrics. Methods: This study develops the converted aperture metric and the edge area metric. The converted aperture metric is based on small and irregular parts within the MLC opening that are quantified as measured distances between MLC leaves. The edge area metricmore » is based on the relative size of the region around the edges defined by the MLC. Another metric suggested in this study is the circumference/area ratio. Earlier defined aperture-based complexity metrics—the modulation complexity score, the edge metric, the ratio monitor units (MU)/Gy, the aperture area, and the aperture irregularity—are compared to the newly proposed metrics. A set of small and irregular static MLC openings are created which simulate individual IMRT/VMAT control points of various complexities. These are measured with both an amorphous silicon electronic portal imaging device and EBT3 film. The differences between calculated and measured dose distributions are evaluated using a pixel-by-pixel comparison with two global dose difference criteria of 3% and 5%. The extent of the dose differences, expressed in terms of pass rate, is used as a measure of the complexity of the MLC openings and used for the evaluation of the metrics compared in this study. The different complexity scores are calculated for each created static MLC opening. The correlation between the calculated complexity scores and the extent of the dose differences (pass rate) are analyzed in scatter plots and using Pearson’s r-values. Results: The complexity scores calculated by the edge area metric, converted aperture metric, circumference/area ratio, edge metric, and MU/Gy ratio show good linear correlation to the complexity of the MLC openings, expressed as the 5% dose difference pass rate, with Pearson’s r-values of −0.94, −0.88, −0.84, −0.89, and −0.82, respectively. The overall trends for the 3% and 5% dose difference evaluations are similar. Conclusions: New complexity metrics are developed. The calculated scores correlate to the complexity of the created static MLC openings. The complexity of the MLC opening is dependent on the penumbra region relative to the area of the opening. The aperture-based complexity metrics that combined either the distances between the MLC leaves or the MLC opening circumference with the aperture area show the best correlation with the complexity of the static MLC openings.« less
Quasi-optical grids with thin rectangular patch/aperture elements
NASA Technical Reports Server (NTRS)
Wu, Te-Kao
1993-01-01
Theoretical analysis is presented for an efficient and accurate performance evaluation of quasi-optical grids comprised of thin rectangular patch/aperture elements with/without a dielectric substrate/superstrate. The convergence rate of this efficient technique is improved by an order of magnitude with the approximate edge conditions incorporated in the basis functions of the integral equation solution. Also presented are the interesting applications of this efficient analytical technique to the design and performance evaluation of the coupling grids and beam splitters in the optical systems as well as thermal protection sunshields used in the communication systems of satellites and spacecrafts.
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1979-01-01
The fundamental definition of beam efficiency, given in terms of a far field radiation pattern, was used to develop alternative definitions which improve accuracy, reduce the amount of calculation required, and isolate the separate factors composing beam efficiency. Well-known definitions of aperture efficiency were introduced successively to simplify the denominator of the fundamental definition. The superposition of complex vector spillover and backscattered fields was examined, and beam efficiency analysis in terms of power patterns was carried out. An extension from single to dual reflector geometries was included. It is noted that the alternative definitions are advantageous in the mathematical simulation of a radiometer system, and are not intended for the measurements discipline where fields have merged and therefore lost their identity.
A vacuum sealed high emission current and transmission efficiency carbon nanotube triode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Yunsong; Jiangsu Key Laboratory of Optoelectronic Technology, Nanjing Normal University, Nanjing 210023; Wang, Qilong
A vacuum sealed carbon nanotubes (CNTs) triode with a concave and spoke-shaped Mo grid is presented. Due to the high aperture ratio of the grid, the emission current could be modulated at a relatively high electric field. Totally 75 mA emission current has been obtained from the CNTs cathode with the average applied field by the grid shifting from 8 to 13 V/μm. Whilst with the electron transmission efficiency of the grid over 56%, a remarkable high modulated current electron beam over 42 mA has been collected by the anode. Also contributed by the high aperture ration of the grid,more » desorbed gas molecules could flow away from the emission area rapidly when the triode has been operated at a relative high emission current, and finally collected by a vacion pump. The working pressure has been maintained at ∼1 × 10{sup −7} Torr, seldom spark phenomena occurred. Nearly perfect I-V curve and corresponding Fowler-Nordheim (FN) plot confirmed the accuracy of the measured data, and the emission current was long term stable and reproducible. Thusly, this kind of triode would be used as a high-power electron source.« less
NASA Astrophysics Data System (ADS)
Du, X.; Landecker, T. L.; Robishaw, T.; Gray, A. D.; Douglas, K. A.; Wolleben, M.
2016-11-01
Measurement of the brightness temperature of extended radio emission demands knowledge of the gain (or aperture efficiency) of the telescope and measurement of the polarized component of the emission requires correction for the conversion of unpolarized emission from sky and ground to apparently polarized signal. Radiation properties of the John A. Galt Telescope at the Dominion Radio Astrophysical Observatory were studied through analysis and measurement in order to provide absolute calibration of a survey of polarized emission from the entire northern sky from 1280 to 1750 MHz, and to understand the polarization performance of the telescope. Electromagnetic simulation packages CST and GRASP-10 were used to compute complete radiation patterns of the telescope in all Stokes parameters, and thereby to establish gain and aperture efficiency. Aperture efficiency was also evaluated using geometrical optics and ray tracing analysis and was measured based on the known flux density of Cyg A. Measured aperture efficiency varied smoothly with frequency between values of 0.49 and 0.54; GRASP-10 yielded values 6.5% higher but with closely similar variation with frequency. Overall error across the frequency band is 3%, but values at any two frequencies are relatively correct to ˜1%. Dominant influences on aperture efficiency are the illumination taper of the feed radiation pattern and the shadowing of the reflector from the feed by the feed-support struts. A model of emission from the ground was developed based on measurements and on empirical data obtained from remote sensing of the Earth from satellite-borne telescopes. This model was convolved with the computed antenna response to estimate conversion of ground emission into spurious polarized signal. The computed spurious signal is comparable to measured values, but is not accurate enough to be used to correct observations. A simpler model, in which the ground is considered as an unpolarized emitter with a brightness temperature of ˜240 K, is shown to have useful accuracy when compared to measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Lanza, R.C.
1999-12-01
The authors have developed a near field coded aperture imaging system for use with fast neutron techniques as a tool for the detection of contraband and hidden explosives through nuclear elemental analysis. The technique relies on the prompt gamma rays produced by fast neutron interactions with the object being examined. The position of the nuclear elements is determined by the location of the gamma emitters. For existing fast neutron techniques, in Pulsed Fast Neutron Analysis (PFNA), neutrons are used with very low efficiency; in Fast Neutron Analysis (FNS), the sensitivity for detection of the signature gamma rays is very low.more » For the Coded Aperture Fast Neutron Analysis (CAFNA{reg{underscore}sign}) the authors have developed, the efficiency for both using the probing fast neutrons and detecting the prompt gamma rays is high. For a probed volume of n{sup 3} volume elements (voxels) in a cube of n resolution elements on a side, they can compare the sensitivity with other neutron probing techniques. As compared to PFNA, the improvement for neutron utilization is n{sup 2}, where the total number of voxels in the object being examined is n{sup 3}. Compared to FNA, the improvement for gamma-ray imaging is proportional to the total open area of the coded aperture plane; a typical value is n{sup 2}/2, where n{sup 2} is the number of total detector resolution elements or the number of pixels in an object layer. It should be noted that the actual signal to noise ratio of a system depends also on the nature and distribution of background events and this comparison may reduce somewhat the effective sensitivity of CAFNA. They have performed analysis, Monte Carlo simulations, and preliminary experiments using low and high energy gamma-ray sources. The results show that a high sensitivity 3-D contraband imaging and detection system can be realized by using CAFNA.« less
A solar-pumped Nd:YAG laser in the high collection efficiency regime
NASA Astrophysics Data System (ADS)
Lando, Mordechai; Kagan, Jacob; Linyekin, Boris; Dobrusin, Vadim
2003-07-01
Solar-pumped lasers can be used for space and terrestrial applications. We report on solar side-pumped Nd:YAG laser experiments, which included comprehensive beam quality measurements and demonstrated record collection efficiency and day long operation. A 6.75 m 2 segmented primary mirror was mounted on a commercial two-axis positioner and focused the solar radiation towards a stationary non-imaging-optics secondary concentrator, which illuminated a Nd:YAG laser rod. Solar side-pumped laser experiments were conducted in both the low and the high pumping density regimes. The low density system was composed of a 89 × 98-mm 2 aperture two-dimensional compound parabolic concentrator (CPC) and a 10-mm diameter 130-mm long Nd:YAG laser rod. The laser emitted up to 46 W and operated continuously for 5 h. The high density system was composed of a three-dimensional CPC with 98 mm entrance diameter and 24 mm exit diameter, followed by a two-dimensional CPC with a rectangular 24 × 33 mm 2 aperture. It pumped a 6-mm diameter 72 mm long Nd:YAG laser rod, which emitted up to 45 W. The results constitute a record collection efficiency of 6.7 W/m 2 of primary mirror. We compare the current results to previous solar side-pumped laser experiments, including experiments at higher pumping density but with low collection efficiency. Finally, we present a scaled up design for a 400 W laser pumped by a solar collection area of 60 m 2, incorporating simultaneously high collection efficiency and high pumping density.
Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley
2016-10-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.
A first-order treatment of aberrations in Cassegrainian and Gregorian antennas
NASA Astrophysics Data System (ADS)
Dragone, C.
1982-05-01
The decrease in aperture efficiency caused by small aberrations in a reflector antenna is determined. The important case of a Cassegrainian (or Gregorian) antenna with a feed placed in the vicinity of the focal point is treated in detail. For this case the various aberration components due to astigmatism, coma, etc., are derived explicitly, their effect on aperture efficiency is shown, and the conditions that optimize performance are given. The results are useful for the design of multibeam antennas in ground stations and satellites.
Compact antenna arrays with wide bandwidth and low sidelobe levels
Strassner, II, Bernd H.
2014-09-09
Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.
Stitching interferometry for ellipsoidal x-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi
2016-05-15
Ellipsoidal mirrors, which can efficiently produce a two-dimensional focusing beam with a single mirror, are superior x-ray focusing optics, especially when compared to elliptical-cylinder mirrors in the Kirkpatrick–Baez geometry. However, nano-focusing ellipsoidal mirrors are not commonly used for x-ray optics because achieving the accuracy required for the surface metrology of nano-focusing ellipsoidal mirrors is difficult due to their small radius of curvature along the short ellipsoidal axis. Here, we developed a surface metrology system for nano-focusing ellipsoidal mirrors using stitching interferometric techniques. The developed system simultaneously measures sub-aperture shapes with a microscopic interferometer and the tilt angles of the sub-aperturemore » shapes with a large Fizeau interferometer. After correcting the systematic errors included in the sub-aperture shapes, the entire mirror shape is calculated by stitching the sub-aperture shapes based on the obtained relative angles between partially overlapped sub-apertures. In this study, we developed correction methods for systematic errors in sub-aperture shapes that originated from off-axis aberrations produced in the optics of the microscopic interferometer. The systematic errors on an ellipsoidal mirror were estimated by measuring a series of tilted plane substrates and the ellipsoidal substrate. From measurements of an ellipsoidal mirror with a 3.6-mm radius of curvature at the mirror center, we obtained a measurement repeatability of 0.51 nm (root-mean-square) in an assessment area of 0.5 mm × 99.18 mm. This value satisfies the requirements for surface metrology of nano-focusing x-ray mirrors. Thus, the developed metrology system should be applicable for fabricating nano-focusing ellipsoidal mirrors.« less
Performance of a Prototype Stationary Catadioptric Concentrating Photovoltaic Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, John V.; Kozodoy, Peter; Gladden, Christopher
A stationary catadioptric concentrating photovoltaic module with aperture area over 100 cm2, geometric concentration of 180x, and collection within 60° of polar incidence was designed, prototyped, and characterized. The module performance followed modeling closely with a peak power conversion efficiency of 26% for direct irradiance. Tracking of the sun is accomplished via translational micro-tracking completely internal to the module, avoiding the cost and complexity of mechanical two-axis trackers that point towards the sun. This study demonstrates the potential for concentrating photovoltaic modules with significantly higher efficiency than industry standard silicon photovoltaic modules that could be installed in stationary configurations onmore » rooftops.« less
Performance of a Prototype Stationary Catadioptric Concentrating Photovoltaic Module
Lloyd, John V.; Kozodoy, Peter; Gladden, Christopher; ...
2018-03-28
A stationary catadioptric concentrating photovoltaic module with aperture area over 100 cm2, geometric concentration of 180x, and collection within 60° of polar incidence was designed, prototyped, and characterized. The module performance followed modeling closely with a peak power conversion efficiency of 26% for direct irradiance. Tracking of the sun is accomplished via translational micro-tracking completely internal to the module, avoiding the cost and complexity of mechanical two-axis trackers that point towards the sun. This study demonstrates the potential for concentrating photovoltaic modules with significantly higher efficiency than industry standard silicon photovoltaic modules that could be installed in stationary configurations onmore » rooftops.« less
Complementary bowtie aperture for localizing and enhancing optical magnetic field
NASA Astrophysics Data System (ADS)
Zhou, Nan; Kinzel, Edward C.; Xu, Xianfan
2011-08-01
Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.
Hydrologic modeling of Guinale River Basin using HEC-HMS and synthetic aperture radar
NASA Astrophysics Data System (ADS)
Bien, Ferdinand E.; Plopenio, Joanaviva C.
2017-09-01
This paper presents the methods and results of hydrologic modeling of Guinale river basin through the use of HEC-HMS software and Synthetic Aperture Radar Digital Elevation Model (SAR DEM). Guinale River Basin is located in the province of Albay, Philippines which is one of the river basins covered by the Ateneo de Naga University (ADNU) Phil-LiDAR 1. This research project was funded by the Department of Science and Technology (DOST) through the Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD). Its objectives are to simulate the hydrologic model of Guinale River basin using HEC-HMS software and SAR DEM. Its basin covers an area of 165.395 sq.km. and the hydrologic model was calibrated using the storm event typhoon Nona (international name Melor). Its parameter had undergone a series of optimization processes of HEC-HMS software in order to produce an acceptable level of model efficiency. The Nash-Sutcliffe (E), Percent Bias and Standard Deviation Ratio were used to measure the model efficiency, giving values of 0.880, 0.260 and 0.346 respectively which resulted to a "very good" performance rating of the model. The flood inundation model was simulated using Legazpi Rainfall Intensity Duration Frequency Curves (RIDF) and HEC-RAS software developed by the US Army corps of Engineers (USACE). This hydrologic model will provide the Municipal Disaster Risk Reduction Management Office (MDRRMO), Local Government units (LGUs) and the community a tool for the prediction of runoff in the area.
Achieving the Earth Science Enterprise Vision for the 21st Century: Platform Challenges
NASA Technical Reports Server (NTRS)
Lemmerman, Loren; Komar, George (Technical Monitor)
2001-01-01
The ESE observational architecture of the future vision is dramatically different from that of today. The vision suggests observations from multiple orbits, collaborating space assets, and even seamless integration of space and other assets. Observations from GEO or from Libration points rather than from LEO suggest spacecraft carrying instruments with large deployable apertures. Minimization of launch costs suggests that these large apertures have long life, be extremely mass and volume efficient, and have low life cycle cost. Another significant challenge associated with high latitude orbits is high precision pointing and control. Finally, networks of spacecraft flying in predetermined constellation will be required either to apply complementary assets to an observation or to extend the virtual aperture beyond that attainable with a single spacecraft. These changes dictate development of new technology on several fronts, which are outlined in this paper. A section on high speed communications will outline requirements and approaches now envisioned. Sensorwebs will be developed from the viewpoint of work already begun for both space and for terrestrial networks. Precision guidance, navigation and control will be addressed from the perspective of precision flying for repeat pass interferometry and extreme pointing stability for advanced altimetry. A separate section will address requirements for distributed systems. Large lightweight deployables will be discussed with an emphasis on inflatable technology and its predicted benefits for large aperture instruments. For each technology area listed, current state-of-the-art, technological approaches for future development, and projected levels of performance are outlined.
Electron diffusion through the baffle aperture of a hollow cathode thruster
NASA Technical Reports Server (NTRS)
Brophy, J. R.; Wilbur, P. J.
1979-01-01
The use of a hollow cathode in place of an oxide cathode to increase thruster operating lifetimes requires, among other things, the addition of a baffle to restrict the flow of electrons from the hollow cathode. A theoretical model is developed which relates the baffle aperture area of a hollow-cathode thruster to the magnetic flux density and plasma properties in the aperture region, with the result that this model could be used as an aid in thruster design. Extensive Langmuir probing is undertaken to verify the validity of the model and demonstrate its capability. It is shown that the model can be used to calculate the aperture area required to effect discharge operation at a specified discharge voltage and arc current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellfeld, Daniel; Barton, Paul; Gunter, Donald
Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less
Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.
1997-11-04
An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.
Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.
1997-01-01
An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.
Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells
NASA Astrophysics Data System (ADS)
Bi, Enbing; Chen, Han; Xie, Fengxian; Wu, Yongzhen; Chen, Wei; Su, Yanjie; Islam, Ashraful; Grätzel, Michael; Yang, Xudong; Han, Liyuan
2017-06-01
Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm2, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.
High-contrast terahertz modulator based on extraordinary transmission through a ring aperture.
Shu, Jie; Qiu, Ciyuan; Astley, Victoria; Nickel, Daniel; Mittleman, Daniel M; Xu, Qianfan
2011-12-19
We demonstrated extraordinary THz transmission through ring apertures on a metal film. Transmission of 60% was obtained with an aperture-to-area ratio of only 1.4%. We show that the high transmission can be suppressed by over 18 dB with a thin layer of free carriers in the silicon substrate underneath the metal film. This result suggests that CMOS-compatible terahertz modulators can be built by controlling the carrier density near the aperture.
Ian Warren
2010-09-15
P and S-wave datasets and associated report studying the ability to use three-component long offset surface seismic surveys to find large aperture fractures in geothermal resources at the San Emidio geothermal resource area in Washoe County, Nevada.
NASA Astrophysics Data System (ADS)
Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui
2018-01-01
Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.
Chen, Shuo; Luo, Chenggao; Wang, Hongqiang; Deng, Bin; Cheng, Yongqiang; Zhuang, Zhaowen
2018-04-26
As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. However, there are still two problems in three-dimensional (3D) TCAI. Firstly, the large-scale reference-signal matrix based on meshing the 3D imaging area creates a heavy computational burden, thus leading to unsatisfactory efficiency. Secondly, it is difficult to resolve the target under low signal-to-noise ratio (SNR). In this paper, we propose a 3D imaging method based on matched filtering (MF) and convolutional neural network (CNN), which can reduce the computational burden and achieve high-resolution imaging for low SNR targets. In terms of the frequency-hopping (FH) signal, the original echo is processed with MF. By extracting the processed echo in different spike pulses separately, targets in different imaging planes are reconstructed simultaneously to decompose the global computational complexity, and then are synthesized together to reconstruct the 3D target. Based on the conventional TCAI model, we deduce and build a new TCAI model based on MF. Furthermore, the convolutional neural network (CNN) is designed to teach the MF-TCAI how to reconstruct the low SNR target better. The experimental results demonstrate that the MF-TCAI achieves impressive performance on imaging ability and efficiency under low SNR. Moreover, the MF-TCAI has learned to better resolve the low-SNR 3D target with the help of CNN. In summary, the proposed 3D TCAI can achieve: (1) low-SNR high-resolution imaging by using MF; (2) efficient 3D imaging by downsizing the large-scale reference-signal matrix; and (3) intelligent imaging with CNN. Therefore, the TCAI based on MF and CNN has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.
High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.
2011-02-01
The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.
Measuring and analyzing thermal deformations of the primary reflector of the Tianma radio telescope
NASA Astrophysics Data System (ADS)
Dong, Jian; Fu, Li; Liu, Qinghui; Shen, Zhiqiang
2018-06-01
The primary reflector of the Tianma Radio Telescope (TMRT) distorts due to the varying thermal conditions, which dramatically reduces the aperture efficiency of Q-band observations. To evaluate and overcome the thermal effects, a thermal deformations measurement system has been established based on the extended Out-of-Focus holography (e-OOF). The thermal deformations can be measured in approximately 20 min with an illumination-weighted surface root mean square (RMS) accuracy of approximately 50 μm. We have measured the thermal deformations when the backup and front structure were heated by the sun respectively, and used the active surface system to correct the thermal deformations immediately to confirm the measurements. The thermal deformations when the backup structure is heated are larger than those when the front structure is heated. The values of half power beam width (HPBW) are related to the illumination-weighted surface RMS, and can be used to check the thermal deformations. When the backup structure is heated, the aperture efficiencies can remain above 90% of the maximum efficiency at 40 GHz for approximately two hours after one adjustment. While the front structure is heated, the aperture efficiencies can remain above 90% of the maximum efficiency at 40 GHz, and above 95% after one adjustment in approximately three hours.
Chaotic dynamics in accelerator physics
NASA Astrophysics Data System (ADS)
Cary, J. R.
1992-11-01
Substantial progress was made in several areas of accelerator dynamics. We have completed a design of an FEL wiggler with adiabatic trapping and detrapping sections to develop an understanding of longitudinal adiabatic dynamics and to create efficiency enhancements for recirculating free-electron lasers. We developed a computer code for analyzing the critical KAM tori that binds the dynamic aperture in circular machines. Studies of modes that arise due to the interaction of coating beams with a narrow-spectrum impedance have begun. During this research educational and research ties with the accelerator community at large have been strengthened.
Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.
Zhang, Man; Wang, Guanyong; Zhang, Lei
2017-10-26
Precise azimuth-variant motion compensation (MOCO) is an essential and difficult task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.
Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.
Shepard, D M; Earl, M A; Li, X A; Naqvi, S; Yu, C
2002-06-01
IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach "direct aperture optimization." This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.
HARDI: A high angular resolution deployable interferometer for space
NASA Technical Reports Server (NTRS)
Bely, Pierre Y.; Burrows, Christopher; Roddier, Francois; Weigelt, Gerd
1992-01-01
We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency.
Quasi-CW 110 kW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver
NASA Astrophysics Data System (ADS)
Kawashima, Toshiyuki; Kanzaki, Takeshi; Matsui, Ken; Kato, Yoshinori; Matsui, Hiroki; Kanabe, Tadashi; Yamanaka, Masanobu; Nakatsuka, Masahiro; Izawa, Yasukazu; Nakai, Sadao; Miyamoto, Masahiro; Kan, Hirofumi; Hiruma, Teruo
2001-12-01
We have successfully demonstrated a large aperture 803 nm AlGaAs diode laser module as a pump source for a 1053 nm, 10 J output Nd:glass slab laser amplifier for diode-pumped solid-state laser (DPSSL) fusion driver. Detailed performance results of the laser diode module are presented, including bar package and stack configuration, and their thermal design and analysis. A sufficiently low thermal impedance of the stack was realized by combining backplane liquid cooling configuration with modular bar package architecture. Total peak power of 110 kW and electrical to optical conversion efficiency of 46% were obtained from the module consisting of a total of 1000 laser diode bars. A peak intensity of 2.6 kW/cm2 was accomplished across an emitting area of 418 mm× 10 mm. Currently, this laser diode array module with a large two-dimensional aperture is, to our knowledge, the only operational pump source for the high output energy DPSSL.
Slip-Effect Functional Air Filter for Efficient Purification of PM2.5
Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin
2016-01-01
Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60–100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications. PMID:27748419
Slip-Effect Functional Air Filter for Efficient Purification of PM2.5
NASA Astrophysics Data System (ADS)
Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin
2016-10-01
Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60-100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications.
Efficiency of a multilayer-Laue-lens with a 102 μm aperture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macrander, Albert T., E-mail: atm@anl.gov; Wojcik, Michael; Maser, Jorg
2015-08-24
A multilayer-Laue-lens (MLL) comprised of WSi{sub 2}/Al layers stacked to a full thickness of 102 μm was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2% and 13.0% efficiencies, respectively. A section thickness of 9.6 μm was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90% Ar and 10% N{sub 2} was used for sputtering. This material system wasmore » chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations.« less
Efficiency of a multilayer-Laue-lens with a 102 μm aperture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macrander, Albert T.; Kubec, Adam; Conley, Raymond
2015-08-25
A multilayer-Laue-lens (MLL) comprised of WSi 2/Al layers stacked to a full thickness of 102 microns was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2 % and 13.0 % efficiencies, respectively. A section thickness of 9.6 μm was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90 % Ar and 10 % N 2 was used formore » sputtering. This material system was chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations.« less
A difference-matrix metaheuristic for intensity map segmentation in step-and-shoot IMRT delivery.
Gunawardena, Athula D A; D'Souza, Warren D; Goadrich, Laura D; Meyer, Robert R; Sorensen, Kelly J; Naqvi, Shahid A; Shi, Leyuan
2006-05-21
At an intermediate stage of radiation treatment planning for IMRT, most commercial treatment planning systems for IMRT generate intensity maps that describe the grid of beamlet intensities for each beam angle. Intensity map segmentation of the matrix of individual beamlet intensities into a set of MLC apertures and corresponding intensities is then required in order to produce an actual radiation delivery plan for clinical use. Mathematically, this is a very difficult combinatorial optimization problem, especially when mechanical limitations of the MLC lead to many constraints on aperture shape, and setup times for apertures make the number of apertures an important factor in overall treatment time. We have developed, implemented and tested on clinical cases a metaheuristic (that is, a method that provides a framework to guide the repeated application of another heuristic) that efficiently generates very high-quality (low aperture number) segmentations. Our computational results demonstrate that the number of beam apertures and monitor units in the treatment plans resulting from our approach is significantly smaller than the corresponding values for treatment plans generated by the heuristics embedded in a widely use commercial system. We also contrast the excellent results of our fast and robust metaheuristic with results from an 'exact' method, branch-and-cut, which attempts to construct optimal solutions, but, within clinically acceptable time limits, generally fails to produce good solutions, especially for intensity maps with more than five intensity levels. Finally, we show that in no instance is there a clinically significant change of quality associated with our more efficient plans.
RF Performance of Membrane Aperture Shells
NASA Technical Reports Server (NTRS)
Flint, Eirc M.; Lindler, Jason E.; Thomas, David L.; Romanofsky, Robert
2007-01-01
This paper provides an overview of recent results establishing the suitability of Membrane Aperture Shell Technology (MAST) for Radio Frequency (RF) applications. These single surface shells are capable of maintaining their figure with no preload or pressurization and minimal boundary support, yet can be compactly roll stowed and passively self deploy. As such, they are a promising technology for enabling a future generation of RF apertures. In this paper, we review recent experimental and numerical results quantifying suitable RF performance. It is shown that candidate materials possess metallic coatings with sufficiently low surface roughness and that these materials can be efficiently fabricated into RF relevant doubly curved shapes. A numerical justification for using a reflectivity metric, as opposed to the more standard RF designer metric of skin depth, is presented and the resulting ability to use relatively thin coating thickness is experimentally validated with material sample tests. The validity of these independent film sample measurements are then confirmed through experimental results measuring RF performance for reasonable sized doubly curved apertures. Currently available best results are 22 dBi gain at 3 GHz (S-Band) for a 0.5m aperture tested in prime focus mode, 28dBi gain for the same antenna in the C-Band (4 to 6 GHz), and 36.8dBi for a smaller 0.25m antenna tested at 32 GHz in the Ka-Band. RF range test results for a segmented aperture (one possible scaling approach) are shown as well. Measured antenna system actual efficiencies (relative to the unachievable) ideal for these on axis tests are generally quite good, typically ranging from 50 to 90%.
Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R
2016-02-01
Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.
Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less
Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation
NASA Astrophysics Data System (ADS)
Zhang, P.; Zhao, Z.
2018-04-01
In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.
Fesenko, Pavlo; Flauraud, Valentin; Xie, Shenqi; Kang, Enpu; Uemura, Takafumi; Brugger, Jürgen; Genoe, Jan; Heremans, Paul; Rolin, Cédric
2017-07-19
To grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 μm results in low nucleation density, whereas the aperture-to-aperture distance of 0.5 μm provides sufficient crosstalk between neighboring apertures through the diffusion of adsorbed molecules. By integrating the nanosieve in the channel area of a thin-film transistor mask, we show a route for patterning both the organic semiconductor and the metal contacts of thin-film transistors using one mask only and without mask realignment.
Zhang, Xin; Luo, Xiao; Hu, Haixiang; Zhang, Xuejun
2015-09-01
In order to process large-aperture aspherical mirrors, we designed and constructed a tri-station machine processing center with a three station device, which bears vectored feed motion of up to 10 axes. Based on this processing center, an aspherical mirror-processing model is proposed, in which each station implements traversal processing of large-aperture aspherical mirrors using only two axes, while the stations are switchable, thus lowering cost and enhancing processing efficiency. The applicability of the tri-station machine is also analyzed. At the same time, a simple and efficient zero-calibration method for processing is proposed. To validate the processing model, using our processing center, we processed an off-axis parabolic SiC mirror with an aperture diameter of 1450 mm. The experimental results indicate that, with a one-step iterative process, the peak to valley (PV) and root mean square (RMS) of the mirror converged from 3.441 and 0.5203 μm to 2.637 and 0.2962 μm, respectively, where the RMS reduced by 43%. The validity and high accuracy of the model are thereby demonstrated.
Study of a micro-concentrated photovoltaic system based on Cu(In,Ga)Se2 microcells array.
Jutteau, Sebastien; Guillemoles, Jean-François; Paire, Myriam
2016-08-20
We study a micro-concentrated photovoltaic (CPV) system based on micro solar cells made from a thin film technology, Cu(In,Ga)Se2. We designed, using the ray-tracing software Zemax OpticStudio 14, an optical system adapted and integrated to the microcells, with only spherical lenses. The designed architecture has a magnification factor of 100× for an optical efficiency of 85% and an acceptance angle of ±3.5°, without anti-reflective coating. An experimental study is realized to fabricate the first generation prototype on a 5 cm×5 cm substrate. A mini-module achieved a concentration ratio of 72× under AM1.5G, and an absolute efficiency gain of 1.8% for a final aperture area efficiency of 12.6%.
Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization
Yang, Mengjin; Kim, Dong Hoe; Klein, Talysa R.; ...
2018-01-02
To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules withmore » a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.« less
Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mengjin; Kim, Dong Hoe; Klein, Talysa R.
To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules withmore » a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.« less
Selecting Pixels for Kepler Downlink
NASA Technical Reports Server (NTRS)
Bryson, Stephen T.; Jenkins, Jon M.; Klaus, Todd C.; Cote, Miles T.; Quintana, Elisa V.; Hall, Jennifer R.; Ibrahim, Khadeejah; Chandrasekaran, Hema; Caldwell, Douglas A.; Van Cleve, Jeffrey E.;
2010-01-01
The Kepler mission monitors > 100,000 stellar targets using 42 2200 1024 pixel CCDs. Bandwidth constraints prevent the downlink of all 96 million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection of pixels for each target. These pixels are selected by considering the object brightness, background and the signal-to-noise of each pixel, and are optimized to maximize the signal-to-noise ratio of the target. This paper describes pixel selection, creation of spacecraft apertures that efficiently capture selected pixels, and aperture assignment to a target. Diagnostic apertures, short-cadence targets and custom specified shapes are discussed.
González, Juan C
2009-04-10
A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.
How to harvest efficient laser from solar light
NASA Astrophysics Data System (ADS)
Zhao, Changming; Guan, Zhe; Zhang, Haiyang
2018-02-01
Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.
NASA Astrophysics Data System (ADS)
Descoeudres, A.; Barraud, L.; Bartlome, R.; Choong, G.; De Wolf, Stefaan; Zicarelli, F.; Ballif, C.
2010-11-01
In silicon heterojunction solar cells, thin amorphous silicon layers passivate the crystalline silicon wafer surfaces. By using in situ diagnostics during plasma-enhanced chemical vapor deposition (PECVD), the authors report how the passivation quality of such layers directly relate to the plasma conditions. Good interface passivation is obtained from highly depleted silane plasmas. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells, yielding aperture efficiencies up to 20.3% on 4 cm2 cells.
Efficiency improvement of a concentrated solar receiver for water heating system using porous medium
NASA Astrophysics Data System (ADS)
Prasartkaew, Boonrit
2018-01-01
This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.
Vacuum insulation of the high energy negative ion source for fusion application.
Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R
2012-02-01
Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s.
NASA Technical Reports Server (NTRS)
Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.
1983-01-01
The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.
Determining Snow Depth Using Airborne Multi-Pass Interferometric Synthetic Aperture Radar
2013-09-01
relatively low resolution 10m DEM of the survey area was obtained from the USDA NAIP and then geocorrected to match the SAR image area. Centered on...Propulsion Laboratory LiDAR Light Detection and Ranging METAR Meteorological reporting observations medivac Medical Evacuation NASA National...Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X- SAR) mission was a joint National Aeronautical and Space Administration ( NASA
NASA Astrophysics Data System (ADS)
Arshadi, M.; Rajaram, H.; Detwiler, R. L.; Jones, T.
2012-12-01
Permanganate oxidation of DNAPL- contaminated fractured rock is an effective remediation technology. Permanganate ion reacts with dissolved DNAPL in a bi-molecular oxidation-reduction reaction. The consumption of dissolved DNAPL in this reaction results in increased concentration gradients away from the free-phase DNAPL, resulting in reaction-enhanced mass transfer, which accelerates contaminant removal. The specific objective of our research was to perform high-resolution non-intrusive experimental studies of permanganate oxidation in a 15.24 × 15.24 cm, transparent, analog, variable-aperture fracture with complex initial TCE entrapped phase geometry. Our experimental system uses light-transmission techniques to accurately measure both fracture aperture and the evolution of individual entrapped DNAPL blobs during the remediation experiments at high resolution (pixel size : 6.2×10-3 cm). Three experiments were performed with different flow rates and permanganate inflow concentrations to observe DNAPL-permanganate interactions across a broader range of conditions. Prior to initiating each experiment, the aperture field within the fracture was measured. The oxidation experiment was initiated by TCE injection into the water saturated fracture till the TCE reached the outflow end, followed by water re-injection through the fracture. The flowing water mobilized some TCE. We continued injection of water till TCE mobilization ceased, leaving behind the residual TCE entrapped within the variable-aperture fracture. Subsequently, permanganate injection through the fracture resulted in propagation of a fingered reaction front into the fracture. We developed image processing algorithms to analyze the evolution of DNAPL phase geometry over the duration of the experiment. The permanganate consumption rate varied significantly within the fracture due to the complex flow and DNAPL concentration fields. Precipitated MnO2 was clearly evident on the downstream side of DNAPL blobs near the inflow boundary indicating high reaction rates in these regions. This behavior is explained by the diversion of permanganate around entrapped DNAPL blobs and downstream advection of dissolved DNAPL. Our results indicate that the total rate of mass transfer from the DNAPL blobs is higher at early times, when not much MnO2 has formed and precipitated. With time, MnO2 precipitation in the fracture leads to changes the aperture field and flow field. Precipitated MnO2 around TCE blobs also decreases the DNAPL accessible surface area. By comparing the results of three experiments, we conclude that low permanganate concentrations and high flow rates lead to more efficient DNAPL remediation, resulting from the fact that under these conditions there would be slower MnO2 formation and less precipitation within the fracture. We also present results on the time-evolution of fracture-scale permanganate consumption and DNAPL removal rates. The experimental observations are being used to develop improved high-resolution numerical models of reactive transport in variable-aperture fractures. The overall goal is to relate the coupled processes of DNAPL removal, permanganate consumption, MnO2 formation and associated changes in aperture and interface area; to derive fracture-scale effective representations of these processes.
A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity
NASA Technical Reports Server (NTRS)
Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James
2003-01-01
The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument and will be ideally suited to large apertures, possibly at GEO, and could possibly be implemented on a swarm of micro-satellites. This instrument will have wide application for validation studies, and will have application for other microwave frequencies.
Characterization of tapered slot antenna feeds and feed arrays
NASA Technical Reports Server (NTRS)
Kim, Young-Sik; Yngvesson, K. Sigfrid
1990-01-01
A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.
Large Coded Aperture Mask for Spaceflight Hard X-ray Images
NASA Technical Reports Server (NTRS)
Vigneau, Danielle N.; Robinson, David W.
2002-01-01
The 2.6 square meter coded aperture mask is a vital part of the Burst Alert Telescope on the Swift mission. A random, but known pattern of more than 50,000 lead tiles, each 5 mm square, was bonded to a large honeycomb panel which projects a shadow on the detector array during a gamma ray burst. A two-year development process was necessary to explore ideas, apply techniques, and finalize procedures to meet the strict requirements for the coded aperture mask. Challenges included finding a honeycomb substrate with minimal gamma ray attenuation, selecting an adhesive with adequate bond strength to hold the tiles in place but soft enough to allow the tiles to expand and contract without distorting the panel under large temperature gradients, and eliminating excess adhesive from all untiled areas. The largest challenge was to find an efficient way to bond the > 50,000 lead tiles to the panel with positional tolerances measured in microns. In order to generate the desired bondline, adhesive was applied and allowed to cure to each tile. The pre-cured tiles were located in a tool to maintain positional accuracy, wet adhesive was applied to the panel, and it was lowered to the tile surface with synchronized actuators. Using this procedure, the entire tile pattern was transferred to the large honeycomb panel in a single bond. The pressure for the bond was achieved by enclosing the entire system in a vacuum bag. Thermal vacuum and acoustic tests validated this approach. This paper discusses the methods, materials, and techniques used to fabricate this very large and unique coded aperture mask for the Swift mission.
Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT
NASA Astrophysics Data System (ADS)
Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David
2010-11-01
Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.
Jayne, John T.; Worsnop, Douglas R.
2016-02-23
In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.
Organic Rankine cycle receiver development
NASA Technical Reports Server (NTRS)
Haskins, H. J.
1981-01-01
The selected receiver concept is a direct-heated, once-through, monotube boiler operated at supercritical pressure. The cavity is formed by a cylindrical copper shell and backwall, with stainless steel tubing brazed to the outside surface. This core is surrounded by lightweight refractory insulation, load-bearing struts, and an outer case. The aperture plate is made of copper to provide long life by conduction and reradiation of heat away from the aperture lip. The receiver thermal efficiency is estimated to be 97 percent at rated conditions (energy transferred to toluene divided by energy incident on aperture opening). Development of the core manufacturing and corrosion protection methods is complete.
NASA Technical Reports Server (NTRS)
Davis, M. F.; Wosik, J.; Forster, K.; Deshmukh, S. C.; Rampersad, H. R.
1991-01-01
The paper describes thin films deposited in a system where substrates are scanned over areas up to 3.5 x 3.5 cm through the stationary plume of an ablated material defined by an aperture. These YBCO films are deposited on LaAlO3 and SrTiO3 substrates with the thickness of 90 and 160 nm. Attention is focused on the main features of the deposition system: line focusing of the laser beam on the target; an aperture defining the area of the plume; computerized stepper motor-driven X-Y stage translating the heated sampler holder behind the plume-defining aperture in programmed patterns; and substrate mounting block with uniform heating at high temperatures over large areas. It is noted that the high degree of uniformity of the properties in each film batch illustrates that the technique of pulsed laser deposition can be applied to produce large YBCO films of high quality.
A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.
2013-05-01
A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.
Receiver for solar energy collector having improved aperture aspect
McIntire, William R.
1984-01-01
A secondary concentrator for use in receiver systems for linear focusing primary concentrators is provided with reflector wings at each end. The wings increase the capture of light rays reflected from areas adjacent the rim of a primary concentrator, increasing the apparent aperture size of the absorber as viewed from the rim of the primary concentrator. The length, tilt, and curvature of the wing reflectors can be adjusted to provide an absorber having a desired aperture aspect.
Recent activities in printed Antennas at LeRC
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1993-01-01
This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.
Mobile high-performance computing (HPC) for synthetic aperture radar signal processing
NASA Astrophysics Data System (ADS)
Misko, Joshua; Kim, Youngsoo; Qi, Chenchen; Sirkeci, Birsen
2018-04-01
The importance of mobile high-performance computing has emerged in numerous battlespace applications at the tactical edge in hostile environments. Energy efficient computing power is a key enabler for diverse areas ranging from real-time big data analytics and atmospheric science to network science. However, the design of tactical mobile data centers is dominated by power, thermal, and physical constraints. Presently, it is very unlikely to achieve required computing processing power by aggregating emerging heterogeneous many-core processing platforms consisting of CPU, Field Programmable Gate Arrays and Graphic Processor cores constrained by power and performance. To address these challenges, we performed a Synthetic Aperture Radar case study for Automatic Target Recognition (ATR) using Deep Neural Networks (DNNs). However, these DNN models are typically trained using GPUs with gigabytes of external memories and massively used 32-bit floating point operations. As a result, DNNs do not run efficiently on hardware appropriate for low power or mobile applications. To address this limitation, we proposed for compressing DNN models for ATR suited to deployment on resource constrained hardware. This proposed compression framework utilizes promising DNN compression techniques including pruning and weight quantization while also focusing on processor features common to modern low-power devices. Following this methodology as a guideline produced a DNN for ATR tuned to maximize classification throughput, minimize power consumption, and minimize memory footprint on a low-power device.
Reflector antennas with low sidelobes, low cross polarization, and high aperture efficiency
NASA Technical Reports Server (NTRS)
Faigen, I. M.; Reichert, C. F.; Sletten, C. J.; Shore, R. A.
1984-01-01
Techniques are presented for computing the horn near field patterns on the subreflectors and for correcting the phase center errors of the horn pattern by shaping the subreflector surface. The diffraction pattern computations for scanned beams are described. The effects of dish aperture diffraction on pattern bandwidth are investigated. A model antenna consisting of a reflector, shaped subreflector, and corrugated feed horn is described.
The 64 meter antenna operation at K sub A band
NASA Technical Reports Server (NTRS)
Potter, P. D.
1980-01-01
The future potential of the 32 GHz K sub A band frequency region to planetary exploration, and the expected performance of the 64 m antenna network at 32 GHz is addressed. A modest level of noninterference upgrade work is assumed to achieve reasonable antenna aperture efficiency and alleviate antenna pointing difficulties. Electronic compensation of antenna aperture phasing errors is briefly considered as an alternative to the physical upgrade.
Pavone, Santi C; Mazzinghi, Agnese; Freni, Angelo; Albani, Matteo
2017-08-07
In this paper, a comparison is presented between Bessel beam launchers at millimeter waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave (CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for the generation of electromagnetic short pulses because they maintain their performances over a larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture distribution, are designed at millimeter waves with a center operating frequency of f¯=60GHz and analyzed in the bandwidth 50 - 70 GHz by using an in-house developed numerical code to solve Maxwell's equations based on the method of moments. It is shown that a monochromatic Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth. Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently generated in front of the launcher.
High aperture efficiency symmetric reflector antennas with up to 60 deg field of view
NASA Astrophysics Data System (ADS)
Rappaport, Carey M.; Craig, William P.
1991-03-01
A microwave single-reflector scanning antenna derived from an ellipse (rather than the usual parabola) which gives a much greater field of view is presented. This reflector combines reasonable scanning in one plane with good focusing in the other, and its scanning ability is superior to the torus and other single reflectors because it has much greater aperture efficiency and is thus smaller while having the same performance. The reflector surface is derived in two steps: a fourth-order even polynomial profile curve in the scan plane is found using least squares to minimize the scanned ray errors; then even polynomial terms in x and y that minimize astigmatism for both the unscanned and maximally scanned beams are added to form the three-dimensional surface. Numerical simulations of radiation patterns for a variety of antenna diameter and field-of-view cases give excellent results. The 60 deg scan case with 30-lambda-diameter aperture has only 0.2-dB peak gain deviation from ideal and first sidelobe levels below 14 dB down from peak gain. The 17 deg, 500-lambda case has only 0.8-dB gain variation and -14 to -11 dB sidelobe levels for approximately +/-68 beamwidths of scan, with focal length to aperture diameter ratio equal to about one.
A Metalens with a Near-Unity Numerical Aperture.
Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A; Kuznetsov, Arseniy I
2018-03-14
The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.
A Metalens with a Near-Unity Numerical Aperture
NASA Astrophysics Data System (ADS)
Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M.; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A.; Kuznetsov, Arseniy I.
2018-03-01
The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high NA lenses in an ultra-flat fashion. However, so far, these have been limited to numerical apertures on the same order of traditional optical components, with experimentally reported values of NA <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction limited flat lens with a near-unity numerical aperture (NA>0.99) and sub-wavelength thickness (~{\\lambda}/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in sub-diffractive diamond nanocrystals. This work, based on diffractive elements able to efficiently bend light at angles as large as 82{\\deg}, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated to the standard, phase mapping approach.
Vacuum insulation of the high energy negative ion source for fusion application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Inoue, T.
2012-02-15
Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A,more » 500 keV D{sup -} ion beams for 100 s.« less
Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo
2017-04-10
We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.
Integrating sphere based reflectance measurements for small-area semiconductor samples
NASA Astrophysics Data System (ADS)
Saylan, S.; Howells, C. T.; Dahlem, M. S.
2018-05-01
This article describes a method that enables reflectance spectroscopy of small semiconductor samples using an integrating sphere, without the use of additional optical elements. We employed an inexpensive sample holder to measure the reflectance of different samples through 2-, 3-, and 4.5-mm-diameter apertures and applied a mathematical formulation to remove the bias from the measured spectra caused by illumination of the holder. Using the proposed method, the reflectance of samples fabricated using expensive or rare materials and/or low-throughput processes can be measured. It can also be incorporated to infer the internal quantum efficiency of small-area, research-level solar cells. Moreover, small samples that reflect light at large angles and develop scattering may also be measured reliably, by virtue of an integrating sphere insensitive to directionalities.
High-efficiency K-band tracking antenna feed
NASA Technical Reports Server (NTRS)
Beavin, R. L.; Simanyi, A. I.
1975-01-01
Antenna feed features high aperture efficiency of multimode near-field horn and develops tracking signals without conventional monopulse bridge. Feed assembly is relatively simple and very compact. However, feed is sensitive to cross-polarized energy which couples into orthogonal error channel.
NASA Astrophysics Data System (ADS)
Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin
2017-12-01
A fiber is usually used as a probe in visible and near-infrared diffuse spectra measurement. However, the use of different fiber probes in the same measurement may cause data mismatch problems. Our group has researched the influence of the parameters of fiber probe, including the aperture angle, on the diffuse spectrum by a modified Monte Carlo model. To eliminate the influence of the aperture angle, we proposed a fitted equation of correction coefficient to correct its difference in practical range. However, we did not discuss the limitation of this method. In this work, we explored the collection efficiency in different optical environment with Monte Carlo simulation method, and find the suitable conditions-weak absorbing and strong scattering media, for the proposed collection efficiency. Furthermore, we tried to explain the stability of the collection efficiency in this condition. This work gives suitable conditions for the collection efficiency. The use of collection efficiency can help reduce the influence of different measurement systems and is also helpful to the model translation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, Ann Marie; William H. Hensley, Jr.; Burns, Bryan L.
2014-11-01
The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage ratemore » performance.« less
High efficiency laser spectrum conditioner
Greiner, Norman R.
1980-01-01
A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.
Design considerations for eye-safe single-aperture laser radars
NASA Astrophysics Data System (ADS)
Starodubov, D.; McCormick, K.; Volfson, L.
2015-05-01
The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.
Versatile, high-sensitivity faraday cup array for ion implanters
Musket, Ronald G.; Patterson, Robert G.
2003-01-01
An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.
Multi-objective dynamic aperture optimization for storage rings
Li, Yongjun; Yang, Lingyun
2016-11-30
We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.
NASA Astrophysics Data System (ADS)
Knapp, Wilfried
2018-01-01
Visual observation of double stars is an anachronistic passion especially attractive for amateurs looking for sky objects suitable for visual observation even in light polluted areas. Session planning then requires a basic idea which objects might be suitable for a given equipmentâthis question is a long term issue for visual double star observers and obviously not easy to answer, especially for unequal bright components. Based on a reasonably large database with limited aperture observations (done with variable aperture equipment iris diaphragm or aperture masks) a heuristic approach is used to derive a statistically well founded Rule of Thumb formula.
VizieR Online Data Catalog: Globular cluster candidates in NGC253 (Cantiello+, 2018)
NASA Astrophysics Data System (ADS)
Cantiello, M.; Grado, A.; Rejkuba, M.; Arnaboldi, M.; Capaccioli, M.; Greggio, L.; Iodice, E.; Limatola, L.
2017-11-01
Photometric catalogs for globular cluster (GC) candidates over the 1 sq. degree area around NGC253. The catalogues are based on ugri-band photometry from the VST data, and JKs photometry from VISTA. Aperture magnitudes, corrected for aperture correction are reported. (1 data file).
Correcting Gravitational Deformation at the Tianma Radio Telescope
NASA Astrophysics Data System (ADS)
Dong, Jian; Zhong, Weiye; Wang, Jinqing; Liu, Qinghui; Shen, Zhiqiang
2018-04-01
The primary reflector of the Tianma Radio Telescope (TMRT) distorts due to gravity, which dramatically reduces the aperture efficiency of high-frequency observations. A technique known as outof-focus holography (OOF) has been developed to measure gravitational deformation. However, the TMRT has a shaped dual-reflector optical system, so the OOF technique cannot be used directly. An extended OOF (e-OOF) technique that can be used for a shaped telescope is proposed. A new calculation method is developed to calculate the extra phase and illumination. A new measurement strategy is proposed that uses only one feed, reduces the length of the scan pattern, and allows the telescope to scan smoothly at low speed. At the TMRT, the time required for each measurement is under 20 min, the achieved accuracy is approximately 50 μm, and the repeatability is sufficient. We have acquired a model for the gravitational deformation of the TMRT. After applying the model, there is a 150%-400% improvement in the aperture efficiency at low and high elevations. The model flattens the gain curve between 15°-80° elevations with an aperture efficiency of approximately 52%. The final weighted root-mean-square error is approximately 270 μm. The e-OOF technique reduces the constraints on the telescopes.
Solar Rejection Filter for Large Telescopes
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Lesh, James
2009-01-01
To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the front aperture filter is integrated with the telescope dome, it will reject heat from the dome and will significantly reduce dome temperature regulation requirements and costs. Also, the filter will protect the telescope optics from dust and other contaminants in the atmosphere. It will be simpler to clean or replace this filter than the telescope primary mirror. It may be necessary to paint the support grid with a highly reflective material to avoid overheating.
Characterization of fracture aperture for groundwater flow and transport
NASA Astrophysics Data System (ADS)
Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.
2007-12-01
This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.
Land subsidence detection using synthetic aperture radar (SAR) in Sidoarjo Mudflow area
NASA Astrophysics Data System (ADS)
Yulyta, Sendy Ayu; Taufik, Muhammad; Hayati, Noorlaila
2016-05-01
According to BPLS (Badan Penanggulangan Lumpur Sidoarjo) which is the Sidoarjo Mudflow Management Agency, land subsidence occurred in Porong, Sidoarjo was caused by the rocks bearing capacity decreasing which led by the mud outpouring since 2006. The subsidence varies in many ways depends on the radius of location from the mud flow center point and the geological structure. One of the most efficient technologies to monitor this multi temporal phenomenon is using the Synthetic Aperture Radar (SAR) as an applicative Spatial Geodesy. This study used 4 (four) times series L-Band ALOS PALSAR from 2008 to 2011 Fine Beam Single data (February 2008, January 2009 and February 2010 and January 2011) which then processed by the Differential SAR Interferometry (DInSAR) method to obtain the deformation vector at a radius of 1.5 km from the center of mudflow. The result showed that there was a significant subsidence which annually occurred on southern and western area of Sidoarjo mud flow. The deformation vector that occurred in the year 2008-2011 was up to 20 cm/year or 0.05 cm/day. For verification purpose, we also compared the result obtained from the SAR detection with the data measured by Global Position System (GPS) and some deformation monitoring results obtained from another researchs. The comparison showed a correlation that the subsidence occurred on the same location.
High convergence efficiency design of flat Fresnel lens with large aperture
NASA Astrophysics Data System (ADS)
Ke, Jieyao; Zhao, Changming; Guan, Zhe
2018-01-01
This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.
WE-AB-209-09: Optimization of Rotational Arc Station Parameter Optimized Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P; Xing, L; Ungun, B
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of improving VMAT in both plan quality and delivery efficiency. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based Proximal Operator Graph Solver (POGS) within seconds. Apertures with zero or low weight were thrown out. Tomore » avoid being trapped in a local minimum, a stochastic gradient descent method was employed which also greatly increased the convergence rate of the objective function. The above procedure repeated until the plan could not be improved any further. A weighting factor associated with the total plan MU also indirectly controlled the complexities of aperture shapes. The number of apertures for VMAT and SPORT was confined to 180. The SPORT allowed the coexistence of multiple apertures in a single SP. The optimization technique was assessed by using three clinical cases (prostate, H&N and brain). Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. Prostate case: the volume of the 50% prescription dose was decreased by 22% for the rectum. H&N case: SPORT improved the mean dose for the left and right parotids by 15% each. Brain case: the doses to the eyes, chiasm and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the H&N case. Conclusion: The superior dosimetric quality and delivery efficiency presented here indicates that SPORT is an intriguing alternative treatment modality.« less
NASA Astrophysics Data System (ADS)
Tuomela, Anne; Davids, Corine; Knutsson, Sven; Knutsson, Roger; Rauhala, Anssi; Rossi, Pekka M.; Rouyet, Line
2017-04-01
Northern areas of Finland, Sweden and Norway have mineral-rich deposits. There are several active mines in the area but also closed ones and deposits with plans for future mining. With increasing demand for environmental protection in the sensitive Northern conditions, there is a need for more comprehensive monitoring of the mining environment. In our study, we aim to develop new opportunities to use remote sensing data from satellites and unmanned aerial vehicles (UAVs) in improving mining safety and monitoring, for example in the case of mine waste storage facilities. Remote sensing methods have evolved fast, and could in many cases enable precise, reliable, and cost-efficient data collection over large areas. The study has focused on four mining areas in Northern Fennoscandia. Freely available medium-resolution (e.g. Sentinel-1), commercial high-resolution (e.g. TerraSAR-X) and Synthetic Aperture Radar (SAR) data has been collected during 2015-2016 to study how satellite remote sensing could be used e.g. for displacement monitoring using SAR Interferometry (InSAR). Furthermore, UAVs have been utilized in similar data collection in a local scale, and also in collection of thermal infrared data for hydrological monitoring of the areas. The development and efficient use of the methods in mining areas requires experts from several fields. In addition, the Northern conditions with four distinct seasons bring their own challenges for the efficient use of remote sensing, and further complicate their integration as standardised monitoring methods for mine environments. Based on the initial results, remote sensing could especially enhance the monitoring of large-scale structures in mine areas such as tailings impoundments.
2016-02-01
NFT), plasmonic materials, scattering-type scanning near-field optical microscopy (s-NSOM). I . INTRODUCTION THE continuous growth in data storage is...recording stack for (a) gold and (b) silver bowtie apertures. The spatial distributions are calculated at 1 ns. TABLE I COMPARISON BETWEEN GOLD AND SILVER...NFTs From the calculation results, we can obtain the thermal efficiency defined in (1). A detailed comparison is summarized in Table I , where the
Flood Extent Mapping Using Dual-Polarimetric SENTINEL-1 Synthetic Aperture Radar Imagery
NASA Astrophysics Data System (ADS)
Jo, M.-J.; Osmanoglu, B.; Zhang, B.; Wdowinski, S.
2018-04-01
Rapid generation of synthetic aperture radar (SAR) based flood extent maps provide valuable data in disaster response efforts thanks to the cloud penetrating ability of microwaves. We present a method using dual-polarimetric SAR imagery acquired on Sentinel-1a/b satellites. A false-colour map is generated using pre- and post- disaster imagery, allowing operators to distinguish between existing standing water pre-flooding, and recently flooded areas. The method works best in areas of standing water and provides mixed results in urban areas. A flood depth map is also estimated by using an external DEM. We will present the methodology, it's estimated accuracy as well as investigations into improving the response in urban areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbabi, Amir; Horie, Yu; Ball, Alexander J.
2015-05-07
Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or largemore » numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.« less
Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang
2016-12-14
An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.
NASA Astrophysics Data System (ADS)
Aarthi, G.; Ramachandra Reddy, G.
2018-03-01
In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.
Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert
2013-01-01
Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296
Efficient creation of electron vortex beams for high resolution STEM imaging.
Béché, A; Juchtmans, R; Verbeeck, J
2017-07-01
The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.
Manipulating Smith-Purcell Emission with Babinet Metasurfaces
NASA Astrophysics Data System (ADS)
Wang, Zuojia; Yao, Kan; Chen, Min; Chen, Hongsheng; Liu, Yongmin
2016-10-01
Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C -aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C -aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C -aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.
Manipulating Smith-Purcell Emission with Babinet Metasurfaces.
Wang, Zuojia; Yao, Kan; Chen, Min; Chen, Hongsheng; Liu, Yongmin
2016-10-07
Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C-aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C-aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C-aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.
Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality.
Peng, Kun; Zhan, Huan; Ni, Li; Wang, Xiaolong; Wang, Yuying; Gao, Cong; Li, Yuwei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2016-12-10
By using the chelate precursor doping technique, we report on an ytterbium-doped aluminophosphosilicate (APS) large-mode-area fiber with ultralow numerical aperture of 0.036 and effective fundamental mode area of ∼550 μm2. With a bend diameter of 600 mm, the bending loss of fundamental mode LP01 was measured to be <10-3 dB/m, in agreement with the corresponding simulation results, while that of higher order mode LP11 is >100 dB/m at 1080 nm. Measured in an all-fiber oscillator laser cavity, 592 W single-mode laser output was obtained at 1079.64 nm with high-beam quality M2 of 1.12. The results indicate that the chelate precursor doping technique is a competitive method for ultralow numerical aperture fiber fabrication, which is very suitable for developing single-mode seed lasers for high power laser systems.
Aperture-free star formation rate of SDSS star-forming galaxies
NASA Astrophysics Data System (ADS)
Duarte Puertas, S.; Vilchez, J. M.; Iglesias-Páramo, J.; Kehrig, C.; Pérez-Montero, E.; Rosales-Ortega, F. F.
2017-03-01
Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα fluxes have been extinction-corrected using the Hα/ Hβ ratio free from aperture effects. The total SFR for 210 000 SDSS star-forming galaxies has been derived applying pure empirical Hα and Hα/ Hβ aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is 0.65 dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR-M⋆) has been obtained, together with its dependence on extinction and Hα equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005 ≤ z ≤ 0.22. The SFR-M⋆ sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies. A table of the aperture-corrected fluxes and SFR for 210 000 SDSS star-forming galaxies and related relevant data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A71 Warning, no authors found for 2017A&A...599A..51.
Radar studies related to the earth resources program. [remote sensing programs
NASA Technical Reports Server (NTRS)
Holtzman, J.
1972-01-01
The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.
Guard cells elongate: relationship of volume and surface area during stomatal movement.
Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard
2007-02-01
Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.
Obstacle traversal and route choice in flying honeybees: Evidence for individual handedness
Ong, Marielle; Bulmer, Michael; Groening, Julia
2017-01-01
Flying insects constantly face the challenge of choosing efficient, safe and collision-free routes while navigating through dense foliage. We examined the route-choice behavior of foraging honeybees when they encountered a barrier which could be traversed by flying through one of two apertures, positioned side by side. When the bees’ choice behavior was averaged over the entire tested population, the two apertures were chosen with equal frequency when they were equally wide. When the apertures were of different width, the bees, on average, showed a preference for the wider aperture, which increased sharply with the difference between the aperture widths. Thus, bees are able to discriminate the widths of oncoming gaps and choose the passage which is presumably safer and quicker to transit. Examination of the behavior of individual bees revealed that, when the two apertures were equally wide, ca. 55% of the bees displayed no side bias in their choices. However, the remaining 45% showed varying degrees of bias, with one half of them preferring the left-hand aperture, and the other half the right-hand aperture. The existence of distinct individual biases was confirmed by measuring the times required by biased bees to transit various aperture configurations: The transit time was longer if a bee’s intrinsic bias forced it to engage with the narrower aperture. Our results show that, at the population level, bees do not exhibit ‘handedness’ in choosing routes; however, individual bees display an idiosyncratic bias that can range from a strong left bias, through zero bias, to a strong right bias. In honeybees, previous studies of olfactory and visual learning have demonstrated clear biases at the population level. To our knowledge, our study is the first to uncover the existence of individually distinct biases in honeybees. We also show how a distribution of biases among individual honeybees can be advantageous in facilitating rapid transit of a group of bees through a cluttered environment, without any centralized decision-making or control. PMID:29095830
Phase correction system for automatic focusing of synthetic aperture radar
Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.
1990-01-01
A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.
Wide-Field Optic for Autonomous Acquisition of Laser Link
NASA Technical Reports Server (NTRS)
Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit
2011-01-01
An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to reduce the incident angle down to only a few degrees. In the presented embodiment, the filter diameter is more than ten times larger than the entrance aperture. Specifically, the filter has a clear aperture of about 51 mm. The optical design is refractive, and is comprised of nine custom refractive elements and an interference filter. The restricted maximum angle through the narrow-band filter ensures the efficient use of a 2-nm noise equivalent bandwidth spectral width optical filter at low elevation angles (where the range is longest), at the expense of less efficiency for high elevations, which can be tolerated because the range at high elevation angles is shorter. The image circle is 12 mm in diameter, mapped to 80 x 360 of sky, centered on the zenith.
Adjustable liquid aperture to eliminate undesirable light in holographic projection.
Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua
2016-02-08
In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.
Forest-cover-type separation using RADARSAT-1 synthetic aperture radar imagery
Mark D. Nelson; Kathleen T. Ward; Marvin E. Bauer
2009-01-01
RADARSAT-1 synthetic aperture radar data, speckle reduction, and texture measures provided for separation among forest types within the Twin Cities metropolitan area, MN, USA. The highest transformed divergence values for 16-bit data resulted from speckle filtering while the highest values for 8-bit data resulted from the orthorectified image, before and after...
Adaptive array antenna for satellite cellular and direct broadcast communications
NASA Technical Reports Server (NTRS)
Horton, Charles R.; Abend, Kenneth
1993-01-01
Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method/method of moments (FEM/MoM) approach is used to analyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infinite ground plane. The FEM is used to formulate the fields inside the cavity, and the MoM (with subdomain bases) in both spectral and spatial domains is used to formulate the fields above the ground plane. Fields in the aperture and the cavity are solved using a system of equations resulting from the combination of the FEM and the MoM. By virtue of the FEM, this combined approach is applicable to all arbitrarily shaped cavities with inhomogeneous material fillings, and because of the subdomain bases used in the MoM, the apertures can be of any arbitrary shape. This approach leads to a partly sparse and partly full symmetric matrix, which is efficiently solved using a biconjugate gradient algorithm. Numerical results are presented to validate the analysis.
Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum
2017-10-17
The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.
NASA Astrophysics Data System (ADS)
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
SYNMAG PHOTOMETRY: A FAST TOOL FOR CATALOG-LEVEL MATCHED COLORS OF EXTENDED SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bundy, Kevin; Yasuda, Naoki; Hogg, David W.
2012-12-01
Obtaining reliable, matched photometry for galaxies imaged by different observatories represents a key challenge in the era of wide-field surveys spanning more than several hundred square degrees. Methods such as flux fitting, profile fitting, and PSF homogenization followed by matched-aperture photometry are all computationally expensive. We present an alternative solution called 'synthetic aperture photometry' that exploits galaxy profile fits in one band to efficiently model the observed, point-spread-function-convolved light profile in other bands and predict the flux in arbitrarily sized apertures. Because aperture magnitudes are the most widely tabulated flux measurements in survey catalogs, producing synthetic aperture magnitudes (SYNMAGs) enablesmore » very fast matched photometry at the catalog level, without reprocessing imaging data. We make our code public and apply it to obtain matched photometry between Sloan Digital Sky Survey ugriz and UKIDSS YJHK imaging, recovering red-sequence colors and photometric redshifts with a scatter and accuracy as good as if not better than FWHM-homogenized photometry from the GAMA Survey. Finally, we list some specific measurements that upcoming surveys could make available to facilitate and ease the use of SYNMAGs.« less
Improving UXS Network Availability with Asymmetric Polarized MIMO
2013-06-01
physical area PA of the antenna by the efficiency of the aperture ( 0 1ap ) as given by 2 4 ap PG A . (16) For example, uniformly...2/3 48 -66 5 16-QAM 3/ 4 36 -70 4 16-QAM 1/2 24 -74 3 QPSK 3/ 4 18 -77 2 QPSK 1/2 12 -79 1 BPSK 3/ 4 9 -81 0 BPSK 1/2 6 -82 The standard only...used with the downlink receiver with 2 inputs ( 2 2 ) or 4 inputs ( 2 2p ). For the 2 2 configuration, the 3 dB power loss when 0 5. is a
Scatter Reduction In Conventional Radiographic Tomography Using Rotating Apertures
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Bednarek, Daniel R.
1981-08-01
Since images in conventional radiographic tomography are in-herently low in subject contrast, it is essential that scattered radiation be prevented from reaching the image receptor. Scanning beam or slit radiographic techniques are known to be the most efficient scatter elimination methods, yet have been inapplicable to this area of radiography. In this work it is shown that the scanning beam method using rotating aperture wheel (RAW) devices can be used in conventional tomography. One coder wheel between the x-ray tube and patient and two scatter discriminator wheels between the patient and image recep-tor form sections of the RAW "projection cone" with the lines of radia-tion from the x-ray source forming the "flux pyramid." As long as the projection cone follows the motion of the x-ray flux pyramid (with the ratios of the distances between the x-ray source, RAWs, patient, and image receptor kept constant throughout the motion) any RAW pattern may be used. Simple relations are given which describe the geometric constraints for various tomographic motions. As in any application of scanning slit techniques, it is possible to use the excellent scatter elimination capabilities of a RAW device either to improve image contrast or to reduce patient dose.
Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites
NASA Technical Reports Server (NTRS)
Culver, Michael R.; Soong, Christine; Warner, Joseph D.
2014-01-01
In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.
Focusing and depth of field in photography: application in dermatology practice.
Taheri, Arash; Yentzer, Brad A; Feldman, Steven R
2013-11-01
Conventional photography obtains a sharp image of objects within a given 'depth of field'; objects not within the depth of field are out of focus. In recent years, digital photography revolutionized the way pictures are taken, edited, and stored. However, digital photography does not result in a deeper depth of field or better focusing. In this article, we briefly review the concept of depth of field and focus in photography as well as new technologies in this area. A deep depth of field is used to have more objects in focus; a shallow depth of field can emphasize a subject by blurring the foreground and background objects. The depth of field can be manipulated by adjusting the aperture size of the camera, with smaller apertures increasing the depth of field at the cost of lower levels of light capture. Light-field cameras are a new generation of digital cameras that offer several new features, including the ability to change the focus on any object in the image after taking the photograph. Understanding depth of field and camera technology helps dermatologists to capture their subjects in focus more efficiently. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Space shuttle search and rescue experiment using synthetic aperture radar
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.; Larson, R. W.; Zelenka, J. S.
1977-01-01
The feasibility of a synthetic aperture radar for search and rescue applications was demonstrated with aircraft experiments. One experiment was conducted using the ERIM four-channel radar and several test sites in the Michigan area. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system. An orbital experiment to demonstrate the application of synthetic aperture radar to search and rescue is proposed using the space shuttle.
Pyriform Aperture Augmentation as An Adjunct to Rhinoplasty.
Yaremchuk, Michael J; Vibhakar, Dev
2016-01-01
Skeletal deficiency in the central midface impacts nasal aesthetics. This lack of lower face projection can be corrected by alloplastic augmentation of the pyriform aperture. Creating convexity in the deficient midface will make the nose seem less prominent. Augmentation of the pyriform aperture is, therefore, often a useful adjunct during the rhinoplasty procedure. Augmenting the skeleton in this area can alter the projection of the nasal base, the nasolabial angle, and the vertical plane of the lip. The implant design and surgical techniques described here are extensions of others' previous efforts to improve paranasal aesthetics. Copyright © 2016 Elsevier Inc. All rights reserved.
Photoreceiver efficiency measurements
NASA Technical Reports Server (NTRS)
Lehr, C. G.
1975-01-01
The efficiency and other related parameters of Smithsonian Astrophysical Observatory's four laser receivers were measured at the observing stations by oscilloscope photography. If the efficiency is defined as the number of photoelectrons generated by the photomultiplier tube divided by the number of photons entering the aperture of the receiver, its measured value is about 1% for the laser wavelength of 694 nm. This value is consistent with the efficiency computed from the specified characteristics of the photoreceiver's optical components.
Possible Overlaps Between Blobs, Grism Apertures, and Dithers
NASA Astrophysics Data System (ADS)
Ryan, R. E.; McCullough, P. R.
2017-06-01
We present a investigation into possible overlaps between the known IR blobs with the grism aperture reference positions and the IR dither patterns. Each aperture was designed to place the science target (e.g. a specific star) on a cosmetically clean area of the IR detector. Similarly, the dither patterns were designed to mitigate cosmetic defects by rarely (or ideally never) placing such targets on known defects. Because blobs accumulate with time, the originally defined apertures and dither patterns may no longer accomplish their goals, it is important to reverify these combinations. We find two potential overlaps between the blob, aperture, and dither combinations, but do not recommend any changes to the current suite of aperture references positions and/or dither patterns for two reasons. First, one of the overlaps occurs with a dither/aperture combination that is seldom used for high-value science operations, but rather more common for wide-field surveys/mosaics. Second, the other overlap is 8.7 pix from a blob that has a fiducial radius of 10 pix, which already represents a very conservative distance. We conclude that a similar analysis should be repeated as new blobs occur, to continue to ensure ideal operations for high-value science targets. The purpose of this report is to document the analysis in order to facilitate its repetition in the future.
A side-by-side comparison of CPV module and system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Matthew; Marion, Bill; Kurtz, Sarah
A side-by-side comparison is made between concentrator photovoltaic module and system direct current aperture efficiency data with a focus on quantifying system performance losses. The individual losses measured/calculated, when combined, are in good agreement with the total loss seen between the module and the system. Results indicate that for the given test period, the largest individual loss of 3.7% relative is due to the baseline performance difference between the individual module and the average for the 200 modules in the system. A basic empirical model is derived based on module spectral performance data and the tabulated losses between the modulemore » and the system. The model predicts instantaneous system direct current aperture efficiency with a root mean square error of 2.3% relative.« less
CAVE: the design of a precision metrology instrument for studying performance of KDP crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hibbard, R.L., LLNL
1998-03-30
A device has been developed to measure the frequency conversion performance of large aperture potassium dihydrogen phosphate (KDP) crystals. Third harmonic generation using ICDP is critical to the function of the National Ignition Facility (NIF) laser. The crystals in the converter can be angularly or thermally tuned but are subject to larger aperture inhomogeneities that are functions of growth manufacturing and - mounting. The CAVE (Crystal Alignment Verification Equipment) instrument scans the crystals in a thermally and mechanically controlled environment to determine the local peak tuning angles. The CAVE can then estimate the optimum tuning angle and conversion efficiency overmore » the entire aperture. Coupled with other metrology techniques, the CAVE will help determine which crystal life-cycle components most affect harmonic conversion.« less
A proof of the Woodward-Lawson sampling method for a finite linear array
NASA Technical Reports Server (NTRS)
Somers, Gary A.
1993-01-01
An extension of the continuous aperture Woodward-Lawson sampling theorem has been developed for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown that by sampling the array factor at a finite number of specified points in the far field, the exact array factor over all space can be efficiently reconstructed in closed form. The specified sample points lie in real space and hence are measurable provided that the interelement spacing is greater than approximately one half of a wavelength. This paper provides insight as to why the length parameter used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points in contrast with the continuous aperture case where the length parameter is precisely the physical aperture length.
Wide-aperture aspherical lens for high-resolution terahertz imaging
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.
2017-01-01
In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.
Hubless satellite communications networks
NASA Technical Reports Server (NTRS)
Robinson, Peter Alan
1994-01-01
Frequency Comb Multiple Access (FCMA) is a new combined modulation and multiple access method which will allow cheap hubless Very Small Aperture Terminal (VSAT) networks to be constructed. Theoretical results show bandwidth efficiency and power efficiency improvements over other modulation and multiple access methods. Costs of the VSAT network are reduced dramatically since a hub station is not required.
Robust optical wireless links over turbulent media using diversity solutions
NASA Astrophysics Data System (ADS)
Moradi, Hassan
Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance. This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining. The precis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments.
Quantify fluid saturation in fractures by light transmission technique and its application
NASA Astrophysics Data System (ADS)
Ye, S.; Zhang, Y.; Wu, J.
2016-12-01
The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.
High numerical aperture large-core photonic crystal fiber for a broadband infrared transmission
NASA Astrophysics Data System (ADS)
Pniewski, J.; Stepniewski, G.; Kasztelanic, R.; Siwicki, B.; Pierscinska, D.; Pierscinski, K.; Pysz, D.; Borzycki, K.; Stepien, R.; Bugajski, M.; Buczynski, R.
2016-11-01
In this paper we present a large mode area photonic crystal fiber made of the heavy metal oxide glass CS-740, dedicated for a broadband light guidance in the visible, near- and mid-infrared regions of wavelengths from 0.4 to 4.7 μm. The fiber is effectively multi-mode in the considered wavelength range. It is composed of a ring of air-holes surrounding the core, with a high linear filling factor of 0.97. The fiber was made using a standard stack-and-draw technique. Each hole has a size of approx. 2.5 × 3.0 μm and diameter of core is 80 μm. Fiber attenuation is below 3 dB/m in the 0.9-1.7 μm wavelength range, while at 4.4 μm (mid-IR) it is approx. 5 dB/cm. Bending loss at the 1.55 μm wavelength is 0.45 dB per loop of 8 mm radius. Fiber numerical aperture is 0.53 at 1.55 μm. The effective mode area of the fundamental mode is approx. 2400 μm2 in the wavelength range of 0.8-1.7 μm. We present a proof-of-concept demonstration that our large core photonic crystal fiber is able to efficiently collect light directly from a mid-IR quantum cascade laser without use of additional optics and can be used for pigtailing mid-IR sources and detectors.
Sun, Libin; Hu, Xiaolin; Wu, Qingjun; Wang, Liansheng; Zhao, Jun; Yang, Shumin; Tai, Renzhong; Fecht, Hans-Jorg; Zhang, Dong-Xian; Wang, Li-Qiang; Jiang, Jian-Zhong
2016-08-22
Plasmonic color filters in mass production have been restricted from current fabrication technology, which impede their applications. Soft-X-ray interference lithography (XIL) has recently generated considerable interest as a newly developed technique for the production of periodic nano-structures with resolution theoretically below 4 nm. Here we ameliorate XIL by adding an order sorting aperture and designing the light path properly to achieve perfect-stitching nano-patterns and fast fabrication of large-area color filters. The fill factor of nanostructures prepared on ultrathin Ag films can largely affect the transmission minimum of plasmonic color filters. By changing the fill factor, the color can be controlled flexibly, improving the utilization efficiency of the mask in XIL simultaneously. The calculated data agree well with the experimental results. Finally, an underlying mechanism has been uncovered after systematically analyzing the localized surface plasmon polaritons (LSPPs) coupling in electric field distribution.
Single transverse mode laser in a center-sunken and cladding-trenched Yb-doped fiber.
Liu, Yehui; Zhang, Fangfang; Zhao, Nan; Lin, Xianfeng; Liao, Lei; Wang, Yibo; Peng, Jinggang; Li, Haiqing; Yang, LuYun; Dai, NengLi; Li, Jinyan
2018-02-05
We report a novel center-sunken and cladding-trenched Yb-doped fiber, which was fabricated by a modified chemical vapor deposition process with a solution-doping technique. The simulation results showed that the fiber with a core diameter of 40 µm and a numerical aperture of 0.043 has a 1217 µm 2 effective mode area at 1080 nm. It is also disclosed that the leakage loss can be reduced lower than 0.01 dB/m for the LP 01 mode, while over 80 dB/m for the LP 11 mode by optimizing the bending radius as 14 cm. A 456 W laser output was observed in a MOPA structure. The laser slope efficiency was measured to be 79% and the M 2 was less than 1.1, which confirmed the single mode operation of the large mode area center-sunken cladding-trenched Yb-doped fiber.
Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.
Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei
2015-12-28
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.
Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers
Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; ...
2015-01-01
Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. We report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventionalmore » UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M² =1.02.« less
Scattering Solar Thermal Concentrators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giebink, Noel C.
2015-01-31
This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120more » degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.« less
Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array
Beach, Raymond J.; Benett, William J.; Mills, Steven T.
1997-01-01
The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.
Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.
2010-07-13
An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.
Fractional Fourier transform of truncated elliptical Gaussian beams.
Du, Xinyue; Zhao, Daomu
2006-12-20
Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.
Single-mode VCSEL operation via photocurrent feedback
NASA Astrophysics Data System (ADS)
Riyopoulos, Spilios
1999-04-01
On-axis channeling through the use of photoactive layers in VCSEL cavities is proposed to counteract hole burning and mode switching. The photoactive layers act as variable resistivity screens whose radial `aperture' is controlled by the light itself. It is numerically demonstrated that absorption of a small fraction of the light intensity suffices for significant on axis current peaking and single mode operation at currents many times threshold, with minimum efficiency loss and optical mode distortion. Fabrication is implemented during the molecular beam epitaxy phase without wafer post processing, as for oxide apertures.
High-Resolution X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.
2010-01-01
Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.
Antenna dimensions of synthetic aperture radar systems on satellites
NASA Technical Reports Server (NTRS)
Richter, K. R.
1973-01-01
Design of a synthetic aperture radar (SAR) for a satellite must take into account the limitation in weight and dimensions of the antenna. The lower limits of the antenna area are derived from the conditions of unambiguity of the SAR system. This result is applied to estimate the antenna requirements for SARs on satellites in circular orbits of various altitudes around Earth and Venus.
NASA Astrophysics Data System (ADS)
Charco, María; González, Pablo J.; Galán del Sastre, Pedro
2017-04-01
The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.
APPHi: Automated Photometry Pipeline for High Cadence Large Volume Data
NASA Astrophysics Data System (ADS)
Sánchez, E.; Castro, J.; Silva, J.; Hernández, J.; Reyes, M.; Hernández, B.; Alvarez, F.; García T.
2018-04-01
APPHi (Automated Photometry Pipeline) carries out aperture and differential photometry of TAOS-II project data. It is computationally efficient and can be used also with other astronomical wide-field image data. APPHi works with large volumes of data and handles both FITS and HDF5 formats. Due the large number of stars that the software has to handle in an enormous number of frames, it is optimized to automatically find the best value for parameters to carry out the photometry, such as mask size for aperture, size of window for extraction of a single star, and the number of counts for the threshold for detecting a faint star. Although intended to work with TAOS-II data, APPHi can analyze any set of astronomical images and is a robust and versatile tool to performing stellar aperture and differential photometry.
NASA Astrophysics Data System (ADS)
Ma, Qian; Shi, Chuan Bo; Chen, Tian Yi; Qing Qi, Mei; Li, Yun Bo; Cui, Tie Jun
2018-04-01
A new method is proposed to design gradient refractive-index metamaterial lens antennas by optimizing both the refractive-index distribution of the lens and the feed directivity. Comparing to the conventional design methods, source optimization provides a new degree of freedom to control aperture fields effectively. To demonstrate this method, two lenses with special properties based on this method are designed, to emit high-efficiency plane waves and fan-shaped beams, respectively. Both lenses have good performance and wide frequency band from 12 to 18 GHz, verifying the validity of the proposed method. The plane-wave emitting lens realized a high aperture efficiency of 75%, and the fan-beam lens achieved a high gain of 15 dB over board bandwidth. The experimental results have good agreement with the design targets and full-wave simulations.
Three-dimensional near-field MIMO array imaging using range migration techniques.
Zhuge, Xiaodong; Yarovoy, Alexander G
2012-06-01
This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.
Improved moving source photometry with TRIPPy
NASA Astrophysics Data System (ADS)
Alexandersen, Mike; Fraser, Wesley Cristopher
2017-10-01
Photometry of moving sources is more complicated than for stationary sources, because the sources trail their signal out over more pixels than a point source of the same magnitude. Using a circular aperture of same size as would be appropriate for point sources can cut out a large amount of flux if a moving source moves substantially relative to the size of the aperture during the exposure, resulting in underestimated fluxes. Using a large circular aperture can mitigate this issue at the cost of a significantly reduced signal to noise compared to a point source, as a result of the inclusion of a larger background region within the aperture.Trailed Image Photometry in Python (TRIPPy) solves this problem by using a pill-shaped aperture: the traditional circular aperture is sliced in half perpendicular to the direction of motion and separated by a rectangle as long as the total motion of the source during the exposure. TRIPPy can also calculate the appropriate aperture correction (which will depend both on the radius and trail length of the pill-shaped aperture), and has features for selecting good PSF stars, creating a PSF model (convolved moffat profile + lookup table) and selecting a custom sky-background area in order to ensure no other sources contribute to the background estimate.In this poster, we present an overview of the TRIPPy features and demonstrate the improvements resulting from using TRIPPy compared to photometry obtained by other methods with examples from real projects where TRIPPy has been implemented in order to obtain the best-possible photometric measurements of Solar System objects. While TRIPPy has currently mainly been used for Trans-Neptunian Objects, the improvement from using the pill-shaped aperture increases with source motion, making TRIPPy highly relevant for asteroid and centaur photometry as well.
Observation of enhanced spontaneous emission in dielectrically apertured microcavities
NASA Astrophysics Data System (ADS)
Graham, Luke Alan
The effects of enhanced spontaneous emission are important in determining the low threshold characteristics of oxide confined vertical cavity semiconductor lasers. This enhancement effect increases as Q/V, where Q = λ/Δλ for the cavity and V is the mode volume. In particular we investigate the effects of mode diameter on enhancement in microcavity structures with successively smaller dielectric apertures. These structures were fabricated by etching and back filling with SiO 2 and by lateral steam oxidation. For both cavities, InAlGaAs quantum dot emitters were used in the active region in order to avoid carrier diffusion and recombination at the side walls. Decay data was obtained at 10 K using time resolved photoluminescence of individual microcavities, and arrays. The detector used here is based on a silicon avalanche photodiode operated in ``Geiger'' mode. It provides a resolution of 350 ps and a quantum efficiency of ~1% at a wavelength of 1 μm. For the etched aperture structures we observed enhancement factors as high as 1.4 for the 1 μm diameter cavities with a maximum Q ~ 200. The enhancement is limited by the low Qs induced by etched side wall scattering. For 1 μm apertures fabricated by lateral steam oxidation, a Q of 450 is obtained with an enhancement factor of 2.3. In these devices we show that the enhancement is limited by distribution of quantum dots throughout the aperture region. Dots resonant with the cavity and located along the aperture edge decay more slowly than those in the center, leading to spatial hole burning effects in the decay data. Microcavities with aperture sizes ranging from 1-5 μm and Qs greater than 5000 are also demonstrated. We show 0th and 1 st order mode spacings as a function of aperture size and from this data calculate the transverse optical mode diameter as a function of aperture diameter. We find that the optical mode size becomes larger than the aperture size for diameters of ~2.5 μm and below and that this is correlated with a steep drop in Q for smaller apertures. We also find that the upper limit in cavity Q in these structures appears to come from losses induced by the MgF2/ZnSe e-beam deposited DBRs.
Effects of atmospheric turbulence on the imaging performance of optical system
NASA Astrophysics Data System (ADS)
Al-Hamadani, Ali H.; Zainulabdeen, Faten Sh.; Karam, Ghada Sabah; Nasir, Eman Yousif; Al-Saedi, Abaas
2018-05-01
Turbulent effects are very complicated and still not entirely understood. Light waves from an astronomical object are distorted as they pass through the atmosphere. The refractive index fluctuations in the turbulent atmosphere induce an optical path difference (OPD) between different parts of the wavefront, distorted wavefronts produce low-quality images and degrade the image beyond the diffraction limit. In this paper the image degradation due to 2-D Gaussian atmospheric turbulence is considered in terms of the point spread function (PSF), and Strehl ratio as an image quality criteria for imaging systems with different apertures using the pupil function teqneque. A general expression for the degraded PSF in the case of circular and square apertures (with half diagonal = √{π/2 } , and 1) diffraction limited and defocused optical system is considered. Based on the derived formula, the effect of the Gaussian atmospheric turbulence on circular and square pupils has been studied with details. Numerical results show that the performance of optical systems with square aperture is more efficient at high levels of atmospheric turbulence than the other apertures.
NASA Astrophysics Data System (ADS)
Osabe, Keiichi; Kawai, Kotaro
2017-03-01
In this study, angular multiplexing hologram recording photopolymer films were studied experimentally. The films contained acrylamide as a monomer, eosin Y as a sensitizer, and triethanolamine as a promoter in a polyvinyl alcohol matrix. In order to determine the appropriate thickness of the photopolymer films for angular multiplexing, photopolymer films with thicknesses of 29-503 μm were exposed to two intersecting beams of a YVO laser at a wavelength of 532 nm to form a holographic grating with a spatial frequency of 653 line/mm. The diffraction efficiencies as a function of the incident angle of reconstruction were measured. A narrow angular bandwidth and high diffraction efficiency are required for angular multiplexing; hence, we define the Q value, which is the diffraction efficiency divided by half the bandwidth. The Q value of the films depended on the thickness of the films, and was calculated based on the measured diffraction efficiencies. The Q value of a 297-μm-thick film was the highest of the all films. Therefore, the angular multiplexing experiments were conducted using 300-μm-thick films. In the angular multiplexing experiments, the object beam transmitted by a square aperture was focused by a Fourier transform lens and interfered with a reference beam. The maximum order of angular multiplexing was four. The signal intensity that corresponds to the squared-aperture transmission and the noise intensity that corresponds to transmission without the square aperture were measured. The signal intensities decreased as the order of angular multiplexing increased, and the noise intensities were not dependent on the order of angular multiplexing.
NASA Astrophysics Data System (ADS)
Canalias, Carlota; Zukauskas, Andrius; Tjörnhamman, Staffan; Viotti, Anne-Lise; Pasiskevicius, Valdas; Laurell, Fredrik
2018-02-01
Since the early 1990's, a substantial effort has been devoted to the development of quasi-phased-matched (QPM) nonlinear devices, not only in ferroelectric oxides like LiNbO3, LiTaO3 and KTiOPO4 (KTP), but also in semiconductors as GaAs, and GaP. The technology to implement QPM structures in ferroelectric oxides has by now matured enough to satisfy the most basic frequency-conversion schemes without substantial modification of the poling procedures. Here, we present a qualitative leap in periodic poling techniques that allows us to demonstrate devices and frequency conversion schemes that were deemed unfeasible just a few years ago. Thanks to our short-pulse poling and coercive-field engineering techniques, we are able to demonstrate large aperture (5 mm) periodically poled Rb-doped KTP devices with a highly-uniform conversion efficiency over the whole aperture. These devices allow parametric conversion with energies larger than 60 mJ. Moreover, by employing our coercive-field engineering technique we fabricate highlyefficient sub-µm periodically poled devices, with periodicities as short as 500 nm, uniform over 1 mm-thick crystals, which allow us to realize mirrorless optical parametric oscillators with counter-propagating signal and idler waves. These novel devices present unique spectral and tuning properties, superior to those of conventional OPOs. Furthermore, our techniques are compatible with KTA, a KTP isomorph with extended transparency in the mid-IR range. We demonstrate that our highly-efficient PPKTA is superior both for mid-IR and for green light generation - as a result of improved transmission properties in the visible range. Our KTP-isomorph poling techniques leading to highly-efficient QPM devices will be presented. Their optical performance and attractive damage thresholds will be discussed.
Diffraction patterns in Fresnel approximation of periodic objects for a colorimeter of two apertures
NASA Astrophysics Data System (ADS)
Cortes-Reynoso, Jose-German R.; Suarez-Romero, Jose G.; Hurtado-Ramos, Juan B.; Tepichin-Rodriguez, Eduardo; Solorio-Leyva, Juan Carlos
2004-10-01
In this work, we present a study of Fresnel diffraction of periodic structures in an optical system of two apertures. This system of two apertures was used successfully for measuring color in textile samples solving the problems of illumination and directionality that present current commercial equipments. However, the system is sensible to the spatial frequency of the periodic sample"s area enclosed in its optical field of view. The study of Fresnel diffraction allows us to establish criteria for geometrical parameters of measurements in order to assure invariance in angular rotations and spatial positions. In this work, we use the theory of partial coherence to calculate the diffraction through two continuous apertures. In the calculation process, we use the concept of point-spread function of the system for partial coherence, in this way we avoid complicated statistical processes commonly used in the partial coherence theory.
Deployable reflector configurations
NASA Astrophysics Data System (ADS)
Meinel, A. B.; Meinel, M. P.; Woolf, N. J.
Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.
Deployable reflector configurations. [for space telescope
NASA Technical Reports Server (NTRS)
Meinel, A. B.; Meinel, M. P.; Woolf, N. J.
1983-01-01
Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.
Ionospheric effects on synthetic aperture radar at VHF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.
1997-02-01
Synthetic aperture radars (SAR) operated from airplanes have been used at VHF because of their enhanced foliage and ground penetration compared to radars operated at UHF. A satellite-borne VHF SAR would have considerable utility but in order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. The presence of the ionosphere in the propagation path of the radar will cause a deterioration of the imaging because of dispersion over the bandwidth and group path changes in the imaged area over the collection aperture. In this paper we present calculations ofmore » the effects of a deterministic ionosphere on SAR imaging for a radar operated with a 100 MHz bandwidth centered at 250 MHz and over an angular aperture of 23{degrees}. The ionosphere induces a point spread function with an approximate half-width of 150 m in the slant-range direction and of 25 m in the cross-range direction compared to the nominal resolution of 1.5 m in both directions.« less
Amsden, Jason J; Herr, Philip J; Landry, David M W; Kim, William; Vyas, Raul; Parker, Charles B; Kirley, Matthew P; Keil, Adam D; Gilchrist, Kristin H; Radauscher, Erich J; Hall, Stephen D; Carlson, James B; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T; Russell, Zachary E; Grego, Sonia; Edwards, Steven J; Sperline, Roger P; Denton, M Bonner; Stoner, Brian R; Gehm, Michael E; Glass, Jeffrey T
2018-02-01
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.
2018-02-01
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.
Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.
2015-01-01
The USGS has compiled a continuous, cloud-free 12.5-meter resolution radar mosaic of SAR data of approximately 212,000 square kilometers to examine the suitability of this technology for geologic mapping. This mosaic was created from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data collected from 2007 to 2010 spanning the Kahiltna terrane and the surrounding area. Interpretation of these data may help geologists understand past geologic processes and identify areas with potential for near-surface mineral resources for further ground-based geological and geochemical investigations.
Measurement of hurricane winds and waves with a synthetic aperture radar
NASA Technical Reports Server (NTRS)
Shemdin, O. H.; King, D. B.
1979-01-01
An analysis of data collected in a hurricane research program is presented. The data were collected with a Synthetic Aperture Radar (SAR) during five aircraft flights in the Atlantic in August and September, 1976. Work was conducted in two areas. The first is an analysis of the L-band SAR data in a scatterometer mode to determine the surface windspeeds in hurricanes, in a similar manner to that done by an X-band scatterometer. The second area was to use the SAR to examine the wave patterns in hurricanes. The wave patterns in all of the storms are similar and show a marked radial asymmetry.
NASA Astrophysics Data System (ADS)
Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.
2017-01-01
Coded aperture imaging transcends planar imaging with conventional collimators in efficiency and Field of View (FOV). We present experimental results for the detection of 141 keV and 122 keV γ-photons emitted by uniformly extended 99mTc and 57Co hot-spots along with simulations of uniformly and normally extended 99mTc hot-spots. These results prove that the method can be used for intra-operative imaging of radio-traced sentinel nodes and thyroid remnants. The study is performed using a setup of two gamma cameras, each consisting of a coded-aperture (or mask) of Modified Uniformly Redundant Array (MURA) of rank 19 positioned on top of a CdTe detector. The detector pixel pitch is 350 μm and its active area is 4.4 × 4.4 cm2, while the mask element size is 1.7 mm. The detectable photon energy ranges from 15 keV up to 200 keV with an energy resolution of 3-4 keV FWHM. Triangulation is exploited to estimate the 3D spatial coordinates of the radioactive spots within the system FOV. Two extended sources, with uniform distributed activity (11 and 24 mm in diameter, respectively), positioned at 16 cm from the system and with 3 cm distance between their centers, can be resolved and localized with accuracy better than 5%. The results indicate that the estimated positions of spatially extended sources lay within their volume size and that neighboring sources, even with a low level of radioactivity, such as 30 MBq, can be clearly distinguished with an acquisition time about 3 seconds.
NASA Astrophysics Data System (ADS)
Liang, Cunren; Zeng, Qiming; Jia, Jianying; Jiao, Jian; Cui, Xi'ai
2013-02-01
Scanning synthetic aperture radar (ScanSAR) mode is an efficient way to map large scale geophysical phenomena at low cost. The work presented in this paper is dedicated to ScanSAR interferometric processing and its implementation by making full use of existing standard interferometric synthetic aperture radar (InSAR) software. We first discuss the properties of the ScanSAR signal and its phase-preserved focusing using the full aperture algorithm in terms of interferometry. Then a complete interferometric processing flow is proposed. The standard ScanSAR product is decoded subswath by subswath with burst gaps padded with zero-pulses, followed by a Doppler centroid frequency estimation for each subswath and a polynomial fit of all of the subswaths for the whole scene. The burst synchronization of the interferometric pair is then calculated, and only the synchronized pulses are kept for further interferometric processing. After the complex conjugate multiplication of the interferometric pair, the residual non-integer pulse repetition interval (PRI) part between adjacent bursts caused by zero padding is compensated by resampling using a sinc kernel. The subswath interferograms are then mosaicked, in which a method is proposed to remove the subswath discontinuities in the overlap area. Then the following interferometric processing goes back to the traditional stripmap processing flow. A processor written with C and Fortran languages and controlled by Perl scripts is developed to implement these algorithms and processing flow based on the JPL/Caltech Repeat Orbit Interferometry PACkage (ROI_PAC). Finally, we use the processor to process ScanSAR data from the Envisat and ALOS satellites and obtain large scale deformation maps in the radar line-of-sight (LOS) direction.
Application of identifying transmission spheres for spherical surface testing
NASA Astrophysics Data System (ADS)
Han, Christopher B.; Ye, Xin; Li, Xueyuan; Wang, Quanzhao; Tang, Shouhong; Han, Sen
2017-06-01
We developed a new application on Microsoft Foundation Classes (MFC) to identify correct transmission spheres (TS) for Spherical Surface Testing (SST). Spherical surfaces are important optical surfaces, and the wide application and high production rate of spherical surfaces necessitates an accurate and highly reliable measuring device. A Fizeau Interferometer is an appropriate tool for SST due to its subnanometer accuracy. It measures the contour of a spherical surface using a common path, which is insensitive to the surrounding circumstances. The Fizeau Interferometer transmits a wide laser beam, creating interference fringes from re-converging light from the transmission sphere and the test surface. To make a successful measurement, the application calculates and determines the appropriate transmission sphere for the test surface. There are 3 main inputs from the test surfaces that are utilized to determine the optimal sizes and F-numbers of the transmission spheres: (1) the curvatures (concave or convex), (2) the Radii of Curvature (ROC), and (3) the aperture sizes. The application will firstly calculate the F-numbers (i.e. ROC divided by aperture) of the test surface, secondly determine the correct aperture size of a convex surface, thirdly verify that the ROC of the test surface must be shorter than the reference surface's ROC of the transmission sphere, and lastly calculate the percentage of area that the test surface will be measured. However, the amount of interferometers and transmission spheres should be optimized when measuring large spherical surfaces to avoid requiring a large amount of interferometers and transmission spheres for each test surface. Current measuring practices involve tedious and potentially inaccurate calculations. This smart application eliminates human calculation errors, optimizes the selection of transmission spheres (including the least number required) and interferometer sizes, and increases efficiency.
Low vibration high numerical aperture automated variable temperature Raman microscope
Tian, Y.; Reijnders, A. A.; Osterhoudt, G. B.; ...
2016-04-05
Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to wide- ranging areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instability as well as low collection efficiencies. Thus, contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarizationmore » rotation. High collection efficiency, thermal and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi 2Se 3 and V 2O 3, which are known as challenging due to low thermal conductivities, low signal levels and/or hysteretic effects, are measured with previously undemonstrated temperature resolution.« less
Preliminary operational results from the Willard solar power system
NASA Technical Reports Server (NTRS)
Fenton, D. L.; Abernathy, G. H.; Krivokapich, G.; Ellibee, D. E.; Chilton, V.
1980-01-01
The solar powered system located near Willard, New Mexico, generates mechanical or electrical power at a capacity of 19 kW (25 HP). The solar collection system incorporates east/west tracking parabolic trough collectors with a total aperture area of 1275 sq m (13,720 sq ft). The hot oil type thermal energy storage is sufficient for approximately 20 hours of power system operation. The system utilizes a reaction type turbine in conjunction with an organic Rankine cycle engine. Total collector field efficiency reaches a maximum of 20 percent near the winter solstice and about 50 percent during the summer. During the month of July, 1979, the system pumped 60 percent of the 35,300 cu m (28.6 acre-feet) of water delivered. Operating efficiencies for the turbine component, organic Rankine cycle engine and the complete power system are respectively 65 to 75 percent, 12 to 15 percent and 5 to 6 percent. Significant maintenance time was expended on both the collector and power systems throughout the operational period.
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-03-28
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation.
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-01-01
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation. PMID:28350358
NASA Astrophysics Data System (ADS)
Arumugam, S.; Ramakrishna, P.; Sangavi, S.
2018-02-01
Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.
Preliminary operational results from the Willard solar power system
NASA Astrophysics Data System (ADS)
Fenton, D. L.; Abernathy, G. H.; Krivokapich, G.; Ellibee, D. E.; Chilton, V.
1980-05-01
The solar powered system located near Willard, New Mexico, generates mechanical or electrical power at a capacity of 19 kW (25 HP). The solar collection system incorporates east/west tracking parabolic trough collectors with a total aperture area of 1275 sq m (13,720 sq ft). The hot oil type thermal energy storage is sufficient for approximately 20 hours of power system operation. The system utilizes a reaction type turbine in conjunction with an organic Rankine cycle engine. Total collector field efficiency reaches a maximum of 20 percent near the winter solstice and about 50 percent during the summer. During the month of July, 1979, the system pumped 60 percent of the 35,300 cu m (28.6 acre-feet) of water delivered. Operating efficiencies for the turbine component, organic Rankine cycle engine and the complete power system are respectively 65 to 75 percent, 12 to 15 percent and 5 to 6 percent. Significant maintenance time was expended on both the collector and power systems throughout the operational period.
Low vibration high numerical aperture automated variable temperature Raman microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Y.; Reijnders, A. A.; Osterhoudt, G. B.
Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to wide- ranging areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instability as well as low collection efficiencies. Thus, contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarizationmore » rotation. High collection efficiency, thermal and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi 2Se 3 and V 2O 3, which are known as challenging due to low thermal conductivities, low signal levels and/or hysteretic effects, are measured with previously undemonstrated temperature resolution.« less
The influence of swarm deformation on the velocity behavior of falling swarms of particles
NASA Astrophysics Data System (ADS)
Mitchell, C. A.; Pyrak-Nolte, L. J.; Nitsche, L.
2017-12-01
Cohesive particle swarms have been shown to exhibit enhanced sedimentation in fractures for an optimal range of fracture apertures. Within this range, swarms travel farther and faster than a disperse (particulate) solution. This study aims to uncover the physics underlying the enhanced sedimentation. Swarm behavior at low Reynolds number in a quiescent unbounded fluid and between smooth rigid planar boundaries is investigated numerically using direct-summation, particle-mesh (PM) and particle-particle particle-mesh (P3M) methods - based upon mutually interacting viscous point forces (Stokeslet fields). Wall effects are treated with a least-squares boundary singularity method. Sub-structural effects beyond pseudo-liquid behavior (i.e., particle-scale interactions) are approximated by the P3M method much more efficiently than with direct summation. The model parameters are selected from particle swarm experiments to enable comparison. From the simulations, if the initial swarm geometry at release is unaffected by the fracture aperture, no enhanced transport occurs. The swarm velocity as a function of apertures increases monotonically until it asymptotes to the swarm velocity in an open tank. However, if the fracture aperture affects the initial swarm geometry, the swarm velocity no longer exhibits a monotonic behavior. When swarms are released between two parallel smooth walls with very small apertures, the swarm is forced to reorganize and quickly deform, which results in dramatically reduced swarm velocities. At large apertures, the swarm evolution is similar to that of a swarm in open tank and quickly flattens into a slow speed torus. In the optimal aperture range, the swarm maintains a cohesive unit behaving similarly to a falling sphere. Swarms falling in apertures less than or greater than the optimal aperture range, experience a level of anisotropy that considerably decreases velocities. Unraveling the physics that drives swarm behavior in fractured porous media is important for understanding particle sedimentation and contaminant spreading in the subsurface. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
Method for separating disparate components in a fluid stream
Meikrantz, David H.
1990-01-01
The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.
Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array
Beach, R.J.; Benett, W.J.; Mills, S.T.
1997-04-01
The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.
Optical manifold for light-emitting diodes
Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver
2008-06-03
An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.
High-Capacity Communications from Martian Distances
NASA Technical Reports Server (NTRS)
Williams, W. Dan; Collins, Michael; Hodges, Richard; Orr, Richard S.; Sands, O. Scott; Schuchman, Leonard; Vyas, Hemali
2007-01-01
High capacity communications from Martian distances, required for the envisioned human exploration and desirable for data-intensive science missions, is challenging. NASA s Deep Space Network currently requires large antennas to close RF telemetry links operating at kilobit-per-second data rates. To accommodate higher rate communications, NASA is considering means to achieve greater effective aperture at its ground stations. This report, focusing on the return link from Mars to Earth, demonstrates that without excessive research and development expenditure, operational Mars-to-Earth RF communications systems can achieve data rates up to 1 Gbps by 2020 using technology that today is at technology readiness level (TRL) 4-5. Advanced technology to achieve the needed increase in spacecraft power and transmit aperture is feasible at an only moderate increase in spacecraft mass and technology risk. In addition, both power-efficient, near-capacity coding and modulation and greater aperture from the DSN array will be required. In accord with these results and conclusions, investment in the following technologies is recommended:(1) lightweight (1 kg/sq m density) spacecraft antenna systems; (2) a Ka-band receive ground array consisting of relatively small (10-15 m) antennas; (3) coding and modulation technology that reduces spacecraft power by at least 3 dB; and (4) efficient generation of kilowatt-level spacecraft RF power.
Future Prospects for Very High Angular Resolution Imaging in the UV/Optical
NASA Astrophysics Data System (ADS)
Allen, R. J.
2004-05-01
Achieving the most demanding science goals outlined by the previous speakers will ultimately require the development of coherent space-based arrays of UV/Optical light collectors spread over distances of hundreds of meters. It is possible to envisage ``in situ" assembly of large segmented filled-aperture telescopes in space using components ferried up with conventional launchers. However, the cost will grow roughly as the mass of material required, and this will ultimately limit the sizes of the apertures we can afford. Furthermore, since the collecting area and the angular resolution are coupled for diffraction-limited filled apertures, the sensitivity may be much higher than is actually required to do the science. Constellations of collectors deployed over large areas as interferometer arrays or sparse apertures offer the possibility of independently tailoring the angular resolution and the sensitivity in order to optimally match the science requirements. Several concept designs have been proposed to provide imaging data for different classes of targets such as protoplanetary disks, the nuclear regions of the nearest active galaxies, and the surfaces of stars of different types. Constellations of identical collectors may be built and launched at lower cost through mass production, but new challenges arise when they have to be deployed. The ``aperture" synthesized is only as good as the accuracy with which the individual collectors can be placed and held to the required figure. This ``station-keeping" problem is one of the most important engineering problems to be solved before the promise of virtually unlimited angular resolution in the UV/Optical can be realized. Among the attractive features of an array of free-flying collectors configured for imaging is the fact that the figure errors of the ``aperture" so produced may be much more random than is the case for monolithic or segmented telescopes. This can result in a significant improvement in the dynamic range and permit imaging of faint objects near much brighter extraneous nearby sources, a task presently reserved for specially-designed coronagraphs on filled apertures.
Cylinder surface test with Chebyshev polynomial fitting method
NASA Astrophysics Data System (ADS)
Yu, Kui-bang; Guo, Pei-ji; Chen, Xi
2017-10-01
Zernike polynomials fitting method is often applied in the test of optical components and systems, used to represent the wavefront and surface error in circular domain. Zernike polynomials are not orthogonal in rectangular region which results in its unsuitable for the test of optical element with rectangular aperture such as cylinder surface. Applying the Chebyshev polynomials which are orthogonal among the rectangular area as an substitution to the fitting method, can solve the problem. Corresponding to a cylinder surface with diameter of 50 mm and F number of 1/7, a measuring system has been designed in Zemax based on Fizeau Interferometry. The expressions of the two-dimensional Chebyshev polynomials has been given and its relationship with the aberration has been presented. Furthermore, Chebyshev polynomials are used as base items to analyze the rectangular aperture test data. The coefficient of different items are obtained from the test data through the method of least squares. Comparing the Chebyshev spectrum in different misalignment, it show that each misalignment is independence and has a certain relationship with the certain Chebyshev terms. The simulation results show that, through the Legendre polynomials fitting method, it will be a great improvement in the efficient of the detection and adjustment of the cylinder surface test.
120W, NA_0.15 fiber coupled LD module with 125-μm clad/NA 0.22 fiber by spatial coupling method
NASA Astrophysics Data System (ADS)
Ishige, Yuta; Kaji, Eisaku; Katayama, Etsuji; Ohki, Yutaka; Gajdátsy, Gábor; Cserteg, András.
2018-02-01
We have fabricated a fiber coupled semiconductor laser diode module by means of spatial beam combining of single emitter broad area semiconductor laser diode chips in the 9xx nm band. In the spatial beam multiplexing method, the numerical aperture of the output light from the optical fiber increases by increasing the number of laser diodes coupled into the fiber. To reduce it, we have tried the approach to improving assembly process technology. As a result, we could fabricate laser diode modules having a light output power of 120W or more and 95% power within NA of 0.15 or less from a single optical fiber with 125-μm cladding diameter. Furthermore, we have obtained that the laser diode module maintaining high coupling efficiency can be realized even around the fill factor of 0.95. This has been achieved by improving the optical alignment method regarding the fast axis stack pitch of the laser diodes in the laser diode module. Therefore, without using techniques such as polarization combining and wavelength combining, high output power was realized while keeping small numerical aperture. This contributes to a reduction in unit price per light output power of the pumping laser diode module.
Iterative simulated quenching for designing irregular-spot-array generators.
Gillet, J N; Sheng, Y
2000-07-10
We propose a novel, to our knowledge, algorithm of iterative simulated quenching with temperature rescaling for designing diffractive optical elements, based on an analogy between simulated annealing and statistical thermodynamics. The temperature is iteratively rescaled at the end of each quenching process according to ensemble statistics to bring the system back from a frozen imperfect state with a local minimum of energy to a dynamic state in a Boltzmann heat bath in thermal equilibrium at the rescaled temperature. The new algorithm achieves much lower cost function and reconstruction error and higher diffraction efficiency than conventional simulated annealing with a fast exponential cooling schedule and is easy to program. The algorithm is used to design binary-phase generators of large irregular spot arrays. The diffractive phase elements have trapezoidal apertures of varying heights, which fit ideal arbitrary-shaped apertures better than do trapezoidal apertures of fixed heights.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.
1990-01-01
A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, E. K.; Forristall, R.
2005-11-01
Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. Themore » IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.« less
NASA Astrophysics Data System (ADS)
Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin
2017-07-01
In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.
Broadband Integrated Lens for Illuminating Reflector Antenna With Constant Aperture Efficiency
NASA Astrophysics Data System (ADS)
Fernandes, Carlos A.; Lima, Eduardo B.; Costa, Jorge R.
2010-12-01
A new integrated shaped lens antenna configuration is described with frequency stable radiation pattern and phase center position across a broad 1:3 frequency band, which can be used for focal plane reflector feeding in quasi-optical radio telescope systems. The lens is compatible with the integration of ultrawideband uniplanar printed feeds at its base and equally broadband mixing devices, like the Hot Electron Bolometer (HEB), although these are not used in the present work. Measurements on a scaled mm-wave lab prototype have confirmed stable performance versus frequency, with only dB directivity variation, and better than 94% Gaussicity, thanks to the possibility to impose a predefined output radiation pattern template. Simulations were performed to test the illumination of an off-set parabolic reflector by the lens radiation pattern, which confirmed reasonably constant aperture efficiency in the order of 78% across the 100% bandwidth.
Astronomical telescope with holographic primary objective
NASA Astrophysics Data System (ADS)
Ditto, Thomas D.; Friedman, Jeffrey F.; Content, David A.
2011-09-01
A dual dispersion telescope with a plane grating primary objective was previously disclosed that can overcome intrinsic chromatic aberration of dispersive optics while allowing for unprecedented features such as million object spectroscopy, extraordinary étendue, flat primary objective with a relaxed figure tolerance, gossamer membrane substrate stowable as an unsegmented roll inside a delivery vehicle, and extensibility past 100 meter aperture at optical wavelengths. The novel design meets many criteria for space deployment. Other embodiments are suitable for airborne platforms as well as terrestrial and lunar sites. One problem with this novel telescope is that the grazing exodus configuration necessary to achieve a large aperture is traded for throughput efficiency. Now we show how the hologram of a point source used in place of the primary objective plane grating can improve efficiency by lowering the diffraction angle below grazing exodus. An intermediate refractive element is used to compensate for wavelength dependent focal lengths of the holographic primary objective.
Coupling device with improved thermal interface
NASA Astrophysics Data System (ADS)
Milam, Malcolm Bruce
1992-04-01
The primary object of the present invention is to provide a simple, reliable, and lightweight coupling that will also have an efficient thermal interface. A further object of the invention is to provide a coupling that is capable of blind mating with little or no insertion forces. Another object of the invention is to provide a coupling that acts as a thermal regulator to maintain a constant temperature on one side of the coupling. Another object of the invention is to increase the available surface area of a coupling thus providing a larger area for the conduction of heat across the thermal interface. Another object of the invention is to provide a fluidic coupling that has no fluid passing across the interface, thus reducing the likelihood of leaks and contamination. The foregoing objects are achieved by utilizing, as in the prior art, a hot area (at an elevated temperature as compared to a cold area) with a need to remove excess heat from the hot area to a cold area. In this device, the thermal interface will occur not on a planar horizontal surface, but along a non-planar vertical surface, which will reduce the reaction forces and increase the thermal conductivity of the device. One non-planar surface is a surface on a cold pin extending from the cold area and the other non-planar surface is a surface on a hot pin extending from the hot area. The cold pin is fixed and does not move while the hot pin is a flexible member and its movement towards the cold pin will bring the two non-planar surfaces together forming the thermal interface. The actuating member for the device is a shape-memory actuation wire which is attached through an aperture to the hot pin and through another aperture to an actuation wire retainer. By properly programming the actuation wire, heat from the hot area will cause the actuation wire to bend the hot wire. Heat from the hot area will cause the actuation wire to bend the hot pin towards the cold pin forming the coupling and the desired thermal interface. The shape-memory actuation wire is made of a shape-memory-effect alloy such as Nitinol.
NASA Astrophysics Data System (ADS)
Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael
1999-07-01
The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.
Study of imaging fiber bundle coupling technique in IR system
NASA Astrophysics Data System (ADS)
Chen, Guoqing; Yang, Jianfeng; Yan, Xingtao; Song, Yansong
2017-02-01
Due to its advantageous imaging characteristic and banding flexibility, imaging fiber bundle can be used for line-plane-switching push-broom infrared imaging. How to precisely couple the fiber bundle in the optics system is the key to get excellent image for transmission. After introducing the basic system composition and structural characteristics of the infrared systems coupled with imaging fiber bundle, this article analysis the coupling efficiency and the design requirements of its relay lenses with the angle of the numerical aperture selecting in the system and cold stop matching of the refrigerant infrared detector. For an actual need, one relay coupling system has been designed with the magnification is -0.6, field of objective height is 4mm, objective numerical aperture is 0.15, which has excellent image quality and enough coupling efficiency. In the end, the push broom imaging experiment is carried out. The results show that the design meets the requirements of light energy efficiency and image quality. This design has a certain reference value for the design of the infrared fiber optical system.
NASA Astrophysics Data System (ADS)
Venable, Demetrius D.; Whiteman, David N.; Calhoun, Monique N.; Dirisu, Afusat O.; Connell, Rasheen M.; Landulfo, Eduardo
2011-08-01
We have investigated a technique that allows for the independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. This technique utilizes a procedure whereby a light source of known spectral characteristics is scanned across the aperture of the lidar system's telescope and the overall optical efficiency of the system is determined. Direct analysis of the temperature-dependent differential scattering cross sections for vibration and vibration-rotation transitions (convolved with narrowband filters) along with the measured efficiency of the system, leads to a theoretical determination of the water vapor mixing ratio calibration factor. A calibration factor was also obtained experimentally from lidar measurements and radiosonde data. A comparison of the theoretical and experimentally determined values agrees within 5%. We report on the sensitivity of the water vapor mixing ratio calibration factor to uncertainties in parameters that characterize the narrowband transmission filters, the temperature-dependent differential scattering cross section, and the variability of the system efficiency ratios as the lamp is scanned across the aperture of the telescope used in the Howard University Raman Lidar system.
NASA Astrophysics Data System (ADS)
Tao, Qiuxiang; Gao, Tengfei; Liu, Guolin; Wang, Zhiwei
2017-04-01
The external digital elevation model (DEM) error is one of the main factors that affect the accuracy of mine subsidence monitored by two-pass differential interferometric synthetic aperture radar (DInSAR), which has been widely used in monitoring mining-induced subsidence. The theoretical relationship between external DEM error and monitored deformation error is derived based on the principles of interferometric synthetic aperture radar (DInSAR) and two-pass DInSAR. Taking the Dongtan and Yangcun mine areas of Jining as test areas, the difference and accuracy of 1:50000, ASTER GDEM V2, and SRTM DEMs are compared and analyzed. Two interferometric pairs of Advanced Land Observing Satellite Phased Array L-band SAR covering the test areas are processed using two-pass DInSAR with three external DEMs to compare and analyze the effect of three external DEMs on monitored mine subsidence in high- and low-coherence subsidence regions. Moreover, the reliability and accuracy of the three DInSAR-monitored results are compared and verified with leveling-measured subsidence values. Results show that the effect of external DEM on mine subsidence monitored by two-pass DInSAR is not only related to radar look angle, perpendicular baseline, slant range, and external DEM error, but also to the ground resolution of DEM, the magnitude of subsidence, and the coherence of test areas.
Khmyrova, Irina; Watanabe, Norikazu; Kholopova, Julia; Kovalchuk, Anatoly; Shapoval, Sergei
2014-07-20
We develop an analytical and numerical model for performing simulation of light extraction through the planar output interface of the light-emitting diodes (LEDs) with nonuniform current injection. Spatial nonuniformity of injected current is a peculiar feature of the LEDs in which top metal electrode is patterned as a mesh in order to enhance the output power of light extracted through the top surface. Basic features of the model are the bi-plane computation domain, related to other areas of numerical grid (NG) cells in these two planes, representation of light-generating layer by an ensemble of point light sources, numerical "collection" of light photons from the area limited by acceptance circle and adjustment of NG-cell areas in the computation procedure by the angle-tuned aperture function. The developed model and procedure are used to simulate spatial distributions of the output optical power as well as the total output power at different mesh pitches. The proposed model and simulation strategy can be very efficient in evaluation of the output optical performance of LEDs with periodical or symmetrical configuration of the electrodes.
Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2016-02-22
In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.
Optical antenna for a visible light communications receiver
NASA Astrophysics Data System (ADS)
Valencia-Estrada, Juan Camilo; García-Márquez, Jorge; Topsu, Suat; Chassagne, Luc
2018-01-01
Visible Light Communications (VLC) receivers adapted to be used in high transmission rates will eventually use either, high aperture lenses or non-linear optical elements capable of converting light arriving to the receiver into an electric signal. The high aperture lens case, reveals a challenge from an optical designers point-of-view. As a matter of fact, the lens must collect a wide aperture intensity flux using a limited aperture as its use is intended to portable devices. This last also limits both, lens thickness and its focal length. Here, we show a first design to be adapted to a VLC receiver that take these constraints into account. This paper describes a method to design catadioptric and monolithic lenses to be used as an optical collector of light entering from a near point light source as a spherical fan L with a wide acceptance angle α° and high efficiency. These lenses can be mass produced and therefore one can find many practical applications in VLC equipped devices. We show a first design for a near light source without magnification, and second one with a detector's magnification in a meridional section. We utilize rigorous geometric optics, vector analysis and ordinary differential equations.
Aperture excited dielectric antennas
NASA Technical Reports Server (NTRS)
Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.
1974-01-01
The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.
Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T
2016-05-30
We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.
A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere
Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing
2008-01-01
The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865
An all-optronic synthetic aperture lidar
NASA Astrophysics Data System (ADS)
Turbide, Simon; Marchese, Linda; Terroux, Marc; Babin, François; Bergeron, Alain
2012-09-01
Synthetic Aperture Radar (SAR) is a mature technology that overcomes the diffraction limit of an imaging system's real aperture by taking advantage of the platform motion to coherently sample multiple sections of an aperture much larger than the physical one. Synthetic Aperture Lidar (SAL) is the extension of SAR to much shorter wavelengths (1.5 μm vs 5 cm). This new technology can offer higher resolution images in day or night time as well as in certain adverse conditions. It could be a powerful tool for Earth monitoring (ship detection, frontier surveillance, ocean monitoring) from aircraft, unattended aerial vehicle (UAV) or spatial platforms. A continuous flow of high-resolution images covering large areas would however produce a large amount of data involving a high cost in term of post-processing computational time. This paper presents a laboratory demonstration of a SAL system complete with image reconstruction based on optronic processing. This differs from the more traditional digital approach by its real-time processing capability. The SAL system is discussed and images obtained from a non-metallic diffuse target at ranges up to 3m are shown, these images being processed by a real-time optronic SAR processor origiinally designed to reconstruct SAR images from ENVISAT/ASAR data.
Coded aperture imaging with self-supporting uniformly redundant arrays. [Patent application
Fenimore, E.E.
1980-09-26
A self-supporting uniformly redundant array pattern for coded aperture imaging. The invention utilizes holes which are an integer times smaller in each direction than holes in conventional URA patterns. A balance correlation function is generated where holes are represented by 1's, nonholes are represented by -1's, and supporting area is represented by 0's. The self-supporting array can be used for low energy applications where substrates would greatly reduce throughput.
NASA Astrophysics Data System (ADS)
Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.
2011-07-01
The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.
A method to improve the range resolution in stepped frequency continuous wave radar
NASA Astrophysics Data System (ADS)
Kaczmarek, Paweł
2018-04-01
In the paper one of high range resolution methods - Aperture Sampling - was analysed. Unlike MUSIC based techniques it proved to be very efficient in terms of achieving unambiguous synthetic range profile for ultra-wideband stepped frequency continuous wave radar. Assuming that minimal distance required to separate two targets in depth (distance) corresponds to -3 dB width of received echo, AS provided a 30,8 % improvement in range resolution in analysed scenario, when compared to results of applying IFFT. Output data is far superior in terms of both improved range resolution and reduced side lobe level than used typically in this area Inverse Fourier Transform. Furthermore it does not require prior knowledge or an estimate of number of targets to be detected in a given scan.
Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.
Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C
2012-10-01
A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.
Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...
2016-08-01
The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish
The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less
Yb-doped large-mode-area laser fiber fabricated by halide-gas-phase-doping technique
NASA Astrophysics Data System (ADS)
Peng, Kun; Wang, Yuying; Ni, Li; Wang, Zhen; Gao, Cong; Zhan, Huan; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2015-06-01
In this manuscript, we designed a rare-earth-halide gas-phase-doping setup to fabricate a large-mode-area fiber for high power laser applications. YbCl3 and AlCl3 halides are evaporated, carried respectively and finally mixed with usual host gas material SiCl4 at the hot zone of MCVD system. Owing to the all-gas-phasing reaction process and environment, the home-made Yb-doped fiber preform has a homogeneous large core and modulated refractive index profile to keep high beam quality. The drawn fiber core has a small numerical aperture of 0.07 and high Yb concentration of 9500 ppm. By using a master oscillator power amplifier system, nearly kW-level (951 W) laser output power was obtained with a slope efficiency of 83.3% at 1063.8 nm, indicating the competition and potential of the halide-gas-phase-doping technique for high power laser fiber fabrication.
Mechanical regulation of plant growth and development
NASA Technical Reports Server (NTRS)
Mitchell, C. A.
1984-01-01
Soybean and eggplant grown and shaken in a greenhouse exhibited decreased internode length, internode diameter, leaf area, and fresh and dry weight of roots and shoots in much the same way as outdoor-exposed plants. Perhaps more important than decreased dimensions of plant parts resulting from periodic seismic treatment is the inhibition of photosynthetic productivity that accompanies this stress. Soybeam plants briefly shaken or rubbed twice daily experienced a decrease in relative as well as absolute growth rate compared to that of undisturbed controls. Growth dynamics analysis revealed that virtually all of the decline in relative growth rate (RGR) was due to a decline in net assimilation rate (NAR), but not in leaf area ratio (LAR). Lower NAR suggests that the stress-induced decrease in dry weight gain is due to a decline in photosynthetic efficiency. Possible effects on stomatal aperture was investigated by measuring rates of whole plant transpiration as a function of seismo-stress, and a transitory decrease followed by a gradual, partial recovery was detected.
Measurement and removal of cladding light in high power fiber systems
NASA Astrophysics Data System (ADS)
Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.
Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong
2016-01-01
Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070
Thermo-electronic solar power conversion with a parabolic concentrator
NASA Astrophysics Data System (ADS)
Olukunle, Olawole C.; De, Dilip K.
2016-02-01
We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.
Performance analysis of a coherent free space optical communication system based on experiment.
Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun
2017-06-26
Based on our previous study and designed experimental AO system with a 97-element continuous surface deformable mirror, we conduct the performance analysis of a coherent free space optical communication (FSOC) system for mixing efficiency (ME), bit error rate (BER) and outage probability under different Greenwood frequency and atmospheric coherent length. The results show that the influence of the atmospheric temporal characteristics on the performance is slightly stronger than that of the spatial characteristics when the receiving aperture and the number of sub-apertures are given. This analysis result provides a reference for the design of the coherent FSOC system.
Synthetic aperture radar target detection, feature extraction, and image formation techniques
NASA Technical Reports Server (NTRS)
Li, Jian
1994-01-01
This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarepisheh, M; Li, R; Xing, L
Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less
Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li
2016-10-17
The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.
Russo, Paolo; Mettivier, Giovanni
2011-04-01
The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35 kVp and M = 6.1, with a detector entrance exposure as low as 1.82 mR (0.125 mA s tube load). The slit camera indicated a focal spot of 0.112 mm x 0.104 mm at 35 kVp and M = 3.15, with an exposure at the detector of 72 mR. Focal spot measurements with the coded mask could be performed up to 80 kVp. Tolerance to angular misalignment with the reference beam up to 7 degrees in in-plane rotations and 1 degrees deg in out-of-plane rotations was observed. The axial distance of the focal spot from the coded mask could also be determined. It is possible to determine the beam intensity via measurement of the intensity of the decoded image of the focal spot and via a calibration procedure. Coded aperture masks coupled to a digital area detector produce precise determinations of the focal spot of an x-ray tube with reduced tube loading and measurement time, coupled to a large tolerance in the alignment of the mask.
Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.
Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao
2018-01-12
Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.
Array feed synthesis for correction of reflector distortion and Vernier Beamsteering
NASA Technical Reports Server (NTRS)
Blank, S. J.; Imbriale, W. A.
1986-01-01
An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum choice of planar array feed configuration (i.e., number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.
SEASAT views oceans and sea ice with synthetic aperture radar
NASA Technical Reports Server (NTRS)
Fu, L. L.; Holt, B.
1982-01-01
Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.
Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring
NASA Astrophysics Data System (ADS)
Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin
2015-08-01
In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.
Improving the photometric precision of IRAC Channel 1
NASA Astrophysics Data System (ADS)
Mighell, Kenneth J.; Glaccum, William; Hoffmann, William
2008-07-01
Planning is underway for a possible post-cryogenic mission with the Spitzer Space Telescope. Only Channels 1 and 2 (3.6 and 4.5 μm) of the Infrared Array Camera (IRAC) will be operational; they will have unmatched sensitivity from 3 to 5 microns until the James Webb Space Telescope is launched. At SPIE Orlando, Mighell described his NASA-funded MATPHOT algorithm for precision stellar photometry and astrometry and presented MATPHOT-based simulations that suggested Channel 1 stellar photometry may be significantly improved by modeling the nonuniform RQE within each pixel, which, when not taken into account in aperture photometry, causes the derived flux to vary according to where the centroid falls within a single pixel (the pixel-phase effect). We analyze archival observations of calibration stars and compare the precision of stellar aperture photometry, with the recommended 1-dimensional and a new 2-dimensional pixel-phase aperture-flux correction, and MATPHOT-based PSF-fitting photometry which accounts for the observed loss of stellar flux due to the nonuniform intrapixel quantum efficiency. We show how the precision of aperture photometry of bright isolated stars corrected with the new 2-dimensional aperture-flux correction function can yield photometry that is almost as precise as that produced by PSF-fitting procedures. This timely research effort is intended to enhance the science return not only of observations already in Spitzer data archive but also those that would be made during the Spitzer Warm Mission.
Holographic metasurface systems for beam-forming and imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Smith, David R.
2016-09-01
Metamaterials offer an alternative perspective for the design of new materials and devices. The advantage of the metamaterial description is that certain device solutions can more easily be recognized. Here, we discuss broadly the impact of the metamaterial design philosophy on quasi-optical apertures based on patterned holographic metasurfaces. In a guided wave format, in which radiating complementary metamaterial irises are patterned on the upper plate of a microstrip or parallel plate waveguide, the reference wave is equivalent to the guided wave and the entire structure becomes a compact, efficient holographic, aperture antenna. We have developed a millimeter-wave imaging system that makes use of a set of complementary metamaterial waveguide panels to form a frequency-diverse aperture. In this context, the metamaterial aperture produces a complex radiation pattern that varies spatially as a function of the driving frequency; a frequency sweep over a selected bandwidth thus illuminates a region of space with a set of distinct radiation patterns. Collecting the returned signal reflected by illuminated objects within the scene, a set of measurements can be made from which an image of the scene can be reconstructed. This imaging application provides a useful example of the introduction, integration and optimization of a metamaterial aperture into a complete system, where all other aspects of the system—including algorithms, calibration, software and electronics—must be tailored for the particulars of the metamaterial component. As metamaterials transition from science to technology, these aspects may prove just as challenging and interesting as the underlying metamaterial components.
Fresnel Lenses for Wide-Aperture Optical Receivers
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
2004-01-01
Wide-aperture receivers for freespace optical communication systems would utilize Fresnel lenses instead of conventional telescope lenses, according to a proposal. Fresnel lenses weigh and cost much less than conventional lenses having equal aperture widths. Plastic Fresnel lenses are commercially available in diameters up to 5 m large enough to satisfy requirements for aperture widths of the order of meters for collecting sufficient light in typical long-distance free-space optical communication systems. Fresnel lenses are not yet suitable for high-quality diffraction-limited imaging, especially in polychromatic light. However, optical communication systems utilize monochromatic light, and there is no requirement for high-quality imaging; instead, the basic requirement for an optical receiver is to collect the incoming monochromatic light over a wide aperture and concentrate the light onto a photodetector. Because of lens aberrations and diffraction, the light passing through any lens is focused to a blur circle rather than to a point. Calculations for some representative cases of wide-aperture non-diffraction-limited Fresnel lenses have shown that it should be possible to attain blur-circle diameters of less than 2 mm. Preferably, the blur-circle diameter should match the width of the photodetector. For most high-bandwidth communication applications, the required photodetector diameters would be about 1 mm. In a less-preferable case in which the blur circle was wider than a single photodetector, it would be possible to occupy the blur circle with an array of photodetectors. As an alternative to using a single large Fresnel lens, one could use an array of somewhat smaller lenses to synthesize the equivalent aperture area. Such a configuration might be preferable in a case in which a single Fresnel lens of the requisite large size would be impractical to manufacture, and the blur circle could not be made small enough. For example one could construct a square array of four 5-m-diameter Fresnel lenses to obtain the same light-collecting area as that of a single 10-m-diameter lens. In that case (see figure), the light collected by each Fresnel lens could be collimated, the collimated beams from the four Fresnel lenses could be reflected onto a common offaxis paraboloidal reflector, and the paraboloidal reflector would focus the four beams onto a single photodetector. Alternatively, detected signal from each detector behind each lens would be digitized before summing the signals.
High-Aperture-Efficiency Horn Antenna
NASA Technical Reports Server (NTRS)
Pickens, Wesley; Hoppe, Daniel; Epp, Larry; Kahn, Abdur
2005-01-01
A horn antenna (see Figure 1) has been developed to satisfy requirements specific to its use as an essential component of a high-efficiency Ka-band amplifier: The combination of the horn antenna and an associated microstrip-patch antenna array is required to function as a spatial power divider that feeds 25 monolithic microwave integrated-circuit (MMIC) power amplifiers. The foregoing requirement translates to, among other things, a further requirement that the horn produce a uniform, vertically polarized electromagnetic field in its patches identically so that the MMICs can operate at maximum efficiency. The horn is fed from a square waveguide of 5.9436-mm-square cross section via a transition piece. The horn features cosine-tapered, dielectric-filled longitudinal corrugations in its vertical walls to create a hard boundary condition: This aspect of the horn design causes the field in the horn aperture to be substantially vertically polarized and to be nearly uniform in amplitude and phase. As used here, cosine-tapered signifies that the depth of the corrugations is a cosine function of distance along the horn. Preliminary results of finite-element simulations of performance have shown that by virtue of the cosine taper the impedance response of this horn can be expected to be better than has been achieved previously in a similar horn having linearly tapered dielectric- filled longitudinal corrugations. It is possible to create a hard boundary condition by use of a single dielectric-filled corrugation in each affected wall, but better results can be obtained with more corrugations. Simulations were performed for a one- and a three-corrugation cosine-taper design. For comparison, a simulation was also performed for a linear- taper design (see Figure 2). The three-corrugation design was chosen to minimize the cost of fabrication while still affording acceptably high performance. Future designs using more corrugations per wavelength are expected to provide better field responses and, hence, greater aperture efficiencies.
Evaluation of coded aperture radiation detectors using a Bayesian approach
NASA Astrophysics Data System (ADS)
Miller, Kyle; Huggins, Peter; Labov, Simon; Nelson, Karl; Dubrawski, Artur
2016-12-01
We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.
NASA Technical Reports Server (NTRS)
Heedy, D. J.; Burnside, W. D.
1984-01-01
The moment method and the uniform geometrical theory of diffraction are utilized to obtain two separate solutions for the E-plane field pattern of an aperture-matched horn antenna. This particular horn antenna consists of a standard pyramidal horn with the following modifications: a rolled edge section attached to the aperture edges and a curved throat section. The resulting geometry provides significantly better performance in terms of the pattern, impedance, and frequency characteristics than normally obtainable. The moment method is used to calculate the E-plane pattern and BSWR of the antenna. However, at higher frequencies, large amounts of computation time are required. The uniform geometrical theory of diffraction provides a quick and efficient high frequency solution for the E-plane field pattern. In fact, the uniform geometrical theory of diffraction may be used to initially design the antenna; then, the moment method may be applied to fine tune the design. This procedure has been successfully applied to a compact range feed design.
Yudow, B.D.
1986-02-24
A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.
Yudow, Bernard D.
1987-01-01
A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.
Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing
2017-01-01
This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057
Interferometric Shack-Hartmann wavefront sensor with an array of four-hole apertures.
López, David; Ríos, Susana
2010-04-20
A modified Hartmann test based on the interference produced by a four-hole mask can be used to measure an unknown wavefront. To scan the wavefront, the interference pattern is measured for different positions of the mask. The position of the central fringe of the diamond-shaped interference pattern gives a measure of the local wavefront slopes. Using a set of four-hole apertures located behind an array of lenslets in such a way that each four-hole window is inside one lenslet area, a set of four-hole interference patterns can be obtained in the back focal plane of the lenslets without having to scan the wavefront. The central fringe area of each interference pattern is narrower than the area of the central maximum of the diffraction pattern of the lenslet, increasing the accuracy in the estimate of the lobe position as compared with the Shack-Hartmann wavefront sensor.
Development of procedures for programmable proximity aperture lithography
NASA Astrophysics Data System (ADS)
Whitlow, H. J.; Gorelick, S.; Puttaraksa, N.; Napari, M.; Hokkanen, M. J.; Norarat, R.
2013-07-01
Programmable proximity aperture lithography (PPAL) with MeV ions has been used in Jyväskylä and Chiang Mai universities for a number of years. Here we describe a number of innovations and procedures that have been incorporated into the LabView-based software. The basic operation involves the coordination of the beam blanker and five motor-actuated translators with high accuracy, close to the minimum step size with proper anti-collision algorithms. By using special approaches, such writing calibration patterns, linearisation of position and careful backlash correction the absolute accuracy of the aperture size and position, can be improved beyond the standard afforded by the repeatability of the translator end-point switches. Another area of consideration has been the fluence control procedures. These involve control of the uniformity of the beam where different approaches for fluence measurement such as simultaneous aperture current and the ion current passing through the aperture using a Faraday cup are used. Microfluidic patterns may contain many elements that make-up mixing sections, reaction chambers, separation columns and fluid reservoirs. To facilitate conception and planning we have implemented a .svg file interpreter, that allows the use of scalable vector graphics files produced by standard drawing software for generation of patterns made up of rectangular elements.
NASA Technical Reports Server (NTRS)
Kelly, Kenneth C.; Huang, John
1999-01-01
A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.
NASA Technical Reports Server (NTRS)
Kelly, Kenneth C.; Huang, John
2000-01-01
A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.
Formation of short high-power laser radiation pulses in excimer mediums
NASA Astrophysics Data System (ADS)
Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.
2007-06-01
Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.
Method and apparatus for Delta Kappa synthetic aperture radar measurement of ocean current
NASA Technical Reports Server (NTRS)
Jain, A. (Inventor)
1985-01-01
A synthetic aperture radar (SAR) employed for delta k measurement of ocean current from a spacecraft without the need for a narrow beam and long observation times. The SAR signal is compressed to provide image data for different sections of the chirp band width, equivalent to frequencies and a common area for the separate image fields is selected. The image for the selected area at each frequency is deconvolved to obtain the image signals for the different frequencies and the same area. A product of pairs of signals is formed, Fourier transformed and squared. The spectrum thus obtained from different areas for the same pair of frequencies are added to provide an improved signal to noise ratio. The shift of the peak from the center of the spectrum is measured and compared to the expected shift due to the phase velocity of the Bragg scattering wave. Any difference is a measure of current velocity v sub o (delta k).
Efficient Strategies for Estimating the Spatial Coherence of Backscatter
Hyun, Dongwoon; Crowley, Anna Lisa C.; Dahl, Jeremy J.
2017-01-01
The spatial coherence of ultrasound backscatter has been proposed to reduce clutter in medical imaging, to measure the anisotropy of the scattering source, and to improve the detection of blood flow. These techniques rely on correlation estimates that are obtained using computationally expensive strategies. In this study, we assess existing spatial coherence estimation methods and propose three computationally efficient modifications: a reduced kernel, a downsampled receive aperture, and the use of an ensemble correlation coefficient. The proposed methods are implemented in simulation and in vivo studies. Reducing the kernel to a single sample improved computational throughput and improved axial resolution. Downsampling the receive aperture was found to have negligible effect on estimator variance, and improved computational throughput by an order of magnitude for a downsample factor of 4. The ensemble correlation estimator demonstrated lower variance than the currently used average correlation. Combining the three methods, the throughput was improved 105-fold in simulation with a downsample factor of 4 and 20-fold in vivo with a downsample factor of 2. PMID:27913342
Swift/BAT Calibration and Spectral Response
NASA Technical Reports Server (NTRS)
Parsons, A.
2004-01-01
The Burst Alert Telescope (BAT) aboard NASA#s Swift Gamma-Ray Burst Explorer is a large coded aperture gamma-ray telescope consisting of a 2.4 m (8#) x 1.2 m (4#) coded aperture mask supported 1 meter above a 5200 square cm area detector plane containing 32,768 individual 4 mm x 4 mm x 2 mm CZT detectors. The BAT is now completely assembled and integrated with the Swift spacecraft in anticipation of an October 2004 launch. Extensive ground calibration measurements using a variety of radioactive sources have resulted in a moderately high fidelity model for the BAT spectral and photometric response. This paper describes these ground calibration measurements as well as related computer simulations used to study the efficiency and individual detector properties of the BAT detector array. The creation of a single spectral response model representative of the fully integrated BAT posed an interesting challenge and is at the heart of the public analysis tool #batdrmgen# which computes a response matrix for any given sky position within the BAT FOV. This paper will describe the batdrmgen response generator tool and conclude with a description of the on-orbit calibration plans as well as plans for the future improvements needed to produce the more detailed spectral response model that is required for the construction of an all-sky hard x-ray survey.
Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit
NASA Astrophysics Data System (ADS)
Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.
2017-05-01
Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.
NASA Astrophysics Data System (ADS)
Nami, Mohsen; Eller, Rhett F.; Okur, Serdal; Rishinaramangalam, Ashwin K.; Liu, Sheng; Brener, Igal; Feezell, Daniel F.
2017-01-01
Controlled bottom-up selective-area epitaxy (SAE) is used to tailor the morphology and photoluminescence properties of GaN/InGaN core-shell nanowire arrays. The nanowires are grown on c-plane sapphire substrates using pulsed-mode metal organic chemical vapor deposition. By varying the dielectric mask configuration and growth conditions, we achieve GaN nanowire cores with diameters ranging from 80 to 700 nm that exhibit various degrees of polar, semipolar, and nonpolar faceting. A single InGaN quantum well (QW) and GaN barrier shell is also grown on the GaN nanowire cores and micro-photoluminescence is obtained and analyzed for a variety of nanowire dimensions, array pitch spacings, and aperture diameters. By increasing the nanowire pitch spacing on the same growth wafer, the emission wavelength redshifts from 440 to 520 nm, while increasing the aperture diameter results in a ˜35 nm blueshift. The thickness of one QW/barrier period as a function of pitch and aperture diameter is inferred using scanning electron microscopy, with larger pitches showing significantly thicker QWs. Significant increases in indium composition were predicted for larger pitches and smaller aperture diameters. The results are interpreted in terms of local growth conditions and adatom capture radius around the nanowires. This work provides significant insight into the effects of mask configuration and growth conditions on the nanowire properties and is applicable to the engineering of monolithic multi-color nanowire LEDs on a single chip.
Sugisawa, Koichi; Ichikawa, Katsuhiro; Minamishima, Kazuya; Hasegawa, Masakazu; Yamada, Yoshitake; Jinzaki, Masahiro
2017-01-01
The purpose of this study was to evaluate the effect of the virtual monochromatic spectral images (VMSI) and the model-based iterative reconstruction (MBIR) images, to evaluate the influence of the aperture size (40- and 20-mm beam) on renal pseudoenhancement (PE) compared with the filtered back projection (FBP) images. The renal compartment-CT phantom was filled with iodinated contrast material diluted to the attenuation of 180 Hounsfield units (HU) at 120 kV. The water-filled spherical structures, which simulate cyst, were inserted into the renal compartment. Those diameters were 7, 15 and 25 mm. These were scanned by conventional mode (helical scan, 120 kV-FBP) and dual energy mode. 70 keV-VMSI were reconstructed from the dual energy mode, and MBIR images were reconstructed from conventional mode at 40- and 20-mm aperture. Additionally, the phantom was scanned using non-helical mode with 20-mm aperture, and FBP images were reconstructed. The CT value of the PE for cyst areas was measured for these images. The CT values of the cysts were 20.0-14.3 HU on the FBP images, 12.8-12.7 HU on the 70 keV-VMSI (PE-inhibition ratio was 36.0-11.2%) and 16.2-14.0 HU on the MBIR images (19.0-2.1%), respectively, at 40-mm aperture. The PE-inhibition ratio scanned by 20-mm aperture was improved by 28.0% with FBP, 32.8% with 70 keV-VMSI and 29.6% with MBIR compared with 40-mm aperture. One of the FBP images with non-helical mode was 11.6 HU. The best CT technique to minimize PE was the combination of 70 keV-VMSI and 20-mm aperture.
InGaAsP/InP-air-aperture microcavities for single-photon sources at 1.55-μm telecommunication band
NASA Astrophysics Data System (ADS)
Guo, Sijie; Zheng, Yanzhen; Weng, Zhuo; Yao, Haicheng; Ju, Yuhao; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.; Song, Hai-Zhi
2016-11-01
InGaAsP/InP-air-aperture micropillar cavities are proposed to serve as 1.55-μm single photon sources, which are indispensable in silica-fiber based quantum information processing. Owing to air-apertures introduced to InP layers, and adiabatically tapered distributed Bragg-reflector structures used in the central cavity layers, the pillar diameters can be less than 1 μm, achieving mode volume as small as (λ/n)3, and the quality factors are more than 104 - 105, sufficient to increase the quantum dot emission rate for 100 times and create strong coupling between the optical mode and the 1.55- μm InAs/InP quantum dot emitter. The mode wavelengths and quality factors are found weakly changing with the cavity size and the deviation from the ideal shape, indicating the robustness against the imperfection of the fabrication technique. The fabrication, simply epitaxial growth, dry and chemical etching, is a damage-free and monolithic process, which is advantageous over previous hybrid cavities. The above properties satisfy the requirements of efficient, photonindistinguishable and coherent 1.55-μm quantum dot single photon sources, so the proposed InGaAsP/InP-air-aperture micropillar cavities are prospective candidates for quantum information devices at telecommunication band.
NASA Astrophysics Data System (ADS)
Huang, Shen-Che; Li, Heng; Zhang, Zhe-Han; Chen, Hsiang; Wang, Shing-Chung; Lu, Tien-Chang
2017-01-01
We report on the design of the geometry and chip size-controlled structures of microscale light-emitting diodes (micro-LEDs) with a shallow-etched oxide-refilled current aperture and their performance. The proposed structure, which combines an indium-tin-oxide layer and an oxide-confined aperture, exhibited not only uniform current distribution but also remarkably tight current confinement. An extremely high injection level of more than 90 kA/cm2 was achieved in the micro-LED with a 5-μm aperture. Current spreading and the droop mechanism in the investigated devices were characterized through electroluminescence measurements, optical microscopy, and beam-view imaging. Furthermore, we utilized the β-model and S-model to elucidate current crowding and the efficiency droop phenomenon in the investigated micro-LEDs. The luminescence results evidenced the highly favorable performance of the fabricated micro-LEDs, which is a result of their more uniform current spreading and lower junction temperature relative to conventional LEDs. Moreover, the maximum endured current density could be further increased by reducing the aperture size of the micro-LEDs. The proposed design, which is expected to be beneficial for the development of high-performance array-based micro-LEDs, is practicable through current state-of-the-art processing techniques.
Optimization of rotational arc station parameter optimized radiation therapy.
Dong, P; Ungun, B; Boyd, S; Xing, L
2016-09-01
To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.
Optimization of rotational arc station parameter optimized radiation therapy
Dong, P.; Ungun, B.; Boyd, S.; Xing, L.
2016-01-01
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future. PMID:27587028
Optimization of rotational arc station parameter optimized radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P.; Ungun, B.
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trappedmore » in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.« less
NASA Astrophysics Data System (ADS)
Jones, T.; Detwiler, R. L.
2016-12-01
Long-term subsurface energy production and contaminant storage strategies often rely on induced-mineralization to control the transport of dissolved ions. In low-permeability rocks, precipitation is most likely to occur in fractures that act as leakage pathways for fluids that are in chemical disequilibrium with the formation minerals. These fractures are commonly idealized as parallel-plate channels with uniform surface mineralogy, and as a result, our predictions often suggest that precipitation leads to fast permeability reduction. However, natural fractures contain both heterogeneous mineralogy and three-dimensional surface roughness, and our understanding of how precipitation affects local permeability in these environments is limited. To examine the impacts of local heterogeneity on the feedback between mineral precipitation and permeability, we performed two long-term experiments in transparent analog fractures: (i) uniform-aperture and (ii) variable-aperture. We controlled the initial heterogeneous surface mineralogy in both experiments by seeding the bottom borosilicate fracture surfaces with randomly distributed clusters of CaCO3 crystals. Continuous flow ISCO pumps injected a well-mixed CaCl2-NaHCO3 solution, log(ΩCaCO3) = 1.44, into the fracture at 0.5 ml/min and transmitted-light techniques provided high-resolution (83 x 83 µm), direct measurements of aperture and fluid transport across the fracture. In experiment (i), precipitation decreased local aperture at discrete CaCO3 reaction sites near the fracture inlet, but transport variations across the fracture remained relatively small due to the initial lack of aperture heterogeneity. In contrast, the feedback between precipitation and aperture in experiment (ii) focused flow into large-aperture, preferential flow paths that contained significantly less CaCO3 area than the fracture scale average. Precipitation-induced aperture reduction in (ii) reduced dissolved ion transport into small-aperture regions of the fracture that were abundant with CaCO3 and led to a 72% decrease in measured precipitation rate. These results suggest that incorporating the effects of local heterogeneity may dramatically improve our ability to predict precipitation-induced permeability alterations in fractured rocks.
NASA Astrophysics Data System (ADS)
Coetzee, R. S.; Zheng, X.; Fregnani, L.; Laurell, F.; Pasiskevicius, V.
2018-06-01
A high-energy, ns, narrow-linewidth optical parametric oscillator and amplifier system based on large-aperture periodically poled Rb:KTP is presented. The 2 µm seed source is a singly resonant OPO locked with a transversely chirped volume Bragg grating, allowing a wavelength tuning of 21 nm and output linewidth of 0.56 nm. A maximum output energy of 52 mJ and conversion efficiency of 36% was obtained from the amplifier for a pump energy of 140 mJ. The high-energy and the robust and narrow dual-wavelength spectra obtained make this system an ideal pump source for difference frequency generation-based THz generation schemes.
Advanced communications payload for mobile applications
NASA Technical Reports Server (NTRS)
Ames, S. A.; Kwan, R. K.
1990-01-01
An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.
Kappa, Jan; Schmitt, Klemens M; Rahm, Marco
2017-08-21
Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.
Spatially variant apodization for squinted synthetic aperture radar images.
Castillo-Rubio, Carlos F; Llorente-Romano, Sergio; Burgos-García, Mateo
2007-08-01
Spatially variant apodization (SVA) is a nonlinear sidelobe reduction technique that improves sidelobe level and preserves resolution at the same time. This method implements a bidimensional finite impulse response filter with adaptive taps depending on image information. Some papers that have been previously published analyze SVA at the Nyquist rate or at higher rates focused on strip synthetic aperture radar (SAR). This paper shows that traditional SVA techniques are useless when the sensor operates with a squint angle. The reasons for this behaviour are analyzed, and a new implementation that largely improves the results is presented. The algorithm is applied to simulated SAR images in order to demonstrate the good quality achieved along with efficient computation.
Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei
2016-02-10
Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Superlattice photonic crystal as broadband solar absorber for high temperature operation.
Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan
2014-12-15
A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.
Robotic multi-well planar patch-clamp for native and primary mammalian cells
Milligan, Carol J; Li, Jing; Sukumar, Piruthivi; Majeed, Yasser; Dallas, Mark L; English, Anne; Emery, Paul; Porter, Karen E; Smith, Andrew M; McFadzean, Ian; Beccano-Kelly, Dayne; Bahnasi, Yahya; Cheong, Alex; Naylor, Jacqueline; Zeng, Fanning; Liu, Xing; Gamper, Nikita; Jiang, Lin-Hua; Pearson, Hugh A; Peers, Chris; Robertson, Brian; Beech, David J
2009-01-01
Multi-well robotic planar patch-clamp has become common in drug development and safety programmes because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favoured method. Here we show the wider potential of the multi-well approach with the capability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints, and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by pre-programmed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 hr depending on the experimental design and yields 16-33 cell recordings. PMID:19197268
Stable TEM00-mode Nd:YAG solar laser operation by a twisted fused silica light-guide
NASA Astrophysics Data System (ADS)
Bouadjemine, R.; Liang, D.; Almeida, J.; Mehellou, S.; Vistas, C. R.; Kellou, A.; Guillot, E.
2017-12-01
To improve the output beam stability of a TEM00-mode solar-pumped laser, a twisted fused silica light-guide was used to achieve uniform pumping along a 3 mm diameter and 50 mm length Nd:YAG rod. The concentrated solar power at the focal spot of a primary parabolic mirror with 1.18 m2 effective collection area was efficiently coupled to the entrance aperture of a 2D-CPC/2V-shaped pump cavity, within which the thin laser rod was pumped. Optimum solar laser design parameters were found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 2.3 W continuous-wave TEM00-mode 1064 nm laser power was measured, corresponding to 1.96 W/m2 collection efficiency and 2.2 W laser beam brightness figure of merit. Excellent TEM00-mode laser beam profile at M2 ≤ 1.05 and very good output power stability of less than 1.6% were achieved. Heliostat orientation error dependent laser power variation was considerably less than previous solar laser pumping schemes.
A high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen
NASA Astrophysics Data System (ADS)
Luo, ZhiJie; Luo, JianKun; Zhao, WenWen; Cao, Yang; Lin, WeiJie; Zhou, GuoFu
2018-02-01
Electrowetting display technology is realized by tuning the surface energy of a hydrophobic surface by applying a voltage based on electrowetting mechanism. With the rapid development of the electrowetting industry, how to analyze efficiently the quality of an electrowetting display screen has a very important significance. There are two kinds of dead pixels on the electrowetting display screen. One is that the oil of pixel cannot completely cover the display area. The other is that indium tin oxide semiconductor wire connecting pixel and foil was burned. In this paper, we propose a high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. First, we built an aperture ratio-capacitance model based on the electrical characteristics of electrowetting display. A field-programmable gate array is used as the integrated logic hub of the system for a highly reliable and efficient control of the circuit. Dead pixels can be detected and displayed on a PC-based 2D graphical interface in real time. The proposed dead pixel detection scheme reported in this work has promise in automating electrowetting display experiments.
Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection
NASA Astrophysics Data System (ADS)
Faust, Anthony A.; Rothschild, Richard E.; Leblanc, Philippe; McFee, John Elton
2009-02-01
Defence R&D Canada has an active research and development program on detection of explosive devices using nuclear methods. One system under development is a coded aperture-based X-ray backscatter imaging detector designed to provide sufficient speed, contrast and spatial resolution to detect antipersonnel landmines and improvised explosive devices. The successful development of a hand-held imaging detector requires, among other things, a light-weight, ruggedized detector with low power requirements, supplying high spatial resolution. The University of California, San Diego-designed HEXIS detector provides a modern, large area, high-temperature CZT imaging surface, robustly packaged in a light-weight housing with sound mechanical properties. Based on the potential for the HEXIS detector to be incorporated as the detection element of a hand-held imaging detector, the authors initiated a collaborative effort to demonstrate the capability of a coded aperture-based X-ray backscatter imaging detector. This paper will discuss the landmine and IED detection problem and review the coded aperture technique. Results from initial proof-of-principle experiments will then be reported.
Milojkovic, Predrag; Christensen, Marc P; Haney, Michael W
2006-07-01
The FAST-Net (Free-space Accelerator for Switching Terabit Networks) concept uses an array of wide-field-of-view imaging lenses to realize a high-density shuffle interconnect pattern across an array of smart-pixel integrated circuits. To simplify the optics we evaluated the efficiency gained in replacing spherical surfaces with aspherical surfaces by exploiting the large disparity between narrow vertical cavity surface emitting laser (VCSEL) beams and the wide field of view of the imaging optics. We then analyzed trade-offs between lens complexity and chip real estate utilization and determined that there exists an optimal numerical aperture for VCSELs that maximizes their area density. The results provide a general framework for the design of wide-field-of-view free-space interconnection systems that incorporate high-density VCSEL arrays.
Extracting concentrated guided light.
Ries, H; Segal, A; Karni, J
1997-05-01
The maximum concentration of radiation is proportional to the square of the refractive index of the medium in which it propagates. A medium with a high refractive index can also serve as a lightguide for concentrated radiation. However, if concentrated radiation is extracted from one medium, with a high refractive index, to another, whose index is lower (e.g., from fused silica into air), part of the radiation may be lost because of the total internal reflection at the interface. We present polygonal shapes suitable for efficient extraction of the concentrated radiation in a controllable way, without increasing the cross-section area (or diameter) of the lightguide. It is shown analytically and experimentally that the use of a secondary concentrator, followed by such a light extractor, both having a high refractive index, can provide considerably more power to a solar receiver with a specific aperture.
VizieR Online Data Catalog: NGC3115 & NGC1399 VEGAS-SSS globular clusters (Cantiello+, 2018)
NASA Astrophysics Data System (ADS)
Cantiello, M.; D'Abrusco, R.; Spavone, M.; Paolillo, M.; Capaccioli, M.; Limatola, L.; Grado, A.; Iodice, E.; Raimondo, G.; Napolitano, N.; Blakeslee, J. P.; Brocato, E.; Forbes, D. A.; Hilker, M.; Mieske, S.; Peletier, R.; van de Ven, G.; Schipani, P.
2017-11-01
Photometric catalogs for globular cluster (GC) candidates over the the 1 sq. degree area around NGC3115 and NGC1399 (ngc3115.dat and ngc1399.dat). The catalogues are based on u-, g- and i- band images from the VST elliptical galaxies survey (VEGAS). Aperture magnitudes, corrected for aperture correction are reported. We also provide the full catalogs of matched sources, which also include the matched background and foreground sources in the frames (ngc3115_full.dat and ngc1399_full.dat). (4 data files).
Five-hundred-meter Aperture Spherical Telescope, China
2016-09-07
The Five-hundred-meter Aperture Spherical Telescope (FAST) is a radio telescope in China's Guizhou Province. When it is completed in September, it will be the world's second largest radio telescope, with a diameter of 500m.The largest telescope is the operating Russian RATAN-600, with a diameter of 576m. The image was acquired April 14, 2013, covers an area of 6.2 by 8.2 km, and is located at 25.7 degrees north, 106.9 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA20986
Analysis of limited-diffractive and limited-dispersive X-waves generated by finite radial waveguides
NASA Astrophysics Data System (ADS)
Fuscaldo, Walter; Pavone, Santi C.; Valerio, Guido; Galli, Alessandro; Albani, Matteo; Ettorre, Mauro
2016-05-01
In this work, we analyze the spatial and temporal features of electromagnetic X-waves propagating in free space and generated by planar radiating apertures. The performance of ideal X-waves is discussed and compared to practical cases where the important effects related to the finiteness of the radiating aperture and the wavenumber dispersion are taken into account. In particular, a practical device consisting of a radial waveguide loaded with radiating slots aligned along a spiral path is considered for the practical case in the millimeter-wave range. A common mathematical framework is defined for a precise comparison of the spatiotemporal properties and focusing capabilities of the generated X-wave. It is clearly shown that the fractional bandwidth of the radiating aperture has a key role in the longitudinal confinement of an X-wave in both ideal and practical cases. In addition, the finiteness of the radiating aperture as well as the wavenumber dispersion clearly affect both the transverse and the longitudinal profiles of the generated radiation as it travels beyond the depth-of-field of the generated X-wave. Nevertheless, the spatiotemporal properties of the X-wave are preserved even in this "dispersive-finite" case within a defined region and duration related to the nondiffractive range and fractional bandwidth of the spectral components of the generated X-wave. The proposed analysis may open new perspectives for the efficient generation of X-waves over finite radiating apertures at millimeter waves where the dispersive behavior of realistic devices is no longer negligible.
Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.
1998-01-01
Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.
Process system and method for fabricating submicron field emission cathodes
Jankowski, A.F.; Hayes, J.P.
1998-05-05
A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape. 3 figs.
Process system and method for fabricating submicron field emission cathodes
Jankowski, Alan F.; Hayes, Jeffrey P.
1998-01-01
A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.
Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data
NASA Technical Reports Server (NTRS)
Henderson, F. M. (Principal Investigator)
1980-01-01
Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.
NASA Astrophysics Data System (ADS)
Zhou, Renjie; Jin, Di; Yaqoob, Zahid; So, Peter T. C.
2017-02-01
Due to the large number of available mirrors, the patterning speed, low-cost, and compactness, digital-micromirror devices (DMDs) have been extensively used in biomedical imaging system. Recently, DMDs have been brought to the quantitative phase microscopy (QPM) field to achieve synthetic-aperture imaging and tomographic imaging. Last year, our group demonstrated using DMD for QPM, where the phase-retrieval is based on a recently developed Fourier ptychography algorithm. In our previous system, the illumination angle was varied through coding the aperture plane of the illumination system, which has a low efficiency on utilizing the laser power. In our new DMD-based QPM system, we use the Lee-holograms, which is conjugated to the sample plane, to change the illumination angles for much higher power efficiency. Multiple-angle illumination can also be achieved with this method. With this versatile system, we can achieve FPM-based high-resolution phase imaging with 250 nm lateral resolution using the Rayleigh criteria. Due to the use of a powerful laser, the imaging speed would only be limited by the camera acquisition speed. With a fast camera, we expect to achieve close to 100 fps phase imaging speed that has not been achieved in current FPM imaging systems. By adding reference beam, we also expect to achieve synthetic-aperture imaging while directly measuring the phase of the sample fields. This would reduce the phase-retrieval processing time to allow for real-time imaging applications in the future.
Array feed synthesis for correction of reflector distortion and Vernier beamsteering
NASA Technical Reports Server (NTRS)
Blank, Stephen J.; Imbriale, William A.
1988-01-01
An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum chioce of planar array feed configuration (i.e., the number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.
High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D
NASA Astrophysics Data System (ADS)
Wallace, G. M.; Leccacori, R.; Doody, J.; Vieira, R.; Shiraiwa, S.; Wukitch, S. J.; Holcomb, C.; Pinsker, R. I.
2017-10-01
Efficient off-axis current drive scalable to reactors is a key enabling technology for a steady-state tokamak. Simulations of DIII-D discharges have identified high performance scenarios with excellent lower hybrid (LH) wave penetration, single pass absorption and high current drive efficiency. The strategy was to adapt known launching technology utilized in previous experiments on C-Mod (poloidal splitter) and Tore Supra (bi-junction) and remain within power density limits established in JET and Tore Supra. For a 2 MW source power antenna, the launcher consists of 32 toroidal apertures and 4 poloidal rows. The aperture is 60 mm x 5 mm with 1 mm septa and the peak n| | is 2.7+/-0.2 for 90□ phasing. Eight WR187 waveguides are routed from the R-1 port down under the lower cryopump, under the existing divertor, and up the central column with the long waveguide dimension along the vacuum vessel. Above the inner strike point region, each waveguide is twisted to orient the long dimension perpendicular to the vacuum vessel and splits into 4 toroidal apertures via bi-junctions. To protect the waveguide, the inner wall radius will need to increase by 2.5 cm. RF, disruption, and thermal analysis of the latest design will be presented. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award Number DE-FC02-04ER54698 and by MIT PSFC cooperative agreement DE-SC0014264.
Spectrophotovoltaic orbital power generation
NASA Technical Reports Server (NTRS)
Knowles, G.; Carroll, J.
1983-01-01
A subscale model of a photovoltaic power system employing spectral splitting and 1000:1 concentration was fabricated and tested. The 10-in. aperture model demonstrated 15.5% efficiency with 86% of the energy produced by a GaAs solar cell and 14% of the energy produced by an Si cell. The calculated efficiency of the system using the same solar cells, but having perfect optics, would be approximately 20%. The model design, component measurements, test results, and mathematical model are presented.
Advanced designs for non-imaging submillimeter-wave Winston cone concentrators
NASA Astrophysics Data System (ADS)
Nelson, A. O.; Grossman, E. N.
2014-05-01
We describe the design and simulation of several non-imaging concentrators designed to couple submillimeter wavelength radiation from free space into highly overmoded, rectangular, WR-10 waveguide. Previous designs are altered to improve the uniformity of efficiency rather than the efficiency itself. The concentrators are intended for use as adapters between instruments using overmoded WR-10 waveguide as input or output and sources propagating through free space. Previous simulation and measurement have shown that the angular response is primarily determined by the Winston cone and is well predicted by geometric optics theory while the efficiencies are primarily determined by the transition section. Additionally, previous work has shown insensitivity to polarization, orientation and beam size. Several separate concentrator designs are studied, all of which use a Winston cone (also known as a compound parabolic concentrator) with an input diameter ranging from 4 mm to 16 mm, and "throat" diameters of less than 0.5 mm to 4 mm as the initial interface. The use of various length adiabatic circular-to-rectangular transition sections is investigated, along with the effect of an additional, 25 mm waveguide section designed to model the internal waveguide of the power meter. Adapters without a transition section and a rectangular Winston cone throat aperture and double cone configurations are also studied. Adapters are analyzed in simulation for consistent efficiency across the opening aperture.
Edge detection for optical synthetic aperture based on deep neural network
NASA Astrophysics Data System (ADS)
Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin
2017-09-01
Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.
Controlling Data Collection to Support SAR Image Rotation
Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.
2008-10-14
A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dan; Ruan, Dan; O’Connor, Daniel
Purpose: To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. Methods: A total of seven patients—two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung—were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-basedmore » IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle–Pock algorithm, a first-order primal–dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Results: Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and mean critical organ doses were reduced by 1.94% and 1.44% of the prescription dose. The average number of delivery segments was 12.68 segments per beam for both the RAO and DMS plans. The N = 2 and N = 4 SOC designs were, on average, 1.56 and 1.80 times more efficient than the N = 1 SOC design to deliver. The mean aperture size produced by the RAO plans was 3.9 times larger than that of the DMS plans. Conclusions: The DAO and dose domain optimization approach enabled high quality IMRT plans using a low-complexity collimator setup. The dosimetric quality is comparable or slightly superior to conventional MLC-based IMRT plans using the same number of delivery segments. The SOC IMRT delivery efficiency can be significantly improved by increasing the leaf numbers, but the number is still significantly lower than the number of leaves in a typical MLC.« less
Nguyen, Dan; Ruan, Dan; O'Connor, Daniel; Woods, Kaley; Low, Daniel A; Boucher, Salime; Sheng, Ke
2016-02-01
To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. A total of seven patients-two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung-were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-based IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle-Pock algorithm, a first-order primal-dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and mean critical organ doses were reduced by 1.94% and 1.44% of the prescription dose. The average number of delivery segments was 12.68 segments per beam for both the RAO and DMS plans. The N = 2 and N = 4 SOC designs were, on average, 1.56 and 1.80 times more efficient than the N = 1 SOC design to deliver. The mean aperture size produced by the RAO plans was 3.9 times larger than that of the DMS plans. The DAO and dose domain optimization approach enabled high quality IMRT plans using a low-complexity collimator setup. The dosimetric quality is comparable or slightly superior to conventional MLC-based IMRT plans using the same number of delivery segments. The SOC IMRT delivery efficiency can be significantly improved by increasing the leaf numbers, but the number is still significantly lower than the number of leaves in a typical MLC.
Transmission Grating and Optics Technology Development for the Arcus Explorer Mission
NASA Astrophysics Data System (ADS)
Heilmann, Ralf; Arcus Team
2018-01-01
Arcus is a high-resolution x-ray spectroscopy MIDEX mission selected for a Phase A concept study. It is designed to explore structure formation through measurements of hot baryon distributions, feedback from black holes, and the formation and evolution of stars, disks, and exoplanet atmospheres. The design provides unprecedented sensitivity in the 1.2-5 nm wavelength band with effective area above 450 sqcm and spectral resolution R > 2500. The Arcus technology is based on 12 m-focal length silicon pore optics (SPO) developed for the European Athena mission, and critical-angle transmission (CAT) x-ray diffraction gratings and x-ray CCDs developed at MIT. The modular design consists of four parallel channels, each channel holding an optics petal, followed by a grating petal. CAT gratings are lightweight, alignment insensitive, high-efficiency x-ray transmission gratings that blaze into high diffraction orders, leading to high spectral resolution. Each optics petal represents an azimuthal sub-aperture of a full Wolter optic. The sub-aperturing effect increases spectral resolving power further. Two CCD readout strips receive photons from each channel, including higher-energy photons in 0th order. Each optics petal holds 34 SPO modules. Each grating petal holds 34 grating windows, and each window holds 4-6 grating facets. A grating facet consists of a silicon grating membrane, bonded to a flexure frame that interfaces with the grating window. We report on a sequence of tests with increasing complexity that systematically increase the Technology Readiness Level (TRL) for the combination of CAT gratings and SPOs towards TLR 6. CAT gratings have been evaluated in x rays for diffraction efficiency (> 30% at 2.5 nm) and for resolving power (R> 10,000). A CAT grating/SPO combination was measured at R ~ 3100 at blaze angles smaller than design values, exceeding Arcus requirements. Efficiency and resolving power were not impacted by vibration and thermal testing of gratings. A pair of large (32 mm x 32 mm) gratings was aligned using laser metrology, and alignment was verified under x rays. We present results on simultaneous illumination of the aligned grating pair, and describe our progress towards further tests.
Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dioszegi I.; Vanier P.E.; Salwen C.
2016-10-29
Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less
Mirror Illumination and Spillover Measurements of the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Gallardo, Patricio; Dunner, Rolando; Wollack, Ed; Jerez-Hanckes, Carlos
2012-01-01
The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220GHz and 280GHz, The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band, The detector performance depends critically on the total optical loading, requiring the spmover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1 m W source and a chopper wheel to produce a time-varying signal with a broad heam proflle, We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5,72 plus or minus 0,17m in diameter (95 plus or minus 3% of its geometrical size), while the aperture of the secondary yielded 2 plus or minus 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 plus or minus 4,8%. We found that the attenuation outside the primary aperture was -16 plus or minus 2dB, which is below the theoretical expectations, and -22 plus or minus 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2,24 pW to 188pW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tien, C; Brewer, M; Studenski, M
Purpose: Dynamic-jaw tracking maximizes the area blocked by both jaw and MLC in RapidArc. We developed a method to quantify jaw tracking. Methods: An Eclipse Scripting API (ESAPI) was used to export beam parameters for each arc’s control points. The specific beam parameters extracted were: gantry angle, control point number, meterset, x-jaw positions, y-jaw positions, MLC bank-number, MLC leaf-number, and MLC leaf-position. Each arc contained 178 control points with 120 MLC positions. MATLAB routines were written to process these parameters in order to calculate both the beam aperture (unblocked) size for each control point. An average aperture size was weightedmore » by meterset. Jaw factor was defined as the ratio between dynamic-jaw to static-jaw aperture size. Jaw factor was determined for forty retrospectively replanned patients treated with static-jaw delivery sites including lung, brain, prostate, H&N, rectum, and bladder. Results: Most patients had multiple arcs and reduced-field boosts, resulting in 151 fields. Of these, the lowest (0.4722) and highest (0.9622) jaw factor was observed in prostate and rectal cases, respectively. The median jaw factor was 0.7917 meaning there is the potential unincreased blocking by 20%. Clinically, the dynamic-jaw tracking represents an area surrounding the target which would receive MLC-only leakage transmission of 1.68% versus 0.1% with jaws. Jaw-tracking was more pronounced at areas farther from the target. In prostate patients, the rectum and bladder had 5.5% and 6.3% lower mean dose, respectively; the structures closer to the prostate such as the rectum and bladder both had 1.4% lower mean dose. Conclusion: A custom ESAPI script was coupled with a MATLAB routine in order to extract beam parameters from static-jaw plans and their replanned dynamic-jaw deliveries. The effects were quantified using jaw factor which is the ratio between the meterset weighted aperture size for dynamic-jaw fields versus static-jaw fields.« less
Taketomi, Shuji; Inui, Hiroshi; Tahara, Keitaro; Shirakawa, Nobuyuki; Tanaka, Sakae; Nakagawa, Takumi
2017-09-01
The effects of initial graft tension upon tunnel widening (TW) following anatomic anterior cruciate ligament (ACL) reconstruction have not been elucidated. The purpose of this study was to retrospectively investigate the effect of two different graft-tensioning protocols upon femoral TW following anatomic ACL reconstruction using a bone-patellar tendon-bone (BPTB) graft and a three-dimensional (3D) computed tomography (CT) model. Forty-three patients who underwent isolated ACL reconstruction using BPTB grafts were included in this study. In 18 out of the 43 patients, the graft was fixed at full knee extension with manual maximum pull (Group H). These patients were compared with 25 patients in whom the BPTB graft was fixed at full knee extension with 80-N pull (Group L). Tunnel aperture area was measured using 3D CT 1 week and 1 year postoperatively, thus enabling us to calculate the percentage change in the area of femoral tunnel aperture. Clinical assessment was performed 1 year postoperatively, corresponding to the time period of CT assessment, and involved the evaluation of Lysholm score, anterior knee stability using a KneeLax3 arthrometer, and the pivot-shift test. When measured at 1 year postoperatively, the mean area of the femoral tunnel aperture had increased by 78.6 ± 36.8% in Group H when compared with at 1 week postoperatively, whereas that of Group L had increased by 27.7 ± 32.3%. Furthermore, TW (%) in Group H was significantly greater than that of Group L (P < 0.001). No significant differences were detected between the two groups with regard to any of the clinical outcomes evaluated. High levels of initial graft tension resulted in greater TW of the femoral tunnel aperture following anatomical ACL reconstruction using BPTB grafts. However, such levels of graft tension did not affect clinical outcome.
RF characteristics of the hoop column antenna for the land mobile satellite system mission
NASA Astrophysics Data System (ADS)
Foldes, P.
1984-11-01
A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.
One-dimensional stitching interferometry assisted by a triple-beam interferometer
Xue, Junpeng; Huang, Lei; Gao, Bo; ...
2017-04-13
In this work, we proposed for stitching interferometry to use a triple-beam interferometer to measure both the distance and the tilt for all sub-apertures before the stitching process. The relative piston between two neighboring sub-apertures is then calculated by using the data in the overlapping area. Comparisons are made between our method, and the classical least-squares principle stitching method. Our method can improve the accuracy and repeatability of the classical stitching method when a large number of sub-aperture topographies are taken into account. Our simulations and experiments on flat and spherical mirrors indicate that our proposed method can decrease themore » influence of the interferometer error from the stitched result. The comparison of stitching system with Fizeau interferometry data is about 2 nm root mean squares and the repeatability is within ± 2.5 nm peak to valley.« less
RF characteristics of the hoop column antenna for the land mobile satellite system mission
NASA Technical Reports Server (NTRS)
Foldes, P.
1984-01-01
A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.
NASA Technical Reports Server (NTRS)
Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip;
2011-01-01
The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.
Gold, Raymond; Roberts, James H.
1989-01-01
A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.
Optimization study for the experimental configuration of CMB-S4
NASA Astrophysics Data System (ADS)
Barron, Darcy; Chinone, Yuji; Kusaka, Akito; Borril, Julian; Errard, Josquin; Feeney, Stephen; Ferraro, Simone; Keskitalo, Reijo; Lee, Adrian T.; Roe, Natalie A.; Sherwin, Blake D.; Suzuki, Aritoki
2018-02-01
The CMB Stage 4 (CMB-S4) experiment is a next-generation, ground-based experiment that will measure the cosmic microwave background (CMB) polarization to unprecedented accuracy, probing the signature of inflation, the nature of cosmic neutrinos, relativistic thermal relics in the early universe, and the evolution of the universe. CMB-S4 will consist of O(500,000) photon-noise-limited detectors that cover a wide range of angular scales in order to probe the cosmological signatures from both the early and late universe. It will measure a wide range of microwave frequencies to cleanly separate the CMB signals from galactic and extra-galactic foregrounds. To advance the progress towards designing the instrument for CMB-S4, we have established a framework to optimize the instrumental configuration to maximize its scientific output. The framework combines cost and instrumental models with a cosmology forecasting tool, and evaluates the scientific sensitivity as a function of various instrumental parameters. The cost model also allows us to perform the analysis under a fixed-cost constraint, optimizing for the scientific output of the experiment given finite resources. In this paper, we report our first results from this framework, using simplified instrumental and cost models. We have primarily studied two classes of instrumental configurations: arrays of large-aperture telescopes with diameters ranging from 2–10 m, and hybrid arrays that combine small-aperture telescopes (0.5-m diameter) with large-aperture telescopes. We explore performance as a function of telescope aperture size, distribution of the detectors into different microwave frequencies, survey strategy and survey area, low-frequency noise performance, and balance between small and large aperture telescopes for hybrid configurations. Both types of configurations must cover both large (~ degree) and small (~ arcmin) angular scales, and the performance depends on assumptions for performance vs. angular scale. The configurations with large-aperture telescopes have a shallow optimum around 4–6 m in aperture diameter, assuming that large telescopes can achieve good performance for low-frequency noise. We explore some of the uncertainties of the instrumental model and cost parameters, and we find that the optimum has a weak dependence on these parameters. The hybrid configuration shows an even broader optimum, spanning a range of 4–10 m in aperture for the large telescopes. We also present two strawperson configurations as an outcome of this optimization study, and we discuss some ideas for improving our simple cost and instrumental models used here. There are several areas of this analysis that deserve further improvement. In our forecasting framework, we adopt a simple two-component foreground model with spatially varying power-law spectral indices. We estimate de-lensing performance statistically and ignore non-idealities such as anisotropic mode coverage, boundary effect, and possible foreground residual. Instrumental systematics, which is not accounted for in our analyses, may also influence the conceptual design. Further study of the instrumental and cost models will be one of the main areas of study by the entire CMB-S4 community. We hope that our framework will be useful for estimating the influence of these improvements in the future, and we will incorporate them in order to further improve the optimization.
System optimization on coded aperture spectrometer
NASA Astrophysics Data System (ADS)
Liu, Hua; Ding, Quanxin; Wang, Helong; Chen, Hongliang; Guo, Chunjie; Zhou, Liwei
2017-10-01
For aim to find a simple multiple configuration solution and achieve higher refractive efficiency, and based on to reduce the situation disturbed by FOV change, especially in a two-dimensional spatial expansion. Coded aperture system is designed by these special structure, which includes an objective a coded component a prism reflex system components, a compensatory plate and an imaging lens Correlative algorithms and perfect imaging methods are available to ensure this system can be corrected and optimized adequately. Simulation results show that the system can meet the application requirements in MTF, REA, RMS and other related criteria. Compared with the conventional design, the system has reduced in volume and weight significantly. Therefore, the determining factors are the prototype selection and the system configuration.
Dual-camera design for coded aperture snapshot spectral imaging.
Wang, Lizhi; Xiong, Zhiwei; Gao, Dahua; Shi, Guangming; Wu, Feng
2015-02-01
Coded aperture snapshot spectral imaging (CASSI) provides an efficient mechanism for recovering 3D spectral data from a single 2D measurement. However, since the reconstruction problem is severely underdetermined, the quality of recovered spectral data is usually limited. In this paper we propose a novel dual-camera design to improve the performance of CASSI while maintaining its snapshot advantage. Specifically, a beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera. This uncoded grayscale measurement, in conjunction with the coded CASSI measurement, greatly eases the reconstruction problem and yields high-quality 3D spectral data. Both simulation and experimental results demonstrate the effectiveness of the proposed method.
Embedded electronics for a video-rate distributed aperture passive millimeter-wave imager
NASA Astrophysics Data System (ADS)
Curt, Petersen F.; Bonnett, James; Schuetz, Christopher A.; Martin, Richard D.
2013-05-01
Optical upconversion for a distributed aperture millimeter wave imaging system is highly beneficial due to its superior bandwidth and limited susceptibility to EMI. These features mean the same technology can be used to collect information across a wide spectrum, as well as in harsh environments. Some practical uses of this technology include safety of flight in degraded visual environments (DVE), imaging through smoke and fog, and even electronic warfare. Using fiber-optics in the distributed aperture poses a particularly challenging problem with respect to maintaining coherence of the information between channels. In order to capture an image, the antenna aperture must be electronically steered and focused to a particular distance. Further, the state of the phased array must be maintained, even as environmental factors such as vibration, temperature and humidity adversely affect the propagation of the signals through the optical fibers. This phenomenon cannot be avoided or mitigated, but rather must be compensated for using a closed-loop control system. In this paper, we present an implementation of embedded electronics designed specifically for this purpose. This novel architecture is efficiently small, scalable to many simultaneously operating channels and sufficiently robust. We present our results, which include integration into a 220 channel imager and phase stability measurements as the system is stressed according to MIL-STD-810F vibration profiles of an H-53E heavy-lift helicopter.
Hwang, B S; Kwon, M H; Kim, Jeongyong
2004-08-01
We used the finite difference time domain (FDTD) method to study the use of scanning near field optical microscopy (SNOM) to locally excite the nanometric plasmonic waveguides. In our calculation, the light is funneled through a SNOM probe with a sub-wavelength optical aperture and is irradiated on one end of two types of plasmonic waveguides made of 50 nm Au sphere arrays and Au nanowires. The incident light was well localized at one end of the waveguides and consequently propagated toward the other end, due to the excitation of surface plasmon polaritons. We found that the propagation length of the nanosphere array type waveguide varies from 100 to 130 nm depending on the light wavelength, the size of the probe aperture, and the launching heights. Our result shows that reducing the aperture size and using the light of the plasmon resonance wavelength of the nanosphere array could increase the propagation length and, thus, the efficiency of electromagnetic energy transportation through nanosphere arrays. 2004 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Justin L.; Rappaport, Carey M.; Sheen, David M.
2011-05-01
The cylindrical millimeter-wave imaging technique, developed at Pacific Northwest National Laboratory (PNNL) and commercialized by L-3 Communications/Safeview in the ProVision system, is currently being deployed in airports and other high security locations to meet person-borne weapon and explosive detection requirements. While this system is efficient and effective in its current form, there are a number of areas in which the detection performance may be improved through using different reconstruction algorithms and sensing configurations. PNNL and Northeastern University have teamed together to investigate higher-order imaging artifacts produced by the current cylindrical millimeter-wave imaging technique using full-wave forward modeling and laboratory experimentation.more » Based on imaging results and scattered field visualizations using the full-wave forward model, a new imaging system is proposed. The new system combines a multistatic sensor configuration with the generalized synthetic aperture focusing technique (GSAFT). Initial results show an improved ability to image in areas of the body where target shading, specular and higher-order reflections cause images produced by the monostatic system difficult to interpret.« less
Mivelle, Mathieu; Viktorovitch, Pierre; Baida, Fadi I; El Eter, Ali; Xie, Zhihua; Vo, Than-Phong; Atie, Elie; Burr, Geoffrey W; Nedeljkovic, Dusan; Rauch, Jean-Yves; Callard, Ségolène; Grosjean, Thierry
2014-06-16
We show that the near-field coupling between a photonic crystal microlaser and a nano-antenna can enable hybrid photonic systems that are both physically compact (free from bulky optics) and efficient at transferring optical energy into the nano-antenna. Up to 19% of the laser power from a micron-scale photonic crystal laser cavity is experimentally transferred to a bowtie aperture nano-antenna (BNA) whose area is 400-fold smaller than the overall emission area of the microlaser. Instead of a direct deposition of the nano-antenna onto the photonic crystal, it is fabricated at the apex of a fiber tip to be accurately placed in the microlaser near-field. Such light funneling within a hybrid structure provides a path for overcoming the diffraction limit in optical energy transfer to the nanoscale and should thus open promising avenues in the nanoscale enhancement and confinement of light in compact architectures, impacting applications such as biosensing, optical trapping, local heating, spectroscopy, and nanoimaging.
Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu
2013-02-25
As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.
Houston-Galveston Bay area, Texas, from space; a new tool for mapping land subsidence
Stork, Sylvia V.; Sneed, Michelle
2002-01-01
Interferometric Synthetic Aperture Radar (InSAR) is a powerful new tool that uses radar signals to measure displacement (subsidence and uplift) of the Earth's crust at an unprecedented level of spatial detail and high degree of measurement resolution.The Houston-Galveston Bay area, possibly more than any other metropolitan area in the United States, has been adversely affected by land subsidence. Extensive subsidence, caused mainly by ground-water pumping but also by oil and gas extraction, has increased the frequency of flooding, caused extensive damage to industrial and transportation infrastructure, motivated major investments in levees, reservoirs, and surfacewater distribution facilities, and caused substantial loss of wetland habitat. Ongoing patterns of subsidence in the Houston area have been carefully monitored using borehole extensometers, Global Positioning System (GPS) and conventional spirit-leveling surveys, and more recently, an emerging technology—Interferometric Synthetic Aperture Radar (InSAR)—which enables development of spatially-detailed maps of land-surface displacement over broad areas. This report, prepared by the U.S. Geological Survey (USGS) in cooperation with the U.S. Fish and Wildlife Service, briefly summarizes the history of subsidence in the area and the local consequences of subsidence and describes the use of InSAR as one of several tools in an integrated subsidence-monitoring program in the area.
NASA Technical Reports Server (NTRS)
Hall, D. K.; Ormsby, J. P.
1983-01-01
Three Seasat synthetic aperture radar (SAR) and three Landsat multispectral scanner subsystem (MSS) scenes of three areas of Alaska were analyzed for hydrological information. The areas were: the Dease Inlet in northern Alaska and its oriented or thaw lakes, the Ruth and Tokositna valley glaciers in south central Alaska, and the Malaspina piedmont glacier on Alaska's southern coast. Results for the first area showed that the location and identification of some older remnant lake basins were more easily determined in the registered data using an MSS/SAR overlay than in either SAR or MSS data alone. Separately, both SAR and MSS data were useful for determination of surging glaciers based on their distinctive medial moraines, and Landsat data were useful for locating the glacier firn zone. For the Malaspina Glacier scenes, the SAR data were useful for locating heavily crevassed ice beneath glacial debris, and Landsat provided data concerning the extent of the debris overlying the glacier.
Wu, Jin; Liu, Yayuan; Guo, Yuanyuan; Feng, Shuanglong; Zou, Binghua; Mao, Hui; Yu, Cheng-han; Tian, Danbi; Huang, Wei; Huo, Fengwei
2015-05-05
By coating polydimethylsiloxane (PDMS) relief structures with a layer of opaque metal such as gold, the incident light is strictly allowed to pass through the nanoscopic apertures at the sidewalls of PDMS reliefs to expose underlying photoresist at nanoscale regions, thus producing subwavelength nanopatterns covering centimeter-scale areas. It was found that the sidewalls were a little oblique, which was the key to form the nanoscale apertures. Two-sided and one-sided subwavelength apertures can be constructed by employing vertical and oblique metal evaporation directions, respectively. Consequently, two-line and one-line subwavelength nanopatterns with programmable feature shapes, sizes, and periodicities could be produced using the obtained photomasks. The smallest aperture size and line width of 80 nm were achieved. In contrast to the generation of raised positive photoresist nanopatterns in phase shifting photolithography, the recessed positive photoresist nanopatterns produced in this study provide a convenient route to transfer the resist nanopatterns to metal nanopatterns. This nanolithography methodology possesses the distinctive advantages of simplicity, low cost, high throughput, and nanoscale feature size and shape controllability, making it a potent nanofabrication technique to enable functional nanostructures for various potential applications.
NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission
NASA Astrophysics Data System (ADS)
Hoffman, James P.; Shaffer, Scott; Perkovic-Martin, Dragana
2016-05-01
The National Aeronautics and Space Administration (NASA) in the United States and the Indian Space Research Organization (ISRO) have partnered to develop an Earth-orbiting science and applications mission that exploits synthetic aperture radar to map Earth's surface every 12 days or less. To meet demanding coverage, sampling, and accuracy requirements, the system was designed to achieve over 240 km swath at fine resolution, and using full polarimetry where needed. To address the broad range of disciplines and scientific study areas of the mission, a dual-frequency system was conceived, at L-band (24 cm wavelength) and S-band (10 cm wavelength). To achieve these observational characteristics, a reflector-feed system is considered, whereby the feed aperture elements are individually sampled to allow a scan-on-receive ("SweepSAR") capability at both L-band and S-band. The instrument leverages the expanding capabilities of on-board digital processing to enable real-time calibration and digital beamforming. This paper describes the mission characteristics, current status of the L-band Synthetic Aperture Radar (L-SAR) portion of the instrument, and the technology development efforts in the United States that are reducing risk on the key radar technologies needed to ensure proper SweepSAR operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karr, T.J.
The SAR energy-aperture product limit is extended to multi-beam SARS, Spotlight and moving spotlight SARS. This fundamental limit bounds the tradeoff between energy and antenna size. The kinematic relations between design variables such as platform speed, pulse repetition frequency, beam width and area rate are analyzed in a unified framework applicable to a wide variety of SARs including strip maps, spotlights, vermer arrays and multi-beam SARS, both scanning and swept-beam. Then the energy-aperture product limit is derived from the signal-to noise requirement and the kinematic constraints. The derivation clarifies impact of multiple beams and spotlighting on SAR performance.
Simulation of noise involved in synthetic aperture radar
NASA Astrophysics Data System (ADS)
Grandchamp, Myriam; Cavassilas, Jean-Francois
1996-08-01
The synthetic aperture radr (SAR) returns from a linear distribution of scatterers are simulated and processed in order to estimate the reflectivity coefficients of the ground. An original expression of this estimate is given, which establishes the relation between the terms of signal and noise. Both are compared. One application of this formulation consists of detecting a surface ship wake on a complex SAR image. A smoothing is first accomplished on the complex image. The choice of the integration area is determined by the preceding mathematical formulation. Then a differential filter is applied, and results are shown for two parts of the wake.
Coded aperture imaging with self-supporting uniformly redundant arrays
Fenimore, Edward E.
1983-01-01
A self-supporting uniformly redundant array pattern for coded aperture imaging. The present invention utilizes holes which are an integer times smaller in each direction than holes in conventional URA patterns. A balance correlation function is generated where holes are represented by 1's, nonholes are represented by -1's, and supporting area is represented by 0's. The self-supporting array can be used for low energy applications where substrates would greatly reduce throughput. The balance correlation response function for the self-supporting array pattern provides an accurate representation of the source of nonfocusable radiation.
[Transmission efficiency analysis of near-field fiber probe using FDTD simulation].
Huang, Wei; Dai, Song-Tao; Wang, Huai-Yu; Zhou, Yun-Song
2011-10-01
A fiber probe is the key component of near-field optical technology which is widely used in high resolution imaging, spectroscopy detection and nano processing. How to improve the transmission efficiency of the fiber probe is a very important problem in the application of near-field optical technology. Based on the results of 3D-FDTD computation, the dependence of the transmission efficiency on the cone angle, the aperture diameter, the wavelength and the thickness of metal cladding is revealed. The authors have also made a comparison between naked probe and the probe with metal cladding in terms of transmission efficiency and spatial resolution. In addition, the authors have discovered the fluctuation phenomena of transmission efficiency as the wavelength of incident laser increases.
Conceptual design of the beam source for the DEMO Neutral Beam Injectors
NASA Astrophysics Data System (ADS)
Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.
2016-12-01
DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.
Investigation of imaging properties for submillimeter rectangular pinholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Dan, E-mail: dxia@uchicago.edu; Moore, Stephen C., E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu; Park, Mi-Ae, E-mail: scmoore@bwh.harvard.edu, E-mail: miaepark@bwh.harvard.edu, E-mail: mcervo@bwh.harvard.edu
Purpose: Recently, a multipinhole collimator with inserts that have both rectangular apertures and rectangular fields of view (FOVs) has been proposed for SPECT imaging since it can tile the projection onto the detector efficiently and the FOVs in transverse and axial directions become separable. The purpose of this study is to investigate the image properties of rectangular-aperture pinholes with submillimeter apertures sizes. Methods: In this work, the authors have conducted sensitivity and FOV experiments for 18 replicates of a prototype insert fabricated in platinum/iridium (Pt/Ir) alloy with submillimeter square-apertures. A sin{sup q}θ fit to the experimental sensitivity has been performedmore » for these inserts. For the FOV measurement, the authors have proposed a new formula to calculate the projection intensity of a flood image on the detector, taking into account the penumbra effect. By fitting this formula to the measured projection data, the authors obtained the acceptance angles. Results: The mean (standard deviation) of fitted sensitivity exponents q and effective edge lengths w{sub e} were, respectively, 10.8 (1.8) and 0.38 mm (0.02 mm), which were close to the values, 7.84 and 0.396 mm, obtained from Monte Carlo calculations using the parameters of the designed inserts. For the FOV measurement, the mean (standard deviation) of the transverse and axial acceptances were 35.0° (1.2°) and 30.5° (1.6°), which are in good agreement with the designed values (34.3° and 29.9°). Conclusions: These results showed that the physical properties of the fabricated inserts with submillimeter aperture size matched our design well.« less
Photogrammetry Of A Parabolic Antenna
NASA Technical Reports Server (NTRS)
Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.
1988-01-01
Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.
Wang, Wen-Hua; Chen, Juan; Liu, Ting-Wu; Chen, Juan; Han, Ai-Dong; Simon, Martin; Dong, Xue-Jun; He, Jun-Xian; Zheng, Hai-Lei
2014-01-01
Production per amount of water used (water use efficiency, WUE) is closely correlated with drought tolerance. Although stomatal aperture can regulate WUE, the underlying molecular mechanisms are still unclear. Previous reports revealed that stomatal closure was inhibited in the calcium-sensing receptor (CAS) antisense line of Arabidopsis (CASas). Here it is shown that decreased drought tolerance and WUE of CASas was associated with higher stomatal conductance due to improper regulation of stomatal aperture, rather than any change of stomatal density. CASas plants also had a lower CO2 assimilation rate that was attributed to a lower photosynthetic electron transport rate, leading to higher chlorophyll fluorescence. Gene co-expression combined with analyses of chlorophyll content and transcription levels of photosynthesis-related genes indicate that CAS is involved in the formation of the photosynthetic electron transport system. These data suggest that CAS regulates transpiration and optimizes photosynthesis by playing important roles in stomatal movement and formation of photosynthetic electron transport, thereby regulating WUE and drought tolerance.
Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli
2016-09-01
A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.
Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.
Yan, Xiang; Yuan, Fuh-Gwo
2015-06-01
This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.
Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser
NASA Astrophysics Data System (ADS)
Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji'an
2018-04-01
A simple and efficient technique for fabricating parabolic cylindrical microlens arrays (CMLAs) on the surface of fused silica by shaped femtosecond (fs) laser direct-writing is demonstrated. By means of spatially shaping of a Gaussian fs laser beam to a Bessel distribution, an inversed cylindrical shape laser intensity profile is formed in a specific cross-sectional plane among the shaped optical field. Applying it to experiments, large area close-packed parabolic CMLAs with line-width of 37.5 μm and array size of about 5 × 5 mm are produced. The cross-sectional outline of obtained lenslets has a satisfied parabolic profile and the numerical aperture (NA) of lenslets is more than 0.35. Furthermore, the focusing performance of the fabricated CMLA is also tested in this work and it has been demonstrated that the focusing power of the CMLA with a parabolic profile is better than that with a semi-circular one.
NASA Technical Reports Server (NTRS)
Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.
1980-01-01
Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.
Fabrication of fully transparent nanowire transistors for transparent and flexible electronics
NASA Astrophysics Data System (ADS)
Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J.; Janes, David B.
2007-06-01
The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including `see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In2O3 and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with ~82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.
Fabrication of fully transparent nanowire transistors for transparent and flexible electronics.
Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J; Janes, David B
2007-06-01
The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including 'see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In(2)O(3) and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with approximately 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.
Zhao, Chaoying; Lu, Zhong; Zhang, Qin; de la Fuente, Juan
2012-01-01
Multi-temporal ALOS/PALSAR images are used to automatically investigate landslide activity over an area of ~ 200 km by ~ 350 km in northern California and southern Oregon. Interferometric synthetic aperture radar (InSAR) deformation images, InSAR coherence maps, SAR backscattering intensity images, and a DEM gradient map are combined to detect active landslides by setting individual thresholds. More than 50 active landslides covering a total of about 40 km2 area are detected. Then the short baseline subsets (SBAS) InSAR method is applied to retrieve time-series deformation patterns of individual detected landslides. Down-slope landslide motions observed from adjacent satellite tracks with slightly different radar look angles are used to verify InSAR results and measurement accuracy. Comparison of the landslide motion with the precipitation record suggests that the landslide deformation correlates with the rainfall rate, with a lag time of around 1–2 months between the precipitation peak and the maximum landslide displacement. The results will provide new insights into landslide mechanisms in the Pacific Northwest, and facilitate development of early warning systems for landslides under abnormal rainfall conditions. Additionally, this method will allow identification of active landslides in broad areas of the Pacific Northwest in an efficient and systematic manner, including remote and heavily vegetated areas difficult to inventory by traditional methods.
Motion coherence affects human perception and pursuit similarly.
Beutter, B R; Stone, L S
2000-01-01
Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion-integration stage, perhaps within areas MT or MST.
Motion coherence affects human perception and pursuit similarly
NASA Technical Reports Server (NTRS)
Beutter, B. R.; Stone, L. S.
2000-01-01
Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion-integration stage, perhaps within areas MT or MST.
Du, Hang; Song, Ci; Li, Shengyi; Xu, Mingjin; Peng, Xiaoqiang
2017-05-20
In the process of computer controlled optical surfacing (CCOS), the uncontrollable rolled edge restricts further improvements of the machining accuracy and efficiency. Two reasons are responsible for the rolled edge problem during small tool polishing. One is that the edge areas cannot be processed because of the orbit movement. The other is that changing the tool influence function (TIF) is difficult to compensate for in algorithms, since pressure step appears in the local pressure distribution at the surface edge. In this paper, an acentric tool influence function (A-TIF) is designed to remove the rolled edge after CCOS polishing. The model of A-TIF is analyzed theoretically, and a control point translation dwell time algorithm is used to verify that the full aperture of the workpiece can be covered by the peak removal point of the tool influence functions. Thus, surface residual error in the full aperture can be effectively corrected. Finally, the experiments are carried out. Two fused silica glass samples of 100 mm×100 mm are polished by traditional CCOS and the A-TIF method, respectively. The rolled edge was clearly produced in the sample polished by the traditional CCOS, while residual errors do not show this problem the sample polished by the A-TIF method. Therefore, the rolled edge caused by the traditional CCOS process is successfully suppressed during the A-TIF process. The ability to suppress the rolled edge of the designed A-TIF has been confirmed.
High Voltage Solar Concentrator Experiment with Implications for Future Space Missions
NASA Technical Reports Server (NTRS)
Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur
2004-01-01
This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.
The SMS3D photovoltaic concentrator
NASA Astrophysics Data System (ADS)
Cvetković, Aleksandra; Hernandez, Maikel; Benítez, Pablo; Miñano, Juan Carlos; Schwartz, Joel; Plesniak, Adam; Jones, Russ; Whelan, David
2008-08-01
A novel photovoltaic concentrator is presented. The goal is to achieve high concentration design with high efficiency and high acceptance angle that in the same time is compact and convenient for thermal and mechanical management [1]. This photovoltaic system is based on 1 cm2 multi-junction tandem solar cells and an XR concentrator. The XR concentrator in this system is an SMS 3D design formed by one reflective (X) and one refractive (R) free-form surfaces (i.e., without rotational or linear symmetry) and has been chosen for its excellent aspect ratio and for its ability to perform near the thermodynamic limit. It is a mirror-lens device that has no shadowing elements and has square entry aperture (the whole system aperture area is used for collecting light). This large acceptance angle relaxes the manufacturing tolerances of all the optical and mechanical components of the system included the concentrator itself and is one of the keys to get a cost competitive photovoltaic generator. For the geometrical concentration of 1000x the simulation results show the acceptance angle of +/-1.8 deg. The irradiance distribution on the cell is achieved with ultra-short homogenizing prism, whose size is optimised to keep the maximum values under the ones that the cell can accept. The application of the XR optics to high-concentration is being developed in a consortium leaded by The Boeing Company, which has been awarded a project by US DOE in the framework of the Solar America Initiative.
The free form XR photovoltaic concentrator: a high performance SMS3D design
NASA Astrophysics Data System (ADS)
Cvetkovic, Aleksandra; Hernandez, Maikel; Benítez, Pablo; Miñano, Juan C.; Schwartz, Joel; Plesniak, Adam; Jones, Russ; Whelan, David
2008-08-01
A novel photovoltaic concentrator is presented. The goal is to achieve high concentration design with high efficiency and high acceptance angle that in the same time is compact and convenient for thermal and mechanical management. This photovoltaic system is based on 1 cm2 multi-junction tandem solar cells and an XR concentrator. The XR concentrator in this system is an SMS 3D design formed by one reflective (X) and one refractive (R) free-form surfaces (i.e., without rotational or linear symmetry) and has been chosen for its excellent aspect ratio and for its ability to perform near the thermodynamic limit. It is a mirror-lens device that has no shadowing elements and has square entry aperture (the whole system aperture area is used for collecting light). This large acceptance angle relaxes the manufacturing tolerances of all the optical and mechanical components of the system included the concentrator itself and is one of the keys to get a cost competitive photovoltaic generator. For the geometrical concentration of 1000x the simulation results show the acceptance angle of +/-1.8 deg. The irradiance distribution on the cell is achieved with ultra-short homogenizing prism, whose size is optimised to keep the maximum values under the ones that the cell can accept. The application of the XR optics to high-concentration is being developed in a consortium leaded by The Boeing Company, which has been awarded a project by US DOE in the framework of the Solar America Initiative.
NASA Astrophysics Data System (ADS)
Ermann, Michael; Johnson, Marty E.
2002-05-01
What does one room sound like when it is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact aural impressions in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume shoebox concert hall was conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound-absorption levels were established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) Architectural composition, as defined by the aperture size exposing the chamber and (2) Materiality, as defined by the sound absorbance in the coupled volume. Preliminary calculations indicate that the double-sloped sound decay condition only appears when the total aperture area is less than 1.5% of the total shoebox surface area and the average absorption coefficient of the coupled volume is less than 0.07.
Marapareddy, Ramakalavathi; Aanstoos, James V.; Younan, Nicolas H.
2016-01-01
Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ1, λ2, and λ3), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers. PMID:27322270
NASA Astrophysics Data System (ADS)
Lee, Won-Jin; Jung, Hyung-Sup; Park, Sun-Cheon; Lee, Duk Kee
2016-04-01
Mt. Baekdu (Changbaishan in Chinese) is located on the border between China and North Korea. It has recently attracted the attention of volcanic unrest during 2002-2005. Many researchers have applied geophysical approaches to detect magma system of beneath Mt.Baekdu such as leveling, Global Positioning System (GPS), gases analysis, seismic analysis, etc. Among them, deformation measuring instruments are important tool to evaluate for volcanism. In contrast to GPS or other deformation measuring instruments, Synthetic Aperture Radar Interferometry (InSAR) has provided high resolution of 2-D surface displacement from remote sensed data. However, Mt. Baekdu area has disturbed by decorrelation on interferogram because of wide vegetation coverage. To overcome this limitation, L-band system of long wavelength is more effective to detect surface deformation. In spite of this advantage, L-band can surfer from more severe ionospheric phase distortions than X- or C- band system because ionospheric phase distortions are inverse proportion to the radar frequency. Recently, Multiple Aperture Interferometry (MAI) based ionospheric phase distortions mitigation method have proposed and investigated. We have applied this technique to the Mt.Baekdu area to measure surface deformation precisely using L-band Advanced Land Observing Satellite-1(ALOS-1) Phased Array type L-band Synthetic Aperture Radar(PALSAR) data acquiring from 2006 to 2011.
Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)
NASA Technical Reports Server (NTRS)
Engler, Charles; Canham, John
2014-01-01
NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the initial valve design and subsequent improvements that resulted from prototype testing. The initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the initial Valve design was used to develop a second, more robust Aperture Valve. Based on a check-ball design, the ETU / flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, non-magnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.
Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)
NASA Technical Reports Server (NTRS)
Hakun, Claef F.; Engler, Charles D.; Barber, Willie E.; Canham, John S.
2014-01-01
NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated.Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.
Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)
NASA Technical Reports Server (NTRS)
Engler, Charles D.; Canham, John S.
2014-01-01
NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU /flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure.
Orthogonal feeding techniques for tapered slot antennas
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1998-01-01
For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.
The Born approximation, multiple scattering, and the butterfly algorithm
NASA Astrophysics Data System (ADS)
Martinez, Alejandro F.
Radar works by focusing a beam of light and seeing how long it takes to reflect. To see a large region the beam is pointed in different directions. The focus of the beam depends on the size of the antenna (called an aperture). Synthetic aperture radar (SAR) works by moving the antenna through some region of space. A fundamental assumption in SAR is that waves only bounce once. Several imaging algorithms have been designed using that assumption. The scattering process can be described by iterations of a badly behaving integral. Recently a method for efficiently evaluating these types of integrals has been developed. We will give a detailed implementation of this algorithm and apply it to study the multiple scattering effects in SAR using target estimates from single scattering algorithms.
NASA Astrophysics Data System (ADS)
Atsumi, Yuki; Yoshida, Tomoya; Omoda, Emiko; Sakakibara, Youichi
2017-09-01
A surface optical coupler based on a vertically curved Si waveguide was designed for coupling with high-numerical aperture single-mode optical fibers with a mode-field diameter of 5 µm. This coupler has a quite small device size, with a height of approximately 12 µm, achieved by introducing an effective spot-size converter configured with the combination of an extremely short Si exponential-inverse taper and a dome-structured SiO2 lens formed on the coupler top. The designed coupler shows high-efficiency optical coupling, with a loss of 0.8 dB for TE polarized light, as well as broad-band coupling with a 0.5-dB-loss band of 420 nm.
NASA Astrophysics Data System (ADS)
Iisaka, Joji; Sakurai-Amano, Takako
1994-08-01
This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.
Development Of Nonimaging Optics
NASA Astrophysics Data System (ADS)
Winston, Roland
1984-01-01
This paper is concerned with the new field of nonimaging optics. Roughly this may be defined as the collection and redirection of light (or, more generally, electromagnetic radiation) by means of optical systems which do not make use of image formation concepts in their design. A non-trivial example is the compound parabolic concentrator (CPC) invented in 1965 for collecting Cerenkov radiation from large volumes of gas and concentrating it onto the relatively small area of a photomultiplier cathode. This task would, according to conventional optical practice, be performed by a lens or mirror image-forming system of high numerical aperture, but much greater concentration was achieved by a comparatively simple de-vice, the CPC. The key was to abandon the principle of imaging with high numerical aperture and instead to get the collected rays into as small an area as possible without attempting to produce an image.
Use of C-band Sentinel-1 and L-band UAVSAR data for flood extent mapping during Hurricane Harvey
NASA Astrophysics Data System (ADS)
Lakshmi, V.; Kundu, S.; Torres, R.
2017-12-01
Hurricane Harvey was one of the most destructive storms that struck the Houston area in August 2017 causing loss of life and property. In this study, an estimation of flooding extent is done using two sets of microwave remote sensing data, Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Sentinel-1. UAVSAR is an L-band SAR (Synthetic Aperture Radar) data which is an airborne repeat-pass interferometric observation system and has 16 km swath. Sentinel-1 is the C band microwave data developed by European Space Agency covering a large area (250 km). Data are analyzed to examine the flood extent over Houston during Harvey. Flood extent mapping is carried out using the Sentinel-1 data and UAVSAR using backscatter signatures which displays the extent of changes and destruction during the flood. Keywords: Harvey, UAVSAR, Sentinel-1, flood extent
Large-Area Subwavelength Aperture Arrays Fabricated Using Nanoimprint Lithography
Skinner, J. L.; Hunter, L. L.; Talin, A. A.; ...
2008-07-29
In this paper, we report on the fabrication and characterization of large-area 2-D square arrays of subwavelength holes in Ag and Al films. Fabrication is based on thermal nanoimprint lithography and metal evaporation, without the need for etching, and is compatible with low-cost, large-scale production. Reflectance spectra for these arrays display an intensity minimum whose amplitude, center wavelength, and line width depend on the geometry of the array and the reflectivity of the metal film. By placing various fluids in contact with the subwavelength aperture arrays, we observe that the center wavelength of the reflectance minimum varies linearly with themore » refractive index of the fluid with a sensitivity of over 500 nm per refractive index unit. Lastly, the surface plasmon theory is used to predict sensitivities to refractive index change with accuracies better than 0.5%.« less
Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping
NASA Astrophysics Data System (ADS)
Tamiminia, H.; Homayouni, S.; Safari, A.
2015-12-01
Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.
Miniaturized CARS microendoscope probe design for label-free intraoperative imaging
NASA Astrophysics Data System (ADS)
Chen, Xu; Wang, Xi; Xu, Xiaoyun; Cheng, Jie; Liu, Zhengfan; Weng, Sheng; Thrall, Michael J.; Goh, Alvin C.; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T. C.
2014-03-01
A Coherent Anti-Stokes Raman Scattering (CARS) microendoscope probe for early stage label-free prostate cancer diagnosis at single cell resolution is presented. The handheld CARS microendoscope probe includes a customized micro-electromechanical systems (MEMS) scanning mirror as well as miniature optical and mechanical components. In our design, the excitation laser (pump and stokes beams) from the fiber is collimated, reflected by the reflecting mirror, and transmitted via a 2D MEMS scanning mirror and a micro-objective system onto the sample; emission in the epi-direction is returned through the micro-objective lens, MEMS and reflecting mirror, and collimation system, and finally the emission signal is collected by a photomultiplier tube (PMT). The exit pupil diameter of the collimator system is designed to match the diameter of the MEMS mirror and the entrance pupil diameter of the micro-objective system. The back aperture diameter of the micro-objective system is designed according to the largest MEMS scanning angle and the distance between the MEMS mirror and the back aperture. To increase the numerical aperture (NA) of the micro-objective system in order to enhance the signal collection efficiency, the back aperture diameter of the micro-objective system is enlarged with an upfront achromatic wide angle Keplerian telescope beam expander. The integration of a miniaturized micro-optics probe with optical fiber CARS microscopy opens up the possibility of in vivo molecular imaging for cancer diagnosis and surgical intervention.
An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope
NASA Astrophysics Data System (ADS)
Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan
2016-07-01
The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.
NASA Astrophysics Data System (ADS)
Michaelis, D.; Schreiber, P.; Li, C.; Bräuer, A.; Gross, H.
2015-09-01
The concept of multichannel array projection is generalized in order to realize an ultraslim, highly efficient optical system for structured illumination with high lumen output, where additionally the Köhler illumination principle is utilized and source light homogenization occurs. The optical system consists of a multitude of neighboring optical channels. In each channel two optical freeforms generate a real or a virtual spatial light pattern and furthermore, the ray directions are modified to enable Köhler illumination of a subsequent projection lens. The internal light pattern may be additionally influenced by absorbing apertures or slides. The projection lens transfers the resulting light pattern to a target, where the total target distribution is produced by superposition of all individual channel output pattern. The optical system without absorbing apertures can be regarded as a generalization of a fly's eye condenser for structured illumination. In this case light pattern is exclusively generated by freeform light redistribution. The commonly occurring blurring effect for freeform beamshaping is reduced due to the creation of a virtual object light structure by means of the two freeform surfaces and its imaging towards the target. But, the remaining blurring inhibits very high spatial frequencies at the target. In order to create target features with very high spatial resolution the absorbing apertures can be utilized. In this case the freeform beamshaping can be used for an enhanced light transmission through the absorbing apertures. The freeform surfaces are designed by a generalized approach of Cartesian oval representation.
Generalized M-factor of hollow Gaussian beams through a hard-edge circular aperture
NASA Astrophysics Data System (ADS)
Deng, Dongmei
2005-06-01
Based on the generalized truncated second-order moments, the generalized M-factor (MG2-factor) of three-dimensional hollow Gaussian beams (HGBs) through a hard-edge circular aperture is studied in cylindrical coordinate system analytically and numerically. The closed-form expression for the MG2-factor of the truncated HGBs, which is dependent on the truncation parameter β and the beam order n, can be simplified to that of the truncated, the untruncated Gaussian beams and the untruncated HGBs. Also, the power fraction is demonstrated analytically and numerically, which shows that the area of the dark region across the HGBs increases as n increasing.
Pseudo-random tool paths for CNC sub-aperture polishing and other applications.
Dunn, Christina R; Walker, David D
2008-11-10
In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.
2016-08-01
Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.
Multiple-aperture optical design for micro-level cameras using 3D-printing method
NASA Astrophysics Data System (ADS)
Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung
2018-02-01
The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.
Pressure letdown method and device for coal conversion systems
NASA Technical Reports Server (NTRS)
Kendal, J. M.; Walsh, J. V. (Inventor)
1983-01-01
In combination with a reactor for a coal utilization system, a pressure letdown device accepts from a reactor, a polyphase fluid at an entrance pressure and an entrance velocity, and discharges the fluid from the device at a discharge pressure substantially lower than the entrance pressure and at a discharge temperature and a discharge velocity substantially equal to the entrance temperature and entrance velocity. The device is characterized by a series of pressure letdown stages including several symmetrical baffles, disposed in coaxially nested alignment. In each baffle several ports or apertures of uniform dimensions are defined. The number of ports or apertures for each baffle plate is unique with respect to the number of ports or apertures defined in each of the other baffles. The mass rate of flow for each port is a function of the area of the port, the pressure of the fluid as applied to the port, and a common pressure ratio established across the ports.
Hooked differential mobility spectrometry apparatus and method therefore
Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Ibrahim, Yehia M [Richland, WA; Smith, Richard D [Richland, WA
2009-02-17
Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.
2017-09-01
The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.
Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.
1998-01-01
An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.
Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures
NASA Astrophysics Data System (ADS)
Sokar, Ahmed A. Z.; Hutter, Franz X.; Burghartz, Joachim N.
2015-05-01
Extraordinary/Enhanced optical transmission (EOT) is studied in the realization of plasmonic based filters in the visible range and near infrared spectrum for the purpose of substituting the Bayer-pattern filter with a new CMOS-compatible filter which can be easily tuned to provide different filter spectra. The filters studied in this paper are based on nano-structured 150nm thick Aluminum (Al) layer sandwiched between silicon dioxide (SiO2) layers. The resonance wavelengths achieved by the filters are at 700nm and 950 nm. Three parameters are used for tuning the two filters, i.e., aperture area, the period, and the holes arrangement (square or rhombic lattice). The filter is based on the principle of surface plasmon polaritons (SPPs), where the electromagnetic waves of the incident light couples with the free charges of the metal at the metal-dielectric interface. EOT is observed when the metal is structured with apertures such as rectangular, circular, cross, bowtie, etc. The resonance frequency in that case depends on the shape of the aperture, material used, the size of the apertures, the period of the array, and the surrounding material. The fabricated two filters show EOT at wavelengths as designed and simulated with blueshift in the peak location.
A panoramic coded aperture gamma camera for radioactive hotspots localization
NASA Astrophysics Data System (ADS)
Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.
2017-11-01
A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.
Bulk silica NIR blazed transmission gratings made by Silios technologies
NASA Astrophysics Data System (ADS)
Caillat, Amandine; Pascal, Sandrine; Tisserand, Stéphane; Dohlen, Kjetil; Grange, Robert; Sauget, Vincent; Gautier, Sophie
2017-11-01
In order to study the dark universe (energy and matter), EUCLID space mission will collect near infrared spectra and images of millions of galaxies. This massive measurement survey requires a slitless spectroscopic channel including GRISMs (for "Grating pRISMs") in NISP (Near Infrared SpectroPhotometer). Very special technical specifications are required for the grating manufacturing: large aperture, low groove frequency and blaze angle, line curvature. In addition, it has to withstand space environment. Therefore, in the frame of a R&D project funded by the CNES, we developed bulk silica gratings in close collaboration with the French company SILIOS Technologies. SILIOS delivered two resin-free blazed gratings with curved lines engraved directly into the fused silica substrate of 80mm and 108mm useful aperture. At LAM, we measured very high optical performances of these prototypes: <80% transmitted efficiency, <30nm RMS wavefront error, groove shape and roughness very close to theory and uniform over the useful aperture. In this paper, we give specifications of these gratings, we describe the manufacturing process developed by SILIOS Technologies, we present briefly optical setups and models allowing optical performances verifications at LAM and we show very encouraging results obtained on the two gratings.
Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity
Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; ...
2015-11-19
Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. Themore » effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.« less
Jurczyk, Barbara; Pociecha, Ewa; Janowiak, Franciszek; Kabała, Dawid; Rapacz, Marcin
2016-12-01
According to predicted changes in climate, waterlogging events may occur more frequently in the future during autumn and winter at high latitudes of the Northern Hemisphere. If excess soil water coincides with the process of cold acclimation for plants, winter survival may potentially be affected. The effects of waterlogging during cold acclimation on stomatal aperture, relative water content, photochemical activity of photosystem II, freezing tolerance and plant regrowth after freezing were compared for two prehardened overwintering forage grasses, Lolium perenne and Festuca pratensis. The experiment was performed to test the hypothesis that changes in photochemical activity initiated by waterlogging-triggered modifications in the stomatal aperture contribute to changes in freezing tolerance. Principal component analysis showed that waterlogging activated different adaptive strategies in the two species studied. The increased freezing tolerance of F. pratensis was associated with increased photochemical activity connected with stomatal opening, whereas freezing tolerance of L. perenne was associated with a decrease in stomatal aperture. In conclusion, waterlogging-triggered stomatal behavior contributed to the efficiency of the cold acclimation process in L. perenne and F. pratensis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Burgess, Stephen S O; Pittermann, Jarmila; Dawson, Todd E
2006-02-01
The hydraulic limitation hypothesis of Ryan & Yoder (1997, Bioscience 47, 235-242) suggests that water supply to leaves becomes increasingly difficult with increasing tree height. Within the bounds of this hypothesis, we conjectured that the vertical hydrostatic gradient which gravity generates on the water column in tall trees would cause a progressive increase in xylem 'safety' (increased resistance to embolism and implosion) and a concomitant decrease in xylem 'efficiency' (decreased hydraulic conductivity). We based this idea on the historically recognized concept of a safety-efficiency trade-off in xylem function, and tested it by measuring xylem conductivity and vulnerability to embolism of Sequoia sempervirens branches collected at a range of heights. Measurements of resistance of branch xylem to embolism did indeed show an increase in 'safety' with height. However, the expected decrease in xylem 'efficiency' was not observed. Instead, sapwood-specific hydraulic conductivities (Ks) of branches increased slightly, while leaf-specific hydraulic conductivities increased dramatically, with height. The latter could be largely explained by strong vertical gradients in specific leaf area. The increase in Ks with height corresponded to a decrease in xylem wall fraction (a measure of wall thickness), an increase in percentage of earlywood and slight increases in conduit diameter. These changes are probably adaptive responses to the increased transport requirements of leaves growing in the upper canopy where evaporative demand is greater. The lack of a safety-efficiency tradeoff may be explained by opposing height trends in the pit aperture and conduit diameter of tracheids and the major and semi-independent roles these play in determining xylem safety and efficiency, respectively.
A Modal Approach to Compact MIMO Antenna Design
NASA Astrophysics Data System (ADS)
Yang, Binbin
MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored energy and recently reported work on antenna Q factor minimization, we extend the minimum Q limit to antennas of arbitrary geometry, and show that given an antenna aperture, any antenna design based on its substructure will result into minimum Q factors larger than or equal to that of the complete structure. This limit is much tighter than Chu's limit based on spherical modes, and applies to antennas of arbitrary geometry. Finally, considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we develop new decoupling networks (DN) and decoupling network synthesis techniques. An information-theoretic metric, information mismatch loss (Gammainfo), is defined for DN characterization. Based on this metric, the optimization of decoupling networks for broadband system performance is conducted, which demonstrates the limitation of the single-frequency decoupling techniques and room for improvement.
Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin
2015-11-01
Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications. Copyright © 2015 Elsevier Inc. All rights reserved.
The LIFE Laser Design in Context: A Comparison to the State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R J; Bayramian, A J; Erlandson, A C
2011-03-21
The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with themore » laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. {approx}50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.« less
Upgrade of the BATMAN test facility for H- source development
NASA Astrophysics Data System (ADS)
Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.
2015-04-01
The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.
A higher-speed compressive sensing camera through multi-diode design
NASA Astrophysics Data System (ADS)
Herman, Matthew A.; Tidman, James; Hewitt, Donna; Weston, Tyler; McMackin, Lenore
2013-05-01
Obtaining high frame rates is a challenge with compressive sensing (CS) systems that gather measurements in a sequential manner, such as the single-pixel CS camera. One strategy for increasing the frame rate is to divide the FOV into smaller areas that are sampled and reconstructed in parallel. Following this strategy, InView has developed a multi-aperture CS camera using an 8×4 array of photodiodes that essentially act as 32 individual simultaneously operating single-pixel cameras. Images reconstructed from each of the photodiode measurements are stitched together to form the full FOV. To account for crosstalk between the sub-apertures, novel modulation patterns have been developed to allow neighboring sub-apertures to share energy. Regions of overlap not only account for crosstalk energy that would otherwise be reconstructed as noise, but they also allow for tolerance in the alignment of the DMD to the lenslet array. Currently, the multi-aperture camera is built into a computational imaging workstation configuration useful for research and development purposes. In this configuration, modulation patterns are generated in a CPU and sent to the DMD via PCI express, which allows the operator to develop and change the patterns used in the data acquisition step. The sensor data is collected and then streamed to the workstation via an Ethernet or USB connection for the reconstruction step. Depending on the amount of data taken and the amount of overlap between sub-apertures, frame rates of 2-5 frames per second can be achieved. In a stand-alone camera platform, currently in development, pattern generation and reconstruction will be implemented on-board.
Controlling coherence in epsilon-near-zero metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Caglayan, Humeyra; Hajian, Hodjat; Ozbay, Ekmel
2017-05-01
Recently, metamaterials with near-zero refractive index have attracted much attention. Light inside these materials experiences no spatial phase change and extremely large phase velocity, makes these peculiar systems applicable for realizing directional emission, tunneling waveguides, large-area single-mode devices and electromagnetic cloaks. In addition, epsilon-near-zero (ENZ) metamaterials can also enhance light transmission through a subwavelength aperture. Impedance-matched all-dielectric zero-index metamaterials which exhibit Dirac cone dispersions at center of the Brillouin zone, have been experimentally demonstrated at microwave regime and optical frequencies for transverse-magnetic (TM) polarization of light. More recently, it has been also proved that these systems can be realized in a miniaturized in-plane geometry useful for integrated photonic applications, i.e. these metamaterials can be integrated with other optical elements, including waveguides, resonators and interferometers. In this work, using a zero-index metamaterial at the inner and outer sides of a subwavelength aperture, we numerically and experimental study light transmission through and its extraction from the aperture. The metamaterial consists of a combination of two double-layer arrays of scatterers with dissimilar subwavelength dimensions. The metamaterial exhibits zero-index optical response in microwave region. Our numerical investigation shows that the presence of the metamaterial at the inner side of the aperture leads to a considerable increase in the transmission of light through the subwavelength aperture. This enhancement is related to the amplification of the amplitude of the electromagnetic field inside the metamaterial which drastically increases the coupling between free space and the slit. By obtaining the electric field profile of the light passing through the considered NZI/aperture/NZI system at this frequency we found out that in addition to the enhanced transmission there is an excellent beaming of the extracted light from the structure. We have theoretically and experimentally shown that using a zero-index metamaterial at the inner and outer sides of a metallic subwavelength slit can considerably enhance the transmission of light through the aperture and beam its extraction, respectively. This work has been supported by TUBITAK under Project No 114E505. The author H.C. also acknowledges partial support from the Turkish Academy of Sciences.
Delineation of typhoon-induced shoreline changes in Taiwan
NASA Astrophysics Data System (ADS)
Lin, Yun-Bin; Chiang, Jie-Lun
2010-05-01
Taiwan, an island country located at the southwestern Pacific Ocean, has a coast line of 1,355 km long. And only 55% proportion of the coast line remains natural. The maximum daily accumulated rainfall over 1000 mm brought by the typhoon Mindulle in 2004 generated huge disaster, including a broad flood-prone area and a sick sedimentation, in the littoral zones of the low-latitude part of Taiwan. The event resulted in the official definition of the coastal area, which is a 9 km wide belt area surrounding Taiwan island and is composed of one third land area and two third sea area. And human constructions are restricted in the proposed coast area to prevent or reduce the possible disaster in the future. Not only the sea level rising induced by the global climate warming may seriously affect the littoral zones, but also the extreme climate accompanying with the global climate warming, such as typhoons and storms, can heavily disturb the coastal environment in Taiwan. In the storm area, the wave and the storm surge may induce the coast erosion. But even being outside the storm area, the coastal environment is still regularly influenced by the sediment transportation triggered by the storm in the Cainozoic zones in the central part of Taiwan. Therefore, the continuous and regular monitoring of shoreline changes is essential for the disaster management in Taiwan. The two dimensional Morlet wavelet analysis is used to detect edges on synthetic aperture radar (SAR) images. And a block tracing algorithm and an active contour model are integrated for the final shorelines auto-delineation in the study. The SAR image that is climate unaffected and is free of visible light can provide reliable information. The Morlet wavelet function has the smallest window size and is directional. Therefore, the Morlet wavelet function is more flexible and efficient in extracting specific information from image signals. The shoreline changes induced by the typhoon Mindulle were studied. The outcome that is well coincided with the result of a field survey can be obtained in a more efficient way. Keywords: shoreline, auto-delineation, wavelet analysis, SAR
MM wave SAR sensor design: Concept for an airborne low level reconnaissance system
NASA Astrophysics Data System (ADS)
Boesswetter, C.
1986-07-01
The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.
Aging of the midface bony elements: a three-dimensional computed tomographic study.
Shaw, Robert B; Kahn, David M
2007-02-01
The face loses volume as the soft-tissue structures age. In this study, the authors demonstrate how specific bony aspects of the face change with age in both men and women and what impact this may have on the techniques used in facial cosmetic surgery. Facial bone computed tomographic scans were obtained from 60 Caucasian patients (30 women and 30 men). The authors' study population consisted of 10 male and 10 female subjects in each of three age categories. Each computed tomographic scan underwent three-dimensional reconstruction with volume rendering, and the following measurements were obtained: glabellar angle (maximal prominence of glabella to nasofrontal suture), pyriform angle (nasal bone to lateral inferior pyriform aperture), and maxillary angle (superior to inferior maxilla at the articulation of the inferior maxillary wing and alveolar arch). The pyriform aperture area was also obtained. The t test was used to identify any trends between age groups. The glabellar and maxillary angle in both the male and female subjects showed a significant decrease with increasing age. The pyriform angle did not show a significant change between age groups for either sex. There was a significant increase in pyriform aperture area from the young to the middle age group for both sexes. These results suggest that the bony elements of the midface change dramatically with age and, coupled with soft-tissue changes, lead to the appearance of the aged face.
Application of CHESS single-bounce capillaries at synchrotron beamlines
NASA Astrophysics Data System (ADS)
Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.
2014-03-01
Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.
Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.
Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas
2013-06-20
This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).
DSN 70-meter antenna X- and S-band calibration. Part 1: Gain measurements
NASA Technical Reports Server (NTRS)
Richter, P. H.; Slobin, S. D.
1989-01-01
Aperture efficiency measurements made during 1988 on the three 70-m stations (DSS-14, DSS-43, and DSS-63) at X-band (8420 MHz) and S-band (2295 MHz) have been analyzed and reduced to yield best estimates of antenna gain versus elevation. The analysis has been carried out by fitting the gain data to a theoretical expression based on the Ruze formula. Newly derived flux density and source-size correction factors for the natural radio calibration sources used in the measurements have been used in the reduction of the data. Peak gains measured at the three stations were 74.18 (plus or minus 0.10) dBi at X-band, and 63.34 (plus or minus 0.03) dBi at S-band, with corresponding peak aperture efficiencies of 0.687 (plus or minus 0.015) and 0.762 (plus or minus 0.006), respectively. The values quoted assume no atmosphere is present, and the estimated absolute accuracy of the gain measurements is approximately plus or minus 0.2 dB at X-band and plus or minus 0.1 dB at S-band (1-sigma values).
NASA Astrophysics Data System (ADS)
Sabira, K.; Saheeda, P.; Divyasree, M. C.; Jayalekshmi, S.
2017-12-01
In the present work, the nonlinear optical properties of free-standing films of Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite are investigated to assess their suitability as efficient optical limiters. The PVDF/RGO nanocomposite films are generated by mixing different concentrations of RGO as the filler, with PVDF, using solution casting method. The XRD and FTIR data of these nanocomposite films confirm the enhancement in the β phase of PVDF when RGO is added to PVDF, which is one of the prime factors, enhancing the nonlinear response of the nanocomposite. The open aperture and closed aperture Z-scan technique under nanosecond excitation (532 nm, 7 ns) is used to investigate the nonlinear optical characteristics of the PVDF/RGO nanocomposite films. These films are found to exhibit two photon absorption assisted optical non linearity in the nanosecond regime. The highlight of the present work is the observation of quite low values of the normalized transmittance and low optical limiting threshold power in free standing films of PVDF/RGO nanocomposite. These flexible, free-standing and stable nanocomposite films offer high application prospects in the design of efficient optical limiting devices of any desired size or shape.
NASA Astrophysics Data System (ADS)
Tapia, V.; González, A.; Finger, R.; Mena, F. P.; Monasterio, D.; Reyes, N.; Sánchez, M.; Bronfman, L.
2017-03-01
We present the design, implementation, and characterization of the optics of ALMA Band 1, the lowest frequency band in the most advanced radio astronomical telescope. Band 1 covers the broad frequency range from 35 to 50 GHz, with the goal of minor degradation up to 52 GHz. This is, up to now, the largest fractional bandwidth of all ALMA bands. Since the optics is the first subsystem of any receiver, low noise figure and maximum aperture efficiency are fundamental for best sensitivity. However, a conjunction of several factors (small cryostat apertures, mechanical constraints, and cost limitations) makes extremely challenging to achieve these goals. To overcome these problems, the optics presented here includes two innovative solutions, a compact optimized-profile corrugated horn and a modified Fresnel lens. The horn profile was optimized for optimum performance and easy fabrication by a single-piece manufacturing process in a lathe. In this way, manufacturability is eased when compared with traditional fabrication methods. To minimize the noise contribution of the optics, a one-step zoned lens was designed. Its parameters were carefully optimized to maximize the frequency coverage and reduce losses. The optical assembly reported here fully complies with ALMA specifications.
Yoo, Daehan; Gurunatha, Kargal L; Choi, Han-Kyu; Mohr, Daniel A; Ertsgaard, Christopher T; Gordon, Reuven; Oh, Sang-Hyun
2018-06-13
We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.
Belt-MRF for large aperture mirrors.
Ren, Kai; Luo, Xiao; Zheng, Ligong; Bai, Yang; Li, Longxiang; Hu, Haixiang; Zhang, Xuejun
2014-08-11
With high-determinacy and no subsurface damage, Magnetorheological Finishing (MRF) has become an important tool in fabricating high-precision optics. But for large mirrors, the application of MRF is restricted by its small removal function and low material removal rate. In order to improve the material removal rate, shorten the processing cycle, we proposed a new MRF concept, named Belt-MRF to expand the application of MRF to large mirrors and made a prototype with a large remove function, using a belt instead of a very large polishing wheel to expand the polishing length. A series of experimental results on Silicon carbide (SiC) and BK 7 specimens and fabrication simulation verified that the Belt-MRF has high material removal rates, stable removal function and high convergence efficiency which makes it a promising technology for processing large aperture optical elements.
NASA Astrophysics Data System (ADS)
Ndao, A.; Salvi, J.; Salut, R.; Bernal, M.-P.; Alaridhee, T.; Belkhir, A.; Baida, F. I.
2014-12-01
We demonstrate enhanced transmission through annular aperture arrays (AAA) by the excitation of the transverse electromagnetic (TEM) guided mode. A complete numerical study is performed to correctly design the structure before it is experimentally characterized. Actually, the challenge was to get efficient TEM-based transmission in the visible range. It turned out to be a hard task because of the strong absorption associated with this guided mode. Nevertheless, we have succeeded to experimentally prove its excitation thanks to the enhanced transmission measured in the far-field. This is the first time we demonstrate experimental evidence of this phenomenon with such AAA structure illuminated at oblique incidence in the visible range. This increases the potential applications of such structures as well, single molecule spectroscopy, photovoltaic, spectral filtering, optical trapping, etc...
Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions
NASA Astrophysics Data System (ADS)
Penton, Steven V.
2010-07-01
COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).
NASA Astrophysics Data System (ADS)
Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves
2009-03-01
This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.
Successor to the RXTE PCA based upon focusing optics
NASA Astrophysics Data System (ADS)
Gorenstein, Paul
2002-01-01
There is broad interest in a next generation timing mission to succeed the PCA of RXTE which will provide more effective area than its 0.6 square meters and much better energy resolution. Currently prospective missions are, like the PCA, based upon large area detectors. Serious consideration should also be given to a focusing system. The focusing system would be a modular array of relatively small diameter imaging telescopes or concentrators with solid state detectors in their focal planes. For areas exceeding a square meter a focusing system could actually be less complex, more reliable, and for one particular optical design perhaps not much more massive. The total detector area would be only a few percent of the telescope aperture, which makes the acquisition of detectors much less challenging. Today it is possible to obtain commercially a sufficient number of detectors with good energy resolution for all the focal planes of the focusing array. They require only modest cooling and that could be accomplished passively in space. Several optical designs are possible. The disadvantages of an optical system are larger mass, more difficultly obtaining broad bandwidth, smaller field of view, and larger volume to accommodate the focal length distance and a larger diameter. On the other hand, the focusing system is more sensitive to fainter sources, is much more efficient below 2 keV, is less sensitive to background and is likely to be less costly overall than an array of solid state area detectors with equally good energy resolution.
NASA Astrophysics Data System (ADS)
Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.
2015-03-01
High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP < 2 mm×mrad for use in direct metal cutting systems, where the highest efficiencies and powers are required. Two device concepts are compared: narrow-stripe broad-area (NBA) and tapered lasers (TPL), both with monolithically integrated gratings. NBAs use W95% ~ 30 μm to cut-off higher order lateral modes and reduce BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (<35%, due to high threshold current). In contrast, NBAs operate with BPP < 2 mm×mrad, but maintain efficiency >50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.
Signal-to-noise ratio of Singer product apertures
NASA Astrophysics Data System (ADS)
Shutler, Paul M. E.; Byard, Kevin
2017-09-01
Formulae for the signal-to-noise ratio (SNR) of Singer product apertures are derived, allowing optimal Singer product apertures to be identified, and the CPU time required to decode them is quantified. This allows a systematic comparison to be made of the performance of Singer product apertures against both conventionally wrapped Singer apertures, and also conventional product apertures such as square uniformly redundant arrays. For very large images, equivalently for images at very high resolution, the SNR of Singer product apertures is asymptotically as good as the best conventional apertures, but Singer product apertures decode faster than any conventional aperture by at least a factor of ten for image sizes up to several megapixels. These theoretical predictions are verified using numerical simulations, demonstrating that coded aperture video is for the first time a realistic possibility.
2013-09-01
Ground testing of prototype hardware and processing algorithms for a Wide Area Space Surveillance System (WASSS) Neil Goldstein, Rainer A...at Magdalena Ridge Observatory using the prototype Wide Area Space Surveillance System (WASSS) camera, which has a 4 x 60 field-of-view , < 0.05...objects with larger-aperture cameras. The sensitivity of the system depends on multi-frame averaging and a Principal Component Analysis based image
Development of a Compact Eleven Feed Cryostat for the Patriot 12-m Antenna System
NASA Technical Reports Server (NTRS)
Beaudoin, Christopher; Kildal, Per-Simon; Yang, Jian; Pantaleev, Miroslav
2010-01-01
The Eleven antenna has constant beam width, constant phase center location, and low spillover over a decade bandwidth. Therefore, it can feed a reflector for high aperture efficiency (also called feed efficiency). It is equally important that the feed efficiency and its subefficiencies not be degraded significantly by installing the feed in a cryostat. The MIT Haystack Observatory, with guidance from Onsala Space Observatory and Chalmers University, has been working to integrate the Eleven antenna into a compact cryostat suitable for the Patriot 12-m antenna. Since the analysis of the feed efficiencies in this presentation is purely computational, we first demonstrate the validity of the computed results by comparing them to measurements. Subsequently, we analyze the dependence of the cryostat size on the feed efficiencies, and, lastly, the Patriot 12-m subreflector is incorporated into the computational model to assess the overall broadband efficiency of the antenna system.
Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets
NASA Technical Reports Server (NTRS)
Frehlich, R. G.
1993-01-01
The performance of a Coherent Laser Radar is determined by the statistics of the coherent Doppler signal. The heterodyne efficiency is an excellent indication of performance because it is an absolute measure of beam alignment and is independent of the transmitter power, the target backscatter coefficient, the atmospheric attenuation, and the detector quantum efficiency and gain. The theoretical calculation of heterodyne efficiency for an optimal monostatic lidar with a circular aperture and Gaussian transmit laser is presented including beam misalignment in the far-field and near-field regimes. The statistical behavior of estimates of the heterodyne efficiency using a calibration hard target are considered. For space based applications, a biased estimate of heterodyne efficiency is proposed that removes the variability due to the random surface return but retains the sensitivity to misalignment. Physical insight is provided by simulation of the fields on the detector surface. The required detector calibration is also discussed.
NASA Technical Reports Server (NTRS)
Neilson, Jeffrey M. (Inventor)
2002-01-01
A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.
Gao, Han; Li, Jingwen
2014-06-19
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.
Gao, Han; Li, Jingwen
2014-01-01
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640
A flat array large telescope concept for use on the moon, earth, and in space
NASA Technical Reports Server (NTRS)
Woodgate, Bruce E.
1991-01-01
An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.
Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn;
2016-01-01
Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.
A high-gain, compact, nonimaging concentrator: RXI.
Miñano, J C; Gonźlez, J C; Benítez, P
1995-12-01
The design procedure of a new nonimaging concentrator (called an RXI) is explained. Rays that impinge on the concentrator aperture, within the acceptance angle, are directed to the receiver by means of one refraction, one reflection, and one total internal reflection. The concentrator can be made as a single dielectric piece (in which the receiver is immersed) whose aspect ratio (thickness/aperture diameter) is close to 1/3. Ray-tracing analysis of a rotational symmetric RXI shows total transmissions of greater than 94.5% (no absorption or reflection losses are considered) when the acceptance angle of the incoming rays is small (<3°) and when the receiver area is the smallest possible (maximal concentration.).
Antenna analysis using properties of metamaterials
NASA Astrophysics Data System (ADS)
Mitra, Atindra K.; Hu, Colin; Maxwell, Kasandra
2010-04-01
As part of the Student Internship Programs at Wright-Patterson Air Force Base, including the AFRL Wright Scholar Program for High School Students and the AFRL STEP Program, sample results from preliminary investigation and analysis of integrated antenna structures are reported. Investigation of these novel integrated antenna geometries can be interpreted as a continuation of systems analysis under the general topic area of potential integrated apertures for future software radar/radio solutions [1] [2]. Specifically, the categories of novel integrated aperture geometries investigated in this paper include slotted-fractal structures on microstrip rectangular patch antenna models in tandem with the analysis of exotic substrate materials comprised of a type of synthesized electromagnetic structure known as metamaterials [8] - [10].
Likelihood parameter estimation for calibrating a soil moisture using radar backscatter
USDA-ARS?s Scientific Manuscript database
Assimilating soil moisture information contained in synthetic aperture radar imagery into land surface model predictions can be done using a calibration, or parameter estimation, approach. The presence of speckle, however, necessitates aggregating backscatter measurements over large land areas in or...
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Huang, Wen; Zheng, Yongcheng; Ji, Fang; Xu, Min; Duan, Zhixin; Luo, Qing; Liu, Qian; Xiao, Hong
2016-03-01
Zinc sulfide is a kind of typical infrared optical material, commonly produced using single point diamond turning (SPDT). SPDT can efficiently produce zinc sulfide aspheric surfaces with micro-roughness and acceptable figure error. However the tool marks left by the diamond turning process cause high micro-roughness that degrades the optical performance when used in the visible region of the spectrum. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface micro-roughness and surface figure.This paper mainly investigates the MRF technology of large aperture off-axis aspheric optical surfaces for zinc sulfide. The topological structure and coordinate transformation of a MRF machine tool PKC1200Q2 are analyzed and its kinematics is calculated, then the post-processing algorithm model of MRF for an optical lens is established. By taking the post-processing of off-axis aspheric surfacefor example, a post-processing algorithm that can be used for a raster tool path is deduced and the errors produced by the approximate treatment are analyzed. A polishing algorithm of trajectory planning and dwell time based on matrix equation and optimization theory is presented in this paper. Adopting this algorithm an experiment is performed to machining a large-aperture off-axis aspheric surface on the MRF machine developed by ourselves. After several times' polishing, the figure accuracy PV is proved from 3.3λ to 2.0λ and RMS from 0.451λ to 0.327λ. This algorithm is used to polish the other shapes including spheres, aspheres and prisms.
NASA Astrophysics Data System (ADS)
Cauble, Galen D.; Wayne, David T.
2017-09-01
The growth of optical communication has created a need to correctly characterize the atmospheric channel. Atmospheric turbulence along a given channel can drastically affect optical communication signal quality. One means of characterizing atmospheric turbulence is through measurement of the refractive index structure parameter, Cn2. When calculating Cn2 from the scintillation index, σΙ2,the point aperture scintillation index is required. Direct measurement of the point aperture scintillation index is difficult at long ranges due to the light collecting abilities of small apertures. When aperture size is increased past the atmospheric correlation width, aperture averaging decreases the scintillation index below that of the point aperture scintillation index. While the aperture averaging factor can be calculated from theory, it does not often agree with experimental results. Direct measurement of the aperture averaging factor via the pupil plane irradiance covariance function allows conversion from the aperture averaged scintillation index to the point aperture scintillation index. Using a finite aperture, camera, and detector, the aperture averaged scintillation index and aperture averaging factor are measured in parallel and the point aperture scintillation index is calculated. A new instrument built by SSC Pacific was used to collect scintillation data at the Townes Institute Science and Technology Experimentation Facility (TISTEF). This new instrument's data was then compared to BLS900 data. The results show that direct measurement of the aperture averaging factor is achievable using a camera and matches well with groundtruth instrumentation.
NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover
2017-01-01
Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture.
Effects of surface diffusion on high temperature selective emitters
Peykov, Daniel; Yeng, Yi Xiang; Celanovic, Ivan; ...
2015-01-01
Using morphological and optical simulations of 1D tantalum photonic crystals at 1200K, surface diffusion was determined to gradually reduce the efficiency of selective emitters. This was attributed to shifting resonance peaks and declining emissivity caused by changes to the cavity dimensions and the aperture width. Decreasing the structure’s curvature through larger periods and smaller cavity widths, as well as generating smoother transitions in curvature through the introduction of rounded cavities, was found to alleviate this degradation. An optimized structure, that shows both high efficiency selective emissivity and resistance to surface diffusion, was presented.
Experimental optimization during SERS application
NASA Astrophysics Data System (ADS)
Laha, Ranjit; Das, Gour Mohan; Ranjan, Pranay; Dantham, Venkata Ramanaiah
2018-05-01
The well known surface enhanced Raman scattering (SERS) needs a lot of experimental optimization for its proper implementation. In this report, we demonstrate the efficient SERS using gold nanoparticles (AuNPs) on quartz plate. The AuNPs were prepared by depositing direct current sputtered Au thin film followed by suitable annealing. The parameters varied for getting best SERS effect were 1) Numerical Aperture of Raman objective lens and 2) Sputtering duration of Au film. It was found that AuNPs formed from the Au layer deposited for 40s and Raman objective lens of magnification 50X are the best combination for obtaining efficient SERS effect.
NASA Astrophysics Data System (ADS)
Zuccaro Marchi, Alessandro; Gambicorti, Lisa; Simonetti, Francesca; Salinari, Piero; Lisi, Franco; Bursi, Alessandro; Olivier, Massimiliano; Gallieni, Daniele
2017-11-01
This work presents the latest results of new technological concepts for large aperture, lightweight telescopes using thin deployable active mirrors. The study is originally addressed to a spaceborne DIAL (Differential Absorption Lidar) at 935.5 nm for the measurement of water vapour profile in atmosphere, as an output of an ESA contract (whose preliminary results were presented at ICSO 2006). The high versatility of these concepts allows to exploit the presented technology for any project willing to consider large aperture, segmented lightweight telescopes. A possible scientific application is for Ultra High Energy Cosmic Rays detection through the fluorescence traces in atmosphere and diffused Cerenkov signals observation via a Schmidt-like spaceborne LEO telescope with large aperture, wide Field of View (FOV) and low f/#. A technology demonstrator has been manufactured and tested in order to investigate two project critical areas identified during the preliminary design: the performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch. In particular, this breadboard demonstrates at first that the mirror actuators are able to control with the adequate accuracy the surface shape and to recover a deployment error with their long stroke; secondly, the mirror survivability has been demonstrated using an electrostatic locking between mirror and backplane able to withstand without failure a vibration test representative of the launch environment.
Operational Use of Civil Space-Based Synthetic Aperture Radar (SAR)
NASA Technical Reports Server (NTRS)
Montgomery, Donald R. (Editor)
1996-01-01
Synthetic Aperture Radar (SAR) is a remote-sensing technology which uses the motion of the aircraft or spacecraft carrying the radar to synthesize an antenna aperture larger than the physical antenna to yield a high-spatial resolution imaging capability. SAR systems can thus obtain high-spatial resolution geophysical measurements of the Earth over wide surface areas, under all-weather, day/night conditions. This report was prepared to document the results of a six-month study by an Ad Hoc Interagency Working Group on the Operational Use of Civil (i.e., non-military) Space-based Synthetic Aperture Radar (SAR). The Assistant Administrator of NOAA for Satellite and Information Services convened this working group and chaired three meetings of the group over a six-month period. This action was taken in response to a request by the Associate Administrator of NASA for Mission to Planet Earth for an assessment of operational applications of SAR to be accomplished in parallel with a separate study requested of the Committee on Earth Studies of the Space Studies Board of the National Research Council on the scientific results of SAR research missions. The representatives of participating agencies are listed following the Preface. There was no formal charter for the working group or long term plans for future meetings. However, the working group may be reconstituted in the future as a coordination body for multiagency use of operational SAR systems.
Planar concentrators near the étendue limit.
Winston, Roland; Gordon, Jeffrey M
2005-10-01
Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultracompact planar glass-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multijunction photovoltaics at high flux, with realistic power generation of 1 W from a 1 mm2 cell. When deployed in reverse, our designs provide collimation even for high-numerical-aperture light sources.
2017-08-01
filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics
Planar concentrators near the étendue limit
NASA Astrophysics Data System (ADS)
Winston, Roland; Gordon, Jeffrey M.
2005-10-01
Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultracompact planar glass-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multijunction photovoltaics at high flux, with realistic power generation of 1 W from a 1 mm² cell. When deployed in reverse, our designs provide collimation even for high-numerical-aperture light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Yang, Lingyun
We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.
Zheng, Liang; Van Labeke, Marie-Christine
2017-01-01
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m−2 s−1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species. PMID:28611818
NASA Technical Reports Server (NTRS)
Labeyrie, Antoine; Le Coroller, Herve; Dejonghe, Julien; Lardiere, Olivier; Aime, Claude; Dohlen, Kjetil; Mourard, Denis; Lyon, Richard; Carpenter, Kenneth G.
2008-01-01
Luciola is a large (one kilometer) "multi-aperture densified-pupil imaging interferometer", or "hypertelescope" employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a pupil densifier micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having hundreds of thousands of individual receivers . With its high limiting magnitude, reaching the mv=30 limit of HST when 100 collectors of 25cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1200 Angstrom ultra-violet to the 20 micron infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras ( currently 200 to 1000nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120nm to 20 microns, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6m2 , using a specialized mid infra-red focal spacecraft. Calculations ( Boccaletti et al., 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie. & Le Coroller, 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red . Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary Direct Imaging Field , and limiting magnitude, approaching that of an 8-meter space telescope when 1000 apertures of 25cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flasheshich may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, 1994) , will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue ( Ragazzoni et al., 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015-2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley
2015-09-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman;
2015-01-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
Toward Adaptive X-Ray Telescopes
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.;
2011-01-01
Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.
Toward active x-ray telescopes
NASA Astrophysics Data System (ADS)
O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.
2011-09-01
Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.
NASA Technical Reports Server (NTRS)
Mader, G. L.
1981-01-01
A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.
NASA Astrophysics Data System (ADS)
Yun, S. H.; Hudnut, K. W.; Owen, S. E.; Webb, F.; Simons, M.; Macdonald, A.; Sacco, P.; Gurrola, E. M.; Manipon, G.; Liang, C.; Fielding, E. J.; Milillo, P.; Hua, H.; Coletta, A.
2015-12-01
The April 25, 2015 M7.8 Gorkha earthquake caused more than 8,000 fatalities and widespread building damage in central Nepal. Four days after the earthquake, the Italian Space Agency's (ASI's) COSMO-SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area. Nine days after the earthquake, the Japan Aerospace Exploration Agency's (JAXA's) ALOS-2 SAR satellite covered larger area. Using these radar observations, we rapidly produced damage proxy maps derived from temporal changes in Interferometric SAR (InSAR) coherence. These maps were qualitatively validated through comparison with independent damage analyses by National Geospatial-Intelligence Agency (NGA) and the UNITAR's (United Nations Institute for Training and Research's) Operational Satellite Applications Programme (UNOSAT), and based on our own visual inspection of DigitalGlobe's WorldView optical pre- vs. post-event imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.
Glacier Frontal Line Extraction from SENTINEL-1 SAR Imagery in Prydz Area
NASA Astrophysics Data System (ADS)
Li, F.; Wang, Z.; Zhang, S.; Zhang, Y.
2018-04-01
Synthetic Aperture Radar (SAR) can provide all-day and all-night observation of the earth in all-weather conditions with high resolution, and it is widely used in polar research including sea ice, sea shelf, as well as the glaciers. For glaciers monitoring, the frontal position of a calving glacier at different moments of time is of great importance, which indicates the estimation of the calving rate and flux of the glaciers. In this abstract, an automatic algorithm for glacier frontal extraction using time series Sentinel-1 SAR imagery is proposed. The technique transforms the amplitude imagery of Sentinel-1 SAR into a binary map using SO-CFAR method, and then frontal points are extracted using profile method which reduces the 2D binary map to 1D binary profiles, the final frontal position of a calving glacier is the optimal profile selected from the different average segmented profiles. The experiment proves that the detection algorithm for SAR data can automatically extract the frontal position of glacier with high efficiency.
Shin, Dong Hee; Jang, Chan Wook; Lee, Ha Seung; Seo, Sang Woo; Choi, Suk-Ho
2018-01-31
Semitransparent flexible photovoltaic cells are advantageous for effective use of solar energy in many areas such as building-integrated solar-power generation and portable photovoltaic chargers. We report semitransparent and flexible organic solar cells (FOSCs) with high aperture, composed of doped graphene layers, ZnO, P3HT:PCBM, and PEDOT:PSS as anode/cathode transparent conductive electrodes (TCEs), electron transport layer, photoactive layer, and hole transport layer, respectively, fabricated based on simple solution processing. The FOSCs do not only harvest solar energy from ultraviolet-visible region but are also less sensitive to near-infrared photons, indicating semitransparency. For the anode/cathode TCEs, graphene is doped with bis(trifluoromethanesulfonyl)-amide or triethylene tetramine, respectively. Power conversion efficiency (PCE) of 3.12% is obtained from the fundamental FOSC structure, and the PCE is further enhanced to 4.23% by adding an Al reflective mirror on the top or bottom side of the FOSCs. The FOSCs also exhibit remarkable mechanical flexibilities through bending tests for various curvature radii.
Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Hensley, Scott; Chen, Curtis
2010-01-01
Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.
Sea Ice Monitoring from Space with Synthetic Aperture Radar
NASA Astrophysics Data System (ADS)
Eltoft, T.; Dierking, W.; Doulgeris, A.; Kasapoglu, G.; Kraemer, T.
2013-03-01
This paper summarizes the knowledge status in some areas of SAR monitoring of sea ice. It starts with a brief summary of the whitepaper by Breivik et al. from OceanObs’09 [3], and then focuses on segmentation and classification, drift estimation, and assimilation strategies, which are considered as key areas in the development of more mature sea ice products from SAR and polarimetric SAR (PoLSAR) data.
System performance testing of the DVA1 radio telescope
NASA Astrophysics Data System (ADS)
Knee, Lewis B. G.; Baker, Lynn A.; Gray, Andrew D.; Hovey, Gary J.; Kesteven, Michael J.; Lacy, Gordon; Robishaw, Timothy
2016-07-01
DVA1 (Dish Verification Antenna 1) is a highly innovative rim-supported single-piece composite-material dish radio telescope developed at the National Research Council Canada (NRC). It has a feed-high offset Gregorian optical design with a primary effective diameter of 15 m. DVA1 has been undergoing mechanical and astronomical system tests since 2014. Astronomical measurements were made in L band using a prototype front end developed for MeerKAT by EMSS Antennas (South Africa), including aperture efficiency, beam profiles, sensitivity, and tipping curves. The clean shaped optics, careful attention to feed design, and high sensitivity of the L band receiver (Trx 6 K) yield a system with high aperture efficiency ( 0.8), excellent sensitivity ( 9 m2/K), and low spillover ( 4 K). Observations of 21 cm atomic hydrogen lines towards standard sources demonstrate the low stray radiation pickup of the antenna. Ku band holography has measured the effective surface accuracy and stability of the dual-reflector antenna. The effective RMS of 0.85 mm implies a Ruze efficiency of 0.88 at 10 GHz and 0.60 at 20 GHz. The surface is stable ( 10% variation in surface RMS) over the limited range of environmental conditions tested. Testing continues for characterization of pointing, low frequency performance (< 1 GHz), and polarimetric performance. NRC is developing a successor antenna, DVA3, which will have a more accurate surface and be usable at frequencies at least up to Q band (30 - 50 GHz).
Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems
NASA Astrophysics Data System (ADS)
Park, Yu-Chul
2016-04-01
Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).
Research on high-efficiency polishing technology of photomask substrate
NASA Astrophysics Data System (ADS)
Zhao, Shijie; Xie, Ruiqing; Zhou, Lian; Liao, Defeng; Chen, Xianhua; Wang, Jian
2018-03-01
A method of photomask substrate fabrication is demonstrated ,that the surface figure and roughness of fused silica will converge to target precision rapidly with the full aperture polishing. Surface figure of optical flats in full aperture polishing processes is primarily dependent on the surface profile of polishing pad, therefor, a improved function of polishing mechanism was put forward based on two axis lapping machine and technology experience, and the pad testing based on displacement sensor and the active conditioning method of the pad is applied in this research. Moreover , the clamping deformation of the thin glass is solved by the new pitch dispensing method. The experimental results show that the surface figure of the 152mm×152mm×6.35mm optical glass is 0.25λ(λ=633nm) and the roughness is 0.32nm ,which has meet the requirements of mask substrate for 90 45nm nodes.
Special Pyrheliometer Shroud Development
NASA Technical Reports Server (NTRS)
Dennison, E. W.
1984-01-01
To insure that the insolation values accurately represent the input power to a power conversion unit the field of view (FOV) of the concentrator aperture and the insolation radiometer must be the same. The calculations, implementation, and results of this approach are covered. Three instruments were used to measure the insolation: an Eppley Normal Incidence Radiometer (NIP) and two versions of the kendall cavity radiometer. The shrouds used to limit the FOV of the radiometers were designed to simulate the FOV of the PDC-1 concentrater with the cold water cavity calorimeter. This technique of matching the FOV of an insolation radiometer to the FOV of a specific concentrater and receiver aperture appears to be both practical and effective. The efficiency of a power conversion unit will be too low if the insolation is measured with a radiometer which has a FOV which is larger than the FOV of the concentrator.
Moving target parameter estimation of SAR after two looks cancellation
NASA Astrophysics Data System (ADS)
Gan, Rongbing; Wang, Jianguo; Gao, Xiang
2005-11-01
Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.
High numerical aperture multilayer Laue lenses
Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; ...
2015-06-01
The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less
Implementation of Hadamard spectroscopy using MOEMS as a coded aperture
NASA Astrophysics Data System (ADS)
Vasile, T.; Damian, V.; Coltuc, D.; Garoi, F.; Udrea, C.
2015-02-01
Although nowadays spectrometers reached a high level of performance, output signals are often weak and traditional slit spectrometers still confronts the problem of poor optical throughput, minimizing their efficiency in low light setup conditions. In order to overcome these issues, Hadamard Spectroscopy (HS) was implemented in a conventional Ebert Fastie type of spectrometer setup, by substituting the exit slit with a digital micro-mirror device (DMD) who acts like a coded aperture. The theory behind HS and the functionality of the DMD are presented. The improvements brought using HS are enlightened by means of a spectrometric experiment and higher SNR spectrum is acquired. Comparative experiments were conducted in order to emphasize the SNR differences between HS and scanning slit method. Results provide a SNR gain of 3.35 favoring HS. One can conclude the HS method effectiveness to be a great asset for low light spectrometric experiments.
Verification of high efficient broad beam cold cathode ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com; Radiation Physics Department, National Center for Radiation Research and Technology; Ahmed, M. M.
2016-08-15
An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperturemore » is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.« less
NASA Astrophysics Data System (ADS)
Yang, Hongxin; Su, Fulin
2018-01-01
We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.
Development of a multispectral autoradiography using a coded aperture
NASA Astrophysics Data System (ADS)
Noto, Daisuke; Takeda, Tohoru; Wu, Jin; Lwin, Thet T.; Yu, Quanwen; Zeniya, Tsutomu; Yuasa, Tetsuya; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao
2000-11-01
Autoradiography is a useful imaging technique to understand biological functions using tracers including radio isotopes (RI's). However, it is not easy to describe the distribution of different kinds of tracers simultaneously by conventional autoradiography using X-ray film or Imaging plate. Each tracer describes each corresponding biological function. Therefore, if we can simultaneously estimate distribution of different kinds of tracer materials, the multispectral autoradiography must be a quite powerful tool to better understand physiological mechanisms of organs. So we are developing a system using a solid state detector (SSD) with high energy- resolution. Here, we introduce an imaging technique with a coded aperture to get spatial and spectral information more efficiently. In this paper, the imaging principle is described, and its validity and fundamental property are discussed by both simulation and phantom experiments with RI's such as 201Tl, 99mTc, 67Ga, and 123I.
NASA Astrophysics Data System (ADS)
Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi
2007-07-01
Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.
Telescope aperture optimization for spacebased coherent wind lidar
NASA Astrophysics Data System (ADS)
Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning
2015-08-01
Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.
Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng
2016-01-01
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385
NASA Astrophysics Data System (ADS)
Wang, X.; Zhang, P.; Sun, Z.
2018-04-01
Interferometric synthetic aperture radar(InSAR), as a space geodetictechnology, had been testified a high potential means of earth observation providing a method fordigital elevation model (DEM) and surface deformation monitoring of high precision. However, the accuracy of the interferometric synthetic aperture radar is mainly limited by the effects of atmospheric water vapor. In order to effectively measure topography or surface deformations by synthetic aperture radar interferometry (InSAR), it is necessary to mitigate the effects of atmospheric water vapor on the interferometric signals. This paper analyzed the atmospheric effects on the interferogram quantitatively, and described a result of estimating Precipitable Water Vapor (PWV) from the the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and the ground-based GPS, compared the MERIS/MODIS PWV with the GPS PWV. Finally, a case study for mitigating atmospheric effects in interferogramusing with using the integration of MERIS and MODIS PWV overSouthern California is given. The result showed that such integration approach benefits removing or reducing the atmospheric phase contribution from the corresponding interferogram, the integrated Zenith Path Delay Difference Maps (ZPDDM) of MERIS and MODIS helps reduce the water vapor effects efficiently, the standard deviation (STD) of interferogram is improved by 23 % after the water vapor correction than the original interferogram.
Spatial bandwidth considerations for optical communication through a free space propagation link.
Tyler, Glenn A
2011-12-01
This Letter concentrates on the transverse limitations imposed by a finite aperture optical propagation link that supports free space optical communication. Here it is assumed that a series of states, which are the spatial component of the message, are sent through the communication channel. The spatial bandwidth of the propagation link expressed as bits per transmitted photon is computed as the product of the average link efficiency times the entropy of the link. To facilitate the evaluation, it is assumed that the transmitted states are minimum energy loss orbital angular momentum states expressed in the form of f(nm)(r)exp(imθ), where the radial function is controlled to ensure that, for each quantum number denoted by the values of n and m, the minimum energy loss is obtained. The results illustrate that the bandwidth in units of bits per transmitted photon is very nearly equal to log(2)(N(2)(f)here log(2)(·) denotes the logarithm in base 2 and the Fresnel number, N(f)=(π/4)D(1)D(2)/(λz), where D(1) is the diameter of the transmitting aperture, D(2) is the diameter of the receiving aperture, λ is the wavelength of the light used, and z is the propagation distance. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.
2009-08-01
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B
2009-08-21
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Subcutaneous electrode structure
NASA Technical Reports Server (NTRS)
Lund, G. F. (Inventor)
1980-01-01
A subcutaneous electrode structure suitable for a chronic implant and for taking a low noise electrocardiogram of an active animal, comprises a thin inflexible, smooth disc of stainless steel having a diameter as of 5 to 30 mm, which is sutured in place to the animal being monitored. The disc electrode includes a radially directed slot extending in from the periphery of the disc for approximately 1/3 of the diameter. Electrical connection is made to the disc by means of a flexible lead wire that extends longitudinally of the slot and is woven through apertures in the disc and held at the terminal end by means of a spot welded tab. Within the slot, an electrically insulative sleeve, such as silicone rubber, is placed over the wire. The wire with the sleeve mounted thereon is captured in the plane of the disc and within the slot by means of crimping tabs extending laterally of the slot and over the insulative wire. The marginal lip of the slot area is apertured and an electrically insulative potting material such as silicone rubber, is potted in place overlaying the wire slot region and through the apertures.
Revision of an automated microseismic location algorithm for DAS - 3C geophone hybrid array
NASA Astrophysics Data System (ADS)
Mizuno, T.; LeCalvez, J.; Raymer, D.
2017-12-01
Application of distributed acoustic sensing (DAS) has been studied in several areas in seismology. One of the areas is microseismic reservoir monitoring (e.g., Molteni et al., 2017, First Break). Considering the present limitations of DAS, which include relatively low signal-to-noise ratio (SNR) and no 3C polarization measurements, a DAS - 3C geophone hybrid array is a practical option when using a single monitoring well. Considering the large volume of data from distributed sensing, microseismic event detection and location using a source scanning type algorithm is a reasonable choice, especially for real-time monitoring. The algorithm must handle both strain rate along the borehole axis for DAS and particle velocity for 3C geophones. Only a small quantity of large SNR events will be detected throughout a large aperture encompassing the hybrid array; therefore, the aperture is to be optimized dynamically to eliminate noisy channels for a majority of events. For such hybrid array, coalescence microseismic mapping (CMM) (Drew et al., 2005, SPE) was revised. CMM forms a likelihood function of location of event and its origin time. At each receiver, a time function of event arrival likelihood is inferred using an SNR function, and it is migrated to time and space to determine hypocenter and origin time likelihood. This algorithm was revised to dynamically optimize such a hybrid array by identifying receivers where a microseismic signal is possibly detected and using only those receivers to compute the likelihood function. Currently, peak SNR is used to select receivers. To prevent false results due to small aperture, a minimum aperture threshold is employed. The algorithm refines location likelihood using 3C geophone polarization. We tested this algorithm using a ray-based synthetic dataset. Leaney (2014, PhD thesis, UBC) is used to compute particle velocity at receivers. Strain rate along the borehole axis is computed from particle velocity as DAS microseismic synthetic data. The likelihood function formed by both DAS and geophone behaves as expected with the aperture dynamically selected depending on the SNR of the event. We conclude that this algorithm can be successfully applied for such hybrid arrays to monitor microseismic activity. A study using a recently acquired dataset is planned.
Barhoum, Erek; Johnston, Richard; Seibel, Eric
2005-09-19
An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency is 40x greater in the non-confocal versus the confocal geometry due to the majority of rays incident on the core being outside the numerical aperture. Across scan angles of 0 to 30o, collection efficiency decreases from 14.4% to 6.3% for the non-confocal design compared to 0.34% to 0.10% for the confocal design. Non-confocality provides higher and more uniform collection efficiencies at larger scan angles while sacrificing the confocal spatial filter.
NASA Astrophysics Data System (ADS)
Hopkinson, C.; Brisco, B.; Chasmer, L.; Devito, K.; Montgomery, J. S.; Patterson, S.; Petrone, R. M.
2017-12-01
The dense forest cover of the Western Boreal Plains of northern Alberta is underlain by a mix of glacial moraines, sandy outwash sediments and clay plains possessing spatially variable hydraulic conductivities. The region is also characterised by a large number of post-glacial surface depression wetlands that have seasonally and topographically limited surface connectivity. Consequently, drainage along shallow regional hydraulic gradients may be dominated either by variations in surface geology or local variations in Et. Long-term government lake level monitoring is sparse in this region, but over a decade of hydrometeorological monitoring has taken place around the Utikuma Regional Study Area (URSA), a research site led by the University of Alberta. In situ lake and ground water level data are here combined with time series of airborne lidar and RadarSat II synthetic aperture radar (SAR) data to assess the spatial variability of water levels during late summer period characterised by flow recession. Long term Lidar data were collected or obtained by the authors in August of 2002, 2008, 2011 and 2016, while seasonal SAR data were captured approximately every 24 days during the summers of 2015, 2016 and 2017. Water levels for wetlands exceeding 100m2 in area across a north-trending 20km x 5km topographic gradient north of Utikuma Lake were extracted directly from the lidar and indirectly from the SAR. The recent seasonal variability in spatial water levels was extracted from SAR, while the lidar data illustrated more long term trends associated with land use and riparian vegetation succession. All water level data collected in August were combined and averaged at multiple scales using a raster focal statistics function to generate a long term spatial map of the regional hydraulic gradient and scale-dependent variations. Areas of indicated high and low drainage efficiency were overlain onto layers of landcover and surface geology to ascertain causal relationships. Areas associated with high spatial variability in water level illustrate reduced drainage connectivity, while areas of reduced variability indicate high surface connectivity and/or hydraulic conductivity. The hypothesis of surface geology controls on local wetland connectivity and landscape drainage efficiency is supported through this analysis.
NASA Technical Reports Server (NTRS)
Smith, Robert C.
2006-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.
The Effect of Contact Area on the Fluid Flow-Fracture Specific Stiffness Relationship
NASA Astrophysics Data System (ADS)
Petrovitch, C.; Pyrak-Nolte, L. J.; Nolte, D. D.
2009-12-01
The integrity of subsurface CO2 sequestration sites can be compromised by the presence of mechanical discontinuities such as fractures, joints and faults. The ability to detect, seismically, and determine whether a discontinuity poses a risk, requires an understanding of the interrelationships among the mechanical, hydraulic and seismic properties of fractures rock. We performed a computational study to investigate the effect of fracture geometry on the relationship between fluid flow and fracture specific stiffness. The form of this relationship and the ability to scale it among different sample sizes provides a key link between the hydraulic and seismic response of fractures. In this study, model fracture topologies were simulated using the stratified continuum percolation method. This method constructs a hierarchical aperture distribution with a tunable spatial correlation length. Fractures with correlated and uncorrelated aperture distributions were used. The contact area across the fracture plane ranged from approximately 5% to 40%. The fracture specific stiffness was calculated by deforming each fracture numerically under a normal load and extracting the stiffness from the displacement-stress curves. Single-phase flow was calculated for each increment of stress by modeling the fracture topology as a network of elliptical pipes and solving the corresponding linear system of equations. We analyzed the relationship between fracture displacement and contact area and found that the correlation length associated with the contact area distribution enables a scaling relationship between displacement and contact area. The collapse of the fluid flow - stress relationship required use of standard percolation functional forms that use average aperture (cubic law), the void area fraction, and the correlation length of the contact area clusters. A final scaling relationship between fluid flow and fracture specific was found for the class of correlated fractures while a separate relationship was found for the uncorrelated fractures. By expanding the scaling parameters to include additional length scales, it may be possible to unify all of the flow-stiffness relationships, independent of geometry. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DEFG02-97ER14785 08), the GeoMathematical Imaging Group at Purdue University and from the Computer Research Institute At Purdue University.