High density protein crystal growth
NASA Technical Reports Server (NTRS)
Rouleau, Robyn (Inventor); Hedden, Douglas Keith (Inventor); Delucas, Lawrence (Inventor)
2004-01-01
A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.
Liquid metal reactor air cooling baffle
Hunsbedt, Anstein
1994-01-01
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.
Liquid metal reactor air cooling baffle
Hunsbedt, A.
1994-08-16
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.
MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter
2001-01-01
A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumford, S.E.; Smed, J.P.
This patent describes a gas turbine combustion chamber. It comprises: means for admission of fuel to the upstream end thereof and discharge of hot gases from the downstream end thereof, and a combustion chamber wall, having an outer surface, with apertures therethrough, and air scoops provided through the apertures to direct air into the combustion chamber.
Nelson, Scott D.
2016-05-10
A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.
Lewin, Keith F.
1997-04-15
A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.
Flexible Framework for Capacitive Sensing
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2006-01-01
A flexible framework supports electrically-conductive elements in a capacitive sensing arrangement. Identical frames are arranged end-to-end with adjacent frames being capable of rotational movement there between. Each frame has first and second passages extending therethrough and parallel to one another. Each of the first and second passages is adapted to receive an electrically-conductive element therethrough. Each frame further has a hollowed-out portion for the passage of a fluent material therethrough. The hollowed-out portion is sized and shaped to provide for capacitive sensing along a defined region between the electrically-conductive element in the first passage and the electrically-conductive element in the second passage.
Guggenheim, S. Frederic
1986-01-01
A multi-port fluid valve apparatus is used to control the flow of fluids through a plurality of valves and includes a web, which preferably is a stainless steel endless belt. The belt has an aperture therethrough and is progressed, under motor drive and control, so that its aperture is moved from one valve mechanism to another. Each of the valve mechanisms comprises a pair of valve blocks which are held in fluid-tight relationship against the belt. Each valve block consists of a block having a bore through which the fluid flows, a first seal surrounding the bore and a second seal surrounding the first seal, with the distance between the first and second seals being greater than the size of the belt aperture. In order to open a valve, the motor progresses the belt aperture to where it is aligned with the two bores of a pair of valve blocks, such alignment permitting a flow of the fluid through the valve. The valve is closed by movement of the belt aperture and its replacement, within the pair of valve blocks, by a solid portion of the belt.
Johnson, Alfred A.; Carleton, John T.
1978-05-02
A graphite-moderated, water-cooled nuclear reactor including graphite blocks disposed in transverse alternate layers, one set of alternate layers consisting of alternate full size blocks and smaller blocks through which cooling tubes containing fuel extend, said smaller blocks consisting alternately of tube bearing blocks and support block, the support blocks being smaller than the tube bearing blocks, the aperture of each support block being tapered so as to provide the tube extending therethrough with a narrow region of support while being elsewhere spaced therefrom.
Active Aircraft Pylon Noise Control System
NASA Technical Reports Server (NTRS)
Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)
2015-01-01
An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.
Active Aircraft Pylon Noise Control System
NASA Technical Reports Server (NTRS)
Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elmiligui, Alaa A. (Inventor)
2017-01-01
An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.
Radiation collimator and systems incorporating same
Norman, Daren R [Idaho Falls, ID; Yoon, Woo Y [Idaho Falls, ID; Jones, James L [Idaho Falls, ID; Haskell, Kevin J [Idaho Falls, ID; Bennett, Brion D [Idaho Falls, ID; Tschaggeny, Charles W [Woods Cross, UT; Jones, Warren F [Idaho Falls, ID
2011-09-13
A collimator including a housing having disposed therein a shield element surrounding a converter core in which a photon beam is generated from electrons emanating from a linear accelerator. A beam channeler longitudinally adjacent the shield element has a beam aperture therethrough coaxially aligned with, and of the same diameter as, an exit bore of the converter core. A larger entry bore in the converter core is coaxial with, and longitudinally separated from, the exit bore thereof. Systems incorporating the collimator are also disclosed.
Open-split interface for mass spectrometers
Diehl, John W.
1991-01-01
An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.
Duncan, Charles P.
1983-01-01
An improved collecting apparatus for small aquatic or airborne organisms such as plankton, larval fish, insects, etc. The improvement constitutes an apertured removal container within which is retained a collecting bag, and which is secured at the apex of a conical collecting net. Such collectors are towed behind a vessel or vehicle with the open end of the conical net facing forward for trapping the aquatic or airborne organisms within the collecting bag, while allowing the water or air to pass through the apertures in the container. The container is readily removable from the collecting net whereby the collecting bag can be quickly removed and replaced for further sample collection. The collecting bag is provided with means for preventing the bag from being pulled into the container by the water or air flowing therethrough.
Sealpot and method for controlling a solids flow rate therethrough
Chiu, John H.; Teigen, Bard C.
2015-10-20
A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.
Cu--Ni--Fe anode for use in aluminum producing electrolytic cell
Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.
2006-07-18
A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.
Backus, S.; Kapteyn, H.C.; Murnane, M.M.
1997-07-01
Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.
Self-actuating and locking control for nuclear reactor
Chung, Dong K.
1982-01-01
A self-actuating, self-locking flow cutoff valve particularly suited for use in a nuclear reactor of the type which utilizes a plurality of fluid support neutron absorber elements to provide for the safe shutdown of the reactor. The valve comprises a substantially vertical elongated housing and an aperture plate located in the housing for the flow of fluid therethrough, a substantially vertical elongated nozzle member located in the housing and affixed to the housing with an opening in the bottom for receiving fluid and apertures adjacent a top end for discharging fluid. The nozzle further includes two sealing means, one located above and the other below the apertures. Also located in the housing and having walls surrounding the nozzle is a flow cutoff sleeve having a fluid opening adjacent an upper end of the sleeve, the sleeve being moveable between an upper open position wherein the nozzle apertures are substantially unobstructed and a closed position wherein the sleeve and nozzle sealing surfaces are mated such that the flow of fluid through the apertures is obstructed. It is a particular feature of the present invention that the valve further includes a means for utilizing any increase in fluid pressure to maintain the cutoff sleeve in a closed position. It is another feature of the invention that there is provided a means for automatically closing the valve whenever the flow of fluid drops below a predetermined level.
Wedding ring shaped excitation coil
MacLennan, Donald A.; Tsai, Peter
2001-01-01
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.
NASA Technical Reports Server (NTRS)
Jackson, Steven A. (Inventor)
1994-01-01
A push type fastener for fastening a movable structural part (41) to a fixed structural part (43), wherein the coupling and decoupling actions are both a push type operation, the fastener consisting of a plunger (12) having a shank (20) with a plunger head (18) at one end and a threaded end portion (26a) at the other end, an expandable grommet (14) adapted to receive the plunger shank (20) therethrough, and an attachable head (16) which is securable to the threaded end of the plunger shank (20). The fastener (10) requires each structural part (41, 43) to be provided with an aperture (45, 46) and the attachable head (16) to be smaller than the aperture (46) in the second structural part. The plunger (12) is extensible through the grommet (14) and is structurally configured with an external camming surface (25) which is cooperatively engageable with internal surfaces (38) of the grommet so that when the plunger is inserted in the grommet, the relative positioning of said cooperable camming surfaces determines the expansion of the grommet. Coupling of the parts is effected when the grommet is inserted in the aperture (46) in the fixed structural part (43) and expanded by pushing the plunger head (18) and plunger at least a minimal distance through the grommet. Decoupling is effected by pushing the attachable head (16).
Fry, W.A.
1962-05-29
A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)
High frequency inductive lamp and power oscillator
MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.
2001-01-01
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.
Renzi, Ronald F.
2007-12-25
A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) means for applying an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.
Two phase gap cooling of an electrical machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoykhet, Boris A.
2016-10-04
An electro-dynamic machine has a rotor and stator with a gap therebetween. The machine has a frame defining a hollow interior with end cavities on axially opposite ends of the frame. A gas circulating system has an inlet that supplies high pressure gas to the frame interior and an outlet to collect gas passing therethrough. A liquid coolant circulating system has an inlet that supplies coolant to the frame interior and an outlet that collects coolant passing therethrough. The coolant inlet and gas inlet are generally located on the frame in a manner to allow coolant from the coolant inletmore » to flow with gas from the gas inlet to the gap. The coolant outlet and gas outlet are generally located on the frame in a manner to allow the coolant to be separated from the gas with the separated coolant and gas collected for circulation through their respective circulating systems.« less
Edge compression manifold apparatus
Renzi, Ronald F.
2004-12-21
A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) device to apply an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.
Edge compression manifold apparatus
Renzi, Ronald F [Tracy, CA
2007-02-27
A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) device to apply an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.
NASA Technical Reports Server (NTRS)
Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)
2006-01-01
A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.
High frequency inductive lamp and power oscillator
MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang
2000-01-01
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.
Method of producing microchannel and nanochannel articles
D'Urso, Brian R.
2010-05-04
A method of making an article having channels therethrough includes the steps of: providing a ductile structure defining at least one macro-channel, the macro-channel containing a salt; drawing the ductile structure in the axial direction of the at least one macro-channel to reduce diameter of the macro-channel; and contacting the salt with a solvent to dissolve the salt to produce an article having at least one microchannel.
Sealing Assembly for Sealing a Port and the Like
NASA Technical Reports Server (NTRS)
Haas, Jon W. (Inventor); Haupt, Charles W. (Inventor)
2000-01-01
The sealing assembly for a port of a valve or the like is disclosed. In detail, the sealing assembly includes the port having a circular shaped end with a circular shaped knife-edge thereon. The sealing assembly further includes a hollow cap having a closed first end with an aperture therethrough and an open second end. The cap further includes internal threads adapted to mate with the external threads of the port. A gasket is mounted within the cap having flat first and second principle sides and made of a deformable metal, the first principle side of the gasket for mounting against the circular shaped knife edge of the port. A plunger having a circular shaped disc portion is adapted to fit within the hollow cap and is engagable with the first principle surface of the gasket and includes a shaft portion extending out of the aperture. The cap and shaft of the plunger include external wrenching flats. Thus when the cap is screwed onto the port and the plunger is prevented from rotating by a wrench mounted on the wrenching flats of the shaft portion of the plunger, the gasket is forced into engagement with the knife edge in pure compression and no rotation of the gasket occurs causing the knife edge to locally deform the gasket sealing of the port.
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
Recessed impingement insert metering plate for gas turbine nozzles
Itzel, Gary Michael; Burdgick, Steven Sebastian
2002-01-01
An impingement insert sleeve is provided that is adapted to be disposed in a coolant cavity defined through a stator vane. The insert has a generally open inlet end and first and second diametrically opposed, perforated side walls. A metering plate having at least one opening defined therethrough for coolant flow is mounted to the side walls to generally transverse a longitudinal axis of the insert, and is disposed downstream from said inlet end. The metering plate improves flow distribution while reducing ballooning stresses within the insert and allowing for a more flexible insert attachment.
Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2012-01-01
A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.
Solid-state circuit breaker with current-limiting characteristic using a superconducting coil
Boenig, H.J.
1982-08-16
A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two eyeles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.
Solid-state circuit breaker with current limiting characteristic using a superconducting coil
Boenig, Heinrich J.
1984-01-01
A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two cycles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.
Huerta, Joseph
1992-01-01
An elongate projectile for small arms use has a single unitary mass with a hollow nose cavity defined by a sharp rigid cutting edge adapted to make initial contact with the target surface and cut therethrough. The projectile then enters the target mass in an unstable flight mode. The projectile base is substantially solid such that the nose cavity, while relatively deep, does not extend entirely through the base and the projectile center of gravity is aft of its geometric center.
Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.
2012-09-04
In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.
Fanning, Alan W.; Olich, Eugene E.
1994-01-01
An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.
Thin-Film Evaporative Cooling for Side-Pumped Laser
NASA Technical Reports Server (NTRS)
Stewart, Brian K. (Inventor)
2010-01-01
A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.
Veligdan, James Thomas
1997-01-01
An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.
Cole, Rossa W.; Zoll, August H.
1982-01-01
In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.
Catalytic reactor for low-Btu fuels
Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.
2009-04-21
An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.
Electrical apparatus lockout device
Gonzales, Rick
1999-01-01
A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.
Directional radiation detectors
Dowell, Jonathan L.
2017-09-12
Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.
Arkelyan, A.M.; Rickard, C.L.
1962-04-17
A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)
Optical monitoring system for a turbine engine
Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay
2013-05-14
The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.
Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough
NASA Technical Reports Server (NTRS)
Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)
2001-01-01
A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.
Screening system and method of using same
Jones, David A; Gresham, Christopher A; Basiliere, Marc L; Spates, James J; Rodacy, Philip J
2014-04-15
An integrated apparatus and method for screening an object for a target material is provided. The integrated apparatus comprises a housing and an integrated screener. The housing is positionable adjacent the object, and has a channel therethrough. The integrated screener is positionable in the housing, and comprises a fan, at least one filter, a heater and an analyzer. The fan is for drawing air carrying particles and vapor through the channel of the housing. The filter(s) is/are positionable in the channel of the housing for passage of the air therethrough. The filter(s) comprise(s) at least one metal foam having a plurality of pores therein for collecting and adsorbing a sample from the particles and vapor passing therethrough. The heater is for applying heat to the at least one metal foam whereby the collected sample is desorbed from the metal foam. The analyzer detects the target material from the desorbed sample.
Cooled turbine vane with endcaps
Cunha, Frank J.; Schiavo, Jr., Anthony L.; Nordlund, Raymond Scott; Malow, Thomas; McKinley, Barry L.
2002-01-01
A turbine vane assembly which includes an outer endcap having a plurality of generally straight passages and passage segments therethrough, an inner endcap having a plurality of passages and passage segments therethrough, and a vane assembly having an outer shroud, an airfoil body, and an inner shroud. The outer shroud, airfoil body and inner shroud each have a plurality of generally straight passages and passage segments therethrough as well. The outer endcap is coupled to the outer shroud so that outer endcap passages and said outer shroud passages form a fluid circuit. The inner endcap is coupled to the inner shroud so that the inner end cap passages and the inner shroud passages from a fluid circuit. Passages in the vane casting are in fluid communication with both the outer shroud passages and the inner shroud passages. Passages in the outer endcap may be coupled to a cooling system that supplies a coolant and takes away the heated exhaust.
Apparatus for cooling an electric machine
Palafox, Pepe; Gerstler, William Dwight; Shen, Xiaochun; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Salasoo, Lembit
2013-07-16
Provided is an apparatus, for example, for use with a rotating electric machine, that includes a housing. The housing can include a housing main portion and a housing end portion. The housing main portion can be configured to be disposed proximal to a body portion of a stator section of an electric machine. The housing main portion can define a main fluid channel that is configured to conduct fluid therethrough. The housing end portion can receive fluid from said main fluid channel and direct fluid into contact with a winding end portion of a conductive winding of the stator section.
Hot gas path component having cast-in features for near wall cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface of the substrate defines at least one interior space. At least a portion of the outer surface of the substrate includes a recess formed therein. The recess includes a bottom surface and a groove extending at least partially along the bottom surface of the recess. A cover is disposed within the recess and covers at least a portion of the groove. The groove is configured to channel a cooling fluid therethrough to cool the cover.
Link module for a downhole drilling network
Hall, David R [Provo, UT; Fox, Joe [Provo, UT
2007-05-29
A repeater is disclosed in one embodiment of the present invention as including a cylindrical housing, characterized by a proximal end and a distal end, and having a substantially cylindrical wall, the cylindrical wall defining a central bore passing therethrough. The cylindrical housing is formed to define at least one recess in the cylindrical wall, into which a repeater is inserted. The cylindrical housing also includes an annular recess formed into at least one of the proximal end and the distal end. An annular transmission element, operably connected to the repeater, is located in the annular recess. In selected embodiments, the annular transmission element inductively converts electrical energy to magnetic energy. In other embodiments, the annular transmission element includes an electrical contact to transmit electrical energy directly to another contact.
Gaitas, Angelo; Hower, Robert W
2014-09-15
We describe a method for fabricating an aperture on a fluidic cantilever device using SU-8 as a structural material. The device can ultimately be used for patch clamping, microinjections, fluidic delivery, fluidic deposition, and micromaterial removal. In the first generation of this device, the initial aperture diameter is 10 μ m and is fabricated on a silicon-on-insulator (SOI) wafer that is structurally used to define the aperture. The aperture can be reduced in size through mask design. This self-aligned process allows for patterning on the sharp tip projecting out of the fluidic plane on the cantilever and is batch fabricated, reducing the cost and time for manufacture. The initial mask, SOI device layer thickness, and the width of the base of the tip define the size of the aperture. The SU-8 micromachined cantilever includes an electrode and a force sensing mechanism. The cantilever can be easily integrated with an atomic force microscope or an optical microscope.
Nano transfer and nanoreplication using deterministically grown sacrificial nanotemplates
Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E [Greenback, TN; Guillorn, Michael A [Ithaca, NY; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TX; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN
2012-03-27
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus, includes a substrate and a nanoconduit material coupled to a surface of the substrate. The substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate.
Method of forming a variable width channel
NASA Technical Reports Server (NTRS)
Andrews, James T. (Inventor)
1989-01-01
A method of forming a channel of varying width in a body comprises the steps of forming a plurality of masking elements having an opening therethrough intersecting a plurality of the elements on a surface of the body, partially flowing the elements into the opening to form a masking pattern having a variable width opening therethrough, and removing portions of the exposed body to form the channel with a sidewall having a surface contour corresponding to an edge of the masking pattern.
High density associative memory
NASA Technical Reports Server (NTRS)
Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Daud, Taher (Inventor); Lambe, John J. (Inventor)
1989-01-01
A multi-layered, thin-film, digital memory having associative recall. There is a first memory matrix and a second memory matrix. Each memory matrix comprises, a first layer comprising a plurality of electrically separated row conductors; a second layer comprising a plurality of electrically separated column conductors intersecting but electrically separated from the row conductors; and, a plurality of resistance elements electrically connected between the row condutors and the column conductors at respective intersections of the row conductors and the column conductors, each resistance element comprising, in series, a first resistor of sufficiently high ohmage to conduct a sensible element current therethrough with virtually no heat-generating power consumption when a low voltage as employed in thin-film applications is applied thereacross and a second resistor of sufficiently high ohmage to conduct no sensible current therethrough when a low voltage as employed in thin-film applications is applied thereacross, the second resistor having the quality of breaking down to create a short therethrough upon the application of a breakdown level voltage across the first and second resistors.
Fault current limiter and alternating current circuit breaker
Boenig, Heinrich J.
1998-01-01
A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.
Fault current limiter and alternating current circuit breaker
Boenig, H.J.
1998-03-10
A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.
Nanoconduits and nanoreplicants
Melechko, Anatoli V [Oak Ridge, TN; McKnight, Timothy E [Greenback, TN; Guillorn, Michael A [Ithaca, NY; Ilic, Bojan [Ithaca, NY; Merkulov, Vladimir I [Knoxville, TN; Doktycz, Mitchel J [Knoxville, TN; Lowndes, Douglas H [Knoxville, TN; Simpson, Michael L [Knoxville, TN
2007-06-12
Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. An apparatus includes a substrate and a nanoconduit material coupled to a surface of the substrate, where the substrate defines an aperture and the nanoconduit material defines a nanoconduit that is i) contiguous with the aperture and ii) aligned substantially non-parallel to a plane defined by the surface of the substrate. An apparatus includes a substrate and a nanoreplicant structure coupled to a surface of the substrate.
Hot gas path component cooling system
Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael
2014-02-18
A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.
Apparatus for preparing cornea material for tabbed (sutureless) transplantation
Collins, Joseph Patrick
1997-01-01
A tool and a method for preparing a donor material used in sutureless corneal transplants uses a first cutting portion to prepare a donor blank having tabbed portions extending outwardly radially. A second cutting portion is used to cut the central portion of the blank. The tool is used as a guide member for the second cutting portion. In one embodiment the tool has slits laterally defined therethrough which allow the tabbed portions of the donor material to be thinned to a desired thickness using a scalpel. In an another embodiment the second cutting portion is a round trephine which is used to simultaneously trim each of the tabbed portions.
Bennett, Gloria A.; Moore, Troy K.
1988-01-01
An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.
Rippel, Wally E.; Kobayashi, Daryl M.
2005-10-11
An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Experimental investigations of 3 mm aperture PPLN structures
NASA Astrophysics Data System (ADS)
Kolker, D.; Pronyushkina, A.; Boyko, A.; Kostyukova, N.; Trashkeev, S.; Nuyshkov, B.; Shur, V.
2017-01-01
We are reporting about investigation of domestic 3 mm aperture periodically polled lithium niobate (PPLN) structures for cascaded mid-IR OPO. Wide aperture periodically poled MgO-doped lithium niobate (LiNbO3) structures at multigrating, fan-out and multi fan-out configuration were prepared at “Labfer LTD”. Laser source based on such structures can be used for special applications. Four different PPLN structures were investigated and effective aperture for effective pumping was defined.
Savage, George M.
1991-01-01
Apparatus for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function.
Heat exchanger efficiently operable alternatively as evaporator or condenser
Ecker, Amir L.
1981-01-01
A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.
Savage, G.M.
1991-10-29
Apparatus is described for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function. 10 figures.
Water jacket for solid particle solar receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasyluk, David T.
A solar receiver includes: water jacket panels each having a light-receiving side and a back side with a watertight sealed plenum defined in-between; light apertures passing through the watertight sealed plenums to receive light from the light-receiving sides of the water jacket panels; a heat transfer medium gap defined between the back sides of the water jacket panels and a cylindrical back plate; and light channeling tubes optically coupled with the light apertures and extending into the heat transfer medium gap. In some embodiments ends of the light apertures at the light receiving side of the water jacket panel aremore » welded together to define at least a portion of the light-receiving side. A cylindrical solar receiver may be constructed using a plurality of such water jacket panels arranged with their light-receiving sides facing outward.« less
Hot gas path component trailing edge having near wall cooling features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Miranda, Carlos Miguel
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage ismore » coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.« less
Flashback resistant pre-mixer assembly
Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL
2012-02-14
A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.
1996-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Solar energy apparatus with apertured shield
NASA Technical Reports Server (NTRS)
Collings, Roger J. (Inventor); Bannon, David G. (Inventor)
1989-01-01
A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.
Apparatus for preparing cornea material for tabbed (sutureless) transplantation
Collins, J.P.
1997-07-22
A tool and a method for preparing a donor material used in sutureless corneal transplants uses a first cutting portion to prepare a donor blank having tabbed portions extending outwardly radially. A second cutting portion is used to cut the central portion of the blank. The tool is used as a guide member for the second cutting portion. In one embodiment the tool has slits laterally defined therethrough which allow the tabbed portions of the donor material to be thinned to a desired thickness using a scalpel. In an another embodiment the second cutting portion is a round trephine which is used to simultaneously trim each of the tabbed portions. 26 figs.
Air/fuel supply system for use in a gas turbine engine
Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico
2014-06-17
A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.
Hot gas path component cooling system having a particle collection chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Carlos Miguel; Lacy, Benjamin Paul
A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured tomore » channel the cooling fluid therethrough to cool the substrate.« less
McDonald, Douglas B.; Buchholz, Carol E.
1994-01-01
A shield for restricting molten corium from flowing into a water sump disposed in a floor of a containment vessel includes upper and lower walls which extend vertically upwardly and downwardly from the floor for laterally bounding the sump. The upper wall includes a plurality of laterally spaced apart flow channels extending horizontally therethrough, with each channel having a bottom disposed coextensively with the floor for channeling water therefrom into the sump. Each channel has a height and a length predeterminedly selected for allowing heat from the molten corium to dissipate through the upper and lower walls as it flows therethrough for solidifying the molten corium therein to prevent accumulation thereof in the sump.
Echtler, Joseph P.
1978-01-01
A pressure tap having utility in an environment of a solid-gas phase process flow includes a tubular coupling part having attached over a passage therethrough at an end opening thereof exposed to the flow a grating of spaced bars, and affixed internally across a passage therethrough so as to cover over an opening therein a screen which maintains contained within the passage between it and the grating a matrix of smooth spheres. The grating bars are so oriented by the disposition of the aforesaid end opening with respect to the flow such that accumulations of solids therebetween tending to bridge the opening are removed therefrom by the flow.
Merrill, John T.
1984-01-01
A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.
Insulative laser shell coupler
Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.
1994-01-01
A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.
Insulative laser shell coupler
Arnold, P.A.; Anderson, A.T.; Alger, T.W.
1994-09-20
A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.
Firearm suppressor having enhanced thermal management for rapid heat dissipation
Moss, William C.; Anderson, Andrew T.
2014-08-19
A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.
Apparatus, systems, and methods for ultrasound synthetic aperature focusing
Schuster, George J.; Crawford, Susan L.; Doctor, Steven R.; Harris, Robert V.
2005-04-12
One form of the present invention is a technique for interrogating a sample with ultrasound which includes: generating ultrasonic energy data corresponding to a volume of a sample and performing a synthetic aperture focusing technique on the ultrasonic energy data. The synthetic aperture focusing technique includes: defining a number of hyperbolic surfaces which extend through the volume at different depths and a corresponding number of multiple element accumulation vectors, performing a focused element calculation procedure for a group of vectors which are representative of the interior of a designated aperture, performing another focused element calculation procedure for vectors corresponding to the boundary of the aperture, and providing an image corresponding to features of the sample in accordance with the synthetic aperture focusing technique.
NASA Astrophysics Data System (ADS)
Kraus, Hal G.
1993-02-01
Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.
NASA Technical Reports Server (NTRS)
Davis, M. F.; Wosik, J.; Forster, K.; Deshmukh, S. C.; Rampersad, H. R.
1991-01-01
The paper describes thin films deposited in a system where substrates are scanned over areas up to 3.5 x 3.5 cm through the stationary plume of an ablated material defined by an aperture. These YBCO films are deposited on LaAlO3 and SrTiO3 substrates with the thickness of 90 and 160 nm. Attention is focused on the main features of the deposition system: line focusing of the laser beam on the target; an aperture defining the area of the plume; computerized stepper motor-driven X-Y stage translating the heated sampler holder behind the plume-defining aperture in programmed patterns; and substrate mounting block with uniform heating at high temperatures over large areas. It is noted that the high degree of uniformity of the properties in each film batch illustrates that the technique of pulsed laser deposition can be applied to produce large YBCO films of high quality.
Micro Ring Grating Spectrometer with Adjustable Aperture
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)
2012-01-01
A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.
Variable aperture collimator for high energy radiation
Hill, Ronald A.
1984-05-22
An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated energy from emerging from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.
Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines
Lindner, Melvin; Cottingham, James G.
1996-03-12
A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.; Neutzler, Jay K.
1997-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines
Lindner, M.; Cottingham, J.G.
1996-03-12
A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.
NASA Astrophysics Data System (ADS)
Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.
2016-05-01
Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.
Refrigerant pressurization system with a two-phase condensing ejector
Bergander, Mark [Madison, CT
2009-07-14
A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Ralph H.; Doty, Patrick F.
2017-08-01
The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and themore » second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.« less
Confinement of hydrogen at high pressure in carbon nanotubes
Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA
2011-12-13
A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.
Krausse, George J.
1988-01-01
A shutter (36) is provided for controlling a beam, or current, of charged particles in a device such as a thyratron (10). The substrate (38) defines an aperture (60) with a gap (32) which is placeable within the current. Coils (48) are formed on the substrate (38) adjacent the aperture (60) to produce a magnetic field for trapping the charged particles in or about aperture (60). The proximity of the coils (48) to the aperture (60) enables an effective magnetic field to be generated by coils (48) having a low inductance suitable for high frequency control. The substantially monolithic structure including the substrate (38) and coils (48) enables the entire shutter assembly (36) to be effectively located with respect to the particle beam.
Integrated seat frame and back support
Martin, Leo
1999-01-01
An integrated seating device comprises a seat frame having a front end and a rear end. The seat frame has a double wall defining an exterior wall and an interior wall. The rear end of the seat frame has a slot cut therethrough both the exterior wall and the interior wall. The front end of the seat frame has a slot cut through just the interior wall thereof. A back support comprising a generally L shape has a horizontal member, and a generally vertical member which is substantially perpendicular to the horizontal member. The horizontal member is sized to be threaded through the rear slot and is fitted into the front slot. Welded slat means secures the back support to the seat frame to result in an integrated seating device.
Versatile, high-sensitivity faraday cup array for ion implanters
Musket, Ronald G.; Patterson, Robert G.
2003-01-01
An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.
Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery
2010-03-01
Color Spaces and Synthetic Aperture Radar (SAR) Multicolor Imaging. 15 2.3.1 Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2...III. Decomposition Techniques on SAR Polarimetry and Colorimetry applied to SAR Imagery...space polarimetric SAR systems. Colorimetry is also introduced in this chapter, presenting the fundamentals of the RGB and CMY color spaces, defined for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, S; Kakakhel, MB; Ahmed, SBS
2015-06-15
Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shieldedmore » to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international body for the presented work.« less
Burdgick, Steven Sebastian
2002-01-01
A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.
Systems and methods for forming microchannel plate (MCP) photodetector assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Lei; Zhao, Huyue; Wagner, Robert G.
A MCP photodetector assembly includes an anode plate including a plurality of electrical traces positioned thereon, a plurality of MCPs and a plurality of grid spacers. The MCPs are positioned between the grid spacers. The grid spacers have a grid spacer shape defining at least one aperture. A plurality of shims are positioned between the grid spacers and the MCPs so as to form a stack positioned on the anode plate. Each of the plurality of shims have a shim shape which is the same as the grid spacer shape such that each of the plurality of shims and eachmore » of the plurality of grid spacers overlap so as to define at least one MCP aperture. At least a portion of the plurality of MCPs are positioned within the MCP aperture. The shims are structured to electrically couple the MCPs to the anode plate.« less
Gold, Raymond; Roberts, James H.
1989-01-01
A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.
Phenomenology of electromagnetic coupling: Conductors penetrating an aperture
NASA Astrophysics Data System (ADS)
Wright, D. B.; King, R. J.
1987-06-01
The purpose of this study was to investigate the coupling effects of penetrating conductors through free-standing apertures. This penetrating conductor and aperture arrangement are referred to as a modified aperture. A penetrating conductor is defined here to be a thin, single wire bent twice at 90 angles. The wire was inserted through a rectangular aperture in a metal wall. Vertical segments on both sides of the wall coupled energy from one region to the other. Energy was incident upon the modified aperture from what is referred to as the exterior region. The amount of coupling was measured by a D sensor on the other (interior) side of the wall. This configuration of an aperture in a metal wall was used as opposed to an aperture in a cavity in order to simplify the interpretation of resulting data. The added complexity of multiple cavity resonances was therefore eliminated. Determining the effects of penetrating conductors on aperture coupling is one of several topics being investigated as part of on-going research at Lawrence Livermore National Laboratory on the phenomenology of electromagnetic coupling. These phenomenology studies are concerned with the vulnerability of electronic systems to high intensity electromagnetic fields. The investigation is relevant to high altitude EMP (HEMP), enhanced HEMP (EHEMP), and high power microwave (HPM) coupling.
Variable-energy collimator for high-energy radiation
Hill, R.A.
1982-03-03
An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated ;energy from emergine from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.
Radius of curvature controlled mirror
Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.
2006-01-17
A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.
Apparatus for supplying conditioned air at a substantially constant temperature and humidity
NASA Technical Reports Server (NTRS)
Obler, H. D. (Inventor)
1980-01-01
The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.
Lamination cooling system formation method
Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA
2012-06-19
An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Lamination cooling system formation method
Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA
2009-05-12
An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Comprehensive Fractal Description of Porosity of Coal of Different Ranks
Ren, Jiangang; Zhang, Guocheng; Song, Zhimin; Liu, Gaofeng; Li, Bing
2014-01-01
We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure. PMID:24955407
Veligdan, James T.
2004-01-06
A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.
Weil, Bradley S.; Wetherington, Jr., Grady R.
1985-01-01
Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.
Weil, B.S.; Wetherington, G.R. Jr.
Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.
Monolithic dye laser amplifier
Kuklo, T.C.
1993-03-30
A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.
Monolithic dye laser amplifier
Kuklo, Thomas C.
1993-01-01
A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.
Burdgick, Steven Sebastian; Itzel, Gary Michael
2001-01-01
A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.
Characterization of fracture aperture for groundwater flow and transport
NASA Astrophysics Data System (ADS)
Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.
2007-12-01
This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.
Combination induction plasma tube and current concentrator for introducing a sample into a plasma
Hull, Donald E.; Bieniewski, Thomas M.
1988-01-01
An induction plasma tube in combination with a current concentrator. The rent concentrator has a substantially cylindrical body having an open end and a partially closed end which defines an aperture. A first slot extends the longitudinal length of the cylindrical body and a second slot extends radially outward from the aperture. Together the first and second slots form a single L-shaped slot. The current concentrator is disposed within a volume bounded by an induction coil substantially along the axis thereof, and when power is applied to the induction coil a concentrated current is induced within the current concentrator aperture. The concentrator is moveable relative to the coil along the longitudinal axis of the coil to control the amount of current which is concentrated at the aperture.
Smith, Blake; Gelover, Edgar; Moignier, Alexandra; Wang, Dongxu; Flynn, Ryan T.; Lin, Liyong; Kirk, Maura; Solberg, Tim; Hyer, Daniel E.
2016-01-01
Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layers which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans. PMID:27487886
High pressure, high current, low inductance, high reliability sealed terminals
Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN
2010-03-23
The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.
Apparatus for safeguarding a radiological source
Bzorgi, Fariborz M
2014-10-07
A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.
Pressure letdown method and device for coal conversion systems
NASA Technical Reports Server (NTRS)
Kendal, J. M.; Walsh, J. V. (Inventor)
1983-01-01
In combination with a reactor for a coal utilization system, a pressure letdown device accepts from a reactor, a polyphase fluid at an entrance pressure and an entrance velocity, and discharges the fluid from the device at a discharge pressure substantially lower than the entrance pressure and at a discharge temperature and a discharge velocity substantially equal to the entrance temperature and entrance velocity. The device is characterized by a series of pressure letdown stages including several symmetrical baffles, disposed in coaxially nested alignment. In each baffle several ports or apertures of uniform dimensions are defined. The number of ports or apertures for each baffle plate is unique with respect to the number of ports or apertures defined in each of the other baffles. The mass rate of flow for each port is a function of the area of the port, the pressure of the fluid as applied to the port, and a common pressure ratio established across the ports.
Study of wrap-rib antenna design
NASA Technical Reports Server (NTRS)
Wade, W. D.; Sinha, A.; Singh, R.
1979-01-01
The results of a parametric design study conducted to develop the significant characteristics and technology limitations of space deployable antenna systems with aperture sizes ranging from 50 up to 300 m and F/D ratios between 0.5 and 3.0 are presented. Wrap/rib type reflectors of both the prime and offset fed geometry and associated feed support structures were considered. The significant constraints investigated as limitations on achievable aperture were inherent manufacturability, orbit dynamic and thermal stability, antenna weight, and antenna stowed volume. A data base, resulting in the defined maximum achievable aperture size as a function of diameter, frequency and estimated cost, was formed.
Design of wavefront coding optical system with annular aperture
NASA Astrophysics Data System (ADS)
Chen, Xinhua; Zhou, Jiankang; Shen, Weimin
2016-10-01
Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.
Possible Overlaps Between Blobs, Grism Apertures, and Dithers
NASA Astrophysics Data System (ADS)
Ryan, R. E.; McCullough, P. R.
2017-06-01
We present a investigation into possible overlaps between the known IR blobs with the grism aperture reference positions and the IR dither patterns. Each aperture was designed to place the science target (e.g. a specific star) on a cosmetically clean area of the IR detector. Similarly, the dither patterns were designed to mitigate cosmetic defects by rarely (or ideally never) placing such targets on known defects. Because blobs accumulate with time, the originally defined apertures and dither patterns may no longer accomplish their goals, it is important to reverify these combinations. We find two potential overlaps between the blob, aperture, and dither combinations, but do not recommend any changes to the current suite of aperture references positions and/or dither patterns for two reasons. First, one of the overlaps occurs with a dither/aperture combination that is seldom used for high-value science operations, but rather more common for wide-field surveys/mosaics. Second, the other overlap is 8.7 pix from a blob that has a fiducial radius of 10 pix, which already represents a very conservative distance. We conclude that a similar analysis should be repeated as new blobs occur, to continue to ensure ideal operations for high-value science targets. The purpose of this report is to document the analysis in order to facilitate its repetition in the future.
Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules
2014-04-29
Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.
Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules
2013-01-08
Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.
Current conducting end plate of fuel cell assembly
Walsh, Michael M.
1999-01-01
A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.
Electro-Mechanical Coaxial Valve
NASA Technical Reports Server (NTRS)
Patterson, Paul R (Inventor)
2004-01-01
Coaxial valves usually contain only one moving part. It has not been easy, then, to provide for electric motor actuation. Many actuators being proposed involve designs which lead to bulky packages. The key facing those improving coaxial valves is the provision of suitable linear actuation. The valve herein indudes a valve housing with a flow channel there-through. Arranged in the flow channel is a closing body. In alignment with the closing body is a ball screw actuator which includes a ball nut and a cylindrical screw. The ball nut sounds a threaded portion of the cylindrical screw. The cylindrical screw is provided with a passageway there-through through which fluid flows. The cylindrical screw is disposed in the flow channel to become a control tube adapted to move toward and away from the valve seat. To rotate the ball nut an actuating drive is employed driven by a stepper motor.
Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.
2007-05-29
A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.
Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.
2005-05-31
A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.
Operation of a cascade air conditioning system with two-phase loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yinshan; Wang, Jinliang; Zhao, Futao
A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less
Cody, John P.; Kane, James J.
1976-01-01
1. A device of the character described comprising the combination of a guide tube having a normally open end, a support frame having a port therethrough, linkage means pivotally connected with the tube and with the frame and rotatably supporting the tube for movement between a position in longitudinal alignment with said port and with its open end in registry with the port and an additional position in which the tube lies adjacent the port with a side portion of the tube extending generally transversely across said port, an elongated track carried by said frame disposed generally parallel to and adjacent the tube in its said additional position, means connected with and projecting laterally from said tube adjacent its open end engaging and movable along said elongated track for cooperating with the track to direct the tube during movement between said positions, and means carried by the tube for moving an article therethrough toward and away from said port.
Hoskinson, Reed L [Rigby, ID; Svoboda, John M [Idaho Falls, ID; Bauer, William F [Idaho Falls, ID; Elias, Gracy [Idaho Falls, ID
2008-05-06
A method and apparatus is provided for monitoring a flow path having plurality of different solid components flowing therethrough. For example, in the harvesting of a plant material, many factors surrounding the threshing, separating or cleaning of the plant material and may lead to the inadvertent inclusion of the component being selectively harvested with residual plant materials being discharged or otherwise processed. In accordance with the present invention the detection of the selectively harvested component within residual materials may include the monitoring of a flow path of such residual materials by, for example, directing an excitation signal toward of flow path of material and then detecting a signal initiated by the presence of the selectively harvested component responsive to the excitation signal. The detected signal may be used to determine the presence or absence of a selected plant component within the flow path of residual materials.
Two stroke engine exhaust emissions separator
Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.
2003-04-22
A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.
Two stroke engine exhaust emissions separator
Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.
2002-01-01
A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.
Safety System for Controlling Fluid Flow into a Suction Line
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2018-01-01
A safety system includes a sleeve fitted within a pool's suction line at its inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith. A first sensor is coupled to the sleeve to sense pressure therein, and a second pressure sensor is coupled to the plate to sense pressure in one of the plates' holes.
NASA Technical Reports Server (NTRS)
Kelley, Anthony R. (Inventor); Buskirk, Paul D. (Inventor)
2006-01-01
An orifice plate for use in a conduit through which fluid flows is defined by a central circular region having a radius R, and a ring-shaped region surrounding the central circular region. The ring-shaped region has holes formed therethrough with those holes centered at each radius R thereof satisfying a relationship A(sub R)=al(X(sub R)V(sub R)(sup b)) where A(sub R) is a sum of areas of those holes having centers at radius R, X(sub R) is a flow coefficient at radius R, V(sub R) is a velocity of the fluid that is to flow through the conduit at radius R, b is a constant selected to make at least one process variable (associated with the fluid that is to flow through the conduit) approximately equal at each radius R, and a is a constant that is equal to (X(sub R)A(sub R)V(sub R)(sup b)) at each radius R.
Swirling structure for mixing two concentric fluid flows at nozzle outlet
Mensink, Daniel L.
1993-01-01
A nozzle device for causing two fluids to mix together. In particular, a spray nozzle comprise two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
Safety System for Controlling Fluid Flow into a Suction Line
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2015-01-01
A safety system includes a sleeve fitted within a pool's suction line at the inlet thereof. An open end of the sleeve is approximately aligned with the suction line's inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining a plurality of distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. Each of the distinct channels is at least approximately three feet in length. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedewa, Andrew
A system is disclosed comprising an engine having coolant passages defined therethrough, a first coolant pump, and a first radiator. The system additionally comprises a second coolant pump, a second radiator, and a liquid-to-air heat exchanger configured to condition the temperature of intake air to the engine. The system further includes a coolant valve means. For a first configuration of the coolant valve means the first coolant pump is configured to urge coolant through the coolant passages in the engine and through the first radiator, and the second coolant pump is configured to urge coolant through the liquid-to-air heat exchangermore » and through the second radiator. For a second configuration of the coolant valve means the second coolant pump is configured to urge coolant through the coolant passages in the engine and through the liquid-to-air heat exchanger. A method for controlling the system is also disclosed.« less
Method of fabricating a honeycomb structure
Holleran, Louis M.; Lipp, G. Daniel
1999-01-01
A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.
Method of fabricating a honeycomb structure
Holleran, L.M.; Lipp, G.D.
1999-08-03
A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.
High pressure capillary connector
Renzi, Ronald F.
2005-08-09
A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.
Analysis of limited-diffractive and limited-dispersive X-waves generated by finite radial waveguides
NASA Astrophysics Data System (ADS)
Fuscaldo, Walter; Pavone, Santi C.; Valerio, Guido; Galli, Alessandro; Albani, Matteo; Ettorre, Mauro
2016-05-01
In this work, we analyze the spatial and temporal features of electromagnetic X-waves propagating in free space and generated by planar radiating apertures. The performance of ideal X-waves is discussed and compared to practical cases where the important effects related to the finiteness of the radiating aperture and the wavenumber dispersion are taken into account. In particular, a practical device consisting of a radial waveguide loaded with radiating slots aligned along a spiral path is considered for the practical case in the millimeter-wave range. A common mathematical framework is defined for a precise comparison of the spatiotemporal properties and focusing capabilities of the generated X-wave. It is clearly shown that the fractional bandwidth of the radiating aperture has a key role in the longitudinal confinement of an X-wave in both ideal and practical cases. In addition, the finiteness of the radiating aperture as well as the wavenumber dispersion clearly affect both the transverse and the longitudinal profiles of the generated radiation as it travels beyond the depth-of-field of the generated X-wave. Nevertheless, the spatiotemporal properties of the X-wave are preserved even in this "dispersive-finite" case within a defined region and duration related to the nondiffractive range and fractional bandwidth of the spectral components of the generated X-wave. The proposed analysis may open new perspectives for the efficient generation of X-waves over finite radiating apertures at millimeter waves where the dispersive behavior of realistic devices is no longer negligible.
A Morphogenetic Model Accounting for Pollen Aperture Pattern in Flowering Plants.
Ressayre; Godelle; Mignot; Gouyon
1998-07-21
Pollen grains are embeddded in an extremely resistant wall. Apertures are well defined places where the pollen wall is reduced or absent that permit pollen tube germination. Pollen grains are produced by meiosis and aperture number definition appears to be linked with the partition that follows meiosis and leads to the formation of a tetrad of four haploid microspores. In dicotyledonous plants, meiosis is simultaneous which means that cytokinesis occurs once the two nuclear divisions are completed. A syncitium with the four nuclei stemming from meiosis is formed and cytokinesis isolates simulataneously the four products of meiosis. We propose a theoretical morphogenetic model which takes into account part of the features of the ontogeny of the pollen grains. The nuclei are considered as attractors acting upon a morphogenetic substance distributed within the cytoplasm of the dividing cell. This leads to a partition of the volume of the cell in four domains that is similar to the observations of cytokinesis in the studied species. The most widespread pattern of aperture distribution in dicotyledonous plants (three apertures equidistributed on the pollen grain equator) can be explained by bipolar interactions between nuclei stemming from the second meiotic division, and observed variations on these patterns by disturbances of these interactions. In numerous plant species, several pollen grains differing in aperture number are produced by a single individual. The distribution of the different morphs within tetrads indicates that the four daughter cells can have different aperture number. The model provides an explanation for the duplication of one of the apertures of a three-aperture pollen grain leading to a four-aperture one and in parallel it gives an explanation for how heterogeneous tetrads can be formed.Copyright 1998 Academic Press
Upflow bioreactor having a septum and an auger and drive assembly
Hansen, Carl S.; Hansen, Conly L.
2007-11-06
An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes an auger positioned in the aperture of the septum. The vessel includes an opening in the top for receiving the auger. The auger extends from a drive housing, which is position over the opening and provides a seal around the opening. The drive housing is adjustable relative to the vessel. The position of the auger in the aperture can be adjusted by adjusting the drive housing relative to the vessel. The auger adjustment mechanism allows the auger to be accurately positioned within the aperture. The drive housing can also include a fluid to provide an additional seal around the shaft of the auger.
Vaporization chambers and associated methods
Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.
2017-02-21
A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.
Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley
2016-10-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.
Assen, Ayalew H; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant M; Xue, Dong-Xu; Jiang, Hao; Eddaoudi, Mohamed
2015-11-23
Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y(3+) and Tb(3+)) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prototype Development of a Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR
NASA Technical Reports Server (NTRS)
Tanner, Alan B.; Wilson, William J.; Kangaslahti, Pekka P.; Lambrigsten, Bjorn H.; Dinardo, Steven J.; Piepmeier, Jeffrey R.; Ruf, Christopher S.; Rogacki, Steven; Gross, S. M.; Musko, Steve
2004-01-01
Preliminary details of a 2-D synthetic aperture radiometer prototype operating from 50 to 58 GHz will be presented. The instrument is being developed as a laboratory testbed, and the goal of this work is to demonstrate the technologies needed to do atmospheric soundings with high spatial resolution from Geostationary orbit. The concept is to deploy a large sparse aperture Y-array from a geostationary satellite, and to use aperture synthesis to obtain images of the earth without the need for a large mechanically scanned antenna. The laboratory prototype consists of a Y-array of 24 horn antennas, MMIC receivers, and a digital cross-correlation sub-system. System studies are discussed, including an error budget which has been derived from numerical simulations. The error budget defines key requirements, such as null offsets, phase calibration, and antenna pattern knowledge. Details of the instrument design are discussed in the context of these requirements.
Device for removing blackheads
Berkovich, Tamara
1995-03-07
A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.
NASA Astrophysics Data System (ADS)
Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.
2017-01-01
Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.
2016-02-01
NFT), plasmonic materials, scattering-type scanning near-field optical microscopy (s-NSOM). I . INTRODUCTION THE continuous growth in data storage is...recording stack for (a) gold and (b) silver bowtie apertures. The spatial distributions are calculated at 1 ns. TABLE I COMPARISON BETWEEN GOLD AND SILVER...NFTs From the calculation results, we can obtain the thermal efficiency defined in (1). A detailed comparison is summarized in Table I , where the
Plural output optimetric sample cell and analysis system
NASA Technical Reports Server (NTRS)
Haley, F. C. (Inventor)
1971-01-01
An apparatus suitable for receiving a sample for optimetric analysis includes a sample cell comprising an opaque hollow tube. Several apertures are defined in the wall of the tubing and a lens barrel which extends beyond to opposite surfaces of the wall is supported within at least one of the apertures. A housing is provided with one channel for receiving the sample cell and a series of channels extending from the exterior housing to the sample cell apertures. A filter element is housed in each of these latter channels. These channels slidingly receive an excitation light source for a photodetector cell to permit selective focusing. A sample cell containing at least three apertures in the walls can be mounted for rotation relative to a light source or photoconduction means for simultaneous or alternative optimetric determination of the components of a single sample. The sample cell is fabricated by supporting a lens barrel within the aperture. A molten portion of glass is deposited in the lens barrel and cooled while in a horizontal position to form a lens having an acceptable angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Blake, E-mail: bsmith34@wisc.edu; Gelover,
Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layersmore » which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, B; Gelover, E; Wang, D
2015-06-15
Purpose: Low-energy treatments during spot scanning proton therapy (SSPT) suffer from poor conformity due to increased spot size. Collimation devices can reduce the lateral penumbra of a proton therapy dose distribution and improve the overall plan quality. The purpose of this work was to study the advantages of individual energy-layer collimation, which is unique to a recently proposed Dynamic Collimation System (DCS), in comparison to a standard, fixed aperture that allows only a single shape for all energy layers. Methods: Three brain patients previously planned and treated with SSPT were re-planned using an in-house treatment planning system capable of modelingmore » collimated and un-collimated proton beamlets. The un-collimated plans, which served as a baseline for comparison, reproduced the target coverage of the clinically delivered plans. The collimator opening for the aperture based plans included a 0.6 cm expansion of the largest cross section of the target in the Beam’s Eye View, while the DCS based plans were created by optimizing the collimator position for beam spots near the periphery of the target in each energy layer. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring, averaged 9.13% and 3.48% for the DCS and aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 16.42% and 8.16% for the DCS and aperture plans, respectively. Conclusion: Collimation reduces the dose to normal tissue adjacent to the target and increases dose conformity to the target region for low-energy SSPT. The ability of the DCS to provide collimation to each energy layer yields better conformity in comparison to fixed aperture plans. This work was partially funded by IBA (Ion Beam Applications S.A.)« less
Anderson, H.L.
1958-10-01
The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.
Sanz, M.C.; Scully, C.N.
1961-06-27
The patented fuel element is a hexagonal graphite body having an axial channel therethrough. The graphite is impregnated with uranium which is concentrated near the axial channel. Layers of tantalum nitride and tantalum carbide are disposed on the surface of the body confronting the channel.
Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.
1985-03-19
Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.
Fired heater for coal liquefaction process
Ying, David H. S.
1984-01-01
A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.
Apparatus and methods for impingement cooling of a side wall of a turbine nozzle segment
Burdgick, Steven Sebastian
2002-01-01
A gas turbine nozzle segment has outer and inner bands and a vane therebetween. Each band includes a nozzle wall, a side wall, a cover and an impingement plate between the cover and the nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The impingement plate has a turned flange welded to the inturned flange. A backing plate overlies the turned flange and aligned apertures are formed through the backing plate and turned flange to direct and focus cooling flow onto the side wall of the nozzle segment.
Rotor for a line start permanent magnet machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melfi, Mike; Schiferl, Rich; Umans, Stephen
A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distancemore » that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.« less
Filter for on-line air monitor unaffected by radon progeny and method of using same
Phillips, Terrance D.; Edwards, Howard D.
1999-01-01
An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.
High precision high flow range control valve
McCray, J.A.
1999-07-13
A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.
High precision high flow range control valve
McCray, John A.
1999-01-01
A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.
Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis
NASA Astrophysics Data System (ADS)
Bo, En; Liu, Linbo
2016-10-01
We developed a spectral domain optical coherence tomography (SD-OCT) with an extended depth-of-focus (DOF) by synthetizing aperture. For a designated Gaussian-shape light source, the lateral resolution was determined by the numerical aperture (NA) of the objective lens and can be approximately maintained over the confocal parameter, which was defined as twice the Rayleigh range. However, the DOF was proportional to the square of the lateral resolution. Consequently, a trade-off existed between the DOF and lateral resolution, and researchers had to weigh and judge which was more important for their research reasonably. In this study, three distinct optical apertures were obtained by imbedding a circular phase spacer in the sample arm. Due to the optical path difference between three distinct apertures caused by the phase spacer, three images were aligned with equal spacing along z-axis vertically. By correcting the optical path difference (OPD) and defocus-induced wavefront curvature, three images with distinct depths were coherently summed together. This system digitally refocused the sample tissue and obtained a brand new image with higher lateral resolution over the confocal parameter when imaging the polystyrene calibration beads.
Sampling and Reconstruction of the Pupil and Electric Field for Phase Retrieval
NASA Technical Reports Server (NTRS)
Dean, Bruce; Smith, Jeffrey; Aronstein, David
2012-01-01
This technology is based on sampling considerations for a band-limited function, which has application to optical estimation generally, and to phase retrieval specifically. The analysis begins with the observation that the Fourier transform of an optical aperture function (pupil) can be implemented with minimal aliasing for Q values down to Q = 1. The sampling ratio, Q, is defined as the ratio of the sampling frequency to the band-limited cut-off frequency. The analytical results are given using a 1-d aperture function, and with the electric field defined by the band-limited sinc(x) function. Perfect reconstruction of the Fourier transform (electric field) is derived using the Whittaker-Shannon sampling theorem for 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Götstedt, Julia; Karlsson Hauer, Anna; Bäck, Anna, E-mail: anna.back@vgregion.se
Purpose: Complexity metrics have been suggested as a complement to measurement-based quality assurance for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). However, these metrics have not yet been sufficiently validated. This study develops and evaluates new aperture-based complexity metrics in the context of static multileaf collimator (MLC) openings and compares them to previously published metrics. Methods: This study develops the converted aperture metric and the edge area metric. The converted aperture metric is based on small and irregular parts within the MLC opening that are quantified as measured distances between MLC leaves. The edge area metricmore » is based on the relative size of the region around the edges defined by the MLC. Another metric suggested in this study is the circumference/area ratio. Earlier defined aperture-based complexity metrics—the modulation complexity score, the edge metric, the ratio monitor units (MU)/Gy, the aperture area, and the aperture irregularity—are compared to the newly proposed metrics. A set of small and irregular static MLC openings are created which simulate individual IMRT/VMAT control points of various complexities. These are measured with both an amorphous silicon electronic portal imaging device and EBT3 film. The differences between calculated and measured dose distributions are evaluated using a pixel-by-pixel comparison with two global dose difference criteria of 3% and 5%. The extent of the dose differences, expressed in terms of pass rate, is used as a measure of the complexity of the MLC openings and used for the evaluation of the metrics compared in this study. The different complexity scores are calculated for each created static MLC opening. The correlation between the calculated complexity scores and the extent of the dose differences (pass rate) are analyzed in scatter plots and using Pearson’s r-values. Results: The complexity scores calculated by the edge area metric, converted aperture metric, circumference/area ratio, edge metric, and MU/Gy ratio show good linear correlation to the complexity of the MLC openings, expressed as the 5% dose difference pass rate, with Pearson’s r-values of −0.94, −0.88, −0.84, −0.89, and −0.82, respectively. The overall trends for the 3% and 5% dose difference evaluations are similar. Conclusions: New complexity metrics are developed. The calculated scores correlate to the complexity of the created static MLC openings. The complexity of the MLC opening is dependent on the penumbra region relative to the area of the opening. The aperture-based complexity metrics that combined either the distances between the MLC leaves or the MLC opening circumference with the aperture area show the best correlation with the complexity of the static MLC openings.« less
Lossless droplet transfer of droplet-based microfluidic analysis
Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA
2011-11-22
A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.
Synthetic aperture radar images with composite azimuth resolution
Bielek, Timothy P; Bickel, Douglas L
2015-03-31
A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.
Jacobs, S.D.; Cerqua, K.A.
1987-07-14
The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile. 11 figs.
Jacobs, Stephen D.; Cerqua, Kathleen A.
1987-01-01
The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile.
Self-calibrating solar position sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxey, Lonnie Curt
A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated bymore » the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.« less
Multi-piece wind turbine rotor blades and wind turbines incorporating same
Moroz,; Mieczyslaw, Emilian [San Diego, CA
2008-06-03
A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.
Electromagnetic pump stator frame having power crossover struts
Fanning, Alan W.; Olich, Eugene E.
1995-01-01
A stator frame for an electromagnetic pump includes a casing joined to a hub by a plurality of circumferentially spaced apart struts. At least one electrically insulated power crossover lead extends through the hub, through a crossover one of the struts, and through the casing for carrying electrical current therethrough.
van den Engh, Ger
1995-01-01
A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.
Swirling structure for mixing two concentric fluid flows at nozzle outlet
Mensink, D.L.
1993-07-20
A nozzle device is described for causing two fluids to mix together. In particular, a spray nozzle comprises two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.
Measures of galaxy environment - I. What is 'environment'?
NASA Astrophysics Data System (ADS)
Muldrew, Stuart I.; Croton, Darren J.; Skibba, Ramin A.; Pearce, Frazer R.; Ann, Hong Bae; Baldry, Ivan K.; Brough, Sarah; Choi, Yun-Young; Conselice, Christopher J.; Cowan, Nicolas B.; Gallazzi, Anna; Gray, Meghan E.; Grützbauch, Ruth; Li, I.-Hui; Park, Changbom; Pilipenko, Sergey V.; Podgorzec, Bret J.; Robotham, Aaron S. G.; Wilman, David J.; Yang, Xiaohu; Zhang, Youcai; Zibetti, Stefano
2012-01-01
The influence of a galaxy's environment on its evolution has been studied and compared extensively in the literature, although differing techniques are often used to define environment. Most methods fall into two broad groups: those that use nearest neighbours to probe the underlying density field and those that use fixed apertures. The differences between the two inhibit a clean comparison between analyses and leave open the possibility that, even with the same data, different properties are actually being measured. In this work, we apply 20 published environment definitions to a common mock galaxy catalogue constrained to look like the local Universe. We find that nearest-neighbour-based measures best probe the internal densities of high-mass haloes, while at low masses the interhalo separation dominates and acts to smooth out local density variations. The resulting correlation also shows that nearest-neighbour galaxy environment is largely independent of dark matter halo mass. Conversely, aperture-based methods that probe superhalo scales accurately identify high-density regions corresponding to high-mass haloes. Both methods show how galaxies in dense environments tend to be redder, with the exception of the largest apertures, but these are the strongest at recovering the background dark matter environment. We also warn against using photometric redshifts to define environment in all but the densest regions. When considering environment, there are two regimes: the 'local environment' internal to a halo best measured with nearest neighbour and 'large-scale environment' external to a halo best measured with apertures. This leads to the conclusion that there is no universal environment measure and the most suitable method depends on the scale being probed.
Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink
NASA Technical Reports Server (NTRS)
Ho, C.; Wheelon, A.
2004-01-01
Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0.79 omega(sub 0) is found to be 0.44 Hz (or 1.0 omega(sub 0), while the fading rate (or fading slope) is about 0.06 dB/s.
Improved particle impactor assembly for size selective high volume air sampler
Langer, G.
1987-03-23
Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.
Anti-terrorist vehicle crash impact energy absorbing barrier
Swahlan, David J.
1989-01-01
An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.
NASA Astrophysics Data System (ADS)
Ermann, Michael; Johnson, Marty E.
2002-05-01
What does one room sound like when it is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact aural impressions in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume shoebox concert hall was conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound-absorption levels were established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) Architectural composition, as defined by the aperture size exposing the chamber and (2) Materiality, as defined by the sound absorbance in the coupled volume. Preliminary calculations indicate that the double-sloped sound decay condition only appears when the total aperture area is less than 1.5% of the total shoebox surface area and the average absorption coefficient of the coupled volume is less than 0.07.
Direct fired absorption machine flue gas recuperator
Reimann, Robert C.; Root, Richard A.
1985-01-01
A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.
Seaborg, G.T.
1960-09-13
A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.
Broadband thermal optical limiter for the protection of eyes and sensors
NASA Astrophysics Data System (ADS)
Justus, Brian L.; Huston, Alan L.; Campillo, Anthony J.
1994-05-01
A broadband thermal optical limiter for protecting a light sensitive object from intense laser beams at all near ultraviolet, visible and near infrared wavelengths is disclosed. The broadband thermal optical limiter comprises: a sample cell containing a solution of broadband absorber material dissolved in a thermal solvent; and a first optical device for converging an incident laser beam into the sample cell. The sample cell is responsive to a converged incident laser beam below a predetermined intensity level for passing therethrough the converged incident laser beam below the predetermined intensity level. The sample cell is also responsive to a converged incident laser beam at or above a predetermined intensity level for thermally defocusing substantially all of the converged incident laser beam in different directions and passing therethrough only a remaining small portion of the converged incident laser beam at or above the predetermined intensity level. The broadband thermal optical limiter further includes a second optical device for focusing substantially all of the laser beam passing through the sample cell into the light sensitive object to be protected.
Reactor pressure vessel nozzle
Challberg, Roy C.; Upton, Hubert A.
1994-01-01
A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.
Piezoelectric axial flow microvalve
Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.
2007-01-09
This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.
UCSD High Energy X-ray Timing Experiment magnetic shield design and test results
NASA Technical Reports Server (NTRS)
Rothschild, Richard E.; Pelling, Michael R.; Hink, Paul L.
1991-01-01
Results are reported from an effort to define a passive magnetic field concept for the High Energy X-ray Timing Experiment (HEXTE), in the interest of reducing the detector-gain variations due to 0.5-1.0-sec timescale magnetic field variations. This will allow a sensitivity of the order of 1 percent of the HEXTE background. While aperture modulation and automatic gain control will minimize effects on timescales of tens of seconds and longer, passive magnetic shielding of the photomultiplier tubes will address 1-sec timescale variations due to aperture motions.
Miniature rotating transmissive optical drum scanner
NASA Technical Reports Server (NTRS)
Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)
2013-01-01
A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitznagel, D
Purpose: The use of protons for radiation therapy is growing rapidly. One consequence of protons interacting with different media is activation. These nuclear reactions induced by the protons, scattered neutrons, and gamma rays, activate different materials encountered, particularly by the therapists. The purpose of this study was to examine the derived nuclides from the activation, and also the decay rate. Methods: The study was conducted in our proton therapy facility. Protons are derived from a synchrocyclotron and pass through field shipping systems, apertures, and range compensators to define the beam within the patient.Included materials of concerns measured; the patient supportmore » couch, sheet rock in the wall, solid plastics used for quality assurance and dosimetry, and the passive scattering system itself, which includes brass apertures, and Lucite or blue wax compensators. All devices were studied post irradiation using gamma spectroscopy to determine the nuclides, and a sodium iodine scintillation detector to measure decay, particularly when the dose rate fell to background levels. Results: We have also determined from the measurements we will maintain brass apertures for three months before sending them for scrap. Some of the radionuclides arrived from these measurements included Na-22 for the blue wax compensator, C1-34m for the sheetrock, and Sc-44 and Co-60 for the brass apertures. We found compensators made out of Lucite or wax decayed to background in 2 hours. The patient support couch decayed to background in approximately 40 minutes, and sheet rock decayed in 80 minutes. In terms of the aperture layers, the most proximal aperture slab had much higher activity than the distal slab. Also the proximal sides of the slabs were much more activate than the distal. Conclusion: We have given proper instruction to therapists performing quality assurance in terms of the handled plastics, and to handle apertures rapidly as possible.« less
RF characteristics of the hoop column antenna for the land mobile satellite system mission
NASA Astrophysics Data System (ADS)
Foldes, P.
1984-11-01
A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David
2016-01-01
The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.
Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.
2015-01-01
Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy. PMID:26525906
RF characteristics of the hoop column antenna for the land mobile satellite system mission
NASA Technical Reports Server (NTRS)
Foldes, P.
1984-01-01
A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.
Birefringence of single and bundled microtubules.
Oldenbourg, R; Salmon, E D; Tran, P T
1998-01-01
We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.
Birefringence of single and bundled microtubules.
Oldenbourg, R; Salmon, E D; Tran, P T
1998-01-01
We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses. PMID:9449366
NASA Technical Reports Server (NTRS)
Brown, William H. (Inventor)
1994-01-01
A gas turbine engine flow mixer includes at least one chute having first and second spaced apart sidewalls joined together at a leading edge, with the sidewalls having first and second trailing edges defining therebetween a chute outlet. The first trailing edge is spaced longitudinally downstream from the second trailing edge for defining a septum in the first sidewall extending downstream from the second trailing edge. The septum includes a plurality of noise attenuating apertures.
3D synthetic aperture for controlled-source electromagnetics
NASA Astrophysics Data System (ADS)
Knaak, Allison
Locating hydrocarbon reservoirs has become more challenging with smaller, deeper or shallower targets in complicated environments. Controlled-source electromagnetics (CSEM), is a geophysical electromagnetic method used to detect and derisk hydrocarbon reservoirs in marine settings, but it is limited by the size of the target, low-spatial resolution, and depth of the reservoir. To reduce the impact of complicated settings and improve the detecting capabilities of CSEM, I apply synthetic aperture to CSEM responses, which virtually increases the length and width of the CSEM source by combining the responses from multiple individual sources. Applying a weight to each source steers or focuses the synthetic aperture source array in the inline and crossline directions. To evaluate the benefits of a 2D source distribution, I test steered synthetic aperture on 3D diffusive fields and view the changes with a new visualization technique. Then I apply 2D steered synthetic aperture to 3D noisy synthetic CSEM fields, which increases the detectability of the reservoir significantly. With more general weighting, I develop an optimization method to find the optimal weights for synthetic aperture arrays that adapts to the information in the CSEM data. The application of optimally weighted synthetic aperture to noisy, simulated electromagnetic fields reduces the presence of noise, increases detectability, and better defines the lateral extent of the target. I then modify the optimization method to include a term that minimizes the variance of random, independent noise. With the application of the modified optimization method, the weighted synthetic aperture responses amplifies the anomaly from the reservoir, lowers the noise floor, and reduces noise streaks in noisy CSEM responses from sources offset kilometers from the receivers. Even with changes to the location of the reservoir and perturbations to the physical properties, synthetic aperture is still able to highlight targets correctly, which allows use of the method in locations where the subsurface models are built from only estimates. In addition to the technical work in this thesis, I explore the interface between science, government, and society by examining the controversy over hydraulic fracturing and by suggesting a process to aid the debate and possibly other future controversies.
Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity
Simpson, James E.
2000-01-01
A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.
Electrocatalytic cermet gas detector/sensor
Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.
1995-01-01
An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.
Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2016-02-22
In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.
NASA Technical Reports Server (NTRS)
Wilson, R. Gale
1994-01-01
The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.
Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William
2014-01-01
ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.
Solar energy receiver for a Stirling engine
NASA Technical Reports Server (NTRS)
Selcuk, M. K. (Inventor)
1980-01-01
A solar energy receiver includes a separable endless wall formed of a ceramic material in which a cavity of substantially cylindrical configuration is defined for entrapping solar flux. An acceptance aperture is adapted to admit to the cavity a concentrated beam of solar energy. The wall is characterized by at least one pair of contiguously related segments separated by lines of cleavage intercepting the aperture. At least one of the segments is supported for pivotal displacement. A thermal-responsive actuator is adapted to respond to excessive temperatures within the cavity for initiating pivoted displacement of one segment, whereby thermal flux is permitted to escape from the cavity.
Effect of Clouds on Apertures of Space-based Air Fluorescence Detectors
NASA Technical Reports Server (NTRS)
Sokolsky, P.; Krizmanic, J.
2003-01-01
Space-based ultra-high-energy cosmic ray detectors observe fluorescence light from extensive air showers produced by these particles in the troposphere. Clouds can scatter and absorb this light and produce systematic errors in energy determination and spectrum normalization. We study the possibility of using IR remote sensing data from MODIS and GOES satellites to delimit clear areas of the atmosphere. The efficiency for detecting ultra-high-energy cosmic rays whose showers do not intersect clouds is determined for real, night-time cloud scenes. We use the MODIS SST cloud mask product to define clear pixels for cloud scenes along the equator and use the OWL Monte Carlo to generate showers in the cloud scenes. We find the efficiency for cloud-free showers with closest approach of three pixels to a cloudy pixel is 6.5% exclusive of other factors. We conclude that defining a totally cloud-free aperture reduces the sensitivity of space-based fluorescence detectors to unacceptably small levels.
Automatic coolant flow control device for a nuclear reactor assembly
Hutter, E.
1984-01-27
A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.
Electron emitting device and method of making the same
Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael
1977-04-19
A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.
Automatic coolant flow control device for a nuclear reactor assembly
Hutter, Ernest
1986-01-01
A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.
Heat exchanger support apparatus in a fluidized bed
Lawton, Carl W.
1982-01-01
A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.
High resolution scintillation detector with semiconductor readout
Levin, Craig S.; Hoffman, Edward J.
2000-01-01
A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.
Electrocatalytic cermet gas detector/sensor
Vogt, M.C.; Shoemarker, E.L.; Fraioli, A.V.
1995-07-04
An electrocatalytic device for sensing gases is described. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte. 41 figs.
Reactor pressure vessel nozzle
Challberg, R.C.; Upton, H.A.
1994-10-04
A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.
Aperture alignment in autocollimator-based deflectometric profilometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geckeler, R. D., E-mail: Ralf.Geckeler@ptb.de; Just, A.; Kranz, O.
2016-05-15
During the last ten years, deflectometric profilometers have become indispensable tools for the precision form measurement of optical surfaces. They have proven to be especially suitable for characterizing beam-shaping optical surfaces for x-ray beamline applications at synchrotrons and free electron lasers. Deflectometric profilometers use surface slope (angle) to assess topography and utilize commercial autocollimators for the contactless slope measurement. To this purpose, the autocollimator beam is deflected by a movable optical square (or pentaprism) towards the surface where a co-moving aperture limits and defines the beam footprint. In this paper, we focus on the precise and reproducible alignment of themore » aperture relative to the autocollimator’s optical axis. Its alignment needs to be maintained while it is scanned across the surface under test. The reproducibility of the autocollimator’s measuring conditions during calibration and during its use in the profilometer is of crucial importance to providing precise and traceable angle metrology. In the first part of the paper, we present the aperture alignment procedure developed at the Advanced Light Source, Lawrence Berkeley National Laboratory, USA, for the use of their deflectometric profilometers. In the second part, we investigate the topic further by providing extensive ray tracing simulations and calibrations of a commercial autocollimator performed at the Physikalisch-Technische Bundesanstalt, Germany, for evaluating the effects of the positioning of the aperture on the autocollimator’s angle response. The investigations which we performed are crucial for reaching fundamental metrological limits in deflectometric profilometry.« less
Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy
NASA Astrophysics Data System (ADS)
Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam
2012-07-01
The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.
Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity tomore » error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.« less
NASA Astrophysics Data System (ADS)
N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi
2014-08-01
We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.
Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn;
2016-01-01
Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.
Zernike-like systems in polygons and polygonal facets.
Ferreira, Chelo; López, José L; Navarro, Rafael; Sinusía, Ester Pérez
2015-07-20
Zernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit disk. In [Opt. Lett.32, 74 (2007)10.1364/OL.32.000074OPLEDP0146-9592] we introduced a new Zernike basis for elliptic and annular optical apertures based on an appropriate diffeomorphism between the unit disk and the ellipse and the annulus. Here, we present a generalization of this Zernike basis for a variety of important optical apertures, paying special attention to polygons and the polygonal facets present in segmented mirror telescopes. On the contrary to ad hoc solutions, most of them based on the Gram-Smith orthonormalization method, here we consider a piecewise diffeomorphism that transforms the unit disk into the polygon under consideration. We use this mapping to define a Zernike-like orthonormal system over the polygon. We also consider ensembles of polygonal facets that are essential in the design of segmented mirror telescopes. This generalization, based on in-plane warping of the basis functions, provides a unique solution, and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both the general form and the explicit expressions for a typical example of telescope optical aperture are provided.
Grid-enhanced X-ray coded aperture microscopy with polycapillary optics
Sowa, Katarzyna M.; Last, Arndt; Korecki, Paweł
2017-01-01
Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10–100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy. PMID:28322316
Grid-enhanced X-ray coded aperture microscopy with polycapillary optics.
Sowa, Katarzyna M; Last, Arndt; Korecki, Paweł
2017-03-21
Polycapillary devices focus X-rays by means of multiple reflections of X-rays in arrays of bent glass capillaries. The size of the focal spot (typically 10-100 μm) limits the resolution of scanning, absorption and phase-contrast X-ray imaging using these devices. At the expense of a moderate resolution, polycapillary elements provide high intensity and are frequently used for X-ray micro-imaging with both synchrotrons and X-ray tubes. Recent studies have shown that the internal microstructure of such an optics can be used as a coded aperture that encodes high-resolution information about objects located inside the focal spot. However, further improvements to this variant of X-ray microscopy will require the challenging fabrication of tailored devices with a well-defined capillary microstructure. Here, we show that submicron coded aperture microscopy can be realized using a periodic grid that is placed at the output surface of a polycapillary optics. Grid-enhanced X-ray coded aperture microscopy with polycapillary optics does not rely on the specific microstructure of the optics but rather takes advantage only of its focusing properties. Hence, submicron X-ray imaging can be realized with standard polycapillary devices and existing set-ups for micro X-ray fluorescence spectroscopy.
NASA Technical Reports Server (NTRS)
Buttgenbach, Thomas H.
1993-01-01
The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.
Semiconductor electrode with improved photostability characteristics
Frank, A.J.
1985-02-19
An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.
Semiconductor electrode with improved photostability characteristics
Frank, Arthur J.
1987-01-01
An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.
Ebeling, Jr., Robert W.; Weaver, Robert B.
1979-01-01
The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.
Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.
1987-01-01
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
NASA Technical Reports Server (NTRS)
Gonda, Steve R. (Inventor); Tsao, Yow-Min D. (Inventor); Lee, Wenshan (Inventor)
2006-01-01
A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.
Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.
1985-09-09
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
Apparatus and method for handling magnetic particles in a fluid
Holman, David A.; Grate, Jay W.; Bruckner-Lea, Cynthia J.
2000-01-01
The present invention is an apparatus and method for handling magnetic particles suspended in a fluid, relying upon the known features of a magnetic flux conductor that is permeable thereby permitting the magnetic particles and fluid to flow therethrough; and a controllable magnetic field for the handling. The present invention is an improvement wherein the magnetic flux conductor is a monolithic porous foam.
Penning discharge ion source with self-cleaning aperture
Gavin, B.F.; MacGill, R.A.; Thatcher, R.K.
1980-11-10
An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode with an exit aperture in a position opposite a first dynode, from which the ions are sputtered, two opposing cathodes, each with an anode for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor immediately outside the exit aperture of the second dynode is maintained at ground potential while the anode, dynode, and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. Material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam.
Microscreen radiation shield for thermoelectric generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, T.K.; Novak, R.F.; McBride, J.R.
1990-08-14
This patent describes a radiation shield adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield comprises woven wire mesh screen, the spacing between the wires forming the mesh screen being such that the radiation shield reflects thermal radiation while permitting the passage of alkali metal vapor therethrough.
Electrical diesel particulate filter (DPF) regeneration
Gonze, Eugene V; Ament, Frank
2013-12-31
An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.
Method of fabricating an imaging X-ray spectrometer
NASA Technical Reports Server (NTRS)
Alcorn, G. E. (Inventor); Burgess, A. S. (Inventor)
1986-01-01
A process for fabricating an X-ray spectrometer having imaging and energy resolution of X-ray sources is discussed. The spectrometer has an array of adjoinging rectangularly shaped detector cells formed in a silicon body. The walls of the cells are created by laser drilling holes completely through the silicon body and diffusing n(+) phosphorous doping material therethrough. A thermally migrated aluminum electrode is formed centrally through each of the cells.
Evaporative cooler including one or more rotating cooler louvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, David W
An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.
21 CFR 1040.10 - Laser products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... in paragraph (c)(2) of this section; and (3) The manufacturer of such a laser product, if... paragraphs (c), (d), and (e) of this section. (3) Aperture means any opening in the protective housing or... to define the shape of the area over which radiation is measured. (5) Class I laser product means any...
Dye laser amplifier including an improved window configuration for its dye beam
O'Neil, R.W.; Davin, J.M.
1992-12-01
A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough. 4 figs.
Dye laser amplifier including an improved window configuration for its dye beam
O'Neil, Richard W.; Davin, James M.
1992-01-01
A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough.
NASA Astrophysics Data System (ADS)
Leakeas, Charles L.; Capehart, Shay R.; Bartell, Richard J.; Cusumano, Salvatore J.; Whiteley, Matthew R.
2011-06-01
Laser weapon systems comprised of tiled subapertures are rapidly emerging in importance in the directed energy community. Performance models of these laser weapon systems have been developed from numerical simulations of a high fidelity wave-optics code called WaveTrain which is developed by MZA Associates. System characteristics such as mutual coherence, differential jitter, and beam quality rms wavefront error are defined for a focused beam on the target. Engagement scenarios are defined for various platform and target altitudes, speeds, headings, and slant ranges along with the natural wind speed and heading. Inputs to the performance model include platform and target height and velocities, Fried coherence length, Rytov number, isoplanatic angle, thermal blooming distortion number, Greenwood and Tyler frequencies, and atmospheric transmission. The performance model fit is based on power-in-the-bucket (PIB) values against the PIB from the simulation results for the vacuum diffraction-limited spot size as the bucket. The goal is to develop robust performance models for aperture phase error, turbulence, and thermal blooming effects in tiled subaperture systems.
Ion source with improved primary arc collimation
Dagenhart, W.K.
1983-12-16
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
Ion source with improved primary arc collimation
Dagenhart, William K.
1985-01-01
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
Automated aberration correction of arbitrary laser modes in high numerical aperture systems.
Hering, Julian; Waller, Erik H; Von Freymann, Georg
2016-12-12
Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.
Optimizing sensor cover energy for directional sensors
NASA Astrophysics Data System (ADS)
Astorino, Annabella; Gaudioso, Manlio; Miglionico, Giovanna
2016-10-01
The Directional Sensors Continuous Coverage Problem (DSCCP) aims at covering a given set of targets in a plane by means of a set of directional sensors. The location of these sensors is known in advance and they are characterized by a discrete set of possible radii and aperture angles. Decisions to be made are about orientation (which in our approach can vary continuously), radius and aperture angle of each sensor. The objective is to get a minimum cost coverage of all targets, if any. We introduce a MINLP formulation of the problem and define a Lagrangian heuristics based on a dual ascent procedure operating on one multiplier at a time. Finally we report the results of the implementation of the method on a set of test problems.
Synthetic aperture radar target simulator
NASA Technical Reports Server (NTRS)
Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.
1984-01-01
A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.
Schlieren System and method for moving objects
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor)
1995-01-01
A system and method are provided for recording density changes in a flow field surrounding a moving object. A mask having an aperture for regulating the passage of images is placed in front of an image recording medium. An optical system is placed in front of the mask. A transition having a light field-of-view and a dark field-of-view is located beyond the test object. The optical system focuses an image of the transition at the mask such that the aperture causes a band of light to be defined on the image recording medium. The optical system further focuses an image of the object through the aperture of the mask so that the image of the object appears on the image recording medium. Relative motion is minimized between the mask and the transition. Relative motion is also minimized between the image recording medium and the image of the object. In this way, the image of the object and density changes in a flow field surrounding the object are recorded on the image recording medium when the object crosses the transition in front of the optical system.
NASA Technical Reports Server (NTRS)
Pathak, P. H.; Kouyoumjian, R. G.
1974-01-01
In this paper the geometrical theory of diffraction is extended to treat the radiation from apertures of slots in convex perfectly conducting surfaces. It is assumed that the tangential electric field in the aperture is known so that an equivalent infinitesimal source can be defined at each point in the aperture. Surface rays emanate from this source which is a caustic of the ray system. A launching coefficient is introduced to describe the excitation of the surface ray modes. If the field radiated from the surface is desired, the ordinary diffraction coefficients are used to determine the field of the rays shed tangentially from the surface rays. The field of the surface ray modes is not the field on the surface; hence if the mutual coupling between slots is of interest, a second coefficient related to the launching coefficient must be employed. In the region adjacent to the shadow boundary, the component of the field directly radiated from the source is represented by Fock-type functions. In the illuminated region the incident radiation from the source (this does not include the diffracted field components) is treated by geometrical optics. This extension of the geometrical theory of diffraction is applied to calculate the radiation from slots on elliptic cylinders, spheres, and spheroids.
Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data
NASA Astrophysics Data System (ADS)
Rasmussen, Joachim H.; Hemmsen, Martin C.; Madsen, Signe S.; Hansen, Peter M.; Nielsen, Michael B.; Jensen, Jørgen A.
2013-03-01
A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequen- tial beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imag- ing (DRF-THI) in clinical scans. The scan sequence that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were presented in double blinded studies to two radiologists for image quality performance scoring. Limitations to the systems transmit stage prevented user defined transmit apodization to be applied. Field II simulations showed that side lobes in SASB could be improved by using Hanning transmit apodization. Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.
Preliminary Analysis of Effect of Random Segment Errors on Coronagraph Performance
NASA Technical Reports Server (NTRS)
Stahl, Mark T.; Shaklan, Stuart B.; Stahl, H. Philip
2015-01-01
Are we alone in the Universe is probably the most compelling science question of our generation. To answer it requires a large aperture telescope with extreme wavefront stability. To image and characterize Earth-like planets requires the ability to block 10(exp 10) of the host stars light with a 10(exp -11) stability. For an internal coronagraph, this requires correcting wavefront errors and keeping that correction stable to a few picometers rms for the duration of the science observation. This requirement places severe specifications upon the performance of the observatory, telescope and primary mirror. A key task of the AMTD project (initiated in FY12) is to define telescope level specifications traceable to science requirements and flow those specifications to the primary mirror. From a systems perspective, probably the most important question is: What is the telescope wavefront stability specification? Previously, we suggested this specification should be 10 picometers per 10 minutes; considered issues of how this specification relates to architecture, i.e. monolithic or segmented primary mirror; and asked whether it was better to have few or many segmented. This paper reviews the 10 picometers per 10 minutes specification; provides analysis related to the application of this specification to segmented apertures; and suggests that a 3 or 4 ring segmented aperture is more sensitive to segment rigid body motion that an aperture with fewer or more segments.
Improved composite material and method for production of improved composite material
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1994-01-01
A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae is introduced. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.
Fuel cell with ionization membrane
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
2007-01-01
A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.
Solar collector-skylight assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dame, R.E.
1984-10-09
A solar collector-skylight assembly having movable parabolic concentrators wherein, in one position the parabolic concentrators direct solar energy to a collector to heat fluid circulating therethrough to thereby provide a solar heater; and when the concentrators are moved to another position, the assembly functions as a skylight wherein the solar energy is allowed to pass through the collector, to thereby illuminate the interior of a building upon which the solar collector-skylight assembly is mounted.
Pettit, William Henry
2001-01-01
A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.
Method of feeding particulate material to a fluidized bed
Borio, Richard W.; Goodstine, Stephen L.
1984-01-01
A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.
Cabasso, Israel; Korngold, Emmanuel
1988-01-01
A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.
Rothgeb, Timothy Moore [Norfolk, VA; Reece, Charles Edwin [Yorktown, VA
2009-06-02
A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.
Overview and Summary of Advanced UVOIR Mirror Technology Development (AMTD) Project
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: center dotLarge-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented telescopes require larger and stiffer mirrors. center dotSupport System: Large-aperture mirrors require large support systems to ensure that they survive launch, deploy on orbit, and maintain a stable, undistorted shape. center dotMid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. center dotSegment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. center dotSegment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. center dotIntegrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. Because we cannot predict the future, AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements
Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Postman, Marc; Soummer, Remi; Sivramakrishnan, Annand; Macintosh, Bruce; Guyon, Olivier; Krist, John; Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Kirk, Charles;
2013-01-01
ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is the start of a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: (1) Large-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented primary mirrors require larger, thicker, and stiffer substrates. (2) Support System: Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. (4) Segment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. (5) Segment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. (6) Integrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley
2015-09-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman;
2015-01-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
Process system and method for fabricating submicron field emission cathodes
Jankowski, A.F.; Hayes, J.P.
1998-05-05
A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape. 3 figs.
Process system and method for fabricating submicron field emission cathodes
Jankowski, Alan F.; Hayes, Jeffrey P.
1998-01-01
A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.
Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data
NASA Technical Reports Server (NTRS)
Henderson, F. M. (Principal Investigator)
1980-01-01
Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.
Debris-less method and apparatus for forming apertures in hollow metallic articles
Jordan, C.L.; Chodelka, E.J.
1980-06-24
This invention is a method for forming an aperture in a wall of a hollow metallic article without introducing metallic debris therein. In a typical operation, an annular groove is formed in an exterior portion of the wall. The groove defines an annular wall segment, and the bottom of the groove is shaped to slope downwardly away from the segment to form a tapered annular web which connects the segment to the wall. Any suitable coupling is attached to the outer face of the segment, as by welding. Pull then is applied to the coupling to effect circumferential breakage of the web, thus forming a removable single-piece wall fragment consisting of the web and segment. The fragment and the coupling member attached thereto then are removed from the wall.
Computer prediction of dual reflector antenna radiation properties
NASA Technical Reports Server (NTRS)
Christodoulou, C.
1981-01-01
A program for calculating radiation patterns for reflector antennas with either smooth analytic surfaces or with surfaces composed of a number of panels. Techniques based on the geometrical optics (GO) approach were used in tracing rays over the following regions: from a feed antenna to the first reflector surface (subreflector); from this reflector to a larger reflector surface (main reflector); and from the main reflector to a mathematical plane (aperture plane) in front of the main reflector. The equations of GO were also used to calculate the reflected field components for each ray making use of the feed radiation pattern and the parameters defining the surfaces of the two reflectors. These resulting fields form an aperture distribution which is integrated numerically to compute the radiation pattern for a specified set of angles.
Rushing, F.C.
1959-02-01
An improved end cap is described for the cylindrical rotor or bowl of a high-speed centrifugal separator adapted to permit free and efficient continuous counter current flow of gas therethrough for isotope separation. The end cap design provides for securely mounting the same to the hollow central shaft and external wall of the centrifuge. Passageways are incorporated and so arranged as to provide for continuous counter current flow of the light and heavy portions of the gas fed to the centrifuge.
Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings
Williamson, Weldon S [Malibu, CA; Gonze, Eugene V [Pinckney, MI
2008-12-30
An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.
Goldmann, Louis H.
1986-01-01
A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.
Cartmell, T.R.; Gifford, J.F.
1959-08-01
An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.
Method and apparatus for maintaining equilibrium in a helical axis stellarator
Reiman, Allan; Boozer, Allen
1987-01-01
Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellerator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.
Method and apparatus for maintaining equilibrium in a helical axis stellarator
Reiman, A.; Boozer, A.
1984-10-31
Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.
Heat sinking for printed circuitry
Wilson, S.K.; Richardson, G.; Pinkerton, A.L.
1984-09-11
A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.
Dynamically Movable Exhausting Emc Sealing System
Barringer, Dennis R.; Seminaro, Edward J.; Toffler, Harold M.
2003-12-09
A docking apparatus for printed circuit boards including a cassette housing, having a housing base, a housing cover and a housing wall, wherein the housing base and the housing wall are disposed relative to each other so as to define a housing cavity for containing a printed circuit card and wherein the housing wall includes a cable opening disposed so as to be communicated with the housing cavity, a housing bezel, disposed relative to the cassette housing so as to be associated with the cable opening, the housing bezel includes an outer bezel having a first plurality of openings and an inner bezel having a second plurality of apertures, the inner bezel in electrical communication with the printed circuit card, wherein said housing bezel is removable, and an EMC gasket disposed between the outer and inner bezels of said housing bezel, the EMC gasket configured to provide a removable EMC seal proximate the cable opening while still allowing airflow through the first and second plurality of apertures having the EMC gasket therebetween. A docking apparatus for printed circuit boards including a cassette housing, having a housing base, a housing cover and a housing wall, wherein the housing base and the housing wall are disposed relative to each other so as to define a housing cavity for containing a printed circuit card and wherein the housing wall includes a cable opening disposed so as to be communicated with the housing cavity, a housing bezel, disposed relative to the cassette housing so as to be associated with the cable opening, the housing bezel includes an outer bezel having a first plurality of openings and an inner bezel having a second plurality of apertures, the inner bezel in electrical communication with the printed circuit card, wherein said housing bezel is removable, and an EMC gasket disposed between the outer and inner bezels of said housing bezel, the EMC gasket configured to provide a removable EMC seal proximate the cable opening while still allowing airflow through the first and second plurality of apertures having the EMC gasket therebetween.
SU-F-T-423: Automating Treatment Planning for Cervical Cancer in Low- and Middle- Income Countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisling, K; Zhang, L; Yang, J
Purpose: To develop and test two independent algorithms that automatically create the photon treatment fields for a four-field box beam arrangement, a common treatment technique for cervical cancer in low- and middle-income countries. Methods: Two algorithms were developed and integrated into Eclipse using its Advanced Programming Interface:3D Method: We automatically segment bony anatomy on CT using an in-house multi-atlas contouring tool and project the structures into the beam’s-eye-view. We identify anatomical landmarks on the projections to define the field apertures. 2D Method: We generate DRRs for all four beams. An atlas of DRRs for six standard patients with corresponding fieldmore » apertures are deformably registered to the test patient DRRs. The set of deformed atlas apertures are fitted to an expected shape to define the final apertures. Both algorithms were tested on 39 patient CTs, and the resulting treatment fields were scored by a radiation oncologist. We also investigated the feasibility of using one algorithm as an independent check of the other algorithm. Results: 96% of the 3D-Method-generated fields and 79% of the 2D-method-generated fields were scored acceptable for treatment (“Per Protocol” or “Acceptable Variation”). The 3D Method generated more fields scored “Per Protocol” than the 2D Method (62% versus 17%). The 4% of the 3D-Method-generated fields that were scored “Unacceptable Deviation” were all due to an improper L5 vertebra contour resulting in an unacceptable superior jaw position. When these same patients were planned with the 2D method, the superior jaw was acceptable, suggesting that the 2D method can be used to independently check the 3D method. Conclusion: Our results show that our 3D Method is feasible for automatically generating cervical treatment fields. Furthermore, the 2D Method can serve as an automatic, independent check of the automatically-generated treatment fields. These algorithms will be implemented for fully automated cervical treatment planning.« less
NASA Astrophysics Data System (ADS)
Ermann, Michael; Johnson, Marty
2005-06-01
How does sound decay when one room is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact sound fields in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study a coupled-volume shoebox concert hall is conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound absorption levels are established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) architectural composition, as defined by the aperture size exposing the chamber and (2) materiality, as defined by the sound absorptance in the coupled volume. The theoretical, mathematical predictions are compared with coupled-volume concert hall field measurements and guidelines are suggested for future designs of coupled-volume concert halls.
Mihailescu, Lucian; Vetter, Kai M
2013-08-27
Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.
Yoo, Daehan; Gurunatha, Kargal L; Choi, Han-Kyu; Mohr, Daniel A; Ertsgaard, Christopher T; Gordon, Reuven; Oh, Sang-Hyun
2018-06-13
We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.
Three-dimensional near-field MIMO array imaging using range migration techniques.
Zhuge, Xiaodong; Yarovoy, Alexander G
2012-06-01
This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.
Morris, Donald E.
1993-01-01
A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.
New Definitions of Electromagnetic Screening of Cases in Front of Radiates Interferences
NASA Astrophysics Data System (ADS)
Garcia Perez, Luis Gines
Electromagnetic shielding enclosures are simulated in this PhD thesis. Metallic enclosures with a frontal aperture have been implemented and shielding effectiveness has been calculated in frequency and time domains. The CST Microwave Studio application has been used, and necessary electromagnetic shielding measurements have been implemented in order to confirm the simulated results. An anechoic chamber and the network vector analyser ZVA 67 R&S have been employed. There were different set-ups that consist on two shielding enclosures with different apertures on their frontal walls, as well as an electric and a magnetic probes, and an external log-periodic antenna. The electromagnetic field shielding of enclosures against radiated interferences, and its study in the frequency and time domains requires to determine specific parameters for the measurement of the shielding effectiveness (SE). With this target recently it has been essayed indicators based on the peak reduction of electric and magnetic fields and the energy density in the time domain. Although many papers have been published with numeric simulations, rarely real measures in laboratory have been published. In the first part of this study, some important theoretical concepts have been explained, as the high intensity penetration of radiated fields in enclosures with apertures, several ways to define the shielding effectiveness, analytic formulations and different parameters among other concepts, in the frequency and time domains. Then, the system is defined, as from the implementations for simulations and calculations in CST Microwave Studio point of view, as from the set-ups implemented in laboratory point of view. In this section the features and utilization of the network vector analyser ZVA 67 R&S;, anechoic chamber design and dimensions, log-periodic antenna features, and all the different probes, enclosures and apertures employed have been detailed. After de system definition simulated and measured results have been obtained for some definitions and used SE indicators for incident plane wave against enclosures in a specific bandwidth. The plane wave has been treated as a reference interference to compare to other electromagnetic interference cases. It has been verified that the laboratory measurements and the simulations are in good agreement. The effects of the electric (dipole) and magnetic (loop) probes presences have been analysed too, as they can modified the results. In this study new SE definitions (new indicators) have been evaluated too, and they have been compared with the classical time-domain SE definitions. These new indicators have been studied as function of several parameters that can be modified in the enclosures as the aperture dimensions or the enclosure dimensions. Finally, in order to get more generic solutions that can be useful to later SE studies, the new SE results have been analysed and interpreted for an aperture size scanning that provide an unique value for the more critical SE indicator and for an specific bandwidth allowing direct SE comparisons with other enclosures.
Small aperture seismic arrays for studying planetary interiors and seismicity
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.
2017-12-01
Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell E. Feder and Mahmoud Z. Youssef
Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from themore » ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later.« less
Some Calculations for the RHIC Kicker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, J.
1996-12-01
The bunches that arrive from the AGS are put on to RHIC's median plane by a string of four injection kickers in each ring. There are four short kickers rather than one long one in order to keep the kicker filling time acceptable, filling time being defined as the amount of time needed for increasing the deflecting field in the kicker from zero to its nominal value. During the filling time process the energy stored in the deflecting field is moved from outside the kicker to its aperture; since energy can only be displaced with finite velocity the filling timemore » is non-zero for kickers of non-zero length, and tends to increase with increasing length. It is one of the more important parameters of the kicker because it sets a lower limit to the time interval between the last of the already circulating bunches and the newly injected one, and thus an upper limit to the total number of bunches that can be injected. RF gymnastics can be used to pack the bunches tighter than is indicated by this limit, but such gymnastics required radial aperture beyond what would be required otherwise, as well as time, and probably special hardware. Minimization of the kicker's stored energy requires minimization of its aperture, it presents therefore a major aperture restriction. Unless it is placed at a point where the dispersion is negligible its aperture would have to be increased in order to provide the radial space needed for the gymnastics. Both the amount of extra space needed and the rate of longitudinal displacement increase with the maximum deviation in energy of the bunch to be displaced from the nominal value, thus taking more time for the exercise reduces the aperture requirements. This time is measured in terms of synchrotron periods and is not small. It adds directly to the filling time of each ring and decreases therefore the time-average luminosity. Evidently the maximation of the time-average luminosity is a complex issue in which the kicker filling time is a major parameter.« less
Cleaning a semipermeable membrane in a papermaking machine
Beck, David A.
2004-01-06
A method of cleaning a semipermeable membrane, the semipermeable membrane being configured for carrying a fiber web, includes the steps of providing a cleaning fluid and applying the cleaning fluid on the semipermeable membrane. Further, an air press configured for carrying the semipermeable membrane therethrough is provided, and the air press has pressurized air therein. The semipermeable membrane is conveyed through the air press and is subjected to the pressurized air within the air press. The pressurized air thereby flushes the cleaning fluid through the semipermeable membrane.
Soft ionization device with characterization systems and methods of manufacture
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
2004-01-01
Various configurations of characterization systems such as ion mobility spectrometers and mass spectrometers are disclosed that are coupled to an ionization device. The ionization device is formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. Small voltages across the electrodes generate large electric fields which act to ionize substantially all molecules passing therethrough without fracture. Methods to manufacture the mass spectrometer and ion mobility spectrometer systems are also described.
Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.
1976-01-01
A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.
Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas
2007-09-18
A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.
Lowenstein, Andrew [Princeton, NJ; Sibilia, Marc J [Princeton, NJ; Miller, Jeffrey A [Hopewell, NJ; Tonon, Thomas [Princeton, NJ
2011-06-28
A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.
High-power radio-frequency attenuation device
Kerns, Q.A.; Miller, H.W.
1981-12-30
A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.
Dinh, Tuan V.
1996-01-01
A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.
Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ
2009-07-14
One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.
High power radio frequency attenuation device
Kerns, Quentin A.; Miller, Harold W.
1984-01-01
A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.
Variable volume combustor with aerodynamic support struts
Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul
2017-03-07
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.
Goldmann, L.H.
1984-12-06
This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.
NASA Technical Reports Server (NTRS)
Anderson, Richard
1994-01-01
The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.
1985-04-15
studies, The measurement volume is defined by the intersection aerosol studies, flue gas desulfurization , spray drying, of apertures in front of two...identify by block numberl --A method to measure the size and velocity of individual particles in a flow is discussed. Results are presented for controlled ... controlled m0 monodisperse sprays and compared to flash photographs. Typical errors between predicted and measured sizes are less than 5%. Experimental
In Situ Assessment of Lattice in an Al-Li Alloy
NASA Technical Reports Server (NTRS)
Beaudoin, A. J.; Obstalecki, M.; Tayon, W.; Hernquist, M.; Mudrock, R.; Kenesei, P.; Lienert, U.
2013-01-01
The lattice strains of individual grains are measured in an Al-Li alloy, AA 2195, using high-energy X-ray diffraction at a synchrotron source. The diffraction of individual grains in this highly textured production alloy was isolated through use of a depth-defining aperture. It is shown that hydrostatic stress, and in turn the stress triaxiality, can vary significantly from grain to grain.
An improved two-dimensional depth-integrated flow equation for rough-walled fractures
NASA Astrophysics Data System (ADS)
Mallikamas, Wasin; Rajaram, Harihar
2010-08-01
We present the development of an improved 2-D flow equation for rough-walled fractures. Our improved equation accounts for the influence of midsurface tortuosity and the fact that the aperture normal to the midsurface is in general smaller than the vertical aperture. It thus improves upon the well-known Reynolds equation that is widely used for modeling flow in fractures. Unlike the Reynolds equation, our approach begins from the lubrication approximation applied in an inclined local coordinate system tangential to the fracture midsurface. The local flow equation thus obtained is rigorously transformed to an arbitrary global Cartesian coordinate system, invoking the concepts of covariant and contravariant transformations for vectors defined on surfaces. Unlike previously proposed improvements to the Reynolds equation, our improved flow equation accounts for tortuosity both along and perpendicular to a flow path. Our approach also leads to a well-defined anisotropic local transmissivity tensor relating the representations of the flux and head gradient vectors in a global Cartesian coordinate system. We show that the principal components of the transmissivity tensor and the orientation of its principal axes depend on the directional local midsurface slopes. In rough-walled fractures, the orientations of the principal axes of the local transmissivity tensor will vary from point to point. The local transmissivity tensor also incorporates the influence of the local normal aperture, which is uniquely defined at each point in the fracture. Our improved flow equation is a rigorous statement of mass conservation in any global Cartesian coordinate system. We present three examples of simple geometries to compare our flow equation to analytical solutions obtained using the exact Stokes equations: an inclined parallel plate, and circumferential and axial flows in an incomplete annulus. The effective transmissivities predicted by our flow equation agree very well with values obtained using the exact Stokes equations in all these cases. We discuss potential limitations of our depth-integrated equation, which include the neglect of convergence/divergence and the inaccuracies implicit in any depth-averaging process near sharp corners where the wall and midsurface curvatures are large.
WFC3/UVIS Updated 2017 Chip-Dependent Inverse Sensitivity Values
NASA Astrophysics Data System (ADS)
Deustua, S. E.; Mack, J.; Bajaj, V.; Khandrika, H.
2017-06-01
We present chip-dependent inverse sensitivity values recomputed for the 42 full frame filters based on the analysis of standard star observations with the WFC3/UVIS imager obtained between 2009 and 2015. Chip-dependent inverse sensitivities reported in the image header are now for the 'infinite' aperture, which is defined to have a radius of 6 arcseconds (151 pixels), and supercede the 2016 photometry header keyword values (PHOTFLAM, PHTFLAM1, PHTFLAM2), which correspond to a 0.3962 arcsecond (10 pixel) aperture. These new values are implemented in the June 2017 IMPHTTAB delivery and are concordant with the current synthetic photometry tables in the reference file database (CRDS). Since approximately 90% of the light is enclosed within 10 pixels, the new keyword values are 10% smaller. We also compute inverse sensitivities for an aperture with radius of 0.3962 arcseconds. Compared to the 2016 implementation, these new inverse sensitivity values differ by less than 0.5%, on average, for the same aperture. Values for the filters F200LP, F350LP, F600LP and F487N changed by more than 1% for UVIS1. UVIS2 values that changed by more than 1% are for the filters F350LP, F600LP, F850LP, F487N, and F814W. The 2017 VEGAmag zeropoint values in the UV change by up to 0.1 mag compared to 2016 and are calculated using the CALPSEC STIS spectrum for Vega. In 2016, the zeropoints were calculated with the CALSPEC Vega model.
Penning discharge ion source with self-cleaning aperture
Gavin, Basil F.; MacGill, Robert A.; Thatcher, Raymond K.
1982-01-01
An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode (24) with an exit aperture (12) in a position opposite a first dynode 10a, from which the ions are sputtered, two opposing cathodes (14, 16), each with an anode (18, 20) for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor (22) immediately outside the exit aperture of the second dynode is maintained at ground potential during this entire period of sputtering while the anode, dynode and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. In that manner, material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam. Atoms sputtered from the second dynode which do not become ionized and exit through the slit will be redeposited on the first dynode, and hence recycled for further ion beam generation during subsequent operating cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Yock, Torunn I.; Depauw, Nicolas
Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices,more » dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D{sub mean}) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D{sub mean} and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D{sub mean} and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.« less
Morris, D.E.
1992-07-14
A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.
Morris, Donald E.
1992-01-01
A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.
Microoptical System And Fabrication Method Therefor
Sweatt, William C.; Christenson, Todd R.
2005-03-15
Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.
Yi, Xiang; Li, Zan; Liu, Zengji
2015-02-20
In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.
Muslimov, Eduard; Hugot, Emmanuel; Jahn, Wilfried; Vives, Sebastien; Ferrari, Marc; Chambion, Bertrand; Henry, David; Gaschet, Christophe
2017-06-26
In the recent years a significant progress was achieved in the field of design and fabrication of optical systems based on freeform optical surfaces. They provide a possibility to build fast, wide-angle and high-resolution systems, which are very compact and free of obscuration. However, the field of freeform surfaces design techniques still remains underexplored. In the present paper we use the mathematical apparatus of orthogonal polynomials defined over a square aperture, which was developed before for the tasks of wavefront reconstruction, to describe shape of a mirror surface. Two cases, namely Legendre polynomials and generalization of the Zernike polynomials on a square, are considered. The potential advantages of these polynomials sets are demonstrated on example of a three-mirror unobscured telescope with F/# = 2.5 and FoV = 7.2x7.2°. In addition, we discuss possibility of use of curved detectors in such a design.
Micro spectrometer for parallel light and method of use
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2011-01-01
A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.
Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.
2004-06-01
An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.
Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David
2016-01-01
The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.
NASA Technical Reports Server (NTRS)
Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip;
2011-01-01
The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.
Development Of Nonimaging Optics
NASA Astrophysics Data System (ADS)
Winston, Roland
1984-01-01
This paper is concerned with the new field of nonimaging optics. Roughly this may be defined as the collection and redirection of light (or, more generally, electromagnetic radiation) by means of optical systems which do not make use of image formation concepts in their design. A non-trivial example is the compound parabolic concentrator (CPC) invented in 1965 for collecting Cerenkov radiation from large volumes of gas and concentrating it onto the relatively small area of a photomultiplier cathode. This task would, according to conventional optical practice, be performed by a lens or mirror image-forming system of high numerical aperture, but much greater concentration was achieved by a comparatively simple de-vice, the CPC. The key was to abandon the principle of imaging with high numerical aperture and instead to get the collected rays into as small an area as possible without attempting to produce an image.
Implementing inverted master-slave 3D semiconductor stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteus, Paul W.; Hall, Shawn A.; Takken, Todd E.
2016-03-08
A method and apparatus are provided for implementing an enhanced three dimensional (3D) semiconductor stack. A chip carrier has an aperture of a first length and first width. A first chip has at least one of a second length greater than the first length or a second width greater than the first width; a second chip attached to the first chip, the second chip having at least one of a third length less than the first length or a third width less than the first width; the first chip attached to the chip carrier by connections in an overlap regionmore » defined by at least one of the first and second lengths or the first and second widths; the second chip extending into the aperture; and a heat spreader attached to the chip carrier and in thermal contact with the first chip for dissipating heat from both the first chip and second chip.« less
Morris, D.E.
1993-09-14
A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.
Microoptical system and fabrication method therefor
Sweatt, William C.; Christenson, Todd R.
2003-07-08
Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.
Multi-color pyrometry imaging system and method of operating the same
Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde
2017-03-21
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Synthetic Aperture Radar (SAR) data processing
NASA Technical Reports Server (NTRS)
Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.
1978-01-01
The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.
ERIC Educational Resources Information Center
Huddleston, Gabriel
2016-01-01
Diffraction is defined as the process by which a beam of light or other system of waves is spread out as a result of passing through a narrow aperture or across an edge. In this article, the author employs his favorite comic book character, Batman, and positions him as a tool of diffraction for education reforms. Huddleston argues that it is…
Large Aperture Systems: 2000-2004
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for next generation astronomical telescopes and detectors. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures
2015-11-17
34Imprintable, Bendable, and Shape-Conformable Polymer Electrolytes for Versatile-Shaped Lithium - Ion Batteries ," Advanced Materials, vol. 25, pp. 1395-1400...center; and (d) close-up of light aperture etched with a focused ion beam [104] ............ 22 Figure 16: (a) Conformal antenna patterned by...where the features are defined using focused ion beam milling (e.g. fishnet patterns) [20], standard micro-/nano- lithography processes that are
Particle impactor assembly for size selective high volume air sampler
Langer, Gerhard
1988-08-16
Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.
Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2011-01-01
Objective of this work is to define and initiate a long-term program to mature six inter-linked critical technologies for future UVOIR space telescope mirrors to TRL6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. (1) Large-Aperture, Low Areal Density, High Stiffness Mirrors: 4 to 8 m monolithic & 8 to 16 m segmented primary mirrors require larger, thicker, stiffer substrates. (2) Support System:Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error:A very smooth mirror is critical for producing a high-quality point spread function (PSF) for high-contrast imaging. (4) Segment Edges:Edges impact PSF for high-contrast imaging applications, contributes to stray light noise, and affects the total collecting aperture. (5) Segment-to-Segment Gap Phasing:Segment phasing is critical for producing a high-quality temporally stable PSF. (6) Integrated Model Validation:On-orbit performance is determined by mechanical and thermal stability. Future systems require validated performance models. We are pursuing multiple design paths give the science community the option to enable either a future monolithic or segmented space telescope.
Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M
2018-03-01
Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.
Combustor assembly for use in a turbine engine and methods of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2013-05-14
A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.
Issues in Optical Diffraction Theory
Mielenz, Klaus D.
2009-01-01
This paper focuses on unresolved or poorly documented issues pertaining to Fresnel’s scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations. In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light. These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are reduced to the usual ones specified by Fresnel’s theory. In the specific case of a diffracting half plane the numerical results obtained were practically the same as those given by Sommerfeld’s rigorous theory. The modified theory developed in this paper is based on the explicit assumption that the scalar theory of light cannot explain plolarization effects. This premise is justified in Sec. 4, where it is shown that previous attempts to do so have produced dubious results. PMID:27504215
Lawrence, E.O.; Brobeck, W.M.
1959-04-14
ABS>An ion source is described for a calutron especially designed to improve the uniformity of charge vapor flow when the vapor encounters the arc. The inventive feature of the source consists of a specific source block construction wherein heater means prevents condensation from taking place within the block, and a separate vapor generator is supported on the wall of the block by a hollow thimble. The thimble communicates with a bore cavity in the block and the vapor flows therethrough into the cavity and uniformly out a slot along the length of the cavity where the arc discharge is located.
Trace detection of analytes using portable raman systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, M. Kathleen; Hotchkiss, Peter J.; Martin, Laura E.
Apparatuses and methods for in situ detection of a trace amount of an analyte are disclosed herein. In a general embodiment, the present disclosure provides a surface-enhanced Raman spectroscopy (SERS) insert including a passageway therethrough, where the passageway has a SERS surface positioned therein. The SERS surface is configured to adsorb molecules of an analyte of interest. A concentrated sample is caused to flow over the SERS surface. The SERS insert is then provided to a portable Raman spectroscopy system, where it is analyzed for the analyte of interest.
Engineered glass seals for solid-oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry
2017-02-07
A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.
Magnetic filter apparatus and method for generating cold plasma in semicoductor processing
Vella, Michael C.
1996-01-01
Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.
Magnetic filter apparatus and method for generating cold plasma in semiconductor processing
Vella, M.C.
1996-08-13
Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.
Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.
1999-06-29
A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
2007-01-01
An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.
High intensity, pulsed thermal neutron source
Carpenter, J.M.
1973-12-11
This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)
NEUTRON ABSORPTION AND SHIELDING DEVICE
Axelrad, I.R.
1960-06-21
A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.
Method for removing cesium from a nuclear reactor coolant
Colburn, Richard P.
1986-01-01
A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium
Method and apparatus for combination catalyst for reduction of NO.sub.x in combustion products
Socha, Richard F.; Vartuli, James C.; El-Malki, El-Mekki; Kalyanaraman, Mohan; Park, Paul W.
2010-09-28
A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, and a second catalyst composed of a copper containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range.
Cook, B.
1959-02-10
An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.
Radial inlet guide vanes for a combustor
Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S
2013-02-12
A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.
Variable volume combustor with aerodynamic fuel flanges for nozzle mounting
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward
2016-09-20
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.
Piloted rich-catalytic lean-burn hybrid combustor
Newburry, Donald Maurice
2002-01-01
A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.
Variable volume combustor with center hub fuel staging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman
The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.
Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad
1999-01-01
A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.
Signal-to-noise ratio of Singer product apertures
NASA Astrophysics Data System (ADS)
Shutler, Paul M. E.; Byard, Kevin
2017-09-01
Formulae for the signal-to-noise ratio (SNR) of Singer product apertures are derived, allowing optimal Singer product apertures to be identified, and the CPU time required to decode them is quantified. This allows a systematic comparison to be made of the performance of Singer product apertures against both conventionally wrapped Singer apertures, and also conventional product apertures such as square uniformly redundant arrays. For very large images, equivalently for images at very high resolution, the SNR of Singer product apertures is asymptotically as good as the best conventional apertures, but Singer product apertures decode faster than any conventional aperture by at least a factor of ten for image sizes up to several megapixels. These theoretical predictions are verified using numerical simulations, demonstrating that coded aperture video is for the first time a realistic possibility.
AAVSO Solar Observers Worldwide
NASA Astrophysics Data System (ADS)
Howe, R.
2013-06-01
(Abstract only) For visual solar observers there has been no biological change in the "detector" (human eye) - at century scales (eye + visual cortex) does not change much over time. Our capacity to "integrate" seeing distortions is not just simple averaging! The visual cortex plays an essential role, and until recently only the SDO-HMI (Solar Dynamics Observatory, Helioseismic and Magnetic Imager) has had the capacity to detect the smallest sunspots, called pores. Prior to this the eye was superior to photography and CCD. Imaged data are not directly comparable or substitutable to counts by eye, as the effects of sensor/optical resolution and seeing will have a different influence on the resulting sunspot counts for images when compared to the human eye. Also contributing to the complex task of counting sunspots is differentiating between a sunspot (which is usually defined as having a darker center (umbra) and lighter outer ring (penumbra)) and a pore, made even more complex by the conflicting definitions of the word "pore" in the solar context: "pore" can mean a small spot without penumbra or "pore" can mean a random intergranular blemish that is not a true sunspot. The overall agreement is that the smallest spot size is near 2,000 km or ~3 arc sec, (Loughhead, R. E. and Bray, R. J. 1961, Australian J. Phys., 14, 347). Sunspot size is dictated by granulation dynamics rather than spot size (cancellation of convective motion), and by the lifetime of the pore, which averages from 10 to 30 minutes. There is no specific aperture required for AAVSO observers contributing sunspot observations. However, the detection of the smallest spots is influenced by the resolution of the telescope. Two factors to consider are the theoretical optical resolution (unobstructed aperture), Rayleigh criterion: theta = 138 / D(mm), and Dawes criterion: theta = 116 / D(mm) (http://www.telescope-optics.net/telescope_resolution.htm). However, seeing is variable with time; daytime range will be similar for all low-altitude sites, within the range of 1.5 to 3 arc sec, (typically = 2 arc sec equivalent diameter D = 45-90 mm, the typical solar scope = 70 mm aperture). Where large apertures are more affected by size of turbulent eddies ~8-12 cm, small-aperture telescopes reduce these differences, i.e. large aperture is not always beneficial.
Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit; Ruan, Dan
2016-01-15
Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for themore » trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al. approach, while performing comparably to Ruan and Keall. Conclusions: This work improves upon the quality of the Sawant et al. approach, but does so without sacrificing run-time performance. In addition, using this framework allows for complex leaf-fitting strategies that can be used to account for PTV/OAR trade-off during real-time MLC tracking.« less
Battle Damage Assessment Using Inverse Synthetic Aperture Radar (ISAR)
2004-12-01
are many forms of bilinear TFT. The most basic is the Wigner - Ville Distribution ( WVD ), which is defined as the Fourier transform of the time...resolution (compared to WVD — which is known (Chen [2]) to possess the best time-frequency resolution). Two well-known distributions in this category...resolution limit imposed by the STFT. Examples of some of these TFT schemes include the Continuous Wavelet Transform (CWT), the bilinear Wigner - Ville
Photoreceiver efficiency measurements
NASA Technical Reports Server (NTRS)
Lehr, C. G.
1975-01-01
The efficiency and other related parameters of Smithsonian Astrophysical Observatory's four laser receivers were measured at the observing stations by oscilloscope photography. If the efficiency is defined as the number of photoelectrons generated by the photomultiplier tube divided by the number of photons entering the aperture of the receiver, its measured value is about 1% for the laser wavelength of 694 nm. This value is consistent with the efficiency computed from the specified characteristics of the photoreceiver's optical components.
Burghardt, T P; Thompson, N L
1984-01-01
We consider the effect of planar dielectric interfaces (e.g., solid/liquid) on the fluorescence emission of nearby probes. First, we derive an integral expression for the electric field radiated by an oscillating electric dipole when it is close to a dielectric interface. The electric field depends on the refractive indices of the interface, the orientation of the dipole, the distance from the dipole to the interface, and the position of observation. We numerically calculate the electric field intensity for a dipole on an interface, as a function of observation position. These results are applicable to fluorescent molecules excited by the evanescent field of a totally internally reflected laser beam and thus very close to a solid/liquid interface. Next, we derive an integral expression for the electric field radiated when a second dielectric interface is also close to the fluorescent molecule. We numerically calculate this intensity as observed through the second interface. These results are useful when the fluorescence is collected by a high-aperture microscope objective. Finally, we define and calculate a "dichroic factor," which describes the efficiency of collection, in the two-interface system, of polarized fluorescence. The limit when the first interface is removed is applicable for any high-aperture collection of polarized or unpolarized fluorescence. The limit when the second interface is removed has application in the collection of fluorescence with any aperture from molecules close to a dielectric interface. The results of this paper are required for the interpretation of order parameter measurements on fluorescent probes in supported phospholipid monolayers (Thompson, N.L., H. M. McConnell, and T. P. Burghardt, 1984, Biophys. J., 46:739-747). PMID:6518253
NASA Technical Reports Server (NTRS)
Neilson, Jeffrey M. (Inventor)
2002-01-01
A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.
Xu, Renfeng; Bradley, Arthur; Thibos, Larry N.
2013-01-01
Purpose We tested the hypothesis that pupil apodization is the basis for central pupil bias of spherical refractions in eyes with spherical aberration. Methods We employed Fourier computational optics in which we vary spherical aberration levels, pupil size, and pupil apodization (Stiles Crawford Effect) within the pupil function, from which point spread functions and optical transfer functions were computed. Through-focus analysis determined the refractive correction that optimized retinal image quality. Results For a large pupil (7 mm), as spherical aberration levels increase, refractions that optimize the visual Strehl ratio mirror refractions that maximize high spatial frequency modulation in the image and both focus a near paraxial region of the pupil. These refractions are not affected by Stiles Crawford Effect apodization. Refractions that optimize low spatial frequency modulation come close to minimizing wavefront RMS, and vary with level of spherical aberration and Stiles Crawford Effect. In the presence of significant levels of spherical aberration (e.g. C40 = 0.4 µm, 7mm pupil), low spatial frequency refractions can induce −0.7D myopic shift compared to high SF refraction, and refractions that maximize image contrast of a 3 cycle per degree square-wave grating can cause −0.75D myopic drift relative to refractions that maximize image sharpness. Discussion Because of small depth of focus associated with high spatial frequency stimuli, the large change in dioptric power across the pupil caused by spherical aberration limits the effective aperture contributing to the image of high spatial frequencies. Thus, when imaging high spatial frequencies, spherical aberration effectively induces an annular aperture defining that portion of the pupil contributing to a well-focused image. As spherical focus is manipulated during the refraction procedure, the dimensions of the annular aperture change. Image quality is maximized when the inner radius of the induced annulus falls to zero, thus defining a circular near paraxial region of the pupil that determines refraction outcome. PMID:23683093
Tashiro, Yasutaka; Okazaki, Ken; Iwamoto, Yukihide
2015-01-01
Purpose We aimed to clarify the distance between the anteromedial (AM) bundle and posterolateral (PL) bundle tunnel-aperture centers by simulating the anatomical femoral tunnel placement during double-bundle anterior cruciate ligament reconstruction using 3-D computer-aided design models of the knee, in order to discuss the risk of tunnel overlap. Relationships between the AM to PL center distance, body height, and sex difference were also analyzed. Patients and methods The positions of the AM and PL tunnel centers were defined based on previous studies using the quadrant method, and were superimposed anatomically onto the 3-D computer-aided design knee models from 68 intact femurs. The distance between the tunnel centers was measured using the 3-D DICOM software package. The correlation between the AM–PL distance and the subject’s body height was assessed, and a cutoff height value for a higher risk of overlap of the AM and PL tunnel apertures was identified. Results The distance between the AM and PL centers was 10.2±0.6 mm in males and 9.4±0.5 mm in females (P<0.01). The AM–PL center distance demonstrated good correlation with body height in both males (r=0.66, P<0.01) and females (r=0.63, P<0.01). When 9 mm was defined as the critical distance between the tunnel centers to preserve a 2 mm bony bridge between the two tunnels, the cutoff value was calculated to be a height of 160 cm in males and 155 cm in females. Conclusion When AM and PL tunnels were placed anatomically in simulated double-bundle anterior cruciate ligament reconstruction, the distance between the two tunnel centers showed a strong positive correlation with body height. In cases with relatively short stature, the AM and PL tunnel apertures are considered to be at a higher risk of overlap when surgeons choose the double-bundle technique. PMID:26170727
NASA Astrophysics Data System (ADS)
Cauble, Galen D.; Wayne, David T.
2017-09-01
The growth of optical communication has created a need to correctly characterize the atmospheric channel. Atmospheric turbulence along a given channel can drastically affect optical communication signal quality. One means of characterizing atmospheric turbulence is through measurement of the refractive index structure parameter, Cn2. When calculating Cn2 from the scintillation index, σΙ2,the point aperture scintillation index is required. Direct measurement of the point aperture scintillation index is difficult at long ranges due to the light collecting abilities of small apertures. When aperture size is increased past the atmospheric correlation width, aperture averaging decreases the scintillation index below that of the point aperture scintillation index. While the aperture averaging factor can be calculated from theory, it does not often agree with experimental results. Direct measurement of the aperture averaging factor via the pupil plane irradiance covariance function allows conversion from the aperture averaged scintillation index to the point aperture scintillation index. Using a finite aperture, camera, and detector, the aperture averaged scintillation index and aperture averaging factor are measured in parallel and the point aperture scintillation index is calculated. A new instrument built by SSC Pacific was used to collect scintillation data at the Townes Institute Science and Technology Experimentation Facility (TISTEF). This new instrument's data was then compared to BLS900 data. The results show that direct measurement of the aperture averaging factor is achievable using a camera and matches well with groundtruth instrumentation.
X-ray ptychography using randomized zone plates
Morrison, G. R.; Zhang, F.; Robinson, Ian K.; ...
2018-05-31
We have developed a randomized grating condenser zone plate (GCZP) that provides a μm-scale probe for use in x-ray ptychography. This delivers a significantly better x-ray throughput than probes defined by pinhole apertures, while providing a clearly-defined level of phase diversity to the illumination on the sample, and helping to reduce the dynamic range of the detected signal by spreading the zero-order light over an extended area of the detector. The first use of this novel x-ray optical element has been demonstrated successfully for both amplitude and phase contrast imaging using soft x-rays on the TwinMic beamline at the Elettramore » synchrotron.« less
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.
X-ray ptychography using randomized zone plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, G. R.; Zhang, F.; Robinson, Ian K.
We have developed a randomized grating condenser zone plate (GCZP) that provides a μm-scale probe for use in x-ray ptychography. This delivers a significantly better x-ray throughput than probes defined by pinhole apertures, while providing a clearly-defined level of phase diversity to the illumination on the sample, and helping to reduce the dynamic range of the detected signal by spreading the zero-order light over an extended area of the detector. The first use of this novel x-ray optical element has been demonstrated successfully for both amplitude and phase contrast imaging using soft x-rays on the TwinMic beamline at the Elettramore » synchrotron.« less
NASA Astrophysics Data System (ADS)
Marble, Jay A.; Gorman, John D.
1999-08-01
A feature based approach is taken to reduce the occurrence of false alarms in foliage penetrating, ultra-wideband, synthetic aperture radar data. A set of 'generic' features is defined based on target size, shape, and pixel intensity. A second set of features is defined that contains generic features combined with features based on scattering phenomenology. Each set is combined using a quadratic polynomial discriminant (QPD), and performance is characterized by generating a receiver operating characteristic (ROC) curve. Results show that the feature set containing phenomenological features improves performance against both broadside and end-on targets. Performance against end-on targets, however, is especially pronounced.
NASA Astrophysics Data System (ADS)
Sawada, A.; Takebe, A.; Sakamoto, K.
2006-12-01
Quantitative evaluation of the groundwater velocity in the fractures is a key part of contaminants transport assessment especially in the radioactive waste disposal programs. In a hydrogeological model such as the discrete fracture network model, the transport aperture of water conducting fracture is one of the important parameters for evaluating groundwater velocity. Tracer tests that measure velocity (or transport aperture) are few compared with flow tests that measure transmissivity (or hydraulic aperture). Thus it is useful to estimate transport properties from flow properties. It is commonly assumed that flow and transport aperture are the same, and that aperture is related to the cube root of transmissivity by the parallel-plate analog. Actual field experiments, however, show transport and hydraulic apertures are not always the same, and that transport aperture relates to an empirical constant times the square root of transmissivity. Compared with these field results, the cubic law underestimates transport aperture and overestimates velocity. A possible source of this discrepancy is in-plane heterogeneity of aperture and transmissivity. To study this behavior, numerical simulations using MAFIC were conducted for a single fracture model with a heterogeneous aperture distribution. The simulations varied three parameters - the mean geometrical aperture, JRC (Joint Roughness Coefficient), and the contact area ratio (fracture contact area divided by total fracture area). For each model we determined the equivalent transmissivity and cubic-law aperture under steady flow conditions. Then we simulated mass transport using particle tracking through the same fracture. The transport aperture was estimated from the particle peak arrival time at the downstream boundary. The results show that the mean geometrical aperture is the most sensitive parameter among the three variable parameters in this study. It is also found that the contact area ratio affects transmissivity more than the JRC, and while the JRC strongly affects the velocity and transport aperture. Based on these results, a correlation between the transmissivity, the hydraulic conductivity and the transport aperture will be discussed.
NASA Astrophysics Data System (ADS)
Gabarro, C.; Talone, M.; Font, J.
2009-04-01
L-band radiometric data obtained with a real aperture airborne radiometer during SMOS validation Rehearsal campaign (April-May 2008) over the NW Mediterranean Sea have been analysed. EMIRAD, a fully polarimetric radiometer developed by the Technical University of Denmark operating in the 1400 - 1427 MHz band, was mounted on board a Skyvan aircraft from the Helsinki University of Technology. Two antennas were used: one facing nadir with 37.6° full aperture at half-power; and one placed towards the rear of the aircraft at 40° zenith angle with 30.6° full aperture at half-power. Two transit flights over the sea from Marseille to Valencia (19 April 2008) and from Valencia to Marseille (3 May 2008) have been studied. Two meteorological and oceanographic buoys were moored 40 Km offshore in front of Tarragona and were overflown during these transits. Additionally, information on sea surface temperature (SST) and sea surface salinity (SSS) was obtained from operational model outputs (Mediterranean Forecasting System - Mediterranean Operational Oceanography Network) and wind speed from QuikSCAT. Measured brightness temperatures (Tb) have been compared with modelled Tb, using a semi-empirical emissivity model: Klein and Swift model is used to define the dielectric constant and Hollinger model for the rough sea emissivity contribution. Comparisons show that in general measured Tb variability fits with modelled variability, although a bias is observed in the aft V channel.
Wang, Yuanguo; Zheng, Chichao; Peng, Hu; Chen, Qiang
2018-06-12
The beamforming performance has a large impact on image quality in ultrasound imaging. Previously, several adaptive weighting factors including coherence factor (CF) and generalized coherence factor (GCF) have been proposed to improved image resolution and contrast. In this paper, we propose a new adaptive weighting factor for ultrasound imaging, which is called signal mean-to-standard-deviation factor (SMSF). SMSF is defined as the mean-to-standard-deviation of the aperture data and is used to weight the output of delay-and-sum (DAS) beamformer before image formation. Moreover, we develop a robust SMSF (RSMSF) by extending the SMSF to the spatial frequency domain using an altered spectrum of the aperture data. In addition, a square neighborhood average is applied on the RSMSF to offer a more smoothed square neighborhood RSMSF (SN-RSMSF) value. We compared our methods with DAS, CF, and GCF using simulated and experimental synthetic aperture data sets. The quantitative results show that SMSF results in an 82% lower full width at half-maximum (FWHM) but a 12% lower contrast ratio (CR) compared with CF. Moreover, the SN-RSMSF leads to 15% and 10% improvement, on average, in FWHM and CR compared with GCF while maintaining the speckle quality. This demonstrates that the proposed methods can effectively improve the image resolution and contrast. Copyright © 2018 Elsevier B.V. All rights reserved.
Selection, Prioritization, and Characteristics of Kepler Target Stars
2010-04-20
contributions from zodiacal emission as well as background stars): r = F∗ F∗ + Fbg . (5) The photometric aperture is defined as the set of pixels that... The Astrophysical Journal Letters, 713:L109–L114, 2010 April 20 doi:10.1088/2041-8205/713/2/L109 C© 2010. The American Astronomical Society. All...rights reserved. Printed in the U.S.A. SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS Natalie M. Batalha1, William J. Borucki2
Sea-Ice Mission Requirements for the US FIREX and Canada RADARSAT programs
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Ramseier, R. O.; Weeks, W. F.
1982-01-01
A bilateral synthetic aperture radar (SAR) satellite program is defined. The studies include addressing the requirements supporting a SAR mission posed by a number of disciplines including science and operations in sea ice covered waters. Sea ice research problems such as ice information and total mission requirements, the mission components, the radar engineering parameters, and an approach to the transition of spacecraft SAR from a research to an operational tool were investigated.
All-reflective optical target illumination system with high numerical aperture
Sigler, Robert D.
1978-01-01
An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of co-axially, confluent collimated light beams. A target cavity is defined by a pair of opposed inner ellipsoidal reflectors having respective first focal points within a target region and second focal points at a vertex opening in the opposing reflector. Outwardly of each inner reflector is the opposed combination of a spherical reflector, and an outer generally ellipsoidal reflector having an aberrated first focal point coincident with the focus of the opposing spherical reflector and a second focal point coincident with the second focal point of the opposing inner ellipsoidal reflector through a vertex opening in the spherical reflector. The confluent collimated beams are incident through vertex openings in the outer ellipsoidal reflectors onto respective opposing spherical reflectors. Each beam is reflected by the associated spherical reflector onto the opposing outer ellipsoidal reflector and focused thereby onto the opposing inner ellipsoidal reflector, and then onto the target region.
NASA Technical Reports Server (NTRS)
Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.
2007-01-01
This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.
Single-color laser ranging with a cube-corner-retroreflector array
NASA Technical Reports Server (NTRS)
Song, G. Hugh
1987-01-01
Lidar cross section of some typical types of cube-corner retroreflectors (CCRs) having a three corner mirror system is investigated for the case that the CCR is tilted from the normal illumination axis. Analytic expressions for the effective aperture area for the two typical window types (circular and hexagonal) of CCRs are obtained for the case that the CCR is tilted. The range of incidence angle in which only the total reflection occurs at all three uncoated corner mirrors has been found to vary considerably with the orientation of CCR and the refractive index of the CCR prism. The analytical expression for the far-field diffraction pattern of a tilted CCR is obtained by taking different polarization transformation of the six sectors of the effective reflecting aperture into account. This expression is essential when evaluating the lidar cross section of a moving CCR which is tilted in general. Formulas for the angles defining the six sectors have also been obtained.
Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing
2014-10-01
Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.
The Large Deployable Reflector (LDR) report of the Science Coordination Group
NASA Technical Reports Server (NTRS)
1986-01-01
The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.
Array of aligned and dispersed carbon nanotubes and method of producing the array
Ivanov, Ilia N [Knoxville, TN; Simpson, John T [Clinton, TN; Hendricks, Troy R [Knoxville, TN
2012-06-19
An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm.sup.2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 .OMEGA.m or less.
Power electronics cooling apparatus
Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter
2000-01-01
A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.
Array of aligned and dispersed carbon nanotubes and method of producing the array
Ivanov, Ilia N; Simpson, John T; Hendricks, Troy R
2013-06-11
An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm.sup.2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 .OMEGA.m or less.
Heat exchanger with auxiliary cooling system
Coleman, John H.
1980-01-01
A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.
Pinkel, I. Irving
1978-01-01
A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.
Morris, W.J.
1958-12-01
A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.
Method of producing strained-layer semiconductor devices via subsurface-patterning
Dodson, Brian W.
1993-01-01
A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.
Liquid film target impingement scrubber
McDowell, William J.; Coleman, Charles F.
1977-03-15
An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.
Singer product apertures-A coded aperture system with a fast decoding algorithm
NASA Astrophysics Data System (ADS)
Byard, Kevin; Shutler, Paul M. E.
2017-06-01
A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.
Blow-out protector and fire control system for petroleum exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caraway, M.F.; Caraway, B.L.
1987-10-06
A blow-out protector is described for an oil well comprising a housing having a vertical passageway therethrough for a Kelly. The housing has a lower end adapter flange to be connected to a well casing, an elastomeric body having an opening for the Kelly and carried on the Kelly for providing sealing contact with the Kelly and housing passageway, a catch ring secured to the Kelly and having a surface defined by a given diameter, a compressor ring plate positioned below the elastomeric body on the Kelly, means on an interior of the housing having a given diameter and preventingmore » the compressor ring plate from falling down and yet providing engagement with the surface of the catch ring, the compressor ring plate having a hole for passage of the Kelly drive-mechanism for the drill pipe, the catch ring on the Kelly positioned below the compressor plate. The diameter of the catch ring is smaller than the diameter of the interior means on the housing so that when the Kelly is pulled up the catch ring will contact and force the compressor ring plate against the elastomeric body and force the elastomeric body into tight contact with both the Kelly and the housing thus sealing the space between the Kelly and the housing against a blow-out.« less
Experimental demonstration of tri-aperture Differential Synthetic Aperture Ladar
NASA Astrophysics Data System (ADS)
Zhao, Zhilong; Huang, Jianyu; Wu, Shudong; Wang, Kunpeng; Bai, Tao; Dai, Ze; Kong, Xinyi; Wu, Jin
2017-04-01
A tri-aperture Differential Synthetic Aperture Ladar (DSAL) is demonstrated in laboratory, which is configured by using one common aperture to transmit the illuminating laser and another two along-track receiving apertures to collect back-scattered laser signal for optical heterodyne detection. The image formation theory on this tri-aperture DSAL shows that there are two possible methods to reconstruct the azimuth Phase History Data (PHD) for aperture synthesis by following standard DSAL principle, either method resulting in a different matched filter as well as an azimuth image resolution. The experimental setup of the tri-aperture DSAL adopts a frequency chirped laser of about 40 mW in 1550 nm wavelength range as the illuminating source and an optical isolator composed of a polarizing beam-splitter and a quarter wave plate to virtually line the three apertures in the along-track direction. Various DSAL images up to target distance of 12.9 m are demonstrated using both PHD reconstructing methods.
Fuel injector for use in a gas turbine engine
Wiebe, David J.
2012-10-09
A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.
2015-03-01
Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.
1981-02-01
primary parameters affecting the SNR. For an earth-based interferometer, the physical aperture may usually be constructed adequately large to keep the...bandwidth Av cent--.c. on vo0 by an interferometer with frequency characteristic F(v) and primary power pattern G(s-s ) (defined as the product of the...infinitely narrow beam for the primary power pattern, G(g- 0 ) = (;-S )] we have where we have assumed a flat frequency response and included as a
Automated Change Detection for Synthetic Aperture Sonar
2014-01-01
channels, respectively. The canonical coordinates of x and y are defined as u = FHR−1/2xx x v = GHR−1/2yy y where F and G are the mapping matrices...containing the left and right singular vectors of the coherence matrix C, respectively. The canonical coordinate vectors u and v share the diagonal cross...feature set. The coherent change information between canonical coordinates v and u can be calculated using the residual, v −Ku, owing to the fact that
Spectrophotovoltaic orbital power generation, phase 2
NASA Technical Reports Server (NTRS)
Lo, S. K.; Stoltzman, D.; Knowles, G.; Lin, R.
1981-01-01
A subscale model of the spectral splitting concentrator system with 10" aperture is defined and designed. The model is basically a scaled down version of Phase 1 design with an effective concentration ratio up to 1000:1. The system performance is predicted to be 21.5% for the 2 cell GaAs/Si system, and 20% for Si/GaAs at AM2 using realistic component efficiencies. Component cost of the model is projected in the $50K range. Component and system test plans are also detailed.
A deployable telescope for sub-meter resolutions from microsatellite platforms
NASA Astrophysics Data System (ADS)
Dolkens, D.; Kuiper, J. M.
2017-11-01
Sub-meter resolution imagery has become increasingly important for disaster response, defence and security applications. Earth Observation (EO) at these resolutions has long been the realm of large and heavy telescopes, which results in high image costs, limited availability and long revisit times. Using synthetic aperture technology, instruments can now be developed that can reach these resolutions using a substantially smaller launch volume and mass. To obtain a competitive MicroSatellite telescope design, a concept study was performed to develop a deployable instrument that can reach a ground resolution of 25 cm from an orbital altitude of 500 km. Two classes of instruments were analysed: the Fizeau synthetic aperture, a telescope that uses a segmented primary mirror, and a Michelson synthetic aperture, an instrument concept that combines the light of a distributed array of afocal telescopes into a final image. In a trade-off the Fizeau synthetic aperture was selected as the most promising concept for obtaining high resolution imagery from a Low Earth Orbit. The optical design of the Fizeau synthetic aperture is based on a full-field Korsch telescope that has been optimized for compactness and an excellent wavefront quality. It uses three aperture segments in a tri-arm configuration that can be folded alongside the instrument during launch. The secondary mirror is mounted on a deployable boom, further decreasing the launch volume. To maintain a high image quality while operating in the harsh and dynamic space environment, one of the most challenging obstacles that must be addressed is the very tight tolerance on the positioning of the three primary mirror segments and the secondary mirror. Following a sensitivity analysis, systems engineering budgets have been defined. The instrument concept features a robust thermo-mechanical design, aimed at reducing the mechanical uncertainties to a minimum. Silicon Carbide mirror segments, the use of Invar for the deployable arms and a main housing with active thermal control, will guarantee a high thermal stability during operations. Since a robust mechanical design alone is insufficient to ensure a diffraction limited performance, an inorbit calibration system was developed. Post launch, a combination of interferometric measurements and capacitive sensors will be used to characterise the system. Actuators beneath the primary mirror segments will then correct the position of the mirror segments to meet the required operating accuracies. During operations, a passive system will be used. This system relies on a phase diversity algorithm to retrieve residual wavefront aberrations and deconvolve the image data. Using this approach, a good end-to-end imaging performance can be achieved.
Imaging performance of annular apertures. II - Line spread functions
NASA Technical Reports Server (NTRS)
Tschunko, H. F. A.
1978-01-01
Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.
Revolutionary astrophysics using an incoherent synthetic optical aperture
NASA Astrophysics Data System (ADS)
Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas; Newman, Arthur; Polidan, Ronald; Chakrabarti, Supriya
2017-09-01
We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.
Revolutionary Astrophysics using an Incoherent Synthetic Optical Aperture
NASA Astrophysics Data System (ADS)
Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas w.; Newman, Arthur M.; Polidan, Ronald S.; Chakrabarti, Supriya
2018-01-01
We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.
Loui, Hung; Strassner, II, Bernd H.
2018-03-20
The various embodiments presented herein relate to extraordinary electromagnetic transmission (EEMT) to enable multiple inefficient (un-matched) but coupled radiators and/or apertures to radiate and/or pass electromagnetic waves efficiently. EEMT can be utilized such that signal transmission from a plurality of antennas and/or apertures occurs at a transmission frequency different to transmission frequencies of the individual antennas and/or aperture elements. The plurality of antennas/apertures can comprise first antenna/aperture having a first radiating area and material(s) and second antenna/aperture having a second radiating area and material(s), whereby the first radiating/aperture area and second radiating/aperture area can be co-located in a periodic compound unit cell. Owing to mutual coupling between the respective antennas/apertures in their arrayed configuration, the transmission frequency of the array can be shifted from the transmission frequencies of the individual elements. EEMT can be utilized for an array of evanescent of inefficient radiators connected to a transmission line(s).
SU-E-T-344: Dynamic Electron Beam Therapy Using Multiple Apertures in a Single Cut-Out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A; Yin, F; Wu, Q
2015-06-15
Purpose: Few leaf electron collimators (FLEC) or electron MLCs (eMLC) are highly desirable for dynamic electron beam therapies as they produce multiple apertures within a single delivery to achieve conformal dose distributions. However, their clinical implementation has been challenging. Alternatively, multiple small apertures in a single cut-out with variable jaw sizes could be utilized in a single dynamic delivery. In this study, we investigate dosimetric characteristics of such arrangement. Methods: Monte Carlo (EGSnrc/BEAMnrc/DOSXYnrc) simulations utilized validated Varian TrueBeam phase spaces. Investigated quantities included: Energy (6 MeV), jaw size (1×1 to 22×22 cm {sup 2}; centered to aperture), applicator/cut-out (15×15 cm{supmore » 2}), aperture (1×1, 2×2, 3×3, 4×4 cm{sup 2}), and aperture placement (on/off central axis). Three configurations were assessed: (1) single aperture on-axis, (2) single aperture off-axis, and (3) multiple apertures. Reference was configuration (1) with standard jaw size. Aperture placement and jaw size were optimized to maintain reference dosimetry and minimize leakage through unused apertures to <5%. Comparison metrics included depth dose and orthogonal profiles. Results: Configuration (1) and (2): Jaw openings were reduced to 10×10 cm{sup 2} without affecting dosimetry (gamma 2%/1mm) regardless of on- or off-axis placement. For smaller jaw sizes, reduced surface (<2%, 5% for 1×1 cm{sup 2} aperture) and increased Bremsstrahlung (<2%, 10% for 1×1 cm{sup 2} aperture) dose was observed. Configuration (3): Optimal aperture placement was in the corners (order: 1×1, 4×4, 2×2, 3×3 cm{sup 2}) and jaw sizes were 4×4, 4×4, 7×7, and 5×5 cm{sup 2} (apertures: 1×1, 2×2, 3×3, 4×4 cm{sup 2} ). Asymmetric leakage was found from upper and lower jaws. Leakage was generally within 5% with a maximum of 10% observed for the 1×1 cm{sup 2} aperture irradiation. Conclusion: Multiple apertures in a single cut-out with variable jaw size can be used in a single dynamic delivery, providing a practical alternative to FLEC or eMLC. Future simulations will expand on all variables.« less
Quench performance and field quality of FNAL twin-aperture 11 T Nb 3Sn dipole model for LHC upgrades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio
A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb 3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb 3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb 3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coilsmore » in a single-aperture configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less
Quench performance and field quality of FNAL twin-aperture 11 T Nb 3Sn dipole model for LHC upgrades
Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio; ...
2016-12-07
A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb 3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb 3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb 3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coilsmore » in a single-aperture configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less
Influence of coma aberration on aperture averaged scintillations in oceanic turbulence
NASA Astrophysics Data System (ADS)
Luo, Yujuan; Ji, Xiaoling; Yu, Hong
2018-01-01
The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.
Geeslin, Andrew G; Jansson, Kyle S; Wijdicks, Coen A; Chapman, Mark A; Fok, Alex S; LaPrade, Robert F
2011-04-01
There is limited information in the literature on comparisons of antegrade versus retrograde reaming techniques and the effect on the creation of anterior cruciate ligament (ACL) tibial tunnel entry and exit apertures. Proximal and distal apertures of ACL tibial tunnels, as created with different reamers, will be affected by type of reamer design. Controlled laboratory study. Forty skeletally mature porcine tibias with bone mineral density values comparable with a young athletic population were included in this study. Five 9-mm reamer models were used (3 antegrade: A1, smooth-bore reamer; A2, acorn-head reamer; A3, flat-head reamer; 2 retrograde: R1, retrograde acorn reamer; R2, single-blade retrograde reamer), and a new reamer was used for each tibia (8 reamer-tibia pairs per reamer model). All specimens underwent micro-computed tomography scanning, and images were reconstructed and analyzed using 3-dimensional image analysis software. Aperture rim fractures were graded on a 0-IV scale that described the proportion of the fractured aperture circumference. Specimens with incomplete apertures were also recorded. Because of the unique characteristics of various tunnels, intratunnel characteristics were observed and recorded. In sum, 1 proximal and 7 distal aperture rim fractures were found; 3, 0, and 4 distal aperture rim fractures were found with groups A1, A2, and A3, respectively. Incomplete apertures were more commonly found at the distal aperture (n = 15) than the proximal aperture (n = 8); there were no tibias with this finding at both apertures. All incomplete distal apertures occurred with the retrograde technique, and all incomplete proximal apertures occurred with the antegrade technique, most commonly with reamer design A3. An added finding of tunnel curvature at the distal aspect of the tunnel was observed in all 8 tibias with R1 reamers and 5 tibias with R2 reamers. This phenomenon was not observed in any of the tibias reamed with the antegrade technique. Anterior cruciate ligament tibial tunnel aperture characteristics were highly dependent on reamer design. Optimal proximal aperture characteristics were produced by the retrograde reamers, whereas optimal distal aperture characteristics were obtained with the antegrade reamers. In addition, a phenomenon of tunnel curvature in retrograde-type reamers was found, which may have effects on ACL graft or screw fixation. Differences in tunnel aperture shapes and fractures depend on reamer design. This information is important for the creation of ACL reconstruction tunnels with different reamer designs.
Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn
2011-07-01
The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tien, C; Brewer, M; Studenski, M
Purpose: Dynamic-jaw tracking maximizes the area blocked by both jaw and MLC in RapidArc. We developed a method to quantify jaw tracking. Methods: An Eclipse Scripting API (ESAPI) was used to export beam parameters for each arc’s control points. The specific beam parameters extracted were: gantry angle, control point number, meterset, x-jaw positions, y-jaw positions, MLC bank-number, MLC leaf-number, and MLC leaf-position. Each arc contained 178 control points with 120 MLC positions. MATLAB routines were written to process these parameters in order to calculate both the beam aperture (unblocked) size for each control point. An average aperture size was weightedmore » by meterset. Jaw factor was defined as the ratio between dynamic-jaw to static-jaw aperture size. Jaw factor was determined for forty retrospectively replanned patients treated with static-jaw delivery sites including lung, brain, prostate, H&N, rectum, and bladder. Results: Most patients had multiple arcs and reduced-field boosts, resulting in 151 fields. Of these, the lowest (0.4722) and highest (0.9622) jaw factor was observed in prostate and rectal cases, respectively. The median jaw factor was 0.7917 meaning there is the potential unincreased blocking by 20%. Clinically, the dynamic-jaw tracking represents an area surrounding the target which would receive MLC-only leakage transmission of 1.68% versus 0.1% with jaws. Jaw-tracking was more pronounced at areas farther from the target. In prostate patients, the rectum and bladder had 5.5% and 6.3% lower mean dose, respectively; the structures closer to the prostate such as the rectum and bladder both had 1.4% lower mean dose. Conclusion: A custom ESAPI script was coupled with a MATLAB routine in order to extract beam parameters from static-jaw plans and their replanned dynamic-jaw deliveries. The effects were quantified using jaw factor which is the ratio between the meterset weighted aperture size for dynamic-jaw fields versus static-jaw fields.« less
NASA Technical Reports Server (NTRS)
Paknys, J. R.
1982-01-01
The reflector antenna may be thought of as an aperture antenna. The classical solution for the radiation pattern of such an antenna is found by the aperture integration (AI) method. Success with this method depends on how accurately the aperture currents are known beforehand. In the past, geometrical optics (GO) has been employed to find the aperture currents. This approximation is suitable for calculating the main beam and possibly the first few sidelobes. A better approximation is to use aperture currents calculated from the geometrical theory of diffraction (GTD). Integration of the GTD currents over and extended aperture yields more accurate results for the radiation pattern. This approach is useful when conventional AI and GTD solutions have no common region of validity. This problem arises in reflector antennas. Two dimensional models of parabolic reflectors are studied; however, the techniques discussed can be applied to any aperture antenna.
Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil
1982-01-01
An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.
NASA Astrophysics Data System (ADS)
Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.
2016-10-01
Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along a single fracture. However, most fracture flow models consider constant apertures for fractures. We create a stress-dependent heterogeneous aperture by combining Finite Element modeling of discrete fracture networks with an empirical aperture model. Using a modeling approach that considers fractures explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ1 has a controlling impact on aperture and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up permeability probably results in an underestimation of flow, indicating the need to incorporate full aperture distributions rather than simplified aperture models in reservoir-scale flow models.
Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.
Shepard, D M; Earl, M A; Li, X A; Naqvi, S; Yu, C
2002-06-01
IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach "direct aperture optimization." This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.
Multi-aperture digital coherent combining for free-space optical communication receivers.
Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A
2016-06-13
Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.
Quantitative model of transport-aperture coordination during reach-to-grasp movements.
Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E
2008-06-01
It has been found in our previous studies that the initiation of aperture closure during reach-to-grasp movements occurs when the hand distance to target crosses a threshold that is a function of peak aperture amplitude, hand velocity, and hand acceleration. Thus, a stable relationship between those four movement parameters is observed at the moment of aperture closure initiation. Based on the concept of optimal control of movements (Naslin 1969) and its application for reach-to-grasp movement regulation (Hoff and Arbib 1993), it was hypothesized that the mathematical equation expressing that relationship can be generalized to describe coordination between hand transport and finger aperture during the entire reach-to-grasp movement by adding aperture velocity and acceleration to the above four movement parameters. The present study examines whether this hypothesis is supported by the data obtained in experiments in which young adults performed reach-to-grasp movements in eight combinations of two reach-amplitude conditions and four movement-speed conditions. It was found that linear approximation of the mathematical model described the relationship among the six movement parameters for the entire aperture-closure phase with very high precision for each condition, thus supporting the hypothesis for that phase. Testing whether one mathematical model could approximate the data across all the experimental conditions revealed that it was possible to achieve the same high level of data-fitting precision only by including in the model two additional, condition-encoding parameters and using a nonlinear, artificial neural network-based approximator with two hidden layers comprising three and two neurons, respectively. This result indicates that transport-aperture coordination, as a specific relationship between the parameters of hand transport and finger aperture, significantly depends on the condition-encoding variables. The data from the aperture-opening phase also fit a linear model, whose coefficients were substantially different from those identified for the aperture-closure phase. This result supports the above hypothesis for the aperture-opening phase, and consequently, for the entire reach-to-grasp movement. However, the fitting precision was considerably lower than that for the aperture-closure phase, indicating significant trial-to-trial variability of transport-aperture coordination during the aperture-opening phase. Implications for understanding the neural mechanisms employed by the CNS for controlling reach-to-grasp movements and utilization of the mathematical model of transport-aperture coordination for data analysis are discussed.
Albert, Béatrice; Matamoro-Vidal, Alexis; Raquin, Christian; Nadot, Sophie
2010-02-01
Pollen grains are generally surrounded by an extremely resistant wall interrupted in places by apertures that play a key role in reproduction; pollen tube growth is initiated at these sites. The shift from a proximal to distal aperture location is a striking innovation in seed plant reproduction. Reversals to proximal aperture position have only very rarely been described in angiosperms. The genus Tillandsia belongs to the Bromeliaceae family, and its aperture pattern has been described as distal monosulcate, the most widespread aperture patterns recorded in monocots and basal angiosperms. Here we report developmental and functional elements to demonstrate that the sulcate aperture in Tillandsia leiboldiana is not distal as previously described but proximal. Postmeitotic tetrad observation indicates unambiguously the proximal position of the sulcus, and in vitro germination of pollen grains confirms that the aperture is functional. This is the first report of a sulcate proximal aperture with proximal germination. The observation of microsporogenesis reveals specific features in the patterns of callose thickenings in postmeiotic tetrads.
Deployable wireless Fresnel lens
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Chu, Andrew W. (Inventor)
2013-01-01
Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.
Johnson, Steve A.; English, Jr., Ronald Edward; White, Ronald K.
2001-01-01
A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.
Transverse field focused system
Anderson, Oscar A.
1986-01-01
A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.
NASA Technical Reports Server (NTRS)
Halila, Ely E. (Inventor)
1994-01-01
A mounting assembly includes an annular supporting flange disposed coaxially about a centerline axis which has a plurality of circumferentially spaced apart supporting holes therethrough. An annular liner is disposed coaxially with the supporting flange and includes a plurality of circumferentially spaced apart mounting holes aligned with respective ones of the supporting holes. Each of a plurality of mounting pins includes a proximal end fixedly joined to the supporting flange through a respective one of the supporting holes, and a distal end disposed through a respective one of the liner mounting holes for supporting the liner to the supporting flange while unrestrained differential thermal movement of the liner relative to the supporting flange.
Concentric catalytic combustor
Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL
2009-03-24
A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.
DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR
Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.
1962-08-14
A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)
Fracture toughness for copper oxide superconductors
Goretta, Kenneth C.; Kullberg, Marc L.
1993-01-01
An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.
Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O'Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon
2018-02-27
Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.
Grasso, A.P.
1984-02-21
A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.
Grasso, Albert P.
1986-01-01
A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Porter, Christopher Donald
Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to amore » leakage area of the turbomachine component.« less
Nickelson, Reva A.; Walsh, Stephanie; Richardson, John G.; Dick, John R.; Sloan, Paul A.
2005-06-28
Processes and methods relating to treating contaminants and collecting desired substances from a zone of interest using subterranean collection and containment barriers. Tubular casings having interlock structures are used to create subterranean barriers for containing and treating buried waste and its effluents. The subterranean barrier includes an effluent collection system. Treatment solutions provided to the zone of interest pass therethrough and are collected by the barrier and treated or recovered, allowing on-site remediation. Barrier components may be used to in the treatment by collecting or removing contaminants or other materials from the zone of interest.
Nickelson, Reva A.; Walsh, Stephanie; Richardson, John G.; Dick, John R.; Sloan, Paul A.
2006-12-26
Processes and methods relating to treating contaminants and collecting desired substances from a zone of interest using subterranean collection and containment barriers. Tubular casings having interlock structures are used to create subterranean barriers for containing and treating buried waste and its effluents. The subterranean barrier includes an effluent collection system. Treatment solutions provided to the zone of interest pass therethrough and are collected by the barrier and treated or recovered, allowing on-site remediation. Barrier components may be used to in the treatment by collecting or removing contaminants or other materials from the zone of interest.
METHOD OF SUSTAINING A NEUTRONIC CHAIN REACTING SYSTEM
Fermi, E.; Leverett, M.C.
1957-11-12
This patent relates to neutronic reactors and a method of sustainlng a chain reaction. The reactor shown in the patent for carrying out the method is the gas-cooled type comprised of a solid moderator having a plurality of passages therethrough for receiving bodies of fissionable material. In carrying out the method, the reactor is loaded by inserting in the passages fuel elements and moderator material in a proportion to sustain a chain reaction As the reproduction ratio decreases below the desired fiiaire due to impurities formed during operation of the reactor, the moderator material is gradually replaced with additional fuel material to maintain the reproduction ratio above unity.
Wade, E.J.
1958-09-16
This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.
Energy acceptance and on momentum aperture optimization for the Sirius project
NASA Astrophysics Data System (ADS)
Dester, P. S.; Sá, F. H.; Liu, L.
2017-07-01
A fast objective function to calculate Touschek lifetime and on momentum aperture is essential to explore the vast search space of strength of quadrupole and sextupole families in Sirius. Touschek lifetime is estimated by using the energy aperture (dynamic and physical), RF system parameters and driving terms. Non-linear induced betatron oscillations are considered to determine the energy aperture. On momentum aperture is estimated by using a chaos indicator and resonance crossing considerations. Touschek lifetime and on momentum aperture constitute the objective function, which was used in a multi-objective genetic algorithm to perform an optimization for Sirius.
Reeder, Sarah H.; Lee, Byung Ha; Fox, Ronald; Dobritsa, Anna A.
2016-01-01
Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures–openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores–the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them. PMID:27177036
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Davis, Christopher C.
2006-09-01
Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.
Three-dimensional light trap for reflective particles
Neal, Daniel R.
1999-01-01
A system for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focussed beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focussed beams creates a "light cage" and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained.
Three-dimensional light trap for reflective particles
Neal, D.R.
1999-08-17
A system is disclosed for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focused beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focused beams creates a ``light cage`` and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained. 10 figs.
Active microwave measurements of Arctic sea ice under summer conditions
NASA Technical Reports Server (NTRS)
Onstott, R. G.; Gogineni, S. P.
1985-01-01
Radar provides a valuable tool in the study of sea-ice conditions and the solution of sea-ice operational problems. For this reason, the U.S. and Canada have conducted studies to define a bilateral synthetic aperture radar (SAR) satellite program. The present paper is concerned with work which has been performed to explore the needs associated with the study of sea-ice-covered waters. The design of a suitable research or operational spaceborne SAR or real aperture radar must be based on an adequate knowledge of the backscatter coefficients of the ice features which are of interest. In order to obtain the needed information, studies involving the use of a helicopter were conducted. In these studies L-C-X-Ku-band calibrated radar data were acquired over areas of Arctic first-year and multiyear ice during the first half of the summer of 1982. The results show that the microwave response in the case of sea ice is greatly influenced by summer melt, which produces significant changes in the properties of the snowpack and ice sheet.
Beam Wave Considerations for Optical Link Budget Calculations
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2016-01-01
The bounded beam wave nature of electromagnetic radiation emanating from a finite size aperture is considered for diffraction-based link power budget calculations for an optical communications system. Unlike at radio frequency wavelengths, diffraction effects are very important at optical wavelengths. In the general case, the situation cannot be modeled by supposing isotropic radiating antennas and employing the concept of effective isotropic radiated power. It is shown here, however, that these considerations are no more difficult to treat than spherical-wave isotopic based calculations. From first principles, a general expression governing the power transfer for a collimated beam wave is derived and from this are defined the three regions of near-field, first Fresnel zone, and far-field behavior. Corresponding equations for the power transfer are given for each region. It is shown that although the well-known linear expressions for power transfer in the far-field hold for all distances between source and receiver in the radio frequency case, nonlinear behavior within the first Fresnel zone must be accounted for in the optical case at 1550 nm with typical aperture sizes at source/receiver separations less that 100 km.
Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.
Yan, Xiang; Yuan, Fuh-Gwo
2015-06-01
This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.
Differential Optical Synthetic Aperture Radar
Stappaerts, Eddy A.
2005-04-12
A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.
Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho
2017-01-01
A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036
Aperture averaging in strong oceanic turbulence
NASA Astrophysics Data System (ADS)
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern
Doerry, Armin W.
2013-04-30
Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.
Integration and demonstration of the STAR-1 radar system with a real time soft copy display
NASA Astrophysics Data System (ADS)
Lumley, P.; Wolters, W.; Buchholz, B.; McKenney, H.; Motyka, R.
1986-07-01
This report describes three basic tasks. The first task is the definition and implementation of a real-time softcopy display to be used with STAR-1 real-time synthetic aperture radar system. The second task was the all-up system demonstration of the STAR-1, together with the real-time softcopy display. The third task is a data collection for targets of Army interest using the STAR-1 in conjunction with the softcopy display defined and implemented in the first task.
NASA Technical Reports Server (NTRS)
Swift, C. T.
1993-01-01
The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.
Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers
2016-04-21
Distribution A: Public Release; unlimited distribution 2016 Optical Society of America OCIS codes: (060.1660) Coherent communications; (070.2025) Discrete ...Coherent combining algorithm Multi-aperture coherent combining enables using many discrete apertures together to create a large effective aperture. A
Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.
2016-01-01
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605
NASA Astrophysics Data System (ADS)
Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun
2018-02-01
In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.
Preferential pathways in complex fracture systems and their influence on large scale transport
NASA Astrophysics Data System (ADS)
Willmann, M.; Mañé, R.; Tyukhova, A.
2017-12-01
Many subsurface applications in complex fracture systems require large-scale predictions. Precise predictions are difficult because of the existence of preferential pathways at different scales. The intrinsic complexity of fracture systems increases within fractured sedimentary formations, because also the coupling of fractures and matrix has to be taken into account. This interplay of fracture system and the sedimentary matrix is strongly controlled by the actual fracture aperture of an individual fracture. And an effective aperture cannot be easily be determined because of the preferential pathways along the fracture plane. We investigate the influence of these preferential pathways on large scale solute transport and upscale the aperture. By explicitly modeling flow and particle tracking in individual fractures, we develop a new effective transport aperture, which is weighted by the aperture along the preferential paths, a Lagrangian aperture. We show that this new aperture is consistently larger than existing definitions of effective flow and transport apertures. Finally, we apply our results to a fractured sedimentary formation in Northern Switzerland.
Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V
2016-01-21
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.
Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.
2005-01-18
A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.
Results of aperture area comparisons for exo-atmospheric total solar irradiance measurements.
Johnson, B Carol; Litorja, Maritoni; Fowler, Joel B; Shirley, Eric L; Barnes, Robert A; Butler, James J
2013-11-20
Exo-atmospheric solar irradiance measurements made by the solar irradiance community since 1978 have incorporated limiting apertures with diameters measured by a number of metrology laboratories using a variety of techniques. Knowledge of the aperture area is a critical component in the conversion of radiant flux measurements to solar irradiance. A National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) sponsored international comparison of aperture area measurements of limiting apertures provided by solar irradiance researchers was performed, the effort being executed by the National Institute of Standards and Technology (NIST) in coordination with the EOS Project Science Office. Apertures that had institutional heritage with historical solar irradiance measurements were measured using the absolute aperture measurement facility at NIST. The measurement technique employed noncontact video microscopy using high-accuracy translation stages. We have quantified the differences between the participating institutions' aperture area measurements and find no evidence to support the hypothesis that preflight aperture area measurements were the root cause of discrepancies in long-term total solar irradiance satellite measurements. Another result is the assessment of uncertainties assigned to methods used by participants. We find that uncertainties assigned to a participant's values may be underestimated.
Coded aperture solution for improving the performance of traffic enforcement cameras
NASA Astrophysics Data System (ADS)
Masoudifar, Mina; Pourreza, Hamid Reza
2016-10-01
A coded aperture camera is proposed for automatic license plate recognition (ALPR) systems. It captures images using a noncircular aperture. The aperture pattern is designed for the rapid acquisition of high-resolution images while preserving high spatial frequencies of defocused regions. It is obtained by minimizing an objective function, which computes the expected value of perceptual deblurring error. The imaging conditions and camera sensor specifications are also considered in the proposed function. The designed aperture improves the depth of field (DoF) and subsequently ALPR performance. The captured images can be directly analyzed by the ALPR software up to a specific depth, which is 13 m in our case, though it is 11 m for the circular aperture. Moreover, since the deblurring results of images captured by our aperture yield fewer artifacts than those captured by the circular aperture, images can be first deblurred and then analyzed by the ALPR software. In this way, the DoF and recognition rate can be improved at the same time. Our case study shows that the proposed camera can improve the DoF up to 17 m while it is limited to 11 m in the conventional aperture.
Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang
2015-10-01
Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.
NASA Astrophysics Data System (ADS)
Heydari, Samaneh; Rastan, Iman; Parvin, Amin; Pirooj, Azadeh; Zarrabi, Ferdows B.
2017-01-01
Recently, nano-aperture is noticed due to its good transmission in the optical regime. Also, the nano-apertures are developed at the metasurface design for circular polarization; for this aim, various shapes of the nano-aperture are suggested. To reach this objective, we have developed a novel Jerusalem cross fractal shape for a mid-infrared application. We have simulated various formations of the nano-fractal Jerusalem cross based on a simple cross to show the effect of nano-aperture shape on electrical field enhancement in the near-field which is important in spectroscopy and optical imaging. In addition, we have used a single layer graphene over the aperture as a coat for making reconfigurable characteristic also creating a membrane for placement of nano-particle over the aperture. Implementation of the graphene is an amendment to the transfer of the nano-apertures. The biological materials with a thickness of 80 nm have been placed over the graphene layer and the Figures of Merits (FOM) have been obtained. Additionally, the prototype of nano-antenna is independent from incident wave polarization. The Finite Difference Time Domain (FDTD) calculations have been implemented in the simulation and modeling the nano-apertures.
NASA Astrophysics Data System (ADS)
Tugchin, B. N.; Janunts, N.; Steinert, M.; Dietrich, K.; Kley, E. B.; Tünnermann, A.; Pertsch, T.
2017-06-01
In this study, we investigate analytically and experimentally the roles of quasi-linearly polarized (LP), hybrid, plasmonic and photonic modes in optical detection and excitation with aperture tips in scanning near-field optical microscopy. Aperture tips are tapered and metal-coated optical fibers where small circular apertures are made at the apex. In aperture tips, there exist plasmonic modes that are bound at the interface of the metal cladding to the inner dielectric fiber and photonic modes that are guided in the area of the increased index in the dielectric fiber core. The fundamental photonic mode, although excited by the free-space Gaussian beam, experiences cutoff and turns into an evanescent mode. The photonic mode also becomes lossier than the plasmonic mode toward the tip aperture, and its power decay due to absorption and reflection is expected to be at least 10-9. In contrast, the fundamental plasmonic mode has no cutoff and thus reaches all the way to the tip aperture. Due to the non-adiabaticity of both modes’ propagations through the taper below a core radius of 600 nm, there occurs coupling between the modes. The transmission efficiency of the plasmonic mode, including the coupling efficiency and the propagation loss, is expected to be about 10-6 that is at least 3 orders of magnitude larger than that of the photonic mode. Toward the tip aperture, the longitudinal field of the photonic mode becomes stronger than the transverse ones while the transverse fields always dominate for the plasmonic mode. Experimentally, we obtain polarization resolved images of the near-field at the tip aperture and compare with the x- and y-components of the fundamental quasi-LP plasmonic and photonic modes. The results show that not only the pattern but also the intensity ratios of the x- and y-components of the aperture near-field match with that of the fundamental plasmonic mode. Consequently, we conclude that only the plasmonic mode reaches the tip aperture and thus governs the near-field interaction outside the tip aperture. Our conclusion remains valid for all aperture tips regardless of the cladding metal type that mainly influences the total transmission efficiency of the aperture tip.
Synthetic aperture imaging in astronomy and aerospace: introduction.
Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael
2017-05-01
Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.
Electron microscope aperture system
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1976-01-01
An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.
Determination of the paraxial focal length using Zernike polynomials over different apertures
NASA Astrophysics Data System (ADS)
Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich
2017-02-01
The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.
NASA Astrophysics Data System (ADS)
Doungkaew, N.; Eichhubl, P.
2015-12-01
Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.
Propagation of various dark hollow beams through an apertured paraxial ABCD optical system
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Ge, Di
2006-08-01
Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry through an apertured paraxial ABCD optical system is investigated. Approximate analytical formulas for various DHBs propagating through an apertured paraxial optical system are derived by expanding the hard-aperture function into a finite sum of complex Gaussian functions in terms of a tensor method. Some numerical results are given. Our formulas provide a convenient way for studying the propagation of various DHBs through an apertured paraxial optical system.
Method of forming aperture plate for electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K. (Inventor)
1974-01-01
An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.
Giardina, Angelo R. [Marple Township, Delaware County, PA
1981-03-03
A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.
Material Measurements Using Groundplane Apertures
NASA Technical Reports Server (NTRS)
Komisarek, K.; Dominek, A.; Wang, N.
1995-01-01
A technique for material parameter determination using an aperture in a groundplane is studied. The material parameters are found by relating the measured reflected field in the aperture to a numerical model. Two apertures are studied which can have a variety of different material configurations covering the aperture. The aperture cross-sections studied are rectangular and coaxial. The material configurations involved combinations of single layer and dual layers with or without a resistive exterior resistive sheet. The resistivity of the resistive sheet can be specified to simulate a perfect electric conductor (PEC) backing (0 Ohms/square) to a free space backing (infinity Ohms/square). Numerical parameter studies and measurements were performed to assess the feasibility of the technique.
Examples of current radar technology and applications, chapter 5, part B
NASA Technical Reports Server (NTRS)
1975-01-01
Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.
Design of precise assembly equipment of large aperture optics
NASA Astrophysics Data System (ADS)
Pei, Guoqing; Xu, Xu; Xiong, Zhao; Yan, Han; Qin, Tinghai; Zhou, Hai; Yuan, Xiaodong
2017-05-01
High-energy solid-state laser is an important way to achieve laser fusion research. Laser fusion facility includes thousands of various types of large aperture optics. These large aperture optics should be assembled with high precision and high efficiency. Currently, however, the assembly of large aperture optics is by man's hand which is in low level of efficiency and labor-intensive. Here, according to the characteristics of the assembly of large aperture optics, we designed three kinds of grasping devices. Using Finite Element Method, we simulated the impact of the grasping device on the PV value and the RMS value of the large aperture optics. The structural strength of the grasping device's key part was analyzed. An experiment was performed to illustrate the reliability and precision of the grasping device. We anticipate that the grasping device would complete the assembly of large aperture optics precisely and efficiently.
Gu, Bing; Xu, Danfeng; Pan, Yang; Cui, Yiping
2014-07-01
Based on the vectorial Rayleigh-Sommerfeld integrals, the analytical expressions for azimuthal-variant vector fields diffracted by an annular aperture are presented. This helps us to investigate the propagation behaviors and the focusing properties of apertured azimuthal-variant vector fields under nonparaxial and paraxial approximations. The diffraction by a circular aperture, a circular disk, or propagation in free space can be treated as special cases of this general result. Simulation results show that the transverse intensity, longitudinal intensity, and far-field divergence angle of nonparaxially apertured azimuthal-variant vector fields depend strongly on the azimuthal index, the outer truncation parameter and the inner truncation parameter of the annular aperture, as well as the ratio of the waist width to the wavelength. Moreover, the multiple-ring-structured intensity pattern of the focused azimuthal-variant vector field, which originates from the diffraction effect caused by an annular aperture, is experimentally demonstrated.
Measurements of pore-scale flow through apertures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chojnicki, Kirsten
Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregularmore » cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.« less
NASA Astrophysics Data System (ADS)
He, Yingwei; Li, Ping; Feng, Guojin; Cheng, Li; Wang, Yu; Wu, Houping; Liu, Zilong; Zheng, Chundi; Sha, Dingguo
2010-11-01
For measuring large-aperture optical system transmittance, a novel sub-aperture scanning machine with double-rotating arms (SSMDA) was designed to obtain sub-aperture beam spot. Optical system full-aperture transmittance measurements can be achieved by applying sub-aperture beam spot scanning technology. The mathematical model of the SSMDA based on a homogeneous coordinate transformation matrix is established to develop a detailed methodology for analyzing the beam spot scanning errors. The error analysis methodology considers two fundamental sources of scanning errors, namely (1) the length systematic errors and (2) the rotational systematic errors. As the systematic errors of the parameters are given beforehand, computational results of scanning errors are between -0.007~0.028mm while scanning radius is not lager than 400.000mm. The results offer theoretical and data basis to the research on transmission characteristics of large optical system.
Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System
NASA Technical Reports Server (NTRS)
1995-01-01
The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.
Feasibility of Very Large Sparse Aperture Deployable Antennas
2014-03-27
FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Jason C. Heller, Captain...States. AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Presented to the Faculty...UNLIMITED AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS Jason C. Heller, B.S., Aerospace
Finding Optimal Apertures in Kepler Data
NASA Astrophysics Data System (ADS)
Smith, Jeffrey C.; Morris, Robert L.; Jenkins, Jon M.; Bryson, Stephen T.; Caldwell, Douglas A.; Girouard, Forrest R.
2016-12-01
With the loss of two spacecraft reaction wheels precluding further data collection for the Kepler primary mission, even greater pressure is placed on the processing pipeline to eke out every last transit signal in the data. To that end, we have developed a new method to optimize the Kepler Simple Aperture Photometry (SAP) photometric apertures for both planet detection and minimization of systematic effects. The approach uses a per cadence modeling of the raw pixel data and then performs an aperture optimization based on signal-to-noise ratio and the Kepler Combined Differential Photometric Precision (CDPP), which is a measure of the noise over the duration of a reference transit signal. We have found the new apertures to be superior to the previous Kepler apertures. We can now also find a per cadence flux fraction in aperture and crowding metric. The new approach has also been proven to be robust at finding apertures in K2 data that help mitigate the larger motion-induced systematics in the photometry. The method further allows us to identify errors in the Kepler and K2 input catalogs.
The SAMI Galaxy Survey: can we trust aperture corrections to predict star formation?
NASA Astrophysics Data System (ADS)
Richards, S. N.; Bryant, J. J.; Croom, S. M.; Hopkins, A. M.; Schaefer, A. L.; Bland-Hawthorn, J.; Allen, J. T.; Brough, S.; Cecil, G.; Cortese, L.; Fogarty, L. M. R.; Gunawardhana, M. L. P.; Goodwin, M.; Green, A. W.; Ho, I.-T.; Kewley, L. J.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.
2016-01-01
In the low-redshift Universe (z < 0.3), our view of galaxy evolution is primarily based on fibre optic spectroscopy surveys. Elaborate methods have been developed to address aperture effects when fixed aperture sizes only probe the inner regions for galaxies of ever decreasing redshift or increasing physical size. These aperture corrections rely on assumptions about the physical properties of galaxies. The adequacy of these aperture corrections can be tested with integral-field spectroscopic data. We use integral-field spectra drawn from 1212 galaxies observed as part of the SAMI Galaxy Survey to investigate the validity of two aperture correction methods that attempt to estimate a galaxy's total instantaneous star formation rate. We show that biases arise when assuming that instantaneous star formation is traced by broad-band imaging, and when the aperture correction is built only from spectra of the nuclear region of galaxies. These biases may be significant depending on the selection criteria of a survey sample. Understanding the sensitivities of these aperture corrections is essential for correct handling of systematic errors in galaxy evolution studies.
A scheiner-principle vernier optometer
NASA Astrophysics Data System (ADS)
Cushman, William B.
1989-06-01
A method and optometer apparatus is disclosed for measuring the dark focus of accommodation. In a preferred embodiment, the optometer apparatus includes: a pinhole aperture plate having first and second horizontally positioned apertures disposed on opposite sides of a first optical axis; first and second orthogonally-oriented polarizing filters respectively covering the first and second horizontally positioned apertures; a positive lens having an optical axis on the first optical axis and being positioned at a distance of approximately one focal length from the pinhole aperture plate; a lens system having an optical axis on the first optical axis; a slit aperture plate having a vertical slit and being disposed on the first optical axis and between the positive lens and the lens system; third and fourth vertically positioned polarizing filters selectively disposed adjacent to the slit aperture plate to divide the slit vertically, a monochromatic light source for propagating light along the first optical axis through the lens system; and movable means attached to the slit aperture plate, the lens system and the monochromatic light source for moving the slit aperture plate.
Self characterization of a coded aperture array for neutron source imaging
NASA Astrophysics Data System (ADS)
Volegov, P. L.; Danly, C. R.; Fittinghoff, D. N.; Guler, N.; Merrill, F. E.; Wilde, C. H.
2014-12-01
The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (˜100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.
NASA Technical Reports Server (NTRS)
Cockrell, C. R.; Beck, Fred B.
1997-01-01
The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.
Sub-aperture stitching test of a cylindrical mirror with large aperture
NASA Astrophysics Data System (ADS)
Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng
2016-09-01
Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.
Reconfigurable metasurface aperture for security screening and microwave imaging
NASA Astrophysics Data System (ADS)
Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.
2017-05-01
Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.
Side information in coded aperture compressive spectral imaging
NASA Astrophysics Data System (ADS)
Galvis, Laura; Arguello, Henry; Lau, Daniel; Arce, Gonzalo R.
2017-02-01
Coded aperture compressive spectral imagers sense a three-dimensional cube by using two-dimensional projections of the coded and spectrally dispersed source. These imagers systems often rely on FPA detectors, SLMs, micromirror devices (DMDs), and dispersive elements. The use of the DMDs to implement the coded apertures facilitates the capture of multiple projections, each admitting a different coded aperture pattern. The DMD allows not only to collect the sufficient number of measurements for spectrally rich scenes or very detailed spatial scenes but to design the spatial structure of the coded apertures to maximize the information content on the compressive measurements. Although sparsity is the only signal characteristic usually assumed for reconstruction in compressing sensing, other forms of prior information such as side information have been included as a way to improve the quality of the reconstructions. This paper presents the coded aperture design in a compressive spectral imager with side information in the form of RGB images of the scene. The use of RGB images as side information of the compressive sensing architecture has two main advantages: the RGB is not only used to improve the reconstruction quality but to optimally design the coded apertures for the sensing process. The coded aperture design is based on the RGB scene and thus the coded aperture structure exploits key features such as scene edges. Real reconstructions of noisy compressed measurements demonstrate the benefit of the designed coded apertures in addition to the improvement in the reconstruction quality obtained by the use of side information.
Skoda, G.I.
1989-03-28
A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.
Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique
2015-10-01
This report discusses a simple aperture useful for terahertz near-field imaging at .2010 terahertz ( lambda = 1.43 millimeters). The aperture requires...achieve a spatial resolution of lambda /7. The aperture can be scaled with the assistance of machinery found in conventional machine shops to achieve similar results using shorter terahertz wavelengths.
RF verification tasks underway at the Harris Corporation for multiple aperture reflector system
NASA Technical Reports Server (NTRS)
Gutwein, T. A.
1982-01-01
Mesh effects on gain and patterns and adjacent aperture coupling effects for "pie" and circular apertures are discussed. Wire effects for Harris model with Langley scale model results included for assessing D/lamda effects, and wire effects with adjacent aperture coupling were determined. Reflector surface distortion effects (pillows and manufacturing roughness) were studied.
Dual aperture dipole magnet with second harmonic component
Praeg, Walter F.
1985-01-01
An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.
Dual aperture dipole magnet with second harmonic component
Praeg, W.F.
1983-08-31
An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.
The electromagnetic modeling of thin apertures using the finite-difference time-domain technique
NASA Technical Reports Server (NTRS)
Demarest, Kenneth R.
1987-01-01
A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.
NASA Astrophysics Data System (ADS)
Moretto, G.; Kuhn, J.; Langlois, M.; Berdugyna, S.; Tallon, M.
2017-09-01
Telescopes larger than currently planned 30-m class instruments must break the mass-aperture scaling relationship of the Keck-generation of multi-segmented telescopes. Partially filled aperture, but highly redundant baseline interferometric instruments may achieve both large aperture and high dynamic range. The PLANETS FOUNDATION group has explored hybrid telescope-interferometer concepts for narrow-field optical systems that exhibit coronagraphic performance over narrow fields-of-view. This paper describes how the Colossus and Exo-Life Finder telescope designs achieve 10x lower moving masses than current Extremely Large Telescopes.
Extended Aperture Photometry of K2 RR Lyrae stars
NASA Astrophysics Data System (ADS)
Plachy, Emese; Klagyivik, Péter; Molnár, László; Sódor, Ádám; Szabó, Róbert
2017-10-01
We present the method of the Extended Aperture Photometry (EAP) that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied on the automated Single Aperture Photometry (SAP) and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.
Microfabricated high-bandpass foucault aperture for electron microscopy
Glaeser, Robert; Cambie, Rossana; Jin, Jian
2014-08-26
A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.
NASA Astrophysics Data System (ADS)
Mazoyer, J.; Pueyo, L.; N'Diaye, M.; Fogarty, K.; Zimmerman, N.; Leboulleux, L.; St. Laurent, K. E.; Soummer, R.; Shaklan, S.; Norman, C.
2018-01-01
Future searches for bio-markers on habitable exoplanets will rely on telescope instruments that achieve extremely high contrast at small planet-to-star angular separations. Coronagraphy is a promising starlight suppression technique, providing excellent contrast and throughput for off-axis sources on clear apertures. However, the complexity of space- and ground-based telescope apertures goes on increasing over time, owing to the combination of primary mirror segmentation, the secondary mirror, and its support structures. These discontinuities in the telescope aperture limit the coronagraph performance. In this paper, we present ACAD-OSM, a novel active method to correct for the diffractive effects of aperture discontinuities in the final image plane of a coronagraph. Active methods use one or several deformable mirrors that are controlled with an interaction matrix to correct for the aberrations in the pupil. However, they are often limited by the amount of aberrations introduced by aperture discontinuities. This algorithm relies on the recalibration of the interaction matrix during the correction process to overcome this limitation. We first describe the ACAD-OSM technique and compare it to the previous active methods for the correction of aperture discontinuities. We then show its performance in terms of contrast and off-axis throughput for static aperture discontinuities (segmentation, struts) and for some aberrations evolving over the life of the instrument (residual phase aberrations, artifacts in the aperture, misalignments in the coronagraph design). This technique can now obtain the Earth-like planet detection threshold of {10}10 contrast on any given aperture over at least a 10% spectral bandwidth, with several coronagraph designs.
Hermetic electronics package with dual-sided electrical feedthrough configuration
Shah, Kedar G.; Pannu, Satinderpall S.
2016-11-22
A hermetic electronics package includes a metal case with opposing first and second open ends, with each end connected to a first feedthrough construction and a second feedthrough construction. Each feedthrough contruction has an electrically insulating substrate and an array of electrically conductive feedthroughs extending therethrough, with the electrically insulating substrates connected to the opposing first and second open ends, respectively, of the metal case so as to form a hermetically sealed enclosure. A set of electronic components are located within the hermetically sealed enclosure and are operably connected to the feedthroughs of the first and second feedthrough constructions so as to electrically communicate outside the package from opposite sides of the package.
Slide release mechanism. [for space shuttle orbiter/external tank connection device
NASA Technical Reports Server (NTRS)
Bunker, J. W.; Ritchie, R. S. (Inventor)
1985-01-01
A releasable support device is described which is comprised of a hollow body with a sleeve extending transversely there-through for receiving the end of a support shank. A slider-latch, optionally lubricated, extends through side recesses in the sleeve to straddle the shank, respectively, in latched and released positions. The slider-latch is slid from its latched to its unlatched position by a pressure squib whereupon a spring or other pressure means pushes the shank out of the sleeve. At the same time, a follower element is lodged in and closed the hole in the body wall from which the shank was discharged. The mechanism was designed for the shuttle orbiter/external tank connection device.
Ceramic membranes having macroscopic channels
Anderson, Marc A.; Peterson, Reid A.
1996-01-01
Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes.
Ceramic membranes having macroscopic channels
Anderson, M.A.; Peterson, R.A.
1996-09-03
Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes. 1 fig.
Method and apparatus for laser scribing glass sheet substrate coatings
Borgeson, Frank A.; Hanak, Joseph J.; Harju, Ricky S.; Helman, Norman L.; Hecht, Kenneth R.
2003-05-06
A method and apparatus (42) for laser scribing coatings on glass sheet substrates by conveying the substrate adjacent a laser source (83) that provides a pulsed laser beam (84) with a wavelength at a near-infrared fundamental frequency and having a frequency in the range of 50 to 100 kilohertz and a pulse duration in the range of 8 to 70 nanoseconds, and by reflecting the beam by an XYZ galvanometer controlled mirror system (90) toward an uncoated surface of the substrate for passage therethrough to the coating on the other surface to provide overlapping ablations through the coating and scribing at a speed of at least 1000 millimeters per second.
Method and apparatus for laser scribing glass sheet substrate coatings
Borgeson, Frank A.; Hanak, Joseph J.; Harju, Ricky S.; Harju, Karen M.; Helman, Norman L.; Hecht, Kenneth R.
2005-07-19
A method and apparatus (42) for laser scribing coatings on glass sheet substrates by conveying the substrate adjacent a laser source (83) that provides a pulsed laser beam (84) with a wavelength at a near-infrared fundamental frequency and having a frequency in the range of 50 to 100 kilohertz and a pulse duration in the range of 8 to 70 nanoseconds, and by reflecting the beam by an XYZ galvanometer controlled mirror system (90) toward an uncoated surface of the substrate for passage therethrough to the coating on the other surface to provide overlapping ablations through the coating and scribing at a speed of at least 1000 millimeters per second.
Fracture toughness for copper oxide superconductors
Goretta, K.C.; Kullberg, M.L.
1993-04-13
An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].
Exhaust bypass flow control for exhaust heat recovery
Reynolds, Michael G.
2015-09-22
An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.
Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)
Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin
2015-12-29
A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.
Method for removing cesium from a nuclear reactor coolant
Colburn, R.P.
1983-08-10
A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.
Capsule injection system for a hydraulic capsule pipelining system
Liu, Henry
1982-01-01
An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.
Metal hydride composition and method of making
Congdon, James W.
1995-01-01
A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.
Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.
1986-03-25
An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.
Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho
1988-01-01
An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.
Enhancement of in situ microbial remediation of aquifers
Fredrickson, James K.; Brockman, Fred J.; Streile, Gary P.; Cary, John W.; McBride, John F.
1993-01-01
Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.
Enhancement of in situ microbial remediation of aquifers
Fredrickson, J.K.; Brockman, F.J.; Streile, G.P.; Cary, J.W.; McBride, J.F.
1993-11-30
Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification. 4 figures.
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.
Diffraction smoothing aperture for an optical beam
Judd, O'Dean P.; Suydam, Bergen R.
1976-01-01
The disclosure is directed to an aperture for an optical beam having an irregular periphery or having perturbations imposed upon the periphery to decrease the diffraction effect caused by the beam passing through the aperture. Such apertures are particularly useful with high power solid state laser systems in that they minimize the problem of self-focusing which frequently destroys expensive components in such systems.
NASA Astrophysics Data System (ADS)
Dobrynchenko, VV; Kokorinand, IS; Shebalkova, LV
2018-03-01
The authors discuss applicability of synthesized aperture radars to monitorthe ground surface displacement in mineral mining areas in terms of a synthesized-aperture interferometric radar. The operation principle of the interferometric method is demonstrated on studies of the ground surface displacements in areas of oil and gas reservoirs. The advantages of the synthetic aperture radar are substantiated.
Vacuum aperture isolator for retroreflection from laser-irradiated target
Benjamin, Robert F.; Mitchell, Kenneth B.
1980-01-01
The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication...) and C-band Small Aperture Terminal (CSAT) networks. (a)(1) VSAT networks operating in the 12/14 GHz bands. All applications for digital VSAT networks granted on or before September 15, 2005, with a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication...) and C-band Small Aperture Terminal (CSAT) networks. (a)(1) VSAT networks operating in the 12/14 GHz bands. All applications for digital VSAT networks granted on or before September 15, 2005, with a...
TRIPPy: Trailed Image Photometry in Python
NASA Astrophysics Data System (ADS)
Fraser, Wesley; Alexandersen, Mike; Schwamb, Megan E.; Marsset, Michaël; Pike, Rosemary E.; Kavelaars, J. J.; Bannister, Michele T.; Benecchi, Susan; Delsanti, Audrey
2016-06-01
Photometry of moving sources typically suffers from a reduced signal-to-noise ratio (S/N) or flux measurements biased to incorrect low values through the use of circular apertures. To address this issue, we present the software package, TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill aperture, which is the natural extension of the circular aperture appropriate for linearly trailed sources. The pill shape is a rectangle with two semicircular end-caps and is described by three parameters, the trail length and angle, and the radius. The TRIPPy software package also includes a new technique to generate accurate model point-spread functions (PSFs) and trailed PSFs (TSFs) from stationary background sources in sidereally tracked images. The TSF is merely the convolution of the model PSF, which consists of a moffat profile, and super-sampled lookup table. From the TSF, accurate pill aperture corrections can be estimated as a function of pill radius with an accuracy of 10 mmag for highly trailed sources. Analogous to the use of small circular apertures and associated aperture corrections, small radius pill apertures can be used to preserve S/Ns of low flux sources, with appropriate aperture correction applied to provide an accurate, unbiased flux measurement at all S/Ns.
NASA Astrophysics Data System (ADS)
Wan, Yuan; An, Yashuai; Tao, Zhi; Deng, Luogen
2018-03-01
Behaviors of surface plasmon resonance (SPR) of a graphene-based Au aperture antenna are investigated in visible and near-infrared (vis-NIR) regions. Compared with the SPR wavelength of a traditional Au aperture antenna, the SPR wavelength of the graphene-based Au aperture antenna shows a remarkable blue shift due to the redistribution of the electric field in the proposed structure. The electric field of the graphene-based Au aperture antenna is highly localized on the surface of the graphene in the aperture and redistributed to be a standing wave. Moreover, the SPR of a graphene-based Au aperture antenna is sensitive to the thickness and the refractive index of the dielectric layer, the graphene Fermi energy, the refractive index of the environment and the polarization direction of the incident light. Finally, we find the wavelength, intensity and phase of the reflected light of the graphene-based Au aperture antenna array can be actively modulated by varying the graphene Fermi energy. The proposed structure provides a promising platform for realizing a tunable optical filter, a highly sensitive refractive index sensor, and other actively tunable optical and optoelectronic devices.
Self characterization of a coded aperture array for neutron source imaging
Volegov, P. L.; Danly, C. R.; Fittinghoff, D. N.; ...
2014-12-15
The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning DT plasma during the stagnation stage of ICF implosions. Since the neutron source is small (~100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be preciselymore » aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.« less
Dark-field microscopic image stitching method for surface defects evaluation of large fine optics.
Liu, Dong; Wang, Shitong; Cao, Pin; Li, Lu; Cheng, Zhongtao; Gao, Xin; Yang, Yongying
2013-03-11
One of the challenges in surface defects evaluation of large fine optics is to detect defects of microns on surfaces of tens or hundreds of millimeters. Sub-aperture scanning and stitching is considered to be a practical and efficient method. But since there are usually few defects on the large aperture fine optics, resulting in no defects or only one run-through line feature in many sub-aperture images, traditional stitching methods encounter with mismatch problem. In this paper, a feature-based multi-cycle image stitching algorithm is proposed to solve the problem. The overlapping areas of sub-apertures are categorized based on the features they contain. Different types of overlapping areas are then stitched in different cycles with different methods. The stitching trace is changed to follow the one that determined by the features. The whole stitching procedure is a region-growing like process. Sub-aperture blocks grow bigger after each cycle and finally the full aperture image is obtained. Comparison experiment shows that the proposed method is very suitable to stitch sub-apertures that very few feature information exists in the overlapping areas and can stitch the dark-field microscopic sub-aperture images very well.
Holman, Benjamin W B; Ponnampalam, Eric N; van de Ven, Remy J; Kerr, Matthew G; Hopkins, David L
2015-02-01
The effect of aperture size on the assessment of lamb meat colour values (L*, a*, b* and R630/580)was investigated. Two experiments using 2 HunterLab MiniScan colorimeters (large [25 mm] and small [5 mm] apertures) were conducted: 1) coloured tiles were measured and 2) unaged lamb (n = 65) m. longissimus lumborum (LL) and m. semimembranosus (SM) muscles were measured over 2.5 d under simulated retail display. For Experiment three, 2 different colorimeters were used on lamb (n = 36) LL aged for 6 weeks before measurement over 4 don simulated retail display. Coloured tile a* and b* values were unaffected by aperture size, but L* values and the R630/580 ratio were influenced by aperture size. The effect of aperture size on lamb meat colour measurements varied with display time and muscle type. The large aperture size generally provided the highest colorimetric values, and is recommended for measuring lamb meat colour.
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.
1996-01-01
This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.
Measurements of Aperture Averaging on Bit-Error-Rate
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.;
2005-01-01
We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.