Science.gov

Sample records for aperture fused silica

  1. Improving 351-nm Damage Performance of Large-Aperture Fused Silica and DKDP Optics

    SciTech Connect

    Burnham, A K; Hackel, L; Wegner, P; Parham, T; Hrubesh, L; Penetrante, B; Whitman, P; Demos, S; Menapace, J; Runkel, M; Fluss, M; Feit, M; Key, M; Biesiada, T

    2002-01-07

    A program to identify and eliminate the causes of UV laser-induced damage and growth in fused silica and DKDP has developed methods to extend optics lifetimes for large-aperture, high-peak-power, UV lasers such as the National Ignition Facility (NIF). Issues included polish-related surface damage initiation and growth on fused silica and DKDP, bulk inclusions in fused silica, pinpoint bulk damage in DKDP, and UV-induced surface degradation in fused silica and DKDP in a vacuum. Approaches included an understanding of the mechanism of the damage, incremental improvements to existing fabrication technology, and feasibility studies of non-traditional fabrication technologies. Status and success of these various approaches are reviewed. Improvements were made in reducing surface damage initiation and eliminating growth for fused silica by improved polishing and post-processing steps, and improved analytical techniques are providing insights into mechanisms of DKDP damage. The NIF final optics hardware has been designed to enable easy retrieval, surface-damage mitigation, and recycling of optics.

  2. Fabrication of large aperture kinoform phase plates in fused silica for smoothing focal plane intensity profiles

    SciTech Connect

    Rushford, M.; Dixit, S.; Thomas, I.; Perry, M.

    1996-04-26

    We have fabricated large aperture (40-cm) kinoform phase plates for producing super-Gaussian focal plane intensity profiles. The continuous phase screen, designed using a new iterative procedure, was fabricated in fused silica as a 16-level, one-wave deep rewrapped phase profile using a lithographic process and wet etching in buffered hydrofluoric acid. The observed far-field contains 94% of the incident energy inside the desired spot.

  3. In-situ monitoring of surface post-processing in large aperture fused silica optics with Optical Coherence Tomography

    SciTech Connect

    Guss, G M; Bass, I l; Hackel, R P; Mailhiot, C; Demos, S G

    2008-02-08

    Optical Coherence Tomography is explored as a method to image laser-damage sites located on the surface of large aperture fused silica optics during post-processing via CO{sub 2} laser ablation. The signal analysis for image acquisition was adapted to meet the sensitivity requirements for this application. A long-working distance geometry was employed to allow imaging through the opposite surface of the 5-cm thick optic. The experimental results demonstrate the potential of OCT for remote monitoring of transparent material processing applications.

  4. Laser damage performance of large-aperture fused silica optical components at 351 nm

    NASA Astrophysics Data System (ADS)

    Huang, Wanqing; Han, Wei; Wang, Fang; Xiang, Yong; Li, Fuquan; Feng, Bin; Jing, Feng; Wei, Xiaofeng; Zheng, Wanguo; Zhang, Xiaomin

    2008-12-01

    High power laser facility for ICF will routinely operate at high fluence level. The damage on the large-area FOA optics is a key lifetime limiter. The optics should be checked after each laser shot for damage initiation and growth. On-line monitoring equipments are installed for this purpose. Damage pictures of a fused silica component are successfully taken and the luminance of the pictures could reflect the deterioration of the operational environment. Damage initiation and growth behaviors at 351nm high-fluence laser were observed. Damage density and damage growth are exponential with the shot number and some conclusions could be drawn. These results bring forward demands for future monitoring equipments and more experiments to establish a lifetime model.

  5. Damage and fracture in large aperture, fused silica, vacuum spatial filter lenses

    SciTech Connect

    Campbell, J.H.; Edwards, G.J.; Marion, J.E.

    1995-07-07

    Optical damage that results in large scale fracture has been observed in the large, high-fluence, fused-silica, spatial filter lenses on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lenses and because the vacuum side of the lens is under tensile stress this damage can lead to catastrophic crack growth if the flaw (damage) size exceeds the critical flaw size for SiO{sub 2}. The damaged 52 cm Nova lenses fracture into two and sometimes three large pieces. Although under full vacuum load at the time they fracture, the Nova lenses do not implode. Rather the authors have observed that the pieces lock together and air slowly leaks into the vacuum spatial filter housing through the lens cracks. The Beamlet lenses have a larger aspect ratio and peak tensile stress than Nova. The peak tensile stress at the center of the output surface of the Beamlet lens is 1,490 psi versus 810 psi for Nova. During a recent Beamlet high energy shot, a damage spot on the lens grew to the critical flaw size and the lens imploded. Post shot data indicate the lens probably fractured into 5 to 7 pieces, however, unlike Nova, these pieces did not lock together. Analysis shows that the likely source of damage is contamination from pinhole blow-off or out-gassing of volatile materials within the spatial filter. Contamination degrades the antireflection properties of the sol-gel coating and reduces its damage threshold. By changing the design of the Beamlet lens it may be possible to insure that it fails safe by locking up in much that same manner as the Nova lens.

  6. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  7. Contributions of kinematics and viscoelastic lap deformation on the suface figure during full aperture polishing of fused silica

    SciTech Connect

    Suratwala, T I; Steele, R A; Feit, M D

    2007-10-09

    A typical optical fabrication process involves a series of basic process steps including: (1) shaping, (2) grinding, (3) polishing, and sometimes (4) sub-aperture tool finishing. With significant innovation and development over the years in both the front end (shaping using CNC machines) and the back end (sup-aperture tool polishing), these processes have become much more deterministic. However, the intermediate stages (full aperture grinding/polishing) in the process, which can be very time consuming, still have much reliance on the optician's insight to get to the desired surface figure. Such processes are not presently very deterministic (i.e. require multiple iterations to get desired figure). The ability to deterministically finish an optical surface using a full aperture grinding/polishing will aid optical glass fabricators to achieve desired figure in a more repeatable, less iterative, and more economical manner. Developing a scientific understanding of the material removal rate is a critical step in accomplishing this. In the present study, the surface figure and material removal rate of a fused silica workpiece is measured as a function of polishing time using Ceria based slurry on a polyurethane pad or pitch lap under a variety of kinematic conditions (motion of the workpiece and lap) and loading configurations. The measured results have been applied to expand the Preston model of material removal (utilizing chemical, mechanical and tribological effects). The results show that under uniform loading, the surface figure is dominated by kinematics which can be predicted by calculating the relative velocity (between the workpiece and the lap) with time and position on the workpiece. However, in the case where the kinematics predict a time-averaged removal function over the workpiece that is uniform, we find experimentally that the surface deviates significantly from uniform removal. We show that this non-uniform removal is caused by the non-uniform stress

  8. Fused Silica and Other Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    Several transparent ceramics, such as spinel and AlONs are now being produced in sufficient large areas to be used in space craft window applications. The work horse transparent material for space missions from Apollo to the International Space Station has been fused silica due in part to its low coefficient of expansion and optical quality. Despite its successful use, fused silica exhibits anomalies in its crack growth behavior, depending on environmental preconditioning and surface damage. This presentation will compare recent optical ceramics to fused silica and discuss sources of variation in slow crack growth behavior.

  9. Fluorine-Based DRIE of Fused Silica

    NASA Technical Reports Server (NTRS)

    Yee, Karl; Shcheglov, Kirill; Li, Jian; Choi, Daniel

    2007-01-01

    A process of deep reactive-ion etching (DRIE) using a fluorine-based gas mixture enhanced by induction-coupled plasma (ICP) has been demonstrated to be effective in forming high-aspect-ratio three-dimensional patterns in fused silica. The patterns are defined in part by an etch mask in the form of a thick, high-quality aluminum film. The process was developed to satisfy a need to fabricate high-aspect-ratio fused-silica resonators for vibratory microgyroscopes, and could be used to satisfy similar requirements for fabricating other fused-silica components.

  10. Fused silica windows for solar receiver applications

    NASA Astrophysics Data System (ADS)

    Hertel, Johannes; Uhlig, Ralf; Söhn, Matthias; Schenk, Christian; Helsch, Gundula; Bornhöft, Hansjörg

    2016-05-01

    A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive.

  11. Electrostatic Discharge Properties of Fused Silica Coatings

    NASA Astrophysics Data System (ADS)

    Andersen, Allen; Sim, Charles; Dennison, J. R.

    2012-10-01

    The electric field value at which electrostatic discharge (ESD) occurs was studied for thin coatings of fused silica (highly disordered SiO2/SiOx) on conductive substrates, such as those encountered as optical coatings and in Si microfabrication. The electrostatic breakdown field was determined using an increasing voltage, while monitoring the leakage current. A simple parallel-plate capacitor geometry was used, under medium vacuum and at temperatures down to ˜150 K using a liquid N2 reservoir. The breakdown field, pre-breakdown arcing and I-V curves for fused silica samples are compared for ˜60 nm and ˜80 μm thick, room and low temperature, and untreated and irradiated samples. Unlike typical I-V results for polymeric insulators, the thin film silica samples did not exhibit pre-breakdown arcing, displayed transitional resistivity after initial breakdown, and in many cases showed evidence of a second discontinuity in the I-V curves. This diversity of observed discharge phenomena is discussed in terms of breakdown modes and defect generation on a microscopic scale.

  12. Quartz/fused silica chip carriers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary objective of this research and development effort was to develop monolithic microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-wave frequencies. The packages incorporated fused silica as the substrate material which was selected due to its favorable electrical properties and potential performance improvement over more conventional materials for Ka-band operation. The first step towards meeting this objective is to develop a package that meets standard mechanical and thermal requirements using fused silica and to be compatible with semiconductor devices operating up to at least 44 GHz. The second step is to modify the package design and add multilayer and multicavity capacity to allow for application specific integrated circuits (ASIC's) to control multiple phase shifters. The final step is to adapt the package design to a phased array module with integral radiating elements. The first task was a continuation of the SBIR Phase 1 work. Phase 1 identified fused silica as a viable substrate material by demonstrating various plating, machining, and adhesion properties. In Phase 2 Task 1, a package was designed and fabricated to validate these findings. Task 2 was to take the next step in packaging and fabricate a multilayer, multichip module (MCM). This package is the predecessor to the phased array module and demonstrates the ability to via fill, circuit print, laminate, and to form vertical interconnects. The final task was to build a phased array module. The radiating elements were to be incorporated into the package instead of connecting to it with wire or ribbon bonds.

  13. CO2 laser welding fused silica.

    SciTech Connect

    Reed, Scott T.; MacCallum, Danny O'Neill; Knorovsky, Gerald Albert

    2005-08-01

    The feasibility of laser welding of fused silica (aka quartz) has been demonstrated recently by others. An application requiring hermetic sealing of a thin, pressure-bearing quartz diaphragm to a thicker frame led us to explore this technique. We found that laser welding techniques normally used for metallic parts caused scorching and uneven melting. Contrary to standard practices (near focus, high travel speed, high power density), successful welds in fused silica required a broad heat source applied over a large area under a slow rotation to gradually heat the glass through the annealing, softening and finally working temperatures. Furthermore, good mechanical contact between the parts to be joined played an even more important role in this process than in typical metallic joints. A 50 W CO2 laser with 4 f.l. ZnSe2 lens and rotary head was used to weld 0.425 OD, 0.006-0.010 thick, disks to 0.500 OD tubing with 0.125 walls. Several joint geometries and beam orientations were investigated. Temperature profiles were measured and compared to an FEM thermal model. We will discuss the effects of laser power, travel speed, number of passes, joint geometry and part thicknesses on achieving hermeticity and cosmetically-acceptable joints.

  14. Note: Discharging fused silica test masses with ionized nitrogen

    NASA Astrophysics Data System (ADS)

    Ugolini, D.; Funk, Q.; Amen, T.

    2011-04-01

    We have developed a technique for discharging fused silica test masses in a gravitational-wave interferometer with nitrogen ionized by an electron beam. The electrons are produced from a heated filament by thermionic emission in a low-pressure region to avoid contamination and burnout. Some electrons then pass through a small aperture and ionize nitrogen in a higher-pressure region, and this ionized gas is pumped across the test mass surface, neutralizing both polarities of charge. The discharge rate varies exponentially with charge density and filament current, quadratically with filament potential, and has an optimal working pressure of ˜8 mT. Adapting the technique to larger test mass chambers is also discussed.

  15. Laser Damage Precursors in Fused Silica

    SciTech Connect

    Miller, P; Suratwala, T; Bude, J; Laurence, T A; Shen, N; Steele, W A; Feit, M; Menapace, J; Wong, L

    2009-11-11

    There is a longstanding, and largely unexplained, correlation between the laser damage susceptibility of optical components and both the surface quality of the optics, and the presence of near surface fractures in an optic. In the present work, a combination of acid leaching, acid etching, and confocal time resolved photoluminescence (CTP) microscopy has been used to study laser damage initiation at indentation sites. The combination of localized polishing and variations in indentation loads allows one to isolate and characterize the laser damage susceptibility of densified, plastically flowed and fractured fused silica. The present results suggest that: (1) laser damage initiation and growth are strongly correlated with fracture surfaces, while densified and plastically flowed material is relatively benign, and (2) fracture events result in the formation of an electronically defective rich surface layer which promotes energy transfer from the optical beam to the glass matrix.

  16. Laser plasma interactions in fused silica cavities

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Mao, Samuel S.; Yoo, Jong H.; Greif, Ralph; Russo, Richard E.

    2003-06-24

    The effect of laser energy on formation of a plasma inside a cavity was investigated. The temperature and electron number density of laser-induced plasmas in a fused silica cavity were determined using spectroscopic methods, and compared with laser ablation on a flat surface. Plasma temperature and electron number density during laser ablation in a cavity with aspect ratio of 4 increased faster with irradiance after the laser irradiance reached a threshold of 5 GW/cm{sup 2}. The threshold irradiance of particulate ejection was lower for laser ablation in a cavity compared with on a flat surface; the greater the cavity aspect ratio, the lower the threshold irradiance. The ionization of silicon becomes saturated and the crater depths were increased approximately by an order of magnitude after the irradiance reached the threshold. Phase explosion was discussed to explain the large change of both plasma characteristics and mass removal when irradiance increased beyond a threshold value. Self-focusing of the laser beam was discussed to be responsible for the decrease of the threshold in cavities.

  17. Coated Fused Silica Fibers for Enhanced Sensitivity Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Horowitz, Jordan; Camp, Jordan

    2007-01-01

    In order to investigate the fundamental thermal noise limit of a torsion pendulum using a fused silica fiber, we systematically measured and modeled the mechanical losses of thin fused silica fibers coated by electrically conductive thin metal films. Our results indicate that it is possible to achieve a thermal noise limit for coated silica lower by a factor between 3 and 9, depending on the silica diameter, compared to the best tungsten fibers available. This will allow a corresponding increase in sensitivity of torsion pendula used for weak force measurements, including the gravitational constant measurement and ground-based force noise testing for the Laser Interferometer Space Antenna (LISA) mission.

  18. Quantification of residual stress from photonic signatures of fused silica

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William T.

    2014-02-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10-12 Pa-1. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  19. Quantification of Residual Stress from Photonic Signatures of Fused Silica

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William E.

    2013-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress

  20. HVI Ballistic Limit Characterization of Fused Silica Thermal Panes

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Bohl, W. D.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.

    2015-01-01

    Fused silica window systems are used heavily on crewed reentry vehicles, and they are currently being used on the next generation of US crewed spacecraft, Orion. These systems improve crew situational awareness and comfort, as well as, insulating the reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on a fused silica window system proposed for the Orion spacecraft. A ballistic limit equation that describes the threshold of perforation of a fuse silica pane over a broad range of impact velocities, obliquities and projectile materials is discussed here.

  1. Microwave attenuation of multiwalled carbon nanotube-fused silica composites

    SciTech Connect

    Xiang Changshu; Pan Yubai; Liu Xuejian; Sun Xingwei; Shi Xiaomei; Guo Jingkun

    2005-09-19

    Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5 vol % MWCNTs into the composites. The average magnitude of microwave transmission reaches -33 dB at 11-12 GHz in the 10 vol % MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.

  2. Process for manufacturing hollow fused-silica insulator cylinder

    DOEpatents

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  3. Quantification of residual stress from photonic signatures of fused silica

    SciTech Connect

    Cramer, K. Elliott; Yost, William T.; Hayward, Maurice

    2014-02-18

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10{sup −12} Pa{sup −1}. Fused silica specimens containing impacts artificially made at NASA’s Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  4. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  5. Initiation, Growth and Mitigation of UV Laser Induced Damage in Fused Silica

    SciTech Connect

    Rubenchik, A M; Feit, M D

    2003-06-10

    Laser damage of large fused silica optics initiates at imperfections. Possible initiation mechanisms are considered. We demonstrate that a model based on nanoparticle explosions is consistent with the observed initiation craters. Possible mechanisms for growth upon subsequent laser irradiation, including material modification and laser intensification, are discussed. Large aperture experiments indicate an exponential increase in damage size with number of laser shots. Physical processes associated with this growth and a qualitative explanation of self-accelerated growth is presented. Rapid growth necessitates damage growth mitigation techniques. Several possible mitigation techniques are mentioned, with special emphasis on CO{sub 2} processing. Analysis of material evaporation, crack healing, and thermally induced stress are presented.

  6. Initiation, Growth and Mitigation of UV Laser Induced Damage in Fused Silica

    SciTech Connect

    Rubenchik, A M; Feit, M D

    2001-12-21

    Laser damage of large fused silica optics initiates at imperfections. Possible initiation mechanisms are considered. We demonstrate that a model based on nanoparticle explosions is consistent with the observed initiation craters. Possible mechanisms for growth upon subsequent laser irradiation, including material modification and laser intensification, are discussed. Large aperture experiments indicate an exponential increase in damage size with number of laser shots. Physical processes associated with this growth and a qualitative explanation of self-accelerated growth is presented. Rapid growth necessitates damage growth mitigation techniques. Several possible mitigation techniques are mentioned, with special emphasis on CO{sub 2} processing. Analysis of material evaporation, crack healing, and thermally induced stress are presented.

  7. HVI Ballistic Limit Charaterization of Fused Silica Thermal Pane

    NASA Technical Reports Server (NTRS)

    Bohl, William E.; Miller, Joshua E.; Christiansen, Eric L.; Deighton, Kevin.; Davis, Bruce

    2015-01-01

    The Orion spacecraft's windows are exposed to the micrometeroid and orbital debris (MMOD) space environments while in space as well as the Earth entry environment at the mission's conclusion. The need for a low-mass spacecraft window design drives the need to reduce conservatism when assessing the design for loss of crew due to MMOD impact and subsequent Earth entry. Therefore, work is underway at NASA and Lockheed Martin to improve characterization of the complete penetration ballistic limit of an outer fused silica thermal pane. Hypervelocity impact tests of the window configuration at up to 10 km/s and hydrocode modeling have been performed with a variety of projectile materials to enable refinement of the fused silica ballistic limit equation.

  8. Mechanical protection of DLC films on fused silica slides

    NASA Technical Reports Server (NTRS)

    Nir, D.

    1985-01-01

    Measurements were made with a new test for improved quantitative estimation of the mechanical protection of thin films on optical materials. The mechanical damage was induced by a sand blasting system using spherical glass beads. Development of the surface damage was measured by the changes in the specular transmission and reflection, and by inspection using a surface profilometer and a scanning electron microscope. The changes in the transmittance versus the duration of sand blasting was measured for uncoated fused silica slides and coated ones. It was determined that the diamond like carbon films double the useful optical lifetime of the fused silica. Theoretical expressions were developed to describe the stages in surface deterioration. Conclusions were obtained for the SiO2 surface mechanism and for the film removal mechanism.

  9. Dynamics of femtosecond laser induced voidlike structures in fused silica

    SciTech Connect

    Mermillod-Blondin, A.; Bonse, J.; Rosenfeld, A.; Hertel, I. V.; Meshcheryakov, Yu. P.; Bulgakova, N. M.; Audouard, E.; Stoian, R.

    2009-01-26

    Focused ultrafast laser irradiation of fused silica usually induces a spatially modulated refractive index variation in the bulk material. Strong energy concentration leads to the localized formation of a lower-density cavitylike depressed structure surrounded by compacted matter. We report on applying time-resolved phase contrast microscopy to investigate the timescale of the void formation. We indicate a temporal behavior consistent with shock wave generation and subsequent rarefaction.

  10. Monolithic Cylindrical Fused Silica Resonators with High Q Factors.

    PubMed

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 10⁵ (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  11. Monolithic Cylindrical Fused Silica Resonators with High Q Factors

    PubMed Central

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 105 (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  12. Contamination resistant antireflection nano-textures in fused silica for laser optics

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.; MacLeod, Bruce D.; Sabatino, Ernest; Britten, Jerald A.; Stolz, Christopher J.

    2013-11-01

    Anti-reflecting (AR) surface relief nano-textures have been integrated with fused silica diffraction gratings to demonstrate the potential of stable diffractive 3ω beam samplers with increased energy to target at the National Ignition Facility (NIF). TelAztec's AR texturing process was used to etch Random-type AR (RAR) microstructures in sub-scale NIF Grating Debris Shields consisting of large pitch, shallow line gratings. This superposition yielded the desired ~3.5% increase in zero-order transmission uniformly over the full aperture without compromising the grating function. Another fused silica window fabricated with RAR nano-textures in both faces for a 3ω (351nm) transmission of 99.5%, was subjected to capillary condensation tests to evaluate the resistance of the RAR texture to the adsorption of organic compounds. It was found that for a one day exposure time to a surrogate suite of organic contaminants, the RAR textured fused silica surfaces adsorbed less than one fourth the amount of organic contaminants found on a NIF baseline hardened sol-gel AR coated optic. In two additional exposure cycles, further RAR process refinement reduced the amount of adsorbed organics to a level nearly 200 times below the current NIF baseline. Significantly, the 3ω transmission of the RAR textured window remained unchanged after all three exposure cycles, whereas the sol-gel coated windows showed losses up to 4.9% for the highest contaminant concentration. Large beam pulsed laser damage testing of RAR textured fused silica windows was conducted with the Optical Sciences Laser (OSL) at NIF. The RAR sample damage resistance was found to be equivalent to the current NIF baseline - even after multiple aggressive chemical cleaning cycles. Lastly, a series of RAR textured and sol-gel AR coated windows were subjected to commercial 3ω pulsed laser damage testing at Quantel. The results indicate an average RAR damage threshold of 26 J/cm2, a level about 80% of the two NIF fused

  13. Subsurface defect characterization and laser-induced damage performance of fused silica optics polished with colloidal silica and ceria

    NASA Astrophysics Data System (ADS)

    Xiang, He; Gang, Wang; Heng, Zhao; Ping, Ma

    2016-04-01

    This paper mainly focuses on the influence of colloidal silica polishing on the damage performance of fused silica optics. In this paper, nanometer sized colloidal silica and micron sized ceria are used to polish fused silica optics. The colloidal silica polished samples and ceria polished samples exhibit that the root-mean-squared (RMS) average surface roughness values are 0.7 nm and 1.0 nm, respectively. The subsurface defects and damage performance of the polished optics are analyzed and discussed. It is revealed that colloidal silica polishing will introduce much fewer absorptive contaminant elements and subsurface damages especially no trailing indentation fracture. The 355-nm laser damage test reveals that each of the fused silica samples polished with colloidal silica has a much higher damage threshold and lower damage density than ceria polished samples. Colloidal silica polishing is potential in manufacturing high power laser optics.

  14. Fused silica diaphragm module for high temperature pressure transducers

    NASA Technical Reports Server (NTRS)

    Berthold, III, John W. (Inventor)

    1986-01-01

    A high temperature pressure transducer and sensing apparatus to determine the deflection of the transducer diaphragm is disclosed. The pressure transducer utilizes a fused silica diaphragm (12) which is illuminated at selected locations by a coherent laser source (52) via optical fibers (38, 46). The light reflected by the diaphragm (12) forms interference fringe patterns which are focused by gradient index rod lenses (36) on the ends of optical fibers (40, 48) for transmission to a fringe counting circuit (54). By digital techniques, the fringe count is converted into a determination of diaphragm deflection.

  15. High-efficiency transmission gratings fabricated in bulk fused silica

    SciTech Connect

    Nguyen, H.T.; Shore, B.W.; Britten, J.A.; Bryan, S.J.; Falabella, S.; Boyd, R.D.; Perry, M.D.

    1996-03-01

    The authors present the design and performance of high-efficiency transmission gratings fabricated in bulk fused silica for use in ultraviolet high-power laser systems. The gratings exhibit a diffraction efficiency exceeding 95% in the m = {minus}1 order and damage threshold greater than 13 J/cm{sup 2} for 1 nsec pulses at 351 nm. Model calculations and experimental measurements are in good agreement. They describe the design and fabrication of these gratings based on the transfer ion etching of photoresist patterns produced by interference lithography.

  16. Mechanical loss of laser-welded fused silica fibers

    NASA Astrophysics Data System (ADS)

    Harry, Gregory; Corbitt, Thomas; Freytsis, Marat; Ottaway, David; Mavalvala, Nergis; Penn, Steve

    2006-02-01

    The mechanical quality factor of a carbon dioxide laser-welded fiber was measured and compared to flame-welded fibers to determine the suitability of laser welding for attaching suspension fibers to test masses in precision experiments. The loss in the fiber was found to be limited primarily by thermoelastic damping and surface loss, rather than loss from the weld. This technique is attractive for the attachment of fused silica suspensions where low thermal noise and precision location of the weld are considered.

  17. Temperature dependence of VUV transmission of synthetic fused silica

    NASA Astrophysics Data System (ADS)

    Franke, St.; Lange, H.; Schoepp, H.; Witzke, H.-D.

    2006-07-01

    The temperature dependence of the VUV transmission of synthetic fused silica is of interest for commercial applications as well as for fundamental research. In this work the transmission properties of Suprasil 2 from Heraeus with an absorption edge at very low wavelengths is investigated. The absorption edge of this quartz glass shifts from 170 to 180 nm between 789 and 1129 K. The Urbach rule is discussed for the characterization of the temperature dependent transmission curves. The results are applied to the diagnostics of the Hg 185 nm line from a high pressure mercury discharge lamp.

  18. The mechanism of growth of quartz crystals into fused silica

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Spaepen, F.; Turnbull, D.

    1980-01-01

    It is proposed that the growth of quartz crystals into fused silica is effected by a mechanism involving the breaking of an Si-O bond and its association with an OH group, followed by cooperative motion of the nonbridging oxygen and the hydroxyl group which results in the crystallization of a row of several molecules along a crystalline-amorphous interfacial ledge. This mechanism explains, at least qualitatively, all the results of the earlier experimental study of the dependence of quartz crystal growth upon applied pressure: large negative activation volume; single activation enthalpy below Si-O bond energy; growth velocity constant in time, proportional to the hydroxyl and chlorine content, decreasing with increasing degree of reduction, and enhanced by nonhydrostatic stresses; lower pre-exponential for the synthetic than for the natural silica.

  19. Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology.

    PubMed

    Wang, Shunquan; Zhou, Changhe; Ru, Huayi; Zhang, Yanyan

    2005-07-20

    Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well.

  20. High strain rate fracture behavior of fused silica

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Iannitti, Gianluca; Testa, Gabriel; Limido, Jerome; Lacome, Jean; Olovsson, Lars; Ferraro, Mario; Bonora, Nicola

    2013-06-01

    Fused silica is a high purity synthetic amorphous silicon dioxide characterized by low thermal expansion coefficient, excellent optical qualities and exceptional transmittance over a wide spectral range. Because of its wide use in the military industry as window material, it may be subjected to high-energy ballistic impacts. Under such dynamic conditions, post-yield response of the ceramic as well as the strain rate related effects become significant and should be accounted for in the constitutive modeling. In this study, the procedure for constitutive model validation and model parameters identification, is presented. Taylor impact tests and drop weight tests were designed and performed at different impact velocities, from 1 to 100 m/s, and strain rates, from 102 up to 104 s-1. Numerical simulation of both tests was performed with IMPETUS-FEA, a general non-linear finite element software which offers NURBS finite element technology for the simulation of large deformation and fracture in materials. Model parameters were identified by optimization using multiple validation metrics. The validity of the parameters set determined with the proposed procedure was verified comparing numerical predictions and experimental results for an independent designed test consisting in a fused silica tile impacted at prescribed velocity by a steel sphere.

  1. Thermal annealing of laser damage precursors on fused silica surfaces

    SciTech Connect

    Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L

    2012-03-19

    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.

  2. Morphology and structure of particles produced by femtosecond laser ablation of fused silica

    NASA Astrophysics Data System (ADS)

    Sharma, S. P.; Oliveira, V.; Vilar, Rui

    2016-04-01

    The aim of the present work was to study the morphology and structure of the nanoparticles produced by femtosecond laser ablation of fused silica. Ultrashort laser pulses of 1030 nm wavelength and 550 fs duration were tightly focused by a high numerical aperture microscope objective at the surface of fused silica samples while scanning the sample in relation to the stationary laser beam. Laser tracks were created with pulse energies in the range 5-100 μJ, resulting in ablation debris of different morphologies. The debris were examined by scanning and transmission electron microscopy for their morphology and crystal structure in relation to the incident laser pulse energy. Ejected particles with sizes ranging from a few nanometers to a few microns were found. Their morphologies can be broadly classified into three categories: very fine round nanoparticles with diameters lower than 20 nm, nanoparticles with intermediate sizes between 50 and 200 nm, and big irregular particles with typical size between 0.5 and 1.5 μm. The fine nanoparticles of the first category are predominantly observed at higher pulse energies and tend to aggregate to form web-like and arborescent-like structures. The nanoparticles with intermediate sizes are observed for all pulse energies used and may appear isolated or aggregated in clusters. Finally, the larger irregular particles of the third category are observed for all energies and appear normally isolated.

  3. Correlation of Laser-Induced Damage to Phase Objects in Bulk Fused Silica

    SciTech Connect

    Nostrand, M C; Cerjan, C J; Johnson, M A; Suratwala, T I; Weiland, T L; Sell, W D; Vickers, J L; Luthi, R L; Stanley, J R; Parham, T G; Thorsness, C B

    2004-11-10

    The Optical Sciences Laser (OSL) Upgrade facility, described in last year's proceedings, is a kJ-class, large aperture (100cm{sup 2}) laser system that can accommodate prototype optical components for large-scale inertial confinement fusion lasers. High-energy operation of such lasers is often limited by damage to the optical components. Recent experiments on the OSL Upgrade facility using fused silica components at 4 J/cm{sup 2} (351-nm, 3-ns) have created output surface and bulk damage sites that have been correlated to phase objects in the bulk of the material. Optical Path Difference (OPD) measurements of the phase defects indicate the probability of laser-induced damage is strongly dependent on OPD.

  4. Cracking Behavior of Fused Silica Glass in Sphere Indentation

    NASA Astrophysics Data System (ADS)

    Usami, Hatsuhiko; Ohashi, Kazuto; Sasaki, Shinnya; Sugishita, Junji

    The present paper describes cracking behavior of brittle materials in sphere indentation experiment. Fused silica glass plates were used for the specimen. An electro-mechanical testing apparatus was applied for the experiment. A silicon nitride sphere was penetrated with various cross head speed in air at room temperature. Au coating was applied on the testing surface to avoid the effect of corrosion. The cracking behavior was observed continuously during the test by installing a CCD camera with a lens assembly behind the specimen and was recorded with a digital memory. Acoustic emission (AE) measurement was also connected for the evaluation. The indentation strength based on an elastic contact theory was calculated. Reliability of the fracture load determination by AE measurement and the effect of cross head speed on the cracking behavior were evaluated. Obtained results revealed that the control of cross head speed was important for the indentation strength measurement.

  5. Optical Properties of the DIRC Fused Silica Radiator

    SciTech Connect

    Convery, Mark R

    2003-04-15

    The DIRC detector is successfully operating as the hadronic particle identification system for the BaBar experiment at SLAC. The production of its Cherenkov radiator required much effort in practice, both in manufacture and conception, which in turn required a large number of R&D measurements. One of the major outcomes of this R&D work was an understanding of methods to select radiation hard and optically uniform fused silica material. Others included measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to the surface pollution, selection of the radiator support, selection of good optical glue, etc. This note summarizes the optical R&D test results.

  6. Fabrication of microchannels in fused silica using femtosecond Bessel beams

    SciTech Connect

    Yashunin, D. A.; Malkov, Yu. A.; Mochalov, L. A.; Stepanov, A. N.

    2015-09-07

    Extended birefringent waveguiding microchannels up to 15 mm long were created inside fused silica by single-pulse irradiation with femtosecond Bessel beams. The birefringent refractive index change of 2–4 × 10{sup −4} is attributed to residual mechanical stress. The microchannels were chemically etched in KOH solution to produce 15 mm long microcapillaries with smooth walls and a high aspect ratio of 1:250. Bessel beams provide higher speed of material processing compared to conventional multipulse femtosecond laser micromachining techniques and permit simple control of the optical axis direction of the birefringent waveguides, which is important for practical applications [Corrielli et al., “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014)].

  7. Modification of nanostructured fused silica for use as superhydrophobic, IR-transmissive, anti-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Boyd, Darryl A.; Frantz, Jesse A.; Bayya, Shyam S.; Busse, Lynda E.; Kim, Woohong; Aggarwal, Ishwar; Poutous, Menelaos; Sanghera, Jasbinder S.

    2016-04-01

    In order to mimic and enhance the properties of moth eye-like materials, nanopatterned fused silica was chemically modified to produce self-cleaning substrates that have anti-reflective and infrared transmissive properties. The characteristics of these substrates were evaluated before and after chemical modification. Furthermore, their properties were compared to fused silica that was devoid of surface features. The chemical modification imparted superhydrophobic character to the substrates, as demonstrated by the average water contact angles which exceeded 170°. Finally, optical analysis of the substrates revealed that the infrared transmission capabilities of the fused silica substrates (nanopatterned to have moth eye on one side) were superior to those of the regular fused silica substrates within the visible and near-infrared region of the light spectrum, with transmission values of 95% versus 92%, respectively. The superior transmission properties of the fused silica moth eye were virtually unchanged following chemical modification.

  8. Surface Effects on Young's Modulud and Hardness of Fused Silica by Nanoindentation Study

    SciTech Connect

    Zheng, L.; Schmid, A.W.; Lambropoulos, J.C.

    2007-01-24

    The surface Young's modulus (E) and hardness (H) of fused silica samples have been studied by nanoindentation. Two factors strongly affect the results of E and H. One factor is the polishing quality of the fused silica surface. Poor polishing quality produces much smaller E and H than the literature values for bulk fused silica. The second factor is surface flatness. Even for a well-polished silica surface, an "arch bridge effect" may hinder the measurements of the true values of E and H. A correction procedure is proposed to eliminate this effect, and the corrected results show substantial improvements.

  9. Effect of optical coating and surface treatments on mechanical loss in fused silica

    NASA Astrophysics Data System (ADS)

    Gretarsson, Andri M.; Harry, Gregory M.; Penn, Steven D.; Saulson, Peter R.; Schiller, John J.; Startin, William J.

    2000-06-01

    We report on the mechanical loss in fused silica samples with various surface treatments and compare them with samples having an optical coating. Mild surface treatments such as washing in detergent or acetone were not found to affect the mechanical loss of flame-drawn fused silica fibers stored in air. However, mechanical contact (with steel calipers) significantly increased the loss. The application of a high-reflective optical coating of the type used for the LIGO test masses was found to greatly increase the mechanical loss of commercially polished fused silica microscope slides. We discuss the implications for the noise budget of interferometers. .

  10. Charging of a Fused Silica Optic by an Electrostatic Drive

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Colin; Ugolini, Dennis

    2012-10-01

    Gravitational-wave interferometers with suspended optics may use an electrostatic drive (ESD) as a position fine adjust. An ESD is an electrode pattern printed onto a reaction mass with alternating positive and negative voltages. According to measurements at Moscow State University (MSU), the ESD contributes displacement noise by redistributing charge on the optic. We sought to verify the MSU result by measuring the induced charge distribution from an ESD with a Kelvin capacitive probe. A fused silica optic was exposed to an ESD and then moved via a motorized translation stage to the probe for measurement at high vacuum (10-5 torr). Calibration with a known voltage source determined a sensitivity 1V = 6x10-12 C/cm^2. A voltage of ± 600V was applied to the electrodes for a period of one week, then shut off for one week, and reversed for another week. The charging rate was found to be 7x10-15 C/cm^2/hr, fourteen times slower than the MSU result. The decay time constant found was 3700 ± 900 hours, about 3 times faster than the MSU result.

  11. Shock-wave equation-of-state measurements in fused silica up to 1600 GPa

    DOE PAGES

    McCoy, C. A.; Gregor, M. C.; Polsin, D. N.; Fratanduono, D. E.; Celliers, P. M.; Boehly, T. R.; Meyerhofer, D. D.

    2016-06-02

    The properties of silica are important to geophysical and high-pressure equation of state research. The most prevalent crystalline form, α-quartz, has been extensively studied to TPa pressures. Recent experiments with amorphous silica, commonly referred to as fused silica, provided Hugoniot and reflectivity data up to 630 GPa using magnetically-driven aluminum impactors. This article presents measurements of the fused silica Hugoniot over the range from 200 to 1600 GPa using laser-driven shocks with a quartz standard. These results extend the measured Hugoniot of fused silica to higher pressures, but more importantly, in the 200-600 GPa range, the data are very goodmore » agreement with those obtained with a different driver and standard material. As a result, a new shock velocity-particle velocity relation is derived to fit the experimental data.« less

  12. Modeling Wet Chemical Etching of Surface Flaws on Fused Silica

    SciTech Connect

    Feit, M D; Suratwala, T I; Wong, L L; Steele, W A; Miller, P E; Bude, J D

    2009-10-28

    Fluoride-based wet chemical etching of fused silica optical components is useful to open up surface fractures for diagnostic purposes, to create surface topology, and as a possible mitigation technique to remove damaged material. To optimize the usefulness of etching , it is important to understand how the morphology of etched features changes as a function of the amount of material removed. In this study, we present two geometric etch models that describe the surface topology evolution as a function of the amount etched. The first model, referred to as the finite-difference etch model, represents the surface as an array of points in space where at each time-step the points move normal to the local surface. The second model, referred to as the surface area-volume model, more globally describes the surface evolution relating the volume of material removed to the exposed surface area. These etch models predict growth and coalescence of surface fractures such as those observed on scratches and ground surfaces. For typical surface fractures, simulations show that the transverse growth of the cracks at long etch times scales with the square root of etch time or the net material removed in agreement with experiment. The finite-difference etch model has also been applied to more complex structures such as the etching of a CO{sub 2} laser-mitigated laser damage site. The results indicate that etching has little effect on the initial morphology of this site implying little change in downstream scatter and modulation characteristics upon exposure to subsequent high fluence laser light. In the second part of the study, the geometric etch model is expanded to include fluid dynamics and mass transport. This later model serves as a foundation for understanding related processes such as the possibility of redeposition of etch reaction products during the etching, rinsing or drying processes.

  13. Reaction ion etching process for improving laser damage resistance of fused silica optical surface.

    PubMed

    Sun, Laixi; Liu, Hongjie; Huang, Jin; Ye, Xin; Xia, Handing; Li, Qingzhi; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2016-01-11

    Laser induced damage of fused silica optics occurs primarily on optical surface or subsurface resulting from various defects produced during polishing/grinding process. Many new kinds of surface treatment processes are explored to remove or control the defects on fused silica surface. In this study, we report a new application of reaction ion etching (RIE)-based surface treatment process for manufacture of high quality fused silica optics. The influence of RIE processes on laser damage resistance as a function of etching depth and the evolution of typical defects which are associated with laser damage performance were investigated. The results show that the impurity element defects and subsurface damage on the samples surface were efficiently removed and prevented. Pure silica surface with relatively single-stable stoichiometry and low carbon atomic concentration was created during the etching. The laser damage resistance of the etched samples increased dramatically. The increase of roughness and ODC point defect with deeper etching are believed to be the main factors to limit further increase of the damage resistance of fused silica. The study is expected to contribute to the development of fused silica optics with high resistance to laser induced degradation in the future. PMID:26832251

  14. Effect of Sintering Temperature on the Properties of Fused Silica Ceramics Prepared by Gelcasting

    NASA Astrophysics Data System (ADS)

    Wan, Wei; Huang, Chun-e.; Yang, Jian; Zeng, Jinzhen; Qiu, Tai

    2014-07-01

    Fused silica ceramics were fabricated by gelcasting, by use of a low-toxicity N' N-dimethylacrylamide gel system, and had excellent properties compared with those obtained by use of the low-toxicity 2-hydroxyethyl methacrylate and toxic acrylamide systems. The effect of sintering temperature on the microstructure, mechanical and dielectric properties, and thermal shock resistance of the fused silica ceramics was investigated. The results showed that sintering temperature has a critical effect. Use of an appropriate sintering temperature will promote densification and improve the strength, thermal shock resistance, and dielectric properties of fused silica ceramics. However, excessively high sintering temperature will greatly facilitate crystallization of amorphous silica and result in more cristobalite in the sample, which will cause deterioration of these properties. Fused silica ceramics sintered at 1275°C have the maximum flexural strength, as high as 81.32 MPa, but, simultaneously, a high coefficient of linear expansion (2.56 × 10-6/K at 800°C) and dramatically reduced residual flexural strength after thermal shock (600°C). Fused silica ceramics sintered at 1250°C have excellent properties, relatively high and similar flexural strength before (67.43 MPa) and after thermal shock (65.45 MPa), a dielectric constant of 3.34, and the lowest dielectric loss of 1.20 × 10-3 (at 1 MHz).

  15. Photothermal microscopic studies of surface and subsurface defects on fused silica at 355nm

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Dong, Jingtao; Zhang, Qi; Wu, Zhouling

    2014-10-01

    It is believed that surface and subsurface defects formed during standard grinding and polishing processes are mainly responsible for laser induced damage in fused silica. The correlation between the laser damage susceptibility and absorption property of these defects has not been totally understood. In this paper, we present the characterization of surface and subsurface defects of fused silica by measuring their absorption properties based on a photothermal technique at 355 nm. The photothermal microscopic imaging reveals that the surface/subsurface absorption defects in fused silica can be identified. In addition, a 3D photothermal imaging of a laser damage site on the silica is also obtained. Our results demonstrate that photothermal microscopy is a powerful tool for defect characterization of optical materials for high power laser applications.

  16. Material removal and surface figure during pad polishing of fused silica

    SciTech Connect

    Suratwala, T I; Feit, M D; Steele, W A

    2009-05-04

    The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the applied loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: (1) a moment caused by a pivot point and interface friction forces; (2) viscoelastic relaxation of the polyurethane lap; and (3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then combined to form a spatial and temporal Preston model & code for material removal (called Surface Figure or SurF{copyright}). The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner.

  17. High Numerical Aperture Silica Core Fibers For Biosensor Applications

    NASA Astrophysics Data System (ADS)

    Skutnik, B. J.; Brucker, C. T.; Clarkin, J. P.

    1988-06-01

    has a high numerical aperture, a hard cladding, and a pure silica core is called High NA, HCS* fiber.

  18. Optical transmittance of fused silica at elevated temperatures during high energy electron bombardment.

    NASA Technical Reports Server (NTRS)

    Smith, A. B.

    1971-01-01

    An experimental determination of the optical transmission of Corning 7940 UV and Suprasil I fused silica has been made. The LeRC dynamitron provided the equivalent ionizing radiation and high temperature that the transparent gas divider of an operating nuclear light bulb engine would experience. The irradiation induced absorption was measured at 2150 A, 2700 A, and 4500 A. The length of the irradiations were sufficient so that an equilibrium between radiation induced coloration and high temperature annealing was reached. The experimental results indicate a significant optical absorption, particularly at the shorter wavelength, which would make the use of fused silica in this concept questionable.

  19. Metallic-like photoluminescence and absorption in fused silica surface flaws

    SciTech Connect

    Laurence, T A; Bude, J D; Shen, N; Feldman, T; Miller, P; Steele, W A; Suratwala, T

    2008-09-11

    Using high-sensitivity confocal time-resolved photoluminescence (PL) techniques, we report an ultra-fast PL (40ps-5ns) from impurity-free surface flaws on fused silica, including polished, indented or fractured surfaces of fused silica, and from laser-heated evaporation pits. This PL is excited by the single photon absorption of sub-band gap light, and is especially bright in fractures. Regions which exhibit this PL are strongly absorptive well below the band gap, as evidenced by a propensity to damage with 3.5eV ns-scale laser pulses.

  20. Development of a Process Model for CO(2) Laser Mitigation of Damage Growth in Fused Silica

    SciTech Connect

    Feit, M D; Rubenchik, A M; Boley, C; Rotter, M D

    2003-11-01

    A numerical model of CO{sub 2} laser mitigation of damage growth in fused silica has been constructed that accounts for laser energy absorption, heat conduction, radiation transport, evaporation of fused silica and thermally induced stresses. This model will be used to understand scaling issues and effects of pulse and beam shapes on material removal, temperatures reached and stresses generated. Initial calculations show good agreement of simulated and measured material removal. The model has also been applied to LG-770 glass as a prototype red blocker material.

  1. Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2015-11-01

    In this work, we introduce an optimum ICP etching technique that successfully removes the subsurface damage (SSD) layer of fused silica without causing plasma induced surface damage (PISD) or lateral etching of SSD. As one of the commonest PISD initiators, metal contamination from reactor chamber is prevented by employing a simple isolation device. Based on this device, a unique low-density pitting damage is discovered and subsequently eliminated by optimizing the etching parameters. Meanwhile etching anisotropy also improves a lot, thus preventing the lateral etching of SSD. Using this proposed technique, SSD layer of fused silica is successfully removed with a surface roughness of 0.23 nm.

  2. Electron beam initiated grafting of methacryloxypropyl-trimethoxysilane to fused silica glass

    NASA Astrophysics Data System (ADS)

    Shmykov, A. Yu.; Mjakin, S. V.; Vasiljeva, I. V.; Filippov, V. N.; Vylegzhanina, M. E.; Sukhanova, T. E.; Kurochkin, V. E.

    2009-04-01

    The effect of electron beam pretreatment of fused silica glass upon its surface functional composition and possibility for subsequent immobilization of methacryloxypropyl-trimethoxysilane (MOPTMS) layer is studied using FTIR spectroscopy and adsorption of acid-base indicators. The content of Brensted acidic centers (silanol groups) on the irradiated fused silica surface is found to follow an "oscillatory" trend as function of the absorbed dose below 100 kGy at electron beam processing due to the alternating reactions of hydroxylation (probably as a result of Si-O-Si bond disruption and interaction with radiolyzed physically adsorbed water) and thermal dehydration/dehydroxylation at radiation heating. The best conditions for MOPTMS layer formation are based on the increased acidity of both silica surface (formation of acidic hydroxyls) and the reaction medium (MOPTMS deposition from acetic acid solution). The optimal value of absorbed dose at electron beam processing providing the highest efficiency of MOPTMS grafting is 50 kGy at accelerated electron energy 700 keV. Electron beam pretreatment of fused silica surface is shown to provide more efficient MOPTMS immobilization in comparison with conventional chemical and thermal grafting procedures. The obtained results are promising for the enhancement of the processes for the production of fused silica glass capillaries for electrochromatography and electrophoresis at the stage of an intermediate bifunctional layer formation required for the subsequent deposition of specific polymer coatings.

  3. The effect of lattice temperature on surface damage in fused silica optics

    SciTech Connect

    Bude, J; Guss, G; Matthews, M; Spaeth, M L

    2007-10-31

    We examine the effect of lattice temperature on the probability of surface damage initiation for 355nm, 7ns laser pulses for surface temperatures below the melting point to temperatures well above the melting point of fused silica. At sufficiently high surface temperatures, damage thresholds are dramatically reduced. Our results indicate a temperature activated absorption and support the idea of a lattice temperature threshold of surface damage. From these measurements, we estimate the temperature dependent absorption coefficient for intrinsic silica.

  4. Study of laser interaction with aluminum contaminant on fused silica

    NASA Astrophysics Data System (ADS)

    Palmier, S.; Tovena, I.; Lamaignère, L.; Rullier, J. L.; Capoulade, J.; Bertussi, B.; Natoli, J. Y.; Servant, L.

    2005-12-01

    One of the major issues met in the operating of high power lasers concerns the cleanliness of laser components. In this context, in order to assess laser-induced damage in presence of metallic particulate contamination, we study the behaviour of aluminum on a silica substrate. Model samples containing calibrated aluminum square dots of 50 x 50 μ2 have been deposited by photolithography on a silica substrate. The sample was irradiated by a Nd:YAG laser at 1064 nm with different fluences and also different numbers of shots on each dot. Then the initial aluminum dot zone and the surrounding silica were analyzed using Nomarski microscopy, profilometry and photothermal microscopy. Laser fluence is revealed to be a very important parameter for the behaviour of aluminum dots. For example, it is possible to find a fluence of irradiation where aluminum dots are blown off the substrate and only small modifications occur to silica. In this case, increasing the number of shots doesn't significantly affect the silica surface.

  5. Residual gas pressures in sealed fused silica glass ampoules

    NASA Astrophysics Data System (ADS)

    Palosz, Witold; Wiedemeier, Heribert

    1993-07-01

    The residual gas pressures in sealed and annealed ampoules made from silica glass have been determined using different methods including a McLeod gauge. It has been found that the gas build-up in the ampoule is mainly the result of the ampoule heat treatment; the amount of gas released and trapped during sealing the ampoule under vacuum is much less. The pressures in the ampoules after heat treatment range from a few mTorr to a few Torr, depending on the silica glass and on the outgassing and annealing procedures.

  6. Yb/Al-codoped fused-silica planar-waveguide amplifier

    NASA Astrophysics Data System (ADS)

    Atar, Gil; Eger, David; Bruner, Ariel; Sfez, Bruno; Ruschin, Shlomo

    2016-05-01

    We report an Yb/Al-codoped fused silica planar waveguide amplifier with <0.2 dB/cm passive loss and 0.6 dB/cm gain, featuring a high damage threshold (>0.1 GW/cm2) and a relatively large core (20 μm thick). Waveguide fabrication is based on a novel silica-on-silica technology combining modified-chemical-vapor deposition and a high temperature CO2 laser treatment for making high-power photonic devices.

  7. Crack Arrest and Stress Dependence of Laser-Induced Surface Damage in Fused-Silica and Borosilicate Glass

    NASA Astrophysics Data System (ADS)

    Dahmani, Faiz; Lambropoulos, John C.; Schmid, Ansgar W.; Papernov, Semyon; Burns, Stephen J.

    1999-11-01

    Results of experiments on stress-inhibited laser-driven crack growth and stress-delayed laser-damage initiation thresholds in fused silica, borosilicate glass (BK-7), and cleaved bulk silica are presented. A numerical model is developed to explain the crack arrest in fused silica. Good agreement is obtained between the model and a finite-element code. The crack arrest is demonstrated to be the result of the breaking of a hoop-stress symmetry that is responsible for crack propagation in fused silica.

  8. Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity

    SciTech Connect

    Kumada, Takayuki Akagi, Hiroshi; Itakura, Ryuji; Otobe, Tomohito; Yokoyama, Atsushi

    2014-03-14

    Femtosecond laser ablation dynamics of fused silica is examined via time-resolved reflectivity measurements. After optical breakdown was caused by irradiation of a pump pulse with fluence F{sub pump} = 3.3–14.9 J/cm{sup 2}, the reflectivity oscillated with a period of 63 ± 2 ps for a wavelength λ = 795 nm. The period was reduced by half for λ = 398 nm. We ascribe the oscillation to the interference between the probe pulses reflected from the front and rear surfaces of the photo-excited molten fused silica layer. The time-resolved reflectivity agrees closely with a model comprising a photo-excited layer which expands due to the formation of voids, and then separates into two parts, one of which is left on the sample surface and the other separated as a molten thin layer from the surface by the spallation mechanism. Such oscillations were not observed in the reflectivity of soda-lime glass. Whether the reflectivity oscillates or not probably depends on the layer viscosity while in a molten state. Since viscosity of the molten fused silica is several orders of magnitude higher than that of the soda-lime glass at the same temperature, fused silica forms a molten thin layer that reflects the probe pulse, whereas the soda-lime glass is fragmented into clusters.

  9. Bulk damage and absorption in fused silica due to high-power laser applications

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  10. Multi-Length Scale Analysis of the Effect of Fused-Silica Pre-shocking on its Tendency for Devitrification

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-03-01

    Recent studies have suggested that impact-induced devitrification of fused silica, or more specifically formation of high-density stishovite, can significantly improve ballistic-penetration resistance of fused silica, the material which is used in transparent armor. The studies have also shown that in order for stishovite to form during a ballistic impact event, very high projectile kinetic energy normalized by the projectile/fused-silica target-plate contact area must accompany such an event. Otherwise fused-silica devitrification, if taking place, does not substantially improve the material ballistic-penetration resistance. In the present work, all-atom molecular-level computations are carried out in order to establish if pre-shocking of fused-silica target-plates (to form stishovite) and subsequent unloading (to revert stishovite to the material amorphous structure) can increase fused silica's propensity for stishovite formation during a ballistic impact. Towards that end, molecular-level computational procedures are developed to simulate both the pre-shocking treatment of the fused-silica target-plate and its subsequent impact by a solid right-circular cylindrical projectile. The results obtained clearly revealed that when strong-enough shockwaves are used in the fused-silica target-plate pre-shocking procedure, the propensity of fused silica for stishovite formation during the subsequent ballistic impact is increased, as is the associated ballistic-penetration resistance. To rationalize these findings, a detailed post-processing microstructural analysis of the pre-shocked material is employed. The results obtained suggest that fused silica pre-shocked with shockwaves of sufficient strength retain some memory/embryos of stishovite, and these embryos facilitate stishovite formation during the subsequent ballistic impact.

  11. Ionoluminescence of fused silica under swift ion irradiation

    NASA Astrophysics Data System (ADS)

    Saavedra, R.; Jiménez-Rey, D.; Martin, P.; Vila, R.

    2016-09-01

    Ion beam induced luminescence spectra have been in-situ recorded during He+ (2.5 MeV), O4+ (13.5 MeV) and Si4+ (24.4 MeV) irradiations for three vitreous silica grades with different OH content (KU1, KS-4V and Infrasil 301). Remarkable changes in the ionoluminescence spectra of the three silica grades were observed for low ion fluences. He+ irradiated samples exhibited higher luminescence than equivalent ones irradiated with heavier O4+ and Si4+ ions. KU1 samples with the highest OH content showed the lowest blue luminescence. Blue luminescence maximum during ion irradiations with O4+ and Si4+ ions is correlated with structural changes.

  12. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  13. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  14. The Effect of High-Pressure Devitrification and Densification on Ballistic-Penetration Resistance of Fused Silica

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Avuthu, V.; Snipes, J. S.; Ramaswami, S.; Galgalikar, R.

    2015-12-01

    Recent experimental and molecular-level computational analyses have indicated that fused silica, when subjected to pressures of several tens of GPa, can experience irreversible devitrification and densification. Such changes in the fused-silica molecular-level structure are associated with absorption and/or dissipation of the strain energy acquired by fused silica during high-pressure compression. This finding may have important practical consequences in applications for fused silica such as windshields and windows of military vehicles, portholes in ships, ground vehicles, spacecraft, etc. In the present work, our prior molecular-level computational results pertaining to the response of fused silica to high pressures (and shear stresses) are used to enrich a continuum-type constitutive model (that is, the so-called Johnson-Holmquist-2, JH2, model) for this material. Since the aforementioned devitrification and permanent densification processes modify the response of fused silica to the pressure as well as to the deviatoric part of the stress, changes had to be made in both the JH2 equation of state and the strength model. To assess the potential improvements in respect to the ballistic-penetration resistance of this material brought about by the fused-silica devitrification and permanent densification processes, a series of transient non-linear dynamics finite-element analyses of the transverse impact of a fused-silica test plate with a solid right-circular cylindrical steel projectile were conducted. The results obtained revealed that, provided the projectile incident velocity and, hence, the attendant pressure, is sufficiently high, fused silica can undergo impact-induced devitrification, which improves its ballistic-penetration resistance.

  15. High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography

    SciTech Connect

    Guss, G; Bass, I; Hackel, R; Mailhiot, C; Demos, S G

    2007-10-30

    In this work, we present the first successful demonstration of a non-contact technique to precisely measure the 3D spatial characteristics of laser induced surface damage sites in fused silica for large aperture laser systems by employing Optical Coherence Tomography (OCT). What makes OCT particularly interesting in the characterization of optical materials for large aperture laser systems is that its axial resolution can be maintained with working distances greater than 5 cm, whether viewing through air or through the bulk of thick optics. Specifically, when mitigating surface damage sites against further growth by CO{sub 2} laser evaporation of the damage, it is important to know the depth of subsurface cracks below the damage site. These cracks are typically obscured by the damage rubble when imaged from above the surface. The results to date clearly demonstrate that OCT is a unique and valuable tool for characterizing damage sites before and after the mitigation process. We also demonstrated its utility as an in-situ diagnostic to guide and optimize our process when mitigating surface damage sites on large, high-value optics.

  16. Measurement of refractive index dispersion of a fused silica plate using Fabry-Perot interference.

    PubMed

    Lee, Choonghwan; Choi, Heejoo; Jin, Jonghan; Cha, Myoungsik

    2016-08-10

    We used Fabry-Perot interferometry to measure the refractive indices of a fused silica plate at four different wavelengths ranging from 544 to 1550 nm, giving a detailed analysis on the uncertainty of this experimental method. Because of a small expanded uncertainty of 2.7×10-5(k=1.96) obtained using the experimental method, it was possible to make corrections to the existing Sellmeier formula [J. Opt. Soc. Am.55, 1205 (1965)JOSAAH0030-394110.1364/JOSA.55.001205] for our fused silica sample. The corrected Sellmeier formula resulted in a group index value larger than that evaluated using the Malitson's Sellmeier formula by 3×10-4. We verified this by comparing it with the group index measured with spectral domain interferometry at 1530 nm. PMID:27534471

  17. Fracture Induced Sub-Band Absorption as a Precursor to Optical Damage on Fused Silica Surfaces

    SciTech Connect

    Miller, P E; Bude, J D; Suratwala, T I; Shen, N; Laurence, T A; Steele, W A; Menapace, J; Feit, M D; Wong, L L

    2010-03-05

    The optical damage threshold of indentation induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damaged testing, SEM, optical, and photoluminescence microscopy. Localized polishing, chemical etching, and the control of indentation morphology were used to isolate the structural features which limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355nm, 3ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35J/cm{sup 2}. Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.

  18. Controllable damping of high-Q violin modes in fused silica suspension fibers

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Mescheriakov, S. D.; Tokmakov, K. V.; Mitrofanov, V. P.

    2010-01-01

    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 108. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  19. Studies on transmitted beam modulation effect from laser induced damage on fused silica optics.

    PubMed

    Zheng, Yi; Ma, Ping; Li, Haibo; Liu, Zhichao; Chen, Songlin

    2013-07-15

    UV laser induced damage (LID) on exit surface of fused silica could cause modulation effect to transmitted beam and further influence downstream propagation properties. This paper presents our experimental and analytical studies on this topic. In experiment, a series of measurement instruments are applied, including beam profiler, interferometer, microscope, and optical coherent tomography (OCT). Creating and characterizing of LID on fused silica sample have been implemented. Morphological features are studied based on their particular modulation effects on transmitted beam. In theoretical investigation, analytical modeling and numerical simulation are performed. Modulation effects from amplitude, phase, and size factors are analyzed respectively. Furthermore, we have novelly designed a simplified polygon model to simulate actual damage site with multiform modulation features, and the simulation results demonstrate that the modeling is usable and representative.

  20. Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica

    NASA Astrophysics Data System (ADS)

    Liang, Yang; Xia, Xiang; Xin-Xiang, Miao; Li, Li; Xiao-Dong, Yuan; Zhong-Hua, Yan; Guo-Rui, Zhou; Hai-Bing, Lv; Wan-Guo, Zheng; Xiao-Tao, Zu

    2016-01-01

    Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field modulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (ɛr), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically. Project supported by the National Natural Science Foundation of China (Grant No. 61178018) and the Ph.D. Funding Support Program of Education Ministry of China (Grant No. 20110185110007).

  1. Measurement of refractive index dispersion of a fused silica plate using Fabry-Perot interference.

    PubMed

    Lee, Choonghwan; Choi, Heejoo; Jin, Jonghan; Cha, Myoungsik

    2016-08-10

    We used Fabry-Perot interferometry to measure the refractive indices of a fused silica plate at four different wavelengths ranging from 544 to 1550 nm, giving a detailed analysis on the uncertainty of this experimental method. Because of a small expanded uncertainty of 2.7×10-5(k=1.96) obtained using the experimental method, it was possible to make corrections to the existing Sellmeier formula [J. Opt. Soc. Am.55, 1205 (1965)JOSAAH0030-394110.1364/JOSA.55.001205] for our fused silica sample. The corrected Sellmeier formula resulted in a group index value larger than that evaluated using the Malitson's Sellmeier formula by 3×10-4. We verified this by comparing it with the group index measured with spectral domain interferometry at 1530 nm.

  2. UV-induced modification of fused silica: Insights from ReaxFF-based molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Du, Jincheng; Zu, Xiaotao; Han, Wei; Yuan, Xiaodong; Zheng, Wanguo

    2016-09-01

    Atomic structural modification and defect processes of fused silica resulting from UV-laser irradiation are studied by a combination of molecular dynamics (MD) simulations and the Reactive Force Field (ReaxFF). Bond state transitions by laser excitation are modeled as the result of localized recoils during energy deposition. Computations of pair distribution functions and bond angle distributions of the irradiated structure reveal that fused silica undergoes significant changes in terms of Si-O, Si-Si pair distances and Si-O-Si bond angles, which are attributed to the formation of silicon and oxygen coordination defects. It is found that nonbridging oxygen is responsible for the decreased Si-O bond length, while laser-induced five-coordinated silicon leads to small Si-O-Si bond angles in 2-membered rings.

  3. Theory of absorption rate of carriers in fused silica under intense laser irradiation

    SciTech Connect

    Deng, Hongxiang; Xiang, Xia; Zheng, WG; Yuan, XD; Wu, SY; Jiang, XD; Gao, Fei; Zu, Xiaotao T.; Sun, Kai

    2010-11-15

    A quantum non-perturbation theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the Non-perturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on TW / cm2 intensity laser.

  4. Laser-induced periodic annular surface structures on fused silica surface

    SciTech Connect

    Liu, Yi; Brelet, Yohann; Forestier, Benjamin; Houard, Aurelien; Yu, Linwei; Deng, Yongkai; Jiang, Hongbing

    2013-06-24

    We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.

  5. Comparison of laser-based mitigation of fused silica surface damage using mid- versus far-infrared lasers

    SciTech Connect

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2009-12-16

    Laser induced growth of optical damage can limit component lifetime and therefore operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, they quantitatively compare the effectiveness and efficiency of mid-IR (4.6 {micro}m) versus far-IR (10.6 {micro}m) lasers in mitigating damage growth on fused silica surfaces. The non-linear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient {alpha}(T) at {lambda} = 4.6 {micro}m, while far-IR laser heating is well-described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on infrared radiometry, as well as sub-surface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally-ablative conditions. Based on their FOM, they show that for cracks up to at least 500 {micro}m in depth, mitigation with a 4.6 {micro}m mid-IR laser is more efficient than mitigation with a 10.6 {micro}m far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 {micro}m in depth.

  6. The effect of HF etching on the surface quality and figure of fused silica optics

    NASA Astrophysics Data System (ADS)

    Xu, Jiafeng; Xu, Xueke; Wei, Chaoyang; Gao, Wenlan; Yang, Minghong; Shao, Jianda; Liu, Shijie

    2015-08-01

    The effect of deep HF etching on the surface quality and figure of fused silica optics has been investigated systematically. Fused silica samples (100 mm in diameter x 10 mm thick) were manufactured using the conventional grinding and polishing process. These processed samples are etched with different removal depth. Initially, the surface quality of fused silica samples is characterized in terms of surface roughness and surface defects. Many digs not more than 1μm deep are emerged which originates from the micron grinding cracks and crack pits. These digs worsened the surface roughness and frosted the sample. While submillimeter subsurface damage exposed through etching appear as sparkling dots under the high power lamp. The average total length of millimeter scratches on single surfaces is over 200 mm. Not all millimeter scratches could be exposed until removal depth of up to 2 μm. Finally, the surface figure behavior during deep etching has also been figured out. Etching on the edge of the upper surface of samples placed horizontally went faster than on the inside parts. The surface of samples placed vertically assumed a more complicated removal distribution, which can be both explained in terms of "fringe tip effect". For the change of surface figure PV, the initial surface figure feature plays an important role as well as the etching removal distribution.

  7. Laser-induced circular nanostructures in fused silica assisted by a self-assembling chromium layer

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Klöppel, Michael; Frost, Frank; Ehrhardt, Martin; Zimmer, Klaus; Li, Pu

    2013-09-01

    Nanostructures have a widespread field of applications and are of growing industrial importance. However, the economic fabrication of nanostructures poses a critical challenge. In this work, a fundamental research of a laser-induced surface nanostructuring of fused silica using the dynamic self-assembling structure formation in metal layers is presented. This method may offer promising opportunities for nanostructuring of dielectrics. This new approach is demonstrated by the formation of randomly distributed concentric nanostructures into fused silica. The irradiation of chromium-covered fused silica samples with a KrF excimer laser results in melting, partial ablation, restructuring, and resolidification of both the metal layer and the dielectric surface. In this way, concentric circular structures into the dielectric were formed with dimensions that can be controlled by the laser fluence Φ and by the pulse number N. The distance of the concentric rings increases with increasing laser fluence. The experimental results were compared with simulated structure dimensions taking into account the heat equation and the Navier-Stokes equation. Despite the currently applied decoupled approach for the simulations, i.e. separating the heat equation and the fluid flow, a good agreement of simulation results with experimental data was achieved.

  8. Precision drilling of fused silica with 157-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus

    2003-07-01

    μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

  9. Single-Molecule Imaging of DNAs with Sticky Ends at Water/Fused Silica Interface

    SciTech Connect

    Isailovic, Slavica

    2005-01-01

    Total internal reflection fluorescence microscopy (TIRFM) was used to study intermolecular interactions of DNAs with unpaired (sticky) ends of different lengths at water/fused silica interface at the single-molecule level. Evanescent field residence time, linear velocity and adsorption/desorption frequency were measured in a microchannel for individual DNA molecules from T7, Lambda, and PSP3 phages at various pH values. The longest residence times and the highest adsorption/desorption frequencies at the constant flow at pH 5.5 were found for PSP3 DNA, followed by lower values for Lambda DNA, and the lowest values for T7 DNA. Since T7, Lambda, and PSP3 DNA molecules contain none, twelve and nineteen unpaired bases, respectively, it was concluded that the affinity of DNAs for the surface increases with the length of the sticky ends. This confirms that hydrophobic and hydrogen-bonding interactions between sticky ends and fused-silica surface are driving forces for DNA adsorption at the fused-silica surface. Described single-molecule methodology and results therein can be valuable for investigation of interactions in liquid chromatography, as well as for design of DNA hybridization sensors and drug delivery systems.

  10. Ultradeep fused silica glass etching with an HF-resistant photosensitive resist for optical imaging applications

    NASA Astrophysics Data System (ADS)

    Nagarah, John M.; Wagenaar, Daniel A.

    2012-03-01

    Microfluidic and optical sensing platforms are commonly fabricated in glass and fused silica (quartz) because of their optical transparency and chemical inertness. Hydrofluoric acid (HF) solutions are the etching media of choice for deep etching into silicon dioxide substrates, but processing schemes become complicated and expensive for etching times greater than 1 h due to the aggressiveness of HF migration through most masking materials. We present here etching into fused silica more than 600 µm deep while keeping the substrate free of pits and maintaining a polished etched surface suitable for biological imaging. We utilize an HF-resistant photosensitive resist (HFPR) which is not attacked in 49% HF solution. Etching characteristics are compared for substrates masked with the HFPR alone and the HFPR patterned on top of Cr/Au and polysilicon masks. We used this etching process to fabricate suspended fused silica membranes, 8-16 µm thick, and show that imaging through the membranes does not negatively affect image quality of fluorescence microscopy of biological tissue. Finally, we realize small through-pore arrays in the suspended membranes. Such devices will have applications in planar electrophysiology platforms, especially where optical imaging is required.

  11. Laser induced damage characteristics of fused silica optics treated by wet chemical processes

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Li, Yaguo; Yuan, Zhigang; Wang, Jian; Yang, Wei; Xu, Qiao

    2015-12-01

    Laser damage to fused silica continues a main issue of high-power/energy laser systems. HF-based etching technique is known to mitigate laser damage initiation and growth under UV laser illumination. The responses of material surface properties, especially surface damage characteristics to various etching parameters are questioned in the article. Fused silica was submerged into HF-based etchants (HF, NH4F:HF, HF:HNO3 with diverse concentrations) in an attempt to improve its laser-induced damage threshold (LIDT). The results have evidenced that the LIDT relies on, to a greater degree, the etched thickness and the etchant composition. The secondary ion mass spectrometer (SIMS) testing was aimed at relating the LIDT to certain metallic contaminant; however, the LIDT exhibits weak direct correlation with Ce, La, Ca, Fe contaminants. The surfaces with the highest LIDT are, more often than not, such that the surface roughness is <10 nm RMS and few metallic impurities are present. In addition, we tried to link the LIDT to the hardness and Young's modulus of fused silica, but no testing data show that there exists direct dependence of the LIDT on hardness and Young's modulus, which are actually independent of the removed thickness.

  12. Improving UV laser damage threshold of fused silica optics by wet chemical etching technique

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Li, Yaguo; Yuan, Zhigang; Wang, Jian; Xu, Qiao; Yang, Wei

    2015-07-01

    Fused silica is widely used in high-power laser systems because of its good optical performance and mechanical properties. However, laser damage initiation and growth induced by 355 nm laser illumination in optical elements have become a bottleneck in the development of high energy laser system. In order to improve the laser-induced damage threshold (LIDT), the fused silica optics were treated by two types of HF-based etchants: 1.7%wt. HF acid and buffer oxide etchant (BOE: the mixture of 0.4%wt. HF and 12%wt. NH4F), respectively, for varied etching time. Damage testing shows that both the etchants increase the damage threshold at a certain depth of material removal, but further removal of material lowers the LIDT markedly. The etching rates of both etchants keep steady in our processing procedure, ~58 μg/min and ~85 μg/min, respectively. The micro-surface roughness (RMS and PV) increases as etching time extends. The hardness (H) and Young's modulus (E) of the fused silica etched for diverse time, measured by nano-indenter, show no solid evidence that LIDT can be related to hardness or Young's modulus.

  13. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    SciTech Connect

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surface quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.

  14. Recent progress in bound-abrasive polishing of fused silica glass

    NASA Astrophysics Data System (ADS)

    Li, Yaguo

    2015-10-01

    The progress in the polishing of glass, in particular fused silica glass, with bound-abrasive is reviewed in the paper. The technique is rather successful in some respects, e.g. material removal rate, surface roughness, flatness of substrates. The surface roughness can be as low as <0.5nm (Ra) comparable with loose pad/pitch polishing for fused silica. On the other hand, the material removal rate is so high that the ground surface can be polished to specular (Ra:1~2nm) within a quarter of an hour. The technique can be adapted to polish plane, spherical, aspheric surfaces and even free-form surface. The technique is next to free of subsurface damage after slightly wet chemical etching. Because ceria is utilized as abrasives and epoxy resin as binding materials softer than or comparable to fused silica, the shape of the polishing tools is easy to be shaped and dressed and need no truing. The technique may provide a potential solution to fast polishing of glass.

  15. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror

    SciTech Connect

    Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.

    2012-01-15

    Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.

  16. Laser-welded fused silica substrates using a luminescent fresnoite-based sealant

    NASA Astrophysics Data System (ADS)

    de Pablos-Martin, A.; Benndorf, G.; Tismer, S.; Mittag, M.; Cismak, A.; Lorenz, M.; Grundmann, M.; Höche, Th.

    2016-06-01

    The laser welding of two fused silica substrates using a fresnoitic glass thin film as a sealant by irradiation with a ns laser is studied. Two different laser parameter sets were compared in terms of bond quality, which include two different laser beam trajectories: linear and wobble (circular) trajectory. The composition of the glass sealant changes with the course of the laser welding, incorporating silica from the substrates. After joining, the bonded samples were exposed to UV light and a very intense emission in the blue spectral range is observed by naked eye, which is due to the crystallization of the fresnoite glass upon the laser irradiation. EDX analysis confirms the crystallization of fresnoite, together with a great enrichment in silica. The formation of a eutectic between both is very plausible. Bond quality and bond strength were evaluated by scanning acoustic microscopy (SAM) and tensile test, which results in a tensile stress of 7 MPa.

  17. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material

    USGS Publications Warehouse

    Chou, I.-Ming; Song, Y.; Burruss, R.C.

    2008-01-01

    Considerable advances in our understanding of physicochemical properties of geological fluids and their roles in many geological processes have been achieved by the use of synthetic fluid inclusions. We have developed a new method to synthesize fluid inclusions containing organic and inorganic material in fused silica capillary tubing. We have used both round (0.3 mm OD and 0.05 or 0.1 mm ID) and square cross-section tubing (0.3 ?? 0.3 mm with 0.05 ?? 0.05 mm or 0.1 ?? 0.1 mm cavities). For microthermometric measurements in a USGS-type heating-cooling stage, sample capsules must be less than 25 mm in length. The square-sectioned capsules have the advantage of providing images without optical distortion. However, the maximum internal pressure (P; about 100 MPa at 22 ??C) and temperature (T; about 500 ??C) maintained by the square-sectioned capsules are less than those held by the round-sectioned capsules (about 300 MPa at room T, and T up to 650 ??C). The fused silica capsules can be applied to a wide range of problems of interest in fluid inclusion and hydrothermal research, such as creating standards for the calibration of thermocouples in heating-cooling stages and frequency shifts in Raman spectrometers. The fused silica capsules can also be used as containers for hydrothermal reactions, especially for organic samples, including individual hydrocarbons, crude oils, and gases, such as cracking of C18H38 between 350 and 400 ??C, isotopic exchanges between C18H38 and D2O and between C19D40 and H2O at similar temperatures. Results of these types of studies provide information on the kinetics of oil cracking and the changes of oil composition under thermal stress. When compared with synthesis of fluid inclusions formed by healing fractures in quartz or other minerals or by overgrowth of quartz at elevated P-T conditions, the new fused-silica method has the following advantages: (1) it is simple; (2) fluid inclusions without the presence of water can be formed; (3

  18. Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis

    SciTech Connect

    Yang, S T; Matthews, M J; Elhadj, S; Draggoo, V G; Bisson, S E

    2009-07-07

    In situ spatial and temporal temperature measurements of pristine fused silica surfaces heated with a 10.6 {micro}m CO{sub 2} laser were obtained using an infrared radiation thermometer based on a Mercury Cadmium Telluride (MCT) camera. Laser spot sizes ranged from 250 {micro}m to 1000 {micro}m diameter with peak axial irradiance levels of 0.13 to 16 kW/cm{sup 2}. For temperatures below 2800K, the measured steady-state surface temperature is observed to rise linearly with both increasing beam size and incident laser irradiance. The effective thermal conductivity estimated over this range was approximately 2W/mK, in good agreement with classical calculations based on phonon heat capacities. Similarly, time-dependent temperature measurements up to 2000K yielded thermal diffusivity values which were close to reported values of 7 x 10{sup -7} m{sup 2}/s. Above {approx}2800K, the fused silica surface temperature asymptotically approaches 3100K as laser power is further increased, consistent with the onset of evaporative heat losses near the silica boiling point. These results show that in the laser heating regime studied here, the T{sup 3} temperature dependent thermal conductivity due to radiation transport can be neglected, but at temperatures above 2800K heat transport due to evaporation must be considered. The thermal transport in fused silica up to 2800K, over a range of conditions, can then be adequately described by a linear diffusive heat equation assuming constant thermal properties.

  19. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-01

    Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  20. CO/sub 2/-laser polishing of fused silica surfaces for increased laser damage resistance at 1. 06. mu. m

    SciTech Connect

    Temple, P.A.; Milam, D.; Lowdermilk, W.H.

    1980-04-03

    Bare fused silica surfaces were prepared by subjecting the mechanically polished surface to a rastered cw CO/sub 2/ laser beam. Analysis shows that this processing causes: (a) removal of a uniform layer of fused silica; and (b) a probable re-fusing or healing of existing subsurface fractures. The fused silica removal rate is found to be a function of the laser intensity and scan rate. These surfaces are seen to have very low scatter and to be very smooth. In addition, they have exhibited entrance surface damage thresholds at 1.06 ..mu..m, and 1 nsec, which are substantially above those seen on the mechanically polished surface. When damage does occur, it tends to be at a few isolated points rather than the general uniform damage seen on the mechanicaly polished part. In addition to the damage results, we will discuss an observational technique used for viewing these surfaces which employs dark-field illumination.

  1. Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics

    NASA Astrophysics Data System (ADS)

    He, Xiang; Zhao, Heng; Wang, Gang; Zhou, Peifan; Ma, Ping

    2016-08-01

    Laser-induced damage in fused silica optics greatly restricts the performances of laser facilities. Gray haze damage, which is always initiated on ceria polished optics, is one of the most important damage morphologies in fused silica optics. In this paper, the laser-induced gray haze damages of four fused silica samples polished with CeO2, Al2O3, ZrO2, and colloidal silica slurries are investigated. Four samples all present gray haze damages with much different damage densities. Then, the polishing-induced contaminant and subsurface damages in four samples are analyzed. The results reveal that the gray haze damages could be initiated on the samples without Ce contaminant and are inclined to show a tight correlation with the shallow subsurface damages.

  2. Growth of laser initiated damage in fused silica at 1053 nm

    SciTech Connect

    Norton, M A; Donohue, E E; Hollingsworth, W G; Feit, M D; Rubenchik, A M; Hackel, R P

    2004-11-10

    The effective lifetime of a laser optic is limited by both laser-induced damage and the subsequent growth of laser initiated damage sites. We have measured the growth rate of laser-induced damage on polished fused silica surfaces in 10 torr of air at 1053 nm at 10 ns. The data shows exponential growth in the lateral size of the damage site with shot number above a threshold fluence. The size of the initial damage influences the threshold for growth. We will compare the growth rates for input and output surface damage. Possible reasons for the observed growth behavior are discussed.

  3. Role of suprathermal electrons during nanosecond laser energy deposit in fused silica

    SciTech Connect

    Grua, P.; Hébert, D.; Lamaignère, L.; Rullier, J.-L.

    2014-08-25

    An accurate description of interaction between a nanosecond laser pulse and a wide band gap dielectric, such as fused silica, requires the understanding of energy deposit induced by temperature changes occurring in the material. In order to identify the fundamental processes involved in laser-matter interaction, we have used a 1D computational model that allows us to describe a wide set of physical mechanisms and intended for comparison with specially designed “1D experiments.” We have pointed out that suprathermal electrons are very likely implicated in heat conduction, and this assumption has allowed the model to reproduce the experiments.

  4. Subsurface mechanical damage during bound abrasive grinding of fused silica glass

    NASA Astrophysics Data System (ADS)

    Blaineau, P.; André, D.; Laheurte, R.; Darnis, P.; Darbois, N.; Cahuc, O.; Neauport, J.

    2015-10-01

    The subsurface damage (SSD) introduced during bound abrasive grinding of fused silica glass was measured using a wet etch technique. Various process parameters and grinding configurations were studied. The relation between the SSD depth, the process parameters and forces applied by the grinding wheel on the sample was investigated and compared to a simulation using a discrete element method to model the grinding interface. The results reveal a relation between the SSD depth and the grinding forces normalized by the abrasive concentration. Regarding the creation of the SSD, numerical simulations indicate that only a small fraction of the largest particles in the diamond wheel are responsible for the depth of the damaged layer.

  5. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica.

    PubMed

    Fernandes, Luís A; Grenier, Jason R; Herman, Peter R; Aitchison, J Stewart; Marques, Paulo V S

    2011-06-20

    Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and -19 dB and -24 dB extinction ratios for the polarization splitting.

  6. Growth of laser damage in fused silica: diameter to depth ratio

    SciTech Connect

    Norton, M A; Adams, J J; Carr, C W; Donohue, E E; Feit, M D; Hackel, R P; Hollingsworth, W G; Jarboe, J A; Matthews, M; Rubenchik, A M; Spaeth, M L

    2007-10-29

    Growth of laser initiated damage plays a major role in determining optics lifetime in high power laser systems. Previous measurements have established that the lateral diameter grows exponentially. Knowledge of the growth of the site in the propagation direction is also important, especially so when considering techniques designed to mitigate damage growth, where it is required to reach all the subsurface damage. In this work, we present data on both the diameter and the depth of a growing exit surface damage sites in fused silica. Measured growth rates with both 351 nm illumination and with combined 351 nm and 1054 nm illumination are discussed.

  7. Dimensional stability of fused silica, Invar, and several ultralow thermal expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.; Norton, M. A.

    1976-01-01

    A method is developed for testing the long-term dimensional stability of an iodine-stabilized He-Ne laser, using a technique whereby thermal expansion coefficients are measured by forming a Fabry-Perot etalon from the sample and monitoring the optical resonant frequencies with tunable sidebands impressed on a laser beam from a frequency-stabilized He-Ne laser. A change of 1 ppm over a 3-yr period on the part of fused silica dimensions and the differential thermal expansion of Invar LR-35 and Super Invar materials are noted. The method is of interest for the metrology of extremely stable structures such as telescopes and optical resonators.

  8. Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation

    SciTech Connect

    Smetanina, E O; Kompanets, V O; Chekalin, Sergei V; Kandidov, V P

    2012-10-31

    We report the results of investigation of femtosecond laser pulse filamentation in fused silica by varying the wavelength in the range from 800 to 2300 nm. It is shown that in the case of the anomalous group-velocity dispersion, a sequence of 'light bullets' with a high spatial and temporal localisation of the light field is formed along the filament. The relation of the formation and propagation of light bullets with the formation of an isolated anti-Stokes wing of the supercontinuum spectrum is established. (nonlinear optical phenomena)

  9. Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica.

    PubMed

    Dupouy, Paul-Edouard; Büchner, Matthias; Paquier, Philippe; Trénec, Gérard; Vigué, Jacques

    2010-02-01

    The light reflected by an uncoated Fabry-Perot etalon presents dark rings which give a very sensitive measurement of the variations of the return optical path in the etalon. By measuring the diameters of these rings as a function of the etalon temperature T, we get a sensitive measurement of the derivative dn/dT of the index of refraction n. We have made this experiment with a fused silica etalon and we have achieved a 2% relative uncertainty on dn/dT, comparable to the uncertainty of the best experiments. PMID:20119019

  10. Thermal poling induced second-order nonlinearity in femtosecond- laser-modified fused silica

    SciTech Connect

    An Honglin; Fleming, Simon; McMillen, Benjamin W.; Chen, Kevin P.; Snoke, David

    2008-08-11

    Thermal poling was utilized to induce second-order nonlinearity in regions of fused silica modified by 771 nm femtosecond laser pulses. With second-harmonic microscopy, it was found that the nonlinearity in the laser-modified region was much lower than that in nonmodified regions. This is attributed to a more rigid glass network after irradiation by the femtosecond laser pulses and/or lack of mobile alkali ions. Measurement of the distribution of chemical elements in the femtosecond-laser-modified region in a soda lime glass revealed a lower level of sodium ions.

  11. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2013-02-04

    The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons.

  12. A novel side electrode configuration integrated in fused silica microsystems for synchronous optical and electrical spectroscopy.

    PubMed

    Sukas, Sertan; Schreuder, Erik; de Wagenaar, Bjorn; Swennenhuis, Joost; van den Berg, Albert; Terstappen, Leon; Le Gac, Séverine

    2014-06-01

    We present a novel electrode configuration consisting of coplanar side electrode pairs integrated at the half height of the microchannels for the creation of a homogeneous electric field distribution as well as for synchronous optical and electrical measurements. For the integration of such electrodes in fused silica microsystems, a dedicated microfabrication method was utilized, whereby an intermediate bonding layer was applied to lower the temperature for fusion bonding to avoid thereby metal degradation and subsequently to preserve the electrode structures. Finally, we demonstrate the applicability of our devices with integrated electrodes for single cell electrical lysis and simultaneous fluorescence and impedance measurements for both cell counting and characterization.

  13. Quantitative characterization of energy absorption in femtosecond laser micro-modification of fused silica.

    PubMed

    Dostovalov, A V; Wolf, A A; Mezentsev, V K; Okhrimchuk, A G; Babin, S A

    2015-12-14

    We present the results of experimental and theoretical study of an energy absorption of femtosecond laser pulse in fused silica. Fundamental and second harmonics of ytterbium laser were used in experiment while general case was considered theoretically and numerically. More efficient absorption at the second harmonics is confirmed both experimentally and numerically. Quantitative characterization of the theoretical model is performed by fitting key parameters of the absorption process such as cross-section of multi-photon absorption and effective electronic collision and recombination times. PMID:26699043

  14. Visible supercontinuum radiation of light bullets in the femtosecond filamentation of IR pulses in fused silica

    NASA Astrophysics Data System (ADS)

    Chekalin, S. V.; Kompanets, V. O.; Dokukina, A. E.; Dormidonov, A. E.; Smetanina, E. O.; Kandidov, V. P.

    2015-05-01

    We report experimental and theoretical investigations of visible supercontinuum generation in the formation of light bullets in a filament produced by IR pulses. In the filamentation of a 1700 - 2200 nm pulse in fused silica, bright tracks are recorded resulting from the recombination glow of carriers in the laser plasma produced by a sequence of light bullets and from the scattering in silica of the visible supercontinuum generated by the light bullets. It is found that the formation of a light bullet is attended with an outburst of a certain portion of supercontinuum energy in the visible range. The energy outburst is the same for all bullets in the sequence and becomes smaller with increasing pulse wavelength.

  15. Large-Scale Synthesis and Systematic Photoluminescence Properties of Monolayer MoS2 on Fused Silica.

    PubMed

    Wan, Yi; Zhang, Hui; Zhang, Kun; Wang, Yilun; Sheng, Bowen; Wang, Xinqiang; Dai, Lun

    2016-07-20

    Monolayer MoS2, with fascinating mechanical, electrical, and optical properties, has generated enormous scientific curiosity and industrial interest. Controllable and scalable synthesis of monolayer MoS2 on various desired substrates has significant meaning in both basic scientific research and device application. Recent years have witnessed many advances in the direct synthesis of single-crystalline MoS2 flakes or their polycrystalline aggregates on numerous diverse substrates, such as SiO2-Si, mica, sapphire, h-BN, and SrTiO3, etc. In this work, we used the dual-temperature-zone atmospheric-pressure chemical vapor deposition method to directly synthesize large-scale monolayer MoS2 on fused silica, the most ordinary transparent insulating material in daily life. We systematically investigated the photoluminescence (PL) properties of monolayer MoS2 on fused silica and SiO2-Si substrates, which have different thermal conductivity coefficients and thermal expansion coefficients. We found that there exists a stronger strain on monolayer MoS2 grown on fused silica, and the strain becomes more obvious as temperature decreases. Moreover, the monolayer MoS2 grown on fused silica exhibits the unique trait of a fractal shape with tortuous edges and has stronger adsorbability. The monolayer MoS2 grown on fused silica may find application in sensing, energy storage, and transparent optoelectronics, etc. PMID:27338112

  16. Large-Scale Synthesis and Systematic Photoluminescence Properties of Monolayer MoS2 on Fused Silica.

    PubMed

    Wan, Yi; Zhang, Hui; Zhang, Kun; Wang, Yilun; Sheng, Bowen; Wang, Xinqiang; Dai, Lun

    2016-07-20

    Monolayer MoS2, with fascinating mechanical, electrical, and optical properties, has generated enormous scientific curiosity and industrial interest. Controllable and scalable synthesis of monolayer MoS2 on various desired substrates has significant meaning in both basic scientific research and device application. Recent years have witnessed many advances in the direct synthesis of single-crystalline MoS2 flakes or their polycrystalline aggregates on numerous diverse substrates, such as SiO2-Si, mica, sapphire, h-BN, and SrTiO3, etc. In this work, we used the dual-temperature-zone atmospheric-pressure chemical vapor deposition method to directly synthesize large-scale monolayer MoS2 on fused silica, the most ordinary transparent insulating material in daily life. We systematically investigated the photoluminescence (PL) properties of monolayer MoS2 on fused silica and SiO2-Si substrates, which have different thermal conductivity coefficients and thermal expansion coefficients. We found that there exists a stronger strain on monolayer MoS2 grown on fused silica, and the strain becomes more obvious as temperature decreases. Moreover, the monolayer MoS2 grown on fused silica exhibits the unique trait of a fractal shape with tortuous edges and has stronger adsorbability. The monolayer MoS2 grown on fused silica may find application in sensing, energy storage, and transparent optoelectronics, etc.

  17. Formation of conical emission of supercontinuum during filamentation of femtosecond laser radiation in fused silica

    SciTech Connect

    Kandidov, V. P. Smetanina, E. O.; Dormidonov, A. E.; Kompanets, V. O.; Chekalin, S. V.

    2011-09-15

    The formation of conical emission of supercontinuum during filamentation of femtosecond laser pulses with central wavelengths in a wide range is studied experimentally, numerically, and analytically. The frequency-angular intensity distribution of the spectral components of conical emission is determined by the interference of supercontinuum emission in a filament of a femtosecond laser pulse. The interference of supercontinuum emission has a general character, exists at different regimes of group velocity dispersion, gives rise to the fine spectral structure after the pulse splitting into subpulses and the formation of a distributed supercontinuum source in an extended filament, and causes the decomposition of the continuous spectrum of conical emission into many high-contrast maxima after pulse refocusing in the filament. In spectroscopic studies with a tunable femtosecond radiation source based on a TOPAS parametric amplifier, we used an original scheme with a wedge fused silica sample. Numerical simulations have been performed using a system of equations of nonlinear-optical interaction of laser radiation under conditions of diffraction, wave nonstationarity, and material dispersion in fused silica. The analytic study is based on the interference model of formation of conical emission by supercontinuum sources moving in a filament.

  18. Etching of fused silica fiber by metallic laser-induced backside wet etching technique

    NASA Astrophysics Data System (ADS)

    Vass, Cs.; Kiss, B.; Kopniczky, J.; Hopp, B.

    2013-08-01

    The tip of multimode fused silica fiber (core diameter: 550 μm) was etched by metallic laser-induced backside wet etching (M-LIBWE) method. Frequency doubled, Q-switched Nd:YAG laser (λ = 532 nm; τFWHM = 8 ns) was used as laser source. The laser beam was coupled into the fiber by a fused silica lens with a focal length of 1500 mm. The other tip of the fiber was dipped into liquid gallium metallic absorber. The etching threshold fluence was measured to be 475 mJ/cm2, while the highest fluence, which resulted etching without breaking the fiber, was 1060 mJ/cm2. The progress of etching was followed by optical microscopy, and the etch rate was measured to be between 20 and 37 nm/pulse depending on the applied laser energy. The surface morphologies of the etched tips were studied by scanning electron microscopy. A possible application of the structured fibers was also tested.

  19. Laser-induced damage initiated on the surface of particle contamination fused silica at 1064nm

    SciTech Connect

    Michlitsch, K.J.

    1998-06-01

    An experimental study was undertaken to quantify the effects of contamination particles on the damage threshold of laser-illuminated fused silica optics and set cleanliness requirements for optics on the beam line of the National Ignition Facility at Lawrence Livermore National Laboratory. Circular contamination particles were sputter-deposited onto fused silica windows which were then illuminated repetitively using a 1064nm laser. A variety of contaminants were tested including metals, oxides, and organics. Tests were conducted with particles on the input and output surfaces of the window, and the morphological features of the damage were very reproducible. A plasma often ignited at the contamination particle; its intensity was dependent upon the mass of the contaminant. Input surface damage was characteristically more severe than output surface damage. The size of the damaged area scaled with the size of the particle. On a few occasions, catastrophic damage (cracking or ablation of the substrate) initiated on the output surface due to contamination particles on either the input or output surface. From damage growth plots, predictions can be made about the severity of damage expected from contamination particles of known size and material.

  20. Photothermal microscopy: an effective diagnostic tool for laser irradiation effects on fused silica and KDP

    NASA Astrophysics Data System (ADS)

    Wu, Zhouling; Chen, Jian; Dong, Jingtao

    2015-05-01

    In this paper, an automated microscopic instrument based on this technique is developed and used for the measurement and analysis of weak absorption properties of optical materials. This system shows a measuring sensitivity of absorbance down to 10 ppb, and provides user-friendly operation of the whole absorption measurement process. Compared with a typical bench-top system, the automated system requires little special skills from the operators and is therefore more reliable and reproducible. By using this system, a study of laser irradiation effects on optical materials induced by high power laser pulses is performed. The in-situ monitoring of a laser induced damage process at 355 nm in fused silica is realized, which indicates that the photothermal system is a useful tool for analysis of laser-material-interaction dynamics. Other specific applications of this system include measuring weak absorption, detecting local absorption defects. Experimental results show that both surface/sub-surface absorption defects on fused silica and bulk absorption defects on KDP are clearly determined.

  1. Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica

    SciTech Connect

    Matthews, M J; Bass, I L; Guss, G M; Widmayer, C C; Ravizza, F L

    2007-10-29

    Mitigation of 351nm laser-induced damage sites on fused silica exit surfaces by selective CO{sub 2} treatment has been shown to effectively arrest the exponential growth responsible for limiting the lifetime of optics in high-fluence laser systems. However, the perturbation to the optical surface profile following the mitigation process introduces phase contrast to the beam, causing some amount of downstream intensification with the potential to damage downstream optics. Control of the laser treatment process and measurement of the associated phase modulation is essential to preventing downstream 'fratricide' in damage-mitigated optical systems. In this work we present measurements of the surface morphology, intensification patterns and damage associated with various CO{sub 2} mitigation treatments on fused silica surfaces. Specifically, two components of intensification pattern, one on-axis and another off-axis can lead to damage of downstream optics and are related to rims around the ablation pit left from the mitigation process. It is shown that control of the rim structure around the edge of typical mitigation sites is crucial in preventing damage to downstream optics.

  2. Molecular dynamics simulation of shock induced ejection on fused silica surface

    SciTech Connect

    Su, Rui; Xiang, Meizhen; Jiang, Shengli; Chen, Jun; Wei, Han

    2014-05-21

    Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area of groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.

  3. High power laser antireflection subwavelength grating on fused silica by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Geng, Feng; Liu, Hongjie; Sun, Laixi; Yan, Lianghong; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2016-07-01

    In this study we report on an efficient and simple method to fabricate an antireflection subwavelength grating on a fused silica substrate using two-step reactive ion etching with monolayer polystyrene colloidal crystals as masks. We show that the period and spacing of the obtained subwavelength grating were determined by the initial diameter of polystyrene microspheres and the oxygen ion etching duration. The height of pillar arrays can be adjusted by tuning the second-step fluorine ion etching duration. These parameters are proved to be useful in tailoring the antireflection properties of subwavelength grating using a finite-difference time-domain (FDTD) method and effective medium theory. The subwavelength grating exhibits excellent antireflection properties. The near-field distribution of the SWG which is directly patterned into the substrate material is performed by a 3D-FDTD method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure, which has the potential to promote the ability of anti-laser-induced damage. For 10 ns pulse duration and 1064 nm wavelength, we experimentally determined their laser induced damage threshold to 32 J cm-2, which is nearly as high as bulk fused silica with 31.5 J cm-2.

  4. Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting

    PubMed Central

    Jang, Ho-Su; Cho, Myeong-Woo; Park, Dong-Sam

    2008-01-01

    In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed.

  5. High power laser antireflection subwavelength grating on fused silica by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Geng, Feng; Liu, Hongjie; Sun, Laixi; Yan, Lianghong; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2016-07-01

    In this study we report on an efficient and simple method to fabricate an antireflection subwavelength grating on a fused silica substrate using two-step reactive ion etching with monolayer polystyrene colloidal crystals as masks. We show that the period and spacing of the obtained subwavelength grating were determined by the initial diameter of polystyrene microspheres and the oxygen ion etching duration. The height of pillar arrays can be adjusted by tuning the second-step fluorine ion etching duration. These parameters are proved to be useful in tailoring the antireflection properties of subwavelength grating using a finite-difference time-domain (FDTD) method and effective medium theory. The subwavelength grating exhibits excellent antireflection properties. The near-field distribution of the SWG which is directly patterned into the substrate material is performed by a 3D-FDTD method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure, which has the potential to promote the ability of anti-laser-induced damage. For 10 ns pulse duration and 1064 nm wavelength, we experimentally determined their laser induced damage threshold to 32 J cm‑2, which is nearly as high as bulk fused silica with 31.5 J cm‑2.

  6. Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Xu, Mingjin; Dai, Yifan; Zhou, Lin; Shi, Feng; Wan, Wen; Xie, Xuhui; Sui, Tingting

    2016-08-01

    Surface characteristics have great influence on the optical properties especially the laser radiation resistivity of optics. In this paper, the surface characteristics evolutions of fused silica during ion-beam sputtering and their effects on the laser damage performance were investigated. The results show that roughness change is strongly removal depth dependent and a super-smooth surface (0.25 nm RMS) can be obtained by the ion-induced smoothing effect. The concentration of metal impurities (especially Ce element) in subsurface can be effectively decreased after the removal of polishing re-deposition layer. During ion-beam sputtering process, the plastic scratches can be removed while the brittle cracks can be broadened and passivated without increase in the depth direction. Laser damage threshold of fused silica improved by 36% after ion-beam sputtering treatment. Research results have a guiding significance for ion-beam sputtering process technology of fused silica optics.

  7. Monitoring annealing via carbon dioxide laser heating of defect populations in fused silica surfaces using photoluminescence microscopy

    SciTech Connect

    Raman, R N; Matthews, M J; Adams, J J; Demos, S G

    2010-02-01

    Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO{sub 2} laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO{sub 2} laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica ({approx}1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.

  8. Laser Micro-Structuring of Fused Silica Subsequent to Plasma-Induced Silicon Suboxide Generation and Hydrogen Implantation

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Jennifer; Gerhard, Christoph; Brückner, Stephan; Ihlemann, Jürgen; Wieneke, Stephan; Viöl, Wolfgang

    A low-temperature atmospheric pressure plasma jet was used for chemical reduction of fused silica. For this purpose, a hydrogen-containing plasma was applied. A silicon suboxide layer was generated and hydrogen was implanted into the bulk material. Changes in stoichiometry, concentration of hydrogen and optical transmission were determined. An ArF excimer laser was used for the ablation of untreated and plasma-treated fused silica. The ablation threshold was significantly decreased by a factor of 4.6 in case of plasma treated substrates. Furthermore, in multi-pulse experiments, the ablation rate remained constant at least up to a depth of 10.5 μm.

  9. Effects of silica-coating on surface topography and bond strength of porcelain fused to CAD/CAM pure titanium.

    PubMed

    Fukuyama, Takushi; Hamano, Naho; Ino, Satoshi

    2016-01-01

    The aim of this study was to evaluate the shear bond strength of porcelain fusing to titanium and the effects of surface treatment on surface structure of titanium. In the shear bond strength test, titanium surface treatments were: conventional, silica-coating without bonding agent, and silica-coating with bonding agent. Titanium surface treatments for analysis by the atomic force microscope (AFM) were: polishing, alumina sandblasting and silica-coating. The shear bond strength value of silica-coating with bonding agent group showed significantly higher than that of other groups. In AFM observation results, regular foamy structure which is effective for wetting was only observed in silica-coating. Therefore, this structure might indicate silicon. Silica-coating renders forms a nanoscopic regular foamy structure, involved in superhydrophilicity, to titanium surface, which is markedly different from the irregular surface generated by alumina sandblasting. PMID:27041024

  10. Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser

    SciTech Connect

    Bass, I L; Guss, G M; Hackel, R P

    2005-10-28

    At the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL), mitigation of laser surface damage growth on fused silica using single and multiple CO{sub 2} laser pulses has been consistently successful for damage sites whose lateral dimensions are less than 100 {micro}m, but has not been for larger sites. Cracks would often radiate outward from the damage when a CO{sub 2} pulse was applied to the larger sites. An investigation was conducted to mitigate large surface damage sites using galvanometer scanning of a tightly focused CO{sub 2} laser spot over an area encompassing the laser damage. It was thought that by initially scanning the CO{sub 2} spot outside the damage site, radiating crack propagation would be inhibited. Scan patterns were typically inward moving spirals starting at radii somewhat larger than that of the damage site. The duration of the mitigation spiral pattern was {approx}110 ms during which a total of {approx}1.3 J of energy was delivered to the sample. The CO{sub 2} laser spot had a 1/e{sup 2}-diameter of {approx}200 {micro}m. Thus, there was general heating of a large area around the damage site while rapid evaporation occurred locally at the laser spot position in the spiral. A 30 to 40 {micro}m deep crater was typically generated by this spiral with a diameter of {approx}600 {micro}m. The spiral would be repeated until there was no evidence of the original damage in microscope images. Using this technique, damage sites as large as 300 mm in size did not display new damage after mitigation when exposed to fluences exceeding 22 J/cm{sup 2} at 355 nm, 7.5 ns. It was found necessary to use a vacuum nozzle during the mitigation process to reduce the amount of re-deposited fused silica. In addition, curing spiral patterns at lower laser powers were used to presumably ''re-melt'' any re-deposited fused silica. A compact, shearing interferometer microscope was developed to permit in situ measurement of the depth of

  11. Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions

    USGS Publications Warehouse

    Shang, L.; Chou, I.-Ming; Lu, W.; Burruss, R.C.; Zhang, Y.

    2009-01-01

    Diffusion coefficients (D) of hydrogen in fused silica capillaries (FSC) were determined between 296 and 523 K by Raman spectroscopy using CO2 as an internal standard. FSC capsules (3.25 ?? 10-4 m OD, 9.9 ?? 10-5 m ID, and ???0.01 m long) containing CO2 and H2 were prepared and the initial relative concentrations of hydrogen in these capsules were derived from the Raman peak-height ratios between H2 (near 587 cm-1) and CO2 (near 1387 cm-1). The sample capsules were then heated at a fixed temperature (T) at one atmosphere to let H2 diffuse out of the capsule, and the changes of hydrogen concentration were monitored by Raman spectroscopy after quench. This process was repeated using different heating durations at 296 (room T), 323, 375, 430, 473, and 523 K; the same sample capsule was used repeatedly at each temperature. The values of D (in m2 s-1) in FSC were obtained by fitting the observed changes of hydrogen concentration in the FSC capsule to an equation based on Fick's law. Our D values are in good agreement with the more recent of the two previously reported experimental data sets, and both can be represented by: ln D = - (16.471 ?? 0.035) - frac(44589 ?? 139, RT) (R2 = 0.99991) where R is the gas constant (8.3145 J/mol K), T in Kelvin, and errors at 1?? level. The slope corresponds to an activation energy of 44.59 ?? 0.14 kJ/mol. The D in FSC determined at 296 K is about an order of magnitude higher than that in platinum at 723 K, indicating that FSC is a suitable membrane for hydrogen at temperature between 673 K and room temperature, and has a great potential for studying redox reactions at these temperatures, especially for systems containing organic material and/or sulphur. ?? 2009 Elsevier Ltd.

  12. Reduction of damage initiation density in fused silica optics via UV laser conditioning

    DOEpatents

    Peterson, John E.; Maricle, Stephen M.; Brusasco, Raymond M.; Penetrante, Bernardino M.

    2004-03-16

    The present invention provides a method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects and are better capable of resisting optical deterioration upon exposure for a long period of time to a high-power laser beam having a wavelength of about 360 nm or less. The initiation of laser-induced damage is reduced by conditioning the optic at low fluences below levels that normally lead to catastrophic growth of damage. When the optic is then irradiated at its high fluence design limit, the concentration of catastrophic damage sites that form on the surface of the optic is greatly reduced.

  13. Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique

    SciTech Connect

    Ma Bin; Shen Zhengxiang; He Pengfei; Sha Fei; Wang Chunliang; Wang Bin; Ji Yiqin; Liu Huasong; Li Weihao; Wang Zhanshan

    2011-03-20

    We evaluate the subsurface quality of polished fused silica samples using the nanoindenter technique. Two kinds of samples, consisting of hundreds of nanometers and micrometers of subsurface damage layers, are fabricated by controlling the grinding and polishing processes, and the subsurface quality has been verified by the chemical etching method. Then several nanoindentation experiments are performed using the Berkovich tip to investigate the subsurface quality. Some differences are found by relative measurements in terms of the relationship between the total penetration and the peak load on the surfaces, the modulus calculated over the defined depths and from unload, and the indented morphology at a constant load near the surface collapse threshold. Finally, the capabilities of such a mechanical method for detecting subsurface flaws are discussed and analyzed.

  14. Influence of temperature on period of torsion pendulum with a high-Q fused silica fiber.

    PubMed

    Luo, Jie; Wu, Wei-Huang; Shao, Cheng-Gang; Li, Qing; Liu, Jian-Ping; Zhan, Wen-Ze; Wang, Dian-Hong

    2015-09-01

    Due to the high-Q fused silica fiber's extreme sensitivity to temperature change, the period estimation of torsion pendulum with high precision depends on the effective correction of the thermoelastic effect. In the measurement of G with the time-of-swing method, we analyze the complex relation between temperature and the pendulum's period and propose a developed method to find the shear thermoelasticity coefficient as well as isolate the influence of temperature on period alone. The result shows that the shear thermoelasticity coefficient is 101(2) × 10(-6)/°C, the resultant correction to Δ(ω(2)) is 9.16(0.18) ppm, and the relative uncertainty to G is less than 1 ppm.

  15. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    SciTech Connect

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  16. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica

    SciTech Connect

    Milam, D.

    1998-01-01

    The literature describes more than 30 measurements, at wavelengths between 249 and 1550 nm, of the absolute value of the nonlinear refractive-index coefficient of fused silica. Results of these experiments were assessed and best currently available values were selected for the wavelengths of 351, 527, and 1053 nm. The best values are (3.6{plus_minus}0.64){times}10{sup {minus}16} cm{sup 2}/W at 351 nm, (3.0{plus_minus}0.35){times}10{sup {minus}16} cm{sup 2}/W at 527 nm, and (2.74{plus_minus}0.17){times}10{sup {minus}16} cm{sup 2}/W at 1053 nm. {copyright} 1998 Optical Society of America

  17. Fused silica mirror evaluation for the Shuttle Infrared Telescope Facility (SIRTF)

    NASA Astrophysics Data System (ADS)

    Barnes, W. P., Jr.; Melugin, R. K.

    The SIRTF optics are intended for operation at 20 K (or less); it will be extremely inconvenient, expensive, and time consuming if it becomes necessary to accomplish all of the optical element testing, assembly, and alignment at comparable temperatures. The thermal strain behavior, including potential anisotropies and inhomogeneities, of a mirror substrate between room temperature and 20 K thus becomes a major factor in the selection of the substrate material, structural configuration, and joining methods for lightweight structures. With support from Space Projects, NASA Ames Research Center, an optical figure evaluation of a 0.65-meter, lightweight, fused silica mirror at a low-temperature goal of 20 K is being conducted. The design details of a thermal shroud, provisions for extracting heat from the low-conductivity mirror, and wavefront error sources other than the mirror surface are discussed and preliminary test results presented.

  18. Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation

    NASA Astrophysics Data System (ADS)

    Karstens, R.; Gödecke, A.; Prießner, A.; Ihlemann, J.

    2016-09-01

    Parallel nanohole drilling in glass using an ArF excimer laser (193 nm) is demonstrated. For the first time, hole arrays with 500 nm pitch and individual holes with 250 nm diameter and more than 100 nm depth are fabricated by phase mask imaging using a Schwarzschild objective. Holes in soda lime glass are drilled by direct ablation; fused silica is processed by depositing a SiOx-film on SiO2, patterning the SiOx by ablation, and finally oxidizing the remaining SiOx to SiO2. Thermally induced ordered dewetting of noble metal films deposited on such templates may be used for the fabrication of plasmonic devices.

  19. Surface plasmon resonance biochemical sensor based on light guiding flexible fused silica capillary tubing

    NASA Astrophysics Data System (ADS)

    Liu, Xiuxin; Liu, Yun; Liu, Qiang; Gao, Xiaotong; Peng, Wei

    2015-12-01

    A fiber optic surface plasmon resonance (SPR) sensor based on light guiding flexible fused silica tubing with its cladding stripped and coated with gold film as SPR sensing area is presented. Theoretical simulate of the proposed sensing structure for different sensing area length and different film thickness of sensors is done to obtain the suitable parameters, and the simulation for different refractive index is carried out. Meanwhile, the experiments for refractive index (RI) measurement have been demonstrated using the developed sensor, 400 μm optical fiber sensor and 125 μm optical fiber sensor. Experimental results have shown the capillary sensor has advantage in terms of sensitivity and resolution. The capillary sensor is also used for detecting and monitoring biochemical binding and dissociation processes of the RNase B and Con A. It is proved that the sensor with chemical modification can be implemented for specific biochemical sensing

  20. Growth of Laser Initiated Damage in Fused Silica at 351 nm

    SciTech Connect

    Norton, M A; Hrubesh, L W; Wu, Z; Donohue, E E; Feit, M D; Kozlowski, M R; Milam, D; Neeb, K P; Molander, W A; Rubenchik, A M; Sell, W D; Wegner, P

    2001-01-30

    The lifetime of optics in high-fluence UV laser applications is typically limited by the initiation of damage and its subsequent growth. We have measured the growth rate of laser-induced damage on fused silica surfaces in both air and vacuum. The data shows exponential growth in the lateral size of the damage site with shot number above a threshold fluence. The concurrent growth in depth follows a linear dependence with shot number. The size of the initial damage influences the threshold for growth; the morphology of the initial site depends strongly on the initiating fluence. We have found only a weak dependence on pulse length for growth rate. Most of the work has been on bare substrates but the presence of a sol-gel AR coating has no significant effect.

  1. Method of mitigation laser-damage growth on fused silica surface.

    PubMed

    Fang, Zhou; Zhao, Yuan'an; Chen, Shunli; Sun, Wei; Shao, Jianda

    2013-10-10

    A reliable method, combining femtosecond (fs) laser mitigation and chemical (HF) etching, has been developed to mitigate laser-damage growth sites on a fused silica surface. A rectangular mitigation site was fabricated by an fs laser with a raster scan procedure; HF etching was then used to remove the redeposition material. The results show that the mitigation site exhibits good physical qualities with a smooth bottom and edge. The damage test results show that the growth threshold of the mitigation sites increases. Furthermore, the structural characteristic of samples was measured by a photoluminescence (PL) spectrometer, and the light intensification caused by damage and mitigation sites was numerically modeled by the finite-difference time-domain (FDTD). It revealed that the removal of damaged material and structure optimization contribute to the increase of the damage growth threshold of the mitigation site.

  2. Influence of temperature on period of torsion pendulum with a high-Q fused silica fiber

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Wu, Wei-Huang; Shao, Cheng-Gang; Li, Qing; Liu, Jian-Ping; Zhan, Wen-Ze; Wang, Dian-Hong

    2015-09-01

    Due to the high-Q fused silica fiber's extreme sensitivity to temperature change, the period estimation of torsion pendulum with high precision depends on the effective correction of the thermoelastic effect. In the measurement of G with the time-of-swing method, we analyze the complex relation between temperature and the pendulum's period and propose a developed method to find the shear thermoelasticity coefficient as well as isolate the influence of temperature on period alone. The result shows that the shear thermoelasticity coefficient is 101(2) × 10-6/∘C, the resultant correction to Δ(ω2) is 9.16(0.18) ppm, and the relative uncertainty to G is less than 1 ppm.

  3. Femtosecond laser microhole drilling inside a fused silica optical fiber with optical inner surface quality

    NASA Astrophysics Data System (ADS)

    Shiraishi, Masahiko; Goya, Kenji; Nishiyama, Michiko; Kubodera, Shoichi; Watanabe, Kazuhiro

    2016-09-01

    We have demonstrated femtosecond laser microhole drilling inside a fused silica optical fiber with optical inner surface quality. An optical quality microhole with a diameter of 3 μ m and a length of approximately 35 μ m was produced inside an optical fiber of a cladding diameter of 125 μ m. The microhole drilling inside an optical fiber was caused as a result of plasma filamentation of focused femtosecond laser irradiation at a wavelength of 400 nm. The size of the microhole was reproduced with a ray trace of the focused laser beam with consideration of self-focusing. The optical quality of the microhole was verified by measuring the transmittance of 94 % of infrared diode emission.

  4. Temporal femtosecond pulse shaping dependence of laser-induced periodic surface structures in fused silica

    SciTech Connect

    Shi, Xuesong; Jiang, Lan; Li, Xin Zhang, Kaihu; Yu, Dong; Yu, Yanwu; Lu, Yongfeng

    2014-07-21

    The dependence of periodic structures and ablated areas on temporal pulse shaping is studied upon irradiation of fused silica by femtosecond laser triple-pulse trains. Three types of periodic structures can be obtained by using pulse trains with designed pulse delays, in which the three-dimensional nanopillar arrays with ∼100–150 nm diameters and ∼200 nm heights are first fabricated in one step. These nanopillars arise from the break of the ridges of ripples in the upper portion, which is caused by the split of orthogonal ripples in the bottom part. The localized transient electron dynamics and corresponding material properties are considered for the morphological observations.

  5. Fused-silica sandwiched three-port grating under second Bragg angle incidence

    NASA Astrophysics Data System (ADS)

    Li, Hongtao; Wang, Bo; Pei, Hao; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-05-01

    The fused-silica sandwiched three-port grating under second Bragg angle incidence is presented with operation in transmission. To obtain a highly-efficient three-port grating for a working wavelength of 800 nm, the grating depth and period should be optimized by using rigorous coupled-wave analysis. With the optimized different three-port grating depths and periods, both TE-polarized and TM-polarized waves can be diffracted into three orders with nearly 33% efficiency for the given duty cycle of 0.6. Based on the grating parameters of numerical optimization, modal method may be employed to explain the physical mechanism of the beam propagation in the grating and analyze the splitting behavior. For the sandwiched three-port grating, it is feasible that the diffraction efficiencies can be enhanced for both TE and TM polarizations.

  6. Detection of subsurface trace impurity in polished fused silica with biological method.

    PubMed

    Wang, Zhuo; Wang, Lin; Yang, Junhong; Peng, Wenqiang; Hu, Hao

    2014-09-01

    Subsurface damage (SSD), especially photoactive impurities, degrades the performance of high energy optics by reduction in the laser induced damage threshold. As the polishing defects are trace content and lie beneath the surface, they are difficult to detect. We herein present a biological method to measure impurities on polished fused silica, based on the intense inhibiting ability about trace level of ceria on enzyme activity. And the enzyme activity is measured in the individual etching solutions of a sequential etching process. Results show that detectability of the biological method satisfies the needs of trace impurity detection with low cost and simple apparatus. Furthermore ceria can be used to tag SSD in lapped and polished optics. PMID:25321508

  7. Laser-induced fluorescence and nonlinear optical properties of ion-implanted fused silica

    SciTech Connect

    Becker, K.; Yang, L.; Haglund, R.F. Jr. . Dept. of Physics and Astronomy); Magruder, R.H.; Weeks, R.A. . Dept. of Materials Science and Engineering); Zuhr, R.A. )

    1990-01-01

    We report absorption, fluorescence and nonlinear optical properties of fused silica implanted with Ti, Cu and Bi and doses of 1{center dot}10{sup 15} ions/cm{sup 2} to 6{center dot}10{sup 16} ions/cm{sup 2} when irradiated with 532 nm laser light. The fluorescence spectrum is a broad band around 640 nm shows little variation for all ion species. Absorption as function of implanted dose shows a threshold for Ti between 1{center dot}10{sup 16} ions/cm{sup 2} and 6{center dot}10{sup 16} ions/cm{sup 2}. The nonlinear optical index is large, n{sub 2} > 10{sup {minus}5} esu. All measured quantities show a strong dependence on the implanted ion dose. The source of the nonlinearity, whether electronic or thermal, remains to be more completely determined. 9 refs., 4 figs.

  8. Dependence of growth rate of quartz in fused silica on pressure and impurity content

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Turnbull, D.

    1980-01-01

    The effects of pressure, temperature, and some variations in impurity content on the growth rate u of quartz into fused silica were measured. Under all conditions the growth rate was interface controlled and increased exponentially with pressure with an activation volume averaging -21.2 cu cm/mole. The activation enthalpy for all specimens is extrapolated to a zero pressure value of 64 kcal/mole, within the experimental uncertainty. At a given stoichiometry the effect of hydroxyl content on growth rate is described entirely by a linear term C(OH) in the prefactor of the equation for the growth rate. The effect of chlorine impurity can be described similarly. Also u is increased as the ideal stoichiometry is approached from the partially reduced state.

  9. Diffractive control of 3D multifilamentation in fused silica with micrometric resolution.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Doñate-Buendía, Carlos; Mínguez-Vega, Gladys; Lancis, Jesús

    2016-07-11

    We show that a simple diffractive phase element (DPE) can be used to manipulate at will the positions and energy of multiple filaments generated in fused silica under femtosecond pulsed illumination. The method allows obtaining three-dimensional distributions of controlled filaments whose separations can be in the order of few micrometers. With such small distances we are able to study the mutual coherence among filaments from the resulted interference pattern, without needing a two-arm interferometer. The encoding of the DPE into a phase-only spatial light modulator (SLM) provides an extra degree of freedom to the optical set-up, giving more versatility for implementing different DPEs in real time. Our proposal might be particularly suited for applications at which an accurate manipulation of multiple filaments is required. PMID:27410807

  10. Internal structure of the nanogratings generated inside bulk fused silica by ultrafast laser direct writing

    SciTech Connect

    Sharma, S. P.; Vilar, R.; Oliveira, V.; Herrero, P.

    2014-08-07

    The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 μm within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 μJ, τ = 560 fs, f = 10 kHz, and v = 100 μm/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 μm and a minor diameter of about 6 μm. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 ± 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 ± 20 × 16 ± 8 × 69 ± 16 nm{sup 3} and 367 ± 239 × 16 ± 8 × 360 ± 194 nm{sup 3}, respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density.

  11. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair.

    PubMed

    Xu, Hockin H K; Smith, Douglas T; Simon, Carl G

    2004-08-01

    Self-hardening calcium phosphate cement (CPC) sets to form hydroxyapatite with high osteoconductivity, but its brittleness and low strength limit its use to only non-stress bearing locations. Previous studies developed bioactive composites containing hydroxyapatite fillers in Bis-GMA-based composites for bone repair applications, and they possessed higher strength values. However, these strengths were still lower than the strength of cortical bone. The aim of this study was to develop strong and bioactive composites by combining CPC fillers with nano-silica-fused whiskers in a resin matrix, and to characterize the mechanical properties and cell response. Silica particles were fused to silicon carbide whiskers to roughen the whisker surfaces for enhanced retention in the matrix. Mass ratios of whisker:CPC of 1:2, 1:1 and 2:1 were incorporated into a Bis-GMA-based resin and hardened by two-part chemical curing. Composite with only CPC fillers without whiskers served as a control. The specimens were tested using three-point flexure and nano-indentation. Composites with whisker:CPC ratios of 2:1 and 1:1 had flexural strengths (mean+/-SD; n=9) of (164+/-14) MPa and (139+/-22) MPa, respectively, nearly 3 times higher than (54+/-5) MPa of the control containing only CPC fillers (p<0.05). The strength of the new whisker-CPC composites was 3 times higher than the strength achieved in previous studies for conventional bioactive composites containing hydroxyapatite particles in Bis-GMA-based resins. The mechanical properties of the CPC-whisker composites nearly matched those of cortical bone and trabecular bone. Osteoblast-like cell adhesion, proliferation and viability were equivalent on the non-whisker control containing only CPC fillers, on the whisker composite at whisker:CPC of 1:1, and on the tissue culture polystyrene control, suggesting that the new CPC-whisker composite was non-cytotoxic.

  12. Ultrafast laser induced electronic and structural modifications in bulk fused silica

    NASA Astrophysics Data System (ADS)

    Mishchik, K.; D'Amico, C.; Velpula, P. K.; Mauclair, C.; Boukenter, A.; Ouerdane, Y.; Stoian, R.

    2013-10-01

    Ultrashort laser pulses can modify the inner structure of fused silica, generating refractive index changes varying from soft positive (type I) light guiding forms to negative (type II) values with void presence and anisotropic sub-wavelength modulation. We investigate electronic and structural material changes in the type I to type II transition via coherent and incoherent secondary light emission reflecting free carrier behavior and post-irradiation material relaxation in the index change patterns. Using phase contrast microscopy, photoluminescence, and Raman spectroscopy, we determine in a space-resolved manner defect formation, redistribution and spatial segregation, and glass network reorganization paths in conditions marking the changeover between type I and type II photoinscription regimes. We first show characteristic patterns of second harmonic generation in type I and type II traces, indicating the collective involvement of free carriers and polarization memory. Second, incoherent photoemission from resonantly and non-resonantly excited defect states reveals accumulation of non-bridging oxygen hole centers (NBOHCs) in positive index domains and oxygen deficiency centers (ODCs) with O2- ions segregation in void-like regions and in the nanostructured domains, reflecting the interaction strength. Complementary Raman investigations put into evidence signatures of the different environments where photo-chemical densification (bond rearrangements) and mechanical effects can be indicated. NBOHCs setting in before visible index changes serve as precursors for subsequent compaction build-up, indicating a scenario of cold, defect-assisted densification for the soft type I irradiation regime. Additionally, we observe hydrodynamic effects and severe bond-breaking in type II zones with indications of phase transition. These observations illuminate densification paths in fused silica in low power irradiation regimes, and equally in energetic ranges, characterized by

  13. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths

    PubMed Central

    Lievers, Rik; Groot, Astrid T.

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  14. Disposable Polydimethylsiloxane (PDMS)-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths.

    PubMed

    Lievers, Rik; Groot, Astrid T

    2016-01-01

    In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064

  15. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    USGS Publications Warehouse

    Pan, Z.; Chou, I.-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water. ?? 2009 The Royal Society of Chemistry.

  16. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    PubMed

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance. PMID:27139869

  17. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica

    SciTech Connect

    Shen, N; Matthews, M J; Fair, J E; Britten, J A; Nguyen, H T; Cooke, D; Elhadj, S; Yang, S T

    2009-10-30

    Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO{sub 2} laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at submicron length scales is still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO{sub 2} substrates under 10.6 {micro}m CO{sub 2} laser irradiation using atomic force microscopy (AFM). In-situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N{sub c} > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy.

  18. Laser-induced damage of fused silica at 355 nm initiated at scratches

    NASA Astrophysics Data System (ADS)

    Salleo, Alberto; Genin, Francois Y.; Yoshiyama, J. M.; Stolz, Christopher J.; Kozlowski, Mark R.

    1998-04-01

    Scratches of measured width were produced on the surface of a IV grade fused silica window using a diamond tip. Two scratch morphologies were observed: plastic and brittle. The scratches were irradiated with a 355 nm laser pulse. The laser-induced damage threshold (LIDT) of the unscratched output surface was 15 J/cm2 at 3-ns. The LIDT of the scratched surface as a function of scratch width was then measured for both input and output surface scratches. Input surface scratches of width smaller than 10 micrometers did not influence the LIDT of the silica window. On the output surface, 7 $mUm wide scratches lowered the LIDT by a factor of two. For larger scratches, the LIDT reached an asymptotic value of 5 J/cm2 on both input and output surface. Possible reasons for this LIDT drop could be electric field enhancement in the cracks below the scratch, the presence of contamination particles in the scratch, or the weakening of the material because of existing mechanical flaws.

  19. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces

    SciTech Connect

    Suratwala, T I; Miller, P E; Bude, J D; Steele, R A; Shen, N; Monticelli, M V; Feit, M D; Laurence, T A; Norton, M A; Carr, C W; Wong, L L

    2010-02-23

    The effect of various HF-based etching processes on the laser damage resistance of scratched fused silica surfaces has been investigated. Conventionally polished and subsequently scratched fused silica plates were treated by submerging in various HF-based etchants (HF or NH{sub 4}F:HF at various ratios and concentrations) under different process conditions (e.g., agitation frequencies, etch times, rinse conditions, and environmental cleanliness). Subsequently, the laser damage resistance (at 351 or 355 nm) of the treated surface was measured. The laser damage resistance was found to be strongly process dependent and scaled inversely with scratch width. The etching process was optimized to remove or prevent the presence of identified precursors (chemical impurities, fracture surfaces, and silica-based redeposit) known to lead to laser damage initiation. The redeposit precursor was reduced (and hence the damage threshold was increased) by: (1) increasing the SiF{sub 6}{sup 2-} solubility through reduction in the NH4F concentration and impurity cation impurities, and (2) improving the mass transport of reaction product (SiF{sub 6}{sup 2-}) (using high frequency ultrasonic agitation and excessive spray rinsing) away from the etched surface. A 2D finite element crack-etching and rinsing mass transport model (incorporating diffusion and advection) was used to predict reaction product concentration. The predictions are consistent with the experimentally observed process trends. The laser damage thresholds also increased with etched amount (up to {approx}30 {micro}m), which has been attributed to: (1) etching through lateral cracks where there is poor acid penetration, and (2) increasing the crack opening resulting in increased mass transport rates. With the optimized etch process, laser damage resistance increased dramatically; the average threshold fluence for damage initiation for 30 {micro}m wide scratches increased from 7 to 41 J/cm{sup 2}, and the statistical

  20. Transmissivity Reduction Of Fracture Due To Silica Precipitation Is Faster For Variable Aperture

    NASA Astrophysics Data System (ADS)

    Pandey, S. N.; Chaudhuri, A.; Kelkar, S.; Rajaram, H.

    2013-12-01

    Geothermal energy have certain ecological benefits as it does not disturb the local ecosystem. It is also able to generate power with minimum operating cost. The extraction of geothermal energy has grown significantly in the past few decades. One of the major challenges for reservoir scale modeling of geothermal system is to describe the exact configuration of aperture fields. Hence the sustainability of geothermal power plant and future estimation of power production is affected during continuous evolution by geochemical and geomechanical processes. The formation of scale due to precipitation of silica in the wells and the fault creates major problem in the sustainability of the geothermal heat extraction. In this study we simulated the reduction of fracture transmissivity due to precipitation by 3-D simulation of coupled thermo-hydro-chemical (THC) processes a simple geothermal system with a horizontal fault, which connects the injection and production wells to facilitate the cold water circulation. The variability of aperture within the fracture/fault is more realistic and it is known that the reduction of effective transmissivity is accelerated by the heterogeneity of the aperture field. The objective of the study is to understand the results of aperture field heterogeneity on the power production. For comparison among different heterogeneous cases, the initial effective transmissivity has been taken same for each. Using numerical simulation of flow between the wells, the same initial effective transmissivity (i.e. same pressure drop between the wells for same mass flow rate) was attained through iteration. The values of standard deviations were taken in the range of 0 to 0.4. Temperature dependent kinetic rate laws were used for the reactive transport modeling. Here the numerical simulations were performed for injection concentration as the solubility at the temperature in the production well. This extreme case is based on the assumption that there is no

  1. Influence of secondary treatment with CO2 laser irradiation for mitigation site on fused silica surface

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Zhou, Qiang; Qiu, Rong; Gao, Xiang; Wang, Hui-Li; Yao, Cai-Zhen; Wang, Jun-Bo; Zhao, Xin; Liu, Chun-Ming; Xiang, Xia; Zu, Xiao-Tao; Yuan, Xiao-Dong; Miao, Xin-Xiang

    2016-10-01

    The ablation debris and raised rim, as well as residual stress and deep crater will be formed during the mitigation of damage site with a CO2 laser irradiation on fused silica surface, which greatly affects the laser damage resistance of optics. In this study, the experimental study combined with numerical simulation is utilized to investigate the effect of the secondary treatment on a mitigated site by CO2 laser irradiation. The results indicate that the ablation debris and the raised rim can be completely eliminated and the depth of crater can be reduced. Notable results show that the residual stress of the mitigation site after treatment will reduce two-thirds of the original stress. Finally, the elimination and the controlling mechanism of secondary treatment on the debris and raised rim, as well as the reasons for changing the profile and stress are analyzed. The results can provide a reference for the optimization treatment of mitigation sites by CO2 laser secondary treatment. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505170, 61505171, and 51535003), the Joint Fund of the National Natural Science Foundation of China, the Chinese Academy of Engineering Physics (Grant No. U1530109), and the China Postdoctoral Science Foundation (Grant No. 2016M592709).

  2. Comprehensive modeling of structural modification induced by a femtosecond laser pulse inside fused silica glass

    NASA Astrophysics Data System (ADS)

    Najafi, Somayeh; Sadat Arabanian, Atoosa; Massudi, Reza

    2016-06-01

    A comprehensive theoretical model is proposed based on equations describing the nonlinear propagation of an ultrashort pulse inside transparent material, electron density evolution, non-Fourier heat conduction, and thermo-elasto plastic displacement which are respectively solved by various methods. These methods include the split-step finite difference technique and alternating-direction implicit algorithm, fourth-order Range–Kutta algorithm, hybrid finite-element method/finite-difference method, and finite-element method in both space and time to achieve refractive index changes. The whole chain of processes occurring in the interaction of a focused ultrashort laser pulse with fused silica glass in prevalent conditions of micromachining applications is numerically investigated. By optimizing the numerical method and by using an adaptive mesh approach, the execution time of the program is significantly reduced so that the calculations are done at each time step in a fraction of a second. Simulation results show that the energy and duration of the input pulse are very important parameters in induced changes, but the chirp of the input pulse is not an effective parameter. Consequently, by appropriate setting of those parameters one can design a desired refractive index profile.

  3. EPR study of new defects in neutron irradiated KS-4V and KU1 fused silica

    NASA Astrophysics Data System (ADS)

    Lagomacini, J. C.; Bravo, D.; Martín, P.; Ibarra, A.; Martín, A.; López, F. J.

    2010-11-01

    Electron paramagnetic resonance (EPR) studies have been carried out on high purity fused silica KS-4V (low OH content) and KU1 (high OH content), irradiated with fast neutrons (E > 0.1 MeV) at a high fluence of 1022 n/m2. The spectrum of irradiated samples shows various well-known types of paramagnetic defects, POR, NBOHC and E'. Their thermal stability has also been studied by heating the samples in air up to 775 °C. A detailed analysis of the spectra shows that the POR spectrum of neutron-irradiated KS-4V and KU1 has two contributions from centres POR(I) and POR(II), which show very different thermal annealing behaviour. POR(I) is identified with the POR centre previously reported, whereas POR(II) is associated to the effects of fast neutrons. Moreover, a new broad line centred at g = 2.02 is reported that we suggest could be associated to oxygen-hole centres in the neighbourhood of the high amount of tracks generated by ion displacement due to fast neutrons.

  4. Disordered antireflective subwavelength structures using Ag nanoparticles on fused silica windows.

    PubMed

    Shang, Peng; Xiong, Sheng Ming; Deng, Qi Ling; Shi, Li Fang; Zhang, Mian

    2014-10-10

    In this paper, we have demonstrated an effective method for fabricating disordered subwavelength structures (d-SWSs) on fused silica using thermal dewetted Ag nanoparticles at lower temperatures (<300°C) with a vacuum. Theoretically and experimentally, we investigate the effects of the film thickness, annealing temperature, and etching time on the antireflective properties of the d-SWS arrays. The measured data and calculated results obtained by rigorous coupled-wave analysis exhibit reasonably similar tendencies. For the sample with a 10-nm-thick Ag film, good optical transmission characteristics (on one side, T(ave)∼95.6%) over a wide wavelength region of 500-1300 nm were obtained, and a maximum value of ∼96% at a wavelength of 850 nm was also obtained. Furthermore, the d-SWSs exhibit excellent optical and thermal stability at high temperatures of 800°C and 1000°C compared to a conventional Ta2O5/SiO2 multilayer coating.

  5. Dynamics of femtosecond laser absorption of fused silica in the ablation regime

    SciTech Connect

    Lebugle, M. Sanner, N.; Varkentina, N.; Sentis, M.; Utéza, O.

    2014-08-14

    We investigate the ultrafast absorption dynamics of fused silica irradiated by a single 500 fs laser pulse in the context of micromachining applications. A 60-fs-resolution pump-probe experiment that measures the reflectivity and transmissivity of the target under excitation is developed to reveal the evolution of plasma absorption. Above the ablation threshold, an overcritical plasma with highly non-equilibrium conditions is evidenced in a thin layer at the surface. The maximum electron density is reached at a delay of 0.5 ps after the peak of the pump pulse, which is a strong indication of the occurrence of electronic avalanche. The results are further analyzed to determine the actual feedback of the evolution of the optical properties of the material on the pump pulse. We introduce an important new quantity, namely, the duration of absorption of the laser by the created plasma, corresponding to the actual timespan of laser absorption by inverse Bremsstrahlung. Our results indicate an increasing contribution of plasma absorption to the total material absorption upon raising the excitation fluence above the ablation threshold. The role of transient optical properties during the energy deposition stage is characterized and our results emphasize the necessity to take it into account for better understanding and control of femtosecond laser-dielectrics interaction.

  6. Determination of laser damage initiation probability and growth on fused silica scratches

    SciTech Connect

    Norton, M A; Carr, C W; Cross, D A; Negres, R A; Bude, J D; Steele, W A; Monticelli, M V; Suratwala, T I

    2010-10-26

    Current methods for the manufacture of optical components inevitably leaves a variety of sub-surface imperfections including scratches of varying lengths and widths on even the finest finishes. It has recently been determined that these finishing imperfections are responsible for the majority of laser-induced damage for fluences typically used in ICF class lasers. We have developed methods of engineering subscale parts with a distribution of scratches mimicking those found on full scale fused silica parts. This much higher density of scratches provides a platform to measure low damage initiation probabilities sufficient to describe damage on large scale optics. In this work, damage probability per unit scratch length was characterized as a function of initial scratch width and post fabrication processing including acid-based etch mitigation processes. The susceptibility of damage initiation density along scratches was found to be strongly affected by the post etching material removal and initial scratch width. We have developed an automated processing procedure to document the damage initiations per width and per length of theses scratches. We show here how these tools can be employed to provide predictions of the performance of full size optics in laser systems operating at 351 nm. In addition we use these tools to measure the growth rate of a damage site initiated along a scratch and compare this to the growth measured on an isolated damage site.

  7. Stable structure and optical properties of fused silica with NBOHC-E‧ defect

    NASA Astrophysics Data System (ADS)

    Lu, Peng-Fei; Wu, Li-Yuan; Yang, Yang; Wang, Wei-Zheng; Zhang, Chun-Fang; Yang, Chuang-Hua; Su, Rui; Chen, Jun

    2016-08-01

    First-principles method is used to simulate the stable structure and optical properties of a 96-atom fused silica. The preferable structure of NBOHC-E‧ (non-bridging oxygen hole center (NBOHC) and E‧ center) pair defect is predicted to be located at 2.4 Å for the Si–O bond length. The quasi-particle G0W0 calculations are performed and an accurate band gap is obtained in order to calculate the optical absorption properties. With the stretching of the Si1–O1 bond, an obvious redshift can be observed in the absorption spectrum. In the case of NBOHC-E‧ pair, the p-orbital DOS of Si1 atom will shift to the conduction band. Two obvious absorption peaks can be observed in the absorption spectrum. The calculation reproduced the peak positions of the well-known optical absorption bands. Project supported by the National Basic Research Program of China (Grant No. 2014CB643900), the Open Fund of IPOC (BUPT), the Open Program of State Key Laboratory of Functional Materials for Informatics, the National Natural Science Foundation for Theoretical Physics Special Fund “Cooperation Program” (Grant No. 11547039), and Shaanxi Provincial Institute of Scientific Research Plan Projects, China (Grant No. SLGKYQD2-05).

  8. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses

    SciTech Connect

    Couairon, A.; Sudrie, L.; Franco, M.; Prade, B.; Mysyrowicz, A.

    2005-03-15

    We investigate experimentally and numerically the damage tracks induced by tightly focused (NA=0.5) infrared femtosecond laser pulses in the bulk of a fused silica sample. Two types of irreversible damage are observed. The first damage corresponds to a permanent change of refractive index without structural modifications (type I). It appears for input pulse energies beyond 0.1 {mu}J. It takes the form of a narrow track extending over more than 100 {mu}m at higher input powers. It is attributed to a change of the polarizability of the medium, following a filamentary propagation which generates an electron-hole plasma through optical field ionization. A second type of damage occurs for input pulse energies beyond 0.3 {mu}J (type II). It takes the form of a pear-shaped structural damage associated with an electron-ion plasma triggered by avalanche. The temporal evolution of plasma absorption is studied by pump-probe experiments. For type I damage, a fast electron-hole recombination is observed. Type II damage is linked with a longer absorption.

  9. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  10. Comprehensive modeling of structural modification induced by a femtosecond laser pulse inside fused silica glass

    NASA Astrophysics Data System (ADS)

    Najafi, Somayeh; Sadat Arabanian, Atoosa; Massudi, Reza

    2016-06-01

    A comprehensive theoretical model is proposed based on equations describing the nonlinear propagation of an ultrashort pulse inside transparent material, electron density evolution, non-Fourier heat conduction, and thermo-elasto plastic displacement which are respectively solved by various methods. These methods include the split-step finite difference technique and alternating-direction implicit algorithm, fourth-order Range-Kutta algorithm, hybrid finite-element method/finite-difference method, and finite-element method in both space and time to achieve refractive index changes. The whole chain of processes occurring in the interaction of a focused ultrashort laser pulse with fused silica glass in prevalent conditions of micromachining applications is numerically investigated. By optimizing the numerical method and by using an adaptive mesh approach, the execution time of the program is significantly reduced so that the calculations are done at each time step in a fraction of a second. Simulation results show that the energy and duration of the input pulse are very important parameters in induced changes, but the chirp of the input pulse is not an effective parameter. Consequently, by appropriate setting of those parameters one can design a desired refractive index profile.

  11. Stable structure and optical properties of fused silica with NBOHC-E‧ defect

    NASA Astrophysics Data System (ADS)

    Lu, Peng-Fei; Wu, Li-Yuan; Yang, Yang; Wang, Wei-Zheng; Zhang, Chun-Fang; Yang, Chuang-Hua; Su, Rui; Chen, Jun

    2016-08-01

    First-principles method is used to simulate the stable structure and optical properties of a 96-atom fused silica. The preferable structure of NBOHC-E‧ (non-bridging oxygen hole center (NBOHC) and E‧ center) pair defect is predicted to be located at 2.4 Å for the Si-O bond length. The quasi-particle G0W0 calculations are performed and an accurate band gap is obtained in order to calculate the optical absorption properties. With the stretching of the Si1-O1 bond, an obvious redshift can be observed in the absorption spectrum. In the case of NBOHC-E‧ pair, the p-orbital DOS of Si1 atom will shift to the conduction band. Two obvious absorption peaks can be observed in the absorption spectrum. The calculation reproduced the peak positions of the well-known optical absorption bands. Project supported by the National Basic Research Program of China (Grant No. 2014CB643900), the Open Fund of IPOC (BUPT), the Open Program of State Key Laboratory of Functional Materials for Informatics, the National Natural Science Foundation for Theoretical Physics Special Fund “Cooperation Program” (Grant No. 11547039), and Shaanxi Provincial Institute of Scientific Research Plan Projects, China (Grant No. SLGKYQD2-05).

  12. Propagation in atmosphere of ablated material from femtosecond laser machining of fused silica

    NASA Astrophysics Data System (ADS)

    Bowman, Trevor; Canfield, Brian; Davis, Lloyd

    2014-03-01

    Femtosecond laser pulses provide a means to machine structures with small heat-affected areas through highly non-linear mechanisms that enable direct writing of nanoscale features, which can be applied for fabricating a range of devices, including micro-optics and micro-fluidics. A single, tightly focused ultrashort pulse induces extreme conditions on sub-picosecond time-scales and forms a region of expanding plasma beyond the focal region. This plasma, which typically limits the depth of the nanoscale features to create shallow craters, results in the ejection of micro/nano-particles. The generation and use of these particles have a large range of applications in nanotechnology. We have studied the propagation, in atmosphere, of micro/nano particles ejected using single pulses from a 100 fs, 800 nm laser tightly focused with either a line or spot profile near the back surface of a fused silica substrate. The substrate was translated such that a fresh portion was ablated with each pulse. Time-gated images of the ejected material were taken using an intensified charged coupled device camera with additional illumination along the axial direction. Physical mechanisms and experimental results to date will be discussed.

  13. Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel

    2006-09-01

    We suggest a method for the reproducible and efficient capillary isoelectric focusing of proteins and microorganisms in the pH gradient 3-10. The method involves the segmental injection of the simple ampholytes, the solution of the selected electrolytes, and the sample mixture of bioanalytes and carrier ampholytes to the fused silica capillaries dynamically modified by poly(ethylene glycol), PEG 4000, which is added to the catholyte, the anolyte and injected solutions. In order to receive the reproducible results, the capillaries were rinsed by the mixture of acetone/ethanol between analyses. For the tracing of the pH gradients the low-molecular-mass pI markers were used. The simple proteins and the mixed cultures of microorganisms, Saccharomyces cerevisiae CCM 8191, Escherichia coli CCM 3954, Candida albicans CCM 8180, Candida parapsilosis, Candida krusei, Staphylococcus aureus, Streptococcus agalactiae CCM 6187, Enterococcus faecalis CCM 4224, Staphylococcus epidermidis CCM 4418 and Stenotrophomonas maltophilia, were focused and separated by the method suggested. The minimum detectable number of microbial cells was 5x10(2) to 1x10(3) with on-column UV detection at 280 nm.

  14. Damage and ablation thresholds of fused-silica in femtosecond regime

    SciTech Connect

    Chimier, B.; Uteza, O.; Sanner, N.; Sentis, M.; Itina, T.; Lassonde, P.; Legare, F.; Vidal, F.; Kieffer, J. C.

    2011-09-01

    We present an experimental and numerical study of the damage and ablation thresholds at the surface of a dielectric material, e.g., fused silica, using short pulses ranging from 7 to 300 fs. The relevant numerical criteria of damage and ablation thresholds are proposed consistently with experimental observations of the laser irradiated zone. These criteria are based on lattice thermal melting and electronic cohesion temperature, respectively. The importance of the three major absorption channels (multi-photon absorption, tunnel effect, and impact ionization) is investigated as a function of pulse duration (7-300 fs). Although the relative importance of the impact ionization process increases with the pulse duration, our results show that it plays a role even at short pulse duration (<50 fs). For few optical cycle pulses (7 fs), it is also shown that both damage and ablation fluence thresholds tend to coincide due to the sharp increase of the free electron density. This electron-driven ablation regime is of primary interest for thermal-free laser-matter interaction and therefore for the development of high quality micromachining processes.

  15. Effect of a Silicone Contaminant Film on the Transmittance Properties of AR-coated Fused Silica

    NASA Technical Reports Server (NTRS)

    Boeder, Paul A.; Visentine, James T.; Shaw, Christopher G.; Carniglia, Charles K.; Ledbury, Eugene A.; Alred, John W.; Soares, Carlos E.

    2004-01-01

    We present the results of a laboratory test to determine the effects of bulk deposited, DC-704 silicone contaminant film on the transmittance properties of an anti-reflective (AR) coated fused silica optical substrate. Testing and optical measurements were performed in vacuum in the Boeing Combined Effects Test Facility (CETF). The test and measurement procedures are described herein. Measurement results are presented showing the change in transmittance characteristics as a function of contaminant deposit thickness and vacuum ultra-violet (vuv) exposure levels. Measurement results show an initial degradation in the transmittance of the contaminated sample. This is followed by a partial recovery in sample transmittance as the sample is exposed to additional VUV radiation. Transmittance results also show a loss of transmission in the ultraviolet portion of the spectrum and an increase in transmission in the infrared portion of the spectrum. These transmittance results are characteristic of thin-film interference effects. Thin-film analyses indicate that some of the observed transmittance results can be successfully modeled, but only if the contaminant film is assumed to be SiO2 rather than DC-704 silicone. Post-test Scanning Electron Microscope (SEM) scans of the test sample indicate the formation of contaminant islands and the presence of a thin uniform coating of contaminant deposit on the sample

  16. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shi-zhen; Yao, Cai-zhen; Liao, Wei; Yuan, Xiao-dong; Wang, Tao; Zu, Xiao-tao

    2016-10-01

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7-41 J/cm2) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm2) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  17. Microstructuring of fused silica using femtosecond laser pulses of various wavelengths

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Manuel; Engel, Andy; Reisse, Guenter; Weissmantel, Steffen

    2015-11-01

    Experimental results on ablation and microstructuring of fused silica (Corning 7980 HPFS Standard Grade) using femtosecond laser pulses will be presented. In particular, the ablation behavior of the material at the laser wavelengths of 775, 387 and 258 nm was investigated. The qualities of selected microstructures produced at the different wavelengths are compared with respect to roughness, crack formation and exactness. The investigations were carried out using an automated microstructuring system equipped with a femtosecond laser Clark-MXR CPA 2010 (1 mJ maximum pulse energy, 1 kHz repetition rate and 150 fs pulse duration). Layer-by-layer ablation is realized for producing 3D microstructures, where the layer thickness depends on the ablated depth per laser pulse. Those ablation depths depend on the material and the laser parameters and were determined for the three wavelengths in preparatory investigations. Therefore, the laser fluence and the pulse-to-pulse distance were varied independently. We will present the results of our fundamental studies on fs-laser ablation at the three wavelengths and show several structures, such as pyramids, half spheres and cones. Best results were obtained at 258 nm wavelength. There, the exactness was highest and the roughness of the surfaces of the structures was lowest. In addition, absolutely no crack formation occurred.

  18. Fracture Strength of Fused Silica From Photonic Signatures Around Collision Sites

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cramer, K Elliott

    2015-01-01

    Impact sites in glass affect its fracture strength. An analytical model that predicts fracture strength from grey-field polariscope (GFP) readings (photoelastic retardations) has been developed and reported in the literature. The model is suggestive that stress fields, resulting from impact damage, destablizes sites within the glass, which lead to pathways that cause strength degradation. Using data collected from fused silica specimens fabricated from outer window panes that were designed for the space shuttle, the model was tested against four categories of inflicted damage. The damage sites were cored from the window carcasses, examined with the GFP and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and the photoelastic retardation measured at the damage site in each specimen. A least-squares fit is calculated. The results are compared with the predictions from the model. A plausible single-sided NDE damage site inspection method (a version of which is planned for glass inspection in the Orion Project) that relates photoelastic retardation in glass components to its fracture strength is presented.

  19. Examination of Relationship Between Photonic Signatures and Fracture Strength of Fused Silica Used in Orbiter Windows

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon

    2011-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.

  20. Research on laser-induced damage resistance of fused silica optics by the fluid jet polishing method.

    PubMed

    Lv, Liang; Ma, Ping; Huang, Jinyong; He, Xiang; Cai, Chao; Zhu, Heng

    2016-03-20

    Laser-induced damage threshold (LIDT) is one important evaluation index for optical glasses applied in large laser instruments which are exposed to high light irradiation flux. As a new kind of precise polishing technology, fluid jet polishing (FJP) has been widely used in generating planar, spherical, and aspherical optics with high-accuracy surfaces. Laser damage resistances of fused silica optics by the FJP process are studied in this paper. Fused silica samples with various FJP parameters are prepared, and laser damage experiments are performed with 351 nm wavelength and a 5.5 ns pulse width laser. Experimental results demonstrate that the LIDT of the samples treated with FJP processes did not increase, compared to their original state. The surface quality of the samples is one factor for the decrease of LIDT. For ceria solution polished samples, the cerium element remaining is another factor of the lower LIDT. PMID:27140559

  1. Laser-induced damage of fused silica on high-power laser: beam intensity modulation, optics defect, contamination

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfeng; Sun, Mingyin; Wu, Rong; Lu, Xinqiang; Lin, Zunqi; Zhu, Jianqiang

    2015-11-01

    The wedged focus lens of fused silica, one of the final optics assembly's optics, focuses the 351 nm beam onto target and separates the residual 1053 and 527 nm light with 351 nm light. After the experiment with beam energies at 3ω range from 3 to 5KJ, and pulse shapes about 3ns, the wedged focus lens has laser-induced damage at particular area. Analysis the damage result, there are three reasons to induce these damages. These reasons are beam intensity modulation, optics defect and contamination that cause different damage morphologies. The 3ω beam intensity modulation, one of three factors, is the mostly import factor to induce damage. Here, the n2 nonlinear coefficient of fused silica material can lead to small-scale self-focusing filament because of optics thickness and beam intensity. And some damage-filaments' tails are bulk damage spots because there are subsurface scratches or metal contaminations.

  2. Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused-silica whispering-gallery microresonator

    NASA Astrophysics Data System (ADS)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2014-05-01

    We report an optical method for measuring the thickness of the water layer adsorbed onto the surface of a high-Q fused-silica microresonator. Light from a tunable diode laser operating near 1550 nm is coupled into the microresonator to excite whispering-gallery modes (WGMs). By observing thermal distortion or even bistability of the WGM resonances caused by absorption in the water layer, the contribution of that absorption to the total loss is determined. Thereby, the thickness of the water layer is found to be ˜0.1 nm (approximately one monolayer). This method is further extended to measure the desorption rate of the adsorbed water, which is roughly exponential with a decay time of ˜40 h when the fused-silica microresonator is held in a vacuum chamber at low pressure.

  3. An AC phase measuring interferometer for measuring dn/dT of fused silica and calcium fluoride at 193 nm

    SciTech Connect

    Shagam, R.N.

    1998-09-01

    A novel method for the measurement of the change in index of refraction vs. temperature (dn/dT) of fused silica and calcium fluoride at the 193 nm wavelength has been developed in support of thermal modeling efforts for the development of 193 nm-based photolithographic exposure tools. The method, based upon grating lateral shear interferometry, uses a transmissive linear grating to divide a 193 nm laser beam into several beam paths by diffraction which propagate through separate identical material samples. One diffracted order passing through one sample overlaps the undiffracted beam from a second sample and forms interference fringes dependent upon the optical path difference between the two samples. Optical phase delay due to an index change from heating one of the samples causes the interference fringes to change sinusoidally with phase. The interferometer also makes use of AC phase measurement techniques through lateral translation of the grating. Results for several samples of fused silica and calcium fluoride are demonstrated.

  4. Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering.

    PubMed

    Liao, Wenlin; Dai, Yifan; Liu, Zongzheng; Xie, Xuhui; Nie, Xuqing; Xu, Mingjin

    2016-02-22

    Formation of subsurface damage has an inseparable relationship with microscopic material behaviors. In this work, our research results indicate that the formation process of subsurface damage often accompanies with the local densification effect of fused silica material, which seriously influences microscopic material properties. Interestingly, we find ion beam sputtering (IBS) is very sensitive to the local densification, and this microscopic phenomenon makes IBS as a promising technique for the detection of nanoscale subsurface damages. Additionally, to control the densification effect and subsurface damage during the fabrication of high-performance optical components, a combined polishing technology integrating chemical-mechanical polishing (CMP) and ion beam figuring (IBF) is proposed. With this combined technology, fused silica without subsurface damage is obtained through the final experimental investigation, which demonstrates the feasibility of our proposed method.

  5. Performance of fused silica as a filter in a wide field-of-view earth radiation budget radiometer

    NASA Technical Reports Server (NTRS)

    Cooper, J. E.; Luther, M. R.

    1980-01-01

    The thermal response of the fused silica dome filter in an earth radiation budget WFOV shortwave channel conceptual design and the impact of that response on the channel measurement, is described. Attention is given to results from design definition and performance analysis studies. Consideration is given to problems associated with achieving the desired levels of confidence in a high accuracy filtered earth radiation budget WFOV radiometer. Finally, design approaches, ground calibration, and data reduction techniques that minimize measurement uncertainties are covered.

  6. Performance of fused silica as a filter in a wide field-of-view earth radiation budget radiometer

    NASA Astrophysics Data System (ADS)

    Cooper, J. E.; Luther, M. R.

    1980-06-01

    The thermal response of the fused silica dome filter in an earth radiation budget WFOV shortwave channel conceptual design and the impact of that response on the channel measurement, is described. Attention is given to results from design definition and performance analysis studies. Consideration is given to problems associated with achieving the desired levels of confidence in a high accuracy filtered earth radiation budget WFOV radiometer. Finally, design approaches, ground calibration, and data reduction techniques that minimize measurement uncertainties are covered.

  7. Supercontinuum spectrum in IR Bessel-Gauss and Gauss pulsed beam filament under anomalous group velocity dispersion in fused silica

    NASA Astrophysics Data System (ADS)

    Dokukina, A. E.; Smetanina, E. O.; Kompanets, V. O.; Chekalin, S. V.; Kandidov, V. P.

    2014-09-01

    Paper concerns experimental and numerical investigation on supercontinuum emission in the process of femtosecond beam filamentation under different geometrical focusing in presence of anomalous group velocity dispersion in fused silica. It was shown that energy of supercontinuum visible part increases discretely with increasing of input laser pulse energy. It is connected with light bullets formation. Also it was found that energy of supercontinuum visible part connected with each bullet doesn't depend on focusing geometry.

  8. Optical absorption in fused silica at elevated temperatures during 1.5-MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Smith, A. B.

    1972-01-01

    An experimental determination of the optical transmission of Corning 7940 UV and Suprasil 1 and 2 fused silica has been made during 1.5-MeV electron bombardment. The fused silica reached temperatures ranging from 150 to 1000 C. The Lewis Research Center dynamitron provided electron current densities which corresponded to a dose rate of 2.6 to 20 Mrad/sec. The irradiation induced absorption was measured at 215.0, 270.0, and 450.0 nm (2150, 2700, 4500 A). The length of each irradiation was sufficient so that an equilibrium between radiation induced coloration and high temperature annealing was reached. The experimental results indicate a significant optical absorption, with values of the induced absorption coefficient at 215.0 nm (2150 A) of 14.5 to 2.2/cm, at 270.0 nm (2700 A) of 9.7 to 3.0/cm and at 450.0 nm (4500 A) of 3.7 to 0.5/cm. This would make the use of fused silica as the separating wall material in the nuclear light bulb propulsion concept questionable.

  9. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Sobaszek, M.; Gnyba, M.; Ryl, J.; Gołuński, Ł.; Smietana, M.; Jasiński, J.; Caban, P.; Bogdanowicz, R.

    2016-11-01

    This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 1010 cm-2. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp3/sp2 ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0-2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  10. Defect characterization on superpolished fused silica surfaces polished for high-power-laser applications at 355 nm (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Sheehan, Lynn M.; Wu, Zhouling

    1999-04-01

    Laser damage threshold of super-polished fused silica at 355-nm is believed to be limited by localized defects associated with surface/substrate damage and contamination caused by the polishing process. Characterization of both the defects and their correlation with laser damage present a technical challenge: most of the existing characterization methods do not directly address absorption and thermo- mechanical response issues relevant to laser damage. In this work a dark-field photothermal microscopy (DPTM) with micron-level resolution is used for localization and identification of damage precursors for various fused silica surfaces. The experimental system uses the multiple UV lines from an Argon-ion laser. The samples studied are witness fused silica samples from various polishing vendors. In addition to DPTM, some of the samples are also studied using high-resolution optical microscopy and total internal reflection microscopy. The characterization result are then compared with laser damage testing data at 355-nm with a 7.5-ns pulse width. It is shown that while the DPTM data ca be correlated between damaged sites and DPTM defects is not obvious.

  11. Signal Enhancement of Abiotically-Synthesized RNA Oligonucleotides and other Biopolymers using Unmodified Fused Silica in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Cassidy, Lauren M.; Dong, Yingying; Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.; McGown, Linda B.

    2011-06-01

    Metal is the standard desorption platform for MALDI-MS but other surfaces have been shown to offer advantages for particular types of analytes or applications. One such substrate is fused silica, which has been employed for matrix-free detection of low mass analytes and for affinity MALDI-MS in which binding ligands are immobilized at the fused silica surface. The present work reports improved MALDI-MS detection of RNA oligonucleotides, including polyA, polyU, and polyA/U, at the high end of the mass range when unmodified fused silica is used instead of stainless steel as the MALDI target. The RNA oligonucleotides were abiotically synthesized from activated monomers on catalytic clay surfaces. Further investigation found enhanced signals as well for other anionic biopolymers, including DNA oligonucleotides and heparin. Enhancement also was observed for dextran, which is neutral, indicating that the effect is not restricted to anionic biopolymers. Among more general analytical applications, the results are particularly relevant to rapid screening of abiotic RNA polymerization toward elucidating pathways to life on Earth.

  12. High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies.

    PubMed

    Li, C H; Ju, X; Jiang, X D; Huang, J; Zhou, X D; Zheng, Z; Wu, W D; Zheng, W G; Li, Z X; Wang, B Y; Yu, X H

    2011-03-28

    We report on the characterization of modifications in fused silica after exposure to low fluence (2 J/cm2) 355 nm laser at repetition frequencies of 1 Hz, 5 Hz and 10 Hz. Synchrotron based XRF spectroscopy is employed to study concentration variation of metal inclusions in the surface layer. Positron annihilation lifetime spectroscopy is used to probe atomic size defects variation in bulk silica. FT-IR is used to characterize changes of bond length and angle of Si-O-Si covalent bond of irradiated silica. Compared to the basic frequency, the big loss of cerium and iron concentration, the size enlargement of vacancy cluster and the decrease of Si-O-Si covalent bond length after 10 Hz laser irradiation are illustrated by our data. These tiny modifications provide important data to investigate laser damage mechanism. PMID:21451672

  13. High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies.

    PubMed

    Li, C H; Ju, X; Jiang, X D; Huang, J; Zhou, X D; Zheng, Z; Wu, W D; Zheng, W G; Li, Z X; Wang, B Y; Yu, X H

    2011-03-28

    We report on the characterization of modifications in fused silica after exposure to low fluence (2 J/cm2) 355 nm laser at repetition frequencies of 1 Hz, 5 Hz and 10 Hz. Synchrotron based XRF spectroscopy is employed to study concentration variation of metal inclusions in the surface layer. Positron annihilation lifetime spectroscopy is used to probe atomic size defects variation in bulk silica. FT-IR is used to characterize changes of bond length and angle of Si-O-Si covalent bond of irradiated silica. Compared to the basic frequency, the big loss of cerium and iron concentration, the size enlargement of vacancy cluster and the decrease of Si-O-Si covalent bond length after 10 Hz laser irradiation are illustrated by our data. These tiny modifications provide important data to investigate laser damage mechanism.

  14. Imaging the early material response associated with exit surface damage in fused silica

    SciTech Connect

    Demos, S G; Raman, R N; Negres, R A

    2010-11-05

    The processes involved at the onset of damage initiation on the surface of fused silica have been a topic of extensive discussion and thought for more than four decades. Limited experimental results have helped develop models covering specific aspects of the process. In this work we present the results of an experimental study aiming at imaging the material response from the onset of the observation of material modification during exposure to the laser pulse through the time point at which material ejection begins. The system involves damage initiation using a 355 nm pulse, 7.8 ns FWHM in duration and imaging of the affected material volume with spatial resolution on the order of 1 {micro}m using as strobe light a 150 ps laser pulse that is appropriately timed with respect to the pump pulse. The observations reveal that the onset of material modification is associated with regions of increased absorption, i.e., formation of an electronic excitation, leading to a reduction in the probe transmission to only a few percent within a time interval of about 1 ns. This area is subsequently rapidly expanding with a speed of about 1.2 {micro}m/ns and is accompanied by the formation and propagation of radial cracks. These cracks appear to initiate about 2 ns after the start of the expansion of the modified region. The damage sites continue to grow for about 25 ns but the mechanism of expansion after the termination of the laser pulse is via formation and propagation of lateral cracks. During this time, the affected area of the surface appears to expand forming a bulge of about 40 {micro}m in height. The first clear observation of material cluster ejection is noted at about 50 ns delay.

  15. Imaging of single-chromophore molecules in aqueous solution near a fused-silica interface

    NASA Astrophysics Data System (ADS)

    Davis, Lloyd M.; Parker, Wesley C.; Ball, David A.; Williams, John G.; Bashford, Greg R.; Sheaff, Pamela; Eckles, Robert D.; Lamb, Don T.; Middendorf, Lyle R.

    2001-04-01

    Single molecules of unconjugated Bodipy-Texas Red (BTR), BTR-dimer, and BTR conjugated to cysteine, in aqueous solutions are imaged using total-internal-reflection excitation and through-sample collection of fluorescence onto an intensified CCD camera, or a back-illuminated frame transfer CCD. The sample excitation is provided by the beam from a continuous-wave krypton ion laser, or a synchronously-pumped dye laser, operating at 568 nm. In order to essentially freeze molecular motion due to diffusion and thereby enhance image contrast, the laser beam is first passed through a mechanical shutter, which yields a 3-millisecond laser exposure for each camera frame. The laser beam strikes the fused-silica/sample interface at an angle exceeding the critical angle by about 1 degree. The resultant evanescent wave penetrates into the sample a depth of approximately 0.3 microns. Fluorescence from the thin plane of illumination is then imaged onto the camera by a water immersion apochromat (NA 1.2, WD 0.2mm). A Raman notch filter blocks Rayleigh and specular laser scatter and a band-pass-filter blocks most Raman light scatter that originates from the solvent. Single molecules that have diffused into the evanescent zone at the time of laser exposure yield near-diffraction-limited Airy disk images with diameters of ~5 pixels. While most molecules diffuse out of the evanescent zone before the next laser exposure, stationary or slowly moving molecules persisting over several frames, and blinking of such molecules are occasionally observed.

  16. Sub-surface mechanical damage distributions during grinding of fused silica

    SciTech Connect

    Suratwala, T I; Wong, L L; Miller, P E; Feit, M D; Menapace, J A; Steele, R A; Davis, P A; Walmer, D

    2005-11-28

    The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) formed during standard grinding processes has been investigated on fused silica glass. The SSD distributions of the ground surfaces were determined by: (1) creating a shallow (18-108 {micro}m) wedge/taper on the surface by magneto-rheological finishing; (2) exposing the SSD by HF acid etching; and (3) performing image analysis of the observed cracks from optical micrographs taken along the surface taper. The observed surface cracks are characterized as near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD depth distributions are typically described by a single exponential distribution followed by an asymptotic cutoff in depth (c{sub max}). The length of the trailing indent is strongly correlated with a given process. Using established fracture indentation relationships, it is shown that only a small fraction of the abrasive particles are being mechanically loaded and causing fracture, and it is likely the larger particles in the abrasive particle size distribution that bear the higher loads. The SSD depth was observed to increase with load and with a small amount of larger contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth distribution has been related to the SSD length distribution to gain insight into ''effective'' size distribution of particles participating in the fracture. Both the average crack length and the surface roughness were found to scale linearly with the maximum SSD depth (c{sub max}). These relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth and to identify the process that caused the SSD. In certain applications such as high intensity lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that absorb the high intensity laser light and lead to subsequent laser-induced surface damage. Hence a more scientific

  17. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses

    SciTech Connect

    Yu Xiaoming; Zeng Bin; Liao Yang; He Fei; Cheng Ya; Xu Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2011-03-01

    We report on experimental study on chemical etch selectivity of fused silica irradiated by femtosecond laser with either linear or circular polarization in a wide range of pulse energies. The relationships between the etch rates and pulse energies are obtained for different polarization states, which can be divided into three different regions. A drop of the etch rate for high pulse energy region is observed and the underlying mechanism is discussed. The advantage of using circularly polarized laser is justified owing to its unique capability of providing a 3D isotropic etch rate.

  18. Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation

    SciTech Connect

    Siegel, J.; Puerto, D.; Gawelda, W.; Bachelier, G.; Solis, J.; Ehrentraut, L.; Bonse, J.

    2007-08-20

    We have investigated the temporal and spatial evolution of the ablation process induced in fused silica upon irradiation with single 120 fs laser pulses at 800 nm. Time-resolved microscopy images of the surface reflectivity at 400 nm reveal the existence of a transient plasma distribution with annular shape surrounding the visible ablation crater. The material in this annular zone shows an increased reflectivity after irradiation, consistent with a local refractive index increase of approximately 0.01. White light interferometry measurements indicate a shallow surface depression in this outer region, most likely due to material densification.

  19. Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy

    SciTech Connect

    Matthews, M; Vignes, R; Cooke, J; Yang, S; Stolken, J

    2009-12-15

    Fused silica micro-structural changes associated with localized 10.6 {micro}m CO{sub 2} laser heating are reported. Spatially-resolved shifts in the high-frequency asymmetric stretch transverse-optic (TO) phonon mode of SiO{sub 2} were measured using confocal Raman microscopy, allowing construction of axial fictive temperature (T{sub f}) maps for various laser heating conditions. A Fourier conduction-based finite element model was employed to compute on-axis temperature-time histories, and, in conjunction with a Tool-Narayanaswamy form for structural relaxation, used to fit T{sub f}(z) profiles to extract relaxation parameters. Good agreement between the calculated and measured T{sub f} was found, yielding reasonable values for relaxation time and activation enthalpy in the laser-modified silica.

  20. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    SciTech Connect

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies.

  1. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching

    PubMed Central

    Ye, Xin; Jiang, Xiaodong; Huang, Jin; Geng, Feng; Sun, Laixi; Zu, Xiaotao; Wu, Weidong; Zheng, Wanguo

    2015-01-01

    Fused silica subwavelength structures (SWSs) with an average period of ~100 nm were fabricated using an efficient approach based on one-step self-masking reactive ion etching. The subwavelength structures exhibited excellent broadband antireflection properties from the ultraviolet to near-infrared wavelength range. These properties are attributable to the graded refractive index for the transition from air to the fused silica substrate that is produced by the ideal nanocone subwavelength structures. The transmittance in the 400–700 nm range increased from approximately 93% for the polished fused silica to greater than 99% for the subwavelength structure layer on fused silica. Achieving broadband antireflection in the visible and near-infrared wavelength range by appropriate matching of the SWS heights on the front and back sides of the fused silica is a novel strategy. The measured antireflection properties are consistent with the results of theoretical analysis using a finite-difference time-domain (FDTD) method. This method is also applicable to diffraction grating fabrication. Moreover, the surface of the subwavelength structures exhibits significant superhydrophilic properties. PMID:26268896

  2. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Jiang, Xiaodong; Huang, Jin; Geng, Feng; Sun, Laixi; Zu, Xiaotao; Wu, Weidong; Zheng, Wanguo

    2015-08-01

    Fused silica subwavelength structures (SWSs) with an average period of ~100 nm were fabricated using an efficient approach based on one-step self-masking reactive ion etching. The subwavelength structures exhibited excellent broadband antireflection properties from the ultraviolet to near-infrared wavelength range. These properties are attributable to the graded refractive index for the transition from air to the fused silica substrate that is produced by the ideal nanocone subwavelength structures. The transmittance in the 400-700 nm range increased from approximately 93% for the polished fused silica to greater than 99% for the subwavelength structure layer on fused silica. Achieving broadband antireflection in the visible and near-infrared wavelength range by appropriate matching of the SWS heights on the front and back sides of the fused silica is a novel strategy. The measured antireflection properties are consistent with the results of theoretical analysis using a finite-difference time-domain (FDTD) method. This method is also applicable to diffraction grating fabrication. Moreover, the surface of the subwavelength structures exhibits significant superhydrophilic properties.

  3. Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned Carbon Dioxide Laser

    SciTech Connect

    Bass, I L; Draggoo, V; Guss, G M; Hackel, R P; Norton, M A

    2006-04-06

    Economic operation of the National Ignition Facility at the Lawrence Livermore National Laboratory depends on controlling growth of laser damage in the large, high cost optics exposed to UV light at 351 nm. Mitigation of the growth of damage sites on fused silica surfaces greater than several hundred microns in diameter has been previously reported by us using galvanometer scanning of a tightly focused 10.6 {micro}m CO{sub 2} laser spot over an area encompassing the laser damage. Further investigation revealed that fused silica vapor re-deposited on the surface as ''debris'' led to laser damage at unexpectedly low fluences when exposed to multiple laser shots at 351 nm. Additionally, laser power and spatial mode fluctuations in the mitigation laser led to poor repeatability of the process. We also found that the shape of the mitigation pit could produce downstream intensification that could damage other NIF optics. Modifications were made to both the laser system and the mitigation process in order to address these issues. Debris was completely eliminated by these changes, but repeatability and downstream intensification issues still persist.

  4. Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica

    SciTech Connect

    Adams, J J; Bolourchi, M; Bude, J D; Guss, G M; Matthews, M J; Nostrand, M C

    2010-10-26

    We present results from a study to determine an acceptable CO{sub 2} laser-based non-evaporative mitigation protocol for use on surface damage sites in fused-silica optics. A promising protocol is identified and evaluated on a set of surface damage sites created under ICF-type laser conditions. Mitigation protocol acceptability criteria for damage re-initiation and growth, downstream intensification, and residual stress are discussed. In previous work, we found that a power ramp at the end of the protocol effectively minimizes the residual stress (<25 MPa) left in the substrate. However, the biggest difficulty in determining an acceptable protocol was balancing between low re-initiation and problematic downstream intensification. Typical growing surface damage sites mitigated with a candidate CO{sub 2} laser-based mitigation protocol all survived 351 nm, 5 ns damage testing to fluences >12.5 J/cm{sup 2}. The downstream intensification arising from the mitigated sites is evaluated, and all but one of the sites has 100% passing downstream damage expectation values. We demonstrate, for the first time, a successful non-evaporative 10.6 {micro}m CO{sub 2} laser mitigation protocol applicable to fused-silica optics used on fusion-class lasers like the National Ignition Facility (NIF).

  5. Combined Advanced Finishing and UV-Laser Conditioning for Producing UV-Damage-Resistant Fused Silica Optics

    SciTech Connect

    Menapace, J A; Penetrante, B; Golini, D; Slomba, A; Miller, P E; Parham, T; Nichols, M; Peterson, J

    2001-11-01

    Laser induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. Foe example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3-nsec with average fluences of 8 J/cm{sup 2} and peak fluences between 12 and 15 J/cm{sup 2}. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3{omega}), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damage initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3{omega} damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3{omega} damage performance, polishing layer contamination, and optical subsurface damage.

  6. Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Varkentina, N.; Sanner, N.; Lebugle, M.; Sentis, M.; Utéza, O.

    2013-11-01

    Ablation of fused silica by a single femtosecond laser pulse of 500 fs pulse duration is investigated from the perspective of efficiency of incident photons to remove matter. We measure the reflected and transmitted fractions of the incident pulse energy as a function of fluence, allowing us to recover the evolution of absorption at the material surface. At the ablation threshold fluence, 25% of incident energy is absorbed. At high fluences, this ratio saturates around 70% due to the appearance of a self-triggered plasma mirror (or shielding) effect. By using the energy balance retrieved experimentally and measurements of the ablated volume, we show that the amount of absorbed energy is far above the bonding energy of fused silica at rest and also above the energy barrier to ablate the material under non-equilibrium thermodynamic conditions. Our results emphasize the crucial role of transient plasma properties during the laser pulse and suggest that the major part of the absorbed energy has been used to heat the plasma formed at the surface of the material. A fluence range yielding an efficient and high quality ablation is also defined, which makes the results relevant for femtosecond micromachining processes.

  7. Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm

    NASA Astrophysics Data System (ADS)

    Cao, Hongchao; Zhou, Changhe; Feng, Jijun; Lv, Peng; Ma, Jianyong

    2010-11-01

    We describe polarization-independent triangular-groove fused-silica gratings illuminated by incident lights in the C + L bands as (de)multiplexers for dense wavelength division multiplexing (DWDM) application. The physical mechanisms of the grating can be shown clearly by using the simplified modal method with consideration of the corresponding accumulated average phase difference of two excited propagating grating modes, which illustrates that the grating structure depends mainly on the ratio of the average effective indices difference to the incident wavelength. Exact grating profile is optimized by using the rigorous coupled-wave analysis (RCWA). With the optimized grating parameters, the grating exhibits diffraction efficiencies of greater than 90% under TE- and TM-polarized incident lights for 101 nm spectral bandwidths (1500-1601 nm) and it can reach an efficiency of more than 99% for both polarizations at a wavelength of 1550 nm. Without loss of metal absorption, coating of dielectric film layers, the designed triangular-groove fused-silica grating should be of great interest for DWDM application.

  8. Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.

    2016-06-01

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700-1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO2 laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO2 laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330-1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample

  9. Infrared, spectral, directional-hemispherical reflectance of fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating

    NASA Astrophysics Data System (ADS)

    Persky, Merle J.; Szczesniak, Martin

    2008-04-01

    Infrared, spectral, directional-hemispherical reflectivity measurements of polished fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating are provided. The reflectance was measured with an estimated accuracy of 0.01 to 0.02 units and a precision of 0.005 units. All the surfaces were measured at ambient temperatures. Additionally, the chrome oxide ceramic particle surface was measured at 486 K and the Pyromark 2500 at four temperatures to 877 K. Polarization measurements are also provided for fused silica, Duraflect, chrome oxide ceramic particle surface, and Pyromark 2500 paint. Separate diffuse and specular reflectance components for the Duraflect and chrome oxide ceramic surfaces are included. Fresnel-based predictions for fused silica parallel and perpendicular polarized reflections are compared to measurements. It is notable that the Pyromark 2500 and chrome oxide ceramic particle surfaces exhibit a significant lack of manufacturing repeatability.

  10. The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica

    SciTech Connect

    Wong, L; Suratwala, T; Feit, M D; Miller, P E; Steele, R A

    2008-04-03

    The effects of HF/NH{sub 4}F, wet chemical etching on the morphology of individual surface fractures (indentations, scratches) and of an ensemble of surface fractures (ground surfaces) on fused silica glass has been characterized. For the individual surface fractures, a series of static or dynamic (sliding) Vickers and Brinnell indenters were used to create radial, lateral, Hertzian cone and trailing indentation fractures on a set of polished fused silica substrates which were subsequently etched. After short etch times, the visibility of both surface and subsurface cracks is significantly enhanced when observed by optical microscopy. This is attributed to the removal of the polishing-induced Bielby layer and the increased width of the cracks following etching allowing for greater optical scatter at the fracture interface. The removal of material during etching was found to be isotropic except in areas where the etchant has difficulty penetrating or in areas that exhibit significant plastic deformation/densification. Isolated fractures continue to etch, but will never be completely removed since the bottom and top of the crack both etch at the same rate. The etching behavior of ensembles of closely spaced cracks, such as those produced during grinding, has also been characterized. This was done using a second set of fused silica samples that were ground using either fixed or loose abrasives. The resulting samples were etched and both the etch rate and the morphology of the surfaces were monitored as a function of time. Etching results in the formation of a series of open cracks or cusps, each corresponding to the individual fractures originally on the surface of the substrate. During extended etching, the individual cusps coalesce with one another, providing a means of reducing the depth of subsurface damage and the peak-to-valley roughness. In addition, the material removal rate of the ground surfaces was found to scale with the surface area of the cracks as a

  11. Optical diagnostics of the laser-induced phase transformations in thin germanium films on silicon, sapphire, and fused silica

    NASA Astrophysics Data System (ADS)

    Novikov, H. A.; Batalov, R. I.; Bayazitov, R. M.; Faizrakhmanov, I. A.; Ivlev, G. D.; Prokop'ev, S. L.

    2015-03-01

    The in-situ procedure is used to study the modification of thin (200-600 nm) germanium films induced by nanosecond pulses of a ruby laser. The films are produced using the ion-beam or magnetron sputtering on single-crystalline silicon (Si), sapphire (Al2O3), and fused silica (α-SiO2) substrates. The results on the dynamics of the laser-induced processes are obtained using the optical probing of the irradiated region at wavelengths of λ = 0.53 and 1.06 μm. The results of probing make it possible to determine the threshold laser energy densities that correspond to the Ge and Si melting and the generation of the Ge ablation plasma versus the amount of deposited Ge and thermophysical parameters of the substrate. The reflection oscillograms are used to obtain the dependences of the melt lifetime on the laser-pulse energy density.

  12. Transmittance and reflectance of crystalline quartz and highand low-water content fused silica from 2 microns to 1 mm

    NASA Technical Reports Server (NTRS)

    Heaney, J. B.; Stewart, K. P.; Hass, G.

    1983-01-01

    The transmittances and reflectances of cultured crystalline quartz, Suprasil, Suprasil W, and Infrasil were compared over the wavelength region from 2 to 1000 microns. The high-water content of Suprasil and the low-water content of cultured crystalline quartz, Suprasil W, and Infrasil were determined by their transmittances measured at 2.73 microns where water content causes high absorption in optical materials. The fact that the fused silicas, both with high- and low-water content, had identical far-IR transmittances and that their transmittances were greatly inferior to that of crystalline quartz led to the conclusion that their inferior transmittance is due to their amorphous structure and not to their water content.

  13. An AFM determination of the effects on surface roughness caused by cleaning of fused silica and glass substrates in the process of optical biosensor preparation.

    PubMed

    Henke, Lisa; Nagy, Noemi; Krull, Ulrich J

    2002-06-01

    The covalent attachment of organic films and of biological molecules to fused silica and glass substrates is important for many applications. For applications such as biosensor development, it is desired that the immobilised molecules be assembled in a uniform layer on the surface so as to provide for reproducibility and speed of surface interactions. For optimal derivatisation the surface must be appropriately cleaned to remove contamination, to create surface attachment sites such as hydroxyl groups, and to control surface roughness. The irregularity of the surface can be significant in defining the integrity and density of immobilised films. Numerous cleaning methods exist for fused silica and glass substrates and these include gas plasmas, and combinations of acids, bases and organic solvents that are allowed to react at varying temperatures. For many years, we have used a well established method based on a combination of washing with basic peroxide followed by acidic peroxide to clean and hydroxylate the surface of fused silica and glass substrates before oligonucleotide immobilisation. Atomic force microscopy (AFM) has been used to evaluate the effect of cleaning on surface roughness for various fused silica and glass samples. The results indicate that surface roughness remains substantial after use of this common cleaning routine, and can provide a surface area that is more than 10% but less than 30% larger than anticipated from geometric considerations of a planar surface.

  14. Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica

    SciTech Connect

    Shen, Chao; Xu, Zhongjie; Chambonneau, Maxime E-mail: jiangtian198611@163.com; Cheng, Xiang'ai; Jiang, Tian E-mail: jiangtian198611@163.com

    2015-09-14

    Employing a pump-probe polarization-based two-frame shadowgraphy setup, the formation of filamentary damage induced in bulk fused silica by a nanosecond pulse at 1064 nm is investigated with a picosecond probe. Three different phases are exhibited in the damage experiments. The first phase is the formation of a micrometric plasma channel along the laser direction during the beginning of the pulse likely caused by multi-photon ionization. This channel exhibits growth during ∼400 ps, and the newly grown plasma is discrete. Then, during the end of the pulse, this channel evolves into a tadpole-like morphology showing an elliptical head upstream the laser flux followed by a thin tail. This observed asymmetry is attributed to shielding effects caused by both the plasma and hot modified silica. Once the damage shows its almost final morphology, a last phase consists in the launch of a pressure wave enlarging it after the laser pulse. The physical mechanisms that might be involved in the formation of plasma channels are discussed. The experimental data are first confronted to the moving breakdown model which overestimates the filamentary damage length. Finally, taking into account the temporal shape of the laser pulses, the coupling between Kerr-induced self-focusing and stimulated Brillouin scattering is discussed to interpret the observations.

  15. Thermo-mechanical simulations of CO2 laser-fused silica interactions

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Hébert, D.; Combis, P.; Rullier, J.-L.

    2016-03-01

    CO2 laser heating of silica glass is used in many scientific and industrial applications. Particularly, localized CO2 laser heating of silica glass has demonstrated its ability to mitigate surface damage on optics used for high power laser applications. To develop such applications, the control of temperature, heat affected area, and resulting mechanical stresses are critical. Therefore, it is necessary to understand the silica transformation, the material ejection, and the thermo-mechanical stresses induced by the laser heating and subsequent cooling. In this paper, we detail the development of comprehensive thermo-mechanical numerical simulations of these physical processes, based on finite-element method. The approach is developed for 2D or 3D cases to tackle the case of a moving beam at the surface of the sample, and we particularly discuss the choice of the different parameters based on bibliographic inputs. The thermal and mechanical numerical results have been compared to different dedicated experimental studies: infrared thermography measurements at the surface of the irradiated area, optical profilometry measurements of the laser-processed sites, and photo-elastic measurements. Very consistent results are obtained between numerical and experimental results for the description of the temperature gradients, the material ejection, and the residual stresses.

  16. Study of CO2 laser smoothing of surface roughness in fused silica

    SciTech Connect

    Shen, N; Matthews, J; Fair, J E; Britten, J A; Nguyen, H T; Cooke, D; Elhadj, S; Henshaw, D; Guss, G M; Guss, G M; Yang, T

    2009-11-03

    Small micrometer-sized roughness on optical surfaces, caused by laser damage and/or redeposition of laser ablated material, can cause local electric field intensification which may lead to damage initiation both on the optics and/or downstream. We examined the smoothing of etched periodic surface structures on SiO{sub 2} substrate with 10.6 {micro}m CO{sub 2} laser using atomic force microscopy. The characteristic surface tension driven mass flow of the glass under different laser parameters were simulated using computational fluid dynamics and correlated with experimental results. We found that during CO{sub 2} laser polishing the estimate viscosity of the silica glass appears to be higher than typical literature values measured at a temperature similar to the laser heating conditions. This discrepancy can be explained by the observation that at high temperature, a significant portion of the hydroxyl content in the layer of heated silica glass can diffuse out resulting in a much stiffer glass.

  17. Methods for Mitigating Growth of Laser-Initiated Surface Damage on Fused Silcia Optics at 351nm

    SciTech Connect

    Hrubesh, L W; Norton, M A; Molander, W A; Donohue, E E; Maricle, S M; Penetrante, B M; Brusasco, R M; Grundler, W; Butler, J A; Carr, J W; Hill, R M; Summers, L J; Feit, M D; Rubenchik, A; Key, M H; Wegner, P J; Burnham, A K; Hackel, L A; Kozlowski, M R

    2001-12-12

    We report a summary of the surface damage, growth mitigation effort at 351nm for polished fused silica optics. The objective was to experimentally validate selected methods that could be applied to pre-initiated or retrieved-from-service optics, to stop further damage growth. A specific goal was to obtain sufficient data and information on successful methods for fused silica optics to select a single approach for processing large aperture, fused-silica optics used in high-peak-power laser applications. This paper includes the test results and the evaluation thereof, for several mitigation methods for fused silica surfaces. The mitigation methods tested in this study are wet chemical etching, cold plasma etching, CW-CO{sub 2} laser processing, and micro-flame torch processing. We found that CW-CO{sub 2} laser processing produces the most significant and consistent results to halt laser-induced surface damage growth on fused silica. We recorded successful mitigation of the growth of laser-induced surface damage sites as large as 0.5mm diameter, for 1000 shots at 351nm and fluences in the range of 8 to 13J/cm{sup 2}, {approx}11ns pulse length. We obtained sufficient data for elimination of damage growth using CO{sub 2} laser processing on sub-aperture representative optics, to proceed with application to large aperture ({approx}40 x 40cm{sup 2}) fused silica.

  18. Defects Induced in Fused Silica by High Power UV Laser Pulses at 355 nm

    SciTech Connect

    Stevens-Kalceff, M A; Stesmans, A; Wong, J

    2001-03-23

    Point defects induced in high quality optical-grade based silica by high power (>30 J/cm{sup 2}) 355 nm laser pulses have been investigated to elucidate the nature of laser damage in transparent optics designed for use at the National Ignition Facility (NIF). Six defects have been identified: the NBOHC (non-bridging oxygen hole center), a STE (self-trapped exciton), an ODC (oxygen-deficient center), interstitial oxygen, the E'{sub {gamma}}, and E'{sub 74}. The former four defects were identified and spatially resolved in the damage craters using cathodoluminescence (CL) microanalysis (spectroscopy and microscopy). The latter two defects were identified using ESR spectroscopy at cryogenic temperatures. These defects are unlikely to be a prime factor in damage growth by subsequent laser pulses. Their concentration is too low to effect a high enough temperature rise by a volume absorption mechanism.

  19. Comparing the use of 4.6 um lasers versus 10.6 um lasers for mitigating damage site growth on fused silica surfaces

    SciTech Connect

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2010-10-21

    The advantage of using mid-infrared (IR) 4.6 {micro}m lasers, versus far-infrared 10.6 {micro}m lasers, for mitigating damage growth on fused silica is investigated. In contrast to fused silica's high absorption at 10.6 {micro}m, silica absorption at 4.6 {micro}m is two orders of magnitude less. The much reduced absorption at 4.6 {micro}m enables deep heat penetration into fused silica when it is heated using the mid-IR laser, which in turn leads to more effective mitigation of damage sites with deep cracks. The advantage of using mid-IR versus far-IR laser for damage growth mitigation under non-evaporative condition is quantified by defining a figure of merit (FOM) that relates the crack healing depth to laser power required. Based on our FOM, we show that for damage cracks up to at least 500 {micro}m in depth, mitigation using a 4.6 {micro}m mid-IR laser is more efficient than mitigation using a 10.6 {micro}m far-IR laser.

  20. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing

    SciTech Connect

    Suratwala, T I; Steele, R; Feit, M D; Wong, L; Miller, P E; Menapace, J A; Davis, P J

    2007-05-02

    The distribution and characteristics of surface cracks (i.e., sub-surface damage or scratching) on fused silica formed during grinding/polishing resulting from the addition of rogue particles in the base slurry has been investigated. Fused silica samples (10 cm diameter x 1 cm thick) were: (1) ground by loose abrasive grinding (alumina particles 9-30 {micro}m) on a glass lap with the addition of larger alumina particles at various concentrations with mean sizes ranging from 15-30 {micro}m, or (2) polished (using 0.5 {micro}m cerium oxide slurry) on various laps (polyurethanes pads or pitch) with the addition of larger rogue particles (diamond (4-45 {micro}m), pitch, dust, or dried Ceria slurry agglomerates) at various concentrations. For the resulting ground samples, the crack distributions of the as-prepared surfaces were determined using a polished taper technique. The crack depth was observed to: (1) increase at small concentrations (>10{sup -4} fraction) of rogue particles; and (2) increase with rogue particle concentration to crack depths consistent with that observed when grinding with particles the size of the rogue particles alone. For the polished samples, which were subsequently etched in HF:NH{sub 4}F to expose the surface damage, the resulting scratch properties (type, number density, width, and length) were characterized. The number density of scratches increased exponentially with the size of the rogue diamond at a fixed rogue diamond concentration suggesting that larger particles are more likely to lead to scratching. The length of the scratch was found to increase with rogue particle size, increase with lap viscosity, and decrease with applied load. At high diamond concentrations, the type of scratch transitioned from brittle to ductile and the length of the scratches dramatically increased and extended to the edge of the optic. The observed trends can explained semi-quantitatively in terms of the time needed for a rogue particle to penetrate into a

  1. Laser damage performance of fused silica optical componets measured on the beamlet laser at 35nm

    SciTech Connect

    Kozlowski, M R; Maricle, S; Mouser, R; Parham, T; Schwartz, S; Wegner, P; Weiland, T

    1998-12-22

    A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL (aperture: 34 cm x 34 cm). Three prototype NIF focus lenses were exposed to 351 nm pulses (1.5 ns or 3 ns) during four experimental campaigns, each consisting of 23 to 38 pulses at NIF relevant fluences. Each lens was sol-gel AR coated and all laser exposures were performed in a vacuum environment. Through inspections of the lens before, during and after the campaigns, pulse-to-pulse damage growth rates were measured for damage initiating both on the surfaces and at bulk inclusions. Radial growth rates measured for rear surface damage was typically 10x higher than that measured in the bulk or at the front surface. No significant correlation of growth rate to precursor type was indicated. For 5 J/cm², 3 ns pulses the typical radial growth rate was nominally 20 µm/pulse. Average growth rates measured on three lenses made by two manufacturers were in good agreement. While the growth rate clearly increased with fluence, the data obtained was insufficient to quantify the dependence. The growth rates reported here were 20x-50x higher than values predicted from off-line studies of bare surfaces in air.

  2. Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Zheng, Wanguo; Zhu, Qihua; Chen, Jun; Wang, B. Y.; Ju, Xin

    2016-10-01

    We present an original study on the non-destructive evaluation of the microstructure evolution of fused silica induced by pulsed UV laser irradiation at low fluence (less than 50% Fth). Positron annihilation spectroscopy discloses that the spatial size of the vacancy cluster is increased exponentially with the linearly elevated laser fluence. Particularly, the vacancy cluster size in bulk silica is significantly increased by 14.5% after irradiated by pulsed 355 nm laser at F = 14 J/cm2 (50% Fth), while the void size varies only ∼2%. UV laser-excited Raman results suggest that the bond length and average bond angle of Sisbnd Osbnd Si bridging bond are both slightly reduced. Results reveals that the rearrangement process of (Sisbnd O)n fold rings and breakage of the Sisbnd O bridging bond in bulk silica occurred during pulsed UV laser irradiation. The micro-structural changes were taken together to clarify the effect of sub-threshold laser fluence on material stability of silica glass. The obtained data provide important information for studying material stability and controlling the lifetime of fused silica optics for high power laser system.

  3. Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO{sub 2} laser irradiation

    SciTech Connect

    Robin, Lucile; Cormont, Philippe; Hebert, David; Mainfray, Christelle; Rullier, Jean-Luc; Combis, Patrick; Gallais, Laurent

    2012-03-15

    In situ spatial and temporal temperature measurements of a fused silica surface heated by a 10.6 {mu}m CO{sub 2} laser were performed using an infrared camera. These measurements were derived from heat flux emission of the fused silica. High temperature measurements--in the range 400-2500 K--were performed at the surface of a semi-transparent media with a high spatial resolution. Particular attention was given to the experimental conception and to the calibration of the infrared device. Moreover, both conventional and interferential microscopes were used to characterize the silica surfaces after CO{sub 2} laser irradiation. By associating these results with thermal camera measurements we identified the major surface temperature levels of silica transformation when heated during 250 ms. Surface deformation of silica is observed for temperatures <2000 K. This is consistent with other recent work using CO{sub 2} laser heating. At higher temperatures, matter ejection, as deduced from microscope observations, occurs at temperatures that are still much lower than the standard boiling point. Such evaporation is described by a thermodynamical approach, and calculations show very good agreement with experiment.

  4. Imaging System to Measure Kinetics of Material Cluster Ejection During Exit-Surface Damage Initiation and Growth in Fused Silica

    SciTech Connect

    Raman, R N; Negres, R A; Demos, S G

    2009-10-29

    Laser-induced damage on the surface of optical components typically is manifested by the formation of microscopic craters that can ultimately degrade the optics performance characteristics. It is believed that the damage process is the result of the material exposure to high temperatures and pressures within a volume on the order of several cubic microns located just below the surface. The response of the material following initial localized energy deposition by the laser pulse, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work we introduce a time-resolved microscope system designed to enable a detailed investigation of the sequence of dynamic events involved during surface damage. To best capture individual aspects of the damage timeline, this system is employed in multiple imaging configurations (such as multi-view image acquisition at a single time point and multi-image acquisition at different time points of the same event) and offers sensitivity to phenomena at very early delay times. The capabilities of this system are demonstrated with preliminary results from the study of exit-surface damage in fused silica. The time-resolved images provide information on the material response immediately following laser energy deposition, the processes later involved during crater formation or growth, the material ejecta kinetics, and overall material motion and transformation. Such results offer insight into the mechanisms governing damage initiation and growth in the optical components of ICF class laser systems.

  5. Morphology And Microstructure in Fused Silica Induced By High Fluence Ultraviolet 3omega (355 Nm) Laser Pulses

    SciTech Connect

    Wong, J.; Ferriera, J.L.; Lindsey, E.F.; Haupt, D.L.; Hutcheon, I.D.; Kinney, J.H.

    2007-08-08

    The morphology and microstructure induced in high quality fused silica by UV (355 nm) laser pulses at high fluence (10-45 J/cm{sup 2}) have been investigated using a suite of microscopic and spectroscopic tools. The laser beam has a near-Gaussian profile with a 1/e{sup 2} diameter of 0.98 mm at the sample plane and a pulse length FWHM (full width at half maximum) of 7.5 ns. The damage craters consist of a molten core region (thermal explosion), surrounded by a near concentric region of fractured material. The latter arises from propagation of lateral cracks induced by the laser-generated shock waves, which also compact the crater wall, {approx} 10 {micro}m thick and {approx} 20% higher in density. The size of the damage crater varies with laser fluence, number of pulses, and laser irradiation history. In the compaction layer, there is no detectable change in the Si/O stoichiometry to within {+-} 1.6% and no crystalline nano-particles of Si were observed. Micro- (1-10 {micro}m) and nano- (20-200 nm) cracks are found, however. A lower valence Si{sup 3+} species on the top 2-3 nm of the compaction layer is evident from the Si 2p XPS. The results are used to construct a physical model of the damage crater and to gain critical insight into laser damage process.

  6. Time-Resolved Imaging of Material Response Following Laser-Induced Breakdown in the Bulk and Surface of Fused Silica

    SciTech Connect

    Raman, R N; Negres, R A; DeMange, P; Demos, S G

    2010-02-04

    Optical components within high energy laser systems are susceptible to laser-induced material modification when the breakdown threshold is exceeded or damage is initiated by pre-existing impurities or defects. These modifications are the result of exposure to extreme conditions involving the generation of high temperatures and pressures and occur on a volumetric scale of the order of a few cubic microns. The response of the material following localized energy deposition, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work, we investigate the events taking place during the entire timeline in both bulk and surface damage in fused silica using a set of time-resolved microscopy systems. These microscope systems offer up to 1 micron spatial resolution when imaging static or dynamic effects, allowing for imaging of the entire process with adequate temporal and spatial resolution. These systems incorporate various pump-probe geometries designed to optimize the sensitivity for detecting individual aspects of the process such as the propagation of shock waves, near-surface material motion, the speed of ejecta, and material transformations. The experimental results indicate that the material response can be separated into distinct phases, some terminating within a few tens of nanoseconds but some extending up to about 100 microseconds. Overall the results demonstrate that the final characteristics of the modified region depend on the material response to the energy deposition and not on the laser parameters.

  7. An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

    SciTech Connect

    Bass, I L; Guss, G M; Nostrand, M J; Wegner, P L

    2010-10-21

    A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported large site mitigation technique. As in the previous work, a tightly-focused 10.6 {micro}m CO{sub 2} laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.

  8. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature

    SciTech Connect

    Shen, N.; Matthews, M. J.; Elhadj, S.; Miller, P. E.; Nelson, A. J.; Hamilton, J.

    2013-04-03

    Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (THT). Plasma-enhanced CVD based on SiH4/N2O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to THT ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for THT values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.

  9. Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses

    SciTech Connect

    Chambonneau, M. Grua, P.; Rullier, J.-L.; Lamaignère, L.; Natoli, J.-Y.

    2015-03-14

    With the use of multiple longitudinal modes nanosecond laser pulses at 1064 nm, laser damage sites at the exit surface of fused silica clearly and systematically exhibit ring patterns. It has been shown in our previous works that the apparent chronology of rings was closely related to the temporal shape of the laser pulses. This particular correspondence had suggested an explanation of the ring morphology formation based on the displacement of an ionization front in the surrounding air. To provide a former basis for this hypothesis and deeper understanding of ring pattern formation, additional experiments have been performed. First, the impact of fluence has been investigated, revealing that a wide variety of damage sites are produced within a very narrow fluence range; this fact involves the chronology of appearance of a surface plasma during the laser pulse. The sizes of the damage sites are proportional to the fluence of their expansion occurring between the beginning of the plasma and the end of the laser pulse. Second, specific experiments have been carried out at different angles of incidence, resulting in egg-shaped patterns rather than circular ones. This behavior can be explained by our previous hypothesis of creation of a plasma in air, its expansion being tightly conditioned by the illumination angle. This series of experiments, in which the angle of incidence is varied up to 80°, permits us to link quantitatively the working hypothesis of ionization front propagation with theoretical hydrodynamics modeling.

  10. Verifying an all fused silica miniature optical fiber tip pressure sensor performance with turbine engine field test

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Xu, Juncheng; Zhu, Yizheng; Yu, Bing; Han, Ming; Wang, Zhuang; Cooper, Kristie L.; Pickrell, Gary R.; Wang, Anbo; Ringshia, Aditya; Ng, Wing

    2005-11-01

    Pressure sensors are the key elements for industrial monitoring and control systems to lower equipment maintenance cost, improve fuel economy, reduce atmospheric pollution, and provide a safer workplace. However, the testing environment is usually harsh. For example, inside the turbine engine, temperatures might exceed 600°C and pressures might exceed 100psi (690kPa), where most current available sensors cannot survive. Moreover, due to the restricted space for installation, miniature size of the sensor is highly desirable. To meet these requirements, a novel type of all fused silica optic fiber tip pressure sensor with a 125μm diameter was developed. It is a diaphragm based pressure sensor in which a Fabry-Perot interferometer is constructed by the end face of an optical fiber and the surface of a diaphragm connected by a short piece of hollow fiber. The FP cavity length and the interference pattern will change according to ambient pressure variation. Its main improvement with respect to previously developed optical sensors, such as those utilizing techniques of wet etching, anodic bonding and sol-gel bonding, is the fact that no chemical method is needed during the cavity fabrication. Its dynamic pressure performance was verified in a turbine engine field test, demonstrating not only that it can safely and reliably function near the fan of a turbine engine for more than two hours, but also that its performance is consistent with that of a commercial Kulite sensor.

  11. Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma.

    PubMed

    Gerhard, Christoph; Tasche, Daniel; Brückner, Stephan; Wieneke, Stephan; Viöl, Wolfgang

    2012-02-15

    In this Letter, we report on the near-surface modification of fused silica by applying a hydrogenous atmospheric pressure plasma jet at ambient temperature. A significant decrease in UV-transmission due to this plasma treatment was observed. By the use of secondary ion mass spectroscopy, the composition of the plasma-modified glass surface was investigated. It was found that the plasma treatment led to a reduction of a 100 nm thick SiO2 layer to SiOx of gradual depth-dependent composition. For this plasma-induced layer, depth-resolved characteristic optical parameters, such as index of refraction and dispersion, were determined. Further, a significant plasma-induced increase of the concentration of hydrogen in the bulk material was measured. The decrease in transmission is explained by the plasma-induced near-surface formation of SiOx on the one hand and the diffusion of hydrogen into the bulk material on the other hand. PMID:22344108

  12. Residual stress and damage-induced critical fracture on CO2 laser treated fused silica

    SciTech Connect

    Matthews, M; Stolken, J; Vignes, R; Norton, M

    2009-11-02

    Localized damage repair and polishing of silica-based optics using mid- and far-IR CO{sub 2} lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO{sub 2} laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work they present the results of 351 nm, 3 ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO{sub 2} laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1 {approx} 40s square pulse CO{sub 2} laser exposures created over 0.5-1.25 kW/cm{sup 2} with a 1-3 mm 1/e{sup 2} diameter beam (T{sub max} {approx} 1500-3000 K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for T{sub max} {ge} 2000 K. The effect of cooling rate on fictive temperature caused by CO{sub 2} laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.

  13. Self-compression to 24 MW peak power in a fused silica solid-core fiber using a high-repetition rate thulium-based fiber laser system

    NASA Astrophysics Data System (ADS)

    Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Hädrich, Steffen; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    Complementing ultrafast thulium-doped fiber-laser systems with a subsequent nonlinear pulse compression stage can enable unique laser parameters at around 2 μm operation wavelength. Significant pulse shortening and peak power enhancement have been accomplished using a fused silica solid-core fiber. In this fiber a pulse peak power of 24 MW was achieved without catastrophic damage due to self-focusing. As compared to operation in the well-explored 1 μm wavelength region, increasing the emission wavelength to 2 μm has a twofold advantage for nonlinear compression in fused-silica solid-core fibers. This is because, on the one hand the self-focusing limit scales quadratically with the wavelength. On the other hand the dispersion properties of fused silica allow for self-compression of ultrashort pulses beyond 1.3 μm wavelength, which leads to strong spectral broadening from very compact setups without the need for external compression. Using this technique we have generated 1.1 μJpulses with 24 fs FWHM pulse duration (<4 optical cycles), 24 MW peak power and 24.6 W of average power. To the best of our knowledge, this is the highest average power obtained from any nonlinear compression experiment around 2 μm wavelength and the first demonstration of peak powers beyond 20 MW within a fused-silica solid-core fiber. This result emphasizes that thulium-doped fiber-based chirped-pulse amplification systems may outperform their ytterbiumdoped counterparts in terms of peak power due to the fourfold increase of the critical power of self-focusing.

  14. Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica.

    PubMed

    Shi, Feng; Zhong, Yaoyu; Dai, Yifan; Peng, Xiaoqiang; Xu, Mingjin; Sui, Tingting

    2016-09-01

    Surface damage precursor evolution has great influence on laser-induced damage threshold improvement of fused silica surface during Ion beam etching. In this work, a series of ion sputtering experiment are carried out to obtain the evolutions of damage precursors (dot-form microstructures, Polishing-Induced Contamination, Hertz scratches, and roughness). Based on ion sputtering theory, surface damage precursor evolutions are analyzed. The results show that the dot-form microstructures will appear during ion beam etching. But as the ion beam etching depth goes up, the dot-form microstructures can be mitigated. And ion-beam etching can broaden and passivate the Hertz scratches without increasing roughness value. A super-smooth surface (0.238nm RMS) can be obtained finally. The relative content of Fe and Ce impurities both significantly reduce after ion beam etching. The laser-induced damage threshold of fused silica is improved by 34% after ion beam etching for 800nm. Research results can be a reference on using ion beam etching process technology to improve laser-induced damage threshold of fused silica optics. PMID:27607688

  15. Array of Chemically Etched Fused Silica Emitters for Improving the Sensitivity and Quantitation of Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-06-01

    An array of emitters has been developed for increasing the sensitivity of electrospray ionization mass spectrometry (ESI-MS). The linear array consists of 19 chemically etched fused silica capillaries arranged with 500 µm (center-to-center) spacing. The multi-emitter device has a low dead volume to facilitate coupling to capillary liquid chromatography (LC) separations. The high aspect ratio of the emitters enables operation at flow rates as low as 20 nL/min/emitter, effectively extending the benefits of nanoelectrospray to higher flow rate analyses. To accommodate the larger ion current produced by the emitter array, a multi-capillary inlet to the mass spectrometer was also constructed. The inlet, which matched the dimensions of the emitter array, effectively preserved ion transmission efficiency. Standard reserpine solutions of varying concentration were electrosprayed at 1 µL/min using the multi-emitter/multi-inlet combination, and compared to a standard, single emitter configuration. A nine-fold sensitivity enhancement was observed for the multi-emitter relative to the single emitter. A bovine serum albumin tryptic digest was also analyzed and resulted in a sensitivity increase ranging from 2.4 to 12.3-fold for the detected tryptic peptides; the varying response was attributed to reduced ion suppression under the nano-ESI conditions afforded by the emitter array. An equimolar mixture of leucine enkephalin and maltopentaose was studied to verify that ion suppression is indeed reduced for the multi-ESI array relative to a single emitter over a range of flow rates.

  16. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions.

    PubMed

    Pathak, Sudipta; Debnath, Kamalesh; Pramanik, Animesh

    2013-01-01

    A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA) as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products. PMID:24367398

  17. Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses.

    PubMed

    Demos, Stavros G; Raman, Rajesh N; Negres, Raluca A

    2013-02-25

    We study the dynamics of energy deposition and subsequent material response associated with exit surface damage growth in fused silica using a time resolved microscope system. This system enables acquisition of two transient images per damage event with temporal resolution of 180 ps and spatial resolution on the order of 1 µm. The experimental results address important issues in laser damage growth that include: a) the specific structural features within a damage site where plasma formation initiates; b) the subsequent growth of the plasma regions; c) the formation and expansion of radial and circumferential cracks; d) the kinetics and duration of material ejection; e) the characteristics of the generated shockwave.

  18. Design and performance of a sheathless capillary electrophoresis/mass spectrometry interface by combining fused-silica capillaries with gold-coated nanoelectrospray tips.

    PubMed

    Kele, Zoltán; Ferenc, Györgyi; Klement, Eva; Tóth, Gábor K; Janáky, Tamás

    2005-01-01

    A simple sheathless capillary electrophoresis (CE)/mass spectrometry (MS) interface was constructed by combining widely used nanospray needles with fused-silica capillaries and it was successfully applied for the separation of peptides. The end of the CE capillary was pulled to a taper, etched and then fitted into the metal-coated nanospray borosilicate capillary. The nanospray needle can be used for several CE runs, but it can be easily and rapidly changed in the case of accidental breakage or evaporation of the coating. A fast capillary electrochromatographic method was also developed for MS analysis of peptides containing numerous basic amino acids. PMID:15724233

  19. N,N,N',N'-tetramethyl-1,3-butanediamine as effective running electrolyte additive for efficient electrophoretic separation of basic proteins in bare fused-silica capillaries.

    PubMed

    Corradini, D; Cannarsa, G

    1995-04-01

    The effect of N,N,N',N'-tetramethyl-1,3-butanediamine (TMBD) in the running electrolyte on the electroosmotic flow and the migration behavior of four standard basic proteins in bare fused-silica capillaries was examined at pH 4.0, 5.5, and 6.5. Depending on the electrolyte pH and additive concentration the electroosmotic flow was either cathodic or anodic. A similar Langmuirian-type dependence of the electroosmotic flow on the concentration of TMBD in the running electrolyte was found at the three experimented pH values, which may be indicative of the specific adsorption of the additive in the immobilized region of the electric double layer at the interface between the capillary wall and the electrolyte solution. Electrophoretic separations of the four standard basic proteins performed at the three above pH values, showed well-resolved, efficient and symmetric peaks, demonstrating the utility of this additive for protein electrophoresis in bare fused-silica capillaries. The variations in separation efficiency, peak capacity, resolution and reproducibility of migration times as a function of the additive concentration at pH 6.5 were also examined.

  20. Applications of a sulfonated-polymer wall-modified open-tubular fused-silica capillary in capillary zone electrophoretic separations.

    PubMed

    Minnoor, E; Liu, Y; Pietrzyk, D J

    2000-07-01

    A fused-silica capillary that is wall-modified via chemically bonding a sulfonated polymer to the capillary wall has a uniform negative charge density on its surface and produces an electroosmotic flow (EOF) greater than 4 x 10(-4) cm2 V(-1) s(-1) The EOF is nearly independent of buffer pH over the pH range of 2 to 10 and is lower than the EOF obtained for the bare fused-silica capillary at the more basic pH but is higher at the more acidic buffer pH. Optimization of buffer pH can be based on analyte pKa values to improve the overall quality of the capillary zone electrophoresis (CZE) separation of complex mixtures of weak acid and base analytes. Because of the high EOF in an acidic buffer, the capillary is useful for the separation of weak organic bases which are in their cation forms in the acidic buffer. EOF for the sulfonic acid bonded phase capillary can be adjusted via buffer additives such as organic solvent, tetraalkylammonium salts, multivalent cations and alkylsulfonic acids. The advantages of utilizing buffer pH and the EOF buffer modifiers to enhance migration time, selectivity, and resolution in CZE separations with this capillary are illustrated using a series of test analyte mixtures of inorganic anions, carboxylic acids, alkylsulfonic acids, benzenesulfonic acids, sulfas, pyridines, anilines or small-chain peptides. PMID:10917448

  1. Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Choi, Hun-Kook; Ahsan, Md. Shamim

    2016-08-01

    We report on fabricating high-fill-factor plano-convex spherical and square micro-lens arrays on fused silica glass surface by using a CO2 laser-assisted reshaping technique. Initially, periodic micro-pillars are encoded on glass surfaces by means of a femtosecond laser beam, afterwards, the micro-pillars are polished several times by irradiating a CO2 laser beam on top of the micro-pillars. Consequently, a spherical micro-lens array with micro-lens size of 50 μm × 50 μm and a square micro-lens array with micro-lens size of 100 μm × 100 μm are formed on the surface of the fused silica glass. We also study the intensity distribution of light passing through the glass sample engraved with a spherical micro-lens array. The simulation result shows that the focal length of the spherical micro-lens array is 35 μm. Furthermore, we investigate the optical properties of glass samples with engraved micro-lens arrays. The proposed CO2-laser-based reshaping technique is simple and fast and shows promises for fabricating arrays of smooth micro-lenses in various transparent materials.

  2. The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces

    SciTech Connect

    Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

    2009-10-29

    Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

  3. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences

    SciTech Connect

    Rohloff, M.; Das, S. K.; Hoehm, S.; Grunwald, R.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2011-07-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of five Ti:sapphire femtosecond (fs) laser pulse pairs (150 fs, 800 nm) is studied experimentally. A Michelson interferometer is used to generate near-equal-energy double-pulse sequences with a temporal pulse delay from -20 to +20 ps between the cross-polarized individual fs-laser pulses ({approx}0.2 ps resolution). The results of multiple double-pulse irradiation sequences are characterized by means of Scanning Electron and Scanning Force Microscopy. Specifically in the sub-ps delay domain striking differences in the surface morphologies can be observed, indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.

  4. Absorption cross sections of surface-adsorbed H2O in the 295-370 nm region and heterogeneous nucleation of H2O on fused silica surfaces.

    PubMed

    Du, Juan; Huang, Li; Zhu, Lei

    2013-09-12

    We have determined absorption cross sections of a monolayer of H2O adsorbed on the fused silica surfaces in the 295-370 nm region at 293 ± 1 K by using Brewster angle cavity ring-down spectroscopy. Absorption cross sections of surface-adsorbed H2O vary between (4.66 ± 0.83) × 10(-20) and (1.73 ± 0.52) × 10(-21) cm(2)/molecule over this wavelength range, where errors quoted represent experimental scatter (1σ). Our experimental study provides direct evidence that surface-adsorbed H2O is an absorber of the near UV solar radiation. We also varied the H2O pressure in the surface study cell over the 0.01-17 Torr range and obtained probe laser absorptions at 295, 340, and 350 nm by multilayer of adsorbed H2O molecules until the heterogeneous nucleation of water occurred on fused silica surfaces. The average absorption cross sections of multilayer adsorbed H2O are (2.17 ± 0.53) × 10(-20), (2.48 ± 0.67) × 10(-21), and (2.34 ± 0.59) × 10(-21) cm(2)/molecule at 295, 340, and 350 nm. The average absorption cross sections of transitional H2O layer are (6.06 ± 2.73) × 10(-20), (6.48 ± 3.85) × 10(-21), and (8.04 ± 4.92) × 10(-21) cm(2)/molecule at 295, 340, and 350 nm. The average thin water film absorption cross sections are (2.39 ± 0.50) × 10(-19), (3.21 ± 0.81) × 10(-20), and (3.37 ± 0.94) × 10(-20) cm(2)/molecule at 295 nm, 340 nm, and 350 nm. Atmospheric implications of the results are discussed.

  5. Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Chen, Genda

    2016-06-01

    This paper reports a distributed temperature and strain sensor based on pulse pre-pump Brillouin optical time domain analysis. An uncoated, telecom-grade fused silica single-mode fiber as a distributed sensor was calibrated for its sensitivity coefficients under various strains and temperatures up to 800 °C. The Brillouin frequency of fiber samples changed nonlinearly with temperature and linearly with strain. The temperature sensitivity decreased from 1.113 to 0.830 MHz /°C in the range of 22-800 °C. The strain sensitivity was reduced from 0.054 to 0.042 MHz /μɛ as the temperature increased from 22 to 700 °C and became unstable at higher temperatures due to creep effect. The strain measurement range was reduced from 19 100 to 6000 μɛ in the temperature range of 22-800 °C due to fused silica’s degradation. The calibrated fiber optic sensor demonstrated adequate accuracy and precision for strain and temperature measurements and stable performance in heating-cooling cycles. It was validated in an application setting.

  6. Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Chen, Genda

    2016-06-01

    This paper reports a distributed temperature and strain sensor based on pulse pre-pump Brillouin optical time domain analysis. An uncoated, telecom-grade fused silica single-mode fiber as a distributed sensor was calibrated for its sensitivity coefficients under various strains and temperatures up to 800 °C. The Brillouin frequency of fiber samples changed nonlinearly with temperature and linearly with strain. The temperature sensitivity decreased from 1.113 to 0.830 MHz /°C in the range of 22–800 °C. The strain sensitivity was reduced from 0.054 to 0.042 MHz /με as the temperature increased from 22 to 700 °C and became unstable at higher temperatures due to creep effect. The strain measurement range was reduced from 19 100 to 6000 με in the temperature range of 22–800 °C due to fused silica’s degradation. The calibrated fiber optic sensor demonstrated adequate accuracy and precision for strain and temperature measurements and stable performance in heating–cooling cycles. It was validated in an application setting.

  7. Influence of fused Silica and chills incorporation on Corrosion, Thermal and Chemical composition of ASTM A 494 M Grade Nickel alloy

    NASA Astrophysics Data System (ADS)

    Purushotham, G.; Hemanth, Joel

    2016-09-01

    A review of a host of relevant literature on the composites leads to some important observations on the gap that prevails for developing the composite with increased strength to weight ratio, improved thermal properties and reduced corrosion rate with the addition of fused SiO2 dispersoid for the nickel based alloy. In the arena of engineering, metallurgists look for techniques to improve the thermal, corrosion and chemical properties of the materials. In this connection an investigation has been carried out to fabricate and evaluate the corrosion, chemical and thermal properties of chilled composites consisting of nickel matrix with fused silica particles (size 40-150 μm) in the matrix. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good properties. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The subsequent composites cast in molds containing metallic and non-metallic chill blocks (MS, SiC & Cu) were tested for their microstructure, chemical, thermal properties and corrosion behavior.

  8. Implantation of plasmonic nanoparticles in SiO2 by pulsed laser irradiation of gold films on SiOx-coated fused silica and subsequent thermal annealing

    NASA Astrophysics Data System (ADS)

    Stolzenburg, H.; Peretzki, P.; Wang, N.; Seibt, M.; Ihlemann, J.

    2016-06-01

    The pulsed UV-laser irradiation of thin noble metal films deposited on glass substrates leads to the incorporation of metal particles in the glass, if a sufficiently high laser fluence is applied. This process is called laser implantation. For the implantation of gold into pure fused silica, high laser fluences (∼1 J/cm2 at 193 nm laser wavelength) are required. Using a SiOx (x ≈ 1) coated SiO2-substrate, the implantation of gold into this coating can be accomplished at significantly lower fluences starting from 0.2 J/cm2 (comparable to those used for standard glass). Particles with diameters in the range of 10-60 nm are implanted to a depth of about 40 nm as identified by transmission electron microscopy. An additional high temperature annealing step in air leads to the oxidation of SiOx to SiO2, without influencing the depth distribution of particles significantly. Only superficial, weakly bound particles are released and can be wiped away. Absorption spectra show a characteristic plasmon resonance peak at 540 nm. Thus, pure silica glass (SiO2) with near surface incorporated plasmonic particles can be fabricated with this method. Such material systems may be useful for example as robust substrates for surface enhanced Raman spectroscopy (SERS).

  9. Fused-core silica column ultra-performance liquid chromatography-ion trap tandem mass spectrometry for determination of global DNA methylation status.

    PubMed

    Yang, Ill; Fortin, Marie C; Richardson, Jason R; Buckley, Brian

    2011-02-01

    Epigenetic modifications, such as DNA methylation, play key roles in transcriptional regulation of gene expression. More recently, global DNA methylation levels have been documented to be altered in several diseases, including cancer, and as the result of exposure to environmental toxicants. Based on the potential use of global DNA methylation status as a biomarker of disease status and exposure to environmental toxicants, we sought to develop a rapid, sensitive, and precise analytical method for the quantitative measurement of global DNA methylation status using ultra-performance liquid chromatography with detection by ion trap tandem mass spectrometry. Using a fused-core silica column, 2'-deoxyguanosine (2dG) and 5-methyl-2'-deoxycytidine (5mdC) were resolved in less than 1 min with detection limits of 0.54 and 1.47 fmol for 5mdC and 2dG, respectively. The accuracy of detection was 95% or higher, and the day-to-day coefficient of variation was found to be 3.8%. The method was validated by quantification of global DNA methylation status following treatment of cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, which reduced DNA methylation from 3.1% in control cells to 1.1% in treated cells. The sensitivity and high throughput of this method rend it suitable for large-scale analysis of epidemiological and clinical DNA samples.

  10. Optical Evaluation of Digital Micromirror Devices (DMDs) with UV-Grade Fused Silica, Sapphire, and Magnesium Fluoride Windows and Longterm Reflectance of Bare Devices

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan; Robberto, Massimo; Heap, Sara

    2016-01-01

    Digital micromirror devices (DMDs) are commercial micro-electromechanical systems, consisting of millions of mirrors which can be individually addressed and tilted into one of two states (+/-12deg). These devices were developed to create binary patterns in video projectors, in the visible range. Commercially available DMDs are hermetically sealed and extremely reliable. Recently, DMDs have been identified as an alternative to microshutter arrays for space-based multi-object spectrometers (MOS). Specifically, the MOS at the heart of the proposed Galactic Evolution Spectroscopic Explorer (GESE) uses the DMD as a reprogrammable slit mask. Unfortunately, the protective borosilicate windows limit the use of DMDs in the UV and IR regimes, where the glass has insufficient throughput. In this work, we present our efforts to replace standard DMD windows with custom windows made from UV-grade fused silica, low-absorption optical sapphire (LAOS) and magnesium fluoride (MgF2). We present transmission measurements of the antireflection coated windows and the reflectance of bare (window removed) DMDs. Furthermore, we investigated the long-term stability of the DMD reflectance and experiments for coating DMD active area with a layer of pure aluminum (Al) to boost reflectance performance in the UV spectral range (200-400 nm).

  11. Overcritical plasma ignition and diagnostics from oncoming interaction of two color low energy tightly focused femtosecond laser pulses inside fused silica

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Bravy, B. G.; Bezsudnova, Yu I.; Mareev, E. I.; Starostin, V. M.; Platonenko, V. T.; Gordienko, V. M.

    2016-04-01

    We report overcritical (3.3  ×  1021 cm-3) microplasma produced by low energy colliding IR (infrared) (1.24 μm) and visible (0.62 μm) femtosecond pulses tightly focused (NA  =  0.5) into the bulk of fused silica with on-line monitoring based on third harmonic generated by the IR beam. It was established that the absorbed energy density is the key parameter that determines the micromodification formation threshold and in our experimental conditions it is close to 4.5 kJ cm-3. Non-monotonic behavior of the third harmonic signal as a function of time delay between visible (0.62 μm) and IR (1.24 μm) femtosecond pulses demonstrates the qualitative differences about the two phenomena: one is the seed electrons generation by the visible pulse via multiphoton ionization and second is the avalanche ionization by the IR pulse. We predict that the tandem two-color excitation of wide-bandgap dielectric in comparison with single-color pulse interaction regime allows providing a much higher absorbed energy density and overcritical plasma.

  12. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations

    USGS Publications Warehouse

    Wang, X.; Chou, I.-Ming; Hu, W.; Burruss, R.C.; Sun, Q.; Song, Y.

    2011-01-01

    Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (??, cm-1) and CO2 density (??, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9cm-1. The relationship between the CO2 Fermi diad split and density can be represented by: ??=47513.64243-1374.824414????+13.25586152????2-0.04258891551????3 (r2=0.99835, ??=0.0253g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined. ?? 2011 Elsevier Ltd.

  13. High-speed Photographic Study of Wave Propagation and Impact Damage in Fused Silica and AlON Using the Edge-on Impact (EOI) Method

    NASA Astrophysics Data System (ADS)

    Patel, Parimal; Strassburger, Elmar; Templeton, Douglas

    2005-07-01

    An Edge-on Impact (EOI) test method coupled with a high speed Cranz-Schardin camera has been developed at the Fraunhofer-Institute for High-Speed Dynamics, Ernst-Mach-Institut (EMI), Efringen-Kirchen, Germany to visualize damage propagation and dynamic fracture in structural ceramics. Most work in the past has been carried out in a reflection mode from the surface of impacted ceramics. In the current study, the test was reconfigured to photograph the propagation of damage in the transmission mode using shadowgraphs. In addition to plain light observations, the stress wave was also visualized in crossed polarizers using the photoelastic effect. Plates of fused silica measuring 100X100X13mm were impacted at velocities from 151 to 350 m/s. Plates of AlON measuring 100X100X10mm were impacted using solid cylinder steel projectiles with velocities ranging from 270 to 925 m/s. Detailed analysis of the macroscopic fracture patterns, stress wave characteristics and velocity, various damage zones structures, single crack and crack front velocities will be presented.

  14. High-Speed Photographic Study of Wave Propagation and Impact Damage in Fused Silica and AlON Using the Edge-On Impact (EOI) Method

    NASA Astrophysics Data System (ADS)

    Strassburger, E.; Patel, P.; McCauley, J. W.; Templeton, D. W.

    2006-07-01

    An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 μs after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardin cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.

  15. High-Speed Photographic Study of Wave Propagation and Impact Damage in Fused Silica and AlON Using the Edge-On Impact (EOI) Method

    SciTech Connect

    Strassburger, E.; Patel, P.; McCauley, J. W.; Templeton, D. W.

    2006-07-28

    An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 {mu}s after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardin cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.

  16. Fiber-based solid phase microextraction using fused silica lined bottles to collect, store, and stabilize a multianalyte headspace gas sample for offline analyses.

    PubMed

    Harvey, Chris A; Carter, J Chance; Ertel, John R; Alviso, Cindy T; Chinn, Sarah C; Maxwell, Robert S

    2015-07-01

    We have developed a solid phase microextraction (SPME) sampling method using fused silica lined bottles (400 ml) to collect, store, and stabilize a headspace subsample from the source for subsequent offline, repetitive analyses of the gas using fiber-based SPME. The method enables long-term stability for repeated offline analysis of the organic species collected from the source headspace and retains all the advantages of fiber SPME sampling (e.g. rapid extraction, solvent free, simple and inexpensive) while providing additional advantages. Typically, the analytes collected on the SPME fiber must be desorbed and analyzed immediately to mitigate analyte loss or contamination. The new SPME sampling method, conducted offline using carboxen/polydimethylsiloxane (carboxen/PDMS - 85 μm) coated fibers, has been shown to be identical to in situ SPME sampling of a headspace acquired from an 80 component organic matrix with reproducibility demonstrated to be less than %RSD=7.0% for replicate samples measured over a 30-day period. In addition, repetitive samplings from one headspace aliquot are possible using one or more fibers and fiber types as well as quantitative options such as internal standard addition as demonstrated in a feasibility study using a benzene/toluene/xylene (BTX; 1 ppmv) certified gas standard, in which the SPME measurement precision (%RSD) was improved by a factor of 1.5-1.9 compared to the use of an external standard.

  17. FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing

    SciTech Connect

    Suratwala, T I; Miller, P E; Menapace, J A; Wong, L L; Steele, R A; Feit, M D; Davis, P J; Walmer, C D

    2008-02-05

    The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanics and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded, sliding

  18. The analysis of the effect of homogeneous mechanical stress on the acoustic wave propagation in the "La3Ga5SiO14/fused silica" piezoelectric layered structure.

    PubMed

    Burkov, S I; Zolotova, O P; Sorokin, B P; Turchin, P P

    2015-01-01

    The results of computer simulation taking into account the linear and nonlinear material constants have been presented. Study of the influence of external uniaxial mechanical stress on the dispersive characteristics of elastic waves in piezoelectric structures as "La3Ga5SiO14/fused silica" has been executed. The comparison of elastic wave velocity changes under the influence of an uniaxial stress while a full set of nonlinear material constants of crystalline layer+geometric nonlinearity, or only geometric nonlinearity of the layer induced by the static deformation of a substrate, has been fulfilled.

  19. The analysis of the effect of homogeneous mechanical stress on the acoustic wave propagation in the "La3Ga5SiO14/fused silica" piezoelectric layered structure.

    PubMed

    Burkov, S I; Zolotova, O P; Sorokin, B P; Turchin, P P

    2015-01-01

    The results of computer simulation taking into account the linear and nonlinear material constants have been presented. Study of the influence of external uniaxial mechanical stress on the dispersive characteristics of elastic waves in piezoelectric structures as "La3Ga5SiO14/fused silica" has been executed. The comparison of elastic wave velocity changes under the influence of an uniaxial stress while a full set of nonlinear material constants of crystalline layer+geometric nonlinearity, or only geometric nonlinearity of the layer induced by the static deformation of a substrate, has been fulfilled. PMID:25106110

  20. FUSE - Australia

    ERIC Educational Resources Information Center

    South Australian Science Teachers Journal, 1974

    1974-01-01

    Announces the establishment of a division of FUSE in Australia, at Sturt College of Advanced Education, for the purpose of disseminating the concept of unified science and to facilitate the development of unified science programs. (BR)

  1. Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Huang, Qing; Liu, Peng; Guo, Sha-Sha; Zhang, Lian; Zhou, Yu-Fan; Wang, Xue-Lin

    2013-07-01

    Fused quartz is a key material in fabrication of integrated devices, which transmits extends from ultraviolet to infrared. We report the fabrication of planar and channel waveguides in fused quartz using multi-energy C ion at energies of (5 + 5.5 + 6) MeV and fluences of (1 + 1 + 1.5) × 1015 ions/cm2. The guiding modes at the wavelength of 633 nm (He-Ne laser) and 1539 nm (diode laser) were detected using the prism-coupling method, and the modes were stable after annealing in air. The refractive index profiles of planar and channel waveguides at the wavelength of 633 nm and 1539 nm were typical "well + barrier" distributions, which were reconstructed using the reflectivity calculation method (RCM) software and intensity calculation method (ICM), respectively. For comparison to the experimental results, the finite difference beam propagation method (FD-BPM) was used to simulate the guiding modes of the waveguides. We measured the near-field intensity distributions for the visible (633 nm) and near-infrared (1300 nm, 1539 nm and 1620 nm) wavelength regions, suggesting that the modes can be effective transmission in the wavelength range for optical fiber communications.

  2. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials

    PubMed Central

    Vitek, Dawn N.; Adams, Daniel E.; Johnson, Adrea; Tsai, Philbert S.; Backus, Sterling; Durfee, Charles G.; Kleinfeld, David; Squier, Jeffrey A.

    2010-01-01

    Temporal focusing of spatially chirped femtosecond laser pulses overcomes previous limitations for ablating high aspect ratio features with low numerical aperture (NA) beams. Simultaneous spatial and temporal focusing reduces nonlinear interactions, such as self-focusing, prior to the focal plane so that deep (~1 mm) features with parallel sidewalls are ablated at high material removal rates (25 µm3 per 80 µJ pulse) at 0.04-0.05 NA. This technique is applied to the fabrication of microfluidic devices by ablation through the back surface of thick (6 mm) fused silica substrates. It is also used to ablate bone under aqueous immersion to produce craniotomies. PMID:20721196

  3. Guard For Fuse Caps

    NASA Technical Reports Server (NTRS)

    Atwell, D. C.

    1985-01-01

    L-shaped guard attached to fuse holder. Guard prevents casual tampering with fuses in electrical junction box or fuse block. Protects fuses from being damaged by handling or by rope or string used to secure them. With fuse-cap guard, only responsible people have access to fuses.

  4. Single-pulse laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass for pulse widths of 500  fs, 10  ps, 20  ns.

    PubMed

    Nieto, Daniel; Arines, Justo; O'Connor, Gerard M; Flores-Arias, María Teresa

    2015-10-10

    In this work, we report a comparative study of the laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass as a function of the pulse width and for IR laser wavelengths. We determine the ablation threshold for three different pulse durations: τ=500  fs, 10 ps, and 20 ns. Experiments have been performed using a single laser pulse per shot in an ambient (air) environment. The results show a significant difference, of two orders of magnitude, between the group of ablation thresholds obtained for femtosecond, picosecond, and nanosecond pulses. This difference is reduced to 1 order of magnitude in the soda-lime substrate with tin impurities, pointing out the importance of the incubation effect. The morphology of the marks generated over the different glass materials by one single pulse of different pulse durations has been analyzed using a scanning electron microscope (FESEM ULTRA Plus). Our results are important for practical purposes, providing the ablation threshold data of four commonly used substrates at three different pulse durations in the infrared regime (1030-1064 nm) and complete data for increasing the understanding of the differences in the mechanism's leading ablation in the nanosecond, picosecond, and femtosecond regimes.

  5. Boron doped Si rich oxide/SiO{sub 2} and silicon rich nitride/SiN{sub x} bilayers on molybdenum-fused silica substrates for vertically structured Si quantum dot solar cells

    SciTech Connect

    Lin, Ziyun Wu, Lingfeng; Jia, Xuguang; Zhang, Tian; Puthen-Veettil, Binesh; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-07-28

    Vertically structured Si quantum dots (QDs) solar cells with molybdenum (Mo) interlayer on quartz substrates would overcome current crowding effects found in mesa-structured cells. This study investigates the compatibility between boron (B) doped Si QDs bilayers and Mo-fused silica substrate. Both Si/SiO{sub 2} and Si/SiN{sub x} based QDs bilayers were studied. The material compatibility under high temperature treatment was assessed by examining Si crystallinity, microstress, thin film adhesion, and Mo oxidation. It was observed that the presence of Mo interlayer enhanced the Si QDs size confinement, crystalline fraction, and QDs size uniformity. The use of B doping was preferred compared to phosphine (PH{sub 3}) doping studied previously in terms of better surface and interface properties by reducing oxidized spots on the film. Though crack formation due to thermal mismatch after annealing remained, methods to overcome this problem were proposed in this paper. Schematic diagram to fabricate full vertical structured Si QDs solar cells was also suggested.

  6. The Advanced Virgo monolithic fused silica suspension

    NASA Astrophysics Data System (ADS)

    Aisa, D.; Aisa, S.; Campeggi, C.; Colombini, M.; Conte, A.; Farnesini, L.; Majorana, E.; Mezzani, F.; Montani, M.; Naticchioni, L.; Perciballi, M.; Piergiovanni, F.; Piluso, A.; Puppo, P.; Rapagnani, P.; Travasso, F.; Vicerè, A.; Vocca, H.

    2016-07-01

    The detection of gravitational waves is one of the most challenging prospects faced by experimental physicists. Suspension thermal noise is an important noise source at operating frequencies between approximately 10 and 30 Hz, and represents a limit to the sensitivity of the ground based interferometric gravitational wave detectors. Its effects can be reduced by minimizing the losses and by optimizing the geometry of the suspension fiber as well as its attachment system. In this proceeding we will describe the mirrors double stage monolithic suspension system to be used in the Advanced Virgo (AdV) detector. We also present the results of the thermal noise study, performed with the help of a finite elements model, taking into account the precise geometry of the fibers attachment systems on the suspension elements. We shall demonstrate the suitability of this suspension for installation in AdV.

  7. Fused silica fine grinding with low roughness

    NASA Astrophysics Data System (ADS)

    Dai, Lei; Gu, Yongqiang; Wu, Di

    2014-08-01

    Lithography-optics is one of the most complex optical systems. The fine grinding process is the most important step before polishing. Roughness and sub-surface damage (SSD) are essential outputs of fine grinding. We demonstrate the method that use fix abrasive cup tool with CNC grinding machine to complete the fine grinding process, even instead of lapping process. And experiment sample roughness can reach 23.40nm rms and Ra 18.554nm. The SSD estimate is about 2 μm which is also smaller than commercial lapping process. The fine grinding output can satisfy the lithography optic fabrication demands and efficiently reduce the polishing time.

  8. Control of Surface Plasmons Emitted from Arrays of Subwavelength Apertures

    NASA Astrophysics Data System (ADS)

    Blumberg, Girsh; Dennis, Brian; Egorov, Dimitri; Haftel, Michael

    2004-03-01

    We demonstrate that surface plasmons (SPs) can be emitted in the form of long and coherent jets whose intensity and propagation direction can be manipulated by varying the wavelength, incidence angle, and polarization of the excitation light as well as through adjustment periodicity of 2D structures and dielectric properties of the interfaces. We also demonstrate the reverse conversion of SPs back into free propagating light and observe controllable and highly directional beaming. We use for sample gold films on a fused silica substrates with fabricated arrays of subwavelength apertures illuminated by a tunable laser. We image coherent SP modes by a near-field scanning optical microscope (NSOM) and demonstrate emission of SP jets in controlled propagation direction. By adding mirrors and lenses we demonstrate SP standing waves and focusing which concentrates high local density of electromagnetic energy on the gold-air interface. By performing NSOM scans as a function of distance from the gold-air interface we map out the volume distribution of light intensity above the array and confirm highly directional nature of light emitted from periodic 2D structure of subwavelength apertures down to a few microns away from the surface.

  9. Aperture lamp

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2003-01-01

    A discharge lamp includes means for containing a light emitting fill, the fill being capable of absorbing light at one wavelength and re-emitting the light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill; means for exciting the fill to cause the fill to emit light; and means for reflecting some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length. Another discharge lamp includes an envelope; a fill which emits light when excited disposed in the envelope; a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light; and a reflective ceramic structure disposed around the envelope and defining an light emitting opening, wherein the structure comprises a sintered body built up directly on the envelope and made from a combination of alumina and silica.

  10. Self-healing fuse

    NASA Technical Reports Server (NTRS)

    Jones, N. D.; Kinsinger, R. E.; Harris, L. P.

    1974-01-01

    Fast-acting current limiting device provides current overload protection for vulnerable circuit elements and then re-establishes conduction path within milliseconds. Fuse can also perform as fast-acting switch to clear transient circuit overloads. Fuse takes advantage of large increase in electrical resistivity that occurs when liquid metal vaporizes.

  11. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    NASA Astrophysics Data System (ADS)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  12. The FUSE Approach

    ERIC Educational Resources Information Center

    Showalter, Victor M.

    1973-01-01

    A description of the present position of the FUSE organization relative to the development of unified science programs is discussed, including the related purposes and directions that characterize the newly established center. (DF)

  13. Tropone-fused carbaporphyrins.

    PubMed

    Lash, Timothy D; Gilot, Gean C; AbuSalim, Deyaa I

    2014-10-17

    Previous attempts to prepare tropone-fused carbaporphyrins by reacting peroxides with azuliporphyrins under basic conditions afforded benzocarbaporphyrins instead. In this study, a methoxyazulitripyrrane condensed with a pyrrole dialdehyde in the presence of TFA, followed by oxidation with ferric chloride, to give a tropone-fused carbaporphyrin following a spontaneous demethylation. The porphyrinoid gave a modified UV-vis spectrum showing multiple bands in the Soret region, and the proton NMR spectrum showed that it has a reduced diamagnetic ring current in comparison to other carbaporphyrins. The tropone-fused derivative failed to react with tert-butyl hydroperoxide and potassium hydroxide, demonstrating that this type of structure is not an intermediate in the formation of benzocarbaporphyrins. However, the reaction with silver(I) acetate gave the corresponding silver(III) complex. Condensation of the methoxyazulitripyrrane with 2,5-thiophenedicarbaldehyde gave a related tropone-fused thiacarbaporphyrin together with a methoxythiaazuliporphyrin. Treatment of the carbaporphyrins with DBU resulted in the formation of anionic species, while addition of acid afforded dicationic structures. DFT studies were performed on a series of tautomers, protonated species, and anionic structures related to these tropone-fused carbaporphyrins, and NICS calculations were carried out. These results allowed favorable conjugation pathways to be identified. In addition, these studies predicted that protonation initially occurs on the carbonyl moiety rather than on the expected interior pyrrolenine nitrogen atom. PMID:25229306

  14. Self-healing fuse development

    NASA Technical Reports Server (NTRS)

    Jones, N. D.; Kinsinger, R. E.; Harris, L. P.

    1973-01-01

    The mercury-filled self-healing fuses developed for this program afford very good protection from circuit faults with rapid reclosure. Fuse performance and design parameters have been characterized. Life tests indicate a capability of 500 fuse operations. Fuse ratings are 150 v at 5, 15, 25 and 50 circuit A. A series of sample fuses using alumina and beryllia insulation have been furnished to NASA for circuit evaluation.

  15. Triphenylsilane-fused Porphyrins.

    PubMed

    Kato, Kenichi; Kim, Jun Oh; Yorimitsu, Hideki; Kim, Dongho; Osuka, Atsuhiro

    2016-06-01

    A reaction sequence of 2-(diphenylsilyl)phenylation by Negishi coupling and intramolecular sila-Friedel-Crafts reaction has been explored for the synthesis of mono-triphenylsilane-fused porphyrins 5 M and 6 M (M= Ni, Zn) and bis-triphenylsilane-fused porphyrins 7 M and 8 Ni. A triply linked triphenylsilane-fused Ni(II) porphyrin, 13 Ni, was synthesized in a stepwise manner involving the above reaction sequence and a final Pd-catalyzed C-H activating arylative cyclization. The silicon atom in 13 Ni takes a distorted planarized structure with an almost perpendicular Si-phenyl group, causing an electronic effect due to effective σ*-π* interaction. PMID:27124659

  16. Debuncher Momentum Aperture Measurements

    SciTech Connect

    O'Day, S.

    1991-01-01

    During the November 1990 through January 1991 {bar p} studies period, the momentum aperture of the beam in the debuncher ring was measured. The momentum aperture ({Delta}p/p) was found to be 4.7%. The momentum spread was also measured with beam bunch rotation off. A nearly constant particle population density was observed for particles with {Delta}p/p of less than 4.3%, indicating virtually unobstructed orbits in this region. The population of particles with momenta outside this aperture was found to decrease rapidly. An absolute or 'cut-off' momentum aperture of {Delta}p/p = 5.50% was measured.

  17. OLED panel with fuses

    DOEpatents

    Levermore, Levermore; Pang, Huiqing; Rajan, Kamala

    2014-09-16

    Embodiments may provide a first device that may comprise a substrate, a plurality of conductive bus lines disposed over the substrate, and a plurality of OLED circuit elements disposed on the substrate, where each of the OLED circuit elements comprises one and only one pixel electrically connected in series with a fuse. Each pixel may further comprise a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. The fuse of each of the plurality of OLED circuit elements may electrically connect each of the OLED circuit elements to at least one of the plurality of bus lines. Each of the plurality of bus lines may be electrically connected to a plurality of OLED circuit elements that are commonly addressable and at least two of the bus lines may be separately addressable.

  18. Variable-aperture screen

    DOEpatents

    Savage, George M.

    1991-01-01

    Apparatus for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function.

  19. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  20. Method for fusing bone

    DOEpatents

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  1. Sub-Aperture Interferometers

    NASA Technical Reports Server (NTRS)

    Zhao, Feng

    2010-01-01

    Sub-aperture interferometers -- also called wavefront-split interferometers -- have been developed for simultaneously measuring displacements of multiple targets. The terms "sub-aperture" and "wavefront-split" signify that the original measurement light beam in an interferometer is split into multiple sub-beams derived from non-overlapping portions of the original measurement-beam aperture. Each measurement sub-beam is aimed at a retroreflector mounted on one of the targets. The splitting of the measurement beam is accomplished by use of truncated mirrors and masks, as shown in the example below

  2. FUSE Observations of K--M Stars

    NASA Astrophysics Data System (ADS)

    Ake, T. B.; Dupree, A. K.; Linsky, J. L.; Harper, G. M.; Young, P. R.

    2000-12-01

    As part of the FUSE PI program, a representative sample of cool stars is being surveyed in the LWRS (30 x 30 arcsec) aperture. We report on recent observations of three late-type stars, AU Mic (HD 197481, M0 Ve), β Gem (HD 62509, K0 IIIb), and α Ori (HD 39801, M1-2 Ia--Iab). AU Mic and β Gem show strong emission lines of O VI 1032/1037 and C III 977/1176 and weaker lines of C II, N II, N III, S IV, Si III, Si IV, and perhaps Fe III. AU Mic has evidence of He II and S III emission, and β Gem shows S I emission. Differences are seen in line ratios and line profiles between these stars. In α Ori, these features are very weak or non-existent, and Fe II fluorescent lines in the 1100-1150 Å region, pumped by H I Lyman α , are present. Several emission lines are still unidentified in all spectra. Prospects for future cool star observations will be discussed. This work is based on data obtained for the Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support to U. S. participants has been provided by NASA contract NAS5-32985.

  3. Calibration and display of distributed aperture sensor systems

    NASA Astrophysics Data System (ADS)

    Dale, Jason; Dwyer, David

    2007-04-01

    Distributed aperture sensor (DAS) systems can enhance the situational awareness of operators in both manned and unmanned platforms. In such a system, images from multiple sensors must be registered and fused into a seamless panoramic mosaic in real time, whilst being displayed with very low latency to an operator. This paper describes an algorithm for solving the multiple-image alignment problem and an architecture that leverages the power of consumer graphics processing units (GPU) to provide a live panoramic mosaic display. We also describe other developments aimed at integrating high resolution imagery from an independently steerable fused TV/IR sensor into the mosaic, panorama stabilisation and automatic target detection.

  4. Self-healing fuse development.

    NASA Technical Reports Server (NTRS)

    Jones, N. D.

    1972-01-01

    The self-healing fuse is a very fast acting current overload protective device which opens and recloses in a few milliseconds. The fuse confines a mercury column in an insulated channel and returns the mercury to the channel after firing. Ratings 5 to 50 A at 600 peak volts are possible with a life of hundreds of cycles. Compared to conventional fuses, much less fault current energy fires the fuse by heating the mercury to boiling temperature. Next an arc discharge develops while explosive forces expel the liquid mercury from the channel. Then the high impedance arc either extinguishes immediately, or operates for a few milliseconds, until a switch opens the circuit.

  5. FUSE Observations of Luminous Blue Variables

    NASA Astrophysics Data System (ADS)

    Iping, R. C.; Sonneborn, G.

    2001-12-01

    P-Cygni, AG Carinae, S-Doradus and Eta Carinae were observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE covers the spectral range 905 to 1187 Angstroms at a resolution of 0.05 Angstroms. In this paper we explore in what way the LBV's are similar and in what way they are different. For Eta Car the observed flux at 1160 A, is 4E-12 erg/cm2/s/A. This is 20X larger than observed by STIS/E140M at the same wavelength through a 0.2"x0.2" aperture. The flux level declines toward the Lyman limit where converging molecular and atomic hydrogen features completely blanket the spectrum. The shape of the spectrum shortward of 1110 Angstroms is dominated by strong absorption bands of interstellar molecular hydrogen. In addition to many strong interstellar atomic species, the spectrum contains several prominent P-Cygni features, including C III 1175, S IV 1063-73, Si III 1113, and N I 1134. The lines are broad with unsaturated absorption troughs, implying that the wind is patchy and/or only partly covers the UV emitting surface. The wind absorption extends to -1000 km/s. The large far ultraviolet flux levels at 1150-1180 A, relative to those observed by HST/STIS, imply that the observed far-UV spectrum is formed in an extended 1-2 arcsec diameter UV scattering envelope. The far-UV spectra of P Cygni and AG Carinae are very similar and indicate a cooler atmosphere than Eta Car and S Dor. There is very good agreement between the FUSE spectrum of P Cygni and a model atmosphere computed by Hillier with his code CMFGEN. This work has been supported in part by NASA grants NAG5-8631 to Catholic University of America and NAS5-32985 to Johns Hopkins University.

  6. Variable-aperture screen

    DOEpatents

    Savage, G.M.

    1991-10-29

    Apparatus is described for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function. 10 figures.

  7. APT: Aperture Photometry Tool

    NASA Astrophysics Data System (ADS)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  8. The distribution of subsurface damage in fused silica

    SciTech Connect

    Miller, P E; Suratwala, T I; Wong, L L; Feit, M D; Menapace, J A; Davis, P J; Steele, R A

    2005-11-21

    Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present following the shaping process. To successfully manage, and ultimately remove subsurface damage, understanding the distribution and character of fractures in the subsurface region introduced during fabrication process is important. We have characterized the depth and morphology of subsurface fractures present following fixed abrasive and loose abrasive grinding processes. At shallow depths lateral cracks and an overlapping series of trailing indentation fractures were found to be present. At greater depths, subsurface damage consists of a series of trailing indentation fractures. The area density of trailing fractures changes as a function of depth, however the length and shape of individual cracks remain nearly constant for a given grinding process. We have developed and applied a model to interpret the depth and crack length distributions of subsurface surface damage in terms of key variables including abrasive size and load.

  9. Light bullets from near-IR filament in fused silica

    NASA Astrophysics Data System (ADS)

    Smetanina, E. O.; Kompanets, V. O.; Dormidonov, A. E.; Chekalin, S. V.; Kandidov, V. P.

    2013-10-01

    The formation of light bullets during femtosecond laser pulse filamentation in the presence of anomalous group velocity dispersion has been recorded for the first time. The minimum experimentally detected width of the light bullet autocorrelation function is 27 fs, which corresponds to a duration of about 13.5 fs. The duration of the light bullet at a wavelength of 1800 nm is about two periods of the light field oscillation. The numerically calculated width of the autocorrelation function for such a light bullet is 23 fs, which is in good agreement with the experimental value.

  10. Computer Models of Micrometeoroid Impact on Fused Silica Glass Mirrors

    NASA Technical Reports Server (NTRS)

    Davison, David; Cour-Palais, Burton; Quan, X.; Holmquist, T. J.; Cohen, Lester; Ramsey, Ron; Cummings, Ramona; Hadaway, James (Technical Monitor)

    2002-01-01

    For the first (low energy) calculation both the particle and crater parameters (from tests at AU/HIF) were known, For the second (high energy) calculation, only the particle parameters were known. In both cases the computed craters agreed with historical data of impact on glass. Additional tests at AU/HIF are expected to confirm the results of the second calculation and to validate the technique for use at higher velocities.

  11. Differential Synthetic Aperture Ladar

    SciTech Connect

    Stappaerts, E A; Scharlemann, E

    2005-02-07

    We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

  12. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, R; Dixit, S; Weisberg, A; Rushford, M

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.

  13. Confocal coded aperture imaging

    DOEpatents

    Tobin, Jr., Kenneth William; Thomas, Jr., Clarence E.

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  14. Aperture Photometry Tool

    NASA Astrophysics Data System (ADS)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel "picking" and "zapping," and a selection of source and sky models. The radial-profile-interpolation source model

  15. Operations with the FUSE observatory

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Kruk, Jeffrey W.; Moos, Henry W.; Oegerle, William R.

    2003-02-01

    The Far Ultraviolet Spectroscopic Explorer satellite (FUSE) is a NASA Origins mission launched on 1999 June 24 and operated from the Johns Hopkins University Homewood campus in Baltimore, MD. FUSE consists of four aligned telescopes feeding twin far-ultraviolet spectrographs that achieve a spectral resolution of R=20,000 over the 905-1187 Å spectral region. This makes FUSE complementary to the Hubble Space Telescope and of broad general interest to the astronomical community. FUSE is operated as a general-purpose observatory with proposals evaluated and selected by NASA. The FUSE mission concept evolved dramatically over time. The version of FUSE that was built and flown was born out of the "faster, better, cheaper" era, which drove not only the mission development but also plans for operations. Fixed price contracts, a commercial spacecraft, and operations in the University environment were all parts of the low cost strategy. The satellite performs most functions autonomously, with ground contacts limited typically to seven 12-minute contacts per day through a dedicated ground station. All support functions are managed by a staff of 40 scientists and engineers located at Johns Hopkins. In this configuration, we have been able to achieve close to 30% average on-target science efficiency. In short, FUSE is a successful example of the "faster, better, cheaper" philosophy.

  16. Optical Performance Modeling of FUSE Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  17. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOEpatents

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  18. Optical synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  19. Apodizer aperture for lasers

    DOEpatents

    Jorna, Siebe; Siebert, Larry D.; Brueckner, Keith A.

    1976-11-09

    An aperture attenuator for use with high power lasers which includes glass windows shaped and assembled to form an annulus chamber which is filled with a dye solution. The annulus chamber is shaped such that the section in alignment with the axis of the incident beam follows a curve which is represented by the equation y = (r - r.sub.o).sup.n.

  20. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  1. FUSE Observations of Luminous Cool Stars

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Young, P. R.; Ake, T. B.

    2000-12-01

    Luminous cool stars can address the evolution of magnetic activity and the dynamics of stellar winds and mass loss. The region of yellow supergiants in the HR diagram contains stars of intermediate mass both with coronas and those possessing a hot outer atmosphere in the presence of a strong wind (the ``hybrid'' stars). These hybrid objects hold particular significance for evolution studies because they represent the physically important connection between solar-like stars (with coronas and fast winds of low-mass loss rate) and the cool supergiant stars (Alpha Ori-like) with cool outer atmospheres and massive winds. The Far Ultraviolet Spectroscopic Explorer (FUSE) measured the chromospheric and transition region emissions of the bright G2 Ib supergiant Beta Draconis (HD 159181) on 9 May 2000. Two exposures through the large aperture totaled 7695 s and were obtained in all channels covering the region λ λ 912-1180. Emission from chromospheric and transition region ions (C III, O VI, Si III, S IV, S VI) is detected along with a number of low ion stages. Profiles of strong lines are asymmetric suggesting the presence of a wind. A short exposure (3260 s) of Alpha Aquarii (HD 209750), a hybrid supergiant also of spectral type G2 Ib was obtained June 29, 2000. Dynamics of the atmospheres can be inferred from line profiles. The atmospheric temperature distribution, densities, and scale sizes can be evaluated from line fluxes to characterize the differences between a coronal star and a hybrid supergiant. FUSE is a NASA Origins mission operated by The Johns Hopkins University. Funding for this research is provided through NASA Contract NAS-532985.

  2. Aperture center energy showcase

    SciTech Connect

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), and the partnership provides a unique opportunity to take technology research and development from demonstration to application in a sustainable community. A project under that CRADA, Aperture Center Energy Showcase, offers a means to develop exhibits and demonstrations that present feedback to community members, Sandia customers, and visitors. The technologies included in the showcase focus on renewable energy and its efficiency, and resilience. These technologies are generally scalable, and provide secure, efficient solutions to energy production, delivery, and usage. In addition to establishing an Energy Showcase, support offices and conference capabilities that facilitate research, collaboration, and demonstration were created. The Aperture Center project focuses on establishing a location that provides outreach, awareness, and demonstration of research findings, emerging technologies, and project developments to Sandia customers, visitors, and Mesa del Sol community members.

  3. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  4. 30 CFR 57.6502 - Safety fuse.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Safety fuse. 57.6502 Section 57.6502 Mineral...-Surface and Underground § 57.6502 Safety fuse. (a) The burning rate of each spool of safety fuse to be used shall be measured, posted in locations which will be conspicuous to safety fuse users, and...

  5. 30 CFR 56.6502 - Safety fuse.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Safety fuse. 56.6502 Section 56.6502 Mineral....6502 Safety fuse. (a) The burning rate of each spool of safety fuse to be used shall be measured, posted in locations which will be conspicuous to safety fuse users, and brought to the attention of...

  6. Integrated electrochromic aperture diaphragm

    NASA Astrophysics Data System (ADS)

    Deutschmann, T.; Oesterschulze, E.

    2014-05-01

    In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.

  7. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  8. Novel large aperture EBCCD

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsumu; Aoki, Shigeki; Haba, Junji; Sakuda, Makoto; Suyama, Motohiro

    2011-02-01

    A novel large aperture electron bombardment charge coupled device (EBCCD) has been developed. The diameter of its photocathode is 10 cm and it is the first EBCCD with such a large aperture. Its gain shows good linearity as a function of applied voltage up to -12 kV, where the gain is 2400. The spatial resolution was measured using ladder pattern charts. It is better than 2 line pairs/mm, which corresponds to 3.5 times the CCD pixel size. The spatial resolution was also measured with a copper foil pattern on a fluorescent screen irradiated with X-rays (14 and 18 keV) and a 60 keV gamma-ray from an americium source. The result was consistent with the measurement using ladder pattern charts. The output signal as a function of input light intensity shows better linearity than that of image intensifier tubes (IIT) as expected. We could detect cosmic rays passing through a scintillating fiber block and a plastic scintillator as a demonstration for a practical use in particle physics experiments. This kind of large aperture EBCCD can, for example, be used as an image sensor for a detector with a large number of readout channels and is expected to be additionally applied to other physics experiments.

  9. 16 CFR 1507.3 - Fuses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Fuses. 1507.3 Section 1507.3 Commercial... § 1507.3 Fuses. (a) Fireworks devices that require a fuse shall: (1) Utilize only a fuse that has been... composition are exempted from § 1507.3(a)(1). (2) Utilize only a fuse which will burn at least 3 seconds...

  10. Development of an improved toughness hyperpure silica reflective heat shield

    NASA Technical Reports Server (NTRS)

    Rusert, E. L.; Hackett, T. L.; Drennan, D. N.

    1979-01-01

    High purity three dimensionally woven silica-silica materials were evaluated for use as a tough reflective heat shield for planetary entry probes. A special weave design was selected to minimize light piping effects through the heat shield thickness. Various weave spacings were evaluated for densification efficiency with an 0.7 micron particle size high purity silica. Spectral hemispherical reflectance was measured from 0.2 to 2.5 microns at room temperature. Reflectance increases due to densification and purity of material were measured. Reflectance of 3D hyperpure silica was higher than 3D astroquartz silica for all wavelengths. Mechanical properties were measured in beam flexure and beam shear tests. Results indicated strengths lower than reported for slip cast fused silica. Low strengths were attributed to low densities achieved through vacuum impregnation.

  11. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  12. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  13. Compounding in synthetic aperture imaging.

    PubMed

    Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-09-01

    A method for obtaining compound images using synthetic aperture data is investigated using a convex array transducer. The new approach allows spatial compounding to be performed for any number of angles without reducing the frame rate or temporal resolution. This important feature is an intrinsic property of how the compound images are constructed using synthetic aperture data and an improvement compared with how spatial compounding is obtained using conventional methods. The synthetic aperture compound images are created by exploiting the linearity of delay-and-sum beamformation for data collected from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance measure for tissue contrast resolution which quantifies the tradeoff between resolution loss and speckle reduction. The speckle information density is improved by 25% when comparing synthetic aperture compounding to a similar setup for compounding using dynamic receive focusing. The cystic resolution and clutter levels are measured using a wire phantom setup and compared with conventional application of the array, as well as to synthetic aperture imaging without compounding. If the full aperture is used for synthetic aperture compounding, the cystic resolution is improved by 41% compared with conventional imaging, and is at least as good as what can be obtained using synthetic aperture imaging without compounding. PMID:23007781

  14. Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres.

    PubMed

    Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan

    2014-01-01

    Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745

  15. 16 CFR 1507.3 - Fuses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.3 Fuses. (a) Fireworks devices that require a fuse shall: (1) Utilize only a fuse that has been... it will support either the weight of the fireworks device plus 8 ounces of dead weight or double...

  16. 16 CFR 1507.3 - Fuses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.3 Fuses. (a) Fireworks devices that require a fuse shall: (1) Utilize only a fuse that has been... it will support either the weight of the fireworks device plus 8 ounces of dead weight or double...

  17. 16 CFR 1507.3 - Fuses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.3 Fuses. (a) Fireworks devices that require a fuse shall: (1) Utilize only a fuse that has been... it will support either the weight of the fireworks device plus 8 ounces of dead weight or double...

  18. 16 CFR 1507.3 - Fuses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.3 Fuses. (a) Fireworks devices that require a fuse shall: (1) Utilize only a fuse that has been... it will support either the weight of the fireworks device plus 8 ounces of dead weight or double...

  19. 30 CFR 28.2 - Approved fuses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved fuses. 28.2 Section 28.2 Mineral... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING CABLES IN COAL MINES General Provisions § 28.2 Approved fuses. (a) On and after the effective date...

  20. Optica aperture synthesis

    NASA Astrophysics Data System (ADS)

    van der Avoort, Casper

    2006-05-01

    Optical long baseline stellar interferometry is an observational technique in astronomy that already exists for over a century, but is truly blooming during the last decades. The undoubted value of stellar interferometry as a technique to measure stellar parameters beyond the classical resolution limit is more and more spreading to the regime of synthesis imaging. With optical aperture synthesis imaging, the measurement of parameters is extended to the reconstruction of high resolution stellar images. A number of optical telescope arrays for synthesis imaging are operational on Earth, while space-based telescope arrays are being designed. For all imaging arrays, the combination of the light collected by the telescopes in the array can be performed in a number of ways. In this thesis, methods are introduced to model these methods of beam combination and compare their effectiveness in the generation of data to be used to reconstruct the image of a stellar object. One of these methods of beam combination is to be applied in a future space telescope. The European Space Agency is developing a mission that can valuably be extended with an imaging beam combiner. This mission is labeled Darwin, as its main goal is to provide information on the origin of life. The primary objective is the detection of planets around nearby stars - called exoplanets- and more precisely, Earth-like exoplanets. This detection is based on a signal, rather than an image. With an imaging mode, designed as described in this thesis, Darwin can make images of, for example, the planetary system to which the detected exoplanet belongs or, as another example, of the dust disk around a star out of which planets form. Such images will greatly contribute to the understanding of the formation of our own planetary system and of how and when life became possible on Earth. The comparison of beam combination methods for interferometric imaging occupies most of the pages of this thesis. Additional chapters will

  1. Silica reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Smith, M.; Leiser, D. B. (Inventor)

    1976-01-01

    A reusable silica surface insulation material is provided by bonding amorphous silica fibers with colloidal silica at an elevated temperature. The surface insulation is ordinarily manufactured in the form of blocks (i.e., tiles).

  2. Hybrid integrated PDMS microfluidics with a silica capillary.

    PubMed

    Dimov, Ivan K; Riaz, Asif; Ducrée, Jens; Lee, Luke P

    2010-06-01

    To harness the properties of both PDMS and silica, we have demonstrated hybrid integrated PDMS microfluidic systems with fused silica capillaries. The hybrid integrated PDMS microfluidics and silica capillary (iPSC) modules exhibit a novel architecture and method for leakage free CE sample injection merely requiring a single high voltage source and one pair of electrodes. The use of the iPSC device is based on a modular approach which allows the capillary to be reused extensively whilst replacing the attached fluidic module for different experiments. Integrating fused silica capillaries with PDMS microfluidic modules allows the direct application of a wide variety of well established conventional CE protocols for separations of complex analytes. Furthermore it bears the potential for facile coupling to standard electro-spray ionization mass spectrometry (ESI-MS), letting users focus on the sample analysis rather than the development of new separation protocols. The fabrication of the iPSC module consists of a simple and quick three-step method that submerges a fused silica capillary in PDMS prepolymer. After cross linking the prepolymer and punching the inlets, the iPSC module layer can be mounted onto a microfluidic device for CE separation.

  3. Silica suspension and coating developments for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Cagnoli, G.; Armandula, H.; Cantley, C. A.; Crooks, D. R. M.; Cumming, A.; Elliffe, E.; Fejer, M. M.; Gretarsson, A. M.; Harry, G. M.; Heptonstall, A.; Hough, J.; Jones, R.; Mackowski, J.-M.; Martin, I.; Murray, P.; Penn, S. D.; Perreur-Lloyd, M.; Reid, S.; Route, R.; Rowan, S.; Robertson, N. A. A.; Sneddon, P. H.; Strain, K. A.

    2006-03-01

    The proposed upgrade to the LIGO detectors to form the Advanced LIGO detector system is intended to incorporate a low thermal noise monolithic fused silica final stage test mass suspension based on developments of the GEO 600 suspension design. This will include fused silica suspension elements jointed to fused silica test mass substrates, to which dielectric mirror coatings are applied. The silica fibres used for GEO 600 were pulled using a Hydrogen-Oxygen flame system. This successful system has some limitations, however, that needed to be overcome for the more demanding suspensions required for Advanced LIGO. To this end a fibre pulling machine based on a CO2 laser as the heating element is being developed in Glasgow with funding from EGO and PPARC. At the moment a significant limitation for proposed detectors like Advanced LIGO is expected to come from the thermal noise of the mirror coatings. An investigation on mechanical losses of silica/tantala coatings was carried out by several labs involved with Advanced LIGO R&D. Doping the tantala coating layer with titania was found to reduce the coating mechanical dissipation. A review of the results is given here.

  4. 49 CFR 173.184 - Highway or rail fusee.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Highway or rail fusee. (a) A fusee is a device designed to burn at a controlled rate and to produce visual effects for signaling purposes. The composition of the fusee must be such that the fusee will not...

  5. 49 CFR 173.184 - Highway or rail fusee.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Highway or rail fusee. (a) A fusee is a device designed to burn at a controlled rate and to produce visual effects for signaling purposes. The composition of the fusee must be such that the fusee will not...

  6. Sparse aperture endoscope

    DOEpatents

    Fitch, Joseph P.

    1999-07-06

    An endoscope which reduces the volume needed by the imaging part thereof, maintains resolution of a wide diameter optical system, while increasing tool access, and allows stereographic or interferometric processing for depth and perspective information/visualization. Because the endoscope decreases the volume consumed by imaging optics such allows a larger fraction of the volume to be used for non-imaging tools, which allows smaller incisions in surgical and diagnostic medical applications thus produces less trauma to the patient or allows access to smaller volumes than is possible with larger instruments. The endoscope utilizes fiber optic light pipes in an outer layer for illumination, a multi-pupil imaging system in an inner annulus, and an access channel for other tools in the center. The endoscope is amenable to implementation as a flexible scope, and thus increases the utility thereof. Because the endoscope uses a multi-aperture pupil, it can also be utilized as an optical array, allowing stereographic and interferometric processing.

  7. Sparse aperture endoscope

    DOEpatents

    Fitch, J.P.

    1999-07-06

    An endoscope is disclosed which reduces the volume needed by the imaging part, maintains resolution of a wide diameter optical system, while increasing tool access, and allows stereographic or interferometric processing for depth and perspective information/visualization. Because the endoscope decreases the volume consumed by imaging optics such allows a larger fraction of the volume to be used for non-imaging tools, which allows smaller incisions in surgical and diagnostic medical applications thus produces less trauma to the patient or allows access to smaller volumes than is possible with larger instruments. The endoscope utilizes fiber optic light pipes in an outer layer for illumination, a multi-pupil imaging system in an inner annulus, and an access channel for other tools in the center. The endoscope is amenable to implementation as a flexible scope, and thus increases it's utility. Because the endoscope uses a multi-aperture pupil, it can also be utilized as an optical array, allowing stereographic and interferometric processing. 7 figs.

  8. Optical and transport properties of dense liquid silica

    SciTech Connect

    Qi, Tingting; Millot, Marius; Kraus, Richard G.; Hamel, Sebastien; Root, Seth

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequency dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.

  9. DAVINCI: Dilute Aperture VIsible Nulling Coronagraphic Imager

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Levine, B. M.; Vasisht, G.; Lane, B. F.; Woodruff, R.; Vasudevan, G.; Samuele, R.; Lloyd, C. A.; Clampin, M.; Lyon, R.; Guyon, O.

    2008-01-01

    This slide presentation gives an overview of DAVINCI (Dilute Aperture VIsible Nulling Coronagraphic Imager). The presentation also includes information about dilute aperture coronagraph, and lyot efficiency.

  10. UAVSAR Phased Array Aperture

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Zawadzki, Mark; Sadowy, Greg; Oakes, Eric; Brown, Kyle; Hodges, Richard

    2009-01-01

    This paper describes the development of a patch antenna array for an L-band repeat-pass interferometric synthetic aperture radar (InSAR) instrument that is to be flown on an unmanned aerial vehicle (UAV). The antenna operates at a center frequency of 1.2575 GHz and with a bandwidth of 80 MHz, consistent with a number of radar instruments that JPL has previously flown. The antenna is designed to radiate orthogonal linear polarizations in order to facilitate fully-polarimetric measurements. Beam-pointing requirements for repeat-pass SAR interferometry necessitate electronic scanning in azimuth over a range of -20degrees in order to compensate for aircraft yaw. Beam-steering is accomplished by transmit/receive (T/R) modules and a beamforming network implemented in a stripline circuit board. This paper, while providing an overview of phased array architecture, focuses on the electromagnetic design of the antenna tiles and associated interconnects. An important aspect of the design of this antenna is that it has an amplitude taper of 10dB in the elevation direction. This is to reduce multipath reflections from the wing that would otherwise be detrimental to interferometric radar measurements. This taper is provided by coupling networks in the interconnect circuits as opposed to attenuating the output of the T/R modules. Details are given of material choices and fabrication techniques that meet the demanding environmental conditions that the antenna must operate in. Predicted array performance is reported in terms of co-polarized and crosspolarized far-field antenna patterns, and also in terms of active reflection coefficient.

  11. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  12. Coded aperture compressive temporal imaging.

    PubMed

    Llull, Patrick; Liao, Xuejun; Yuan, Xin; Yang, Jianbo; Kittle, David; Carin, Lawrence; Sapiro, Guillermo; Brady, David J

    2013-05-01

    We use mechanical translation of a coded aperture for code division multiple access compression of video. We discuss the compressed video's temporal resolution and present experimental results for reconstructions of > 10 frames of temporal data per coded snapshot.

  13. Superresolution and Synthetic Aperture Radar

    SciTech Connect

    DICKEY,FRED M.; ROMERO,LOUIS; DOERRY,ARMIN W.

    2001-05-01

    Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. The application of the concept to synthetic aperture radar is investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. A criterion for judging superresolution processing of an image is presented.

  14. FUSE observations of Luminous Blue Variables

    NASA Astrophysics Data System (ADS)

    Iping, Rosina C.; Sonneborn, George; Massa, Derck L.

    P Cyg, AG Car, HD 5980 and η Car were observed with the Far Ultraviolet Spectroscopic Explorer ( FUSE) satellite. FUSE covers the spectral range from 980 Å to 1187 Å at a resolution of 0.05 Å. In this paper we discuss the far-UV properties of these LBVs and explore their similarities and differences. The FUSE observations of P Cyg and AG Car, both spectral type B2pe, are very similar. The atmospheres of both η Car and HD 5980 appear to be somewhat hotter and have much higher ionization stages (Si IV, S IV, and P V) in the FUSE spectrum than P Cyg and AG Car. There is a very good agreement between the FUSE spectrum of P Cygni and the model atmosphere computed by John Hillier with his code CMFGEN. The FUSE spectrum of η Car, however, does not agree very well with existing model spectra.

  15. The effect of heat treatment on the magnitude and composition of residual gas in sealed silica glass ampoules

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1994-01-01

    The residual gas pressure and composition in sealed silica glass ampoules as a function of different treatment procedures has been investigated. The dependence of the residual gas on the outgassing and annealing parameters has been determined. The effects of the fused silica brand, of the ampoule fabrication, and of post-outgassing procedures have been evaluated.

  16. Integrated fuses for OLED lighting device

    DOEpatents

    Pschenitzka, Florian

    2007-07-10

    An embodiment of the present invention pertains to an electroluminescent lighting device for area illumination. The lighting device is fault tolerant due, in part, to the patterning of one or both of the electrodes into strips, and each of one or more of these strips has a fuse formed on it. The fuses are integrated on the substrate. By using the integrated fuses, the number of external contacts that are used is minimized. The fuse material is deposited using one of the deposition techniques that is used to deposit the thin layers of the electroluminescent lighting device.

  17. Internal fuse modules for solid tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Dematos, H. V.

    1981-01-01

    Miniature fuse modules were designed for and incorporated into two styles of solid tantalum capacitors. One is an epoxy molded, radial leaded, high frequency decoupling capacitor; the other is an hermetically sealed device with axial lead wires. The fusible element for both devices consists of a fine bimetallic wire which reacts exothermically upon reaching a critical temperature and then disintegrates. The desirability of having fused devices is discussed and design constraints, in particular those which minimize inductance and series resistance while optimizing fuse actuation characteristics, are reviewed. Factors affecting the amount of energy required to actuate the fuse and reliability of acuation are identified.

  18. Large Aperture Multiplexed Diffractive Lidar Optics

    NASA Technical Reports Server (NTRS)

    Rallison, Richard D.; Schwemmer, Geary K. (Technical Monitor)

    1999-01-01

    We have delivered only 2 or 3 UV Holographic Optical Elements (HOEs) thus far and have fallen short of the intended goal in size and in dual wavelength function. Looking back, it has been fortuitous that we even made anything work in the UV region. It was our good fortune to discover that the material we work with daily was adequate for use at 355 nm, if well rinsed during processing. If we had stuck to our original plan of etching in small pieces of fused silica, we would still be trying to make the first small section in our ion mill, which is not yet operational. The original plan was far too ambitious and would take another 2 years to complete beginning where we left off this time. In order to make a HOE for the IR as well as the UV we will likely have to learn to sensitize some film to the 1064 line and we have obtained sensitizer that is reported to work in that region already. That work would also take an additional year to complete.

  19. 30 CFR 28.2 - Approved fuses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-circuit protection for trailing cables in coal mines only where such fuses are: (1) The same in all... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR...

  20. 30 CFR 28.2 - Approved fuses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-circuit protection for trailing cables in coal mines only where such fuses are: (1) The same in all... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR...

  1. 30 CFR 28.2 - Approved fuses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-circuit protection for trailing cables in coal mines only where such fuses are: (1) The same in all... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR...

  2. 30 CFR 28.2 - Approved fuses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-circuit protection for trailing cables in coal mines only where such fuses are: (1) The same in all... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR...

  3. Blast Off into Space Science with Fuses.

    ERIC Educational Resources Information Center

    Bombaugh, Ruth

    2000-01-01

    Introduces an activity in which students build a fuse with steel, wood, light bulbs, copper wire, clay, and batteries. Uses the cross-age instructional approach to teach about the value of instructional time. Contains directions for building a fuse. (YDS)

  4. Precise Sealing of Fused-Quartz Ampoules

    NASA Technical Reports Server (NTRS)

    Debnan, W. J. J.; Clark, I. O.

    1982-01-01

    New technique rapidly evacuates and seals fused-quartz ampoule with precise clearance over contents without appreciably thinning ampoule walls. Quartz plug is lowered into working section of ampoule after ampoule has been evacuated. Plug is then fused to ampoule walls, forming vacuum seal. New technique maintains wall strength and pumping speed.

  5. Mosaic of coded aperture arrays

    DOEpatents

    Fenimore, Edward E.; Cannon, Thomas M.

    1980-01-01

    The present invention pertains to a mosaic of coded aperture arrays which is capable of imaging off-axis sources with minimum detector size. Mosaics of the basic array pattern create a circular on periodic correlation of the object on a section of the picture plane. This section consists of elements of the central basic pattern as well as elements from neighboring patterns and is a cyclic version of the basic pattern. Since all object points contribute a complete cyclic version of the basic pattern, a section of the picture, which is the size of the basic aperture pattern, contains all the information necessary to image the object with no artifacts.

  6. 30 CFR 18.52 - Renewal of fuses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Renewal of fuses. 18.52 Section 18.52 Mineral... § 18.52 Renewal of fuses. Enclosure covers that provide access to fuses, other than headlight, control-circuit, and handheld-tool fuses, shall be interlocked with a circuit-interrupting device. Fuses shall...

  7. Multifunctional mesoporous silica catalyst

    DOEpatents

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi

    2015-03-31

    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  8. What Is Crystalline Silica?

    MedlinePlus

    ... silica, and requires a repirator protection program until engineering controls are implemented. Additionally, OSHA has a National ... silica materials with safer substitutes, whenever possible. ■ Provide engineering or administrative controls, where feasible, such as local ...

  9. Microgravity Manufacturing Via Fused Deposition

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Griffin, M. R.

    2003-01-01

    Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

  10. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  11. Silica extraction from geothermal water

    DOEpatents

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  12. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  13. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  14. 49 CFR 173.184 - Highway or rail fusee.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... effects for signaling purposes. The composition of the fusee must be such that the fusee will not ignite... consecutive hours. (b) Fusees (highway and railway) must be packaged in steel drums (1A2), steel...

  15. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Boeing Delta II rocket carrying NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite clears the tower after liftoff at 11:44 a.m. EDT from Launch Pad 17A, Cape Canaveral Air Station. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  16. Workers at CCAS move the FUSE satellite.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands in the Hangar A&E, Cape Canaveral Air Station (CCAS), ready for its launch, targeted for June 23 from Launch Pad 17A, CCAS aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  17. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite sits on Launch Pad 17A, Cape Canaveral Air Station, aboard the Boeing Delta II rocket waiting for launch. Liftoff is scheduled for 11:39 a.m. EDT. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  18. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    As light peers over the horizon at the crack of dawn, NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite waits for launch on Launch Pad 17A, Cape Canaveral Air Station, aboard the Boeing Delta II rocket. Liftoff is scheduled for 11:39 a.m. EDT. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  19. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Clouds of smoke and steam billow around the Boeing Delta II rocket as it roars into the sky after liftoff at 11:44 a.m. EDT from Launch Pad 17A, Cape Canaveral Air Station. The rocket is carrying NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  20. Regioselective Oxidation of Fused-Pentagon Chlorofullerenes.

    PubMed

    Zhang, Zhen-Qiang; Chen, Shu-Fen; Gao, Cong-Li; Zhou, Ting; Shan, Gui-Juan; Tan, Yuan-Zhi; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-01-19

    Two monoxides of typical smaller chlorofullerenes, (#271)C50Cl10O and (#913)C56Cl10O, featured with double-fused-pentagons, were synthesized to demonstrate further regioselective functionalization of non-IPR (IPR = isolated pentagon rule) chlorofullerenes. Both non-IPR chlorofullerene oxides exhibit an epoxy structure at the ortho-site of fused pentagons. In terms of the geometrical analysis and theoretical calculations, the principles for regioselective epoxy oxidation of non-IPR chlorofullerenes are revealed to follow both "fused-pentagon ortho-site" and "olefinic bond" rules, which are valuable for prediction of oxidation of non-IPR chlorofullerenes. PMID:26726707

  1. Processing pathway dependence of amorphous silica nanoparticle toxicity - colloidal versus pyrolytic

    PubMed Central

    Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao; Meng, Huan; Sun, Bingbing; Tarn, Derrick; Xue, Min; Wang, Xiang; Lin, Sijie; Ji, Zhaoxia; Li, Ruibin; Garcia, Fred L.; Yang, Jing; Kirk, Martin L.; Xia, Tian; Zink, Jeffrey I; Nel, Andre; Brinker, C. Jeffrey

    2012-01-01

    We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low temperature, colloidal (e.g. Stöber silica) or high temperature pyrolysis (e.g. fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16-nm in diameter). Based on erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to post-synthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially non-toxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chain-like aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica but largely absent in colloidal silicas may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silica is created equal and that the unusual toxicity of fumed silica compared to colloidal silica derives from its framework and surface chemistry along

  2. Subcritical fatigue in fuse networks

    NASA Astrophysics Data System (ADS)

    Oliveira, C. L. N.; Vieira, A. P.; Herrmann, H. J.; Andrade, J. S., Jr.

    2012-11-01

    We obtain the Paris law of fatigue crack propagation in a fuse network model where the accumulated damage in each resistor increases with time as a power law of the local current amplitude. When a resistor reaches its fatigue threshold, it burns irreversibly. Over time, this drives cracks to grow until the system is fractured into two parts. We study the relation between the macroscopic exponent of the crack-growth rate —entering the phenomenological Paris law— and the microscopic damage accumulation exponent, γ, under the influence of disorder. The way the jumps of the growing crack, Δa, and the waiting time between successive breaks, Δt, depend on the type of material, via γ, are also investigated. We find that the averages of these quantities, \\left \\langle \\Delta a\\right \\rangle and \\left \\langle \\Delta t\\right \\rangle /\\left \\langle t_r\\right \\rangle , scale as power laws of the crack length a, \\left \\langle \\Delta a\\right \\rangle \\propto a^{\\alpha } and \\left \\langle \\Delta t\\right \\rangle /\\left \\langle t_r\\right \\rangle \\propto a^{-\\beta } , where \\left \\langle t_r\\right \\rangle is the average rupture time. Strikingly, our results show, for small values of γ, a decrease in the exponent of the Paris law in comparison with the homogeneous case, leading to an increase in the lifetime of breaking materials. For the particular case of γ = 0, when fatigue is exclusively ruled by disorder, an analytical treatment confirms the results obtained by simulation.

  3. Alternative aperture stop position designs for SIRTF

    NASA Technical Reports Server (NTRS)

    Davis, Paul K.; Dinger, Ann S.

    1990-01-01

    Three designs of the Space Infrared Telescope Facility (SIRTF) for a 100,000 high earth orbit are considered with particular attention given to the evaluation of the aperture stop position. The choice of aperture stop position will be based on stray light considerations which are being studied concurrently. It is noted that there are advantages in cost, mass, and astronomical aperture to placing the aperture stop at or near the primary mirror, if the stray light circumstances allow.

  4. Fuse Protects Parabolic-Dish Solar Collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1983-01-01

    Sliding barrel and shutter protect against overheating. Downward movement of shutter initiated by melting of fuse wire that suspends it. Shutter lowered or raised under operator's control by depressuring or pressurizing hydraulic cylinder.

  5. Organometallic chemistry: Fused ferrocenes come full circle

    NASA Astrophysics Data System (ADS)

    Musgrave, Rebecca A.; Manners, Ian

    2016-09-01

    Chemists have long been fascinated by electron delocalization, from both a fundamental and applied perspective. Macrocyclic oligomers containing fused ferrocenes provide a new structural framework -- containing strongly interacting metal centres -- that is capable of supporting substantial charge delocalization.

  6. The Legacy of the FUSE Mission

    NASA Technical Reports Server (NTRS)

    Sonneborne, George

    2012-01-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) mission was a far-ultraviolet space telescope that performed high resolution (R=20,OOO) spectroscopy in the 905 - 1187 A spectral range. FUSE primarily observed stars and distant galaxies to study interstellar and intergalactic gas through absorption spectroscopy, as well as the properties of the objects themselves. This capability complemented the Hubble Space Telescope at longer wavelengths, and provided the international astronomical community with access to an important part of the electromagnetic spectrum. FUSE was a joint project of NASA, CNES, and CSA. The mission operated from 1999 to 2007. This review talk will summarize the scientific impact of the FUSE mission on several key scientific problems, as well as lessons learned for future mission concepts.

  7. Coordination chemistry in fused-salt solutions

    NASA Technical Reports Server (NTRS)

    Gruen, D. M.

    1969-01-01

    Spectrophotometric work on structural determinations with fused-salt solutions is reviewed. Constraints placed on the method, as well as interpretation of the spectra, are discussed with parallels drawn to aqueous spectrophotometric curves of the same materials.

  8. Electrodeposition of microcrystalline chromium from fused salts

    SciTech Connect

    Vargas, T.; Varma, R.; Brown, A.

    1987-01-01

    Chromium can be conveniently electroplated from fused chloride electrolytes. The deposition from LiCl-KCl (eutectic)-CrCl/sub 2/ melts is known to produce large crystal grains. Large grain size and other problems encountered in the electrodeposition of microcrystalline chromium from fused salt are discussed. The results indicate that combined use of forced electrolyte convection and a nucleating pulse in conjunction with a periodic reverse pulse produces fine-grained deposits.

  9. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  10. Controlled-aperture wave-equation migration

    SciTech Connect

    Huang, L.; Fehler, Michael C.; Sun, H.; Li, Z.

    2003-01-01

    We present a controlled-aperture wave-equation migration method that no1 only can reduce migration artiracts due to limited recording aperlurcs and determine image weights to balance the efl'ects of limited-aperture illumination, but also can improve thc migration accuracy by reducing the slowness perturbations within thc controlled migration regions. The method consists of two steps: migration aperture scan and controlled-aperture migration. Migration apertures for a sparse distribution of shots arc determined using wave-equation migration, and those for the other shots are obtained by interpolation. During the final controlled-aperture niigration step, we can select a reference slowness in c;ontrollecl regions of the slowness model to reduce slowncss perturbations, and consequently increase the accuracy of wave-equation migration inel hods that makc use of reference slownesses. In addition, the computation in the space domain during wavefield downward continuation is needed to be conducted only within the controlled apertures and therefore, the computational cost of controlled-aperture migration step (without including migration aperture scan) is less than the corresponding uncontrolled-aperture migration. Finally, we can use the efficient split-step Fourier approach for migration-aperture scan, then use other, more accurate though more expensive, wave-equation migration methods to perform thc final controlled-apertio.ee migration to produce the most accurate image.

  11. Quantitative evaluation of fiber fuse initiation with exposure to arc discharge provided by a fusion splicer.

    PubMed

    Todoroki, Shin-Ichi

    2016-05-03

    The optical communication industry and power-over-fiber applications face a dilemma as a result of the expanding demand of light power delivery and the potential risks of high-power light manipulation including the fiber fuse phenomenon, a continuous destruction of the fiber core pumped by the propagating light and triggered by a heat-induced strong absorption of silica glass. However, we have limited knowledge on its initiation process in the viewpoint of energy flow in the reactive area. Therefore, the conditions required for a fiber fuse initiation in standard single-mode fibers were determined quantitatively, namely the power of a 1480 nm fiber laser and the arc discharge intensity provided by a fusion splicer for one second as an outer heat source. Systematic investigation on the energy flow balance between these energy sources revealed that the initiation process consists of two steps; the generation of a precursor at the heated spot and the transition to a stable fiber fuse. The latter step needs a certain degree of heat accumulation at the core where waveguide deformation is ongoing competitively. This method is useful for comparing the tolerance to fiber fuse initiation among various fibers with a fixed energy amount that was not noticed before.

  12. Quantitative evaluation of fiber fuse initiation with exposure to arc discharge provided by a fusion splicer

    NASA Astrophysics Data System (ADS)

    Todoroki, Shin-Ichi

    2016-05-01

    The optical communication industry and power-over-fiber applications face a dilemma as a result of the expanding demand of light power delivery and the potential risks of high-power light manipulation including the fiber fuse phenomenon, a continuous destruction of the fiber core pumped by the propagating light and triggered by a heat-induced strong absorption of silica glass. However, we have limited knowledge on its initiation process in the viewpoint of energy flow in the reactive area. Therefore, the conditions required for a fiber fuse initiation in standard single-mode fibers were determined quantitatively, namely the power of a 1480 nm fiber laser and the arc discharge intensity provided by a fusion splicer for one second as an outer heat source. Systematic investigation on the energy flow balance between these energy sources revealed that the initiation process consists of two steps; the generation of a precursor at the heated spot and the transition to a stable fiber fuse. The latter step needs a certain degree of heat accumulation at the core where waveguide deformation is ongoing competitively. This method is useful for comparing the tolerance to fiber fuse initiation among various fibers with a fixed energy amount that was not noticed before.

  13. Silica-Ceria Hybrid Nanostructures

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Baer, Donald R.; Thevuthasan, Suntharampillai

    2012-04-25

    A new hybrid material system that consists of ceria attached silica nanoparticles has been developed. Because of the versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and antioxidant properties of ceria nanoparticles, this material system is ideally suited for biomedical applications. The silica particles of size ~50nm were synthesized by the Stöber synthesis method and ceria nanoparticles of size ~2-3nm was attached to the silica surface using a hetrocoagulation method. The presence of silanol groups on the surface of silica particles mediated homogenous nucleation of ceria which were attached to silica surface by Si-O-Ce bonding. The formations of silica-ceria hybrid nanostructures were characterized by X-photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). The HRTEM image confirms the formation of individual crystallites of ceria nanoparticles attached to the silica surface. The XPS analysis indicates that ceria nanoparticles are chemically bonded to surface of silica and possess mixture of +3 and +4 chemical states.

  14. FUSE Observations of Comet C/2001 Q4 (NEAT)

    NASA Astrophysics Data System (ADS)

    Feldman, P. D.; Weaver, H. A.; Christian, D.; Combi, M. R.; Krasnopolsky, V.; Lisse, C. M.; Mumma, M. J.; Shemansky, D. E.; Stern, S. A.

    2004-11-01

    We report observations of comet C/2001 Q4 (NEAT) with the Far Ultraviolet Spectroscopic Explorer (FUSE) beginning 00:40 UT on 2004 April 24. This was the first moving target observation made by FUSE since the failure of two reaction wheels in December 2001. Spectra were obtained in the 905--1180 Å range at 0.3 Å spectral resolution using the 30'' × 30'' aperture and closely resemble the spectra of three comets observed in 2001 and reported previously. The principal features are the (0,0) bands of the CO Birge-Hopfield systems, atomic lines of \\ion{O}{1} and \\ion{H}{1}, and three lines of the H2 Lyman pumped by solar Lyman-β fluorescence. The CO C - X (0,0) band showed a nearly sinusoidal variation over the 27 hr observation interval with a period of 17.0 hr and a peak to minimum ratio of 1.56. The derived average CO production rate is Q(CO) = 8 × 1027 molecules s-1 which is about 4% that of H2O based on concurrent HST/STIS observations of OH emission. As in the previous observations, only upper limits are found for emission from \\ion{Ar}{1} and N2. A relatively strong feature near 1031.8 Å is most likely the H2 Werner (1,1) Q3 line pumped by solar \\ion{O}{6} and \\ion{N}{3}, as the corresponding lines in the (1,3) and (1,4) bands are also present. There may be evidence for weak \\ion{O}{6} emission at 1031.9 Å, in the wing of the H2 line, and at 1037.6 Å. The roughly two dozen other emissions that were not identified in the earlier spectra are also present in C/2001 Q4 at comparable strength to those in comet C/2001 A2 (LINEAR). As C/2001 A2 had a comparable water production rate to that of C/2001 Q4 at the time of observation, the source(s) of these emissions may be ubiquitous in comets. This work is based on data obtained by the NASA-CNES-CSA FUSE mission operated by The Johns Hopkins University. Financial support was partly provided by NASA contract NAS5-32985.

  15. Light bullets and supercontinuum spectrum during femtosecond pulse filamentation under conditions of anomalous group-velocity dispersion in fused silicalicati

    SciTech Connect

    Chekalin, Sergei V; Kompanets, V O; Smetanina, E O; Kandidov, V P

    2013-04-30

    We report the results of theoretical and experimental research on spectrum transformation and spatiotemporal distribution of the femtosecond laser radiation intensity during filamentation in fused silica. The formation of light bullets with a high power density is first observed in a femtosecond laser pulse in the anomalous group velocity dispersion regime at a wavelength of 1800 nm. The minimum duration of the light bullet is about two oscillation cycles of the light field. (extreme light fields and their applications)

  16. Light bullets and supercontinuum spectrum during femtosecond pulse filamentation under conditions of anomalous group-velocity dispersion in fused silicalicati

    NASA Astrophysics Data System (ADS)

    Chekalin, Sergei V.; Kompanets, V. O.; Smetanina, E. O.; Kandidov, V. P.

    2013-04-01

    We report the results of theoretical and experimental research on spectrum transformation and spatiotemporal distribution of the femtosecond laser radiation intensity during filamentation in fused silica. The formation of light bullets with a high power density is first observed in a femtosecond laser pulse in the anomalous group velocity dispersion regime at a wavelength of 1800 nm. The minimum duration of the light bullet is about two oscillation cycles of the light field.

  17. Interactions of silica surfaces

    SciTech Connect

    Vigil, G.; Xu, Z.; Steinberg, S.; Israelachvili, J. . Dept. of Chemical and Nuclear Engineering and Materials Dept.)

    1994-07-01

    Adhesion, friction, and colloidal forces in air and aqueous salt solutions have been measured between various silica surfaces prepared by depositing amorphous but highly smooth silica films on mica. The results show four interesting and interrelated phenomena: (i) the adhesion of silica surfaces in air increases slowly with contact time, especially in humid air where the contacting surfaces become separated by an [approximately]20-[angstrom]-thick layer of hydrated silica or silica gel; (ii) the friction of two silica surfaces exhibits large sticking or stiction spikes, whose magnitude increases in the presence of water and when the surfaces are kept in contact longer before sliding; (iii) the non-DLVO repulsion commonly seen at short range (<40 A) between silica surfaces immersed in aqueous solutions is monotonically repulsive, with no oscillatory component, and is quite unlike theoretical expectations and previous measurements of forces due to solvent structure; (iv) dynamic contact angle measurements reveal time-dependent effects which cannot be due to a fixed surface chemical heterogeneity or roughness. The results indicate that silica surfaces undergo slow structural and chemical changes during interactions with water and with each other. More specifically, the authors propose that the unusual interfacial and colloidal properties of silica are due, not to hydration effects, but to the presence of an [approximately]10-[angstrom]-thick gel-like layer of protruding silanol and silicilic acid groups that grow on the surfaces in the presence of water. These protruding groups react chemically (sinter) with similar groups located on an opposing surface and give rise to the unusual time-dependent adhesion, friction, and non-DLVO forces observed. The proposed mechanism in terms of a surface layer of silica gel is consistent with the known surface chemistry of silica and accounts for the results reported and for other unusual surface and colloidal properties of silica.

  18. 29 CFR 1926.907 - Use of safety fuse.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Use of safety fuse. 1926.907 Section 1926.907 Labor... of safety fuse. (a) Safety fuse shall only be used where sources of extraneous electricity make the use of electric blasting caps dangerous. The use of a fuse that has been hammered or injured in...

  19. High-purity silica reflecting heat shield development

    NASA Technical Reports Server (NTRS)

    Congdon, W. M.

    1974-01-01

    A high-purity, fused-silica reflecting heat shield for the thermal protection of outer-planet probes was developed. Factors that strongly influence the performance of a silica heat shield were studied. Silica-bonded silica configurations, each prepared by a different technique, were investigated and rated according to its relative merits. Slip-casting was selected as the preferred fabrication method because it produced good reflectivity and good strength, and is relatively easy to scale up for a full-size outer-planet probe. The slips were cast using a variety of different particle sizes: continuous particle-size slips; monodisperse particle-size slips; and blends of monodisperse particle-size slips were studied. In general, smaller particles gave the highest reflectance. The monodisperse slips as well as the blend slips gave a higher reflectance than the continuous particle-size slips. An upgraded and fused natural quartz was used to study the effects of microstructure on reflectance and as the baseline to ascertain the increase in reflectance obtained from using a higher-purity synthetic material.

  20. Silica, silicosis, and cancer

    SciTech Connect

    Goldsmith, D.F.; Winn, D.M.; Shy, C.M.

    1986-01-01

    These proceedings collect papers on occupational exposure. Topics include: measurement of silica dust, mortality in granite workers, effects of quartz in coal mine dust, pneumoconiosis, and lung cancer.

  1. Thermographic Observation Of Pyrotechnic Fuse Failure

    NASA Astrophysics Data System (ADS)

    Abney, Linda D.; Mohler, Jonathan H.

    1987-05-01

    Certain metal combinations alloy, with release of large amounts of energy. Palladium/Aluminum is available commercially in the form of wire, braid and foil of various diameters and thicknesses. These products are useful as heat sources and as fuses to ignite other pyrotechnic compositions. We have found that when used in small devices, where the fuse wire may be required to go through narrow channels and sharp bends, the alloying reaction may not propagate reliably. We have used infrared thermography to monitor heat flow in the fuse wire and in materials surrounding it, to observe the thermal dynamics involved in fuse wire propagation. Fuse wire can be ignited by passing an electrical current through it from end to end or it can be lit from one end to carry ignition to other locations in a device or system. Two effects have been observed thermographically: Conductive cooling of the wire where effective thermal contact occurs and hot zone formation at stress points produced by sharp bends. Thermographic measurements have demonstrated that when electrical current is used to ignite palladium/aluminum wire or braid, reaction begins farthest from a heat sink region, or at a sharp bend.The problem with high thermal contact is easily understood since heat sinking can cool the fuse wire and retard reaction, even to the point of failure. Hot zone formation at high stress regions may, on the other hand, not appear detrimental. However, if one recognizes that these hot zones result from high electrical resistance, probably due to microscopic cracks formed in the palladium sheath of the fuse wire, it is easy to see that a corresponding thermal resistance will also be present. Such a high thermal resistance point, when coupled with adjacent conductive cooling paths can contribute to fuse failure.By using infrared scanning, one can not only observe the importance of such effects in fuse wire ignition and propagation but also see where they may be occurring in a particular

  2. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  3. Silica-alumina trihydrate filled epoxy castings resistant to arced SF.sub.6

    DOEpatents

    Chenoweth, Terrence E.; Yeoman, Frederick A.

    1978-01-01

    A cured, insulating, casting composition, having a coefficient of linear thermal expansion of below about 38 .times. 10.sup.-6 in./in./.degree. C and being resistant to arced sulfur hexafluoride gas, in contact with a metal surface in a sulfur hexafluoride gas environment, is made from hydantoin epoxy resin, anhydride curing agent and a filler combination of fused silica and alumina trihydrate.

  4. Aperture scanning Fourier ptychographic microscopy

    PubMed Central

    Ou, Xiaoze; Chung, Jaebum; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection. PMID:27570705

  5. Dual aperture multispectral Schmidt objective

    NASA Technical Reports Server (NTRS)

    Minott, P. O. (Inventor)

    1984-01-01

    A dual aperture, off-axis catadioptic Schmidt objective is described. It is formed by symmetrically aligning two pairs of Schmidt objectives on opposite sides of a common plane (x,z). Each objective has a spherical primary mirror with a spherical focal plane and center of curvature aligned along an optic axis laterally spaced apart from the common plane. A multiprism beamsplitter with buried dichroic layers and a convex entrance and concave exit surfaces optically concentric to the center of curvature may be positioned at the focal plane. The primary mirrors of each objective may be connected rigidly together and may have equal or unequal focal lengths.

  6. Reconstruction of coded aperture images

    NASA Technical Reports Server (NTRS)

    Bielefeld, Michael J.; Yin, Lo I.

    1987-01-01

    Balanced correlation method and the Maximum Entropy Method (MEM) were implemented to reconstruct a laboratory X-ray source as imaged by a Uniformly Redundant Array (URA) system. Although the MEM method has advantages over the balanced correlation method, it is computationally time consuming because of the iterative nature of its solution. Massively Parallel Processing, with its parallel array structure is ideally suited for such computations. These preliminary results indicate that it is possible to use the MEM method in future coded-aperture experiments with the help of the MPP.

  7. TELESCOPES: Astronomers Overcome 'Aperture Envy'.

    PubMed

    Irion, R

    2000-07-01

    Many users of small telescopes are disturbed by the trend of shutting down smaller instruments in order to help fund bigger and bolder ground-based telescopes. Small telescopes can thrive in the shadow of giant new observatories, they say--but only if they are adapted to specialized projects. Telescopes with apertures of 2 meters or less have unique abilities to monitor broad swaths of the sky and stare at the same objects night after night, sometimes for years; various teams are turning small telescopes into robots, creating networks that span the globe and devoting them to survey projects that big telescopes don't have a prayer of tackling. PMID:17832960

  8. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  9. Propagation mechanism of polymer optical fiber fuse.

    PubMed

    Mizuno, Yosuke; Hayashi, Neisei; Tanaka, Hiroki; Nakamura, Kentaro; Todoroki, Shin-ichi

    2014-04-25

    A fiber fuse phenomenon in polymer optical fibers (POFs) has recently been observed, and its unique properties such as slow propagation, low threshold power density, and the formation of a black oscillatory damage curve, have been reported. However, its characterization is still insufficient to well understand the mechanism and to avoid the destruction of POFs. Here, we present detailed experimental and theoretical analyses of the POF fuse propagation. First, we clarify that the bright spot is not a plasma but an optical discharge, the temperature of which is ~3600 K. We then elucidate the reasons for the oscillation of the damage curve along with the formation of newly-observed gas bubbles as well as for the low threshold power density. We also present the idea that the POF fuse can potentially be exploited to offer a long photoelectric interaction length.

  10. Harnessing the fiber fuse for sensing applications.

    PubMed

    Lin, Guei-Ru; Baiad, Mohamad Diaa; Gagne, Mathieu; Liu, Wen-Fung; Kashyap, Raman

    2014-04-21

    A simple refractive index sensor based on a small section of fiber damaged by the fiber fuse is proposed and demonstrated with a sensitivity of 350.58 nm/refractive index unit (RIU). For comparison, a hetero-core structure fiber sensor composed of a short no-core fiber (NCF) sandwiched between two pieces of single-mode fibers is demonstrated with a sensitivity of 157.29 nm/RIU. The fiber fuse technique can allow mass production of sensors by incorporating small sections of the damaged fiber of any type into each device. We believe this is the first application of the periodic damage tracks in optical fibers formed by the fiber fuse.

  11. Propagation mechanism of polymer optical fiber fuse

    PubMed Central

    Mizuno, Yosuke; Hayashi, Neisei; Tanaka, Hiroki; Nakamura, Kentaro; Todoroki, Shin-ichi

    2014-01-01

    A fiber fuse phenomenon in polymer optical fibers (POFs) has recently been observed, and its unique properties such as slow propagation, low threshold power density, and the formation of a black oscillatory damage curve, have been reported. However, its characterization is still insufficient to well understand the mechanism and to avoid the destruction of POFs. Here, we present detailed experimental and theoretical analyses of the POF fuse propagation. First, we clarify that the bright spot is not a plasma but an optical discharge, the temperature of which is ~3600 K. We then elucidate the reasons for the oscillation of the damage curve along with the formation of newly-observed gas bubbles as well as for the low threshold power density. We also present the idea that the POF fuse can potentially be exploited to offer a long photoelectric interaction length. PMID:24762949

  12. Resonant Effects in Nanoscale Bowtie Apertures

    NASA Astrophysics Data System (ADS)

    Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang

    2016-06-01

    Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing.

  13. Advanced Multiple Aperture Seeing Profiler

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Zhao, Gang

    2016-10-01

    Measurements of the seeing profile of the atmospheric turbulence as a function of altitude are crucial for solar astronomical site characterization, as well as the optimized design and performance estimation of solar Multi-Conjugate Adaptive Optics (MCAO). Knowledge of the seeing distribution, up to 30 km, with a potential new solar observation site, is required for future solar MCAO developments. Current optical seeing profile measurement techniques are limited by the need to use a large facility solar telescope for such seeing profile measurements, which is a serious limitation on characterizing a site's seeing conditions in terms of the seeing profile. Based on our previous work, we propose a compact solar seeing profiler called the Advanced Multiple Aperture Seeing Profile (A-MASP). A-MASP consists of two small telescopes, each with a 100 mm aperture. The two small telescopes can be installed on a commercial computerized tripod to track solar granule structures for seeing profile measurement. A-MASP is extreme simple and portable, which makes it an ideal system to bring to a potential new site for seeing profile measurements.

  14. Silica, Silicosis, and Autoimmunity

    PubMed Central

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  15. Ion mobility spectrometer with virtual aperture grid

    DOEpatents

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  16. Fused quartz substrates for microchip electrophoresis

    SciTech Connect

    Jacobson, S.C.; Moore, A.W.; Ramsey, J.M.

    1995-07-01

    A fused quartz microchip is fabricated to perform capillary electrophoresis of metal ions complexed with 8-hydroxyquinoline-5-sulfonic acid (HQS). The channel manifold on the quartz substrate is fabricated using standard photolithographic, etching, and deposition techniques. By incorporating a direct bonding technique during the fabrication of the microchip, the substrate and cover plate can be fused together below the melting temperature for fused quartz. To enhance the resolution for the separation, the electroosmotic flow is minimized by covalently bonding polyacrylamide to the channel walls. A separation length of 16.5 mm and separation field strength of 870 V/cm enable separations to be performed in {<=}15 s. By increasing the concentration of HQS from 5 mM to 20 mM, the separation efficiency improves by approximately 3 times. The low background signal from the fused quartz substrate results in mass detection limits of 85, 61, and 134 amol and concentration detection limits of 46, 57, and 30 ppb for Zn, Cd, and Al, respectively. 30 refs., 6 figs., 2 tabs.

  17. 30 CFR 57.6502 - Safety fuse.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Safety fuse. 57.6502 Section 57.6502 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Nonelectric...

  18. 30 CFR 56.6502 - Safety fuse.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Safety fuse. 56.6502 Section 56.6502 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Nonelectric Blasting §...

  19. 30 CFR 57.6502 - Safety fuse.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Safety fuse. 57.6502 Section 57.6502 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Nonelectric...

  20. 30 CFR 57.6502 - Safety fuse.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Safety fuse. 57.6502 Section 57.6502 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Nonelectric...

  1. 30 CFR 56.6502 - Safety fuse.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Safety fuse. 56.6502 Section 56.6502 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Nonelectric Blasting §...

  2. 30 CFR 56.6502 - Safety fuse.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Safety fuse. 56.6502 Section 56.6502 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Nonelectric Blasting §...

  3. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  4. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides

    PubMed Central

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  5. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    PubMed

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs.

  6. Synthetic aperture radar target simulator

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.

    1984-01-01

    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.

  7. Synthetic aperture interferometry: error analysis

    SciTech Connect

    Biswas, Amiya; Coupland, Jeremy

    2010-07-10

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  8. Silica Embedded Metal Hydrides

    SciTech Connect

    Heung, L.K.; Wicks, G.G.

    1998-08-01

    A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

  9. A systematic review of aperture shapes

    NASA Astrophysics Data System (ADS)

    Schultz, A. B.; Frazier, T. V.

    The paper discusses the application of apodization to reflecting telescopes. The diffraction pattern of a telescope, which is the image of a star, can be changed considerably by using different aperture shapes in combination with appropriately shaped occulting masks on the optical axis. Aperture shapes studied were the circular, square, and hexagonal. Polaris (α-UMin) was used as the test system.

  10. Stripe-shaped apertures in confocal microscopy.

    PubMed

    Shen, Shuhao; Zhu, Bingzhao; Zheng, Yao; Gong, Wei; Si, Ke

    2016-09-20

    We have theoretically verified that, compared with the aperture shapes of previous research, combining two stripe-shaped apertures in a confocal microscope with a finite-sized pinhole improves the axial resolution to a certain extent. Because different stripe shapes cause different effects, we also investigated the relationships among resolution, shapes, pinhole size, and the signal-to-background ratio.

  11. Vowel aperture and syllable segmentation in French.

    PubMed

    Goslin, Jeremy; Frauenfelder, Ulrich H

    2008-01-01

    The theories of Pulgram (1970) suggest that if the vowel of a French syllable is open then it will induce syllable segmentation responses that result in the syllable being closed, and vice versa. After the empirical verification that our target French-speaking population was capable of distinguishing between mid-vowel aperture, we examined the relationship between vowel and syllable aperture in two segmentation experiments. Initial findings from a metalinguistic repetition task supported the hypothesis, revealing significant segmentation differences due to vowel aperture across a range of bi-syllabic stimuli. These findings were also supported in an additional online experiment, in which a fragment detection task revealed a syllabic cross-over interaction due to vowel aperture. Evidence from these experiments suggest that multiple, independent cues are used in French syllable segmentation, including vowel aperture.

  12. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  13. Variable aperture collimator for high energy radiation

    DOEpatents

    Hill, Ronald A.

    1984-05-22

    An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated energy from emerging from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.

  14. Electrochemical Sensors: Functionalized Silica

    SciTech Connect

    Fryxell, Glen E.; Lin, Yuehe; Yantasee, Wassana

    2009-03-24

    This chapter summarizes recent devellopment of electrochemical sensors based on functionlized mesoporous silica materials. The nanomatrials based sensors have been developed for sensitive and selective enrironmental detection of toxic heavy metal and uranium ions.

  15. An electron-conducting pyrene-fused phenazinothiadiazole.

    PubMed

    Marco, A Belen; Cortizo-Lacalle, Diego; Gozalvez, Cristian; Olano, Mikel; Atxabal, Ainhoa; Sun, Xiangnan; Melle-Franco, Manuel; Hueso, Luis E; Mateo-Alonso, Aurelio

    2015-07-01

    A pyrene-fused phenazinothiadiazole that shows electron mobilities (μe = 0.016 cm(2) V(-1) s(-1)) two orders of magnitude higher than those reported for pyrene-fused pyrazaacenes is described. PMID:26051680

  16. Crystalline Silica Primer

    USGS Publications Warehouse

    ,

    1992-01-01

    substance and will present a nontechnical overview of the techniques used to measure crystalline silica. Because this primer is meant to be a starting point for anyone interested in learning more about crystalline silica, a list of selected readings and other resources is included. The detailed glossary, which defines many terms that are beyond the scope of this publication, is designed to help the reader move from this presentation to a more technical one, the inevitable next step.

  17. Retrograde intrarenal surgery in cross-fused ectopic kidney.

    PubMed

    Resorlu, Mustafa; Kabar, Mucahit; Resorlu, Berkan; Doluoglu, Omer Gokhan; Kilinc, Muhammet Fatih; Karakan, Tolga

    2015-02-01

    Cross-fused renal ectopia is a rare congenital anomaly in which both kidneys are fused and located on the same side. We report a case of right-to-left cross-fused renal ectopia and nephrolithiasis, in whom retrograde intrarenal surgery was used to treat the stone disease. To our knowledge, this is the first case of retrograde intrarenal surgery of a crossed-fused ectopic kidney. PMID:25481231

  18. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.

    PubMed

    Borges, Endler M

    2015-04-01

    Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed.

  19. Multimodal Plasmonics in Fused Colloidal Networks

    PubMed Central

    Teulle, Alexandre; Bosman, Michel; Girard, Christian; Gurunatha, Kargal L.; Li, Mei; Mann, Stephen; Dujardin, Erik

    2014-01-01

    Harnessing the optical properties of noble metals down to the nanometer-scale is a key step towards fast and low-dissipative information processing. At the 10-nm length scale, metal crystallinity and patterning as well as probing of surface plasmon (SP) properties must be controlled with a challenging high level of precision. Here, we demonstrate that ultimate lateral confinement and delocalization of SP modes are simultaneously achieved in extended self-assembled networks comprising linear chains of partially fused gold nanoparticles. The spectral and spatial distributions of the SP modes associated with the colloidal superstructures are evidenced by performing monochromated electron energy loss spectroscopy with a nanometer-sized electron probe. We prepare the metallic bead strings by electron beam-induced interparticle fusion of nanoparticle networks. The fused superstructures retain the native morphology and crystallinity but develop very low energy SP modes that are capable of supporting long range and spectrally tunable propagation in nanoscale waveguides. PMID:25344783

  20. Multimodal plasmonics in fused colloidal networks.

    PubMed

    Teulle, Alexandre; Bosman, Michel; Girard, Christian; Gurunatha, Kargal L; Li, Mei; Mann, Stephen; Dujardin, Erik

    2015-01-01

    Harnessing the optical properties of noble metals down to the nanometre scale is a key step towards fast and low-dissipative information processing. At the 10-nm length scale, metal crystallinity and patterning as well as probing of surface plasmon properties must be controlled with a challenging high level of precision. Here, we demonstrate that ultimate lateral confinement and delocalization of surface plasmon modes are simultaneously achieved in extended self-assembled networks comprising linear chains of partially fused gold nanoparticles. The spectral and spatial distributions of the surface plasmon modes associated with the colloidal superstructures are evidenced by performing monochromated electron energy-loss spectroscopy with a nanometre-sized electron probe. We prepare the metallic bead strings by electron-beam-induced interparticle fusion of nanoparticle networks. The fused superstructures retain the native morphology and crystallinity but develop very low-energy surface plasmon modes that are capable of supporting long-range and spectrally tunable propagation in nanoscale waveguides.

  1. 30 CFR 57.12036 - Fuse removal or replacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuse removal or replacement. 57.12036 Section 57.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12036 Fuse removal or replacement. Fuses shall not be removed...

  2. 30 CFR 56.12036 - Fuse removal or replacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuse removal or replacement. 56.12036 Section 56.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.12036 Fuse removal or replacement. Fuses shall not be removed or replaced by hand in an...

  3. 49 CFR 173.184 - Highway or rail fusee.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... effects for signaling purposes. The composition of the fusee must be such that the fusee will not ignite... consecutive hours. (b) Fusees (highway and railway) must be packaged in steel (1A2), aluminum (1B2) or other metal (1N2) drums, steel (3A2) or aluminum (3B2) jerricans, steel (4A), aluminum (4B) or other metal...

  4. 49 CFR 173.184 - Highway or rail fusee.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... effects for signaling purposes. The composition of the fusee must be such that the fusee will not ignite... consecutive hours. (b) Fusees (highway and railway) must be packaged in steel (1A2), aluminum (1B2) or other metal (1N2) drums, steel (3A2) or aluminum (3B2) jerricans, steel (4A), aluminum (4B) or other metal...

  5. Thermal fuse for high-temperature batteries

    DOEpatents

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  6. PENILE AGENESIS WITH CROSSED FUSED RENAL ECTOPIA.

    PubMed

    Derbew, Milliard; Ketema, Elbet

    2015-04-01

    Penile agenesis is one of the rarest urogenital anomalies with only less than 100 cases reported worldwide so far. Only 3 cases have been reported from Africa and to our knowledge none has been reported from our country Ethiopia. Viability depends on associated anomalies. Urogenital anomalies are the most common associated ones accounting for 54% of cases. This case report is unusual presentation, which is the first reported case of penile agenesis associated with left to right, crossed fused renal ectopia.

  7. Fusing maps with photos from mobile devices

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2014-06-01

    A method for fusing imagery from mobile devices with map data in real time is described. A camera model for iOS devices equipped with a camera, GPS, and compass is developed. The parameters of the camera model are determined from information supplied by the device's on board sensors. The camera model projects photo and video data into the ground plane so they can be combined and exploited with map data.

  8. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2002-12-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127-22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg II, Fe II, V II, etc observed in STIS/E230H spectra (see accompanying posters by Gull, Vieira, and Danks). The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-1 above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30x30 arcsec for FUSE, 0.2x0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic miniumum in 2003.

  9. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2003-01-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127- 22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg 11, Fe II, V II, etc observed in STIS/E230H spectra. The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-l above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30 x 30 arcsec for FUSE, 0.2 x 0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic minimum in 2003.

  10. Three dimensional digital holographic aperture synthesis.

    PubMed

    Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R

    2015-09-01

    Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474

  11. Scalar wave diffraction from a circular aperture

    SciTech Connect

    Cerjan, C.

    1995-01-25

    The scalar wave theory is used to evaluate the expected diffraction patterns from a circular aperture. The standard far-field Kirchhoff approximation is compared to the exact result expressed in terms of oblate spheroidal harmonics. Deviations from an expanding spherical wave are calculated for circular aperture radius and the incident beam wavelength using suggested values for a recently proposed point diffractin interferometer. The Kirchhoff approximation is increasingly reliable in the far-field limit as the aperture radius is increased, although significant errors in amplitude and phase persist.

  12. Outbursts In Symbiotic Binaries (FUSE 2000)

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Sonneborn, George (Technical Monitor)

    2002-01-01

    During the past year, we made good progress on analysis of FUSE observations of the symbiotic binary Z And. For background, Z And is a binary system composed of a red giant and a hot component of unknown status. The orbital period is roughly 750 days. The hot component undergoes large-scale eruptions every 10-20 yr. An outburst began several years ago, triggering this FUSE opportunity. First, we obtained an excellent set of ground-based optical data in support, of the FUSE observations. We used FAST, a high throughput low resolution spectrograph on the 1.5-m telescope at Mt. Hopkins, Arizona. A 300 g/ mm grating blazed at 4750 A, a 3 in. slit, and a thinned Loral 512 x 2688 CCD gave us spectra covering 3800-7500 A at a resolution of 6 A. The wavelength solution for each spectrum has a probable error of +/- 0.5 A or better. Most of the resulting spectra have moderate signal-to-noise, S/.N approx. greater than 30 per pixel. The time coverage for these spectra is excellent. Typically, we acquired spectra every 1-2 nights during dark runs at Mt. Hopkins. These data cover most of the rise and all of the decline of the recent outburst. The spectra show a wealth of emission lines, including H I, He I, He II, [Fe V11], and the Raman scattering bands at 6830 A and 7088 A. The Raman bands and other high ionization features vary considerably throughout the outburst. These features will enable us to correlate variations in the FUSE spectra with variations in the optical spectra. Second, we began an analysis of FUSE spectra of Z And. We have carefully examined the spectra, identifying real features and defects. We have identified and measured fluxes for all strong emission lines, including the O VI doublet at 1032 A and 1038 A. These and several other strong emission lines display pronounced P Cygni absorption components indicative of outgrowing gas. We will attempt to correlate these velocities with similar profiles observed on optical spectra. The line velocities - together

  13. Synthesis and characterization of a multimode stationary phase: Congo red derivatized silica in nano-flow HPLC.

    PubMed

    Zhang, Yi; Zhang, Yan; Wang, Guan; Chen, Wujuan; He, Pingang; Wang, Qingjiang

    2016-02-01

    A novel Congo red (CR) derivatized silica stationary phase was prepared and packed into a fused silica capillary tube for nano-flow HPLC. A variety of analytes including poly-aromatic hydrocarbons, parabens, acids, sulfonamides, bases, and nucleosides were successfully separated using the CR. In comparison with commercial ODS columns, this new stationary phase has a different separation mechanism (hydrophobically-assisted ion-exchange), which was evident in the separation of benzoic acid derivatives and sulfonamides. The successful application of CR-bonded silica stationary phase in the HILIC and PALC modes demonstrates the effectiveness of this potential chromatographic material in nano flow HPLC.

  14. Synthesis and characterization of a multimode stationary phase: Congo red derivatized silica in nano-flow HPLC.

    PubMed

    Zhang, Yi; Zhang, Yan; Wang, Guan; Chen, Wujuan; He, Pingang; Wang, Qingjiang

    2016-02-01

    A novel Congo red (CR) derivatized silica stationary phase was prepared and packed into a fused silica capillary tube for nano-flow HPLC. A variety of analytes including poly-aromatic hydrocarbons, parabens, acids, sulfonamides, bases, and nucleosides were successfully separated using the CR. In comparison with commercial ODS columns, this new stationary phase has a different separation mechanism (hydrophobically-assisted ion-exchange), which was evident in the separation of benzoic acid derivatives and sulfonamides. The successful application of CR-bonded silica stationary phase in the HILIC and PALC modes demonstrates the effectiveness of this potential chromatographic material in nano flow HPLC. PMID:26646316

  15. Kinetics of silica polymerization

    SciTech Connect

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  16. Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube

    NASA Astrophysics Data System (ADS)

    Fang, Guocheng; Jia, Pinggang; Liang, Ting; Tan, Qiulin; Hong, Yingping; Liu, Wenyi; Xiong, Jijun

    2016-07-01

    A miniature fiber-optic Fabry-Perot interferometer fabricated by splicing a diaphragm-free hollow silica tube to a single-mode fiber and fusing the inner core to a taper is presented. The tapered zone forces lights to propagate from the fiber core into the silica tube, and the lights is reflected from the end faces of the optical fiber and the hollow silica tube. The contrast ratio of the interference fringe is determined by the minimum inner diameter of hollow silica tube. The responses of the proposed interferometer to high-temperature, gas refractive index, liquid refractive index and pressure were measured and were found to be linear with sensitivities of 16.26 pm/°C, 610.47 nm/RIU, -122.36 dB/RIU and 1.56 pm/kPa, respectively.

  17. Distributed apertures in laminar flow laser turrets

    NASA Astrophysics Data System (ADS)

    Tousley, B. B.

    1981-09-01

    Assume a technology that permits undistorted laser beam propagation from the aft section of a streamlined turret. A comparison of power on a distant airborne target is made between a single aperture in a large scale streamlined turret with a turbulent boundary layer and various arrays of apertures in small scale streamlined turrets with laminar flow. The array performance is mainly limited by the size of each aperture. From an array one might expect, at best, about 40 percent as much power on the target as from a single aperture with equal area. Since the turbulent boundary layer on the large single-turret has negligible effect on beam quality, the array would be preferred (if all development efforts were essentially equal) only if a laminar wake is an operational requirement.

  18. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  19. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  20. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  1. Synthetic Aperture Radar Missions Study Report

    NASA Technical Reports Server (NTRS)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  2. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal. PMID:20208642

  3. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  4. Laser supported solid state absorption fronts in silica

    SciTech Connect

    Carr, C W; Bude, J D

    2010-02-09

    We develop a model based on simulation and experiment that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5GW/cm{sup 2}) laser exposure. We find that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. This behavior is driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  5. Laser-supported solid-state absorption fronts in silica

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Bude, J. D.; Demange, P.

    2010-11-01

    We develop a model based on simulation and extensive experimentation that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5GW/cm2 ) laser exposure. Both experiments and simulations show that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. We show that these absorption fronts naturally result from the combination of high-temperature-activated deep subband-gap optical absorptivity, free-electron transport, and thermal diffusion in defect-free silica for temperatures up to 15000K and pressures <10GPa . The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  6. Resonant Effects in Nanoscale Bowtie Apertures.

    PubMed

    Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang

    2016-01-01

    Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing. PMID:27250995

  7. Resonant Effects in Nanoscale Bowtie Apertures

    PubMed Central

    Ding, Li; Qin, Jin; Guo, Songpo; Liu, Tao; Kinzel, Edward; Wang, Liang

    2016-01-01

    Nanoscale bowtie aperture antennas can be used to focus light well below the diffraction limit with extremely high transmission efficiencies. This paper studies the spectral dependence of the transmission through nanoscale bowtie apertures defined in a silver film. A realistic bowtie aperture is numerically modeled using the Finite Difference Time Domain (FDTD) method. Results show that the transmission spectrum is dominated by Fabry-Pérot (F-P) waveguide modes and plasmonic modes. The F-P resonance is sensitive to the thickness of the film and the plasmonic resonant mode is closely related to the gap distance of the bowtie aperture. Both characteristics significantly affect the transmission spectrum. To verify these numerical results, bowtie apertures are FIB milled in a silver film. Experimental transmission measurements agree with simulation data. Based on this result, nanoscale bowtie apertures can be optimized to realize deep sub-wavelength confinement with high transmission efficiency with applications to nanolithography, data storage, and bio-chemical sensing. PMID:27250995

  8. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1996-01-01

    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  9. Light intensification effect of trailing indent crack in fused silica subsurface

    NASA Astrophysics Data System (ADS)

    Zhang, ChunLai; Xu, Ming; Wang, ChunDong

    2015-03-01

    A finite-difference time-domain algorithm was applied to solve Maxwell's equations to obtain the redistribution of an electromagnetic plane wave in the vicinity of a trailing indent crack (TIC). The roles of five geometrical parameters playing in light intensification were calculated numerically under the irradiation of a 355-nm normal incidence laser. The results show that the light intensity enhancements between the nearest neighbor pits were remarkable, which may lead to damage. The calculated results reveal that the light intensity enhancement factor ( LIEF) can be up to 11.2 when TIC is on the rear-surface. With the increase of the length as well as the depth of pits, LIEF increased. Conversely, with the increase of the axis of pits, LIEF gradually declined to a stable status. It was observed that there exists an optima width or gap, which enables LIEF to be increased dramatically and then decreased gently. By comparison, results suggest that the worst cases occur when the depth and the length are both very large, especially if the width equals to 2 l and the gap equals the width. This work provides a recommended theoretical criterion for defect inspection and classification.

  10. Physical origin of nanograting formation on fused silica with femtosecond pulses

    SciTech Connect

    Liang, Feng Vallée, Réal

    2014-09-29

    We present a comprehensive analysis of physical evolution of nanograting formation based on an experiment performed with femtosecond pulses focused under moderate focusing conditions and where pulse energy is slowly increased as the focused beam is moved along the sample surface. The results demonstrate that nanograting inscription is initiated at the location of the maximum plasma density and evolves through local intensity side lobes, whose locations are self-regulated in a closed feedback loop, in agreement with the plasmonic model.

  11. Gas adsorption surface analysis of silane-coated fused amorphous silica

    SciTech Connect

    Horn, A.F.

    1996-12-31

    Certain types of high frequency electrical circuit substrates consist of copper foil clad PTFE (poly(tetrafluoroethylene)) composite dielectric material that is highly filled (>50 vol.%) with various ceramic powders. The ceramic powders are chosen primarily to modify the dielectric constant of the composite, but also function to reduce the composite`s coefficient of thermal expansion (CTE). The ceramic powders are frequently treated with organosilane coupling agents to reduce the composite water absorption. To be effective, the coupling agents must not significantly degrade at the high processing temperature of PTFE (>350{degrees}C). Phenyl-trimethoxysilane (PTMS) or silane mixtures containing a high fraction of PTMS are often used.

  12. Atmospheric Pressure Plasma Processing of Fused Silica in Different Discharge Modes

    NASA Astrophysics Data System (ADS)

    Li, Na; Xin, Qiang; Zhang, Peng; Wang, Bo

    2015-07-01

    One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal footprint and removal rate are critical to the capability and efficiency of the figuring of the optical surface. In this paper, an atmospheric plasma torch, which can work in both remote mode and contact mode, is presented. The footprints and the removal rates of both modes are compared by profilometer measurements. The influences of process recipes and substrate thickness for both modes are investigated through a series of experiments. When the substrate is thinner than 12 mm, the removal rate in contact mode is higher. However, the removal rate and width of the footprint decrease dramatically as the substrate thickness increases in contact mode. supported by National Natural Science Foundation of China (Nos. 51175123 and 51105112) and National Science and Technology Major Project of China (No. 2013ZX04006011-205)

  13. Application of a geocentrifuge and sterolithographically fabricated apertures to multiphase flow in complex fracture apertures.

    SciTech Connect

    Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin

    2005-09-01

    A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).

  14. Silica Precipitation and Lithium Sorption

    SciTech Connect

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  15. Femtosecond laser-induced periodic surface structures on silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2012-07-01

    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  16. Epoxy Grout With Silica Thickener

    NASA Technical Reports Server (NTRS)

    Mcclung, C. E.

    1984-01-01

    Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.

  17. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.

    PubMed

    Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing

    2012-04-01

    This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.

  18. Fused Reality for Enhanced Flight Test Capabilities

    NASA Technical Reports Server (NTRS)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  19. Fusing Symbolic and Numerical Diagnostic Computations

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    X-2000 Anomaly Detection Language denotes a developmental computing language, and the software that establishes and utilizes the language, for fusing two diagnostic computer programs, one implementing a numerical analysis method, the other implementing a symbolic analysis method into a unified event-based decision analysis software system for realtime detection of events (e.g., failures) in a spacecraft, aircraft, or other complex engineering system. The numerical analysis method is performed by beacon-based exception analysis for multi-missions (BEAMs), which has been discussed in several previous NASA Tech Briefs articles. The symbolic analysis method is, more specifically, an artificial-intelligence method of the knowledge-based, inference engine type, and its implementation is exemplified by the Spacecraft Health Inference Engine (SHINE) software. The goal in developing the capability to fuse numerical and symbolic diagnostic components is to increase the depth of analysis beyond that previously attainable, thereby increasing the degree of confidence in the computed results. In practical terms, the sought improvement is to enable detection of all or most events, with no or few false alarms.

  20. Spectral fusing Gabor domain optical coherence microscopy.

    PubMed

    Meemon, Panomsak; Widjaja, Joewono; Rolland, Jannick P

    2016-02-01

    Gabor domain optical coherence microscopy (GD-OCM) is one of many variations of optical coherence tomography (OCT) techniques that aims for invariant high resolution across a 3D field of view by utilizing the ability to dynamically refocus the imaging optics in the sample arm. GD-OCM acquires multiple cross-sectional images at different focus positions of the objective lens, and then fuses them to obtain an invariant high-resolution 3D image of the sample, which comes with the intrinsic drawback of a longer processing time as compared to conventional Fourier domain OCT. Here, we report on an alternative Gabor fusing algorithm, the spectral-fusion technique, which directly processes each acquired spectrum and combines them prior to the Fourier transformation to obtain a depth profile. The implementation of the spectral-fusion algorithm is presented and its performance is compared to that of the prior GD-OCM spatial-fusion approach. The spectral-fusion approach shows twice the speed of the spatial-fusion approach for a spectrum size of less than 2000 point sampling, which is a commonly used spectrum size in OCT imaging, including GD-OCM.

  1. Numerical simulation of the coupling of ultra-wide band electromagnetic pulse into landmine by aperture

    NASA Astrophysics Data System (ADS)

    Gao, Zhen-Ru; Zhao, Hui-Chang; Yang, Li; Wang, Feng-Shan

    2015-09-01

    The modern landmine’s electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse (UWB-EMP). The finite-difference time-domain (FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface (MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage. Project supported by the Postdoctoral Science Foundation of China (Grant No. 2014M552610).

  2. Halting the fuse discharge propagation using optical fiber microwires.

    PubMed

    Rocha, A M; Fernandes, G; Domingues, F; Niehus, M; Pinto, A N; Facão, M; André, P S

    2012-09-10

    We report and analyze the halting of the fuse effect propagation in optical fiber microwires. The increase of the mode field diameter in the tapered region decreases the optical intensity resulting in the extinction of the fuse effect. This fiber element presents a low insertion loss and can be introduced in the optical network in order to protect the active equipment from the damage caused by the fuse effect.

  3. Aperture effects in squid jet propulsion.

    PubMed

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.

  4. Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites

    SciTech Connect

    Zheng Chan; Du Yuhong; Feng Miao; Zhan Hongbing

    2008-10-06

    Nanostructured Ag in shapes of nanoplate, nanowire, and nanoparticle, as well as their silica gel glass composites have been prepared and characterized. Nonlinear optical (NLO) properties were measured at 532 and 1064 nm using open aperture z-scan technique and studied from the view of shape effect. NLO behaviors of the nanostructured Ag are found to be shape dependent in suspensions at both the investigated wavelengths, although they originate differently. Comparing to the mother suspensions, the Ag/silica gel glass nanocomposites present rather dissimilar NLO behaviors, which is quite interesting for further studies.

  5. Workers at CCAS attach solar panel to FUSE satellite.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Hangar AE, Cape Canaveral Air Station (CCAS), workers check the installation of a solar panel on NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket.

  6. Workers at CCAS attach solar panel to FUSE satellite.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers at Hangar AE, Cape Canaveral Air Station (CCAS), get ready to move the scaffolding from around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  7. Workers at CCAS attach solar panel to FUSE satellite.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Hangar AE, Cape Canaveral Air Station (CCAS), workers move a solar panel toward NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite before attaching it. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket.

  8. Workers at CCAS attach solar panel to FUSE satellite.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Hangar AE, Cape Canaveral Air Station (CCAS), workers attach a solar panel to NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket.

  9. Boeing Delta II rocket for FUSE launch arrives at CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is moved into the tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe, hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS.

  10. Fast-acting self-healing metallic fuse.

    NASA Technical Reports Server (NTRS)

    Schwartz, F. C.; Renton, C. A.; Rabinovici, B.

    1971-01-01

    Description of a fast-acting nonmechanical self-healing mercury fuse capable of protecting a high current circuit or device from overcurrent fault damages. Basically the self-healing fuse consists of two enclosed mercury reservoirs connected by a fine capillary tube filled with mercury that serves as the fusing element. It is pointed out that a better understanding of the energy conversion process involved in the operation of the device could help explore other device configurations (such as a tapering geometry and use of magnetic field to drive the arc into the fuse wall on inductive loads, etc.) and thus extend the range of capabilities for this type of protective device.

  11. ICF Hohlraum Energy Loss Through Diagnostic Holes and Apertures

    NASA Astrophysics Data System (ADS)

    Tierney, T. E.; Watt, R. G.; Tierney, H. E.; Kanzleiter, R. J.; Idzorek, G. C.; Peterson, R. R.; Lopez, M. R.; Jones, M. C.

    2008-10-01

    The Z dynamic hohlraum (DH) was used to examine inertial confinement fusion energetics and radiation transport. A 2.4-mm diameter, 4-mm high copper-walled hohlraum is mounted above the DH to capture ˜100 kJ of axially-emitted quasi-Planckian radiation (Trad˜ 180-220 eV). A 1-mm diameter hole was placed at the top of the hohlraum, while some targets had an additional 400-micron wide groove cut in the side. A 4-mm diameter cylinder of 60 mg/cc silica aerogel foam surrounds the hohlraum to produce blast waves (BWs) out the top and sides of the hohlraum. The propagated distance and shape of the BWs provides estimates of time-integrated energy delivered to the foam. Single frame soft x-ray imaging recorded the formation of BWs as well as wall ablation and motion. This experiment diagnosed energy loss through apertures in hohlraums by use of BW measurements. We discuss the experiment results in comparison to 2-D radiation hydrodynamic simulations.

  12. Development of a fused slurry silicide coating for the protection of tantalum alloys

    NASA Technical Reports Server (NTRS)

    Packer, C. M.; Perkins, R. A.

    1974-01-01

    Results are reported of a research program to develop a reliable high-performance, fused slurry silicide protective coating for a tantalum-10 tungsten alloy for use at 1427 to 1538 C at 0.1 to 10 torr air pressure under cyclic temperature conditions. A review of silicide coating performance under these conditions indicated that the primary wear-out mode is associated with widening of hairline fissures in the coating. Consideration has been given to modifying the oxidation products that form on the coating surface to provide a seal for these fissures and to minimize their widening. On the basis of an analysis of the phase relationships between silica and various other oxides, a coating having the slurry composition 2.5Mn-33Ti-64.5Si was developed that is effective in the pressure range from 1 to 10 torr.

  13. Class of near-perfect coded apertures

    NASA Technical Reports Server (NTRS)

    Cannon, T. M.; Fenimore, E. E.

    1977-01-01

    Coded aperture imaging of gamma ray sources has long promised an improvement in the sensitivity of various detector systems. The promise has remained largely unfulfilled, however, for either one of two reasons. First, the encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. Second, if the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. It is proposed to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method.

  14. 1D fast coded aperture camera.

    PubMed

    Haw, Magnus; Bellan, Paul

    2015-04-01

    A fast (100 MHz) 1D coded aperture visible light camera has been developed as a prototype for imaging plasma experiments in the EUV/X-ray bands. The system uses printed patterns on transparency sheets as the masked aperture and an 80 channel photodiode array (9 V reverse bias) as the detector. In the low signal limit, the system has demonstrated 40-fold increase in throughput and a signal-to-noise gain of ≈7 over that of a pinhole camera of equivalent parameters. In its present iteration, the camera can only image visible light; however, the only modifications needed to make the system EUV/X-ray sensitive are to acquire appropriate EUV/X-ray photodiodes and to machine a metal masked aperture. PMID:25933861

  15. Solar energy apparatus with apertured shield

    NASA Technical Reports Server (NTRS)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  16. 1D fast coded aperture camera.

    PubMed

    Haw, Magnus; Bellan, Paul

    2015-04-01

    A fast (100 MHz) 1D coded aperture visible light camera has been developed as a prototype for imaging plasma experiments in the EUV/X-ray bands. The system uses printed patterns on transparency sheets as the masked aperture and an 80 channel photodiode array (9 V reverse bias) as the detector. In the low signal limit, the system has demonstrated 40-fold increase in throughput and a signal-to-noise gain of ≈7 over that of a pinhole camera of equivalent parameters. In its present iteration, the camera can only image visible light; however, the only modifications needed to make the system EUV/X-ray sensitive are to acquire appropriate EUV/X-ray photodiodes and to machine a metal masked aperture.

  17. Axial superresolution by synthetic aperture generation

    NASA Astrophysics Data System (ADS)

    Micó, V.; García, J.; Zalevsky, Z.

    2008-12-01

    The use of tilted illumination onto the input object in combination with time multiplexing is a useful technique to overcome the Abbe diffraction limit in imaging systems. It is based on the generation of an expanded synthetic aperture that improves the cutoff frequency (and thus the resolution limit) of the imaging system. In this paper we present an experimental validation of the fact that the generation of a synthetic aperture improves not only the lateral resolution but also the axial one. Thus, it is possible to achieve higher optical sectioning of three-dimensional (3D) objects than that defined by the theoretical resolution limit imposed by diffraction. Experimental results are provided for two different cases: a synthetic object (micrometer slide) imaged by a 0.14 numerical aperture (NA) microscope lens, and a biosample (swine sperm cells) imaged by a 0.42 NA objective.

  18. Understanding error generation in fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  19. Mid-IR fused fiber couplers

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Woodbridge, T.

    2016-03-01

    We present results from our recent efforts on developing single-mode fused couplers in ZBLAN fibre. We have developed a custom fusion workstation for working with lower melting temperature fibres, such as ZBLAN and chalcogenide fibres. Our workstation uses a precisely controlled electrical heater designed to operate at temperatures between 100 - 250°C as our heat source. The heated region of the fibers was also placed in an inert atmosphere to avoid the formation of microcrystal inclusions during fusion. We firstly developed a process for pulling adiabatic tapers in 6/125 μm ZBLAN fibre. The tapers were measured actively during manufacture using a 2000 nm source. The process was automated so that the heater temperature and motor speed automatically adjusted to pull the taper at constant tension. This process was then further developed so that we could fuse and draw two parallel 6/125 μm ZBLAN fibres, forming a single-mode coupler. Low ratio couplers (1-10%) that could be used as power monitors were manufactured that had an excess loss of 0.76 dB. We have also manufactured 50/50 splitters and wavelength division multiplexers (WDMs). However, the excess loss of these devices was typically 2 - 3 dB. The increased losses were due to localised necking and surface defects forming as the tapers were pulled further to achieve a greater coupling ratio. Initial experiments with chalcogenide fibre have shown that our process can be readily adapted for chalcogenide fibres. A 5% coupler with 1.5 dB insertion loss was manufactured using commercial of the shelf (COTS) fibres.

  20. PDII- Additional discussion of the dynamic aperture

    SciTech Connect

    Norman M. Gelfand

    2002-07-23

    This note is in the nature of an addition to the dynamic aperture calculations found in the report on the Proton Driver, FERMILAB-TM-2169. A extensive discussion of the Proton Driver lattice, as well as the nomenclature used to describe it can be found in TM-2169. Basically the proposed lattice is a racetrack design with the two arcs joined by two long straight sections. The straight sections are dispersion free. Tracking studies were undertaken with the objective of computing the dynamic aperture for the lattice and some of the results have been incorporated into TM-2169. This note is a more extensive report of those calculations.

  1. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  2. Synthesis aperture femtosecond-pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Zhu, Linwei; Sun, Meiyu; Chen, Jiannong; Yu, Yongjiang; Zhou, Changhe

    2013-09-01

    A new aperture-synthesis approach in femtosecond-pulse digital holography for obtaining a high-resolution and a whole field of view of the reconstructed image is proposed. The subholograms are recorded only by delay scanning holograms that have different delay times between the object and reference beams. In addition, by using image processing techniques, the synthesis aperture digital hologram can be superposed accurately. Analysis and experimental results show that the walk-off in femtosecond off-axis digital holography caused by low coherent can be well eliminated. The resolution and the field of view of the reconstructed image can be improved effectively.

  3. Formation of periodic metal nanowire grating on silica substrate by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Nakajima, Yasutaka; Nedyalkov, Nikolay; Takami, Akihiro; Terakawa, Mitsuhiro

    2015-06-01

    We demonstrate a method to fabricate isolated metal nanowire gratings on a substrate by using femtosecond (fs) laser. By irradiating fs laser pulses with 500-fs pulse duration, 800 nm in central wavelength at a pulse repetition rate of 1 kHz, to platinum thin films with thicknesses of 48 and 576 nm deposited on fused silica substrates, two different periodicities of ripple structure were formed: the periodicity less than half of the laser wavelength and that comparable to the laser wavelength. Scanning electron microscopy and cross-sectional imaging after milling with focused ion beam revealed that the periodic aligned platinum structures were formed on the surface of a fused silica substrate. Energy-dispersive X-ray spectroscopy and atomic force microscopy supported the demonstration of nanowire gratings in which platinum and fused silica were alternately and periodically exposed. The results demonstrate the formation of isolated platinum nanowire gratings. The presented technique has potential to be used as a simple and high-throughput process for fabrication of plasmonic nanostructures for optical, electrical, and biomedical devices.

  4. Manufacturing miniature Langmuir probes by fusing platinum bond wires

    NASA Astrophysics Data System (ADS)

    Berglund, Martin; Sturesson, Peter; Thornell, Greger; Persson, Anders

    2015-10-01

    This paper reports on a novel method for manufacturing microscopic Langmuir probes with spherical tips from platinum bond wires by fusing for plasma characterization in microplasma sources. Here, the resulting endpoints, formed by droplets on the ends of a fused wire, are intended to act as spherical Langmuir probes. For studying the fusing behavior, bond wires were wedge bonded over a 2 mm wide slit, to emulate the final application, and fused with different voltages and currents. For electrical isolation, a set of wires were coated with a 4 μm thick layer of Parylene before they were fused. After fusing, the gap size, as well as the shape and area of the ends of the remaining stubs were measured. The yield of the process was also investigated, and the fusing event was studied using a high-speed camera for analyzing its dynamics. Four characteristic tip shapes were observed: spherical, folded, serpentine shaped and semi-spherical. The stub length leveled out at  ˜400 μm as the fusing power increased. The fusing of the coated wires required a higher power to yield a spherical shape. Finally, a Parylene coated bond wire was integrated into a stripline split-ring resonator (SSRR) microplasma source, and was fused to form two Langmuir probes with spherical endpoints. These probes were used for measuring the I-V characteristics of a plasma generated by the SSRR. In a voltage range between  -60 V and 60 V, the fused stubs exhibited the expected behavior of spherical Langmuir probes, and will be considered for further integration.

  5. Viscoelasticity of silica gels

    SciTech Connect

    Scherer, G.W.

    1995-12-01

    The response of silica gels to mechanical loads depends on the properties of the solid phase and the permeability of the network. Understanding this behavior is essential for modeling of stresses developed during drying or heating of gels. The permeability and the mechanical properties are readily determined from a simple beam-bending experiment, by measuring the load relaxation that occurs at constant deflection. Load decay results from movement of the liquid within the network; in addition, there may be viscoelastic relaxation of the network itself. Silica gel is viscoelastic in chemically aggressive media, but in inert liquids (such as ethanol or acetone) it is elastic. Experiments show that the viscoelastic relaxation time decreases as the concentration and pH of the water in the pore liquid increase. During drying, the permeability decreases and the viscosity increases, both exhibiting a power-law dependence on density of the gel network.

  6. Thermal pretreatments of superficially porous silica particles for high-performance liquid chromatography: Surface control, structural characterization and chromatographic evaluation.

    PubMed

    Mignot, Mélanie; Sebban, Muriel; Tchapla, Alain; Mercier, Olivier; Cardinael, Pascal; Peulon-Agasse, Valérie

    2015-11-01

    This study reports the impact of thermal pretreatment between 400 and 1100°C on superficially porous silica particles (e.g. core-shell, fused-core; here abbreviated as SPP silica). The different thermally pretreated SPP silica (400°C, 900°C and 1100°C) were chemically bonded with an octadecyl chain under microwave irradiation. The bare SPP silica, thermally untreated and pretreated, as well as the chemically bonded phases (CBPs) were fully characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and solid state cross polarization magic angle spinning (CP-MAS) (29)Si NMR. The chromatographic properties of the overall set of C18-thermally pretreated SPP silica stationary phases were determined using the Tanaka test. Complementary, the simplified Veuthey test was used to deeply study the silanol activity, considering a set of 7 basic solutes with various physicochemical properties. Both tests were also performed on different commercial SPP silica columns and different types of bonding chemistry (C18, Phenyl-hexyl, RP-amide, C30, aQ). Multivariate data analyses (hierarchical cluster analysis and principal component analysis) were carried out to define groups of stationary phases with similar chromatographic properties and situate them in relation to those commercially available. These different C18-thermally pretreated SPP silicas represented a wide range of stationary phases as they were spread out along the score plot. Moreover, this study highlighted that the thermal pretreatment improved the chemical stability of the SPP silica compare to untreated SPP silica and untreated porous silica. Consequently, higher thermal pretreatment can be applied (up to 900°C) before functionalization without destruction of the silica matrix. Indeed, a significantly lower dissolution of the thermally pretreated SPP silica under aggressive conditions could allow the use of the corresponding functionalized stationary phases at high

  7. Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification

    PubMed Central

    Plowright, Robyn; Dinjaski, Nina; Zhou, Shun; Belton, David J.; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with biomineralization domains which lead to silica deposition and potentially accelerated bone regeneration. However, the influence of the location of the R5 (SSKKSGSYSGSKGSKRRIL) silicifying domain fused with the spider silk protein sequence on the biosilicification process remains to be determined. Here we designed two silk-R5 fusion proteins that differed in the location of the R5 peptide, C- vs. N-terminus, where the spider silk domain consisted of a 15mer repeat of a 33 amino acid consensus sequence of the major ampullate dragline Spidroin 1 from Nephila clavipes (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT). The chemical, physical and silica deposition properties of these recombinant proteins were assessed and compared to a silk 15mer control without the R5 present. The location of the R5 peptide did not have a significant effect on wettability and surface energies, while the C-terminal location of the R5 promoted more controlled silica precipitation, suggesting differences in protein folding and possibly different access to charged amino acids that drive the silicification process. Further, cell compatibility in vitro, as well as the ability to promote human bone marrow derived mesenchymal stem cell (hMSC) differentiation were demonstrated for both variants of the fusion proteins. PMID:26989487

  8. Radiation safety considerations in proton aperture disposal.

    PubMed

    Walker, Priscilla K; Edwards, Andrew C; Das, Indra J; Johnstone, Peter A S

    2014-04-01

    Beam shaping in scattered and uniform scanned proton beam therapy (PBT) is made commonly by brass apertures. Due to proton interactions, these devices become radioactive and could pose safety issues and radiation hazards. Nearly 2,000 patient-specific devices per year are used at Indiana University Cyclotron Operations (IUCO) and IU Health Proton Therapy Center (IUHPTC); these devices require proper guidelines for disposal. IUCO practice has been to store these apertures for at least 4 mo to allow for safe transfer to recycling contractors. The devices require decay in two staged secure locations, including at least 4 mo in a separate building, at which point half are ready for disposal. At 6 mo, 20-30% of apertures require further storage. This process requires significant space and manpower and should be considered in the design process for new clinical facilities. More widespread adoption of pencil beam or spot scanning nozzles may obviate this issue, as apertures then will no longer be necessary.

  9. Aperture synthesis imaging from the moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1991-01-01

    Four candidate imaging aperture synthesis concepts are described for possible emplacement on the moon beginning in the next decade. These include an optical interferometer with 10 microarcsec resolution, a submillimeter array with 6 milliarcsec resolution, a moon-earth VLBI experiment, and a very low frequency interferometer in lunar orbit.

  10. Perceiving Affordances for Fitting through Apertures

    ERIC Educational Resources Information Center

    Ishak, Shaziela; Adolph, Karen E.; Lin, Grace C.

    2008-01-01

    Affordances--possibilities for action--are constrained by the match between actors and their environments. For motor decisions to be adaptive, affordances must be detected accurately. Three experiments examined the correspondence between motor decisions and affordances as participants reached through apertures of varying size. A psychophysical…

  11. Clutter free synthetic aperture radar correlator

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1977-01-01

    A synthetic aperture radar correlation system including a moving diffuser located at the image plane of a radar processor is described. The output of the moving diffuser is supplied to a lens whose impulse response is at least as wide as that of the overall processing system. A significant reduction in clutter results is given.

  12. A modular approach toward extremely large apertures

    NASA Astrophysics Data System (ADS)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  13. Depolarization by high-aperture focusing

    NASA Astrophysics Data System (ADS)

    Bahlmann, Karsten; Hell, Stefan W.

    2002-05-01

    We propose and demonstrate a method employing ferroelectric monomolecular layers, by which it is possible to precisely measure the planar light field polarization in the focus of a lens. This method allowed us to establish for the first time to our knowledge, the perpendicularly oriented field that is anticipated at high apertures. For a numerical aperture 1.4 oil immersion lens illuminated with linearly polarized plane waves, the integral of the modulus square of the perpendicular component amounts to (1.51r0.2) % of that of the initial polarization. It is experimentally proven that depolarization decreases with decreasing aperture angle and increases when using annular apertures. Annuli formed by a central obstruction with a diameter of 89 % of that of the entrance pupil raise the integral to 5.5 %. This compares well with the value of 5.8% predicted by electromagnetic focusing theory; however, the depolarization is also due to imperfections connected with focusing by refraction. Besides fluorescence microscopy and single molecule spectroscopy, the measured intensity of the depolarized component in the focal plane is relevant to all forms of light spectroscopy combining strong focusing with polarization analysis.

  14. Dynamic metamaterial aperture for microwave imaging

    SciTech Connect

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  15. Agile multiple aperture imager receiver development

    NASA Astrophysics Data System (ADS)

    Lees, David E. B.; Dillon, Robert F.

    1990-02-01

    A variety of unconventional imaging schemes have been investigated in recent years that rely on small, unphased optical apertures (subaperture) to measure properties of an incoming optical wavefront and recover images of distant objects without using precisely figured, large aperture optical elements. Such schemes offer several attractive features. They provide the potential to create very lare effective aperture that are expandable over time and can be launched into space in small pieces. Since the subapertures are identical in construction, they may be mass producible at potentially low cost. A preliminary design for a practical low cost optical receiver is presented. The multiple aperture design has high sensitivity, wide field-of-view, and is lightweight. A combination of spectral, temporal, and spatial background suppression are used to achieve daytime operation at low signal levels. Modular packaging to make the number of receiver subapertures conveniently scalable is also presented. The design is appropriate to a ground-base proof-of-concept experiment for long range active speckle imaging.

  16. Interdisciplinary science with large aperture detectors

    NASA Astrophysics Data System (ADS)

    Wiencke, Lawrence

    2013-06-01

    Large aperture detector systems to measure high energy cosmic rays also offer unique opportunities in other areas of science. Disciplines include geophysics such as seismic and volcanic activity, and atmospheric science ranging from clouds to lightning to aerosols to optical transients. This paper will discuss potential opportunities based on the ongoing experience of the Pierre Auger Observatory.

  17. Radiation safety considerations in proton aperture disposal.

    PubMed

    Walker, Priscilla K; Edwards, Andrew C; Das, Indra J; Johnstone, Peter A S

    2014-04-01

    Beam shaping in scattered and uniform scanned proton beam therapy (PBT) is made commonly by brass apertures. Due to proton interactions, these devices become radioactive and could pose safety issues and radiation hazards. Nearly 2,000 patient-specific devices per year are used at Indiana University Cyclotron Operations (IUCO) and IU Health Proton Therapy Center (IUHPTC); these devices require proper guidelines for disposal. IUCO practice has been to store these apertures for at least 4 mo to allow for safe transfer to recycling contractors. The devices require decay in two staged secure locations, including at least 4 mo in a separate building, at which point half are ready for disposal. At 6 mo, 20-30% of apertures require further storage. This process requires significant space and manpower and should be considered in the design process for new clinical facilities. More widespread adoption of pencil beam or spot scanning nozzles may obviate this issue, as apertures then will no longer be necessary. PMID:24562073

  18. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  19. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....

  20. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having a minimum silica content of 89.5 percent. (b) (c) Limitations, restrictions, or explanation....