Science.gov

Sample records for aperture radar images

  1. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  2. Frequency Diversity for Improving Synthetic Aperture Radar Imaging

    DTIC Science & Technology

    2009-03-01

    xiii List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi I. Introduction ...Improving Synthetic Aperture Radar Imaging I. Introduction 1.1 Research Motivation Synthetic aperture radar (SAR) is an active radio frequency (RF) imaging...PFA) begins with introduction of the linear frequency modulated (LFM) waveform. LFM is the most common waveform used in general radar applications [25

  3. Multistatic synthetic aperture radar image formation.

    PubMed

    Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B

    2010-05-01

    In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.

  4. Advanced methods in synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kragh, Thomas

    2012-02-01

    For over 50 years our world has been mapped and measured with synthetic aperture radar (SAR). A SAR system operates by transmitting a series of wideband radio-frequency pulses towards the ground and recording the resulting backscattered electromagnetic waves as the system travels along some one-dimensional trajectory. By coherently processing the recorded backscatter over this extended aperture, one can form a high-resolution 2D intensity map of the ground reflectivity, which we call a SAR image. The trajectory, or synthetic aperture, is achieved by mounting the radar on an aircraft, spacecraft, or even on the roof of a car traveling down the road, and allows for a diverse set of applications and measurement techniques for remote sensing applications. It is quite remarkable that the sub-centimeter positioning precision and sub-nanosecond timing precision required to make this work properly can in fact be achieved under such real-world, often turbulent, vibrationally intensive conditions. Although the basic principles behind SAR imaging and interferometry have been known for decades, in recent years an explosion of data exploitation techniques enabled by ever-faster computational horsepower have enabled some remarkable advances. Although SAR images are often viewed as simple intensity maps of ground reflectivity, SAR is also an exquisitely sensitive coherent imaging modality with a wealth of information buried within the phase information in the image. Some of the examples featured in this presentation will include: (1) Interferometric SAR, where by comparing the difference in phase between two SAR images one can measure subtle changes in ground topography at the wavelength scale. (2) Change detection, in which carefully geolocated images formed from two different passes are compared. (3) Multi-pass 3D SAR tomography, where multiple trajectories can be used to form 3D images. (4) Moving Target Indication (MTI), in which Doppler effects allow one to detect and

  5. Theory of Digital Imaging from Orbital Synthetic Aperture Radar

    DTIC Science & Technology

    1983-11-01

    FROM ORBITAL SYNTHETIC APERTURE RADAR O by B. C. Barber SUMMARY Digital synthetic aperture radar ( SAR ) imaging techniques have pre- viously only been...reported in the literature in a fragmentary manner. This article presents a comprehensive review of the theory of digital SAR imaging from Earth...orbiting satellites. The digital SAR imaging process is explained, including a discussion of various aspects which are specific to satellite-borne SAR . A

  6. A SEASAT-A synthetic aperture imaging radar system

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.; Rodgers, D. H.

    1975-01-01

    The SEASAT, a synthetic aperture imaging radar system is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100 km swath with 25m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems. The end to end data system described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data requiring the use of an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground is described as well as the selected solutions to the problems.

  7. A system model and inversion for synthetic aperture radar imaging.

    PubMed

    Soumekh, M

    1992-01-01

    A system model and its corresponding inversion for synthetic aperture radar (SAR) imaging are presented. The system model incorporates the spherical nature of a radar's radiation pattern at far field. The inverse method based on this model performs a spatial Fourier transform (Doppler processing) on the recorded signals with respect to the available coordinates of a translational radar (SAR) or target (inverse SAR). It is shown that the transformed data provide samples of the spatial Fourier transform of the target's reflectivity function. The inverse method can be modified to incorporate deviations of the radar's motion from its prescribed straight line path. The effects of finite aperture on resolution, reconstruction, and sampling constraints for the imaging problem are discussed.

  8. Spaceborne synthetic-aperture imaging radars - Applications, techniques, and technology

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bicknell, T.; Jordan, R. L.; Wu, C.

    1982-01-01

    In June 1978, the Seasat satellite was placed into orbit around the earth with a synthetic-aperture imaging radar (SAR) as one of the payload sensors. The Seasat SAR provided, for the first time, synoptic radar images of the earth's surface with a resolution of 25 m. In November 1981, the second imaging radar was successfully operated from space on the Shuttle. The Shuttle Imaging Radar-A acquired images over a variety of regions around the world with an imaging geometry different from the one used by the Seasat SAR. The spaceborne SAR principle is discussed, taking into account ambiguities, orbital and environmental factors, range curvature and range walk, surface interaction mechanisms, thermal and speckle noise, key tradeoff parameters, and nonconventional SAR systems. Attention is also given to spaceborne SAR sensors, the digital processing of spaceborne SAR data, the optical processing of spaceborne SAR data, postimage formation processing, data interpretation techniques and applications, and the next decade.

  9. Synthetic aperture radar/LANDSAT MSS image registration

    NASA Technical Reports Server (NTRS)

    Maurer, H. E. (Editor); Oberholtzer, J. D. (Editor); Anuta, P. E. (Editor)

    1979-01-01

    Algorithms and procedures necessary to merge aircraft synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) imagery were determined. The design of a SAR/LANDSAT data merging system was developed. Aircraft SAR images were registered to the corresponding LANDSAT MSS scenes and were the subject of experimental investigations. Results indicate that the registration of SAR imagery with LANDSAT MSS imagery is feasible from a technical viewpoint, and useful from an information-content viewpoint.

  10. Remote sensing with spaceborne synthetic aperture imaging radars: A review

    NASA Technical Reports Server (NTRS)

    Cimino, J. B.; Elachi, C.

    1983-01-01

    A review is given of remote sensing with Spaceborne Synthetic Aperture Radars (SAR's). In 1978, a spaceborne SA was flown on the SEASAT satellite. It acquired high resulution images over many regions in North America and the North Pacific. The acquired data clearly demonstrate the capability of spaceborne SARs to: image and track polar ice floes; image ocean surface patterns including swells, internal waves, current boundaries, weather boundaries and vessels; and image land features which are used to acquire information about the surface geology and land cover. In 1981, another SAR was flown on the second shuttle flight. This Shuttle Imaging Radar (SIR-A) acquired land and ocean images over many areas around the world. The emphasis of the SIR-A experiment was mainly toward geologic mapping. Some of the key results of the SIR-A experiment are given.

  11. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  12. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    PubMed

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  13. Optimum frequency for subsurface-imaging synthetic-aperture radar

    SciTech Connect

    Brock, B.C.; Patitz, W.E.

    1993-05-01

    A subsurface-imaging synthetic-aperture radar (SISAR) has potential for application in areas as diverse as non-proliferation programs for nuclear weapons to environmental monitoring. However, most conventional synthetic-aperture radars operate at higher microwave frequencies which do not significantly penetrate below the soil surface. This study attempts to provide a basis for determining optimum frequencies and frequency ranges which will allow synthetic-aperture imaging of buried targets. Since the radar return from a buried object must compete with the return from surface clutter, the signal-to-clutter ratio is an appropriate measure of performance for a SISAR. A parameter-based modeling approach is used to model the complex dielectric constant of the soil from measured data obtained from the literature. Theoretical random-surface scattering models, based on statistical solutions to Maxwell's equations, are used to model the clutter. These models are combined to estimate the signal-to-clutter ratio for canonical targets buried in several soil configurations. Initial results indicate that the HF spectrum (3--30 MHz), although it could be used to detect certain targets under some conditions, has limited practical value for use with SISAR, while the upper vhf through uhf spectrum ([approximately]100 MHz--1 GHz) shows the most promise for a general purpose SISAR system. Recommendations are included for additional research.

  14. Three Dimensional Inverse Synthetic Aperture Radar Imaging

    DTIC Science & Technology

    1995-12-01

    to upsample the projection data in order to get sufficient image quality. Working within these memory constraints, three-dimensional images were... metallic film on the windscreen in order to block reflections from the cockpit. Photographs and scale drawings of the model are shown in Figures 11 and...as well as spurious responses in the final image. Theoretically, sufficient resolution should have been available without upsampling the original data

  15. Multiregion level-set partitioning of synthetic aperture radar images.

    PubMed

    Ben Ayed, Ismail; Mitiche, Amar; Belhadj, Ziad

    2005-05-01

    The purpose of this study is to investigate Synthetic Aperture Radar (SAR) image segmentation into a given but arbitrary number of gamma homogeneous regions via active contours and level sets. The segmentation of SAR images is a difficult problem due to the presence of speckle which can be modeled as strong, multiplicative noise. The proposed algorithm consists of evolving simple closed planar curves within an explicit correspondence between the interiors of curves and regions of segmentation to minimize a criterion containing a term of conformity of data to a speckle model of noise and a term of regularization. Results are shown on both synthetic and real images.

  16. Speckle Reduction in Synthetic Aperture Radar Images

    DTIC Science & Technology

    1988-05-01

    Finally, multilooking must be incorporated in the SAR processor. Most of the techniques to be described below are applied to the processed image. 3.2...Associates for the processing of raw SAR data in a standard format into image data. ’ / - DSTO -- ALI32LURY POSTAL ADDRESS: Director, Surveillance Research...Introduction I 2-. Soeckle models 3. NOISE REDUCTION TECHNIQUES 5 3.1 Multilooking 5 3.2 Image domain filters 6 3.3 Additive noise reduction 7 3.4 Wiener

  17. A comparison of spotlight synthetic aperture radar image formation techniques

    SciTech Connect

    Knittle, C.D.; Doren, N.E.; Jakowatz, C.V.

    1996-10-01

    Spotlight synthetic aperture radar images can be formed from the complex phase history data using two main techniques: (1) polar-to-cartesian interpolation followed by two-dimensional inverse Fourier transform (2DFFT), and (2) convolution backprojection (CBP). CBP has been widely used to reconstruct medical images in computer aided tomography, and only recently has been applied to form synthetic aperture radar imagery. It is alleged that CBP yields higher quality images because (1) all the Fourier data are used and (2) the polar formatted data is used directly to form a 2D Cartesian image and therefore 2D interpolation is not required. This report compares the quality of images formed by CBP and several modified versions of the 2DFFT method. We show from an image quality point of view that CBP is equivalent to first windowing the phase history data and then interpolating to an exscribed rectangle. From a mathematical perspective, we should expect this conclusion since the same Fourier data are used to form the SAR image. We next address the issue of parallel implementation of each algorithm. We dispute previous claims that CBP is more readily parallelizable than the 2DFFT method. Our conclusions are supported by comparing execution times between massively parallel implementations of both algorithms, showing that both experience similar decreases in computation time, but that CBP takes significantly longer to form an image.

  18. Spaceborne bistatic synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Goldstein, R.; Held, D.

    1981-01-01

    The properties of two configurations for a spaceborne bistatic SAR are examined and compared with the properties of a monostatic SAR. The two bistatic configurations considered are a system consisting of an orbiting spaceborne transmitter and a ground receiver and a system consisting of a transmitter on a geostationary satellite and a receiver or receivers on an airborne platform. The properties discussed or analyzed include imaging coordinate system, azimuth and range resolution, azimuth and range ambiguities, and swath width.

  19. Apodized RFI filtering of synthetic aperture radar images

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  20. Synthetic aperture radar images with composite azimuth resolution

    DOEpatents

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  1. Semisupervised synthetic aperture radar image segmentation with multilayer superpixels

    NASA Astrophysics Data System (ADS)

    Wang, Can; Su, Weimin; Gu, Hong; Gong, Dachen

    2015-01-01

    Image segmentation plays a significant role in synthetic aperture radar (SAR) image processing. However, SAR image segmentation is challenging due to speckle. We propose a semisupervised bipartite graph method for segmentation of an SAR image. First, the multilayer over-segmentation of the SAR image, referred to as superpixels, is computed using existing segmentation algorithms. Second, an unbalanced bipartite graph is constructed in which the correlation between pixels is replaced by the texture similarity between superpixels, to reduce the dimension of the edge matrix. To also improve efficiency, we define a new method, called the combination of the Manhattan distance and symmetric Kullback-Leibler divergence, to measure texture similarity. Third, by the Moore-Penrose inverse matrix and semisupervised learning, we construct an across-affinity matrix. A quantitative evaluation using SAR images shows that the new algorithm produces significantly high-quality segmentations as compared with state-of-the-art segmentation algorithms.

  2. Imaging of concrete specimens using inverse synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Rhim, Hong C.; Buyukozturk, Oral

    2000-05-01

    Radar Measurement results of laboratory size concrete specimens are presented in this paper. The purpose of this research work is to study various aspects of the radar method in an effort to develop an improved radar system for nondestructive testing of concrete structures. The radar system used for the study is an Inverse Synthetic Aperture Radar (ISAR), which is capable of transmitting microwaves at three different frequency ranges of 2-3.4, 3.4-5.8, and 8-12 GHz. Radar measurement setup is such that the radar is locates 14.4 m away from a concrete target to satisfy a far-field criterion. The concrete target is rotated for 20 degrees during the measurements for the generation of two-dimensional (cross-range) imagery. Concrete targets used for the measurements have the dimensions of 305 mm (width)×305 mm (height)×92 mm (thickness) with different inside configurations. Comparisons are made for dry and wet specimens, specimens with and without inclusions. Each specimen is made to model various situations that a concrete structure can have in reality. Results show that center frequency, frequency bandwidth, and polarization of the incident wave have different effects on identifying the thickness or inclusions inside concrete specimens. Results also suggest that a certain combination of measurement parameters is suitable for a specific application area. Thus, measurement parameters can be optimized for a specific problem. The findings are presented and discussed in details in the paper. Signal processing schemes implemented for imaging of the specimens are also discussed.

  3. Minimum description length synthetic aperture radar image segmentation.

    PubMed

    Galland, Frédéric; Bertaux, Nicolas; Réfrégier, Philippe

    2003-01-01

    We present a new minimum description length (MDL) approach based on a deformable partition--a polygonal grid--for automatic segmentation of a speckled image composed of several homogeneous regions. The image segmentation thus consists in the estimation of the polygonal grid, or, more precisely, its number of regions, its number of nodes and the location of its nodes. These estimations are performed by minimizing a unique MDL criterion which takes into account the probabilistic properties of speckle fluctuations and a measure of the stochastic complexity of the polygonal grid. This approach then leads to a global MDL criterion without an undetermined parameter since no other regularization term than the stochastic complexity of the polygonal grid is necessary and noise parameters can be estimated with maximum likelihood-like approaches. The performance of this technique is illustrated on synthetic and real synthetic aperture radar images of agricultural regions and the influence of different terms of the model is analyzed.

  4. Automatic aircraft landing using interferometric inverse synthetic aperture radar imaging.

    PubMed

    Soumekh, M

    1996-01-01

    This paper presents an interferometric processing of an aircraft's monostatic and bistatic inverse synthetic aperture radar (ISAR) signatures for automatic landing. The aircraft's squint angle in this ISAR imaging problem is near 90 degrees . We show that this extreme squint angle does not pose any problem for the ISAR Fourier-based (wavefront) reconstruction algorithm. In fact, the aircraft can be imaged accurately, and without any erroneous shifts in the cross-range domain, within the imposed theoretical resolution. Moreover, the algorithm is accurate enough such that one can utilize the phase of the ISAR monostatic and bistatic measurements for interferometric processing. The resultant interferometric ISAR image is used to detect undesirable rotations in the aircraft's orientation.

  5. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    PubMed Central

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-01-01

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression. PMID:27136551

  6. Spatially variant apodization for squinted synthetic aperture radar images.

    PubMed

    Castillo-Rubio, Carlos F; Llorente-Romano, Sergio; Burgos-García, Mateo

    2007-08-01

    Spatially variant apodization (SVA) is a nonlinear sidelobe reduction technique that improves sidelobe level and preserves resolution at the same time. This method implements a bidimensional finite impulse response filter with adaptive taps depending on image information. Some papers that have been previously published analyze SVA at the Nyquist rate or at higher rates focused on strip synthetic aperture radar (SAR). This paper shows that traditional SVA techniques are useless when the sensor operates with a squint angle. The reasons for this behaviour are analyzed, and a new implementation that largely improves the results is presented. The algorithm is applied to simulated SAR images in order to demonstrate the good quality achieved along with efficient computation.

  7. Three-dimensional subsurface imaging synthetic aperture radar

    SciTech Connect

    Moussally, G.J.

    1995-03-01

    The objective of this applied research and development project is to develop a system known as `3-D SISAR`. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments found at DOE storage sites. Three-dimensional maps of the object locations will be produced which can assist the development of remediation strategies and the characterization of the digface during remediation operations. It is expected that the 3-D SISAR will also prove useful for monitoring hydrocarbon based contaminant migration after remediation. The underground imaging technique being developed under this contract utilizes a spotlight mode Synthetic Aperture Radar (SAR) approach which, due to its inherent stand-off capability, will permit the rapid survey of a site and achieve a high degree of productivity over large areas. When deployed from an airborne platform, the stand-off techniques is also seen as a way to overcome practical survey limitations encountered at vegetated sites.

  8. The Spaceborne Imaging Radar-C, X-Band Synthetic Aperture radar (SIR-C/X-SAR) Mission Overview

    NASA Technical Reports Server (NTRS)

    Evans, D. L.; Stofan, E. R.; Farr, T.; Plaut, J.; vanZyl, J.; Kobrick, M.; Holt, B.; Way, J. B.; Ottl, H.; Schmullius, C.; Nithack, J.; Calamia, M.

    1994-01-01

    The Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR) was launched on space shuttle Endeavour at 7:05 AM EDT, Saturday, April 9, 1994. Soon after launch, the radars were activated and began around the clock operations which lasted for the next 10 days.

  9. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  10. Moving target imaging using ultrawideband synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Guo, Hanwei; Liang, Diannong; Wan, Yan; Huang, Xiaotao; Dong, Zhen

    2003-09-01

    Moving Target High Resolution Imaging of Foliage Penetrate Ultra-Wide Band Synthetic Aperture Radar (FOPEN UWB SAR) is of great significance for battlefield awareness of concealed target. Great range migration and strong clutter make moving target detection and imaging difficult, especially the Signal to Clutter Ration(SCR) some times is so low that the moving targets is invisible in FOPEN UWB SAR imagery. To improve SCR, the clean technique is used in range compressed data domain. The clean technique and data reconstruction help single channel of FOPEN UWB SAR suppress strong tree clutter and stationary target signal from region of interest. A new definition called General Key-Stone Transform is given, which can correct any order of range migration. FOPEN UWB SAR has long integrated time. The plane and target moving in long time lead to complex range migration. To obtain high resolution imagery of moving target, General Key-Stone transform are applied to remove the range migration and realize multiple moving target data segment. Both General Key-Stone Transform and Clean Technique are applied in real data processing of FOPEN UWB SAR. The result shows that multiple moving targets in the trees are clearly detected and high resolution imagery is formed.

  11. Terahertz Inverse Synthetic Aperture Radar (ISAR) Imaging With a Quantum Cascade Laser Transmitter

    DTIC Science & Technology

    2010-01-01

    Terahertz inverse synthetic aperture radar ( ISAR ) imaging with a quantum cascade laser transmitter Andriy A. Danylov1,*, Thomas M. Goyette1...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Terahertz inverse synthetic aperture radar ( ISAR ) imaging with a quantum cascade laser...band ISAR Imagery of Scale-Model Tactical Targets Using a 1.56 THz Compact Range," Proc. SPIE 5095, 66-74 (2003). 10. M. J. Coulombe, T. Horgan, J

  12. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing.

    PubMed

    Beck, Steven M; Buck, Joseph R; Buell, Walter F; Dickinson, Richard P; Kozlowski, David A; Marechal, Nicholas J; Wright, Timothy J

    2005-12-10

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

  13. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing

    NASA Astrophysics Data System (ADS)

    Beck, Steven M.; Buck, Joseph R.; Buell, Walter F.; Dickinson, Richard P.; Kozlowski, David A.; Marechal, Nicholas J.; Wright, Timothy J.

    2005-12-01

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

  14. A VLSI implementation for synthetic aperture radar image processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A.; Purviance, J.

    1990-01-01

    A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory.

  15. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.

    PubMed

    Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret

    2008-01-01

    In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.

  16. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    NASA Astrophysics Data System (ADS)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2013-05-01

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.

  17. Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry with a quantum cascade laser.

    PubMed

    Lui, H S; Taimre, T; Bertling, K; Lim, Y L; Dean, P; Khanna, S P; Lachab, M; Valavanis, A; Indjin, D; Linfield, E H; Davies, A G; Rakić, A D

    2014-05-01

    We propose a terahertz (THz)-frequency synthetic aperture radar imaging technique based on self-mixing (SM) interferometry, using a quantum cascade laser. A signal processing method is employed which extracts and exploits the radar-related information contained in the SM signals, enabling the creation of THz images with improved spatial resolution. We demonstrate this by imaging a standard resolution test target, achieving resolution beyond the diffraction limit.

  18. Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.

    1984-01-01

    The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.

  19. Basics of Polar-Format algorithm for processing Synthetic Aperture Radar images.

    SciTech Connect

    Doerry, Armin Walter

    2012-05-01

    The purpose of this report is to provide a background to Synthetic Aperture Radar (SAR) image formation using the Polar Format (PFA) processing algorithm. This is meant to be an aid to those tasked to implement real-time image formation using the Polar Format processing algorithm.

  20. Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images.

    SciTech Connect

    Doerry, Armin Walter

    2006-01-01

    Limitations on focused scene size for the Polar Format Algorithm (PFA) for Synthetic Aperture Radar (SAR) image formation are derived. A post processing filtering technique for compensating the spatially variant blurring in the image is examined. Modifications to this technique to enhance its robustness are proposed.

  1. Focusing simulations of synthetic aperture radar ocean images

    NASA Astrophysics Data System (ADS)

    Hayt, D. W.; Alphers, W.; Brüning, C.; Dewitt, R.; Henyey, F.; Kasilingam, D. P.; Keller, W. C.; Lyzenga, D. R.; Plant, W. J.; Schult, R. L.; Shemdin, O. H.; Wright, J. A.

    1990-09-01

    The SAR ocean images obtained in the Tower Ocean Wave and Radar Dependence Experiment (TOWARD) are carefully analyzed at different focus settings and compared with simulated results based on various theories for imaging surface waves. The agreement between the experimental data and all of the SAR simulations except one is found to be favorable. There is also surprisingly close agreement among the different theoretical models themselves, suggesting a closer fundamental similarity among the contending theories than was previously thought. It is shown that the width of the focusing curve has an inverse dependence on the SAR integration time. For the TOWARD conditions it is found that the image modulation due to azimuth-traveling surface waves is greater than that due to range-traveling waves.

  2. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  3. Special Issue on Results from Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (Sir-C/X-SAR): Foreword

    NASA Technical Reports Server (NTRS)

    Plaut, Jefferey J.

    1996-01-01

    The two flights of the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour represent a major advance in remote sensing technology for studies of planetary surfaces.

  4. IFP V4.0:a polar-reformatting image formation processor for synthetic aperture radar.

    SciTech Connect

    Eichel, Paul H.

    2005-09-01

    IFP V4.0 is the fourth generation of an extraordinarily powerful and flexible image formation processor for spotlight mode synthetic aperture radar. It has been successfully utilized in processing phase histories from numerous radars and has been instrumental in the development of many new capabilities for spotlight mode SAR. This document provides a brief history of the development of IFP, a full exposition of the signal processing steps involved, and a short user's manual for the software implementing this latest iteration.

  5. Method for providing a polarization filter for processing synthetic aperture radar image data

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C. (Inventor); Vanzyl, Jakob J. (Inventor)

    1990-01-01

    A polarization filter can maximize the signal-to-noise ratio of a polarimetric synthetic aperture radar (SAR) and help discriminate between targets or enhance image features, e.g., enhance contrast between different types of target. The method disclosed is based on the Stokes matrix/ Stokes vector representation, so the targets of interest can be extended targets, and the method can also be applied to the case of bistatic polarimetric radars.

  6. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  7. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Astrophysics Data System (ADS)

    Li, Jian

    1994-09-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  8. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  9. Information extraction and transmission techniques for spaceborne synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.

    1984-01-01

    Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.

  10. Synthetic Aperture Radar Simulation Study

    DTIC Science & Technology

    1984-03-01

    multilook are discussed. A chapter is devoted to elevation and planimetric data bases. In addition, six- teen pictures of SAR images from Hughes Aircraft, as...scans. Figure 5.4-1 is a photograph ot two SAR displays. The tirst display is made up ot six subscans and has a multilook ot one. Note that tading is...dentfi by block number) * Synthetic Aperture Radar ( SAR ) Simulation Study Radar Simulation Data Bases 5/~t. 4th.- Computer Image Generation Display 20

  11. Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    DTIC Science & Technology

    2012-09-13

    passive and non-passive radar scenarios, mostly geared towards radar detection and tracking radar functions. The goal of this research is to under- stand...it is this separation that allows extreme remote sensing applications like planetary surface observations using either receiver or transmitter...multicarrier ap- proach is geared towards UWB signals, where slow time differences in the subcarriers 26 phase history are exploitable. Other related work

  12. Synthetic Aperture Radar Oceanographic Investigations.

    DTIC Science & Technology

    1987-03-01

    Shuchman, P.G. Teleki, S.V. Hsiao, O.H. Shemdin , and W.E. Brown, Synthetic Aperture Radar Imaging of Ocean Waves : Comparison with Wave Measurements, J... Shemdin , Synthetic Aperture Radar Imaging of Ocean Waves during the Marineland Experiment, IEEE J. Oceanic Eg., OE-8, pp. 83-90, 1983. 12. R.A...If the surface reflectivity is assumed to be spatially un- section. are computed from the wave height spectrum as correlated, i.e. follows . (x. Y. t

  13. Moving target detection in foliage using along track monopulse synthetic aperture radar imaging.

    PubMed

    Soumekh, M

    1997-01-01

    This paper presents a method for detecting moving targets embedded in foliage from the monostatic and bistatic synthetic aperture radar (SAR) data obtained via two airborne radars. The two radars, which are mounted on the same aircraft, have different coordinates in the along track (cross-range) domain. However, unlike the interferometric SAR systems used for topographic mapping, the two radars possess a common range and altitude (i.e., slant range). The resultant monopulse SAR images are used to construct difference and interferometric images for moving target detection. It is shown that the signatures of the stationary targets are weakened in these images. Methods for estimating a moving target's motion parameters are discussed. Results for an ultrawideband UHF SAR system are presented.

  14. Implementation of (omega)-k synthetic aperture radar imaging algorithm on a massively parallel supercomputer

    NASA Astrophysics Data System (ADS)

    Yerkes, Christopher R.; Webster, Eric D.

    1994-06-01

    Advanced algorithms for synthetic aperture radar (SAR) imaging have in the past required computing capabilities only available from high performance special purpose hardware. Such architectures have tended to have short life cycles with respect to development expense. Current generation Massively Parallel Processors (MPP) are offering high performance capabilities necessary for such applications with both a scalable architecture and a longer projected life cycle. In this paper we explore issues associated with implementation of a SAR imaging algorithm on a mesh configured MPP architecture.

  15. Feasibility study of synthetic aperture infrared laser radar techniques for imaging of static and moving objects.

    PubMed

    Yoshikado, S; Aruga, T

    1998-08-20

    Techniques for two types of 10-mum band synthetic aperture infrared laser radar using a hypothetical reference point target (RPT) are presented. One is for imaging static objects with a single two-dimensional scanning aperture. Through the simple manipulation of a reference wave phase, a desired image can be obtained merely by the two-dimensional Fourier transformation of the correlator output between the intermediate frequency signals of the reference and object waves. The other, with a one-dimensional aperture array, is for moving objects that pass across the array direction without attitude change. We performed imaging by using a two-dimensional RPT correlation method. We demonstrate the capability of these methods for imaging and evaluate the necessary conditions for signal-to-noise ratio and random phase errors in signal reception through numerical simulations in terms of feasibility.

  16. New Algorithms and Sparse Regularization for Synthetic Aperture Radar Imaging

    DTIC Science & Technology

    2015-10-26

    Demanet Department of Mathematics Massachusetts Institute of Technology. • Grant title: New Algorithms and Sparse Regularization for Synthetic Aperture...statistical analysis of one such method, the so-called MUSIC algorithm (multiple signal classification). We have a publication that mathematically justifies...called MUSIC algorithm (multiple signal classification). We have a publication that mathematically justifies the scaling of the phase transition

  17. User guide to the Magellan synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.; Mcconnell, Shannon L.; Leff, Craig E.; Austin, Richard S.; Beratan, Kathi K.; Rokey, Mark J.

    1995-01-01

    The Magellan radar-mapping mission collected a large amount of science and engineering data. Now available to the general scientific community, this data set can be overwhelming to someone who is unfamiliar with the mission. This user guide outlines the mission operations and data set so that someone working with the data can understand the mapping and data-processing techniques used in the mission. Radar-mapping parameters as well as data acquisition issues are discussed. In addition, this user guide provides information on how the data set is organized and where specific elements of the set can be located.

  18. Three-dimensional subsurface imaging Synthetic Aperture Radar

    SciTech Connect

    Wuenschel, E.

    1995-10-01

    This report describes the development of a system known as 3-D SISAR. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments at DOE storage sites.

  19. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.

    PubMed

    Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing

    2012-04-01

    This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.

  20. Shuttle synthetic aperture radar implementation study, volume 1. [flight instrument and ground data processor system for collecting raw imaged radar data

    NASA Technical Reports Server (NTRS)

    Mehlis, J. G.

    1976-01-01

    Results of an implementation study for a synthetic aperture radar for the space shuttle orbiter are described. The overall effort was directed toward the determination of the feasibility and usefulness of a multifrequency, multipolarization imaging radar for the shuttle orbiter. The radar is intended for earth resource monitoring as well as oceanographic and marine studies.

  1. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1982-01-01

    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.

  2. Feature discrimination and detection probability in synthetic aperture radar imaging system

    NASA Technical Reports Server (NTRS)

    Lipes, R. G.; Butman, S. A.

    1977-01-01

    Images obtained using synthetic aperture radar (SAR) systems can only represent the intensities of resolution cells in the scene of interest probabilistically since radar receiver noise and Rayleigh scattering of the transmitted radiation are always present. Consequently, when features to be identified differ only by their contribution to the mean power of the radar return, discrimination can be treated by detection theory. In this paper, we develop a 'sufficient statistic' for discriminating between competing features and compare it with some suboptimal methods frequently used. Discrimination is measured by probability of detection error and depends on number of samples or 'looks', signal-to-noise ratio (SNR), and ratio of mean power returns from the competing features. Our results show discrimination and image quality rapidly saturate with SNR (very small improvement for SNR not less than 10 dB) but continue to improve with increasing number of looks.

  3. Optimum imaging time selection algorithm for inverse synthetic aperture radar images using geometric features and image gradient

    NASA Astrophysics Data System (ADS)

    Fulin, Su; Hongxin, Yang

    2016-07-01

    For better using of inverse synthetic aperture radar (ISAR) images of ship targets, it is more desirable to select a proper imaging time to obtain high quality top-view or side-view images. However, optimum imaging time selection is not robust enough for the restriction of traditional geometric feature extraction methods. In our study, we propose a method based on the geometric features and gradient maximization. First, we select the imaging instant from radar echoes by the centerline and mainmast of the ship. In this part, we propose a geometric features extraction method to improve the robustness of instant selection in different scenarios. Then, an image gradient maximization is employed to estimate the period for ISAR imaging. Finally, experimental results of both simulated and real signals are provided to demonstrate the effectiveness and practicability of the algorithm.

  4. Bistatic synthetic aperture radar imaging using ultraNarrowband continuous waveforms.

    PubMed

    Wang, Ling; Yazici, Birsen

    2012-08-01

    We consider synthetic aperture radar (SAR) imaging using ultra-narrowband continuous waveforms (CW). Due to the high Doppler resolution of CW signals, we refer to this imaging modality as Doppler Synthetic Aperture Radar (DSAR). We present a novel model and an image formation method for the bistatic DSAR for arbitrary imaging geometries. Our bistatic DSAR model is formed by correlating the translated version of the received signal with a scaled or frequencyshifted version of the transmitted CW signal over a finite time window. High frequency analysis of the resulting model shows that the correlated signal is the projections of the scene reflectivity onto the bistatic iso-Doppler curves. We next use microlocal techniques to develop a filtered-backprojection (FBP) type image reconstruction method. The FBP inversion results in backprojection of the correlated signal onto the bistatic iso- Doppler curves as opposed to the bistatic iso-range curves, performed in the traditional wideband SAR imaging. We show that our method takes advantage of the velocity, as well as the acceleration of the antennas in certain directions to form a high resolution SAR image. Our bistatic DSAR imaging method is applicable for arbitrary flight trajectories, nonflat topography, and can accommodate system related parameters. We present resolution analysis and extensive numerical experiments to demonstrate the performance of our imaging method.

  5. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  6. Autofocus correction of excessive migration in synthetic aperture radar images.

    SciTech Connect

    Doerry, Armin Walter

    2004-09-01

    When residual range migration due to either real or apparent motion errors exceeds the range resolution, conventional autofocus algorithms fail. A new migration-correction autofocus algorithm has been developed that estimates the migration and applies phase and frequency corrections to properly focus the image.

  7. New Algorithms and Sparse Regularization for Synthetic Aperture Radar Imaging

    DTIC Science & Technology

    2013-03-01

    provided. Speedups in the hundreds are reported on the Air Force’s GOTCHA dataset. The PI and his collaborators also investigated the possibility of...interpretability of the resulting image is demonstrated not to suffer from the change of algorithm. Speedups in the hundreds are reported on the Air Force’s GOTCHA

  8. Reducing scalloping in synthetic aperture radar images using a composite image transform

    NASA Astrophysics Data System (ADS)

    Landmark, Knut; Solberg, Anne H. S.

    2015-10-01

    In burst mode SAR imaging, echo intensity depends on the target's azimuth position in the antenna pattern. As a result, an amplitude modulation known as scalloping may appear, particularly in ScanSAR images of ocean areas. A denoising method, recently developed for multibeam bathymetry, can be used to reduce residual scalloping in ScanSAR images. The algorithm is analogous to a band-stop filter in the frequency domain. Here, the transform is the composition of an edge detection operator and a discrete Radon transform (DRT). The edge operator accentuates fine-scale intensity changes; the DRT focuses linear features, as each DRT component is the sum of pixel intensities along a linear graph. A descalloping filter is implemented in the DRT domain by suppressing the range direction. The restored image is obtained by applying the inverse composite transform. First, a rapidly converging iterative pseudo-inverse DRT is computed. The edge operator is a spatial filter based on a discrete approximation of the Laplace operator, but modified to make the operator invertible. The method was tested on ocean scene ScanSAR images from the Envisat Advanced Synthetic Aperture Radar. The scalloping effect was significantly reduced, with no apparent distortion or smoothing of physical features.

  9. Real-time implementation of frequency-modulated continuous-wave synthetic aperture radar imaging using field programmable gate array.

    PubMed

    Quan, Yinghui; Li, Yachao; Hu, Guibin; Xing, Mengdao

    2015-06-01

    A new miniature linear frequency-modulated continuous-wave radar which mounted on an unmanned aerial vehicle is presented. It allows the accomplishment of high resolution synthetic aperture radar imaging in real-time. Only a Kintex-7 field programmable gate array from Xilinx is utilized for whole signal processing of sophisticated radar imaging algorithms. The proposed hardware architecture achieves remarkable improvement in integration, power consumption, volume, and computing performance over its predecessor designs. The realized design is verified by flight campaigns.

  10. Real-time implementation of frequency-modulated continuous-wave synthetic aperture radar imaging using field programmable gate array

    NASA Astrophysics Data System (ADS)

    Quan, Yinghui; Li, Yachao; Hu, Guibin; Xing, Mengdao

    2015-06-01

    A new miniature linear frequency-modulated continuous-wave radar which mounted on an unmanned aerial vehicle is presented. It allows the accomplishment of high resolution synthetic aperture radar imaging in real-time. Only a Kintex-7 field programmable gate array from Xilinx is utilized for whole signal processing of sophisticated radar imaging algorithms. The proposed hardware architecture achieves remarkable improvement in integration, power consumption, volume, and computing performance over its predecessor designs. The realized design is verified by flight campaigns.

  11. Classification of earth terrain using polarimetric synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Lim, H. H.; Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Shin, R. T.; Van Zyl, J. J.

    1989-01-01

    Supervised and unsupervised classification techniques are developed and used to classify the earth terrain components from SAR polarimetric images of San Francisco Bay and Traverse City, Michigan. The supervised techniques include the Bayes classifiers, normalized polarimetric classification, and simple feature classification using discriminates such as the absolute and normalized magnitude response of individual receiver channel returns and the phase difference between receiver channels. An algorithm is developed as an unsupervised technique which classifies terrain elements based on the relationship between the orientation angle and the handedness of the transmitting and receiving polariation states. It is found that supervised classification produces the best results when accurate classifier training data are used, while unsupervised classification may be applied when training data are not available.

  12. Imaging targets embedded in a lossy half space with Synthetic Aperture Radar

    SciTech Connect

    Doerry, A.W.; Brock, B.C.; Boverie, B.; Cress, D.

    1994-05-01

    This paper addresses theoretical aspects of forming images from an airborne Synthetic Aperture Radar (SAR) of targets buried below the earth`s surface. Soil is generally a lossy, dispersive medium, with wide ranging variability in these attributes depending on soil type, moisture content, and a host of other physical properties. Focussing a SAR subsurface image presents new dimensions of complexity relative to its surface-image counterpart, even when the soil`s properties are known. This paper treats the soil as a lossy, dispersive half space, and presents a practical model for the radar echo-delay time to point scatterers within it. This model is then used to illustrate effects of refraction, dispersion, and attenuation on a SAR`s phase histories, and the resulting image. Various data collection geometries and processing strategies are examined for both 2-Dimensional and 3-Dimensional SAR images. The conclusions from this work are that (1) focussing a SAR image must generally take into account both refraction and dispersion, (2) resolving targets at different depths in lossy soils requires perhaps unprecedented sidelobe attenuation, that for some soils may only be achievable with specialized window functions, (3) the impulse response of the soil itself places a practical limit on the usable bandwidth of the radar, and (4) dynamic ranges and sensitivities will need to be orders of magnitude greater than typical surface-imaging SARs, leading to significant impact on SAR parameters, for example compressing the usable range of pulse repetition frequencies (PRFs).

  13. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks.

    PubMed

    Gong, Maoguo; Zhao, Jiaojiao; Liu, Jia; Miao, Qiguang; Jiao, Licheng

    2016-01-01

    This paper presents a novel change detection approach for synthetic aperture radar images based on deep learning. The approach accomplishes the detection of the changed and unchanged areas by designing a deep neural network. The main guideline is to produce a change detection map directly from two images with the trained deep neural network. The method can omit the process of generating a difference image (DI) that shows difference degrees between multitemporal synthetic aperture radar images. Thus, it can avoid the effect of the DI on the change detection results. The learning algorithm for deep architectures includes unsupervised feature learning and supervised fine-tuning to complete classification. The unsupervised feature learning aims at learning the representation of the relationships between the two images. In addition, the supervised fine-tuning aims at learning the concepts of the changed and unchanged pixels. Experiments on real data sets and theoretical analysis indicate the advantages, feasibility, and potential of the proposed method. Moreover, based on the results achieved by various traditional algorithms, respectively, deep learning can further improve the detection performance.

  14. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  15. On the focusing issue of synthetic aperture radar imaging of ocean waves

    SciTech Connect

    Bruning, C. ); Alpers, W.R. ); Schroter, J.G. )

    1991-01-01

    It is now widely accepted that the imaging of ocean surface waves by synthetic aperture radar (SAR) can be adequately described by velocity bunching theory in conjunction with the two-scale wave model. However, it has been conjectured that this theory is incapable of explaining why, under certain conditions, the image contrast of airborne SAR imagery of ocean waves can be enhanced by defocusing the SAR processor. It this were true it would raise serious doubts about the validity of the velocity bunching theory to describe the SAR imaging of ocean waves. In this paper the velocity bunching theory is defended. It is shown that image contrast enhancement by defocusing can also be obtained by this theory, which does not require the introduction of the phase or group velocity of the long ocean waves as a basic element of the SAR imaging theory.

  16. Factors governing selection of operating frequency for subsurface- imaging synthetic-aperture radar

    SciTech Connect

    Brock, B.C.; Patitz, W.E.

    1993-12-31

    A subsurface-imaging synthetic-aperture radar (SISAR) has potential for application in areas as diverse as non-proliferation programs for nuclear weapons to environmental monitoring. However, subsurface imaging is complicated by propagation loss in the soil and surface-clutter response. Both the loss and surface-clutter response depend on the operating frequency. This paper examines several factors which provide a basis for determining optimum frequencies and frequency ranges which will allow synthetic-aperture imaging of buried targets. No distinction can be made between objects at different heights when viewed with a conventional imaging radar (which uses a one-dimensional synthetic aperture), and the return from a buried object must compete with the return from the surface clutter. Thus, the signal-to-clutter ratio is an appropriate measure of performance for a SISAR. A parameter-based modeling approach is used to model the complex dielectric constant of the soil from measured data obtained from the literature. Theoretical random-surface scattering models, based on statistical solutions to Maxwell`s equations, are used to model the clutter. These models are combined to estimate the signal-to-clutter ratio for canonical targets buried in several soil configurations. Results indicate that the HF spectrum (3--30), although it could be used to detect certain targets under some conditions, has limited practical value for use with SISAR, while the upper VIHF through UHF spectrum ({approximately}100 MHz - 1 GHz) shows the most promise for a general purpose SISAR system. Recommendations are included for additional research.

  17. Synthetic aperture radar image correlation by use of preprocessing for enhancement of scattering centers.

    PubMed

    Khoury, J; Gianino, P D; Woods, C L

    2000-10-15

    We demonstrate that a significant improvement can be obtained in the recognition of complicated synthetic aperture radar images taken from the Moving and Stationary Target Acquisitions and Recognition database. These images typically have a low number of scattering centers and high noise. We first preprocess the images and the templates formed from them so that their scattering centers are enhanced. Our technique can produce high-quality performance in several correlation criteria. For realistic automatic target recognition systems, our approach should make it easy to implement optical recognition systems with binarized data for many different types of correlation filter and should have a great effect on feeding data-compressed (binarized) information into either digital or optical processors.

  18. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  19. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization.

    PubMed

    Cetin, M; Karl, W C

    2001-01-01

    We develop a method for the formation of spotlight-mode synthetic aperture radar (SAR) images with enhanced features. The approach is based on a regularized reconstruction of the scattering field which combines a tomographic model of the SAR observation process with prior information regarding the nature of the features of interest. Compared to conventional SAR techniques, the method we propose produces images with increased resolution, reduced sidelobes, reduced speckle and easier-to-segment regions. Our technique effectively deals with the complex-valued, random-phase nature of the underlying SAR reflectivities. An efficient and robust numerical solution is achieved through extensions of half-quadratic regularization methods to the complex-valued SAR problem. We demonstrate the performance of the method on synthetic and real SAR scenes.

  20. Comparison of synthetic aperture radar and impact-echo imaging for detecting delamination in concrete

    SciTech Connect

    Popovics, J. S.; Ham, S.; Ghasr, M. T.; Zoughi, R.

    2014-02-18

    In this paper we evaluate the utility of microwave and mechanical wave nondestructive testing techniques to detect delamination in reinforced concrete bridge deck mock-up samples. The mechanical wave tests comprise air-coupled impact-echo measurements, while the microwave measurements comprise three-dimensional synthetic aperture radar imaging using wideband reflectometery in the frequency range of 1–4 GHz. The results of these investigations are presented in terms of images that are generated from these data. Based on a comparison of the results, we show that the two methods are complementary, in that provide distinct capabilities for defect detection. More specifically, the former approach is unable to detect depth of a delaminated region, while the latter may provide this information. Therefore, the two methods may be used in a complementary fashion (i.e., data fusion) to give more comprehensive information about the 3D location of delamination.

  1. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1979-01-01

    A method and apparatus are described for single frequency multibeam imaging of multiple strips of range swath at high range intervals for those applications where it is desirable to cover a range swath much greater than is possible for a given interpulse interval. Data from a single frequency synthetic aperture radar (in which beam parameters are adjusted so that the return from each successive swath is received during successive interpulse periods) are separated in Dopple frequency for the return from each beam at the frequency plane of the processor. Alternatively, the image formed by each beam may be spatially separated in the azimuth direction and successively selected by positioning an appropriate slit in the recording plane of the processor.

  2. Nonlinear techniques in optical synthetic aperture radar image generation and target recognition.

    PubMed

    Weaver, S; Wagner, K

    1995-07-10

    One of the most successful optical signal-processing applications to date has been the use of optical processors to convert synthetic aperture radar (SAR) data into images of the radar reflectivity of the ground. We have demonstrated real-time input to a high-space-bandwidth optical SAR imagegeneration system by using a dynamic organic holographic recording medium and SAR phase-history data. Real-time speckle reduction in optically processed SAR imagery has been accomplished by the use of multilook averaging to achieve nonlinear modulus-squared accumulation of subaperture images. We designed and assembled an all-optical system that accomplished real-time target recognition in SAR imagery. This system employed a simple square-law nonlinearity in the form of an optically addressed spatial light modulator at the SAR image plane to remove the effects of speckle phase profiles returned from complex SAR targets. The detection stage enabled the creation of an optical SAR automatic target recognition system as a nonlinear cascade of an optical SAR image generator and an optical correlator.

  3. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  4. Focusing of synthetic aperture radar ocean images with long integration times

    NASA Astrophysics Data System (ADS)

    Kasilingam, Dayalan P.; Hayt, David W.; Shemdin, Omar H.

    1991-09-01

    Synthetic aperture radar (SAR) images obtained in the SAR and X Band Ocean Nonlinearities: Chesapeake Light Tower (SAXON:CLT) experiment are processed with long integration times (6 s) and analyzed to study the effects of focusing. Two images with near-azimuth-traveling waves were chosen for the study. The first image consists of relatively short wavelength wind waves traveling in the same general direction as the aircraft. The second image consists of a long Atlantic swell traveling in the opposite direction to the aircraft. At these long integration times the image spectral intensities are found to be sensitive to the focus setting. The spectral intensity at the optimum focus is 400% of that at zero focus for the first image and 167% for the second image. The focusing curves for both images agree well with those predicted by a model developed by several groups and referred to here as the "consensus" model. This model predicts an optimum focus setting that is equal to one half of the effective phase speed of the dominant wave in the azimuth direction. The velocity bunching model underpredicts the optimum focus setting significantly. The study concludes that in long-integration-time SAR processing of surface waves, such as the spotlight mode, the image contrast is sensitively dependent on the focus setting and that the optimum focus setting is given by one half of the effective phase speed of the dominant surface wave.

  5. Universal multifractal scaling of synthetic aperture radar images of sea-ice

    SciTech Connect

    Falco, T.; Francis, F.; Lovejoy, S.; Schertzer, D.; Kerman, B.; Drinkwater, M.

    1996-07-01

    Multifrequency, multipolarization imaging radar scattering coefficient data sets, acquired by synthetic aperture radar (SAR) over sea-ice, were studied in order to reveal their scale-invariant properties. Two distinct scenes were acquired at C-band (5.6 cm) and L-band (25 cm) wavelengths for three different linear polarizations (HH, VV, and HV). These sea-ice radar scattering coefficient fields were investigated by applying both Fourier and multifractal analysis techniques. The (multi) scaling of the data is clearly exhibited in both scenes for all three polarizations at L-band and for the HV polarization at C-band. The fields presenting this symmetry were found to be well described by universal multifractals. The corresponding parameters {alpha}, C{sub 1}, and H were determined for all these fields and were found to vary little with only the parameter H (characterizing the degree of nonconservation) displaying some systematic sensitivity to polarization. The values found for the universal multifractal parameters are {alpha} {approx} 1.85 {+-} 0.05, C{sub 1} {approx} 0.0086 {+-} 0.0041, and H {approx} {minus}0.15 {+-} 0.05.

  6. On the convergence of the phase gradient autofocus algorithm for synthetic aperture radar imaging

    SciTech Connect

    Hicks, M.J.

    1996-01-01

    Synthetic Aperture Radar (SAR) imaging is a class of coherent range and Doppler signal processing techniques applied to remote sensing. The aperture is synthesized by recording and processing coherent signals at known positions along the flight path. Demands for greater image resolution put an extreme burden on requirements for inertial measurement units that are used to maintain accurate pulse-to-pulse position information. The recently developed Phase Gradient Autofocus algorithm relieves this burden by taking a data-driven digital signal processing approach to estimating the range-invariant phase aberrations due to either uncompensated motions of the SAR platform or to atmospheric turbulence. Although the performance of this four-step algorithm has been demonstrated, its convergence has not been modeled mathematically. A new sensitivity study of algorithm performance is a necessary step towards this model. Insights that are significant to the application of this algorithm to both SAR and to other coherent imaging applications are developed. New details on algorithm implementation identify an easily avoided biased phase estimate. A new algorithm for defining support of the point spread function is proposed, which promises to reduce the number of iterations required even for rural scenes with low signal-to-clutter ratios.

  7. Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images.

    PubMed

    Ciuc, M; Bolon, P; Trouve, E; Buzuloiu, V; Rudant, J P

    2001-11-10

    We present a new method for multitemporal synthetic aperture radar image filtering using three-dimensional (3D) adaptive neighborhoods. The method takes both spatial and temporal information into account to derive the speckle-free value of a pixel. For each pixel individually, a 3D adaptive neighborhood is determined that contains only pixels belonging to the same distribution as the current pixel. Then statistics computed inside the established neighborhood are used to derive the filter output. It is shown that the method provides good results by drastically reducing speckle over homogeneous areas while retaining edges and thin structures. The performances of the proposed method are compared in terms of subjective and objective measures with those given by several classical speckle-filtering methods.

  8. Statistical-physical model for foliage clutter in ultra-wideband synthetic aperture radar images.

    PubMed

    Banerjee, Amit; Chellappa, Rama

    2003-01-01

    Analyzing foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (SAR) images is a challenging problem owing to the noisy and impulsive nature of foliage clutter. Indeed, many target-detection algorithms for FOPEN SAR data are characterized by high false-alarm rates. In this work, a statistical-physical model for foliage clutter is proposed that explains the presence of outliers in the data and suggests the use of symmetric alpha-stable (SalphaS) distributions for accurate clutter modeling. Furthermore, with the use of general assumptions of the noise sources and propagation conditions, the proposed model relates the parameters of the SalphaS model to physical parameters such as the attenuation coefficient and foliage density.

  9. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  10. Speckle-reducing scale-invariant feature transform match for synthetic aperture radar image registration

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Li, Bo; Xu, Qizhi

    2016-07-01

    The anisotropic scale space (ASS) is often used to enhance the performance of a scale-invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR) images. The existing ASS-based methods usually suffer from unstable keypoints and false matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise from SAR images while building the ASS image representation. We proposed a speckle reducing SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image registration. First, the keypoints are detected in a speckle reducing anisotropic scale space constructed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced and prominent structures of the images are preserved, consequently the stable keypoints can be derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches of the keypoints then the correct match rate of the keypoints is significantly increased. Experiments conducted on simulated speckled images and real SAR images demonstrate the effectiveness of the proposed method.

  11. A fast level set method for synthetic aperture radar ocean image segmentation.

    PubMed

    Huang, Xiaoxia; Huang, Bo; Li, Hongga

    2009-01-01

    Segmentation of high noise imagery like Synthetic Aperture Radar (SAR) images is still one of the most challenging tasks in image processing. While level set, a novel approach based on the analysis of the motion of an interface, can be used to address this challenge, the cell-based iterations may make the process of image segmentation remarkably slow, especially for large-size images. For this reason fast level set algorithms such as narrow band and fast marching have been attempted. Built upon these, this paper presents an improved fast level set method for SAR ocean image segmentation. This competent method is dependent on both the intensity driven speed and curvature flow that result in a stable and smooth boundary. Notably, it is optimized to track moving interfaces for keeping up with the point-wise boundary propagation using a single list and a method of fast up-wind scheme iteration. The list facilitates efficient insertion and deletion of pixels on the propagation front. Meanwhile, the local up-wind scheme is used to update the motion of the curvature front instead of solving partial differential equations. Experiments have been carried out on extraction of surface slick features from ERS-2 SAR images to substantiate the efficacy of the proposed fast level set method.

  12. Persistent scatterers detection on synthetic aperture radar images acquired by Sentinel-1 satellite

    NASA Astrophysics Data System (ADS)

    Dǎnişor, Cosmin; Popescu, Anca; Datcu, Mihai

    2016-12-01

    Persistent Scatterers Interferometry (PS-InSAR) has become a popular method in remote sensing because of its capability to measure terrain deformations with very high accuracy. It relies on multiple Synthetic Aperture Radar (SAR) acquisitions, to monitor points with stable proprieties over time, called Persistent Scatterers (PS)[1]. These points are unaffected by temporal decorrelation, therefore by analyzing their interferometric phase variation we can estimate the scene's deformation rates within a given time interval. In this work, we apply two incoherent detection algorithms to identify Persistent Scatterers candidates in the city of Focșani, Romania. The first method studies the variation of targets' intensities along the SAR acquisitions and the second method analyzes the spectral proprieties of the scatterers. The algorithms were implemented on a dataset containing 11 complex images of the region covering Buzău, Brăila and Focșani cities. Images were acquired by Sentinel-1 satellite in a time span of 5 months, from October 2014 to February 2015. The processing chain follows the requirements imposed by the new C-band SAR images delivered by the Sentinel-1 satellite (launched in April 2014) imaging in Interferometric Wide (IW) mode. Considering the particularities of the TOPS (Terrain Observation with Progressive Scans in Azimuth) imaging mode[2], special requirements had to be considered for pre-processing steps. The PS detection algorithms were implemented in Gamma RS program, a software which contains various function packages dedicated to SAR images focalization, analysis and processing.

  13. Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis

    NASA Technical Reports Server (NTRS)

    Vesecky, John F.; Samadani, Ramin; Smith, Martha P.; Daida, Jason M.; Bracewell, Ronald N.

    1988-01-01

    The European Space Agency's ERS-1 satellite, as well as others planned to follow, is expected to carry synthetic-aperture radars (SARs) over the polar regions beginning in 1989. A key component in utilization of these SAR data is an automated scheme for extracting the sea-ice velocity field from a time sequence of SAR images of the same geographical region. Two techniques for automated sea-ice tracking, image pyramid area correlation (hierarchical correlation) and feature tracking, are described. Each technique is applied to a pair of Seasat SAR sea-ice images. The results compare well with each other and with manually tracked estimates of the ice velocity. The advantages and disadvantages of these automated methods are pointed out. Using these ice velocity field estimates it is possible to construct one sea-ice image from the other member of the pair. Comparing the reconstructed image with the observed image, errors in the estimated velocity field can be recognized and a useful probable error display created automatically to accompany ice velocity estimates. It is suggested that this error display may be useful in segmenting the sea ice observed into regions that move as rigid plates of significant ice velocity shear and distortion.

  14. Power versus performance tradeoffs of GPU-accelerated backprojection-based synthetic aperture radar image formation

    NASA Astrophysics Data System (ADS)

    Portillo, Ricardo; Arunagiri, Sarala; Teller, Patricia J.; Park, Song J.; Nguyen, Lam H.; Deroba, Joseph C.; Shires, Dale

    2011-06-01

    The continuing miniaturization and parallelization of computer hardware has facilitated the development of mobile and field-deployable systems that can accommodate terascale processing within once prohibitively small size and weight constraints. General-purpose Graphics Processing Units (GPUs) are prominent examples of such terascale devices. Unfortunately, the added computational capability of these devices often comes at the cost of larger demands on power, an already strained resource in these systems. This study explores power versus performance issues for a workload that can take advantage of GPU capability and is targeted to run in field-deployable environments, i.e., Synthetic Aperture Radar (SAR). Specifically, we focus on the Image Formation (IF) computational phase of SAR, often the most compute intensive, and evaluate two different state-of-the-art GPU implementations of this IF method. Using real and simulated data sets, we evaluate performance tradeoffs for single- and double-precision versions of these implementations in terms of time-to-solution, image output quality, and total energy consumption. We employ fine-grain direct-measurement techniques to capture isolated power utilization and energy consumption of the GPU device, and use general and radarspecific metrics to evaluate image output quality. We show that double-precision IF can provide slight image improvement to low-reflective areas of SAR images, but note that the added quality may not be worth the higher power and energy costs associated with higher precision operations.

  15. A neural network for enhancing boundaries and surfaces in synthetic aperture radar images.

    PubMed

    Mingolla, Ennio; Ross, William; Grossberg, Stephen

    1999-04-01

    A neural network system for boundary segmentation and surface representation, inspired by a new local-circuit model of visual processing in the cerebral cortex, is used to enhance images of range data gathered by a synthetic aperture radar (SAR) sensor. Boundary segmentation is accomplished by an improved Boundary Contour System (BCS) model which completes coherent boundaries that retain their sensitivity to image contrasts and locations. A Feature Contour System (FCS) model compensates for local contrast variations and uses the compensated signals to diffusively fill-in surface regions within the BCS boundaries. Image noise pixels that are not supported by BCS boundaries are hereby eliminated. More generally, BCS/FCS processing normalizes input dynamic range, reduces noise, and enhances contrasts between surface regions. BCS/FCS processing hereby makes structures such as motor vehicles, roads, and buildings more salient to human observers than in original imagery. The new BCS model improves image enhancement with significant reductions in processing time and complexity over previous BCS applications. The new system also outperforms several established techniques for image enhancement.

  16. Disaster phenomena of Wenchuan earthquake in high resolution airborne synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Hong; Wu, Fan; Zhang, Bo; Tang, Yixian; Wu, Hongan; Wen, Xiaoyang; Yan, Dongmei

    2009-05-01

    The devastating Wenchuan Earthquake occurred in Sichuan Province, Southwestern China, with a magnitude of 8.0 on May 12, 2008. Most buildings along the seismic zone were ruined, resulting in infrastructure damage to factories, traffic facilities and power supplies. The earthquake also triggered geological disasters, such as landslides, debris flow, landslide lakes, etc. During the rescue campaign the remote sensing aircrafts of the Chinese Academy of Sciences (CAS), equipped with synthetic aperture radar (SAR) and optical sensors, flew over the disaster area and acquired many high resolution airborne SAR images. We first describe the basic characteristics of SAR imagery. The SAR images of buildings are simulated, and the backscattering mechanism of the buildings is analyzed. Finally, the various disaster phenomena are described and analyzed in the high resolution airborne SAR images. It is shown that certain phenomena of ruins could be identified clearly in high resolution SAR images in proper imaging conditions, while the functional destruction is quite difficult to detect. With calibrated data, the polarmetric SAR interferometry could be used to analyze the scattering mechanism and 3D distribution of the scattering center, which are redound to earthquake damage assessment.

  17. A despeckle filter for the Cassini synthetic aperture radar images of Titan's surface

    NASA Astrophysics Data System (ADS)

    Bratsolis, Emmanuel; Bampasidis, Georgios; Solomonidou, Anezina; Coustenis, Athena

    2012-02-01

    Cassini synthetic aperture radar (SAR) images of Titan, the largest satellite of Saturn, reveal surface features with shapes ranging from quasi-circular to more complex ones, interpreted as liquid hydrocarbon deposits assembled in the form of lakes or seas. One of the major problems hampering the derivation of meaningful texture information from SAR imagery is the speckle noise. It overlays real structures and causes gray value variations even in homogeneous parts of the image. We propose a filtering technique which can be applied to obtain restored SAR images. Our technique is based on probabilistic methods and regards an image as a random element drawn from a prespecified set of possible images. The despeckle filter can be used as an intermediate step for the extraction of regions of interest, corresponding to structured units in a given area or distinct objects of interest, such as lake-like features on Titan. This tool can therefore be used, among other, to study seasonal surficial changes of Titan's polar regions. In this study we also present a segmentation technique that allows us to separate the lakes from the local background.

  18. Optimal waveform-based clutter suppression algorithm for recursive synthetic aperture radar imaging systems

    NASA Astrophysics Data System (ADS)

    Zhu, Binqi; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2016-04-01

    A computational method for suppressing clutter and generating clear microwave images of targets is proposed in this paper, which combines synthetic aperture radar (SAR) principles with recursive method and waveform design theory, and it is suitable for SAR for special applications. The nonlinear recursive model is introduced into the SAR operation principle, and the cubature Kalman filter algorithm is used to estimate target and clutter responses in each azimuth position based on their previous states, which are both assumed to be Gaussian distributions. NP criteria-based optimal waveforms are designed repeatedly as the sensor flies along its azimuth path and are used as the transmitting signals. A clutter suppression filter is then designed and added to suppress the clutter response while maintaining most of the target response. Thus, with fewer disturbances from the clutter response, we can generate the SAR image with traditional azimuth matched filters. Our simulations show that the clutter suppression filter significantly reduces the clutter response, and our algorithm greatly improves the SINR of the SAR image based on different clutter suppression filter parameters. As such, this algorithm may be preferable for special target imaging when prior information on the target is available.

  19. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, Jeffrey E.

    1998-01-01

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  20. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, J.E.

    1998-08-18

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 10 figs.

  1. Parameter estimation and imaging of moving targets in bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Li, Yu; Huang, Puming; Yang, Zhimei; Lin, Chenchen

    2016-01-01

    In high-resolution bistatic synthetic aperture radar (SAR) systems, parameter estimation is essential to moving target imaging quality. However, precise parameters are difficult to obtain without priori information due to the relative along-track and across-track velocities between the moving target and platforms that change with time. A parameter estimation and imaging approach for moving targets is proposed. First, slant range and relative velocities expression are deduced based on the geometry of bistatic SAR model with one stationary configuration. Then, range curvature term are compensated skillfully by fitting the range-compressed curve in two-dimensional time domain, meanwhile, the initial estimated range walk slope can be achieved. Finally, precise Doppler centroid is estimated through searching for the maximum contrast with folding search algorithm, which is giving consideration to both searching precision and computational complexity. Thus, the proposed algorithm provides an effective way for parameter estimation and imaging of moving target without prior information and interpolation operation. Experimental results show the effectiveness of the proposed method.

  2. Synthetic aperture radar image segmentation based on edge-region active contour model

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wen, Xianbin; Xu, Haixia; Meng, Qingxia

    2016-07-01

    An energy functional is proposed based on an edge-region active contour model for synthetic aperture radar (SAR) image segmentation. The proposed energy functional not only has a desirable property to process inhomogeneous regions in SAR images, but also shows satisfactory convergence speed. Our proposed energy functional consists of two main energy terms: an edge-region term and a regularization term. The edge-region term is derived from a Gamma model and gradient term model, which can process the speckle noises and drive the motion of the curves toward desired locations. The regularization term is not only able to maintain a desired shape of the evolution curves but also has a strong smoothing curve effect and avoid the occurrence of small, isolated regions in the final segmentation. Finally, the gradient descent flow method is introduced for minimizing our energy functional. A desirable feature of the proposed method is that it is not sensitive to the contour initialization. Compared with other methods, experimental results show that the proposed approach has promising edge detection results on the synthetic and real SAR images.

  3. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  4. Image registration of interferometric inverse synthetic aperture radar imaging system based on joint respective window sampling and modified motion compensation

    NASA Astrophysics Data System (ADS)

    Tian, Biao; Shi, Si; Liu, Yang; Xu, Shiyou; Chen, Zengping

    2015-01-01

    We propose a new image registration method based on joint respective window sampling (RWS) and modified motion compensation (MMC) in an interferometric inverse synthetic aperture radar (InISAR) imaging system using two antennas. The causation and quantitative analysis of the offset between two ISAR images of different antennas along the baseline are analyzed. In the proposed method, the RWS method, according to the measured distance between the target and different antennas, compensates the offset in the range direction. The MMC method is adopted to eliminate the offset in the Doppler direction. Simulation results demonstrate that the offset between the two ISAR images can be compensated effectively, consequently achieving a high-quality three-dimensional InISAR image.

  5. Earth Surface Change as Viewed by the Spaceborne Imaging Radar-C. X-Band Synthetic Aperture Radar (SIR-C/X-SAR) and shuttle Hand-Held Photographs

    NASA Technical Reports Server (NTRS)

    Evans, D. L.; Stofan, E. R.; Jones, T. D.; Godwin, L.

    1994-01-01

    The Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR) was launched on space shuttle Endeavour at 7:05 AM EDT, Saturday, April 9, 1994 as part of the Space Radar Lab (SRL-1). Soon after launch, the radars were activated and began arount the clock operations which lasted for the next 10 days.

  6. Evaluation of synthetic aperture radar image segmentation algorithms in the context of automatic target recognition

    NASA Astrophysics Data System (ADS)

    Xue, Kefu; Power, Gregory J.; Gregga, Jason B.

    2002-11-01

    Image segmentation is a process to extract and organize information energy in the image pixel space according to a prescribed feature set. It is often a key preprocess in automatic target recognition (ATR) algorithms. In many cases, the performance of image segmentation algorithms will have significant impact on the performance of ATR algorithms. Due to the variations in feature set definitions and the innovations in the segmentation processes, there is large number of image segmentation algorithms existing in ATR world. Recently, the authors have investigated a number of measures to evaluate the performance of segmentation algorithms, such as Percentage Pixels Same (pps), Partial Directed Hausdorff (pdh) and Complex Inner Product (cip). In the research, we found that the combination of the three measures shows effectiveness in the evaluation of segmentation algorithms against truth data (human master segmentation). However, we still don't know what are the impact of those measures in the performance of ATR algorithms that are commonly measured by Probability of detection (PDet), Probability of false alarm (PFA), Probability of identification (PID), etc. In all practical situations, ATR boxes are implemented without human observer in the loop. The performance of synthetic aperture radar (SAR) image segmentation should be evaluated in the context of ATR rather than human observers. This research establishes a segmentation algorithm evaluation suite involving segmentation algorithm performance measures as well as the ATR algorithm performance measures. It provides a practical quantitative evaluation method to judge which SAR image segmentation algorithm is the best for a particular ATR application. The results are tabulated based on some baseline ATR algorithms and a typical image segmentation algorithm used in ATR applications.

  7. Detection of Built-Up Areas Using Polarimetric Synthetic Aperture Radar Data and Hyperspectral Image

    NASA Astrophysics Data System (ADS)

    Bordbari, R.; Maghsoudi, Y.; Salehi, M.

    2015-12-01

    Polarimetric synthetic aperture radar (POLSAR) is an advantageous data for information extraction about objects and structures by using the wave scattering and polarization properties. Hyperspectral remote sensing exploits the fact that all materials reflect, absorb, and emit electromagnetic energy, at specific wavelengths, in distinctive patterns related to their molecular composition. As a result of their fine spectral resolution, Hyperspectral image (HIS) sensors provide a significant amount of information about the physical and chemical composition of the materials occupying the pixel surface. In target detection applications, the main objective is to search the pixels of an HSI data cube for the presence of a specific material (target). In this research, a hierarchical constrained energy minimization (hCEM) method using 5 different adjusting parameters has been used for target detection from hyperspectral data. Furthermore, to detect the built-up areas from POLSAR data, building objects discriminated from surrounding natural media presented on the scene using Freeman polarimetric target decomposition (PTD) and the correlation coefficient between co-pol and cross-pol channels. Also, target detection method has been implemented based on the different polarization basis for using the more information. Finally a majority voting method has been used for fusing the target maps. The polarimetric image C-band SAR data acquired by Radarsat-2, over San Francisco Bay area was used for the evaluation of the proposed method.

  8. High-performance synthetic aperture radar image formation on commodity multicore architectures

    NASA Astrophysics Data System (ADS)

    McFarlin, Daniel S.; Franchetti, Franz; Püschel, Markus; Moura, José M. F.

    2009-05-01

    Synthetic Aperture Radar (SAR) image processing platforms have to process increasingly large datasets under and hard real-time deadlines. Upgrading these platforms is expensive. An attractive solution to this problem is to couple high performance, general-purpose Commercial-Off-The-Shelf (COTS) architectures such as IBM's Cell BE and Intel's Core with software implementations of SAR algorithms. While this approach provides great flexibility, achieving the requisite performance is difficult and time-consuming. The reason is the highly parallel nature and general complexity of modern COTS microarchitectures. To achieve the best performance, developers have to interweave of various complex optimizations including multithreading, the use of SIMD vector extensions, and careful tuning to the memory hierarchy. In this paper, we demonstrate the computer generation of high performance code for SAR implementations on Intel's multicore platforms based on the Spiral framework and system. The key is to express SAR and its building blocks in Spiral's formal domain-specific language to enable automatic vectorization, parallelization, and memory hierarchy tuning through rewriting at a high abstraction level and automatic exploration of choices. We show that Spiral produces code for the latest Intel quadcore platforms that surpasses competing hand-tuned implementations on the Cell Blade, an architecture with twice as many cores and three times the memory bandwidth. Specifically, we show an average performance of 39 Gigaflops/sec for 16-Megapixel and 100-Megapixel SAR images with runtimes of 0.56 and 3.76 seconds respectively.

  9. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  10. Detection of small, slow ground targets using Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Chen, Curtis; Chapin, Elaine; Rosen, Paul

    2005-01-01

    Synthetic aperture radar (SAR) along-track interferometry (ATI) is a technique for sensing Earth-surface motion. The technique involves interferometrically combining data from two radar images acquired from phase centers separated along the platform flight track.

  11. Synthetic-aperture chirp confocal imaging.

    PubMed

    Chien, Wei-Chen; Dilworth, D S; Liu, Elson; Leith, E N

    2006-01-20

    An imaging system that combines synthetic-aperture imaging, holography, and an optical chirp with confocal imaging is described and analyzed. Comparisons are made with synthetic-aperture radar systems. Adaptation of several synthetic-aperture radar techniques to the optical counterparts is suggested.

  12. Transient volcano deformation sources imaged with interferometric synthetic aperture radar: Application to Seguam Island, Alaska

    USGS Publications Warehouse

    Masterlark, Timothy; Lu, Zhong

    2004-01-01

    Thirty interferometric synthetic aperture radar (InSAR) images, spanning various intervals during 1992–2000, document coeruptive and posteruptive deformation of the 1992–1993 eruption on Seguam Island, Alaska. A procedure that combines standard damped least squares inverse methods and collective surfaces, identifies three dominant amorphous clusters of deformation point sources. Predictions generated from these three point source clusters account for both the spatial and temporal complexity of the deformation patterns of the InSAR data. Regularized time series of source strength attribute a distinctive transient behavior to each of the three source clusters. A model that combines magma influx, thermoelastic relaxation, poroelastic effects, and petrologic data accounts for the transient, interrelated behavior of the source clusters and the observed deformation. Basaltic magma pulses, which flow into a storage chamber residing in the lower crust, drive this deformational system. A portion of a magma pulse is injected into the upper crust and remains in storage during both coeruption and posteruption intervals. This injected magma degasses and the volatile products accumulate in a shallow poroelastic storage chamber. During the eruption, another portion of the magma pulse is transported directly to the surface via a conduit roughly centered beneath Pyre Peak on the west side of the island. A small amount of this magma remains in storage during the eruption, and posteruption thermoelastic contraction ensues. This model, made possible by the excellent spatial and temporal coverage of the InSAR data, reveals a relatively simple system of interrelated predictable processes driven by magma dynamics.

  13. Synthetic Aperture Radar Images of a Simple Room Based on Computer Models

    DTIC Science & Technology

    2010-05-01

    on multi-static sensor arrays (5); analysis of a moving human Doppler signature (6); and investigation of moving target indicator (MTI) techniques as... designed to minimize the image sidelobes . Figure 9 presents the images of the same brick-wall room, this time for a 22.5° aperture centered at 45...of an open waveguide aperture antenna , which is inconsistent with our assumption of the target being in the near-field zone. However, given the fact

  14. Motion estimation and imaging of complex scenes with synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Callaghan, Thomas; Papanicolaou, George

    2013-05-01

    We study synthetic aperture radar (SAR) imaging and motion estimation of complex scenes consisting of stationary and moving targets. We use the classic SAR setup with a single antenna emitting signals and receiving the echoes from the scene. The known motion estimation methods for SAR work only in simple cases, with one or a few targets in the same motion. We propose to extend the applicability of these methods to complex scenes, by complementing them with a data pre-processing step intended to separate the echoes from the stationary targets and the moving ones. We present two approaches. The first is an iteration designed to subtract the echoes from the stationary targets one by one. This approach first estimates the location of each stationary target from a preliminary image, and then uses the location to define a filter that removes the corresponding target’s echo from the data. The second approach is based on the robust principal component analysis (PCA) method. The key observation is that with appropriate pre-processing and windowing, the discrete samples of the stationary target echoes form a low-rank matrix, whereas the samples of a few moving target echoes form a high-rank sparse matrix. The robust PCA method is designed to separate the low rank from the sparse part, and thus can be used for the SAR data separation. We present a brief analysis of the two methods and explain how they can be combined to improve the data separation for extended and complex imaging scenes. We also assess the performance of the methods with extensive numerical simulations.

  15. Future of synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  16. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  17. Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report

    NASA Technical Reports Server (NTRS)

    Evans, Diane L. (Editor); Plaut, Jeffrey (Editor)

    1996-01-01

    The Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is the most advanced imaging radar system to fly in Earth orbit. Carried in the cargo bay of the Space Shuttle Endeavour in April and October of 1994, SIR-C/X-SAR simultaneously recorded SAR data at three wavelengths (L-, C-, and X-bands; 23.5, 5.8, and 3.1 cm, respectively). The SIR-C/X-SAR Science Team consists of 53 investigator teams from more than a dozen countries. Science investigations were undertaken in the fields of ecology, hydrology, ecology, and oceanography. This report contains 44 investigator team reports and several additional reports from coinvestigators and other researchers.

  18. Inverse synthetic aperture radar imaging of maneuvering target based on cubic chirps model with time-varying amplitudes

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhang, Qingxiang; Zhao, Bin

    2016-01-01

    Inverse synthetic aperture radar (ISAR) imaging of maneuvering target is a main topic in the field of radar signal processing, and the received signal in a range bin can usually be characterized as multicomponent cubic chirps with constant amplitudes after motion compensation. In fact, the phenomenon of migration through resolution cell (MTRC) often occurs for the target's complex motion, and this will induce the time-varying character for the amplitudes of cubic chirps. An algorithm for the parameters estimation of multicomponent cubic chirps with time-varying amplitudes based on the extension form of match Fourier transform is proposed, and by using it in ISAR imaging of maneuvering target, the quality of images can be improved significantly compared with the constant amplitudes model. Results of simulated and real data validate the effectiveness of the algorithm in this paper.

  19. Integration of differential global positioning system with ultrawideband synthetic aperture radar for forward imaging

    NASA Astrophysics Data System (ADS)

    Wong, David C.; Bui, Khang; Nguyen, Lam H.; Smith, Gregory; Ton, Tuan T.

    2003-09-01

    The U.S. Army Research Laboratory (ARL), as part of a customer and mission-funded exploratory development program, has been evaluating low-frequency, ultra-wideband (UWB) imaging radar for forward imaging to support the Army's vision for increased mobility and survivability of unmanned ground vehicle missions. As part of the program to improve the radar system and imaging capability, ARL has incorporated a differential global positioning system (DGPS) for motion compensation into the radar system. The use of DGPS can greatly increase positional accuracy, thereby allowing us to improve our ability to focus better images for the detection of small targets such as plastic mines and other concealed objects buried underground. The ability of UWB radar technology to detect concealed objects could provide an important obstacle avoidance capability for robotic vehicles, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U.S. forces. This paper details the integration and discusses the significance of integrating a DGPS into the radar system for forward imaging. It also compares the difference between DGPS and the motion compensation data collected by the use of the original theodolite-based system.

  20. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction

    NASA Astrophysics Data System (ADS)

    Senthilnath, J.; Shenoy, H. Vikram; Rajendra, Ritwik; Omkar, S. N.; Mani, V.; Diwakar, P. G.

    2013-06-01

    Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.

  1. Synthetic aperture radar in geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Tomiyasu, K.

    1978-01-01

    Radar images of the earth were taken with a synthetic aperture radar (SAR) from geosynchronous orbital ranges by utilizing satellite motion relative to a geostationary position. A suitable satellite motion was obtained by having an orbit plane inclined relative to the equatorial plane and by having an eccentric orbit. Potential applications of these SAR images are topography, water resource management and soil moisture determination. Preliminary calculations show that the United States can be mapped with 100 m resolution cells in about 4 hours. With the use of microwave signals the mapping can be performed day or night, through clouds and during adverse weather.

  2. Detection of linear features in synthetic-aperture radar images by use of the localized Radon transform and prior information.

    PubMed

    Onana, Vincent-de-Paul; Trouvé, Emmanuel; Mauris, Gilles; Rudant, Jean-Paul; Tonyé, Emmanuel

    2004-01-10

    A new linear-features detection method is proposed for extracting straight edges and lines in synthetic-aperture radar images. This method is based on the localized Radon transform, which produces geometrical integrals along straight lines. In the transformed domain, linear features have a specific signature: They appear as strongly contrasted structures, which are easier to extract with the conventional ratio edge detector. The proposed method is dedicated to applications such as geographical map updating for which prior information (approximate length and orientation of features) is available. Experimental results show the method's robustness with respect to poor radiometric contrast and hidden parts and its complementarity to conventional pixel-by-pixel approaches.

  3. New experiments in inverse synthetic aperture radar image exploitation for maritime surveillance

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.

    2014-06-01

    This paper provides a summary of recent experimental study in using signatures obtained via polarimetric inverse synthetic aperture radar (ISAR) for classification of small boats in littoral environments. First step in discerning the intention of any small boat is to classify and fingerprint it so it can be observed over an extended period of time. Currently, ISAR techniques are used for large ship classification. Large ships tend to have a rich set of discernible features making classification straightforward. However, small boats rarely have a rich set of discernible features, and are more vulnerable to motion-based range migration that leads to severe signature blurring, thus making classification more challenging. The emphasis of this paper is on the development and use of several enhancement methods for polarimetric ISAR imagery of small boats followed by a target classification study whereby the enhanced signatures of two boats were used to extract several separability metrics to ascertain the effectiveness of these distance measure for target classification.

  4. 3D Synthetic Aperture Radar Imaging of the Interior of the Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Gim, Y.; Heggy, E.; Arumugam, D.; Wu, X.; Asphaug, E. I.

    2014-12-01

    A capability of constructing the primitive body's interior structure such as the cometary nucleus is the key to the successful realization of a future three-dimensional (3D) mapping mission using a long-wavelength (20-60 meters) penetrating radar system. Discontinuities in the material density and/or composition at the surface and deep interior reflect a small amount of incoming electro-magnetic waves back to the orbiting radar system that records amplitudes and travel times (or phases). By coherently processing the phase information collected from different viewing angles at different times, we would like to show that we could build 3D internal structural and compositional images, and thereby provide crucial information about the origin and evolution of the cometary nucleus. Here, we will report our efforts on the high-fidelity electromagnetic (E&M) forward modeling, comet modeling related to Rosetta experiments, and validation of a radar reflection tomographic imaging technique. We have developed innovative techniques to reduce numerical errors in the E&M modeling, allowing us to simulate data collection in a realistic environment while significantly reducing spurious effects caused by numerical errors or imperfect matching layers surrounding the simulation scene. For comet modeling, we have used models developed for radar sounding experiments on Rosetta comet 67P/Churyumov-Gerasimenko. These models are driven from various scientific hypothesis and lab measurements of cometary materials. For an imaging algorithm, we have used a proven SAR technique after taking into account the slowness of light inside the comet and refraction (ray-bending) at the comet surface. We have successfully imaged 2D cross-sectional images of various comet models and will pursuit 3D simulation and imaging reconstruction in the near future.

  5. Inverse synthetic aperture radar imaging of targets with complex motion based on the local polynomial ambiguity function

    NASA Astrophysics Data System (ADS)

    Lv, Qian; Su, Tao; Zheng, Jibin

    2016-01-01

    In inverse synthetic aperture radar (ISAR) imaging of targets with complex motion, the azimuth echoes have to be modeled as multicomponent cubic phase signals (CPSs) after motion compensation. For the CPS model, the chirp rate and the quadratic chirp rate deteriorate the ISAR image quality due to the Doppler frequency shift; thus, an effective parameter estimation algorithm is required. This paper focuses on a parameter estimation algorithm for multicomponent CPSs based on the local polynomial ambiguity function (LPAF), which is simple and can be easily implemented via the complex multiplication and fast Fourier transform. Compared with the existing parameter estimation algorithm for CPS, the proposed algorithm can achieve a better compromise between performance and computational complexity. Then, the high-quality ISAR image can be obtained by the proposed LPAF-based ISAR imaging algorithm. The results of the simulated data demonstrate the effectiveness of the proposed algorithm.

  6. Phase noise from aircraft motion: Compensation and effect on synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K.; Goldstein, Richard M.

    1986-01-01

    Image degradation of airborne SAR imagery caused by phase errors introduced in the received signal by aircraft motion is discussed. Mechanical motion has a small bandwidth and does not affect the range signal, where the total echo time is typically 60 microsec. However, since the aperture length can be several seconds, the synthesized azimuth signal can have significant errors of which phase noise is the most important. An inertial navigation system can be used to compensate for these errors when processing the images. Calculations to evaluate how much improvement results from compensation are outlined.

  7. Method for providing a polarization filter for processing synthetic aperture radar image data

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C. (Inventor); vanZyl, Jakob J. (Inventor)

    1991-01-01

    A polarization filter can maximize the signal-to-noise ratio of a polarimetric SAR and help discriminate between targets or enhance image features, e.g., enhance contract between different types of target. The method disclosed is based on the Stokes matrix/Stokes vector representation, so the targets of interest can be extended targets, and the method can also be applied to the case of bistatic polarimetric radars.

  8. Manmade target extraction based on multistage decision and its application for change detection in polarimetric synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji

    2016-09-01

    Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.

  9. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996

    SciTech Connect

    1998-12-31

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

  10. Radar Imaging and Feature Extraction

    DTIC Science & Technology

    2007-11-02

    aperture radar (ISAR) autofocus and imaging, synthetic aperture radar (SAR) autofocus and motion compensation, superresolution SAR image formation... superresolution image formation, and two parametric methods, MCRELAX (Motion Compensation RELAX) and MCCLEAN (Motion Compensation CLEAN), for simultaneous target...Direction Estimation) together with WRELAX) algorithm is proposed for the superresolution time delay estimation.

  11. Synthetic aperture radar for disaster monitoring

    NASA Astrophysics Data System (ADS)

    Dunkel, R.; Saddler, R.; Doerry, A. W.

    2011-06-01

    Synthetic Aperture Radar (SAR) is well known to afford imaging in darkness and through clouds, smoke, and other obscurants. As such, it is particularly useful for mapping and monitoring a variety of natural and man-made disasters. A portfolio of SAR image examples has been collected using General Atomics Aeronautical Systems, Inc.'s (GA-ASI's) Lynx® family of Ku-Band SAR systems, flown on both operational and test-bed aircraft. Images are provided that include scenes of flooding, ice jams in North Dakota, agricultural field fires in southern California, and ocean oil slicks from seeps off the coast of southern California.

  12. Synthetic aperture radar processing with tiered subapertures

    SciTech Connect

    Doerry, A.W.

    1994-06-01

    Synthetic Aperture Radar (SAR) is used to form images that are maps of radar reflectivity of some scene of interest, from range soundings taken over some spatial aperture. Additionally, the range soundings are typically synthesized from a sampled frequency aperture. Efficient processing of the collected data necessitates using efficient digital signal processing techniques such as vector multiplies and fast implementations of the Discrete Fourier Transform. Inherent in image formation algorithms that use these is a trade-off between the size of the scene that can be acceptably imaged, and the resolution with which the image can be made. These limits arise from migration errors and spatially variant phase errors, and different algorithms mitigate these to varying degrees. Two fairly successful algorithms for airborne SARs are Polar Format processing, and Overlapped Subaperture (OSA) processing. This report introduces and summarizes the analysis of generalized Tiered Subaperture (TSA) techniques that are a superset of both Polar Format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a dynamic motion environment.

  13. Multiple arrested synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Shuster, J. S.

    1981-05-01

    This report contains the formulation and analysis of an airborne synthetic aperture rate scheme which employs a multiplicity of antennas with the displaced phase center antenna technique to detect slowly moving targets embedded in a severe clutter environment. The radar is evaluated using the target to clutter power ratio as the measure of performance. Noise is ignored in the analysis. An optimization scheme which maximizes this ratio is employed to obtain the optimum processor weighting. The performance of the MASAR processor with optimum weights is compared against that using target weights (composed of the target signal) and that using binomial weights (which, effectively, form an n-pulse canceller). Both the target and the clutter are modeled with the electric field backscattering coefficient. The target is modeled simply as a deterministically moving point scatterer with the same albedo as a point of clutter. The clutter is modeled as a homogeneous, isotropic, two dimensional, spatiotemporal random field for which only the correlation properties are required. The analysis shows that this radar, with its optimum weighting scheme, is a promising synthetic aperture concept for the detection of slowly moving targets immersed in strong clutter environments.

  14. Modeling of bottom-related surface patterns imaged by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Lyzenga, D. R.; Shuchman, R. A.; Kasischke, E. S.; Meadows, G. A.

    1983-01-01

    A hydrodynamic electromagnetic model is developed in order to provide a qualitative and quantitative description of the relationship between Seasat synthetic aperture radar (SAR) signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model is based on environmental data for winds, currents, and depth changes, and the SAR parameters of frequency polarization, incidence angle, and resolution cell size. The data are used as inputs and SAR backscatter changes are predicted for individual topographic changes on the ocean floor. It is found that the model estimates of backscatter values are in good agreement with actual Seasat SAR-observed backscatter values. A comparison of the model and actual data shows agreement to be within 1.5 dB. The model is considered to be valid for only shallow water areas (less than 50 meters in depth). It is suggested that for bottom features to be visible on SAR imagery at greater depths, a moderate-to-high velocity current of at least 0.4 m/s and a moderate wind no more than 7.5 m/sec must be present.

  15. Kurtosis-based estimation of cross-range scaling factor for high-resolution inverse synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Phan, An; Ng, Brian; Tran, Hai-Tan

    2016-07-01

    In automatic target recognition systems based on the use of inverse synthetic aperture radar (ISAR) images, it is essential to obtain unbiased and accurate scaled two-dimensional target images in the range-cross range domain. To accomplish this, the modulus of the target effective rotation vector, which is generally unknown for noncooperative targets, must be estimated. This letter proposes an efficient method for estimating the cross-range scaling factor and significantly improving cross-range resolution based on the second-order local polynomial Fourier transform. The estimation requires solving a series of one-dimensional optimizations of a kurtosis objective. Simulations show the proposed approach to be effective and able to accurately estimate the scaling factor in the presence of noise.

  16. Two-beam-coupling correlator for synthetic aperture radar image recognition with power-law scattering centers preenhancement.

    PubMed

    Haji-Saeed, Bahareh; Woods, Charles L; Kierstead, John; Khoury, Jed

    2008-06-01

    Synthetic radar image recognition is an area of interest for military applications including automatic target recognition, air traffic control, and remote sensing. Here a dynamic range compression two-beam-coupling joint transform correlator for detecting synthetic aperture radar targets is utilized. The joint input image consists of a prepower-law, enhanced scattering center of the input image and a linearly synthesized power-law-enhanced scattering center template. Enhancing the scattering center of both the synthetic template and the input image furnishes the conditions for achieving dynamic range compression correlation in two-beam coupling. Dynamic range compression (a) enhances the signal-to-noise ratio, (b) enhances the high frequencies relative to low frequencies, and (c) converts the noise to high frequency components. This improves the correlation-peak intensity to the mean of the surrounding noise significantly. Dynamic range compression correlation has already been demonstrated to outperform many optimal correlation filters in detecting signals in severe noise environments. The performance is evaluated via established metrics such as peak-to-correlation energy, Horner efficiency, and correlation-peak intensity. The results showed significant improvement as the power increased.

  17. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Dong, Junyu; Li, Bo; Xu, Qizhi; Xie, Cui

    2016-10-01

    Change detection is of high practical value to hazard assessment, crop growth monitoring, and urban sprawl detection. A synthetic aperture radar (SAR) image is the ideal information source for performing change detection since it is independent of atmospheric and sunlight conditions. Existing SAR image change detection methods usually generate a difference image (DI) first and use clustering methods to classify the pixels of DI into changed class and unchanged class. Some useful information may get lost in the DI generation process. This paper proposed an SAR image change detection method based on neighborhood-based ratio (NR) and extreme learning machine (ELM). NR operator is utilized for obtaining some interested pixels that have high probability of being changed or unchanged. Then, image patches centered at these pixels are generated, and ELM is employed to train a model by using these patches. Finally, pixels in both original SAR images are classified by the pretrained ELM model. The preclassification result and the ELM classification result are combined to form the final change map. The experimental results obtained on three real SAR image datasets and one simulated dataset show that the proposed method is robust to speckle noise and is effective to detect change information among multitemporal SAR images.

  18. Inverse synthetic aperture radar imaging compensation method based on coherent processing of intermediate frequency direct sampling data

    NASA Astrophysics Data System (ADS)

    Zou, Jiangwei; Tian, Biao; Chen, Zengping

    2016-07-01

    An inverse synthetic aperture radar (ISAR) high-precision compensation method is proposed based on coherent processing of intermediate frequency direct sampling data. First, the compensation of high-speed movement is performed by a modified linear frequency modulation matched filter during the pulse compression. The motion trajectory in the down-range direction is then reconstructed by compensation of window sampling difference of each pulse. Modified envelope correlation is applied to calculate the range profile shift between each pulse and the first one. Polynomial fitting is adopted to accurately estimate the motion characteristics. Subsequently, coherent processing is applied by combining range alignment and initial phase compensation. The migration through range cells correction can be then realized by keystone transform to the highly coherent data. Consequently, ISAR images with high quality are achieved. Experimental results on simulated and real data have demonstrated the validity of the proposed method.

  19. Millimeter-wave Ground-based Synthetic Aperture Radar Imaging for Foreign Object Debris Detection: Experimental Studies at Short Ranges

    NASA Astrophysics Data System (ADS)

    Yigit, Enes; Demirci, Sevket; Unal, Atilla; Ozdemir, Caner; Vertiy, Alexey

    2012-12-01

    In this paper, millimeter-wave imaging of foreign object debris (FOD)-type objects on the ground is studied with the help of ground-based synthetic aperture radar (GB-SAR) technique. To test the feasibility of detecting runway FODs with this technique, some preliminary experiments are conducted within short antenna-to-target ranges of small imaging patches. An automated stripmap GB-SAR system with stepped-frequency transmission is constructed together with a quasi-monostatic data collection operation. The imaging experiments for various braces and screws are then carried out by using 32- 36 GHz and 90- 95 GHz frequency bands of the millimeter-wave. Images reconstructed by a matched-filter based algorithm are analyzed to determine the proper system parameters for an efficient imaging and to comprehend the factors against a successful detection. Results demonstrate the capability of GB-SAR imaging in accurately locating these FOD-like targets under near-range operating conditions.

  20. Synthetic aperture radar autofocus via semidefinite relaxation.

    PubMed

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  1. Combined synthetic aperture radar/Landsat imagery

    NASA Technical Reports Server (NTRS)

    Marque, R. E.; Maurer, H. E.

    1978-01-01

    This paper presents the results of investigations into merging synthetic aperture radar (SAR) and Landsat multispectral scanner (MSS) images using optical and digital merging techniques. The unique characteristics of airborne and orbital SAR and Landsat MSS imagery are discussed. The case for merging the imagery is presented and tradeoffs between optical and digital merging techniques explored. Examples of Landsat and airborne SAR imagery are used to illustrate optical and digital merging. Analysis of the merged digital imagery illustrates the improved interpretability resulting from combining the outputs from the two sensor systems.

  2. Analysis of polarimetric synthetic aperture radar and passive visible light polarimetric imaging data fusion for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Maitra, Sanjit

    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single

  3. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    SciTech Connect

    Musgrove, Cameron

    2015-07-01

    For synthetic aperture radars radio frequency interference from sources external to the radar system and techniques to mitigate the interference can degrade the quality of the image products. Usually the radar system designer will try to balance the amount of mitigation for an acceptable amount of interference to optimize the image quality. This dissertation examines the effect of interference mitigation upon coherent data products of fine resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. New metrics are applied to evaluate multiple mitigation techniques for image quality and average coherence. The underlying mechanism for interference mitigation techniques that affect coherence is revealed.

  4. Bistatic synthetic aperture radar using two satellites

    NASA Technical Reports Server (NTRS)

    Tomiyasu, K.

    1978-01-01

    The paper demonstrates the feasibility of a bistatic synthetic aperture radar (BISAR) utilizing two satellites. The proposed BISAR assumes that the direction of the two narrow antenna beams are programmed to coincide over the desired area to be imaged. Functionally, the transmitter and receiver portions can be interchanged between the two satellites. The two satellites may be in one orbit plane or two different orbits such as geosynchronous and low-earth orbits. The pulse repetition frequency and imaging geometry are constrained by contours of isodops and isodels. With two images of the same area viewed from different angles, it is possible in principle to derive three-dimensional stereo images. Applications of BISAR include topography, water resource management, and soil moisture determination.. Advantages of BISAR over a monostatic SAR are mentioned, including lower transmitter power and greater ranges in incidence angle and coverage.

  5. Synthetic Aperture Radar Missions Study Report

    NASA Technical Reports Server (NTRS)

    Bard, S.

    2000-01-01

    This report reviews the history of the LightSAR project and summarizes actions the agency can undertake to support industry-led efforts to develop an operational synthetic aperture radar (SAR) capability in the United States.

  6. Contour-Mapping Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Caro, E. R.; Wu, C.

    1985-01-01

    Airborne two-antenna synthetic-aperture-radar (SAR) interferometric system provides data processed to yield terrain elevation as well as reflectedintensity information. Relative altitudes of terrain points measured to within error of approximately 25 m.

  7. Using Regional GPS Network Atmospheric Models for Mitigating Errors in Interferometric Synthetic Aperture Radar (InSAR) Images

    NASA Astrophysics Data System (ADS)

    Reuveni, Y.; Bock, Y.; Tong, X.; Moore, A. W.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) measurements provide valuable information for obtaining Earth surface deformation and topography at high spatial resolution for crustal deformation studies. Similar to Global Positioning System (GPS), InSAR phase measurements are affected by the Earth's ionospheric and tropospheric layers as the electromagnetic signals significantly refract while propagating through the different layers. While electromagnetic signals propagating through the neutral atmosphere are affected primarily by the pressure, temperature, and water vapor content of atmospheric gases, the propagation through the ionosphere is mainly affected by the number of free electrons along the signal path. Here, we present the use of dense regional GPS networks for extracting tropospheric zenith delays and ionospheric Total Electron Content (TEC) maps in order to reduce the noise levels in the phase measurement of the InSAR images. The results show significant reduction in the RMS values when simultaneously combining the two corrections, both at short time periods where no surface deformation is expected, and at longer periods, where imaging of crustal deformation, such as the ground subsidence and aseismic fault creep, is enhanced.

  8. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  9. Geometric ortho-rectification and generation of sigma(0) image products from multiple incidence synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Curlander, James; Leberl, Franz; Kruse, Fred

    1992-01-01

    The results of the first phase of a cooperative effort in geometric orthorectification and generation of sigma(0) images of multiple incidence SAR images are presented. The geometric accuracy of the final image products is approximately 18 m or 1.5 pixels. A method for registering radar imagery collected from an airborne platform to an existing digital elevation model despite the effects of unmodeled variations in the flight path of the platform is demonstrated. The results indicate the requirements for a more detailed digital elevation model.

  10. A digital calibration method for synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Larson, Richard W.; Jackson, P. L.; Kasischke, Eric S.

    1988-01-01

    A basic method to calibrate imagery from synthetic aperture radar (SAR) systems is presented. SAR images are calibrated by monitoring all the terms of the radar equation. This procedure includes the use of both external (calibrated reference reflectors) and internal (system-generated calibration signals) sources to monitor the total SAR system transfer function. To illustrate the implementation of the procedure, two calibrated SAR images (X-band, 3.2-cm wavelength) are presented, along with the radar cross-section measurements of specific scenes within each image. The sources of error within the SAR image calibration procedure are identified.

  11. Synthetic aperture hitchhiker imaging.

    PubMed

    Yarman, Can Evren; Yazici, Birsen

    2008-11-01

    We introduce a novel synthetic-aperture imaging method for radar systems that rely on sources of opportunity. We consider receivers that fly along arbitrary, but known, flight trajectories and develop a spatio-temporal correlation-based filtered-backprojection-type image reconstruction method. The method involves first correlating the measurements from two different receiver locations. This leads to a forward model where the radiance of the target scene is projected onto the intersection of certain hyperboloids with the surface topography. We next use microlocal techniques to develop a filtered-backprojection-type inversion method to recover the scene radiance. The method is applicable to both stationary and mobile, and cooperative and noncooperative sources of opportunity. Additionally, it is applicable to nonideal imaging scenarios such as those involving arbitrary flight trajectories, and has the desirable property of preserving the visible edges of the scene radiance. We present an analysis of the computational complexity of the image reconstruction method and demonstrate its performance in numerical simulations for single and multiple transmitters of opportunity.

  12. A New Method of Synthetic Aperture Radar Image Reconstruction Using Modified Convolution Back-Projection Algorithm.

    DTIC Science & Technology

    1986-08-01

    systems yield two- dimensional images which are usually called the range and the azimuth. Azimuth is the direction of the flight path of the plane. The...transform of the object at the same angle. Applying this to equation 3.3. the SAR image reconstruction involves solving the following integral : 2 /2 g(r. )=f...Walker J. I.. " Range -doppler imaging of rotating objects ." IEEE Trans. Aerosp Elec- tron Svst.. vol. 16. pp. 23-52. Jan. 1980. % ° - * 92 [55] Weis W. G

  13. A new sparse Bayesian learning method for inverse synthetic aperture radar imaging via exploiting cluster patterns

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Zhang, Lizao; Duan, Huiping; Huang, Lei; Li, Hongbin

    2016-05-01

    The application of sparse representation to SAR/ISAR imaging has attracted much attention over the past few years. This new class of sparse representation based imaging methods present a number of unique advantages over conventional range-Doppler methods, the basic idea behind these works is to formulate SAR/ISAR imaging as a sparse signal recovery problem. In this paper, we propose a new two-dimensional pattern-coupled sparse Bayesian learning(SBL) method to capture the underlying cluster patterns of the ISAR target images. Based on this model, an expectation-maximization (EM) algorithm is developed to infer the maximum a posterior (MAP) estimate of the hyperparameters, along with the posterior distribution of the sparse signal. Experimental results demonstrate that the proposed method is able to achieve a substantial performance improvement over existing algorithms, including the conventional SBL method.

  14. Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter.

    PubMed

    Danylov, Andriy A; Goyette, Thomas M; Waldman, Jerry; Coulombe, Michael J; Gatesman, Andrew J; Giles, Robert H; Qian, Xifeng; Chandrayan, Neelima; Vangala, Shivashankar; Termkoa, Krongtip; Goodhue, William D; Nixon, William E

    2010-07-19

    A coherent transceiver using a THz quantum cascade (TQCL) laser as the transmitter and an optically pumped molecular laser as the local oscillator has been used, with a pair of Schottky diode mixers in the receiver and reference channels, to acquire high-resolution images of fully illuminated targets, including scale models and concealed objects. Phase stability of the received signal, sufficient to allow coherent image processing of the rotating target (in azimuth and elevation), was obtained by frequency-locking the TQCL to the free-running, highly stable optically pumped molecular laser. While the range to the target was limited by the available TQCL power (several hundred microwatts) and reasonably strong indoor atmospheric attenuation at 2.408 THz, the coherence length of the TQCL transmitter will allow coherent imaging over distances up to several hundred meters. Image data obtained with the system is presented.

  15. Coastal Monitoring Using L-band Synthetic Aperture Radar (SAR) Image Data - Some Case Studies in Asian Delta Areas

    NASA Astrophysics Data System (ADS)

    Tanaka, A.

    2014-12-01

    Coastal geomorphology is highly variable as it is affected by sea-level changes and other naturally- and human-induced fluctuations. To effectively assess and monitor geomorphological changes in various time scales is thus critical for coastal management. Asian mega deltas are vulnerable to a sea-level rise due to its low-lying delta plain, and are dynamic region given a large amount of sediment supply. However, limited data availability and accessibility in the deltas have prevented establishment of systematic coastal monitoring. A variety of remote sensing systems can be used to monitor geomorphological changes in coastal areas as it has wide spatial coverage and high temporal repeatability. Especially, analysis using SAR (Synthetic Aperture Radar) data not affected by the cloud conditions offer potential for monitoring in the monsoon Asia region. We will present some case studies of Asian coastal regions using L-band SAR data, ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) and JERS-1 (Japanese Earth Resource Satellite-1) SAR data. One example is that time-series of radar amplitude images can be used to delineate changes quantitatively of the areal extent of river-mouth bars in distributaries of the Mekong River delta. It shows that the estimated areas of river mouthbars gradually increase on an annual time scale, and seasonal variations of areas were also recognized. Another example is that differential SAR interferometry is applied to the coast of the Yellow River delta in China. It shows very high subsidence rates, likely due to groundwater pumping. A further example is that we apply a SAR interferometry time series analysis to monitor ground deformations in the lower Chao Phraya delta plain, Thailand. A single reference time series interferogram from the stacking of unwrapped phases were applied. The subsidence and uplift pattern observed using the SAR interferometry time series analysis highlights the spatial complexity

  16. Radar aperture synthesis observations of asteroids

    NASA Technical Reports Server (NTRS)

    De Pater, Imke; Palmer, Patrick; Mitchell, David L.; Ostro, Steven J.; Yeomens, Donald K.; Snyder, Lewis E.

    1994-01-01

    We report of Goldstone-VLA, radar aperture-synthesis observations of the mainbelt asteroids 324 Bamberga and 7 Iris and the near-Earth asteroids 1991 EE and 4179 Toutatis. Simultaneous resolution of echoes in both angle and Doppler frequency provide new constraints on the mainbelt asteroids' pole directions: Bamberga's spin vector is within 40 deg of the south ecliptic pole, and the twofold ambiguity in Iris' pole direction (P. Magnusson, 1989) is resolved in favor of the ecliptic coordinates lambda = 15 deg, beta = +25 deg. For Bamberga, monostatic and bistatic radar echoes and VLA thermal-emission measurements, also reported here, are consistent with radiometric estimates of Bamberga's size and with the hypothesis that the asteroid is overlain by a regolith having a porosity of approximately 50%. Our near-Earth asteroid measurements required the development of new on-line VLA software that allows imaging of objects that are in the telescope's `near field.' This software has been successfully tested on Toutatis at a distance of 0.06 AU and will be essential for VLA observations of Earth-approaching comets.

  17. Computer simulation of the effects of a distributed array antenna on synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Estes, J. M.

    1985-01-01

    The ARL:UT orbital SAR simulation has been upgraded to use three-dimensional antenna gain patterns. This report describes the modifications and presents quantitative image analyses of a simulation using antenna patterns generated from the modeling of a distributed array antenna.

  18. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect

    Johnston, Brooks

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  19. Interferometric Synthetic Aperture Radar Imaging of Ocean Surface Currents and Wavefields

    DTIC Science & Technology

    1990-06-01

    position of the scattering facets causing amplitude modulation 24 phase locked to the dominant waves . Following Vaclion et al. (1988), the radial line...perturbation to one half the projected wave phase velocity. This operation will enhance the SAR ocean wave image (Jain and Shemdin , 1983). Scanning...Dobson, 1967), followed by wave spectral analysis and measurement methods, are described. The behavior, analysis, and in situ observation of ocean

  20. Processing for spaceborne synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Lybanon, M.

    1973-01-01

    The data handling and processing in using synthetic aperture radar as a satellite-borne earth resources remote sensor is considered. The discussion covers the nature of the problem, the theory, both conventional and potential advanced processing techniques, and a complete computer simulation. It is shown that digital processing is a real possibility and suggests some future directions for research.

  1. Analysis of synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1977-01-01

    Some problems faced in applications of radar measurements in hydrology are: (1) adequate calibration of the radar systems and direct digital data will be required in order that repeatable data can be acquired for hydrologic applications; (2) quantitative hydrologic research on a large scale will be prohibitive with aircraft mounted synthetic aperture radar systems due to the system geometry; (3) spacecraft platforms appear to be the best platforms for radar systems when conducting research over watersheds larger than a few square kilometers; (4) experimental radar systems should be designed to avoid use of radomes; and (5) cross polarized X and L band data seem to discriminate between good and poor hydrologic cover better than like polarized data.

  2. Ionospheric effects on synthetic aperture radar at VHF

    SciTech Connect

    Fitzgerald, T.J.

    1997-02-01

    Synthetic aperture radars (SAR) operated from airplanes have been used at VHF because of their enhanced foliage and ground penetration compared to radars operated at UHF. A satellite-borne VHF SAR would have considerable utility but in order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. The presence of the ionosphere in the propagation path of the radar will cause a deterioration of the imaging because of dispersion over the bandwidth and group path changes in the imaged area over the collection aperture. In this paper we present calculations of the effects of a deterministic ionosphere on SAR imaging for a radar operated with a 100 MHz bandwidth centered at 250 MHz and over an angular aperture of 23{degrees}. The ionosphere induces a point spread function with an approximate half-width of 150 m in the slant-range direction and of 25 m in the cross-range direction compared to the nominal resolution of 1.5 m in both directions.

  3. Non-Linear Land Subsidence In Morelia, Mexico, Imaged Through Synthetic Aperture Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Osmanoglu, Batuhan; Cabral-Cano, Enrique; Dixon, Timothy H.; Wdowinski, Shimon

    2012-01-01

    Land subsidence affecting the city of Morelia in 2003- 2010 is imaged with 23 ENVISAT scenes. Newly developed subsidence is recognized in the Rio Grande meander area, where thick compressible deposits suffer from accelerated aquifer compaction induced by recent groundwater extractions. Persistent Scatterer (PS) analyses using linear and quadratic deformation models both result in low density of targets, while small- baseline interferograms show good coherence over the whole area. At the location of Prados Verdes II well, located in the center of this subsidence feature, -10 to -15 mm/yr LOS velocities are measured in 2003-2004, accelerating to -30 mm/yr in 2004-2005, -40 to -50 mm/yr in 2006-2007, and -60 to -70 mm/yr in 2008- 2009. Along the vertical direction, cumulative deformation in 2003-2009 at the water well location is estimated at -280 mm. Accelerations as high as -1 to -1.5 mm/yr2 are observed by PS for the time period 2003-2010.

  4. Confocal coded aperture imaging

    DOEpatents

    Tobin, Jr., Kenneth William; Thomas, Jr., Clarence E.

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  5. Interferometric synthetic aperture radar imagery of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  6. The SEASAT-A synthetic aperture radar design and implementation

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.

    1978-01-01

    The SEASAT-A synthetic aperture imaging radar system is the first imaging radar system intended to be used as a scientific instrument designed for orbital use. The requirement of the radar system is to generate continuous radar imagery with a 100 kilometer swath with 25 meter resolution from an orbital altitude of 800 kilometers. These requirements impose unique system design problems and a description of the implementation is given. The end-to-end system is described, including interactions of the spacecraft, antenna, sensor, telemetry link, recording subsystem, and data processor. Some of the factors leading to the selection of critical system parameters are listed. The expected error sources leading to degradation of image quality are reported as well as estimate given of the expected performance from data obtained during a ground testing of the completed subsystems.

  7. Linear dispersion relation and depth sensitivity to swell parameters: application to synthetic aperture radar imaging and bathymetry.

    PubMed

    Boccia, Valentina; Renga, Alfredo; Rufino, Giancarlo; D'Errico, Marco; Moccia, Antonio; Aragno, Cesare; Zoffoli, Simona

    2015-01-01

    Long gravity waves or swell dominating the sea surface is known to be very useful to estimate seabed morphology in coastal areas. The paper reviews the main phenomena related to swell waves propagation that allow seabed morphology to be sensed. The linear dispersion is analysed and an error budget model is developed to assess the achievable depth accuracy when Synthetic Aperture Radar (SAR) data are used. The relevant issues and potentials of swell-based bathymetry by SAR are identified and discussed. This technique is of particular interest for characteristic regions of the Mediterranean Sea, such as in gulfs and relatively close areas, where traditional SAR-based bathymetric techniques, relying on strong tidal currents, are of limited practical utility.

  8. Linear Dispersion Relation and Depth Sensitivity to Swell Parameters: Application to Synthetic Aperture Radar Imaging and Bathymetry

    PubMed Central

    Boccia, Valentina; Renga, Alfredo; Rufino, Giancarlo; D'Errico, Marco; Moccia, Antonio; Aragno, Cesare; Zoffoli, Simona

    2015-01-01

    Long gravity waves or swell dominating the sea surface is known to be very useful to estimate seabed morphology in coastal areas. The paper reviews the main phenomena related to swell waves propagation that allow seabed morphology to be sensed. The linear dispersion is analysed and an error budget model is developed to assess the achievable depth accuracy when Synthetic Aperture Radar (SAR) data are used. The relevant issues and potentials of swell-based bathymetry by SAR are identified and discussed. This technique is of particular interest for characteristic regions of the Mediterranean Sea, such as in gulfs and relatively close areas, where traditional SAR-based bathymetric techniques, relying on strong tidal currents, are of limited practical utility. PMID:25789333

  9. Performance limits for Synthetic Aperture Radar.

    SciTech Connect

    Doerry, Armin Walter

    2006-02-01

    The performance of a Synthetic Aperture Radar (SAR) system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to ''get your arms around'' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics, no matter how bright the engineer tasked to generate a system design. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall SAR system. For example, there are definite optimum frequency bands that depend on weather conditions and range, and minimum radar PRF for a fixed real antenna aperture dimension is independent of frequency. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the ''seek time''.

  10. Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations

    USGS Publications Warehouse

    Lu, Zhong; Mann, Dörte; Freymueller, Jeffrey T.; Meyer, David

    2000-01-01

    ERS-1/ERS-2 synthetic aperture radar interferometry was used to study the 1997 eruption of Okmok volcano in Alaska. First, we derived an accurate digital elevation model (DEM) using a tandem ERS-1/ERS-2 image pair and the preexisting DEM. Second, by studying changes in interferometric coherence we found that the newly erupted lava lost radar coherence for 5-17 months after the eruption. This suggests changes in the surface backscattering characteristics and was probably related to cooling and compaction processes. Third, the atmospheric delay anomalies in the deformation interferograms were quantitatively assessed. Atmospheric delay anomalies in some of the interferograms were significant and consistently smaller than one to two fringes in magnitude. For this reason, repeat observations are important to confidently interpret small geophysical signals related to volcanic activities. Finally, using two-pass differential interferometry, we analyzed the preemptive inflation, coeruptive deflation, and posteruptive inflation and confirmed the observations using independent image pairs. We observed more than 140 cm of subsidence associated with the 1997 eruption. This subsidence occurred between 16 months before the eruption and 5 months after the eruption, was preceded by ∼18 cm of uplift between 1992 and 1995 centered in the same location, and was followed by ∼10 cm of uplift between September 1997 and 1998. The best fitting model suggests the magma reservoir resided at 2.7 km depth beneath the center of the caldera, which was ∼5 km from the eruptive vent. We estimated the volume of the erupted material to be 0.055 km3 and the average thickness of the erupted lava to be ∼7.4 m. Copyright 2000 by the American Geophysical Union.

  11. Performance Limits for Synthetic Aperture Radar

    DTIC Science & Technology

    2006-02-01

    LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 70 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT...second edition Armin W. Doerry SAR Applications Department Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185-1330...ABSTRACT The performance of a Synthetic Aperture Radar ( SAR ) system depends on a variety of factors, many which are interdependent in some manner. It is

  12. Two-dimensional superresolution multiple-input multiple-output and inverse synthetic aperture radar imaging based on spatial frequency ambiguity resolving

    NASA Astrophysics Data System (ADS)

    Yang, Jianchao; Su, Weimin; Gu, Hong

    2015-01-01

    Combining multiple-input multiple-output (MIMO) radar and inverse synthetic aperture radar (ISAR) techniques can reduce the number of antennas used and shorten the radar integrated time compared with the single-channel ISAR for the same cross-range resolution. In existing MIMO-ISAR processing, the echoes of different sensors are rearranged into an equivalent single-channel ISAR signal. A new method without echo rearrangement is proposed for two-dimensional (2-D) MIMO-ISAR imaging. A 2-D frequency estimation algorithm based on Unitary ESPRIT and projection transformation is used to obtain the spatial and Doppler frequencies of scatterers, and a high cross-range resolution can be achieved. The relationship between the two frequencies is exploited to resolve the ambiguity of spatial frequency. The analysis and simulation results show that, compared with the existing method, the proposed method can decrease the relative rotation angle (or integrated time) required for imaging. Thus, this method is more suitable for imaging targets with limited rotation or high maneuvering.

  13. Present status and applications of Interferometric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Qiao, Shubo; Li, Jinling; Sun, Fuping; Bian, Shaofeng

    2003-03-01

    Interferometric Synthetic Aperture Radar (InSAR) is a newly developed space geodetic technique, which provides the three dimensional information of targets on the Earth by interferometric processing of the Single Look Complex Images (SLC-Image) of Synthetic Aperture Radar (SAR). Because of the outstanding characteristics in all-weather and 24-hour continuous surveying, as well as the ability to penetrate into some substances on the Earth, the latent application fields of InSAR are rather broad, which becomes one of the foci in Earth science study. Hereby the principles and general status of SAR and InSAR are briefly introduced. The limitations in the precision of the height determination of targets on the Earth by InSAR are analyzed. The applications of InSAR and the mutual relation for promotion between InSAR and astro-geodynamics study are highlighted discussed.

  14. Oil Slick Characterization Using Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Breivik, O.; Brekke, C.; Skrunes, S.; Holt, B.

    2015-12-01

    Oil spills are a hazard worldwide with potential of causing high impact disasters, and require an active oil spill response capability to protect personnel, the ecosystem, and the energy supply. As the amount of oil in traditionally accessible reserves decline, there will be increasing oil extraction from the Arctic and deep-water wells, both new sources with high risk and high cost for monitoring and response. Although radar has long been used for mapping the spatial extent of oil slicks, it is only since the Deepwater Horizon spill that synthetic aperture radar (SAR) has been shown capable of characterizing oil properties within a slick, and therefore useful for directing response to the recoverable thicker slicks or emulsions. Here we discuss a 2015 Norwegian oil-on-water spill experiment in which emulsions of known quantity and water-to-oil ratio along with a look-alike slick of plant oil were released in the North Sea and imaged with polarimetric SAR (PolSAR) by NASA's UAVSAR instrument for several hours following release. During the experiment, extensive in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water, which is the basis for oil characterization with SAR. Data were acquired with X-, C-, and L-band satellite-based SARs to enable multi-frequency comparison of characterization capabilities. In addition, the data are used to develop methods to differentiate mineral slicks from biogenic look-alikes, and to better understand slick weathering and dispersion. The results will provide a basis for modeling oil-in-ice spills, currently a high priority for nations involved in Arctic oil exploration. Here we discuss the Norwegian experiment, the validation data, and the results of

  15. Three-dimensional interferometric inverse synthetic aperture radar imaging of maneuvering target based on the joint cross modified Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Lv, Qian; Su, Tao; Zheng, Jibin; Zhang, Jiancheng

    2016-01-01

    Inverse synthetic aperture radar (ISAR) can achieve high-resolution two-dimensional images of maneuvering targets. However, due to the indeterminate relative motion between radar and target, ISAR imaging does not provide the three-dimensional (3-D) position information of a target and suffers from great difficulty in target recognition. To tackle this issue, a 3-D interferometric ISAR (InISAR) imaging algorithm based on the joint cross modified Wigner-Ville distribution (MWVD) is presented to form 3-D images of maneuvering targets. First, we form two orthogonal interferometric baselines with three receiving antennas to establish an InISAR imaging system. Second, after the uniform range alignment and phase adjustment, the joint cross MWVD is used for all range cell of each antenna pair to generate the separation of the scatterer as well as preserve the phase that contains position information of the scatterer. At last, the 3-D images of the target can be directly reconstructed from the distribution. Simulation results demonstrate the validity of the proposal.

  16. Probing the Martian Subsurface with Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Campbell, B. A.; Maxwell, T. A.; Freeman, A.

    2005-01-01

    Many regions of the martian surface are covered by fine-grained materials emplaced by volcanic, fluvial, or aeolian processes. These mantling deposits likely hide ancient channel systems (particularly at smaller scale lengths) and volcanic, impact, glacial, or shoreline features. Synthetic aperture radar (SAR) offers the capability to probe meters below the surface, with imaging resolution in the 10 s of m range, to reveal the buried terrain and enhance our understanding of Mars geologic and climate history. This presentation focuses on the practical applications of a Mars orbital SAR, methods for polarimetric and interferometric radar studies, and examples of such techniques for Mars-analog sites on the Moon and Earth.

  17. Synthetic aperture radar and digital processing: An introduction

    NASA Technical Reports Server (NTRS)

    Dicenzo, A.

    1981-01-01

    A tutorial on synthetic aperture radar (SAR) is presented with emphasis on digital data collection and processing. Background information on waveform frequency and phase notation, mixing, Q conversion, sampling and cross correlation operations is included for clarity. The fate of a SAR signal from transmission to processed image is traced in detail, using the model of a single bright point target against a dark background. Some of the principal problems connected with SAR processing are also discussed.

  18. Analysis of jamming on inverse synthetic aperture radar (ISAR)

    NASA Astrophysics Data System (ADS)

    Han, Zhou-an; Pi, Yi-ming; Yang, Jian-yu

    2005-05-01

    Inverse synthetic aperture radar (ISAR) is a powerful means in target identifying, especially the target in the air, which can image the moving target. There is little study on modeling and resistance technique according to ISAR in China. This paper establishes a model of ISAR system, and then studies on some valid jamming technique. This will provide us the valid technique support on ISAR resistance equipment later.

  19. Improving the TanDEM-X DEM for flood modelling using flood extents from Synthetic Aperture Radar images.

    NASA Astrophysics Data System (ADS)

    Mason, David; Trigg, Mark; Garcia-Pintado, Javier; Cloke, Hannah; Neal, Jeffrey; Bates, Paul

    2015-04-01

    reduced errors on the refined waterline heights. The method was tested on a section of the TanDEM-X Intermediate DEM (IDEM) covering an 11km reach of the Warwickshire Avon, England. Flood extents from four COSMO-SKyMed images were available at various stages of a flood in November 2012. Waterlines were detected automatically using the method described in [1]. The 12.5m resolution IDEM was re-sampled to the 2.5m resolution of the CSK images using nearest neighbour interpolation. Improvements to the IDEM were attempted only in regions of low slope and low vegetation, so that the DEM could be regarded as the DTM. The height of a pixel on a waterline was replaced by the average of the waterline pixel heights in an 11 x 11 IDEM pixel window centred on the current CSK pixel (but selecting only one waterline height per IDEM pixel to reduce correlations). Original and refined IDEM heights were compared to corresponding airborne LiDAR heights. Along the waterlines, it was found that the original IDEM heights had a standard deviation of 1.1m and a bias of 0.2m, while the refined heights had a standard deviation of only 0.6m and a similar bias. Between two adjacent waterlines, on average approximately 25% of IDEM heights were above the higher waterline, and 20% below the lower waterline. When compared to LiDAR, the original higher heights had a mean difference from the LiDAR height of 2.4m with standard deviation 3.0m, while after correction the mean difference was 0.5m with standard deviation 1.0m. The corrected heights below the lower waterline were similarly improved. The height errors of a further 40% of IDEM heights between the higher and lower waterlines were also reduced, because of the reduced errors on the refined waterline heights. 1. Mason DC, Davenport IJ, Neal JC, Schumann GJ-P and Bates PD (2012). Near real-time flood detection in urban and rural areas using high resolution Synthetic Aperture Radar images. IEEE. Trans. Geoscience Rem. Sens., 50(8), 3041-3052.

  20. SEASAT views oceans and sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1982-01-01

    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.

  1. Analysis of synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Average radar response for L-band like polarized system appeared to be related to the watershed runoff coefficients when the viewing angle was approximately 42 deg off nadir. Four requirements for radar systems used to verify applications of active microwave for water resources were identified: (1) first generation digital data will be required; (2) radar should be calibrated both internally and externally; (3) new systems should avoid radom use; and (4) images should be geometrically rectified prior to delivery to the user.

  2. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    SciTech Connect

    Musgrove, Cameron

    2014-05-01

    For synthetic aperture radar image products interference can degrade the quality of the images while techniques to mitigate the interference also reduce the image quality. Usually the radar system designer will try to balance the amount of mitigation for the amount of interference to optimize the image quality. This may work well for many situations, but coherent data products derived from the image products are more sensitive than the human eye to distortions caused by interference and mitigation of interference. This dissertation examines the e ect that interference and mitigation of interference has upon coherent data products. An improvement to the standard notch mitigation is introduced, called the equalization notch. Other methods are suggested to mitigation interference while improving the quality of coherent data products over existing methods.

  3. Inverse synthetic aperture radar imaging of targets with complex motions based on modified chirp rate-quadratic chirp rate distribution for cubic phase signal

    NASA Astrophysics Data System (ADS)

    Yanyan, Li; Tao, Su; Jibin, Zheng

    2015-01-01

    For targets with complex motions, the time-varying Doppler frequency deteriorates inverse synthetic aperture radar (ISAR) images. After range alignment and phase adjustment, azimuth echoes in a range cell can be modeled as multicomponent cubic phase signals (CPSs). The chirp rate and the quadratic chirp rate of the CPS are identified as the causes of the time-varying Doppler frequency; thus, it is necessary to estimate these two parameters correctly to obtain a well-focused ISAR image. The parameter-estimation algorithm based on the modified chirp rate-quadratic chirp rate distribution (M-CRQCRD) is proposed for the CPS and applied to the ISAR imaging of targets with complex motions. The computational cost of M-CRQCRD is low, because it can be implemented by the fast Fourier transform (FFT) and the nonuniform FFT easily. Compared to two representative parameter-estimation algorithms, the M-CRQCRD can acquire a higher antinoise performance due to the introduction of an optimal lag-time. Through simulations and analyses for the synthetic radar data, the effectiveness of the M-CRQCRD and the imaging algorithm based on the M-CRQCRD are verified.

  4. Motion measurement for synthetic aperture radar

    SciTech Connect

    Doerry, Armin W.

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  5. Radar Imaging and Target Identification

    DTIC Science & Technology

    2009-02-09

    Methods in Wave Propagation, Vaxjo, Swe- den. • February 19, 2008, "Radar Imaging", math colloquium, Brigham- Young University. • January 31, 2008...manuscript, namely "Radar detection using sparsely distributed 19 apertures in urban environments", Ling Wang, II- Young Son, Trond Varslot, C. Evren...Coinmun. COM- 20, pp. 774-780, 1972. [24] M. Tomlinson, "New automatic equalizer employing modulo arithmetic," Electron. Lett. 7, pp. 138-139, 1971

  6. Wave-Coherence Measurements Using Synthetic-Aperture Radar

    DTIC Science & Technology

    2000-09-30

    3473-3482, 1997. PUBLICATIONS Walker, D.T., Lyzenga, D.R. & Renouf , M.A. Characterizing wave coherence with satellite-based synthetic aperture radar...Res. (2000). Walker, D.T., Lyzenga, D.R. & Renouf , M.A. Characterizing wave coherence with satellite-based synthetic aperture radar. Proceedings of

  7. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    SciTech Connect

    1993-04-01

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  8. Synthetic-aperture radar autofocus by maximizing sharpness.

    PubMed

    Fienup, J R

    2000-02-15

    To focus a synthetic-aperture radar image that is suffering from phase errors, a phase-error estimate is found that, when it is applied, maximizes the sharpness of the image. Closed-form expressions are derived for the gradients of a sharpness metric with respect to phase-error parameters, including both a point-by-point (nonparametric) phase function and coefficients of a polynomial expansion. Use of these expressions allows for a highly efficient gradient-search algorithm for high-order phase errors. The effectiveness of the algorithm is demonstrated with an example.

  9. Interpolated spatially variant apodization in synthetic aperture radar imagery.

    PubMed

    Yocky, D A; Jakowatz, C V; Eichel, P H

    2000-05-10

    The original formulation of spatially variant apodization for complex synthetic aperture radar imagery concentrated on integer-oversampled data. Noninteger-oversampled data presented previously [IEEE Trans. Aerosp. Electron. Syst. 31, 267 (1995)] suggested use of different weightings in the algorithm. An alternative noninteger-oversampled approach that employs the same apodization concept but uses local spatial interpolation is presented. With this approach the combined image formation, apodization, and detection of 1.3x-versus-2.0x oversampled data can be performed in half the time without loss of image quality.

  10. Interferometric synthetic aperture radar studies of Alaska volcanoes

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C.; Power, J.; Dzurisin, D.; Thatcher, W.; Masterlark, Timothy

    2002-01-01

    Interferometric synthetic aperture radar (InSAR) imaging is a recently developed geodetic technique capable of measuring ground-surface deformation with centimeter to subcentimeter vertical precision and spatial resolution of tens-of-meter over a relatively large region (~104 km2). The spatial distribution of surface deformation data, derived from InSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic and tectonic processes associated with volcanoes. This paper summarizes our recent InSAR studies of several Alaska volcanoes, which include Okmok, Akutan, Kiska, Augustine, Westdahl, and Peulik volcanoes.

  11. Synthetic aperture integration (SAI) algorithm for SAR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  12. Soil-penetrating synthetic aperture radar

    SciTech Connect

    Boverie, B.; Brock, B.C.; Doerry, A.W.

    1994-12-01

    This report summarizes the results for the first year of a two year Laboratory Directed Research and Development (LDRD) effort. This effort included a system study, preliminary data acquisition, and preliminary algorithm development. The system study determined the optimum frequency and bandwidth, surveyed soil parameters and targets, and defined radar cross section in lossy media. The data acquisition imaged buried objects with a rail-SAR. Algorithm development included a radar echo model, three-dimensional processing, sidelobe optimization, phase history data interpolation, and clutter estimation/cancellation.

  13. Tomographic Processing of Synthetic Aperture Radar Signals for Enhanced Resolution

    DTIC Science & Technology

    1989-11-01

    digital signal processing view of strip-mapping synthetic aperture radar," M.S. thesis , University of Illinois, Urbana, IL,1988." [571 David C. Munson...TOMOGRAPHIC PROCESSING OF 1 SYNTHETIC APERTURE I RADAR SIGNALS FOR ENHANCED RESOLUTION,I * Jerald Lee Bauck DTIC ELECTE JAN2419901D I I UNIVERSITY OF ILLINOIS...NC 27709-2211 ELEMENT NO. NO. NO CCESSION NO. 11i. TITLE (Include Security Classification) TOMOGRAPHIC PROCESSING OF SYNTHETIC APERTURE RADlAR SIGNALS

  14. Doppler-Only Synthetic Aperture Radar

    DTIC Science & Technology

    2006-12-01

    means finer resolution in this dimension. The length of the radar antenna determines the resolution in the azimuth (along-track) direction of the image...resolution cell can be obtained. SAR may also be used in guidance applications by pointing or “squinting” the antenna beam in the direction of motion of...thesis advisor, Professor Brett Borden, many thanks for the guidance, patience and direction throughout this journey. There were many simple and

  15. Radar Image, Hokkaido, Japan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers

  16. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  17. Synthetic aperture radar signal processing: Trends and technologies

    NASA Technical Reports Server (NTRS)

    Curlander, John C.

    1993-01-01

    An overview of synthetic aperture radar (SAR) technology is presented in vugraph form. The following topics are covered: an SAR ground data system; SAR signal processing algorithms; SAR correlator architectures; and current and future trends.

  18. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  19. Applications of Synthetic Aperture Radar (SAR) to UXO Delineation

    DTIC Science & Technology

    2004-05-01

    Synthetic Aperture Radar ( SAR ) to UXO Delineation May 2004 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Applications of Synthetic Aperture Radar ( SAR ) to UXO Delineation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 39 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified

  20. Interferometric synthetic aperture radar: Building tomorrow's tools today

    USGS Publications Warehouse

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  1. New inverse synthetic aperture radar algorithm for translational motion compensation

    NASA Astrophysics Data System (ADS)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  2. Demonstration of synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Buell, W.; Marechal, N.; Buck, J.; Dickinson, R.; Kozlowski, D.; Wright, T.; Beck, S.

    2005-05-01

    The spatial resolution of a conventional imaging LADAR system is constrained by the diffraction limit of the telescope aperture. The purpose of this work is to investigate Synthetic Aperture Imaging LADAR (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long range, two-dimensional imaging with modest aperture diameters. This paper details our laboratory-scale SAIL testbed, digital signal processing techniques, and image results. A number of fine-resolution, well-focused SAIL images are shown including both retro-reflecting and diffuse scattering targets. A general digital signal processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data-driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system. These techniques perform well on waveform errors, but not on external phase errors such as turbulence or vibration. As a first step towards mitigating phase errors of this type, we have developed a balanced, quadrature phase, laser vibrometer to work in conjunction with our SAIL system to measure and compensate for relative line of sight motion between the target and transceiver. We describe this system and present a comparison of the vibrometer-measured phase error with the phase error inferred from the SAIL data.

  3. Digital Beamforming Synthetic Aperture Radar (DBSAR) Polarimetric Upgrade

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Perrine, Martin; McLinden, Matthew; Valett, Susan

    2011-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is a state-of-the-art radar system developed at NASA/Goddard Space Flight Center for the development and implementation of digital beamforming radar techniques. DBSAR was recently upgraded to polarimetric operation in order to enhance its capability as a science instrument. Two polarimetric approaches were carried out which will be demonstrated in upcoming flight campaigns.

  4. Advanced Research into Moving Target Imaging Using Multistatic Radar

    DTIC Science & Technology

    2009-12-01

    From [2])...........................................................................................................5 Figure 6. SAR and ISAR schemes...SAR and ISAR schemes for imaging targets (From [2]) Synthetic aperture imaging can be accomplished using a stationary antenna and rotating target or a...with a series of pulses from the moving antenna (Figure 6). Inverse synthetic aperture radar ( ISAR ) assumes a stationary radar radiating a moving

  5. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  6. SEASAT synthetic-aperture radar data user's manual

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Huneycutt, B.; Holt, B. M.; Held, D. N.

    1983-01-01

    The SEASAT Synthetic-Aperture Radar (SAR) system, the data processors, the extent of the image data set, and the means by which a user obtains this data are described and the data quality is evaluated. The user is alerted to some potential problems with the existing volume of SEASAT SAR image data, and allows him to modify his use of that data accordingly. Secondly, the manual focuses on the ultimate focuses on the ultimate capabilities of the raw data set and evaluates the potential of this data for processing into accurately located, amplitude-calibrated imagery of high resolution. This allows the user to decide whether his needs require special-purpose data processing of the SAR raw data.

  7. Analysis of the fractal dimension of volcano geomorphology through Synthetic Aperture Radar (SAR) amplitude images acquired in C and X band.

    NASA Astrophysics Data System (ADS)

    Pepe, S.; Di Martino, G.; Iodice, A.; Manzo, M.; Pepe, A.; Riccio, D.; Ruello, G.; Sansosti, E.; Tizzani, P.; Zinno, I.

    2012-04-01

    In the last two decades several aspects relevant to volcanic activity have been analyzed in terms of fractal parameters that effectively describe natural objects geometry. More specifically, these researches have been aimed at the identification of (1) the power laws that governed the magma fragmentation processes, (2) the energy of explosive eruptions, and (3) the distribution of the associated earthquakes. In this paper, the study of volcano morphology via satellite images is dealt with; in particular, we use the complete forward model developed by some of the authors (Di Martino et al., 2012) that links the stochastic characterization of amplitude Synthetic Aperture Radar (SAR) images to the fractal dimension of the imaged surfaces, modelled via fractional Brownian motion (fBm) processes. Based on the inversion of such a model, a SAR image post-processing has been implemented (Di Martino et al., 2010), that allows retrieving the fractal dimension of the observed surfaces, dictating the distribution of the roughness over different spatial scales. The fractal dimension of volcanic structures has been related to the specific nature of materials and to the effects of active geodynamic processes. Hence, the possibility to estimate the fractal dimension from a single amplitude-only SAR image is of fundamental importance for the characterization of volcano structures and, moreover, can be very helpful for monitoring and crisis management activities in case of eruptions and other similar natural hazards. The implemented SAR image processing performs the extraction of the point-by-point fractal dimension of the scene observed by the sensor, providing - as an output product - the map of the fractal dimension of the area of interest. In this work, such an analysis is performed on Cosmo-SkyMed, ERS-1/2 and ENVISAT images relevant to active stratovolcanoes in different geodynamic contexts, such as Mt. Somma-Vesuvio, Mt. Etna, Vulcano and Stromboli in Southern Italy, Shinmoe

  8. Fourier-domain multichannel autofocus for synthetic aperture radar.

    PubMed

    Liu, Kuang-Hung; Munson, David C

    2011-12-01

    Synthetic aperture radar (SAR) imaging suffers from image focus degradation in the presence of phase errors in the received signal due to unknown platform motion or signal propagation delays. We present a new autofocus algorithm, termed Fourier-domain multichannel autofocus (FMCA), that is derived under a linear algebraic framework, allowing the SAR image to be focused in a noniterative fashion. Motivated by the mutichannel autofocus (MCA) approach, the proposed autofocus algorithm invokes the assumption of a low-return region, which generally is provided within the antenna sidelobes. Unlike MCA, FMCA works with the collected polar Fourier data directly and is capable of accommodating wide-angle monostatic SAR and bistatic SAR scenarios. Most previous SAR autofocus algorithms rely on the prior assumption that radar's range of look angles is small so that the phase errors can be modeled as varying along only one dimension in the collected Fourier data. And, in some cases, implicit assumptions are made regarding the SAR scene. Performance of such autofocus algorithms degrades if the assumptions are not satisfied. The proposed algorithm has the advantage that it does not require prior assumptions about the range of look angles, nor characteristics of the scene.

  9. Synthetic aperture radar signal processing on the MPP

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Seiler, E. J.

    1987-01-01

    Satellite-borne Synthetic Aperture Radars (SAR) sense areas of several thousand square kilometers in seconds and transmit phase history signal data several tens of megabits per second. The Shuttle Imaging Radar-B (SIR-B) has a variable swath of 20 to 50 km and acquired data over 100 kms along track in about 13 seconds. With the simplification of separability of the reference function, the processing still requires considerable resources; high speed I/O, large memory and fast computation. Processing systems with regular hardware take hours to process one Seasat image and about one hour for a SIR-B image. Bringing this processing time closer to acquisition times requires an end-to-end system solution. For the purpose of demonstration, software was implemented on the present Massively Parallel Processor (MPP) configuration for processing Seasat and SIR-B data. The software takes advantage of the high processing speed offered by the MPP, the large Staging Buffer, and the high speed I/O between the MPP array unit and the Staging Buffer. It was found that with unoptimized Parallel Pascal code, the processing time on the MPP for a 4096 x 4096 sample subset of signal data ranges between 18 and 30.2 seconds depending on options.

  10. The DESDynI Synthetic Aperture Radar Array-Fed Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Ghaemi, Hirad; Giersch, Louis; Harcke, Leif; Hodges, Richard; Hoffman, James; Johnson, William; Jordan, Rolando; Khayatian, Behrouz; Rosen, Paul; Sadowy, Gregory; Shaffer, Scott; Shen, Yuhsyen; Veilleux, Louise; Wu, Patrick

    2010-01-01

    DESDynI is a mission being developed by NASA with radar and lidar instruments for Earth-orbit remote sensing. This paper focuses on the design of a largeaperture antenna for the radar instrument. The antenna comprises a deployable reflector antenna and an active switched array of patch elements fed by transmit/ receive modules. The antenna and radar architecture facilitates a new mode of synthetic aperture radar imaging called 'SweepSAR'. A system-level description of the antenna is provided, along with predictions of antenna performance.

  11. Use of Synthetic Aperture Radar in Cold Climate Flood Response

    NASA Astrophysics Data System (ADS)

    Yarbrough, L. D.

    2009-12-01

    The purpose of this study was to investigate the usefulness of Synthetic Aperture Radar (SAR) satellite images during a cold climate disaster response event. There were 15 European Space Agency (ESA) Advanced Synthetic Aperture Radar ASAR scenes, five Japan Aerospace Exploration Agency (JAXA) Phased Array type L-band Synthetic Aperture Radar (PALSAR) scenes, one RADARSAT2 scene, and numerous optical sensor data. These data were primarily used to indentify floodwater inundation polygons and flow vectors. However, in cold climate flooding, there are complicating factors such as frazil ice, ice jams, and snow-covered, frozen flood waters that are not present during warmer flooding events. The imagery was obtained through the International Charter "Space and Major Disasters.” The Charter aims at providing a unified system of space data acquisition and delivery to those affected by natural or man-made disasters through Authorized Users. Each member agency has committed resources to support the provisions of the Charter, and thus is helping to mitigate the effects of disasters on human life and property. On 25 March 2009, the Charter was activated in response to the flooding along the Red River of the North in the states of North Dakota and Minnesota of the United States. The delivery time of a single SAR scene from a Charter participant was less than 12 hours from the time of acquisition. This expedited service allowed additional time for creating image-based derivations, field checking and delivery to a decision maker or emergency responder. SAR-derived data sets include identification of river ice and saturated ground conditions. This data could be provided to experts in river ice engineering for use in the development of plans to reduce ice jamming, its effect on water levels and additional stresses on river infrastructure. During disaster response applications, SAR data was found to very useful in indentifying open water and the front of ice jams. Using a river

  12. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR).

    PubMed

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-02-21

    The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific locations is correlated to the mean soil moisture contentover an area. Since the measurements taken by Synthetic Aperture Radar (SAR)instruments are very sensitive to soil moisture it is hypothesized that the temporally stablesoil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT AdvancedSynthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located inthe Duero basin, Spain. It is found that a time-invariant linear relationship is well suited forrelating local scale (pixel) and regional scale (50 km) backscatter. The observed linearmodel coefficients can be estimated by considering the scattering properties of the terrainand vegetation and the soil moisture scaling properties. For both linear model coefficients,the relative error between observed and modelled values is less than 5 % and thecoefficient of determination (R²) is 86 %. The results are of relevance for interpreting anddownscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT)and passive (SMOS, AMSR-E) instruments.

  13. Demonstration of Synthetic Aperture Radar and Hyperspectral Imaging for Wide Area Assessment at Pueblo Precision Bombing Range #2, Colorado

    DTIC Science & Technology

    2008-10-01

    files to georeferenced image files, assessing spatial accuracy relative to ground reference fiducials, performing any required coregistration , and...following are observations from this demonstration and recommendations for continued work with these data: • Coregistration . The coregistration ...was based on multiple link-points associated with each dataset. While adequate for this analysis, the spatial coregistration process was labor

  14. Antenna aperture and imaging resolution of synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Liu, Liren

    2009-08-01

    In this paper, the azimuth imaging resolutions of synthetic aperture imaging ladar (SAIL) using the antenna telescopes with a circular aperture for reception and a circular plan or a Gaussian beam for transmitting and with a rectangular aperture for reception and a rectangular plane or an elliptic Gaussian beam for transmitting are investigated. The analytic expressions of impulse response for imaging are achieved. The ideal azimuth spot of resolution and its degradation due to the target deviation from the footprint center, the mismatch from the quadratic phase matched filtering, the finite sampling rate and width are discussed. And the range resolution is also studied. Mathematical criteria are all given. As a conclusion, the telescope of rectangular aperture can provide a rectangular footprint more suitable for the SAIL scanning format, and an optimal design of aperture is thus possible for both a high resolution and a wide scan strip. Moreover, an explanation to the resulted azimuth resolution from our laboratory-scaled SAIL is given to verify the developed theory.

  15. Synthetic aperture radar: not just a sensor of last resort

    NASA Astrophysics Data System (ADS)

    Wells, Lars M.; Doerry, Armin W.

    2003-08-01

    Modern high-performance Synthetic Aperture Radar (SAR) systems have evolved into highly versatile, robust, and reliable tactical sensors, offering images and information not available from other sensor systems. For example, real-time images are routinely formed by the Sandia-designed General Atomics (AN/APY-8) Lynx SAR yielding 4-inch resolution at 25 km range (representing better than arc-second resolutions) in clouds, smoke, and rain. Sandia's Real-Time Visualization (RTV) program operates an Interferometric SAR (IFSAR) system that forms three-dimensional (3D) topographic maps in near real-time with National Imagery and Mapping Agency (NIMA) Digital Terrain Elevation Data (DTED) level 4 performance (3 meter post spacing with 0.8-meter height accuracy) or better. When exported to 3-D rendering software, this data allows remarkable interactive fly-through experiences. Coherent Change Detection (CCD) allows detecting tire tracks on dirt roads, foot-prints, and other minor, otherwise indiscernible ground disturbances long after their originators have left the scene. Ground Moving Target Indicator (GMTI) radar modes allow detecting and tracking moving vehicles. A Sandia program known as "MiniSAR" is developing technologies that are expected to culminate in a fully functioning, high-performance, real-time SAR that weighs less than 20 lbs. The purpose of this paper is to provide an overview of recent technology developments, as well as current on-going research and development efforts at Sandia National Laboratories.

  16. New formulation for interferometric synthetic aperture radar for terrain mapping

    SciTech Connect

    Jakowatz, C.V. Jr.; Wahl, D.E.; Eichel, P.H.; Thompson, P.A.

    1994-04-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can at first glance appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on three-dimensional Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to three-dimensional computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes three-dimensional Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  17. Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area

    NASA Astrophysics Data System (ADS)

    Hong, Gang; Zhang, Aining; Zhou, Fuqun; Brisco, Brian

    2014-05-01

    Alfalfa presents a huge potential biofuel source in the Prairie Provinces of Canada. However, it remains a challenge to find an ideal single satellite sensor to monitor the regional spatial distribution of alfalfa on an annual basis. The primary interest of this study is to identify alfalfa spatial distribution through effectively differentiating alfalfa from grasslands, given their spectral similarity and same growth calendars. MODIS and RADARSAT-2 ScanSAR narrow mode were selected for regional-level grassland and alfalfa differentiation in the Prairie Provinces, due to the high frequency revisit of MODIS, the weather independence of ScanSAR as well as the large area coverage and the complementary characteristics SAR and optical images. Combining MODIS and ScanSAR in differentiating alfalfa and grassland is very challenging, since there is a large spatial resolution difference between MODIS (250 m) and ScanSAR narrow (50 m). This study investigated an innovative image fusion technique for combining MODIS and ScanSAR and obtaining a synthetic image which has the high spatial details derived from ScanSAR and the colour information from MODIS. The field trip was arranged to collect ground truth to label and validate the classification results. The fusion classification result shows significant accuracy improvement when compared with either ScanSAR or MODIS alone or with other commonly-used data combination methods, such as multiple files composites. This study has shown that the image fusion technique used in this study can combine the structural information from high resolution ScanSAR and colour information from MODIS to significantly improve the classification accuracy between alfalfa and grassland.

  18. Space Radar Image of Baikal Lake, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band black-and-white image of the forests east of the Baikal Forest in the Jablonowy Mountains of Russia. The image is centered at 52.5 degrees north latitude and 116 degrees east longitude near the mining town of Bukatschatscha. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on October 4, 1994, during the second flight of the spaceborne radar. This area is part of an international research project known as the Taiga Aerospace Investigation using Geographic Information System Applications.

  19. Interferometric synthetic aperture radar (InSAR) and its applications to study volcanoes, part 2: InSAR imaging of Alaskan Volcanoes

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Wicks, Charles W.; Power, John A.

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) is a remote sensing technique which can measure ground surface deformation with sub-centimeter precision and spatial resolution in tens-of-meters over a large region. This paper summarizes our recent InSAR studies of Alaskan volcanoes, associated with both eruptive and non-eruptive activity. It shows that InSAR can improve our understanding of how the Alaskan volcanoes work and enhance our capability to predict future eruptions and the associated hazards. 

  20. Terahertz interferometric synthetic aperture tomography for confocal imaging systems.

    PubMed

    Heimbeck, M S; Marks, D L; Brady, D; Everitt, H O

    2012-04-15

    Terahertz (THz) interferometric synthetic aperture tomography (TISAT) for confocal imaging within extended objects is demonstrated by combining attributes of synthetic aperture radar and optical coherence tomography. Algorithms recently devised for interferometric synthetic aperture microscopy are adapted to account for the diffraction-and defocusing-induced spatially varying THz beam width characteristic of narrow depth of focus, high-resolution confocal imaging. A frequency-swept two-dimensional TISAT confocal imaging instrument rapidly achieves in-focus, diffraction-limited resolution over a depth 12 times larger than the instrument's depth of focus in a manner that may be easily extended to three dimensions and greater depths.

  1. Synthetic aperture radar autofocus based on a bilinear model.

    PubMed

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2012-05-01

    Autofocus algorithms are used to restore images in nonideal synthetic aperture radar imaging systems. In this paper, we propose a bilinear parametric model for the unknown image and the nuisance phase parameters and derive an efficient maximum-likelihood autofocus (MLA) algorithm. In the special case of a simple image model and a narrow range of look angles, MLA coincides with the successful multichannel autofocus (MCA). MLA can be interpreted as a generalization of MCA to a larger class of models with a larger range of look angles. We analyze its advantages over previous extensions of MCA in terms of identifiability conditions and noise sensitivity. As a byproduct, we also propose numerical approximations to the difficult constant modulus quadratic program that lies at the core of these algorithms. We demonstrate the superior performance of our proposed methods using computer simulations in both the correct and mismatched system models. MLA performs better than other methods, both in terms of the mean squared error and visual quality of the restored image.

  2. Sea surface wind streaks in spaceborne synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Li, Xiao-Ming; Sha, Jin

    2016-09-01

    Wind streaks are often observed in Synthetic aperture radar (SAR) images. They are used to determine the sea surface wind direction for sea surface wind field retrievals. It is generally understood that visible wind streaks are caused by roll vortices in the marine atmospheric boundary layer. In this study, 227 X-band spaceborne SAR images of TerraSAR-X and TanDEM-X acquired from the three FiNO platforms in the North Sea and Baltic Sea were thoroughly analyzed for a comprehensive understanding of the manifestation of wind streaks in SAR images. Approximately 48.0% of the 227 SAR images displayed wind streaks, among which 67.3%, 20.0%, and 12.7% occurred under unstable, neutral, and stable atmospheric conditions, respectively. The proportions indicate that wind streaks are more likely to be generated from thermal convection. Further investigations suggest that the inflection point and the wind shear may be essential for the appearance of wind streaks in SAR images under stable atmospheric conditions.

  3. Detection of built-up area in optical and synthetic aperture radar images using conditional random fields

    NASA Astrophysics Data System (ADS)

    Kenduiywo, Benson Kipkemboi; Tolpekin, Valentyn A.; Stein, Alfred

    2014-01-01

    Classifying built-up areas from satellite images is a challenging task due to spatial and spectral heterogeneity of the classes. In this study, a contextual classification method based on conditional random fields (CRFs) has been used. Spatial and spectral information from blocks of pixels were employed to identify built-up areas. The CRF association potential was based on support vector machines (SVMs), whereas the CRF interaction potential included a data-dependent term using the inverse of the transformed Euclidean distance. In this way, accuracy was stable for a varying smoothness parameter, while preserving class boundaries and aggregating similar labels, and a discontinuity adaptive model was obtained and conditioned on data evidence. The classification was applied on satellite towns around the city of Nairobi, Kenya. The accuracy exceeded that of Markov random fields, SVM, and maximum likelihood classification by 1.13%, 2.22%, and 8.23%, respectively. The CRF method had the lowest fraction of false positives. The study concluded that CRFs can be used to better detect built-up areas. In this way, it provides accurate timely spatial information to urban planners and other professionals.

  4. Spaceborne Imaging Radar-C instrument

    NASA Technical Reports Server (NTRS)

    Huneycutt, Bryan L.

    1993-01-01

    The Spaceborne Imaging Radar-C is the next radar in the series of spaceborne radar experiments, which began with Seasat and continued with SIR-A and SIR-B. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar that will be flown during at least two different seasons. The instrument operates in the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument uses engineering techniques such as beam nulling for echo tracking, pulse repetition frequency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating-point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  5. The potential of flood forecasting using a variable-resolution global Digital Terrain Model and flood extents from Synthetic Aperture Radar images.

    NASA Astrophysics Data System (ADS)

    Mason, David; Garcia-Pintado, Javier; Cloke, Hannah; Dance, Sarah

    2015-08-01

    A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.

  6. Radar Image of Galapagos Island

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image showing part of Isla Isabella in the western Galapagos Islands. It was taken by the L-band radar in HH polarization from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar on the 40th orbit of the space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees.

    The western Galapagos Islands, which lie about 1,200 kilometers (750 miles) west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii. Since the time of Charles Darwin's visit to the area in 1835, there have been over 60 recorded eruptions of these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. A small portion of Isla Fernandina is visible in the extreme upper left corner of the image.

    The Galapagos Islands are one of the SIR-C/X-SAR supersites and data of this area will be taken several times during the flight to allow scientists to conduct topographic change studies and to search for different lava flow types, ash deposits and fault lines.

    Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes

  7. Antenna dimensions of synthetic aperture radar systems on satellites

    NASA Technical Reports Server (NTRS)

    Richter, K. R.

    1973-01-01

    Design of a synthetic aperture radar (SAR) for a satellite must take into account the limitation in weight and dimensions of the antenna. The lower limits of the antenna area are derived from the conditions of unambiguity of the SAR system. This result is applied to estimate the antenna requirements for SARs on satellites in circular orbits of various altitudes around Earth and Venus.

  8. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    NASA Technical Reports Server (NTRS)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  9. Improved Dictionary Formation and Search for Synthetic Aperture Radar Canonical Shape Feature Extraction

    DTIC Science & Technology

    2014-03-27

    IMPROVED DICTIONARY FORMATION AND SEARCH FOR SYNTHETIC APERTURE RADAR CANONICAL SHAPE FEATURE EXTRACTION THESIS Matthew P. Crosser, Captain, USAF... SYNTHETIC APERTURE RADAR CANONICAL SHAPE FEATURE EXTRACTION THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENG-14-M-21 IMPROVED DICTIONARY FORMATION AND SEARCH FOR SYNTHETIC APERTURE RADAR CANONICAL

  10. Lynx: A High-Resolution Synthetic Aperture Radar

    SciTech Connect

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  11. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  12. Apparent apertures from ground penetrating radar data and their relation to heterogeneous aperture fields

    NASA Astrophysics Data System (ADS)

    Shakas, A.; Linde, N.

    2017-03-01

    Considering fractures with heterogeneous aperture distributions, we explore the reliability of constant-aperture estimates derived from ground penetrating radar (GPR) reflection data. We generate geostatistical fracture aperture realizations that are characterized by the same mean-aperture and variance, but different Hurst exponents and cutoff lengths. For each of the 16 classes of heterogeneity considered, we generate 1000 fracture realizations from which we compute GPR reflection data using our recent effective-dipole forward model. We then use each (noise-contaminated) dataset individually to invert for a single 'apparent' aperture, i.e., we assume that the fracture aperture is homogeneous. We find that the inferred 'apparent' apertures are only reliable when fracture heterogeneity is non-fractal (the Hurst exponent is close to 1) and the scale of the dominant aperture heterogeneities is larger than the first Fresnel zone. These results are a direct consequence of the non-linear character of the thin-bed reflection coefficients. As fracture heterogeneity is ubiquitous and often fractal, our results suggest that robust field-based inference of fracture aperture can only be achieved by accounting for the non-linear response of fracture heterogeneity on GPR data.

  13. Natural and Unnatural Oil Layers on the Surface of the Gulf of Mexico Detected and Quantified in Synthetic Aperture RADAR Images with Texture Classifying Neural Network Algorithms

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Garcia-Pineda, O. G.; Morey, S. L.; Huffer, F.

    2011-12-01

    Effervescent hydrocarbons rise naturally from hydrocarbon seeps in the Gulf of Mexico and reach the ocean surface. This oil forms thin (~0.1 μm) layers that enhance specular reflectivity and have been widely used to quantify the abundance and distribution of natural seeps using synthetic aperture radar (SAR). An analogous process occurred at a vastly greater scale for oil and gas discharged from BP's Macondo well blowout. SAR data allow direct comparison of the areas of the ocean surface covered by oil from natural sources and the discharge. We used a texture classifying neural network algorithm to quantify the areas of naturally occurring oil-covered water in 176 SAR image collections from the Gulf of Mexico obtained between May 1997 and November 2007, prior to the blowout. Separately we also analyzed 36 SAR images collections obtained between 26 April and 30 July, 2010 while the discharged oil was visible in the Gulf of Mexico. For the naturally occurring oil, we removed pollution events and transient oceanographic effects by including only the reflectance anomalies that that recurred in the same locality over multiple images. We measured the area of oil layers in a grid of 10x10 km cells covering the entire Gulf of Mexico. Floating oil layers were observed in only a fraction of the total Gulf area amounting to 1.22x10^5 km^2. In a bootstrap sample of 2000 replications, the combined average area of these layers was 7.80x10^2 km^2 (sd 86.03). For a regional comparison, we divided the Gulf of Mexico into four quadrates along 90° W longitude, and 25° N latitude. The NE quadrate, where the BP discharge occurred, received on average 7.0% of the total natural seepage in the Gulf of Mexico (5.24 x10^2 km^2, sd 21.99); the NW quadrate received on average 68.0% of this total (5.30 x10^2 km^2, sd 69.67). The BP blowout occurred in the NE quadrate of the Gulf of Mexico; discharged oil that reached the surface drifted over a large area north of 25° N. Performing a

  14. Synthetic aperture radar range - Azimuth ambiguity design and constraints

    NASA Technical Reports Server (NTRS)

    Mehlis, J. G.

    1980-01-01

    Problems concerning the design of a system for mapping a planetary surface with a synthetic aperture radar (SAR) are considered. Given an ambiguity level, resolution, and swath width, the problems are related to the determination of optimum antenna apertures and the most suitable pulse repetition frequency (PRF). From the set of normalized azimuth ambiguity ratio curves, the designer can arrive at the azimuth antenna length, and from the sets of normalized range ambiguity ratio curves, he can arrive at the range aperture length or pulse repetition frequency. A procedure based on this design method is shown in an example. The normalized curves provide results for a SAR using a uniformly or cosine weighted rectangular antenna aperture.

  15. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    PubMed

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  16. Quantitative statistical assessment of conditional models for synthetic aperture radar.

    PubMed

    DeVore, Michael D; O'Sullivan, Joseph A

    2004-02-01

    Many applications of object recognition in the presence of pose uncertainty rely on statistical models-conditioned on pose-for observations. The image statistics of three-dimensional (3-D) objects are often assumed to belong to a family of distributions with unknown model parameters that vary with one or more continuous-valued pose parameters. Many methods for statistical model assessment, for example the tests of Kolmogorov-Smirnov and K. Pearson, require that all model parameters be fully specified or that sample sizes be large. Assessing pose-dependent models from a finite number of observations over a variety of poses can violate these requirements. However, a large number of small samples, corresponding to unique combinations of object, pose, and pixel location, are often available. We develop methods for model testing which assume a large number of small samples and apply them to the comparison of three models for synthetic aperture radar images of 3-D objects with varying pose. Each model is directly related to the Gaussian distribution and is assessed both in terms of goodness-of-fit and underlying model assumptions, such as independence, known mean, and homoscedasticity. Test results are presented in terms of the functional relationship between a given significance level and the percentage of samples that wold fail a test at that level.

  17. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    PubMed Central

    Nitti, Davide O.; Bovenga, Fabio; Chiaradia, Maria T.; Greco, Mario; Pinelli, Gianpaolo

    2015-01-01

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimate UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system. PMID:26225977

  18. A Perspective of Synthetic Aperture Radar for Remote Sensing.

    DTIC Science & Technology

    1978-05-01

    capability was first demonstrated by the Soviets using conventional imaging radar from a i r c ra f t . b) Geological and mineral exploration This is the prime...tool for petroleum exploration. Imaging radar has also been used for mapping and mineral exploration of inaccessible areas by several South American

  19. Spaceborne synthetic aperture radar pilot study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A pilot study of a spaceborne sidelooking radar is summarized. The results of the system trade studies are given along with the electrical parameters for the proposed subsystems. The mechanical aspects, packaging, thermal control and dynamics of the proposed design are presented. Details of the data processor are given. A system is described that allows the data from a pass over the U. S. to be in hard copy form within two hours. Also included are the proposed schedule, work breakdown structure, and cost estimate.

  20. Autonomous system for initializing synthetic aperture radar seeker acquisition

    SciTech Connect

    Hamilton, P.C.

    1993-08-03

    A method is described of guiding a missile having an active seeker including a synthetic aperture radar operating in a squint mode to a target aircraft having a search radar therein the maximum range of active seeker acquisition being within said missile's maneuver capability to intercept, and the maximum range of active seeker acquisition not exceeding the capability of the active seeker, said method comprising the steps of: launching said missile in response to detection of the search radar; implementing a passive seeker mode of operation to passively guide said missile towards said target aircraft in a manner to avoid detection of said missile by said target aircraft; transferring from said passive seeker mode to an active seeker mode in response to detected shutdown of said search radar; maneuvering said missile to execute a turn angle away from said target aircraft such that the search field of said synthetic aperture radar sweeps through an entire target uncertainty volume, said turn angle being within a first preselected limit and a second preselected limit such that said target aircraft does not cross over said missile's terminal flight path; and intercepting said target aircraft within a lethal range of said missile.

  1. a Robust Change Detector for Multilook Polarimetric Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    Ghanbari; Akbari; Abkar; Sahebi; Liu

    2014-10-01

    In this paper, we propose a robust unsupervised change detection algorithm for multilook polarimetric synthetic aperture radar (PolSAR) data. The Hotelling-Lawley trace (HLT) statistic is used as a test statistic to measure the similarity of two covariance matrices. The generalized Kittler and Illingworth (K&I) minimum-error thresholding algorithm is then applied on the test statistic image to accurately discriminates changed and unchanged areas. The algorithm, tested on real PolSAR images, provides satisfactory results.

  2. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays

    PubMed Central

    Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui

    2017-01-01

    Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996

  3. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  4. The Radar Image Generation (RIG) model

    NASA Technical Reports Server (NTRS)

    Stenger, Anthony J.

    1993-01-01

    RIG is a modeling system which creates synthetic aperture radar (SAR) and inverse SAR images from 3-D faceted data bases. RIG is based on a physical optics model and includes the effects of multiple reflections. Both conducting and dielectric surfaces can be modeled; each surface is labeled with a material code which is an index into a data base of electromagnetic properties. The inputs to the program include the radar processing parameters, the target orientation, the sensor velocity, and (for inverse SAR) the target angle rates. The current version of RIG can be run on any workstation, however, it is not a real-time model. We are considering several approaches to enable the program to generate realtime radar imagery. In addition to its image generation function, RIG can also generate radar cross-section (RCS) plots as well as range and doppler radar return profiles.

  5. Snow mapping in alpine regions with synthetic aperture radar

    SciTech Connect

    Shi, J.; Dozier, J. ); Rott, H. . Inst. for Meteorology and Geophysics)

    1994-01-01

    For climatological and hydrological investigations, the areas covered by snow and glacial ice are important parameters. Active microwave sensors can discriminate snow from other surfaces in all weather conditions, and their spatial resolution is compatible with the topographic variation in alpine regions. Using data acquired with the NASA AIRSAR in the Oetztal Alps in 1989 and 1991, the authors examine the usage of synthetic aperture radar (SAR) to map snow- and glacier-covered areas. By comparing polarimetric SAR data to images from the Landsat Thematic Mapper obtained under clear conditions one week after the SAR flight, they find that SAR data at 5.3 GHz (C-band) can discriminate between areas covered by snow from those that are ice-free. However, they are less suited to discrimination of glacier ice from snow and rock. The overall pixel-by-pixel accuracies--74% from VV polarization alone with topographic information, 76% from polarimetric SAR without any topographic information, and 79% from polarimetric SAR with topographic information--are high enough to justify the use of SAR as the data source in areas that are too cloud-covered to obtain data from the Thematic Mapper. This is especially true for snow discrimination, where accuracies exceed 80%, because mapping of a transient snow cover during a cloudy melt season is often difficult with an optical sensor. The AIRSAR survey was carried out in summer during a heavy rainstorm, when the snow surfaces were unusually rough.

  6. Mapping Boreal Wetlands Using Spaceborne Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Bohn, T.; Lettenmaier, D.

    2006-12-01

    Carbon and methane emissions from wetlands and lakes can have a large impact on global climate. These ecosystems are dominant features in the northern high latitudes hence the importance of assessing their spatial and temporal extent to improve upon global net carbon exchange estimates. Spaceborne synthetic aperture radar (SAR) is an effective tool for this purpose since large inaccessible areas can be monitored on a temporal basis regardless of atmospheric conditions or solar illumination and it is sensitive to vegetation and standing water. We employ ERS (C-band, 100 m, VV-polarization) and JERS (L-band, 100 m, HH-polarization) in this study to map wetlands within boreal sub-regions. Large scale L-band SAR mosaics assembled over boreal regions are used with supplementary multi-temporal data for the analysis. Path to path and year to year radiometric differences due predominantly to seasonal changes were a source of confusion. Decision tree classification tools are used to alleviate this problem. Digital elevation models (where available) and derived slope aspect are used to better distinguish drainage patterns. Texture images are used to help differentiate different wetland classes (e.g. fens, bogs, swamps, marshes, and open water). Examples of validated test regions are presented. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology and the University of Washington under contract with the National Aeronautics and Space Administration.

  7. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  8. Studies of multi-baseline spaceborne interferometric synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Li, F.; Goldstein, R.

    1987-01-01

    A set of Seasat SAR data that were obtained in nearly repeat ground track orbits is utilized to simulate the performance of spaceborne interferometric synthetic aperture radar (ISAR) systems. A qualitative assessment of the topography measurement capability is presented. A phase measurement error model is described and compared with the data obtained at various baseline separations and signal-to-noise ratios. Finally, the implications of these results on the future spaceborne ISAR design are discussed.

  9. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  10. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Werner, Marian U.

    1993-05-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  11. Sources of Artefacts in Synthetic Aperture Radar Interferometry Data Sets

    NASA Astrophysics Data System (ADS)

    Becek, K.; Borkowski, A.

    2012-07-01

    In recent years, much attention has been devoted to digital elevation models (DEMs) produced using Synthetic Aperture Radar Interferometry (InSAR). This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM) DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels) due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF) whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space-based survey. The

  12. Ice island detection and characterization with airborne synthetic aperture radar

    SciTech Connect

    Jeffries, M.O.; Sackinger, W.M. )

    1990-04-15

    A 1:300,000 scale airborne synthetic aperture radar (SAR) image of an area of the Arctic Ocean adjacent to the Queen Elizabeth Islands, Canadian High Arctic, is examined to determine the number and characteristics of ice islands in the image and to assess the capability of airborne and satellite SAR to detect ice islands. Twelve ice islands have been identified, and their dimensions range from as large as 5.7 km by 8.7 km to as small as 0.15 km by 0.25 km. A significant SAR characteristic of the shelf ice portions of ice islands is a return with a ribbed texture of alternating lighter and darker grey tones resulting from the indulating shelf ice surfaces of the ice islands. The appearance of the ribbed texture varies according to the ice islands' orientation relative to the illumination direction and consequently the incidence angle. Some ice islands also include extensive areas of textureless dark tone attached to the shelf ice. The weak returns correspond to (1) multiyear landfast sea ice that was attached to the front of the Ward Hunt Ice Shelf at the time of calving and which has remained attached since then and (2) multiyear pack ice that has become attached and consolidated since the calving, indicating that ice islands can increase their area and mass significantly as they drift. Ice islands are easily discernible in SAR images and for the future SAR represents a promising technique to obtain a census of ice islands in the Arctic Ocean. However, any SAR-based census probably will be conservative because ice islands smaller than 300-400 m across are likely to remain undetected, particularly in areas of heavy ice ridging which produces strong SAR clutter.

  13. The SIR-C/X-SAR synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Jordan, Rolando L.; Huneycutt, Bryan L.; Werner, Marian

    1991-01-01

    SIR-C/X-SAR, a three-frequency radar to be flown on the Space Shuttle in September 1993, is described. The SIR-C system is a two-frequency radar operating at 1250 MHz (L-band) and 5300 MHz (C-band), and is designed to get four-polarization radar imagery at multiple surface angles. The X-SAR system is an X-band imaging radar operating at 9600 MHz. The discussion covers the mission concept; system design; hardware; RF electronics; digital electronics; command, timing, and telemetry; and testing.

  14. Space radar image of Wadi Kufra, Libya

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The ability of a sophisticated radar instrument to image large regions of the world from space, using different frequencies that can penetrate dry sand cover, produced the discovery in this image: a previously unknown branch of an ancient river, buried under thousands of years of windblown sand in a region of the Sahara Desert in North Africa. This area is near the Kufra Oasis in southeast Libya, centered at 23.3 degrees north latitude, 22.9 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on its 60th orbit on October 4, 1994. This SIR-C image reveals a system of old, now inactive stream valleys, called 'paleodrainage systems,

  15. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  16. Along Track Interferometry Synthetic Aperture Radar (ATI-SAR) Techniques for Ground Moving Target Detection

    DTIC Science & Technology

    2006-01-01

    DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) Conventional along track interferometric synthetic aperature radar , ATI-SAR, approaches can detect...House, Inc., Norwood, MA, 1995. [14] R. Bamler and P. Hartl, " Synthetic aperture radar interferometry," Inverse Problems, vol. 14, R1-R54, 1998. [15... SYNTHETIC APERTURE RADAR (ATI-SAR) TECHNIQUES FOR GROUND MOVING TARGET DETECTION Stiefvater Consultants

  17. Ambiguities in spaceborne synthetic aperture radar systems

    NASA Technical Reports Server (NTRS)

    Li, F. K.; Johnson, W. T. K.

    1983-01-01

    An examination of aspects of spaceborne SAR time delay and Doppler ambiguities has led to the formulation of an accurate method for the evaluation of the ratio of ambiguity intensities to that of the signal, which has been applied to the nominal SAR system on Seasat. After discussing the variation of this ratio as a function of orbital latitude and attitude control error, it is shown that the detailed range migration-azimuth phase history of an ambiguity is different from that of a signal, so that the images of ambiguities are dispersed. Seasat SAR dispersed images are presented, and their dispersions are eliminated through an adjustment of the processing parameters. A method is also presented which uses a set of multiple pulse repetition sequences to determine the Doppler centroid frequency absolute values for SARs with high carrier frequencies and poor attitude measurements.

  18. An Investigation of Synthetic Aperture Radar Autofocus,

    DTIC Science & Technology

    1985-04-01

    Authors: I P Finley and J W Wood Date: April 1985 SUMMARY SAR imagery is generated by matched filtering the raw azimuth signal history, assuming...ning from the raw data the appropriate matched filter. In this memorankm the principles of SAR and the requirement for an auto- focus system are...discussed. Three autofocus methods are investigated: measure- ment of the power spectrum, contrast maximisation, and registration of multilook images. The

  19. NASA-ISRO synthetic aperture radar: science and applications

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Rosen, Paul; Misra, Tapan

    2016-05-01

    NASA-ISRO Synthetic Aperture Radar (NISAR), a novel SAR concept will be utilized to image wide swath at high resolution of stripmap SAR. It will have observations in L- and S-bands to understand highly spatial and temporally complex processes such as ecosystem disturbances, ice sheet changes, and natural hazards including earthquakes, tsunamis, volcanoes, and landslides. NISAR with several advanced features such as 12 days interferometric orbit, achievement of high resolution and wide swath images through SweepSAR technology and simultaneous data acquisition in dual frequency would support a host of applications. The primary objectives of NISAR are to monitor ecosystems including monitoring changes in ecosystem structure and biomass estimation, carbon flux monitoring; mangroves and wetlands characterization; alpine forest characterization and delineation of tree-line ecotone, land surface deformation including measurement of deformation due to co-seismic and inter-seismic activities; landslides; land subsidence and volcanic deformation, cryosphere studies including measurements of dynamics of polar ice sheet, ice discharge to the ocean, Himalayan snow and glacier dynamics, deep and coastal ocean studies including retrieval of ocean parameters, mapping of coastal erosion and shore-line change; demarcation of high tide line (HTL) and low tide line (LTL) for coastal regulation zones (CRZ) mapping, geological studies including mapping of structural and lithological features; lineaments and paleo-channels; geo-morphological mapping, natural disaster response including mapping and monitoring of floods, forest fires, oil spills, earthquake damage and monitoring of extreme weather events such as cyclones. In addition to the above, NISAR would support various other applications such as enhanced crop monitoring, soil moisture estimation, urban area development, weather and hydrological forecasting.

  20. Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry.

    PubMed

    Lin, Q; Vesecky, J F; Zebker, H A

    1994-01-10

    Interferometric synthetic aperture radar presents a new technology for performing high-resolution topographic mapping. One of the factors critical to mapping accuracy is phase unwrapping. This paper presents a new algorithm that unwraps phase through fringe-line detection. The algorithm is effective in preventing error propagation, it preserves the image resolution, and, in the mean time, it produces negligible local errors. An edge-segment linking approach and a curve-fitting approach are investigated, and their performances are compared. Test results of the algorithm are shown with the actual interferometric SEASAT synthetic aperture radar images over large-relief terrain near Yellowstone National Park with a short baseline, and results are shown over relatively flat terrain in Death Valley of California with a long baseline.

  1. Space Radar Image of Namibia Sand Dunes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows part of the vast Namib Sand Sea on the west coast of southern Africa, just northeast of the city of Luderitz, Namibia. The magenta areas in the image are fields of sand dunes, and the orange area along the bottom of the image is the surface of the South Atlantic Ocean. The region receives only a few centimeters (inches) of rain per year. In most radar images, sandy areas appear dark due to their smooth texture, but in this area the sand is organized into steep dunes, causing bright radar reflections off the dune 'faces.' This effect is especially pronounced in the lower center of the image, where many glints of bright radar reflections are seen. Radar images of this hyper-arid region have been used to image sub-surface features, such as abandoned stream courses. The bright green features in the upper right are rocky hills poking through the sand sea. The peninsula in the lower center, near Hottentott Bay, is Diaz Point; Elizabeth Point is south of Diaz Point. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 11, 1994. The image is 54.2 kilometers by 82.2 kilometers (33.6 miles by 51.0 miles) and is centered at 26.2 degrees South latitude, 15.1 degrees East longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, horizontally received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  2. Remote sensing of land scenarios with an airborne 94-GHz synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Essen, Helmut; Makaruschka, R.; Baars, E. Peter

    1996-06-01

    The scattering process of electromagnetic waves is dominated by the match between wavelength and the geometric dimensions of surface structures. With respect to the microwave radar bands millimeter-waves are better matched to small surface features of terrain. Therefore this frequency band is able to gain additional information on the terrain of interest. For high resolution imaging SAR is the favorite solution also for millimeter-wave frequencies. Compared to more classical radar bands millimeter-waves offer advantages in the SAR processing, because due to the higher primary resolution at a given antenna aperture sources of image distortions such as range migration or depth of focus can be neglected at these frequencies. Moreover the inherently short aperture time for a given resolution improves the relation to the time constant of flight instabilities and makes motion compensation a simple process. A coherent, polarimetric, high range resolution radar, operating at a nominal frequency of 94 GHz, has been installed onboard an aircraft to allow remote sensing measurements in a side looking synthetic aperture approach. The radar-raw-data were registered together with time code and inertial data of the aircraft and later on evaluated by an off-line SAR-processor. The resulting images then had to undergo an automatic recognition process to extract certain complex targets using a knowledge based production system. The paper describes the measurement system and discusses the evaluation procedures with emphasis on the applied SAR algorithm. Examples of radar images at 94 GHz are shown and samples of pattern recognition derived from the SAR images are shown.

  3. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  4. Measurement of Turbulence in the Oceanic Mixed Layer Using Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    George, Simon G.; Tatnall, Adrian R. L.

    2012-03-01

    Improved understanding of the cause and character of turbulence is increasingly important for applications such as climate change: Turbulent processes near the surface layer of the ocean contribute greatly to momentum, heat and flux transfers across the air-sea boundary. Such processes are most commonly observed in Synthetic Aperture Radar (SAR) imagery as the turbulent wake present behind a moving surface vessel or ship, but also in the radar backscatter signatures of breaking surface & internal waves, convection, eddies, etc. Fine-resolution turbulent wake flows were computed numerically using Direct Numerical Simulation and the interaction of small-scale wake turbulence with the free surface studied using a hydrodynamic interaction model. The resulting modulated surface currents were subsequently processed through radar simulation algorithms to generate simulated radar images of the wake and demonstrating the ability of SAR to observe and characterise surface turbulent flows which contribute to exchange processes at the air-sea interface.

  5. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  6. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    SciTech Connect

    Raynal, Ann Marie; William H. Hensley, Jr.; Burns, Bryan L.; Doerry, Armin Walter

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage rate performance.

  7. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  8. Shuttle imaging radar experiment

    USGS Publications Warehouse

    Elachi, C.; Brown, W.E.; Cimino, J.B.; Dixon, T.; Evans, D.L.; Ford, J.P.; Saunders, R.S.; Breed, C.; Masursky, H.; McCauley, J.F.; Schaber, G.; Dellwig, L.; England, A.; MacDonald, H.; Martin-Kaye, P.; Sabins, F.

    1982-01-01

    The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea. Copyright ?? 1982 AAAS.

  9. Ship Detection Performance Predictions for Next Generation Spaceborne Synthetic Aperture Radars

    DTIC Science & Technology

    2001-12-01

    This work will discuss the strong and weak points of Synthetic Aperture Radar ( SAR ) when used for ship detection. First, the thesis gives a brief...description of SAR fundamentals, image processing and the parameters for ship detection. Second, the actual techniques, limitations, errors and some...Canadian Ocean Monitoring Workstation and in some validation field programs, the new generation of spaceborne SARs , mainly RADARSAT 2, are analyzed for

  10. Evaluation of synthetic aperture radar for oil-spill response. Final report, June 1992-September 1993

    SciTech Connect

    Hover, G.L.; Mastin, G.A.; Axline, R.M.; Bradley, J.D.

    1993-10-01

    This report provides a detailed evaluation of synthetic aperture radar (SAR) as a potential technology improvement over the Coast Guard's existing side-looking airborne radar (SLAR) for oil-spill surveillance applications. The U.S. Coast Guard Research and Development Center (RD Center), Environmental Safety Branch, sponsored a joint experiment including the U.S. Coast Guard, Sandia National Laboratories, and the National Oceanographic and Atmospheric Administration (NOAA), Hazardous Materials Division. Radar imaging missions were flown on six days over the coastal waters off Santa Barbara, CA, where there are constant natural seeps of oil. Both the Coast Guard SLAR and the Sandia National Laboratories SAR were employed to acquire simultaneous images of oil slicks and other natural sea surface features that impact oil-spill interpretation. Surface truth and other environmental data were also recorded during the experiment. The experiment data were processed at Sandia National Laboratories and delivered to the RD Center on a PC-based computer workstation for analysis by experiment participants. Synthetic aperture radar, Side looking airborne radar, Oil slicks.

  11. Space Radar Image of Munich, Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image of Munich, Germany illustrates the capability of a multi-frequency radar system to highlight different land use patterns in the area surrounding Bavaria's largest city. Central Munich is the white area at the middle of the image, on the banks of the Isar River. Pink areas are forested, while green areas indicate clear-cut and agricultural terrain. The Munich region served as a primary 'supersite' for studies in ecology, hydrology and radar calibration during the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) missions. Scientists were able to use these data to map patterns of forest damage from storms and areas affected by bark beetle infestation. The image was acquired by SIR-C/X-SAR onboard the space shuttle Endeavour on April 18, 1994. The image is 37 kilometers by 32 kilometers (23 miles by 20 miles) and is centered at 48.2 degrees North latitude, 11.5 degrees East longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, vertically transmitted and horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  12. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly

  13. Inverse-synthetic-aperture imaging of trees over a ground plane

    SciTech Connect

    Zittel, D.H.; Brock, B.C.; Littlejohn, J.H.; Patitz, W.E.

    1995-11-01

    Recent data collections with the Sandia VHF-UHF synthetic-aperture radar have yielded surprising results; trees appear brighter in the images than expected! In an effort to understand this phenomenon, various small trees have been measured on the Sandia folded compact range with the inverse-synthetic-aperture imaging system. A compilation of these measurements is contained in this report.

  14. Credible Set Estimation, Analysis, and Applications in Synthetic Aperture Radar Canonical Feature Extraction

    DTIC Science & Technology

    2015-03-26

    CREDIBLE SET ESTIMATION, ANALYSIS, AND APPLICATIONS IN SYNTHETIC APERTURE RADAR CANONICAL FEATURE EXTRACTION THESIS Andrew C. Rexford, 1st Lieutenant...AND APPLICATIONS IN SYNTHETIC APERTURE RADAR CANONICAL FEATURE EXTRACTION THESIS Presented to the Faculty Department of Electrical and Computer...APPLICATIONS IN SYNTHETIC APERTURE RADAR CANONICAL FEATURE EXTRACTION THESIS Andrew C. Rexford, B.S.E.E. 1st Lieutenant, USAF Committee Membership: Dr. Julie

  15. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Harmon, John K.

    2007-10-01

    Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80-125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands

  16. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Harmon, John K.

    Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80-125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands

  17. Summary of SAR (Synthetic Aperture Radar) Ocean Wave Data Archived at ERIM (Environmental Research Institute of Michigan).

    DTIC Science & Technology

    1984-05-01

    Banks, ERIM Report No. 123000-11-F, 129 pp., 1977. Shuchman, R.A. and O.H. Shemdin , Synthetic Aperture Radar Imaging of Ocean Waves During the Marineland...1983. F. Shuchman, R.A. and O.H. Shemdin , Synthetic Aperture Radar Imag- ing of Ocean Waves During the Marineland Experiment, IEEE J. Oceanic Eng., OE-8...range of significant wave heights from 1 to 3.5 m and wavelengths of from 100 to 500 m. In what follows , the in-situ estimates of dominant wavelength

  18. Space Radar Image of Phnom Phen, Cambodia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This spaceborne radar image shows the city of Phnom Penh, the capital of Cambodia. Phnom Penh lies at the confluence of the Mekong River and the Basak Sab. The city was originally established in 1434 to succeed Angkor Thom as capital of the Khmer Nation. Phnom Penh is the bright blue and orange area west of the rivers, near the center of the image. The red, light blue and purple colors indicate differences in vegetation height and structure. Radar images like this one are being used by archaeologists to investigate ruins in the Angkor area in northern Cambodia. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 15, 1994. The image is 27 kilometers by 27 kilometers (17 miles by 17 miles) and is centered at 11.5 degrees north latitude, 105.0 degrees East longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  19. Addendum to proceedings of the 1978 Synthetic Aperture Radar Technology Conference

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Various research projects on synthetic aperture radar are reported, including SAR calibration techniques. Slot arrays, sidelobe suppression, and wide swaths on satellite-borne radar were examined. The SAR applied to remote sensing was also considered.

  20. Radar image of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The area is predominantly scrub forest. Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. Image brightness differences in this image are caused by differences in vegetation type and density. Tributaries of the Sao Francisco are visible in the upper right. The Sao Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  1. Bistatic Synthetic Aperture Radar, TIF - Report (Phase 1)

    DTIC Science & Technology

    2004-11-01

    d’observation du radar bistatique et l’obtention DRDC Ottawa TR 2004-190 subs~quente d’images en fonction de diff6rentes configurations de radar...assumption has been developed and coded in MATLAB . The simulated SAR configurations comprise the simple stripmap mode as well as more sophisticated modes...developed and implemented in MATLAB ®. The simulator generates the raw data with high accuracy including the full three-dimensional geometry, the antenna

  2. Strip mode processing of spotlight aperture radar data

    NASA Astrophysics Data System (ADS)

    di Cenzo, Alan

    1988-05-01

    The author shows how to process deramped (e.g., typical spotlight mode) synthetic-aperture-radar (SAR) data using mode processors, with no restrictions on antenna pointing. The basis of the approach is that although the deramped data does not contain a spatially invariant two-dimensional response to a point target, the range-compressed deramped data does. Range compression of the deramped data is performed simply by Fourier transforming each range line. The method greatly increases the flexibility of current strip mode processors by extending their domain to a previously unsuitable class of data.

  3. Efficient parallel implementation of polarimetric synthetic aperture radar data processing

    NASA Astrophysics Data System (ADS)

    Martinez, Sergio S.; Marpu, Prashanth R.; Plaza, Antonio J.

    2014-10-01

    This work investigates the parallel implementation of polarimetric synthetic aperture radar (POLSAR) data processing chain. Such processing can be computationally expensive when large data sets are processed. However, the processing steps can be largely implemented in a high performance computing (HPC) environ- ment. In this work, we studied different aspects of the computations involved in processing the POLSAR data and developed an efficient parallel scheme to achieve near-real time performance. The algorithm is implemented using message parsing interface (MPI) framework in this work, but it can be easily adapted for other parallel architectures such as general purpose graphics processing units (GPGPUs).

  4. Convolutional neural networks for synthetic aperture radar classification

    NASA Astrophysics Data System (ADS)

    Profeta, Andrew; Rodriguez, Andres; Clouse, H. Scott

    2016-05-01

    For electro-optical object recognition, convolutional neural networks (CNNs) are the state-of-the-art. For large datasets, CNNs are able to learn meaningful features used for classification. However, their application to synthetic aperture radar (SAR) has been limited. In this work we experimented with various CNN architectures on the MSTAR SAR dataset. As the input to the CNN we used the magnitude and phase (2 channels) of the SAR imagery. We used the deep learning toolboxes CAFFE and Torch7. Our results show that we can achieve 93% accuracy on the MSTAR dataset using CNNs.

  5. Signal based motion compensation for synthetic aperture radar

    SciTech Connect

    John Kirk

    1999-06-07

    The purpose of the Signal Based Motion Compensation (SBMC) for Synthetic Aperture Radar (SAR) effort is to develop a method to measure and compensate for both down range and cross range motion of the radar in order to provide high quality focused SAR imagery in the absence of precision measurements of the platform motion. Currently SAR systems require very precise navigation sensors for motion compensation. These sensors are very expensive and are often supplied in pairs for reliability. In the case of GPS they can be jammed, further degrading performance. This makes for a potentially very expensive and possibly vulnerable SAR system. SBMC can eliminate or reduce the need for these expensive navigation sensors thus reducing the cost of budget minded SAR systems. The results on this program demonstrated the capability of the SBMC approach.

  6. Experiment in Onboard Synthetic Aperture Radar Data Processing

    NASA Technical Reports Server (NTRS)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  7. space Radar Image of Long Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global

  8. Interferometric synthetic aperture radar (InSAR)—its past, present and future

    USGS Publications Warehouse

    Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.

    2007-01-01

    Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.

  9. Space Radar Image of Chernobyl

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  10. Synthetic-Aperture Coherent Imaging From A Circular Path

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1995-01-01

    Imaging algorithms based on exact point-target responses. Developed for use in reconstructing image of target from data gathered by radar, sonar, or other transmitting/receiving coherent-signal sensory apparatus following circular observation path around target. Potential applications include: Wide-beam synthetic-aperture radar (SAR) from aboard spacecraft in circular orbit around target planet; SAR from aboard airplane flying circular course at constant elevation around central ground point, toward which spotlight radar beam pointed; Ultrasonic reflection tomography in medical setting, using one transducer moving in circle around patient or else multiple transducers at fixed positions on circle around patient; and Sonar imaging of sea floor to high resolution, without need for large sensory apparatus.

  11. Indoor imagery with a 3D through-wall synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan

    2012-06-01

    Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.

  12. Phase correction system for automatic focusing of synthetic aperture radar

    DOEpatents

    Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.

    1990-01-01

    A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.

  13. A signal processing view of strip-mapping synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Munson, David C., Jr.; Visentin, Robert L.

    1989-01-01

    The authors derive the fundamental strip-mapping SAR (synthetic aperture radar) imaging equations from first principles. They show that the resolution mechanism relies on the geometry of the imaging situation rather than on the Doppler effect. Both the airborne and spaceborne cases are considered. Range processing is discussed by presenting an analysis of pulse compression and formulating a mathematical model of the radar return signal. This formulation is used to obtain the airborne SAR model. The authors study the resolution mechanism and derive the signal processing relations needed to produce a high-resolution image. They introduce spotlight-mode SAR and briefly indicate how polar-format spotlight processing can be used in strip-mapping SAR. They discuss a number of current and future research directions in SAR imaging.

  14. Operational Use of Civil Space-Based Synthetic Aperture Radar (SAR)

    NASA Technical Reports Server (NTRS)

    Montgomery, Donald R. (Editor)

    1996-01-01

    Synthetic Aperture Radar (SAR) is a remote-sensing technology which uses the motion of the aircraft or spacecraft carrying the radar to synthesize an antenna aperture larger than the physical antenna to yield a high-spatial resolution imaging capability. SAR systems can thus obtain high-spatial resolution geophysical measurements of the Earth over wide surface areas, under all-weather, day/night conditions. This report was prepared to document the results of a six-month study by an Ad Hoc Interagency Working Group on the Operational Use of Civil (i.e., non-military) Space-based Synthetic Aperture Radar (SAR). The Assistant Administrator of NOAA for Satellite and Information Services convened this working group and chaired three meetings of the group over a six-month period. This action was taken in response to a request by the Associate Administrator of NASA for Mission to Planet Earth for an assessment of operational applications of SAR to be accomplished in parallel with a separate study requested of the Committee on Earth Studies of the Space Studies Board of the National Research Council on the scientific results of SAR research missions. The representatives of participating agencies are listed following the Preface. There was no formal charter for the working group or long term plans for future meetings. However, the working group may be reconstituted in the future as a coordination body for multiagency use of operational SAR systems.

  15. Space radar image of Ubar optical/radar

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This pair of images from space shows a portion of the southern Empty Quarter of the Arabian Peninsula in the country of Oman. On the left is a radar image of the region around the site of the fabled Lost City of Ubar, discovered in 1992 with the aid of remote sensing data. On the right is an enhanced optical image taken by the shuttle astronauts. Ubar existed from about 2800 BC to about 300 AD. and was a remote desert outpost where caravans were assembled for the transport of frankincense across the desert. The actual site of the fortress of the Lost City of Ubar, currently under excavation, is too small to show in either image. However, tracks leading to the site, and surrounding tracks, show as prominent, but diffuse, reddish streaks in the radar image. Although used in modern times, field investigations show many of these tracks were in use in ancient times as well. Mapping of these tracks on regional remote sensing images provided by the Landsat satellite was a key to recognizing the site as Ubar. The prominent magenta colored area is a region of large sand dunes. The green areas are limestone rocks, which form a rocky desert floor. A major wadi, or dry stream bed, runs across the scene and appears as a white line. The radar images, and ongoing field investigations, will help shed light on an early civilization about which little in known. The radar image was taken by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) and is centered at 18 degrees North latitude and 53 degrees East longitude. The image covers an area about 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; blue is C-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and the United

  16. Space Radar Image of Randonia Rain Cell

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This multi-frequency space radar image of a tropical rainforest in western Brazil shows rapidly changing land use patterns and it also demonstrates the capability of the different radar frequencies to detect and penetrate heavy rainstorms. This color image was created by combining the three separate radar frequencies into a composite image. The three black and white images below represent the individual frequencies. The lower left image, X-band vertically transmitted and received, is blue in the color image; the lower center image, C-band horizontally transmitted and vertically received is green; and the lower right image, L-band horizontally transmitted and vertically received is red. A heavy downpour in the lower center of the image appears as a black 'cloud' in the X-band image, the same area is shows up faintly in the C-band image, and is invisible in the L-band image. When combined in the color image, the rain cell appears red and yellow. Although radar can usually 'see' through clouds, short radar wavelengths (high frequency), such as X and C-band, can be changed by unusually heavy rain cells. L-band, at a 24 cm (9 inches) wavelength, is unaffected by such rain cells. By analyzing the way the radar changes, scientist can estimate rainfall rates. The area shown is in the state of Rondonia, in western Brazil. The pink areas are pristine tropical rainforest, and the blue and green patches are areas where the forest has been cleared for agriculture. Cleared areas are typically able to support intense farming for a only few years, before soil erosion renders the fields unusable. Radar imaging can be used to monitor not only the rainforest destruction, but also the rates of recovery of abandoned fields. This image is 35.2 kilometers by 21.3 kilometers (21.8 miles by 13.2 miles) and is centered at 11.2 degrees south latitude, 61.7 degrees west longitude. North is toward the upper left. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic

  17. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems

    DTIC Science & Technology

    2014-06-01

    OFDM ) signal versus a linear frequency modulated or chirp signal on simulated synthetic aperture radar (SAR) imagery. Various parameters of the...transmitted signal, such as pulse duration, transmitted signal energy, bandwidth, and (specifically for the OFDM signal) number of subcarriers and...SAR system design cost. 14. SUBJECT TERMS Synthetic aperture radar (SAR), orthogonal frequency division multiplexing ( OFDM ), linear

  18. Space Radar Image of Los Angeles, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the massive urbanization of Los Angeles, California. The image extends from the Santa Monica Bay at the left to the San Gabriel Mountains at the right. Downtown Los Angeles is in the center of the image. The runways of the Los Angeles International Airport appear as black strips at the left center of the image. The waterways of Marina del Rey are seen just above the airport. The San Gabriel Mountains and the city of Pasadena are at the right center of the image. Black areas on the mountains on the right are fire scars from the 1993 Altadena fire. The Rose Bowl is shown as a small circle near the right center. The complex freeway system is visible as dark lines throughout the image. Some city areas, such as Santa Monica in the upper left, appear red due to the alignment of streets and buildings to the incoming radar beam. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 34.04 degrees North latitude and 118.2 degrees West longitude with North pointing toward the upper right. The area shown measures 40 kilometers by 50 kilometers (25 miles by 31 miles).

  19. Space radar image of Mount Everest

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These are two comparison images of Mount Everest and its surroundings, along the border of Nepal and Tibet. The peak of Mount Everest, the highest elevation on Earth at 8,848 meters (29,028 feet), can be seen near the center of each image. The image at the top was acquired through thick cloud cover by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 16, 1994. The image on the bottom is an optical photograph taken by the Endeavour crew under clear conditions during the second flight of SIR-C/X-SAR on October 10, 1994. Both images show an area approximately 70 kilometers by 38 kilometers (43 miles by 24 miles) that is centered at 28.0 degrees north latitude and 86.9 degrees east longitude. North is toward the upper left. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Radar illumination is from the top of the frame. The optical photograph has been geometrically adjusted to better match the area shown in the radar image. Many features of the Himalayan terrain are visible in both images. Snow covered areas appear white in the optical photograph while the same areas appear bright blue in the radar image. The radar image was taken in early spring and shows deep snow cover, while the optical photograph was taken in late summer and shows minimum snow cover. The curving and branching features seen in both images are glaciers. The two wavelengths and multiple polarizations of the SIR-C radar are sensitive to characteristics of the glacier surfaces that are not detected by conventional photography, such as the ice roughness, water content and stratification. For this reason, the glaciers show a variety of colors in the radar image (blue, purple, red

  20. Generation of topographic terrain models utilizing synthetic aperture radar and surface level data

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L. (Inventor)

    1991-01-01

    Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.

  1. Screening of Earthen Levees Using Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Aanstoos, J. V.; O'Hara, C.; Prasad, S.; Dabbiru, L.; Nobrega, R.; Lee, M.

    2009-12-01

    Earthen levees protect large areas of populated and cultivated land in the US from flooding. As shown recently with hurricanes Katrina and Ike and the recent floods in the Midwest, the potential loss of life and property associated with the catastrophic failure of levees can be extremely large. Over the entire US, there are over 100,000 miles of levee structures of varying designs and conditions. Currently, there are limited processes in place to prioritize the monitoring of large numbers of dam and levee structures. Levee managers and federal agencies need to assess levee health rapidly with robust techniques that identify, classify and prioritize levee vulnerabilities with lower costs than traditional soil-boring programs, which can cost many of millions of dollars and provide information about the subsurface only in the immediate vicinity of a small-diameter borehole. This paper reports preliminary results of a project studying the use of airborne synthetic aperture radar (SAR) as an aid to the levee screening process. The SAR sensor being studied is the NASA UAVSAR (Unmanned Aerial Vehicle SAR), a fully polarimetric L-band SAR which is specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. The instrument is capable of sub-meter ground sample distance. NASA has imaged with this instrument 230 km of levees along the lower Mississippi River for use in this study. SAR interferometric mode is capable of identifying vertical displacements on the order of a few millimeters. Its multipolarization measurements can penetrate soil to as much as one meter depth. Thus it is valuable in detecting changes in levees that will be key inputs to a levee vulnerability classification system. Once vulnerable levee reaches have been identified, further actions such as more detailed examination or repairs can be focused on these higher-priority sections. We report on the use of various feature detection algorithms being applied

  2. Space Radar Image of Bahia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a color composite image of southern Bahia, Brazil, centered at 15.22 degree south latitude and 39.07 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 38th orbit of Earth on October 2, 1994. The image covers an area centered over the Una Biological Reserve, one the largest protected areas in northeastern Brazil. The 7,000-hectare reserve is administered by the Brazilian Institute for the Environment and is part of the larger Atlantic coastal forest, a narrow band of rain forest extending along the eastern coast of Brazil. The Atlantic coastal forest of southern Bahia is one of the world's most threatened and diverse ecosystems. Due to widespread settlement, only 2 to 5 percent of the original forest cover remains. Yet the region still contains an astounding variety of plants and animals, including a large number of endemic species. More than half of the region's tree species and 80 percent of its animal species are indigenous and found nowhere else on Earth. The Una Reserve is also the only federally protected habitat for the golden-headed lion tamarin, the yellow-breasted capuchin monkey and many other endangered species. In the past few years, scientists from Brazilian and international conservation organizations have coordinated efforts to study the biological diversity of this region and to develop practical and economically viable options for preserving the remaining primary forests in southern Bahia. The shuttle imaging radar is used in this study to identify various land uses and vegetation types, including remaining patches of primary forest, cabruca forest (cacao planted in the understory of the native forest), secondary forest, pasture and coastal mangrove. Standard remote-sensing technology that relies on light reflected from the forest canopy cannot accurately distinguish between cabruca and undisturbed forest. Optical remote sensing is also

  3. Space Radar Image of Bahia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a color composite image of southern Bahia, Brazil, centered at 15.22 degree south latitude and 39.07 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 38th orbit of Earth on October 2, 1994. The image covers an area centered over the Una Biological Reserve, one the largest protected areas in northeastern Brazil. The 7,000-hectare reserve is administered by the Brazilian Institute for the Environment and is part of the larger Atlantic coastal forest, a narrow band of rain forest extending along the eastern coast of Brazil. The Atlantic coastal forest of southern Bahia is one of the world's most threatened and diverse ecosystems. Due to widespread settlement, only 2 to 5 percent of the original forest cover remains. Yet the region still contains an astounding variety of plants and animals, including a large number of endemic species. More than half of the region's tree species and 80 percent of its animal species are indigenous and found nowhere else on Earth. The Una Reserve is also the only federally protected habitat for the golden-headed lion tamarin, the yellow-breasted capuchin monkey and many other endangered species. In the past few years, scientists from Brazilian and international conservation organizations have coordinated efforts to study the biological diversity of this region and to develop practical and economically viable options for preserving the remaining primary forests in southern Bahia. The shuttle imaging radar is used in this study to identify various land uses and vegetation types, including remaining patches of primary forest, cabruca forest (cacao planted in the understory of the native forest), secondary forest, pasture and coastal mangrove. Standard remote-sensing technology that relies on light reflected from the forest canopy cannot accurately distinguish between cabruca and undisturbed forest. Optical remote sensing is also

  4. Active multi-aperture imaging through turbulence

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas J.; Widiker, Jeffrey J.; McManamon, Paul F.; Haus, Joseph W.

    2012-06-01

    We describe our Innovative Multi Aperture Gimbaless Electro-Optical (IMAGE) testbed which uses coherent detection of the complex field reflected off a diffuse target with seven hexagonally arranged apertures. The seven measured optical fields are then phased with a digital optimization algorithm to synthesize a composite image whose angular resolution exceeds that of a single aperture. This same post-detection phasing algorithm also corrects aberrations induced by imperfect optics and a turbulent atmospheric path. We present the coherent imaging sub-aperture design used in the IMAGE array as well as the design of a compact range used to perform scaled tests of the IMAGE array. We present some experimental results of imaging diffuse targets in the compact range with two phase screens which simulates a ~7[Km] propagation path through distributed atmospheric turbulence.

  5. Directional synthetic aperture flow imaging.

    PubMed

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov

    2004-09-01

    A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle, and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave emissions with a number of defocused elements and a linear frequency-modulated pulse (chirp) to improve the signal-to-noise ratio. The received signals are dynamically focused along the flow direction and these signals are used in a cross-correlation estimator for finding the velocity magnitude. The flow angle is manually determined from the B-mode image. The approach can be used for both tissue and blood velocity determination. The approach was investigated using both simulations and a flow system with a laminar flow. The flow profile was measured with a commercial 7.5 MHz linear array transducer. A plastic tube with an internal diameter of 17 mm was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring radio frequency (RF) data from 128 elements of the array, using 8 emissions with 11 elements in each emission. A 20-micros chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60-degree flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions, and the relative standard deviation was 0.36% (0.65 mm/s). Using the same setup for purely transverse flow gave a standard deviation of 1.2% (2.1 mm/s). Variation of the different parameters revealed the sensitivity to number of lines, angle deviations, length of correlation interval, and sampling interval. An in vivo image of the carotid artery and jugular vein of a healthy 29-year-old volunteer was acquired. A full color flow image using only 128 emissions could be made with a high

  6. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of San Francisco, California, taken on October 3,1994. The image is about 40 kilometers by 55 kilometers (25 miles by 34 miles) with north toward the upper right. Downtown San Francisco is visible in the center of the image with the city of Oakland east (to the right) across San Francisco Bay. Also visible in the image is the Golden Gate Bridge (left center) and the Bay Bridge connecting San Francisco and Oakland. North of the Bay Bridge is Treasure Island. Alcatraz Island appears as a small dot northwest of Treasure Island. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 56. The image is centered at 37 degrees north latitude, 122degrees west longitude. This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do other smooth surfaces such as airport runways. Suburban areas, with the low-density housing and tree-lined streets that are typical of San Francisco, appear as lighter gray. Areas with high-rise buildings, such as those seen in the downtown areas, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes

  7. Space Radar Image of Wenatchee, Washington

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows a segment of the Columbia River as it passes through the area of Wenatchee, Washington, about 220 kilometers (136 miles) east of Seattle. The Wenatchee Mountains, part of the Cascade Range, are shown in green at the lower left of the image. The Cascades create a 'rain shadow' for the region, limiting rainfall east of the range to less than 26 centimeters (10 inches) per year. The radar's ability to see different types of vegetation is highlighted in the contrast between the pine forests, that appear in green and the dry valley plain that shows up as dark purple. The cities of Wenatchee and East Wenatchee are the grid-like areas straddling the Columbia River in the left center of the image. With a population of about 60,000, the region produces about half of Washington state's lucrative apple crop. Several orchard areas appear as green rectangular patches to the right of the river in the lower right center. Radar images such as these can be used to monitor land use patterns in areas such as Wenatchee, that have diverse and rapidly changing urban, agricultural and wild land pressures. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 10, 1994. The image is 38 kilometers by 45 kilometers (24 miles by 30 miles) and is centered at 47.3 degrees North latitude, 120.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  8. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR).

    SciTech Connect

    Doerry, Armin Walter

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.

  9. The Rapid Terrain Visualization interferometric synthetic aperture radar sensor.

    SciTech Connect

    Graham, Robert H.; Hensley, William Heydon, Jr.; Bickel, Douglas Lloyd

    2003-07-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to 'demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies.' This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  10. Moving receive beam method and apparatus for synthetic aperture radar

    DOEpatents

    Kare, Jordin T.

    2001-01-01

    A method and apparatus for improving the performance of Synthetic Aperture Radar (SAR) systems by reducing the effect of "edge losses" associated with nonuniform receiver antenna gain. By moving the receiver antenna pattern in synchrony with the apparent motion of the transmitted pulse along the ground, the maximum available receiver antenna gain can be used at all times. Also, the receiver antenna gain for range-ambiguous return signals may be reduced, in some cases, by a large factor. The beam motion can be implemented by real-time adjustment of phase shifters in an electronically-steered phased-array antenna or by electronic switching of feed horns in a reflector antenna system.

  11. Space Radar Image of Central Sumatra, Indonesia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  12. Space Radar Image of Ventura County, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Ventura County, California, shows the Santa Clara River valley and the surrounding mountains. The river valley is the linear feature that extends from the lower right to the upper left (east to west), where it empties into the Pacific Ocean (dark patches in upper and lower left). The cities of Ventura and Oxnard are seen along the left side of the image. Simi Valley is located in the lower center of the image, between the Santa Monica Mountains (purple area in lower left) and the Santa Susanna Mountains to the north. This area of California is known for its fruit; strawberry fields are shown in red and purple rectangular areas on the coastal plain, and citrus groves are the yellow green areas adjacent to the river. This image is centered at 34.33 degrees north latitude, 119 degrees west longitude. The area shown is approximately 53 kilometers by 35 kilometers (33 miles by 22 miles). Colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted, horizontally received; green is L-band, horizontally transmitted, vertically received; blue is C-band, horizontally transmitted, vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 6, 1994.

  13. Synthetic Aperture Radar Interferometry for Digital Elevation Model of Kuwait Desert - Analysis of Errors

    NASA Astrophysics Data System (ADS)

    Jassar, H. K. Al; Rao, K. S.

    2012-07-01

    Using different combinations of 29 Advanced Synthetic Aperture Radar (ASAR) images, 43 Digital Elevations Models (DEM) were generated adopting SAR Interferometry (InSAR) technique. Due to sand movement in desert terrain, there is a poor phase correlation between different SAR images. Therefore, suitable methodology for generating DEMs of Kuwait desert terrain using InSAR technique were worked out. Time series analysis was adopted to derive the best DEM out of 43 DEMs. The problems related to phase de-correlation over desert terrain are discussed. Various errors associated with the DEM generation are discussed which include atmospheric effects, penetration into soil medium, sand movement. The DEM of Shuttle Radar Topography Mission (SRTM) is used as a reference. The noise levels of DEM of SRTM are presented.

  14. Seasat synthetic aperture radar observations of wave-current and wave-topographic interactions

    NASA Technical Reports Server (NTRS)

    Meadows, G. A.; Tseng, Y. C.; Shuchman, R. A.; Kasischke, E. S.

    1983-01-01

    This study investigated the capability of a spaceborne, imaging radar system to detect subtle changes in the propagation characteristics of ocean wave systems. Specifically, an evolving surface gravity wave system emanating from Hurricane Ella and propagating toward Cape Hatteras, NC, formed the basis of this investigation. This wave system was successfully imaged by the Seasat synthetic aperture radar (SAR) during revolution 974 on September 3, 1978. Estimates of the dominant wavelength and direction of the ocean waves were derived from the SAR data by using optical Fourier transforms. Environmental data of the test area, which included the surface velocity vector within the Gulf Stream, the location of Hurricane Ella, and local bathymetric information, were used in conjunction with the SAR data to form the basis of this comparative study. Favorable agreement was found between wave rays calculated by utilizing theoretical wave-current and wave-topographic interactions and SAR observed dominant wavelength and direction changes across the Gulf Stream and continental shelf.

  15. Forest discrimination with multipolarization imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.

    1985-01-01

    The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.

  16. The investigation of selected oceanographic applications of spaceborne synthetic-aperture radar

    NASA Technical Reports Server (NTRS)

    Keyte, G. E.; Barber, B. C.; Barnes, M. B.; White, G. C.; Bagg, M.; Dolier, B.; Lynn, N.

    1984-01-01

    Synthetic aperture radar images obtained from Seasat and SIR-A showed that a number of oceanographic features were imaged in considerable detail, like internal waves, large ocean waves, bathymetric features, eddies, and slicks. the imaging mechanisms however, are not well understood, and for both SEASAT and SIR-A there are few supporting sea surface measurements to assist in the study of these imaging mechanisms. The SIR-B will conduct three separate experiments to provide a better understanding of the use of spaceborne SAR for imaging: (1) internal waves; (2) ocean surface waves, and (3) shallow water bathymetry. These experiments are chosen because they lead to possible applications for microwave remote sensing of the ocean surface and give a better understanding of the microwave/sea surface imaging mechanism.

  17. Space Radar Image of Samara, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-frequency space radar image shows the city of Samara, Russia in pink and light green right of center. Samara is at the junction of the Volga and Samara Rivers approximately 800 kilometers (500 miles) southeast of Moscow. The wide river in the center of the image is the Volga. Samara, formerly Kuybyshev, is a busy industrial city known for its chemical, mechanical and petroleum industries. Northwest of the Volga (upper left corner of the image) are deciduous forests of the Samarskaya Luka National Park. Complex patterns in the floodplain of the Volga are caused by 'cut-off' lakes and channels from former courses of the meandering river. The three radar frequencies allow scientists to distinguish different types of agricultural fields in the lower right side of the image. For example, fields which appear light blue are short grass or cleared fields. Purple and green fields contain taller plants or rough plowed soil. Scientists hope to use radar data such as these to understand the environmental consequences of industrial, agricultural and natural preserve areas coexisting in close proximity. This image is 50 kilometers by 26 kilometers (31 by 16 miles) and is centered at 53.2 degrees north latitude, 50.1 degrees east longitude. North is toward the top of the image. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and vertically received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 1, 1994 onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  18. Space Radar Image of Mineral Resources, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image of a mineral-rich region in southern China is being used by geologists to identify potential new areas for mineral exploration. The area shown is the vicinity of the city of Zhao Qing, the light blue area along the banks of the River Xi Jiang in the lower left. This is in the southern Chinese province of Guangdong, about 75 kilometers (46 miles) west of Guangzhou (Canton). The largest gold mine in southern China is located in the far upper left of the image along a brightly reflective mountain ridge. Using the radar image as a guide, geologists are tracing the extension of the ridge structure to the east (right) to identify possible mining areas. Radar imaging is especially useful for this purpose because of its sensitivity to subtle topographic structure, even in areas such as these, which have a dense vegetation cover. The Xi Jiang area is one of the most productive mining regions in China, with deposits of tungsten, lead, zinc and gold. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttleEndeavour on April 17, 1994. The image is centered at 37.2 degreesnorth latitude and 112.5 degrees east longitude. North is toward the upper right. The image shows an area 60 kilometers by 38 kilometers (37.2 miles by 23.6 miles) The colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; green is L-band, horizontally transmitted, vertically received; blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earthprogram.

  19. Space Radar Image of Athens, Greece

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This space radar image of Athens, Greece, shows the sprawling, modern development of this ancient capital city. Densely populated urban areas appear in shades of pink and light green. The Acropolis the dark green triangular patch in the center of the image. Archaeological discoveries indicate Athens has been continuously occupied for at least the last 5,000 years. Numerous ships, shown as bright dots, are seen in the harbor areas in the upper left part of the image. The port city of Piraeus is at the left center. This image is 45 kilometers by 45 kilometers (28 miles by 28 miles) and is centered at 37.9 degrees north latitude, 23.7 degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations are as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 2, 1994 onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  20. Unexploded ordnance detection experiments using ultrawideband synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    DeLuca, Clyde C.; Marinelli, Vincent R.; Ressler, Marc A.; Ton, Tuan T.

    1998-09-01

    The Army Research Laboratory (ARL) has several technology development programs that are evaluating the use of ultra- wideband synthetic aperture radar (UWB SAR) to detect and locate targets that are subsurface or concealed by foliage. Under these programs, a 1-GHz-bandwidth, low-frequency, fully polarimetric UWB SAR instrumentation system was developed to collect the data needed to support foliage and ground- penetrating radar studies. The radar was integrated onto a 150-ft-high mobile boomlift platform in 1995 and was thus named the BoomSAR. In 1997, under the sponsorship of the Strategic Environmental Research and Development Program (SERDP), ARL began a project focused on enhancing the detection and discrimination of unexploded ordnance (UXO). The program's technical approach is to collect high-quality, precision data to support phenomenological investigations of electromagnetic wave propagation through varying dielectric media, which in turn supports the development of algorithms for automatic target detection. For this project, a UXO test site was set up at the Steel Crater Test Area -- an existing test site that already contained subsurface mines, tactical vehicles, 55-gallon drums, storage containers, wires, pipes, and arms caches located at Yuma Proving Ground (YPG), Arizona. More than 600 additional pieces of inert UXO were added to the Steel Crater Test Area, including bombs (250, 500, 750, 1000, and 2000 lb), mortars (60 and 81 mm), artillery shells (105 and 155 mm), 2.75-in. rockets, submunitions (M42, BLU-63, M68, BLU-97, and M118), and mines (Gator, VS1.6, M12, PMN, and POM- Z). In the selection of UXO to be included at YPG, an emphasis was placed on the types of munitions that may be present at CONUS test and training ranges.

  1. Phase calibration of polarimetric radar images

    NASA Technical Reports Server (NTRS)

    Sheen, Dan R.; Kasischke, Eric S.; Freeman, Anthony

    1989-01-01

    The problem of phase calibration between polarization channels of an imaging radar is studied. The causes of various types of phase errors due to the radar system architecture and system imperfections are examined. A simple model is introduced to explain the spatial variation in phase error as being due to a displacement between the phase centers of the vertical and horizontal antennas. It is also shown that channel leakage can cause a spatial variation in phase error. Phase calibration using both point and distributed ground targets is discussed and a method for calibrating phase using only distributed target is verified, subject to certain constraints. Experimental measurements using the NADC/ERIM P-3 synthetic-aperture radar (SAR) system and NASA/JPL DC-8 SAR, which operates at C-, L-, and P-bands, are presented. Both of these systems are multifrequency, polarimetric, airborne, SAR systems.

  2. Space radar image of New York City

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This radar image of the New York city metropolitan area. The island of Manhattan appears in the center of the image. The green-colored rectangle on Manhattan is Central Park. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on October 10, 1994. North is toward the upper right. The area shown is 75.0 kilometers by 48.8 kilometers (46.5 miles by 30.2 miles). The image is centered at 40.7 degrees north latitude and 73.8 degrees west longitude. In general, light blue areas correspond to dense urban development, green areas to moderately vegetated zones and black areas to bodies of water. The Hudson River is the black strip that runs from the left edge to the upper right corner of the image. It separates New Jersey, in the upper left of the image, from New York. The Atlantic Ocean is at the bottom of the image where two barrier islands along the southern shore of Long Island are also visible. John F. Kennedy International Airport is visible above these islands. Long Island Sound, separating Long Island from Connecticut, is the dark area right of the center of the image. Many bridges are visible in the image, including the Verrazano Narrows, George Washington and Brooklyn bridges. The radar illumination is from the left of the image; this causes some urban zones to appear red because the streets are at a perpendicular angle to the radar pulse. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Radar images like this one could be used as a tool for city planners and resource managers to map and monitor land use patterns. The radar imaging systems can clearly detect the variety of landscapes in the area, as well as the density of urban

  3. Space Radar Image of North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image showing surface features on the open ocean in the northeast Atlantic Ocean. There is no land mass in this image. The purple line in the lower left of the image is the stern wake of a ship. The ship creating the wake is the bright white spot on the middle, left side of the image. The ship's wake is about 28 kilometers (17 miles) long in this image and investigators believe that is because the ship may be discharging oil. The oil makes the wake last longer and causes it to stand out in this radar image. A fairly sharp boundary or front extends from the lower left to the upper right corner of the image and separates two distinct water masses that have different temperatures. The different water temperature affects the wind patterns on the ocean. In this image, the light green area depicts rougher water with more wind, while the purple area is calmer water with less wind. The dark patches are smooth areas of low wind, probably related to clouds along the front, and the bright green patches are likely due to ice crystals in the clouds that scatter the radar waves. The overall 'fuzzy' look of this image is caused by long ocean waves, also called swells. Ocean radar imagery allows the fine detail of ocean features and interactions to be seen, such as the wake, swell, ocean front and cloud effects, which can then be used to enhance the understanding of ocean dynamics on smaller and smaller scales. The image is centered at 42.8 degrees north latitude, 26.2 degrees west longitude and shows an area approximately 35 kilometers by 65 kilometers (22 by 40 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is L-band vertically transmitted, vertically received. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR

  4. Fisheries imaging radar surveillance test /FIRST/ - Bering Sea test

    NASA Technical Reports Server (NTRS)

    Woods, E. G.; Ivey, J. H.

    1977-01-01

    A joint NOAA, U.S. Coast Guard and NASA program is being conducted to determine if a synthetic aperture radar (SAR) system, such as planned for NASA's SEASAT, can be useful in monitoring fishing vessels within the newly established 200-mile fishing limit. As part of this program, data gathering field operations were conducted over concentrations of foreign fishing vessels in the Bering Sea off Alaska in April 1976. The Jet Propulsion Laboratory developed synthetic aperture L-band radar which was flown aboard the NASA Convair 990 aircraft, with a Coast Guard cutter and C-130 aircraft simultaneously gathering data to provide both radar imagery and sea truth information on the vessels being imaged. Results indicate that synthetic aperture radar systems have potential for all weather detection, enumeration and classification of fishing vessels.

  5. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those

  6. Space Radar Image of Los Angeles, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of Los Angeles, California, taken on October 2, 1994. Visible in the image are Long Beach Harbor at the bottom right (south corner of the image), Los Angeles International Airport at the bottom center, with Santa Monica just to the left of it and the Hollywood Hills to the left of Santa Monica. Also visible in the image are the freeway systems of Los Angeles, which appear as dark lines. The San Gabriel Mountains (center top) and the communities of San Fernando Valley, Simi Valley and Palmdale can be seen on the left-hand side. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 24th orbit. The image is centered at 34 degrees north latitude, 118 degrees west longitude. The area shown is approximately 100 kilometers by 52 kilometers (62 miles by 32 miles). This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do freeways and other flat surfaces such as the airport runways. Mountains in the image are dark grey, with brighter patches on the mountain slopes, which face in the direction of the radar illumination (from the top of the image). Suburban areas, with the low-density housing and tree-lined streets that are typical of Los Angeles, appear as lighter grey. Areas with high-rise buildings, such as downtown Los Angeles, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Scientists hope to use radar image data from SIR-C/X-SAR to map fire scars in areas prone to brush fires, such as Los Angeles. In this image, the Altadena fire area is visible in the top center of the image as a patch of mountainous terrain which is slightly darker than the nearby mountains. Using all the radar frequency and polarization images provided by SIR

  7. Noise and speckle reduction in synthetic aperture radar imagery by nonparametric Wiener filtering.

    PubMed

    Caprari, R S; Goh, A S; Moffatt, E K

    2000-12-10

    We present a Wiener filter that is especially suitable for speckle and noise reduction in multilook synthetic aperture radar (SAR) imagery. The proposed filter is nonparametric, not being based on parametrized analytical models of signal statistics. Instead, the Wiener-Hopf equation is expressed entirely in terms of observed signal statistics, with no reference to the possibly unobservable pure signal and noise. This Wiener filter is simple in concept and implementation, exactly minimum mean-square error, and directly applicable to signal-dependent and multiplicative noise. We demonstrate the filtering of a genuine two-look SAR image and show how a nonnegatively constrained version of the filter substantially reduces ringing.

  8. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2008-06-24

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  9. Efficient one-stationary bistatic synthetic aperture radar raw data generation based on Fourier analysis

    NASA Astrophysics Data System (ADS)

    Huang, Yulin; Wu, Junjie; Li, Zhongyu; Yang, Haiguang; Yang, Jianyu

    2016-01-01

    Raw data generation for synthetic aperture radar (SAR) is very powerful for designing systems and testing imaging algorithms. In this paper, a raw data generation method based on Fourier analysis for one-stationary bistatic SAR is presented. In this mode, two-dimensional (2-D) spatial variation is the major problem faced by the fast Fourier transform-based raw data generation. To deal with this problem, a 2-D linearization followed by a 2-D frequency transformation is employed in this method. This frequency transformation can reflect the 2-D spatial variation. Residual phase compensation is also discussed. Numerical simulation verifies the method.

  10. Beam Width Robustness of a 670 GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Cooper, K. B.; Llombart, N.; Dengler, R. J.; Siegel, P. H.

    2009-01-01

    Detection of a replica bomb belt concealed on a mannequin at 4 m standoff range is achieved using a 670 GHz imaging radar. At a somewhat larger standoff range of 4.6 m, the radar's beam width increases substantially, but the through-shirt image quality remains good. This suggests that a relatively modest increase in aperture size over the current design will be sufficient to detect person-borne concealed weapons at ranges exceeding 25 meters.

  11. A Robust Mine Detection Algorithm for Acoustic and Radar Images

    DTIC Science & Technology

    2000-10-01

    Hough transforms as demonstrated on an NVL mine hunting SBIR and on SAR ground target detection. The fundamental detection technique will be...Williams, “IA-CHAMELEON: A SAR Wide Area Image Analysis Aid,” Proc. ATRWG Workshop, Baltimore, MD, July 1996 The adaptive detection algorithm will...University, Mississippi 38677, September 15, 1998 Systems Incorporated (PSI) Ground Penetrating Radar (GPR)9, and on synthetic aperture radar ( SAR ) images

  12. A radar image time series

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Fuchs, H.; Ford, J. P.

    1981-01-01

    A set of ten side-looking radar images of a mining area in Arizona that were aquired over a period of 14 yr are studied to demonstrate the photogrammetric differential-rectification technique applied to radar images and to examine changes that occurred in the area over time. Five of the images are rectified by using ground control points and a digital height model taken from a map. Residual coordinate errors in ground control are reduced from several hundred meters in all cases to + or - 19 to 70 m. The contents of the radar images are compared with a Landsat image and with aerial photographs. Effects of radar system parameters on radar images are briefly reviewed.

  13. Space radar image of Galeras Volcano, Colombia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This radar image of the area surrounding the Galeras volcano in southern Colombia shows the ability of a multi-frequency radar to map volcanic structures that can be dangerous to study on the ground. Galeras has erupted more than 20 times since the area was first visited by European explorers in the 1500s. Volcanic activity levels have been high in the last five years, including an eruption in January 1993 that killed nine people on a scientific expedition to the volcano summit. Galeras is the light green area near the center of the image. The active cone, with a small summit pit, is the red feature nestled against the lower right edge of the caldera (crater) wall. The city of Pasto, with a population of 300,000, is shown in orange near the bottom of the image, just 8 kilometers (5 miles) from the volcano. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 96th orbit on April 15, 1994. North is toward the upper right. The area shown is 49.1 by 36.0 kilometers (30.5 by 22.3 miles), centered at 1.2 degrees north latitude and 77.4 degrees west longitude. The radar illumination is from the top of the image. The false colors in this image were created using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Galeras is one of 15 volcanoes worldwide that are being monitored by the scientific community as an 'International Decade Volcano' because of the hazard that it represents to the local population.

  14. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar on board the space shuttle Endeavour were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The yellow line indicates the area below which was used for the three-dimensional image using altitude lines. The yellow rectangular frame fences the area for the final topographic image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.

  15. Scene estimation from speckled synthetic aperture radar imagery: Markov-random-field approach.

    PubMed

    Lankoande, Ousseini; Hayat, Majeed M; Santhanam, Balu

    2006-06-01

    A novel Markov-random-field model for speckled synthetic aperture radar (SAR) imagery is derived according to the physical, spatial statistical properties of speckle noise in coherent imaging. A convex Gibbs energy function for speckled images is derived and utilized to perform speckle-compensating image estimation. The image estimation is formed by computing the conditional expectation of the noisy image at each pixel given its neighbors, which is further expressed in terms of the derived Gibbs energy function. The efficacy of the proposed technique, in terms of reducing speckle noise while preserving spatial resolution, is studied by using both real and simulated SAR imagery. Using a number of commonly used metrics, the performance of the proposed technique is shown to surpass that of existing speckle-noise-filtering methods such as the Gamma MAP, the modified Lee, and the enhanced Frost.

  16. Space Radar Image of Mt. Etna, Italy

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The summit of the Mount Etna volcano on the island of Sicily, Italy, one of the most active volcanoes in the world, is shown near the center of this radar image. Lava flows of different ages and surface roughness appear in shades of purple, green, yellow and pink surrounding the four small craters at the summit. Etna is one of the best-studied volcanoes in the world and scientists are using this radar image to identify and distinguish a variety of volcanic features. Etna has erupted hundreds of times in recorded history, with the most recent significant eruption in 1991-1993. Scientists are studying Etna as part of the international 'Decade Volcanoes' project, because of its high level of activity and potential threat to local populations. This image was acquired on October 11, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 37.8 degrees North latitude and 15.1 degrees East longitude and covers an area of 51.2 kilometers by 22.6 kilometers (31.7 miles by 14.0 miles).

  17. Space Radar Image of La Paz, Bolivia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Bolivian capital city of La Paz that was created using three radar frequencies. La Paz sits at the edge of the Altiplano, the high inland plateau between the Cordillera Occidental and Cordillera Oriental belts of the Andes Mountains in South America. Part of the Cordillera Oriental mountains are seen on the right side (northeast) of this image. The bright areas at the top of the mountains are most likely the result of year-round snow cover. Glacier-carved valleys drain the mountain areas. The dark lines left of center are Kennedy Airport near the northwestern part of the city. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 18, 1994. The image is centered at 16.25 degrees south latitude, 68.1 degrees west longitude. The area shown is approximately 35 kilometers by 16 kilometers (22 miles by 10 miles). North is toward the upper right. Colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, vertically received; and blue is X-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's program called Mission to Planet Earth.

  18. Space Radar Image of Owens Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Owens Valley, near the town of Bishop, California that was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southeast along the eastern edge of Owens Valley. The White Mountains are in the center of the image, and the Inyo Mountains loom in the background. The high peaks of the White Mountains rise more than 3,000 meters (10,000 feet) above the valley floor. The runways of the Bishop airport are visible at the right edge of the image. The meandering course of the Owens River and its tributaries appear light blue on the valley floor. Blue areas in the image are smooth, yellow areas are rock outcrops, and brown areas near the mountains are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar data were taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is

  19. A user's manual for the NASA/JPL synthetic aperture radar and the NASA/JPL L and C band scatterometers

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1983-01-01

    Airborne synthetic aperture radars and scatterometers are operated with the goals of acquiring data to support shuttle imaging radars and support ongoing basic active microwave remote sensing research. The aircraft synthetic aperture radar is an L-band system at the 25-cm wavelength and normally operates on the CV-990 research aircraft. This radar system will be upgraded to operate at both the L-band and C-band. The aircraft scatterometers are two independent radar systems that operate at 6.3-cm and 18.8-cm wavelengths. They are normally flown on the C-130 research aircraft. These radars will be operated on 10 data flights each year to provide data to NASA-approved users. Data flights will be devoted to Shuttle Imaging Radar-B (SIR-B) underflights. Standard data products for the synthetic aperture radars include both optical and digital images. Standard data products for the scatterometers include computer compatible tapes with listings of radar cross sections (sigma-nought) versus angle of incidence. An overview of these radars and their operational procedures is provided by this user's manual.

  20. Space Radar Image of Boston, Massachusetts

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of the area surrounding Boston, Mass., shows how a spaceborne radar system distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. The bright white area at the right center of the image is downtown Boston. The wide river below and to the left of the city is the Charles River in Boston's Back Bay neighborhood. The dark green patch to the right of the Back Bay is Boston Common. A bridge across the north end of Back Bay connects the cities of Boston and Cambridge. The light green areas that dominate most of the image are the suburban communities surrounding Boston. The many ponds that dot the region appear as dark irregular spots. Many densely populated urban areas show up as red in the image due to the alignment of streets and buildings to the incoming radar beam. North is toward the upper left. The image was acquired on October 9, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) as it flew aboard the space shuttle Endeavour. This area is centered at 42.4 degrees north latitude, 71.2 degrees west longitude. The area shown is approximately 37 km by 18 km (23 miles by 11 miles). Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a cooperative mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  1. Space Radar Image of Hampton Roads, Virginia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the Hampton Roads, Virginia region, where the James River (upper left center) flows into the Chesapeake Bay. The city of Norfolk is the bright area on the peninsula in the lower center. Norfolk is home to a large naval base, part of which can be seen as the bright white port facilities near the center of the image. The cities of Hampton and Newport News occupy the peninsula in the upper right of the image. The dark blue areas on this peninsula are the runways of Langley Air Force Base, which also houses NASA's Langley Research Center. Forested areas, including suburbs, appear as green on the image. Cities appear as green, white and orange. The purple areas along the shorelines are wetlands; blue areas are cleared for agricultural use. Faint ship wakes can be seen in the water behind ships entering and leaving Hampton Roads. Scientists are using radar images like this one to study delicate coastal environments and the effects of urbanization and other human activities on the ecosystem and landscape. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 5, 1994. The image is centered at 36.9 degrees north latitude, 76.4 degrees west longitude. North is towards the upper right. The area shown is 37 kilometers by 29 kilometers (23 miles by 18 miles). Colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's ongoing Mission to Planet Earth program.

  2. Concepts and Technologies for Synthetic Aperture Radar from MEO and Geosynchronous orbits

    NASA Technical Reports Server (NTRS)

    Edelstein, Wendy N.; Madsen, Soren; Moussessian, Alina; Chen, Curtis

    2004-01-01

    The area accessible from a spaceborne imaging radar, e.g. a synthetic aperture radar (SAR), generally increases with the elevation of the satellite while the map coverage rate is a more complicated function of platform velocity and beam agility. The coverage of a low Earth orbit (LEO) satellite is basically given by the fast ground velocity times the relatively narrow swath width. The instantaneously accessible area will be limited to some hundreds of kilometers away from the sub-satellite point. In the other extreme, the sub-satellite point of a SAR in geosynchronous orbit will move relatively slowly, while the area which can be accessed at any given time is very large, reaching thousands of kilometers from the subsatellite point. To effective1y use the accessibility provided by a high vantage point, very large antennas with electronically steered beams are required.

  3. Space Radar Image of Safsaf Oasis, Egypt

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-frequency space radar image of south-central Egypt demonstrates the unique capability of imaging radar to penetrate thin sand cover in arid regions to reveal hidden details below the surface. Nearly all of the structures seen in this image are invisible to the naked eye and to conventional optical satellite sensors. Features appear in various colors because the three separate radar wavelengths are able to penetrate the sand to different depths. Areas that appear red or orange are places that can be seen only by the longest wavelength, L-band, and they are the deepest of the buried structures. Field studies in this area indicate L-band can penetrate as much as 2 meters (6.5 feet) of very dry sand to image buried rock structures. Ancient drainage channels at the bottom of the image are filled with sand more than 2 meters (6.5 feet) thick and therefore appear dark because the radar waves cannot penetrate them. The fractured orange areas at the top of the image and the blue circular structures in the center of the image are granitic areas that may contain mineral ore deposits. Scientists are using the penetrating capabilities of radar imaging in desert areas in studies of structural geology, mineral exploration, ancient climates, water resources and archaeology. This image is 51.9 kilometers by 30.2 kilometers (32.2 miles by 18.7 miles) and is centered at 22.7 degrees north latitude, 29.3degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 16, 1994, on board the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission

  4. Passive microwave imaging by aperture synthesis technology

    NASA Astrophysics Data System (ADS)

    Lang, Liang; Zhang, Zuyin; Guo, Wei; Gui, Liangqi

    2007-11-01

    In order to verify the theory of aperture synthesis at low expense, two-channel ka-band correlation radiometer which is basic part of synthetic aperture radiometer is designed firstly before developing the multi-channel synthetic aperture radiometer. The performance of two-channel correlation radiometer such as stability and coherence of visibility phase are tested in the digital correlation experiment. Subsequently all required baselines are acquired by moving the antenna pair sequentially, corresponding samples of the visibility function are measured and the image of noise source is constructed using an inverse Fourier transformation.

  5. Space Radar Image of Saline Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Saline Valley, about 30 km (19 miles) east of the town of Independence, California created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southwest across Saline Valley. The high peaks in the background are the Inyo Mountains, which rise more than 3,000 meters (10,000 feet) above the valley floor. The dark blue patch near the center of the image is an area of sand dunes. The brighter patches to the left of the dunes are the dry, salty lake beds of Saline Valley. The brown and orange areas are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar image was taken by the Spaceborne Imaging Radar-C/X-bandSynthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttleEndeavour in October 1994. The digital elevation map was producedusing radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vetically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 36.8 degrees north latitude and 117.7 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint

  6. Space radar image of New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image of the area surrounding the city of New Orleans, Louisiana in the southeastern United States demonstrates the ability of multi-frequency imaging radar to distinguish different types of land cover. The dark area in the center is Lake Pontchartrain. The thin line running across the lake is a causeway connecting New Orleans to the city of Mandeville. Lake Borgne is the dark area in the lower right of the image. The Mississippi River appears as a dark, wavy line in the lower left. The white dots on the Mississippi are ships. The French Quarter is the brownish square near the left center of the image. Lakefront Airport, a field used mostly for general aviation, is the bright spot near the center, jutting out into Lake Pontchartrain. The image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) during orbit 39 of space shuttle Endeavour on October 2, 1994. The area is located at 30.10 degrees north latitude and 89.1 degrees west longitude. The area shown is approximately 100 kilometers (60 miles) by 50 kilometers (30 miles). The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the C-band (horizontally transmitted and received); blue represents the L-band (vertically transmitted and received). The green areas are primarily vegetation consisting of swamp land and swamp forest (bayou) growing on sandy soil, while the pink areas are associated with reflections from buildings in urban and suburban areas. Different tones and colors in the vegetation areas will be studied by scientists to see how effective imaging radar data is in discriminating between different types of wetlands. Accurate maps of coastal wetland areas are important to ecologists studying wild fowl and the coastal environment.

  7. Space Radar Image of Teide Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the Teide volcano on the island of Tenerife in the Canary Islands. The Canary Islands, part of Spain, are located in the eastern Atlantic Ocean off the coast of Morocco. Teide has erupted only once in the 20th Century, in 1909, but is considered a potentially threatening volcano due to its proximity to the city of Santa Cruz de Tenerife, shown in this image as the purple and white area on the lower right edge of the island. The summit crater of Teide, clearly visible in the left center of the image, contains lava flows of various ages and roughnesses that appear in shades of green and brown. Different vegetation zones, both natural and agricultural, are detected by the radar as areas of purple, green and yellow on the volcano's flanks. Scientists are using images such as this to understand the evolution of the structure of Teide, especially the formation of the summit caldera and the potential for collapse of the flanks. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 11, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 28.3 degrees North latitude and 16.6 degrees West longitude. North is toward the upper right. The area shown measures 90 kilometers by 54.5 kilometers (55.8 miles by 33.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received.

  8. Space Radar Image of Honolulu, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the city of Honolulu, Hawaii and adjacent areas on the island of Oahu. Honolulu lies on the south shore of the island, along the bottom of this image. Diamond Head, an extinct volcanic crater, is seen in the lower right. The bright white strip left of Diamond Head is the Waikiki Beach area. Further west are the downtown area and harbor. Runways of the airport can be seen in the lower left. The Koolau mountain range runs through the center of the image. The steep cliffs on the north side of the range are thought to be remnants of massive landslides that ripped apart the volcanic mountains that built the island thousands of years ago. On the north shore of the island are the Mokapu peninsula and Kaneohe Bay. Densely vegetated areas appear green in this radar image, while urban areas generally appear orange, red or white. Images such as this can be used by land use planners to monitor urban development and its effect on the tropical environment. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttleEndeavour on October 6, 1994.The image is 20.6 kilometers by 31.0kilometers (12.8 miles by 19.2 miles) and is centered at 21.4degrees North latitude, 157.8 degrees West longitude. North is toward the upper left. The colors are assigned to different radarfrequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR,a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  9. Simulation of synthetic aperture imaging ladar (SAIL) for three-dimensional target model

    NASA Astrophysics Data System (ADS)

    Yi, Ning; Wu, Zhen-Sen

    2010-11-01

    In conventional imaging laser radar, the resolution of target is constrained by the diffraction-limited, which includes the beamwidth of the laser in the target plane and the telescope's aperture. Synthetic aperture imaging Ladar (SAIL) is an imaging technique which employs aperture synthesis with coherent laser radar, the resolution is determined by the total frequency spread of the source and is independent of range, so can achieve fine resolution in long range. Ray tracing is utilized here to obtain two-dimensional scattering properties from three-dimensional geometric model of actual target, and range-doppler algorithm is used for synthetic aperture process in laser image simulation. The results show that the SAIL can support better resolution.

  10. Space Radar Image of Star City, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the Star City cosmonaut training center, east of Moscow, Russia. Four American astronauts are training here for future long-duration flights aboard the Russian Mir space station. These joint flights are giving NASA and the Russian Space Agency experience necessary for the construction of the international Alpha space station, beginning in late 1997. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR), on its 62nd orbit on October 3, 1994. This Star City image is centered at 55.55 degrees north latitude and 38.0 degrees east longitude. The area shown is approximately 32 kilometers by 49 kilometers (20 miles by 30 miles). North is to the top in this image. The radar illumination is from the top of the image. The image was produced using three channels of SIR-C radar data: red indicates L-band (23 cm wavelength, horizontally transmitted and received); green indicates L-band (horizontally transmitted and vertically received); blue indicates C-band (6 cm wavelength, horizontally transmitted and vertically received). In general, dark pink areas are agricultural; pink and light blue areas are urban communities; black areas represent lakes and rivers; dark blue areas are cleared forest; and light green areas are forested. The prominent black runways just right of center are Shchelkovo Airfield, about 4 km long. The textured pale blue-green area east and southeast of Shchelkovo Airfield is forest. Just east of the runways is a thin railroad line running southeast; the Star City compound lies just east of the small bend in the rail line. Star City contains the living quarters and training facilities for Russian cosmonauts and their families. Moscow's inner loop road is visible at the lower left edge of the image. The Kremlin is just off the left edge, on the banks of the meandering Moskva River. The Klyazma River snakes to the southeast from the reservoir in the upper left (shown in bright red

  11. General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation.

    PubMed

    Vasile, Gabriel; Trouvé, Emmanuel; Ciuc, Mihai; Buzuloiu, Vasile

    2004-08-01

    A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.

  12. Method and apparatus for Delta Kappa synthetic aperture radar measurement of ocean current

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1985-01-01

    A synthetic aperture radar (SAR) employed for delta k measurement of ocean current from a spacecraft without the need for a narrow beam and long observation times. The SAR signal is compressed to provide image data for different sections of the chirp band width, equivalent to frequencies and a common area for the separate image fields is selected. The image for the selected area at each frequency is deconvolved to obtain the image signals for the different frequencies and the same area. A product of pairs of signals is formed, Fourier transformed and squared. The spectrum thus obtained from different areas for the same pair of frequencies are added to provide an improved signal to noise ratio. The shift of the peak from the center of the spectrum is measured and compared to the expected shift due to the phase velocity of the Bragg scattering wave. Any difference is a measure of current velocity v sub o (delta k).

  13. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy.

    PubMed

    Davis, Brynmor J; Marks, Daniel L; Ralston, Tyler S; Carney, P Scott; Boppart, Stephen A

    2008-06-01

    Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT), utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  14. Progress report on the NASA/JPL airborne synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.

    2001-01-01

    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.

  15. Space Radar Image of Tuva, Central Asia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows part of the remote central Asian region of Tuva, an autonomous republic of the Russian Federation. Tuva is a mostly mountainous region that lies between western Mongolia and southern Siberia. This image shows the area just south of the republic's capital of Kyzyl. Most of the red, pink and blue areas in the image are agricultural fields of a large collective farming complex that was developed during the era of the Soviet Union. Traditional agricultural activity in the region, still active in remote areas, revolves around practices of nomadic livestock herding. White areas on the image are north-facing hillsides, which develop denser forests than south-facing slopes. The river in the upper right is one of the two major branches of the Yenesey River. Tuva has received some notoriety in recent years due to the intense interest of the celebrated Caltech physicist Dr. Richard Feynman, chronicled in the book 'Tuva or Bust' by Ralph Leighton. The image was acquired by Spaceborne Imaging Radar-C/X-Band SyntheticAperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour onOctober 1, 1994. The image is 56 kilometers by 74 kilometers (35 miles by 46 miles) and is centered at 51.5 degrees north latitude, 95.1 degrees east longitude. North is toward the upper right. The colors are assigned to different radar fequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted andreceived; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and verticallyreceived. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to PlanetEarth program.

  16. Space Radar Image of Pishan, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image is centered near the small town of Pishan in northwest China, about 280 km (174 miles) southeast of the city of Kashgar along the ancient Silk Route in the Taklamakan desert of the Xinjiang Province. Geologists are using this radar image as a map to study past climate changes and tectonics of the area. The irregular lavender branching patterns in the center of the image are the remains of ancient alluvial fans, gravel deposits that have accumulated at the base of the mountains during times of wetter climate. The subtle striped pattern cutting across the ancient fans are caused by thrusting of the Kun Lun Mountains north. This motion is caused by the continuing plate-tectonic collision of India with Asia. Modern fans show up as large lavender triangles above the ancient fan deposits. Yellow areas on the modern fans are vegetated oases. The gridded pattern results from the alignment of poplar trees that have been planted as wind breaks. The reservoir at the top of the image is part of a sophisticated irrigation system that supplies water to the oases. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in April 1994. This image is centered at 37.4 degrees north latitude, 78.3 degrees east longitude and shows an area approximately 50 km by 100 km (31 miles by 62 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; and blue is C-band horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.

  17. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This biomass map of the Raco, Michigan, area was produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. Biomass is the amount of plant material on an area of Earth's surface. Radar can directly sense the quantity and organizational structure of the woody biomass in the forest. Science team members at the University of Michigan used the radar data to estimate the standing biomass for this Raco site in the Upper Peninsula of Michigan. Detailed surveys of 70 forest stands will be used to assess the accuracy of these techniques. The seasonal growth of terrestrial plants, and forests in particular, leads to the temporary storage of large amounts of carbon, which could directly affect changes in global climate. In order to accurately predict future global change, scientists need detailed information about current distribution of vegetation types and the amount of biomass present around the globe. Optical techniques to determine net biomass are frustrated by chronic cloud-cover. Imaging radar can penetrate through cloud-cover with negligible signal losses. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German

  18. Flexible end-to-end system design for synthetic aperture radar applications

    NASA Astrophysics Data System (ADS)

    Zaugg, Evan C.; Edwards, Matthew C.; Bradley, Joshua P.

    2012-06-01

    This paper presents ARTEMIS, Inc.'s approach to development of end-to-end synthetic aperture radar systems for multiple applications and platforms. The flexible design of the radar and the image processing tools facilitates their inclusion in a variety of application-specific end-to-end systems. Any given application comes with certain requirements that must be met in order to achieve success. A concept of operation is defined which states how the technology is used to meet the requirements of the application. This drives the design decisions. Key to adapting our system to multiple applications is the flexible SlimSAR radar system, which is programmable on-the-fly to meet the imaging requirements of a wide range of altitudes, swath-widths, and platform velocities. The processing software can be used for real-time imagery production or post-flight processing. The ground station is adaptable, and the radar controls can be run by an operator on the ground, on-board the aircraft, or even automated as part of the aircraft autopilot controls. System integration takes the whole operation into account, seeking to flawlessly work with data links and on-board data storage, aircraft and payload control systems, mission planning, and image processing and exploitation. Examples of applications are presented including using a small unmanned aircraft at low altitude with a line of sight data link, a long-endurance UAV maritime surveillance mission with on-board processing, and a manned ground moving target indicator application with the radar using multiple receive channels.

  19. Dual frequency Synthetic Aperture Radar (SAR) mission for monitoring our dynamic planet

    NASA Technical Reports Server (NTRS)

    Hilland, J.; Bard, S.; Key, R.; Kim, Y.; Vaze, P.; Huneycutt, B.

    2000-01-01

    Advances in spaceborne Synthetic Aperture Radar (SAR) remote sensing technology make it possible to acquire global-scale data sets that provide unique information about the Earth's continually changing surface characteristics.

  20. Analysis of Cassegrain Cloud Profiling Radar Antenna with Arbitrary Projected Apertures

    NASA Technical Reports Server (NTRS)

    Hussein, Z.; Im, E.

    2000-01-01

    A millimeter wave Cassegrain dual-reflector rada antenna (94GHz) with super-quadric projected aperture boundaries concept, that includes sub-reflector blockage effect, is evaluated for the spaceborne radar measurement of the vertical cloud profile structure.

  1. Detection of landmines and UXO using advanced synthetic aperture radar technology

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Dill, Stephan; Heinzel, Andreas; Bischeltsrieder, Florian

    2016-05-01

    A main problem of effective landmine and UXO decontamination is efficient and reliable detection and localization of suspicious objects in reasonable time. This requirement demands for fast sensors investigating large areas with sufficient spatial resolution and sensitivity. Ground penetrating radar (GPR) is a suitable tool and is considered as a complementing sensor since nearly two decades. However, most GPRs operate in very close distance to ground in a rather punctual method of operation. In contrast, synthetic aperture radar (SAR) is a technique allowing fast and laminar stand-off investigation of an area. TIRAMI-SAR is imaging radar at lower microwaves for fast close-in detection of buried and unburied objects on a larger area. This allows efficient confirmation of a threat by investigating such regions of detection by other sensors. For proper object detection sufficient spatial resolution is required. Hence the SAR principle is applied. SAR for landmine/UXO detection can be applied by side-looking radar moved on safe ground along the area of interest, being typically the un-safe ground. Additionally, reliable detection of buried and unburied objects requires sufficient suppression of background clutter. For that purpose TIRAMI-SAR is using several antennas in multi-static configuration and wave polarization together with advanced SAR processing. The advantages and necessity of a multi-static antenna configuration for this kind of GPR approach is illustrated in the paper.

  2. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  3. Geosynchronous synthetic aperture radar: Concept design, properties and possible applications

    NASA Astrophysics Data System (ADS)

    Bruno, Davide; Hobbs, Stephen E.; Ottavianelli, Giuseppe

    2006-07-01

    Geosynchronous orbits have the unique characteristic that their orbital period is equal to one sidereal day. This configuration does provide coverage on a regional scale. This is a potential advantage in terms of system usage as the demand for some satellite services is concentrated in certain regions of the globe. This paper investigates both active and passive configurations, highlighting their different features and advantages. A synthetic aperture radar (SAR) simulator has been developed to study the influence of integration time on SAR processing in both low earth orbit (LEO) and geosynchronous SAR (GeoSAR) configurations. Different scenarios with targets affected by noise sources with various decorrelation time have been simulated in order to test the system response. Simulations show that in a geosynchronous SAR the long integration time averages out non-stationary signals within the resolution cell converting their influence to background clutter. Indeed, noise rejection is effective even if noise amplitude is one order of magnitude larger than the signal itself. The features that have been demonstrated via numerical simulations could be exploited in new SAR applications. SAR interferometry can benefit of the increased temporal correlation as all the high frequency components of interferometric phase noise have been previously filtered out. Fine temporal sampling is a feature that might be exploited for disaster management and might lead to major advances in the understanding of rapidly evolving phenomena on the ground surface. Future applications can be foreseen also in soil moisture retrieval and other related agricultural applications.

  4. Space Radar Image of Florence, Italy

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows land use patterns in and around the city of Florence, Italy, shown here in the center of the image. Florence is situated on a plain in the Chianti Hill region of Central Italy. The Arno River flows through town and is visible as the dark line running from the upper right to the bottom center of the image. The city is home to some of the world's most famous art museums. The bridges seen crossing the Arno, shown as faint red lines in the upper right portion of the image, were all sacked during World War II with the exception of the Ponte Vecchio, which remains as Florence's only covered bridge. The large, black V-shaped feature near the center of the image is the Florence Railroad Station. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 14, 1994. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 43.7 degrees north latitude and 11.15 degrees east longitude with North toward the upper left of the image. The area shown measures 20 kilometers by 17 kilometers (12.4 miles by 10.6 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received.

  5. Attitude steering for space shuttle based synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Curlander, J. C.

    1992-01-01

    A technique is presented to steer the antenna beam to the zero-Doppler line for a spacecraft platform which operates in a non-zero roll attitude. The purposes of employing this attitude steering technique are reduction of the Doppler centroid error caused by the variation in target elevation; reduction of the Doppler centroid bound; and reduction of the Doppler drift. It is shown that a fixed attitude sequence can be easily accommodated in the radar command sequence to achieve nearly zero-Doppler steering. Implementation of this technique improves the image quality as well as simplifies the processor design.

  6. Space Radar Image of County Kerry, Ireland

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Iveragh Peninsula, one of the four peninsulas in southwestern Ireland, is shown in this spaceborne radar image. The lakes of Killarney National Park are the green patches on the left side of the image. The mountains to the right of the lakes include the highest peaks (1,036 meters or 3,400 feet) in Ireland. The patchwork patterns between the mountains are areas of farming and grazing. The delicate patterns in the water are caused by refraction of ocean waves around the peninsula edges and islands, including Skellig Rocks at the right edge of the image. The Skelligs are home to a 15th century monastery and flocks of puffins. The region is part of County Kerry and includes a road called the 'Ring of Kerry' that is one of the most famous tourist routes in Ireland. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 12, 1994. The image is 82 kilometers by 42 kilometers (51 miles by 26 miles) and is centered at 52.0 degrees north latitude, 9.9 degrees west longitude. North is toward the lower left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, vertically transmitted and received; and blue is C-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  7. Space Radar Image of Reunion Island

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the volcanic island of Reunion, about 700 km (434 miles) east of Madagascar in the southwest Indian Ocean. The southern half of the island is dominated by the active volcano, Piton de la Fournaise. This is one of the world's most active volcanoes, with more than 100 eruptions in the last 300 years. The most recent activity occurred in the vicinity of Dolomieu Crater, shown in the lower center of the image within a horseshoe-shaped collapse zone. Recent lava flows appear in shades of red, purple and orange. Light green areas are heavily vegetated forest, while much of the purple area near the coast is farmland. The radar illumination is from the left side of the image and dramatically emphasizes the precipitous cliffs at the edges of the central canyons of the island. These canyons are remnants from the collapse of formerly active parts of the volcanoes that built the island. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 5, 1994. The image is centered at 21.2 degrees south latitude, 55.6 degrees east longitude. The area shown is approximately 50 km by 80 km (31 miles by 50 miles). North is toward the upper right. Colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, vertically received; green is L-band horizontally transmitted, vertically received; and blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.

  8. Experimental 0.22 THz Stepped Frequency Radar System for ISAR Imaging

    NASA Astrophysics Data System (ADS)

    Liang, Mei Yan; Zhang, Cun Lin; Zhao, Ran; Zhao, Yue Jin

    2014-09-01

    High resolution inverse synthetic aperture radar (ISAR) imaging is demonstrated by using a 0.22 THz stepped-frequency (SF) imaging radar system. The synthesis bandwidth of the terahertz (THz) SF radar is 12 GHz, which are beneficial for high resolution imaging. The resolution of ISAR image can reach centimeter-scale with the use of Range-Doppler algorithm (RDA). Results indicate that high resolution ISAR imaging is realized by using 0.22THz SF radar coupled with turntable scanning, which can provide foundations for further research on high-resolution radar image in the THz band.

  9. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  10. SPace Radar Image of Fort Irwin, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of Fort Irwin in California's Mojave Desert compares interferometric radar signatures topography -- data that were obtained by multiple imaging of the same region to produce three-dimensional elevation maps -- as it was obtained on October 7-8, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour. Data were acquired using the L-band (24 centimeter wavelength) and C-band (6 centimeter wavelength). The image covers an area about 25 kilometers by 70 kilometers (15.5 miles by 43 miles). North is to the lower right of the image. The color contours shown are proportional to the topographic elevation. With a wavelength one-fourth that of the L-band, the results from the C-band cycle through the color contours four times faster for a given elevation change. Detailed comparisons of these multiple frequency data over different terrain types will provide insights in the future into wavelength-dependent effects of penetration and scattering on the topography measurement accuracy. Fort Irwin is an ideal site for such detailed digital elevation model comparisons because a number of high precision digital models of the area already exist from conventional measurements as well as from airborne interferometric SAR data. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human

  11. Space Radar Image of Raco Vegetation Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a vegetation map of the Raco, Michigan area produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. The radar image, taken on April 9, 1994, has been used by science team members at the University of Michigan to produce detailed map of land cover. This image is centered at 46.4 degrees north latitude and 84.9 degrees west longitude. The imaged area is approximately 24 by 32 kilometers (15 by 20 miles). The Raco airport, which is a decommissioned military base, is easily identified by its triangular runway structure. An edge of Lake Superior, approximately 44 kilometers (27 miles) west of Sault Sainte Marie, appears in the top right of the image. In this land cover map each 30- by 30-meter (98- by 98-foot) spot is identified as either a water surface, bare ground, short vegetation, deciduous forest, lowland conifers or upland conifers. Different types of ground cover have different effects on Earth's chemical, water and energy cycles. By cataloguing ground cover in an area, scientists expect to better understand the processes of these cycles in a specific area. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio

  12. Use of radar image texture in geologic mapping

    NASA Technical Reports Server (NTRS)

    Farr, T. G.

    1983-01-01

    Large slope angle radar and small slope angle radar techniques are discussed. The techniques are developed to aid in the geologic interpretation of synthetic aperture radar (SAR) images. The application presented is for heavy vegetation and where very little other data can be obtained directly from remote sensing images. To understand the relationships between image texture, topography, lithology, geomorphology, and climate improves, textural information from SAR images are used for the identification of rock types to discriminate units. An active program is to integrate textural information from radar images directly with backscatter data from the same images, and with compositional information derived from visible near infrared sensors such as LANDSAT is explored. The role of quantitative textural information in this type of multisensor analysis which promises to be significant is outlined.

  13. Dynamic metamaterial aperture for microwave imaging

    SciTech Connect

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  14. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  15. Space Radar Image of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional image of the volcano Kilauea was generated based on interferometric fringes derived from two X-band Synthetic Aperture Radar data takes on April 13, 1994 and October 4, 1994. The altitude lines are based on quantitative interpolation of the topographic fringes. The level difference between neighboring altitude lines is 20 meters (66 feet). The ground area covers 12 kilometers by 4 kilometers (7.5 miles by 2.5 miles). The altitude difference in the image is about 500 meters (1,640 feet). The volcano is located around 19.58 degrees north latitude and 155.55 degrees west longitude. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in the interferometry analysis.

  16. Lq regularization-based unobserved baselines' data estimation method for tomographic synthetic aperture radar inversion

    NASA Astrophysics Data System (ADS)

    Bi, Hui; Zhang, Bingchen; Hong, Wen

    2016-07-01

    The elevation image quality of tomographic synthetic aperture radar (TomoSAR) data depends mainly on the elevation aperture size, number of baselines, and baseline distribution. In TomoSAR, due to the restricted number of baselines with irregular distributions, the elevation imaging quality is always unacceptable using the conventional spectral analysis approach. Therefore, for a given limited number of irregular baselines, the completion of data for the unobserved virtual uniform baseline distribution should be addressed to improve the spectral analysis-based TomoSAR reconstruction quality. We propose an Lq(0imaging relationship between the observed and unobserved baseline distributions. In the proposed method, we first estimate the transformation matrix between the acquisitions and the data of virtual uniform baseline distribution by solving an optimization problem, before calculating the data for virtual baseline distribution based on the acquisitions and the transformation matrix. Finally, the elevation reflectivity function is recovered using the spectral analysis method based on the estimated data. Compared with the reconstructed results only based on the limited irregular acquisitions, the image recovered using the dataset with a virtual uniform baseline distribution can improve the elevation image quality in an efficient manner.

  17. Shuttle Imaging Radar - Geologic applications

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Bridges, L.; Waite, W.; Kaupp, V.

    1982-01-01

    The Space Shuttle, on its second flight (November 12, 1981), carried the first science and applications payload which provided an early demonstration of Shuttle's research capabilities. One of the experiments, the Shuttle Imaging Radar-A (SIR-A), had as a prime objective to evaluate the capability of spaceborne imaging radars as a tool for geologic exploration. The results of the experiment will help determine the value of using the combination of space radar and Landsat imagery for improved geologic analysis and mapping. Preliminary analysis of the Shuttle radar imagery with Seasat and Landsat imagery from similar areas provides evidence that spaceborne radars can significantly complement Landsat interpretation, and vastly improve geologic reconnaissance mapping in those areas of the world that are relatively unmapped because of perpetual cloud cover.

  18. Space Radar Image of Oil Slicks

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of an offshore drilling field about 150 km (93 miles) west of Bombay, India, in the Arabian Sea. The dark streaks are extensive oil slicks surrounding many of the drilling platforms, which appear as bright white spots. Radar images are useful for detecting and measuring the extent of oil seepages on the ocean surface, from both natural and industrial sources. The long, thin streaks extending from many of the platforms are spreading across the sea surface, pushed by local winds. The larger dark patches are dispersed slicks that were likely discharged earlier than the longer streaks, when the winds were probably from a different direction. The dispersed oil will eventually spread out over the more dense water and become a layer which is a single molecule thick. Many forms of oil, both from biological and from petroleum sources, smooth out the ocean surface, causing the area to appear dark in radar images. There are also two forms of ocean waves shown in this image. The dominant group of large waves (upper center) are called internal waves. These waves are formed below the ocean surface at the boundary between layers of warm and cold water and they appear in the radar image because of the way they change the ocean surface. Ocean swells, which are waves generated by winds, are shown throughout the image but are most distinct in the blue area adjacent to the internal waves. Identification of waves provide oceanographers with information about the smaller scale dynamic processes of the ocean. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 9, 1994. The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C

  19. Space Radar Image of Sacramento, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a spaceborne radar image of the city of Sacramento, the capital of California. Urban areas appear pink and the surrounding agricultural areas are green and blue. The Sacramento River is the curving dark line running from the left side of the image (northwest) to the bottom right. The American River is the dark curving line in the center. Sacramento is built at the junction of these two rivers and the state Capitol building is in the bright pink-white area southeast of the junction. The straighter dark line (lower center) is the Sacramento River Deep Water Ship Channel which allows ship access from San Francisco. The black areas in the center are the runways of the Sacramento Executive airport. The city of Davis, California is seen as a pink area in lower left. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 2, 1994. The image is 27.0 kilometers by 38.4 kilometers (17 miles by 24 miles) and is centered at 38.6 degrees North latitude, 125.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  20. Space Radar Image of Harvard Forest

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the area surrounding the Harvard Forest in north-central Massachusetts that has been operated as a ecological research facility by Harvard University since 1907. At the center of the image is the Quabbin Reservoir, and the Connecticut River is at the lower left of the image. The Harvard Forest itself is just above the reservoir. Researchers are comparing the naturally occurring physical disturbances in the forest and the recent and projected chemical disturbances and their effects on the forest ecosystem. Agricultural land appears dark blue/purple, along with low shrub vegetation and some wetlands. Urban development is bright pink; the yellow to green tints are conifer-dominated vegetation with the pitch pine sand plain at the middle left edge of the image appearing very distinctive. The green tint may indicate pure pine plantation stands, and deciduous broadleaf trees appear gray/pink with perhaps wetter sites being pinker. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 42.50 degrees North latitude and 72.33 degrees West longitude and covers an area of 53 kilometers 63 by kilometers (33 miles by 39 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; and blue is C-band horizontally transmitted and horizontally received.

  1. Radar Image, Color as Height , Salalah, Oman

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image includes the city of Salalah, the second largest city in Oman. It illustrates how topography determines local climate and, in turn, where people live. This area on the southern coast of the Arabian Peninsula is characterized by a narrow coastal plain (bottom) facing southward into the Arabian Sea, backed by the steep escarpment of the Qara Mountains. The backslope of the Qara Mountains slopes gently into the vast desert of the Empty Quarter (at top). This area is subject to strong monsoonal storms from the Arabian Sea during the summer, when the mountains are enveloped in a sort of perpetual fog. The moisture from the monsoon enables agriculture on the Salalah plain, and also provides moisture for Frankincense trees growing on the desert (north) side of the mountains. In ancient times, incense derived from the sap of the Frankincense tree was the basis for an extremely lucrative trade. Radar and topographic data are used by historians and archaeologists to discover ancient trade routes and other significant ruins.

    This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations to brown at the highest elevations. This image contains about 1070 meters (3500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter

  2. Evaluation Digital Elevation Model Generated by Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    Makineci, H. B.; Karabörk, H.

    2016-06-01

    Digital elevation model, showing the physical and topographical situation of the earth, is defined a tree-dimensional digital model obtained from the elevation of the surface by using of selected an appropriate interpolation method. DEMs are used in many areas such as management of natural resources, engineering and infrastructure projects, disaster and risk analysis, archaeology, security, aviation, forestry, energy, topographic mapping, landslide and flood analysis, Geographic Information Systems (GIS). Digital elevation models, which are the fundamental components of cartography, is calculated by many methods. Digital elevation models can be obtained terrestrial methods or data obtained by digitization of maps by processing the digital platform in general. Today, Digital elevation model data is generated by the processing of stereo optical satellite images, radar images (radargrammetry, interferometry) and lidar data using remote sensing and photogrammetric techniques with the help of improving technology. One of the fundamental components of remote sensing radar technology is very advanced nowadays. In response to this progress it began to be used more frequently in various fields. Determining the shape of topography and creating digital elevation model comes the beginning topics of these areas. It is aimed in this work , the differences of evaluation of quality between Sentinel-1A SAR image ,which is sent by European Space Agency ESA and Interferometry Wide Swath imaging mode and C band type , and DTED-2 (Digital Terrain Elevation Data) and application between them. The application includes RMS static method for detecting precision of data. Results show us to variance of points make a high decrease from mountain area to plane area.

  3. Application of equalization notch to improve synthetic aperture radar coherent data products

    NASA Astrophysics Data System (ADS)

    Musgrove, Cameron; West, James C.

    2015-05-01

    Interference and interference mitigation techniques degrade synthetic aperture radar (SAR) coherent data products. Radars utilizing stretch processing present a unique challenge for many mitigation techniques because the interference signal itself is modified through stretch processing from its original signal characteristics. Many sources of interference, including constant tones, are only present within the fast-time sample data for a limited number of samples, depending on the radar and interference bandwidth. Adaptive filtering algorithms to estimate and remove the interference signal that rely upon assuming stationary interference signal characteristics can be ineffective. An effective mitigation method, called notching, forces the value of the data samples containing interference to zero. However, as the number of data samples set to zero increases, image distortion and loss of resolution degrade both the image product and any second order image products. Techniques to repair image distortions,1 are effective for point-like targets. However, these techniques are not designed to model and repair distortions in SAR image terrain. Good terrain coherence is important for SAR second order image products because terrain occupies the majority of many scenes. For the case of coherent change detection it is the terrain coherence itself that determines the quality of the change detection image. This paper proposes an unique equalization technique that improves coherence over existing notching techniques. First, the proposed algorithm limits mitigation to only the samples containing interference, unlike adaptive filtering algorithms, so the remaining samples are not modified. Additionally, the mitigation adapts to changing interference power such that the resulting correction equalizes the power across the data samples. The result is reduced distortion and improved coherence for the terrain. SAR data demonstrates improved coherence from the proposed equalization

  4. Rapid raw data simulation for fixed-receiver bistatic interferometric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yan, Feifei; Chang, Wenge; Li, Xiangyang

    2016-07-01

    Raw data simulation of synthetic aperture radar (SAR) is useful for system designing, mission planning, and testing of imaging algorithms. According to the two-dimensional (2-D) frequency spectrum of the fixed-receiver bistatic SAR system, a rapid raw data simulation approach is proposed. With the combination of 2-D inverse Stolt transform in the 2-D frequency domain and phase compensation in the range-Doppler frequency domain, our approach can significantly reduce the simulation time. Therefore, simulations of extended scenes can be performed much more easily. Moreover, the proposed algorithm offers high accuracy of phase distribution, therefore, it can be used for single-pass fixed-receiver bistatic interferometric usage. The proposal is verified by extensive simulations of point targets and extended scene, in which the results indicate the feasibility as well as the effectiveness of our approach. In the end, the accuracy of phase distribution of the proposed algorithm is further examined with simulations of synthetic aperture radar interferometry.

  5. Space Radar Image of Weddell Sea

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Two radar images are shown in this composite to compare the size of a standard spaceborne radar image (small inset) to the image that is created when the radar instrument is used in the ScanSAR mode (large image). The predominant image shows two large ocean circulation features, called eddies, at the northernmost edge of the sea ice pack in the Weddell Sea, off Antarctica. The eddy processes in this region play an important role in the circulation of the global ocean and the transportation of heat toward the pole. The large image is the first wide-swath, multi-frequency, multi-polarization radar image ever processed. To date, no other spaceborne radar sensors have obtained swaths exceeding 100 kilometers (62 miles) in width. This developmental image was produced at NASA's Jet Propulsion Laboratory by the Alaska SAR Facility's ScanSAR processor system, using radar data obtained on October 5, 1994, during the second flight of the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. The image is oriented approximately east-west, with a center location of around 56.6 degrees south latitude and 6.5 degrees west longitude. Image dimensions are 240 km by 350 km (149 miles by 218 miles). The smaller image inset (upper right edge) was obtained by SIR-C/X-SAR on October 6, 1994, and covers a portion of the same ice features that are shown in the large image. The inset image dimensions are 18 km by 50 km (11 miles by 31 miles). The ocean eddies have a clockwise (or cyclonic) rotation and are roughly 40 km to 60 km (25 miles to 37 miles) in diameter. The dark areas are new ice and the lighter green areas are small sea-ice floes that are swept along by surface currents; both of these areas are shown within the eddies and to the south of the eddies. First year seasonal ice, typically 0.5 meter to 0.8 meter (1.5 feet to 2.5 feet) thick, is shown in the darker green area in the lower right corner. The open ocean to the north

  6. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  7. Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Madsen, S. N.; Carsey, F. D.; Turtle, E. P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  8. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  9. Space Radar Image of Canberra, Australia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Australia's capital city, Canberra, is shown in the center of this spaceborne radar image. Images like this can help urban planners assess land use patterns. Heavily developed areas appear in bright patchwork patterns of orange, yellow and blue. Dense vegetation appears bright green, while cleared areas appear in dark blue or black. Located in southeastern Australia, the site of Canberra was selected as the capital in 1901 as a geographic compromise between Sydney and Melbourne. Design and construction of the city began in 1908 under the supervision of American architect Walter Burley-Griffin. Lake Burley-Griffin is located above and to the left of the center of the image. The bright pink area is the Parliament House. The city streets, lined with government buildings, radiate like spokes from the Parliament House. The bright purple cross in the lower left corner of the image is a reflection from one of the large dish-shaped radio antennas at the Tidbinbilla, Canberra Deep Space Network Communication Complex, operated jointly by NASA and the Australian Space Office. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 10, 1994, onboard the space shuttle Endeavour. The image is 28 kilometers by 25 kilometers (17 miles by 15 miles) and is centered at 35.35 degrees south latitude, 149.17 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Office of Mission to Planet Earth.

  10. Forest Profiling with Multiple Observation Interferometric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Chapman, B. D.; Dutra, L. V.; Dos Santos, J. R.; Goncalves, F. G.; Mura, J. C.; Freitas, C. D.; Graca, P. M.; Drake, J.

    2006-12-01

    Measurements of the vertical structure of forest vegetation bear on ecosystem state, such as biodiversity, carbon dynamics, and fire susceptibility, and the estimation of forest biomass. Global monitoring of vertical vegetation structure is one of the most important and as yet unrealized goals of forest remote sensing. The Interferometric Synthetic Aperture Radar (InSAR) phase and coherence observations are directly sensitive to the vertical distribution of electromagnetic dielectric in the forest medium. This dielectric distribution in turn depends on vegetation density as a function of the vertical coordinate. Multiple InSAR observations--multiple baseline, multiple frequency, and/or multiple polarization--must be used to uniquely estimate vegetation density profiles. This talk explains the need for multiple observation strategies and the benefits of multiple- baseline, multiple-frequency, and multiple-polarization strategies. Multiple baseline tropical forest profiles from C-band (wavelength=0.056 m) InSAR will be shown, as well as results from L-band (0.25 m) few-baseline observations over La Selva Biological Station, Costa Rica. Both surface-deformation measurements and those relevant to vertical-vegetation structure may result from a single InSAR mission design, provided, for example, that multiple nonzero baselines are flown along with the zero-baseline configuration preferred for deformation. The possibility of mutually improving the accuracy of deformation and structure in a simultaneous- measurement scenario will be discussed. There is also potential synergy with other remote sensing missions, such as the Tandem X InSAR mission, for delivering forest structure.

  11. Space Radar Image of Victoria, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-frequency spaceborne radar image shows the southern end of Vancouver Island on the west coast of Canada. The white area in the lower right is the city of Victoria, the capital of the province of British Columbia. The three radar frequencies help to distinguish different land use patterns. The bright pink areas are suburban regions, the brownish areas are forested regions, and blue areas are agricultural fields or forest clear-cuts. Founded in 1843 as a fur trading post, Victoria has grown to become one of western Canada's largest commercial centers. In the upper right is San Juan Island, in the state of Washington. The Canada/U.S. border runs through Haro Strait, on the right side of the image, between San Juan Island and Vancouver Island. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 6, 1994, onboard the space shuttle Endeavour. The area shown is 37 kilometers by 42 kilometers (23 miles by 26 miles) and is centered at 48.5 degrees north latitude, 123.3 degrees west longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and received; green is C-band, vertically transmitted and received; and blue is X-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  12. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France)

    PubMed Central

    Baghdadi, Nicolas; Aubert, Maelle; Cerdan, Olivier; Franchistéguy, Laurent; Viel, Christian; Martin, Eric; Zribi, Mehrez; Desprats, Jean François

    2007-01-01

    Soil moisture is a key parameter in different environmental applications, such as hydrology and natural risk assessment. In this paper, surface soil moisture mapping was carried out over a basin in France using satellite synthetic aperture radar (SAR) images acquired in 2006 and 2007 by C-band (5.3 GHz) sensors. The comparison between soil moisture estimated from SAR data and in situ measurements shows good agreement, with a mapping accuracy better than 3%. This result shows that the monitoring of soil moisture from SAR images is possible in operational phase. Moreover, moistures simulated by the operational Météo-France ISBA soil-vegetation-atmosphere transfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moisture estimates to validate its pertinence. The difference between ISBA simulations and radar estimates fluctuates between 0.4 and 10% (RMSE). The comparison between ISBA and gravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally, these results are very encouraging. Results show also that the soil moisture estimated from SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE) at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones.

  13. Rapid, Repeat-sample Monitoring of Crustal Deformations and Environmental Phenomena with the Uninhabited Aerial Vehicle Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Smith, Robert C.

    2006-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.

  14. Mesoscale Near-Surface Wind Speed Variability Mapping with Synthetic Aperture Radar.

    PubMed

    Young, George; Sikora, Todd; Winstead, Nathaniel

    2008-11-05

    Operationally-significant wind speed variability is often observed within synthetic aperture radar-derived wind speed (SDWS) images of the sea surface. This paper is meant as a first step towards automated distinguishing of meteorological phenomena responsible for such variability. In doing so, the research presented in this paper tests feature extraction and pixel aggregation techniques focused on mesoscale variability of SDWS. A sample of twenty eight SDWS images possessing varying degrees of near-surface wind speed variability were selected to serve as case studies. Gaussian high- and low-pass, local entropy, and local standard deviation filters performed well for the feature extraction portion of the research while principle component analysis of the filtered data performed well for the pixel aggregation. The findings suggest recommendations for future research.

  15. Remote sensing of atmospheric water vapor from synthetic aperture radar interferometry: case studies in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping

    2016-10-01

    The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.

  16. Analysis of Waveform Errors in Millimeter-Wave Lfmcw Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Wang, Wenqin

    2006-11-01

    In remote sensing applications, there is a special interest in the lightweight, cost effective, and high resolution imaging sensors. The combination of linearly frequency modulated continuous wave (LFMCW) technology and synthetic aperture radar (SAR) technique can lead to such a sensor. This paper concentrates on the analysis of waveform errors in millimeter-wave (MMW) LFMCW SAR. The generating scheme of millimeter-wave LFMCW waveforms with phase locked loop (PLL) and direct digital synthesizer (DDS) combined frequency synthesizer is investigated. The impacts of quantization errors, spurs, and frequency nonlinearities are analyzed. Simulation results show that the quality of LFMCW waveforms has a direct influence on the SAR images. Hence a scheme of frequency synthesizer to achieve high performance MMW LFMCW waveform is proposed. This synthesizer driven by a DDS array can adaptive suppress the spurious level without degradation of excellent frequency linearity and fast switching speed.

  17. Space radar image of Mauna Loa, Hawaii

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image of the Mauna Loa volcano on the Big Island of Hawaii shows the capability of imaging radar to map lava flows and other volcanic structures. Mauna Loa has erupted more than 35 times since the island was first visited by westerners in the early 1800s. The large summit crater, called Mokuaweoweo Caldera, is clearly visible near the center of the image. Leading away from the caldera (towards top right and lower center) are the two main rift zones shown here in orange. Rift zones are areas of weakness within the upper part of the volcano that are often ripped open as new magma (molten rock) approaches the surface at the start of an eruption. The most recent eruption of Mauna Loa was in March and April 1984, when segments of the northeast rift zones were active. If the height of the volcano was measured from its base on the ocean floor instead of from sea level, Mauna Loa would be the tallest mountain on Earth. Its peak (center of the image) rises more than 8 kilometers (5 miles) above the ocean floor. The South Kona District, known for cultivation of macadamia nuts and coffee, can be seen in the lower left as white and blue areas along the coast. North is toward the upper left. The area shown is 41.5 by 75 kilometers (25.7 by 46.5 miles), centered at 19.5 degrees north latitude and 155.6 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 36th orbit on October 2, 1994. The radar illumination is from the left of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). The resulting color combinations in this radar image are caused by differences in surface roughness of the lava flows. Smoother flows

  18. Analyses of Multi-Year Synthetic Aperture Radar Imagery of Dry-Fallen Intertidal Flats

    NASA Astrophysics Data System (ADS)

    Gade, M.; Melchionna, S.; Kemme, L.

    2015-04-01

    We analyzed a great deal of high-resolution Synthetic Aperture Radar (SAR) data of dry-fallen intertidal flats in the German Wadden Sea with respect to the imaging of sediments, macrophytes, and mussels. TerraSAR-X and Radarsat-2 images of five test areas along the German North Sea coast acquired between 2008 and 2013 form the basis for the present investigation and are used to demonstrate that pairs of SAR images, if combined through basic algebraic operations, can already provide useful indicators for morphological changes and for bivalve (oyster and mussel) beds. Depending on the type of sediment, but also on the water level and on environmental conditions (wind speed) exposed sediments may show up on SAR imagery as areas of enhanced, or reduced, radar backscattering. The (multi-temporal) analysis of series of such images allows for the detection of mussel beds, and our results show evidence that also single-acquisition, multi-polarization SAR imagery can be used for that purpose.

  19. Diffraction contrast imaging using virtual apertures.

    PubMed

    Gammer, Christoph; Burak Ozdol, V; Liebscher, Christian H; Minor, Andrew M

    2015-08-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast.

  20. The AdaptiSPECT Imaging Aperture

    PubMed Central

    Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577

  1. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This false-color L-band image of the Manaus region of Brazil was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 46 of the mission. The area shown is approximately 8 kilometers by 40 kilometers (5 by 25 miles). At the top of the image are the Solimoes and Rio Negro rivers just before they combine at Manaus to form the Amazon River. The image is centered at about 3 degrees south latitude, and 61 degrees west longitude. The false colors are created by displaying three L-band polarization channels; red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low returns at VV polarization; hence the bright blue colors of the smooth river surfaces. Using this coloring scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest. Between Rio Solimoes and Rio Negro a road can be seen running from some cleared areas (visible as blue rectangles north of Rio Solimoes) north towards a tributary of Rio Negro. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio

  2. Space Radar Image of Glascow, Missouri

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a false-color L-band image of an area near Glasgow, Missouri, centered at about 39.2 degrees north latitude and 92.8 degrees west longitude. The image was acquired using the L-band radar channel (horizontally transmitted and received and horizontally transmitted/vertically received) polarizations combined. The data were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 50 on October 3,1994. The area shown is approximately 37 kilometers by 25 kilometers (23 miles by 16 miles). The radar data, coupled with pre-flood aerial photography and satellite data and post-flood topographic and field data, are being used to evaluate changes associated with levee breaks in landforms, where deposits formed during the widespread flooding in 1993 along the Missouri and Mississippi Rivers. The distinct radar scattering properties of farmland, sand fields and scoured areas will be used to inventory floodplains along the Missouri River and determine the processes by which these areas return to preflood conditions. The image shows one such levee break near Glasgow, Missouri. In the upper center of the radar image, below the bend of the river, is a region covered by several meters of sand, shown as dark regions. West (left) of the dark areas, a gap in the levee tree canopy shows the area where the levee failed. Radar data such as these can help scientists more accurately assess the potential for future flooding in this region and how that might impact surrounding communities. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific

  3. Space Radar Image of Mississippi Delta

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the Mississippi River Delta where the river enters into the Gulf of Mexico along the coast of Louisiana. This multi-frequency image demonstrates the capability of the radar to distinguish different types of wetlands surfaces in river deltas. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 2, 1995. The image is centered on latitude 29.3 degrees North latitude and 89.28 degrees West longitude. The area shown is approximately 63 kilometers by 43 kilometers (39 miles by 26 miles). North is towards the upper right of the image. As the river enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid-continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil and the numerous bright spots along the outside of the delta are drilling platforms. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad red stripe running northwest to southeast down the left side of the image. The bright spots within the channel are ships. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; blue is X-band vertically transmitted, vertically received. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars

  4. Space Radar Image of Central Java, Indonesia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The summits of two large volcanoes in Central Java, Indonesia are shown in the center of this radar image. Lava flows of different ages and surface roughness appear in shades of green and yellow surrounding the summit of Mt. Merbabu (mid-center) and Mt. Merapi (lower center). Mt. Merapi erupted on November 28, 1994 about six weeks after this image was taken. The eruption killed more than 60 people and forced the evacuation of more than 6,000 others. Thousands of other residents were put on alert due to the possibility of volcanic debris mudflows, called lahars, that threatened nearby towns. Mt. Merapi is located approximately 40 kilometers (25 miles) north of Yogyakarta, the capital of Central Java. The older volcano at the top of the image is unnamed. Lake Rawapening is the dark blue feature in the upper right. The light blue area southeast of the lake is the city of Salatiga. Directly south of Salatiga and southeast of Mt. Merapi is the city of Boyolali. Scientists are studying Mt. Merapi as part of the international 'Decade Volcanoes' project, because of its recent activity and potential threat to local populations. The radar data are being used to identify and distinguish a variety of volcanic features. This image was acquired on October 10, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 7.5 degrees South latitude and 110.5 degrees East longitude and covers an area of 33 kilometers by 65 kilometers (20 miles by 40 miles).

  5. Space Radar Image of Sydney, Australia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image is dominated by the metropolitan area of Australia's largest city, Sydney. Sydney Harbour, with numerous coves and inlets, is seen in the upper center of the image, and the roughly circular Botany Bay is shown in the lower right. The downtown business district of Sydney appears as a bright white area just above the center of the image. The Sydney Harbour Bridge is a white line adjacent to the downtown district. The well-known Sydney Opera House is the small, white dot to the right of the bridge. Urban areas appear yellow, blue and brown. The purple areas are undeveloped areas and park lands. Manly, the famous surfing beach, is shown in yellow at the top center of the image. Runways from the Sydney Airport are the dark features that extend into Botany Bay in the lower right. Botany Bay is the site where Captain James Cook first landed his ship, Endeavour, in 1770. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 20, 1994, onboard the space shuttle Endeavour. The area shown is 33 kilometers by 38kilometers (20 miles by 23 miles) and is centered at 33.9 degrees south latitude, 151.2 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequenciesand polarizations as follows: red is L-band, vertically transmittedand horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band, vertically transmittedand received. SIR-C/X-SAR, a joint mission of the German, Italianand United States space agencies, is part of NASA's Mission to Planet Earth. #####

  6. Space Radar Image of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  7. Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10-microm band.

    PubMed

    Yoshikado, S; Aruga, T

    2000-03-20

    A trial one-dimensional (1-D) synthetic aperture infrared laser radar (SAILR) system for imaging static objects, with two CO(2) lasers as a transmitter and a local oscillator for heterodyne detection, was constructed. It has a single receiving aperture mounted on a linearly movable stage with a length of 1 m and a position accuracy of 1 microm. In an indoor short-range experiment to confirm the fundamental functions of the system and demonstrate its unique imaging process we succeeded in obtaining 1-D synthetic aperture images of close specular point targets with theoretically expected resolution.

  8. Two antenna, two pass interferometric synthetic aperture radar

    DOEpatents

    Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.

    2005-06-28

    A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.

  9. Radar image San Francisco Bay Area, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    preliminary nature of this image product. These artifacts will be removed after further data processing.

    This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian Space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 38 km (24 miles) by 71 km (44 miles) Location: 37.7 deg. North lat., 122.2 deg. West lon. Orientation: North to the upper right Original Data Resolution: 30 meters (99 feet) Date Acquired: February 16, 2000

  10. Space Radar Image of Kiluchevskoi, Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the

  11. Space Radar Image of Houston, Texas

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of Houston, Texas, shows the amount of detail that is possible to obtain using spaceborne radar imaging. Images such as this -- obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavor last fall -- can become an effective tool for urban planners who map and monitor land use patterns in urban, agricultural and wetland areas. Central Houston appears pink and white in the upper portion of the image, outlined and crisscrossed by freeways. The image was obtained on October 10, 1994, during the space shuttle's 167th orbit. The area shown is 100 kilometers by 60 kilometers (62 miles by 38 miles) and is centered at 29.38 degrees north latitude, 95.1 degrees west longitude. North is toward the upper left. The pink areas designate urban development while the green-and blue-patterned areas are agricultural fields. Black areas are bodies of water, including Galveston Bay along the right edge and the Gulf of Mexico at the bottom of the image. Interstate 45 runs from top to bottom through the image. The narrow island at the bottom of the image is Galveston Island, with the city of Galveston at its northeast (right) end. The dark cross in the upper center of the image is Hobby Airport. Ellington Air Force Base is visible below Hobby on the other side of Interstate 45. Clear Lake is the dark body of water in the middle right of the image. The green square just north of Clear Lake is Johnson Space Center, home of Mission Control and the astronaut training facilities. The black rectangle with a white center that appears to the left of the city center is the Houston Astrodome. The colors in this image were obtained using the follow radar channels: red represents the L-band (horizontally transmitted, vertically received); green represents the C-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted and received). Spaceborne Imaging Radar

  12. Mississippi Delta, Radar Image with Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for the animation

    About the animation: This simulated view of the potential effects of storm surge flooding on Lake Pontchartrain and the New Orleans area was generated with data from the Shuttle Radar Topography Mission. Although it is protected by levees and sea walls against storm surges of 18 to 20 feet, much of the city is below sea level, and flooding due to storm surges caused by major hurricanes is a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments.

    About the image: The geography of the New Orleans and Mississippi delta region is well shown in this radar image from the Shuttle Radar Topography Mission. In this image, bright areas show regions of high radar reflectivity, such as from urban areas, and elevations have been coded in color using height data also from the mission. Dark green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations.

    New Orleans is situated along the southern shore of Lake Pontchartrain, the large, roughly circular lake near the center of the image. The line spanning the lake is the Lake Pontchartrain Causeway, the world's longest over water highway bridge. Major portions of the city of New Orleans are below sea level, and although it is protected by levees and sea walls, flooding during storm surges associated with major hurricanes is a significant concern.

    Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  13. Space Radar Image of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR)are part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed

  14. Focus of attention for millimeter and ultra wideband synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yen, Li-Kang

    The major goal of this research is to develop efficient detectors for Synthetic Aperture Radar (SAR) images, exploiting the reflectivity characteristics of targets in different radar types. Target detection is a signal processing problem whereby one attempts to detect a stationary target embedded in background clutter while minimizing the false alarm probability. In radar signal processing, the better resolution provided by the Millimeter Wave (MMW) SAR enhances the detectability of small targets. As radar technology evolves, the newly developed Ultra Wideband (UWB) SAR provides better penetration capabilities to locate concealed targets in foliage. In this thesis we demonstrate that local intensity kernel tests can be formulated based on the generalized likelihood ratio test (GLRT), while preserving constant false alarm rate (CFAR) characteristics. Both the widely used two-parameter CFAR and the g -CFAR can be viewed as special cases of the local intensity tests with different intensity kernels. It is demonstrated that the first-order Gamma kernel is a good approximation for the principal eigenvector of the projected radial intensity of targets, which provides the optimal matching intensity kernel. This also explains the better performance of the g -CFAR detector over the two parameter CFAR detector. We also developed different CFAR subspace detectors for UWB images, utilizing a Laguerre function subspace. The driven response produced by natural clutter degrades the performance of these subspace detectors. In addition to the driven response, the distinguishing feature of metallic targets in UWB is the resonance response. Therefore, we further propose a two-stage detection scheme: g -CFAR detector followed by the quadratic Laguerre discriminator (QLD). We evaluate every detector and discriminator using ROC curves in a large area (about 2 km2) of imagery. The combined g -CFAR and quadratic Laguerre discriminator improve the simple Laguerre subspace detector more

  15. Optimization of synthetic aperture image quality

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Jensen, Jonas; Villagomez-Hoyos, Carlos A.; Stuart, Matthias B.; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-04-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generating high resolution SA images. Optimization of the image quality is mainly performed based on measures such as F-number, number of emissions and the aperture size. They are considered to be the most contributing acquisition factors in the quality of the high resolution images in SA. Therefore, the performance of image quality is quantified in terms of full-width at half maximum (FWHM) and the cystic resolution (CTR). The results of the study showed that SA imaging with only 32 emissions and maximum sweep angle of 22 degrees yields a very good image quality compared with using 256 emissions and the full aperture size. Therefore the number of emissions and the maximum sweep angle in the SA can be optimized to reach a reasonably good performance, and to increase the frame rate by lowering the required number of emissions. All the measurements are performed using the experimental SARUS scanner connected to a λ/2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned using the optimized parameters for the transducer. Measurements coincide with simulations.

  16. Multi-shot compressed coded aperture imaging

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Du, Juan; Wu, Tengfei; Jin, Zhenhua

    2013-09-01

    The classical methods of compressed coded aperture (CCA) still require an optical sensor with high resolution, although the sampling rate has broken the Nyquist sampling rate already. A novel architecture of multi-shot compressed coded aperture imaging (MCCAI) using a low resolution optical sensor is proposed, which is mainly based on the 4-f imaging system, combining with two spatial light modulators (SLM) to achieve the compressive imaging goal. The first SLM employed for random convolution is placed at the frequency spectrum plane of the 4-f imaging system, while the second SLM worked as a selecting filter is positioned in front of the optical sensor. By altering the random coded pattern of the second SLM and sampling, a couple of observations can be obtained by a low resolution optical sensor easily, and these observations will be combined mathematically and used to reconstruct the high resolution image. That is to say, MCCAI aims at realizing the super resolution imaging with multiple random samplings by using a low resolution optical sensor. To improve the computational imaging performance, total variation (TV) regularization is introduced into the super resolution reconstruction model to get rid of the artifacts, and alternating direction method of multipliers (ADM) is utilized to solve the optimal result efficiently. The results show that the MCCAI architecture is suitable for super resolution computational imaging using a much lower resolution optical sensor than traditional CCA imaging methods by capturing multiple frame images.

  17. Coded-aperture imaging in nuclear medicine

    NASA Technical Reports Server (NTRS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  18. Coded-aperture imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-11-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  19. Fast-neutron, coded-aperture imager

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  20. Space Radar Image of North Sea, Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band image of an oil slick experiment conducted in the North Sea, Germany. The image is centered at 54.58 degrees north latitude and 7.48 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 6, 1994, during the second flight of the spaceborne radar. The experiment was designed to differentiate between petroleum oil spills and natural slicks floating on the sea surface. Two types of petroleum oil and six types of oils resembling natural sea surface slicks were poured on the sea surface from ships and a helicopter just before the space shuttle flew over the region. At the bottom of the image is the Sylt peninsula, a famous holiday resort. Twenty-six gallons (100 liters) of diesel oil was dissipated due to wave action before the shuttle reached the site. The oil spill seen at the uppermost part of the image is about 105 gallons (400 liters) of heavy heating oil and the largest spill is about 58 gallons (220 liters) of oleyl alcohol, resembling a 'natural oil' like the remaining five spills used to imitate natural slicks that have occurred offshore from various states. The volume of these other oils spilled on the ocean surface during the five experimental spills varied from 16 gallons to 21 gallons (60 liters to 80 liters). The distance between neighboring spills was about half a mile (800 meters) at the most. The largest slick later thinned out to monomolecular sheets of about 10 microns, which is the dimension of a molecule. Oceanographers found that SIR-C/X-SAR was able to clearly distinguish the oil slicks from algae products dumped nearby. Preliminary indications are that various types of slicks may be distinguished, especially when other radar wavelengths are included in the analysis. Radar imaging of the world's oceans on a continuing basis may allow oceanographers in the future to detect and clean up oil spills much more

  1. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas

  2. Coherence estimation in synthetic aperture radar data based on speckle noise modeling.

    PubMed

    López-Martínez, Carlos; Pottier, Eric

    2007-02-01

    In the past we proposed a multidimensional speckle noise model to which we now include systematic phase variation effects. This extension makes it possible to define what is believed to be a novel coherence model able to identify the different sources of bias when coherence is estimated on multidimensional synthetic radar aperture (SAR) data. On the one hand, low coherence biases are basically due to the complex additive speckle noise component of the Hermitian product of two SAR images. On the other hand, the availability of the coherence model permits us to quantify the bias due to topography when multilook filtering is considered, permitting us to establish the conditions upon which information may be estimated independently of topography. Based on the coherence model, two coherence estimation approaches, aiming to reduce the different biases, are proposed. Results with simulated and experimental polarimetric and interferometric SAR data illustrate and validate both, the coherence model and the coherence estimation algorithms.

  3. On the importance of path for phase unwrapping in synthetic aperture radar interferometry.

    PubMed

    Osmanoglu, Batuhan; Dixon, Timothy H; Wdowinski, Shimon; Cabral-Cano, Enrique

    2011-07-01

    Phase unwrapping is a key procedure in interferometric synthetic aperture radar studies, translating ambiguous phase observations to topography, and surface deformation estimates. Some unwrapping algorithms are conducted along specific paths based on different selection criteria. In this study, we analyze six unwrapping paths: line scan, maximum coherence, phase derivative variance, phase derivative variance with branch-cut, second-derivative reliability, and the Fisher distance. The latter is a new path algorithm based on Fisher information theory, which combines the phase derivative with the expected variance to get a more robust path, potentially performing better than others in the case of low image quality. In order to compare only the performance of the paths, the same unwrapping function (phase derivative integral) is used. Results indicate that the Fisher distance algorithm gives better results in most cases.

  4. Observation of wave refraction at an ice edge by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.

    1991-01-01

    In this note the refraction of waves at the ice edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the ice cover was observed by SAR during the Labrador Ice Margin Experiment (LIMEX), conducted on the marginal ice zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an ice edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the ice cover. The observed variations of wave spectra from SAR near the ice edge are consistent with the model prediction of wave refraction at the ice edge due to the change of wave dispersion relation in ice developed by Liu and Mollo-Christensen (1988).

  5. Space Radar Image of Cape Cod, Massachusetts

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the famous 'hook' of Cape Cod, Massachusetts. The Cape, which juts out into the Atlantic Ocean about 100 kilometers (62 miles) southeast of Boston, actually consists of sandy debris left behind by the great continental ice sheets when they last retreated from southern New England about 20,000 years ago. Today's landscape consists of sandy forests, fields of scrub oak and other bushes and grasses, salt marshes, freshwater ponds, as well as the famous beaches and sand dunes. In this image, thickly forested areas appear green, marshes are dark blue, ponds and sandy areas are black, and developed areas are mostly pink. The dark L-shape in the lower center is the airport runways in Hyannis, the Cape's largest town. The dark X-shape left of the center is Otis Air Force Base. The Cape Cod Canal, above and left of center, connects Buzzards Bay on the left with Cape Cod Bay on the right. The northern tip of the island of Martha's Vineyard is seen in the lower left. The tip of the Cape, in the upper right, includes the community of Provincetown, which appears pink, and the protected National Seashore areas of sand dunes that parallel the Atlantic coast east of Provincetown. Scientists are using radar images like this one to study delicate coastal environments and the effects of human activities on the ecosystem and landscape. This image was acquired by Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 15, 1994. The image is 81.7 kilometers by 43.1 kilometers (50.7 miles by 26.7 miles) and is centered at 41.8 degrees north latitude, 70.3 degrees west longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted and received. SIR

  6. Three-dimensional radar imaging techniques and systems for near-field applications

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  7. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  8. Spaceborne radar observations: A guide for Magellan radar-image analysis

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.

    1989-01-01

    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high

  9. Space Radar Image of Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  10. Space Radar Image of Flevoland, Netherlands

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-frequency false color image of Flevoland, The Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard space shuttle Endeavour on April 14, 1994. It was produced by combining data from the X-band, C-band and L-band radars. The area shown is approximately 25 kilometers by 28 kilometers (15-1/2 by 17-1/2 miles). Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The changes in the brightness of the blue areas are equal to the changes in roughness. The dark blue areas are water and the small dots in the canal are boats. This SIR-C/X-SAR supersite is being used for both calibration and agricultural studies. Several soil and crop ground-truth studies will be conducted during the shuttle flight. In addition, about 10calibration devices and 10 corner reflectors have been deployed to calibrate and monitor the radar signal. One of these transponders can be seen as a bright star in the lower right quadrant of the image. This false-color image was made using L-band total power in the red channel, C-band total power in the green channel, and X-band VV polarization in the blue channel. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be

  11. Space Radar Image of Kliuchevskoi, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band seasonal image of the Maly Semlyachik volcano, which is part of the Karymsky volcano group on Kamchatka peninsula, Russia. The image is centered at 54.2 degrees north latitude and 159.6 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 9, 1994, during the first flight of the radar system, and on September 30, 1994, during the second flight. The image channels have been assigned the following colors: red corresponds to data acquired on April 9; green corresponds to data acquired on September 30; and blue corresponds to the ratio between data from April 9 and September 30, 1994. Kamchatka is twice as large as England, Scotland and Wales combined and is home to approximately 470,000 residents. The region is characterized by a chain of volcanoes stretching 800 kilometers (500 miles) across the countryside. Many of the volcanoes, including the active Maly Semlyachik volcano in this image, have erupted during this century. But the most active period in creating the three characteristic craters of this volcano goes back 20,000, 12,000 and 2,000 years ago. The highest summit of the oldest crater reaches about 1,560 meters (1,650 feet). The radar images reveal the geological structures of craters and lava flows in order to improve scientists' knowledge of these sometimes vigorously active volcanoes. This seasonal composite also highlights the ecological differences that have occurred between April and October 1994. In April the whole area was snow-covered and, at the coast, an ice sheet extended approximately 5 kilometers (3 miles) into the sea. The area shown surrounding the volcano is covered by low vegetation much like scrub. Kamchatka also has extensive forests, which belong to the northern frontier of Taiga, the boreal forest ecosystem. This region plays an important role in the world's carbon cycle. Trees require 60 years to

  12. Space Radar Image of Altona, Manitoba, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band seasonal image of the Altona test site in Manitoba, Canada, about 80 kilometers (50 miles) south of Winnipeg. The image is centered at approximately 49 degrees north latitude and 97.5 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 11, 1994, during the first flight of the radar system, and on October 2, 1994, during the second flight of SIR-C/X-SAR. The image channels have the following color assignments: red represents data acquired on April 11, 1994; green represents data acquired on October 2, 1994; blue represents the ratio of the two data sets. The test site is located in the Red River Basin and is characterized by rich farmland where a variety of crops are grown, including wheat, barley, canola, corn, sunflowers and sugar beets. This SIR-C/X-SAR research site is applying radar remote sensing to study the characteristics of vegetation and soil moisture. The seasonal comparison between the April and October 1994 data show the dramatic differences between surface conditions on the two dates. At the time of the April acquisition, almost all agricultural fields were bare and soil moisture levels were high. In October, however, soils were drier and while most crops had been harvested, some standing vegetation was still present. The areas which are cyan in color are dark in April and bright in October. These represent fields of standing biomass (amount of vegetation in a specified area) and the differences in brightness within these cyan fields represent differences in vegetation type. The very bright fields in October represent standing broadleaf crops such as corn, which had not yet been harvested. Other standing vegetation which has less biomass, such as hay and grain fields, are less bright. The magenta indicates bare soil surfaces which were wetter (brighter) in April than in October. The variations in brightness of

  13. Space Radar Image of Oberpfaffenhofen, Germany

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a false-color, three-frequency image of the Oberpfaffenhofen supersite, southwest of Munich in southern Germany, which shows the differences in what the three radar bands can see on the ground. The image covers a 27- by 36-kilometer (17- by 22-mile) area. The center of the site is 48.09 degrees north and 11.29 degrees east. The image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on April 13, 1994, just after a heavy storm which covered the all area with 20 centimeters (8 inches) of snow. The dark area in the center of the image is Lake Ammersee. The two smaller lakes above the Ammersee are the Worthsee and the Pilsensee. On the right of the image is the tip of the Starnbergersee. The outskirt of the city of Munich can be seen at the top of the image. The Oberpfaffenhofen supersite is the major test site for X-SAR calibration and scientific experiments such as ecology, hydrology and geology. This color composite image is a three-frequency overlay. L-band total power was assigned red, the C-band total power is shown in green and the X-band VV polarization appears blue. The colors on the image stress the differences between the L-band, C-band and X-band images. If the three frequencies were seeing the same thing, the image will appear in black and white. For example, the blue areas corresponds to area for which the X-band backscatter is relatively higher than the backscatter at L-and C-band; this behavior is characteristic of clear cuts or shorter vegetation. Similarly, the forested areas have a reddish tint. Finally, the green areas seen at the southern tip of both the Ammersee and the Pilsensee lakes indicate a marshy area. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR

  14. Lensless image scanner using multilayered aperture array for noncontact imaging

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki

    2016-10-01

    We propose a new imaging system of a simple structure that uses a set of layered aperture arrays above a linear image sensor instead of an imaging lens. The image scanner transfers the image information by detecting the scattering rays from the object directly without any collecting power, as if it were an optical stamp. Since the aperture arrays shield the stray rays propagating obliquely, the image information can be read with high resolution even if the object floats within a few millimeters. The aperture arrays with staggered alignment in two lines widen the space with the adjacent pixel without decimating information. We manufactured a prototype model of 300-dpi resolution, whose height is as little as 5 mm. The experimental result shows that ghost images can be restricted sufficiently, and our scanner can clearly read an object within a space of <3.5 mm, meaning that it has a large depth of field of 3.5 mm.

  15. Synthetic aperture acoustic imaging of non-metallic cords

    NASA Astrophysics Data System (ADS)

    Glean, Aldo A. J.; Good, Chelsea E.; Vignola, Joseph F.; Judge, John A.; Ryan, Teresa J.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2012-06-01

    This work presents a set of measurements collected with a research prototype synthetic aperture acoustic (SAA) imaging system. SAA imaging is an emerging technique that can serve as an inexpensive alternative or logical complement to synthetic aperture radar (SAR). The SAA imaging system uses an acoustic transceiver (speaker and microphone) to project acoustic radiation and record backscatter from a scene. The backscattered acoustic energy is used to generate information about the location, morphology, and mechanical properties of various objects. SAA detection has a potential advantage when compared to SAR in that non-metallic objects are not readily detectable with SAR. To demonstrate basic capability of the approach with non-metallic objects, targets are placed in a simple, featureless scene. Nylon cords of five diameters, ranging from 2 to 15 mm, and a joined pair of 3 mm fiber optic cables are placed in various configurations on flat asphalt that is free of clutter. The measurements were made using a chirp with a bandwidth of 2-15 kHz. The recorded signal is reconstructed to form a two-dimensional image of the distribution of acoustic scatterers within the scene. The goal of this study was to identify basic detectability characteristics for a range of sizes and configurations of non-metallic cord. It is shown that for sufficiently small angles relative to the transceiver path, the SAA approach creates adequate backscatter for detectability.

  16. Limitations of synthetic aperture laser optical feedback imaging.

    PubMed

    Glastre, Wilfried; Jacquin, Olivier; Hugon, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric

    2012-11-01

    In this paper we study the origin and the effect of amplitude and phase noise on laser optical feedback imaging associated with a synthetic aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise; it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal, and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce phase noise by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (radar, laser, or terahertz), especially when raw holograms are acquired point by point.

  17. Method and apparatus for contour mapping using synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Caro, E. R.; Wu, C. (Inventor)

    1985-01-01

    By using two SAR antennas spaced a known distance, B, and oriented at substantially the same look angle to illuminate the same target area, pixel data from the two antennas may be compared in phase to determine a difference delta phi from which a slant angle theta is determined for each pixel point from an equation Delta phi = (2 pi B/lambda)sin(theta - alpha), where lambda is the radar wavelength and alpha is the roll angle of the aircraft. The height, h, of each pixel point from the aircraft is determined from the equation h = R cos theta, and from the known altitude, a, of the aircraft above sea level, the altitude (elevation), a', of each point is determined from the difference a - h. This elevation data may be displayed with the SAR image by, for example, quantizing the elevation at increments of 100 feet starting at sea level, and color coding pixels of the same quantized elevation. The distance, d, of each pixel from the ground track of the aircraft used for the display may be determined more accurately from the equation d = R sin theta.

  18. Space Radar Image of Kliuchevskoi Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the bright white peak surrounded by red slopes in the lower left portion of the image. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 25th orbit on October 1, 1994. The image shows an area approximately 30 kilometers by 60 kilometers (18.5 miles by 37 miles) that is centered at 56.18 degrees north latitude and 160.78 degrees east longitude. North is toward the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the current activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). The Kamchatka River runs from left to right across the image. An older, dormant volcanic region appears in green on the north side of the river. The current eruption included massive ejections of gas, vapor and ash, which reached altitudes of 20,000 meters (65,000 feet). New lava flows are visible on the flanks of Kliuchevskoi, appearing yellow/green in the image, superimposed on the red surfaces in the lower center. Melting snow triggered mudflows on the north flank of the volcano, which may threaten agricultural zones and other settlements in the valley to the north. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars

  19. Space Radar Image of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the first calibrated, multi-frequency, multi-polarization spaceborne radar image of the seasonal sea-ice cover in the Weddell Sea, Antarctica. The multi-channel data provide scientists with details about the ice pack they cannot see any other way and indicates that the large expanse of sea-ice is, in fact, comprised of many smaller rounded ice floes, shown in blue-gray. These data are particularly useful in helping scientists estimate the thickness of the ice cover which is often extremely difficult to measure with other remote sensing systems. The extent, and especially thickness, of the polar ocean's sea-ice cover together have important implications for global climate by regulating the loss of heat from the ocean to the cold polar atmosphere. The image was acquired on October 3, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. This image is produced by overlaying three channels of radar data in the following colors: red (C-band, HH-polarization), green (L-band HV-polarization), and blue (L-band, HH-polarization). The image is oriented almost east-west with a center location of 58.2 degrees South and 21.6 degrees East. Image dimensions are 45 kilometers by 18 kilometers (28 miles by 11 miles). Most of the ice cover is composed of rounded, undeformed blue-gray floes, about 0.7 meters (2 feet) thick, which are surrounded by a jumble of red-tinged deformed ice pieces which are up to 2 meters (7 feet) thick. The winter cycle of ice growth and deformation often causes this ice cover to split apart, exposing open water or 'leads'. Ice growth within these openings is rapid due to the cold, brisk Antarctic atmosphere. Different stages of new-ice growth can be seen within the linear leads, resulting from continuous opening and closing. The blue lines within the leads are open water areas in new fractures which are roughened by wind. The bright red lines are an intermediate stage of new

  20. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; Lu, Daniel; Bollian, Tobias

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  1. Conventional and synthetic aperture processing for airborne ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Cameron, Robert M.; Simkins, William L.; Brown, Russell D.

    1994-07-01

    For the past four years Airborne Environmental Surveys, a division of Era Aviation, Inc., has used unique and patented airborne frequency modulated, continuous wave radars and processes for detection and mapping subsurface phenomena. Primary application has focused on the detection of manmade objects in landfills, hazardous waste sites (some of which contain unexploded ordnance), and subsurface plumes of refined free- floating hydrocarbons. Recently, MSB Technologies, Inc. has developed a form of synthetic aperture radar processing, called GPSAR, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars' coherent transmission and produces imagery that is better focused and more accurate in determining an object's range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.

  2. Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing.

    PubMed

    Fiori, Simone

    2003-01-01

    We present an overview of independent component analysis, an emerging signal processing technique based on neural networks, with the aim to provide an up-to-date survey of the theoretical streams in this discipline and of the current applications in the engineering area. We also focus on a particular application, dealing with a remote sensing technique based on synthetic aperture radar imagery processing: we briefly review the features and main applications of synthetic aperture radar and show how blind signal processing by neural networks may be advantageously employed to enhance the quality of remote sensing data.

  3. Extending interferometric synthetic aperture radar measurements from one to two dimensions

    NASA Astrophysics Data System (ADS)

    Bechor, Noah

    Interferometric synthetic aperture radar (InSAR), a very effective technique for measuring crustal deformation, provides measurements in only one dimension, along the radar line of sight. Imaging radar measurements from satellite-based systems are sensitive to both vertical and across-track displacements, but insensitive to along-track displacement. Multiple observations can resolve the first two components, but the along-track component remains elusive. The best existing method to obtain the along-track displacement involves pixel-level azimuth cross-correlation. The measurements are quite coarse (typically 15 cm precision), and they require large computation times. In contrast, across-track and vertical InSAR measurements can reach centimeter-level precision and are readily derived. We present a new method to extract along-track displacements from InSAR data. The new method, multiple aperture InSAR (MAI), is based on split-beam processing of InSAR data to create forward- and backward-looking interferograms. The phase difference between the two modified interferograms provides the along-track displacement component. Thus, from each conventional InSAR pair we extract two components of the displacement vector: one along the line of sight, the other in the along-track direction. Multiple MAI observations, either at two look angles or from the ascending and descending radar passes, then yield the three-dimensional displacement field. We analyze precision of our method by comparing our solution to GPS and offset-derived along-track displacements from interferograms of the M7.1 1999, Hector Mine earthquake. The RMS error between GPS displacements and our results ranges from 5 to 8.8cm. Our method is consistent with along-track displacements derived by pixel-offsets, themselves limited to 12-15cm precision. The theoretical MAI precision depends on SNR and coherence. For SNR=100 the expected precision is 3, 11cm for coherence of 0.8, 0.4, respectively. Finally, we

  4. Space Radar Image of Central Plain, Oman

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Bright, arc-shaped limestone hills and complex, branching drainage patterns dominate this three-frequency space radar image of a desert area in the north central plain of Oman. The hill along the left side of the image, called Jabal Fuhud, lies just south of the town of Fuhud, which appears as small bright rectangular features. The thin red lines that can be seen radiating out from this town are roads. The 'u'-shaped hill in the right center of the image is called Jabal Natih. Layers in the limestone appear as stripes which parallel the crest of the hill. This region is an active area of petroleum production because these geological structures form natural traps for oil and gas. The branching patterns on the image are ancient drainage channels that formed when the climate in this area was much wetter. Two large dry river channels, called wadis, appear on the image. Wadi Umayri is the yellow stripe at the lower right corner of the image. A second orange-colored wadi runs from right to left below the two sets of hills. The bright yellow patterns between the wadis are areas of bedrock covered with a thin layer of sand. These rocks would not be visible in conventional satellite images or photographs. This image is centered at 22.25 degrees north latitude, 56.58 degrees east longitude. The area shown is approximately 42 kilometers by 78 kilometers (26 miles by 48 miles). North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and vertically received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 10, 1994, on board the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  5. Synthetic Aperture Radar (sar) Based Classifiers for Land Applications in Germany

    NASA Astrophysics Data System (ADS)

    Suresh, G.; Gehrke, R.; Wiatr, T.; Hovenbitzer, M.

    2016-06-01

    Land cover information is essential for urban planning and for land cover change monitoring. This paper presents an overview of the work conducted at the Federal Agency for Cartography and Geodesy (BKG) with respect to Synthetic Aperture Radar (SAR) based land cover classification. Two land cover classification approaches using SAR images are reported in this paper. The first method involves a rule-based classification using only SAR backscatter intensity while the other method involves supervised classification of a polarimetric composite of the same SAR image. The LBM-DE has been used for training and validation of the SAR classification results. Images acquired from the Sentinel-1a satellite are used for classification and the results have been reported and discussed. The availability of Sentinel-1a images that are weather and daylight independent allows for the creation of a land cover classification system that can be updated and validated periodically, and hence, be used to assist other land cover classification systems that use optical data. With the availability of Sentinel-2 data, land cover classification combining Sentinel-1a and Sentinel-2 images present a path for the future.

  6. Integrating Radar Image Data with Google Maps

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  7. Space Radar Image of Karisoke & Virunga Volcanoes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a false-color composite of Central Africa, showing the Virunga volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. The image was acquired on October 3, 1994, on orbit 58 of the space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). In this image red is the L-band (horizontally transmitted, vertically received) polarization; green is the C-band (horizontally transmitted and received) polarization; and blue is the C-band (horizontally transmitted and received) polarization. The area is centered at about 2.4 degrees south latitude and 30.8 degrees east longitude. The image covers an area 56 kilometers by 70 kilometers (35 miles by 43 miles). The dark area at the top of the image is Lake Kivu, which forms the border between Zaire (to the right) and Rwanda (to the left). In the center of the image is the steep cone of Nyiragongo volcano, rising 3,465 meters (11,369 feet) high, with its central crater now occupied by a lava lake. To the left are three volcanoes, Mount Karisimbi, rising 4,500 meters (14,800 feet) high; Mount Sabinyo, rising 3,600 meters (12,000 feet) high; and Mount Muhavura, rising 4,100 meters (13,500 feet) high. To their right is Nyamuragira volcano, which is 3,053 meters (10,017 feet) tall, with radiating lava flows dating from the 1950s to the late 1980s. These active volcanoes constitute a hazard to the towns of Goma, Zaire and the nearby Rwandan refugee camps, located on the shore of Lake Kivu at the top left. This radar image highlights subtle differences in the vegetation of the region. The green patch to the center left of the image in the foothills of Karisimbi is a bamboo forest where the mountain gorillas live. The vegetation types in this area are an important factor in the habitat of mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce

  8. Space Radar Image of Oetzal, Austria

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image is a false-color composite of Oetzal, Austria located in the Central Alps centered at 46.8 degrees north latitude, 10.70 degrees east longitude, at the border between Switzerland (top), Italy (left) and Austria (right and bottom). The area shown is 50 kilometers (30 miles) south of Innsbruck, Austria. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 14th orbit. Oetztal is a SIR-C/X-SAR hydrology supersite. Approximately one quarter of this image is covered by glaciers, the largest of which, Gepatschferner, is visible as a triangular yellow patch in the center of the scene. The summits of the main peaks reach elevations between 3,500 and 3,768 meters (11,500 and 12,362 feet) above sea level. The tongues of the glaciers are descending from elevated plateaus down into narrow valleys which were formed during the last ice age. This color image was produced in C-band using multi-polarization information (red=CHV, green=CVV,blue=CVV/CHV). The blue areas are lakes (Gepatsch dam at center right; Lake Muta at top right) and glacier ice. The yellow areas are slopes facing the radar and areas of dry snow. Purple corresponds to slopes facing away from the radar. Yellow in the valley bottom corresponds to tree covered areas. There is 30 to 50 centimeters (12 to 20 inches) of dry, fresh snow on the glaciers, and about 10 centimeters (4 inches) in the valley at the city of Vent, Austria (center). At these data were taken, the weather was cold, with snow and thick fog. The entire area would appear white to an optical sensor because it is all covered under a winter snowpack. Researchers are interested in Oetztal because knowing how glaciers shrink and grow over time is an important indication of climatic change. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth (MTPE). The radars illuminate Earth with

  9. Battle Damage Assessment Using Inverse Synthetic Aperture Radar (ISAR)

    DTIC Science & Technology

    2004-12-01

    a. Part 1 - Define the radar parameters and Target Model. % b. Part 2 - Generate the blast effect on traslational motion. % c. Part...effect on traslational motion. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Aircraft Area Profile - Front and Side Areafront = 7.6416

  10. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    PubMed

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  11. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing

    PubMed Central

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-01

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343

  12. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    SciTech Connect

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

    1999-05-27

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

  13. Applying the Hough transform for detecting ground movers in synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Miller, J.; Linnehan, R.; Doerry, A.

    2016-05-01

    This paper describes the impact of ground target motion in Synthetic Aperture Radar (SAR) and video SAR mode imagery. The observations provide an approach for optimizing algorithms that detect moving targets by using only the magnitude of a SAR image. A slowly moving target at a constant velocity in the along-track direction or accelerating in the cross-track direction often generates a ridge of intensity that is distinguishable from the background clutter. The direction and location of a detected ridge provide information about the motion of the associated target. The ridge can be approximated as a linear feature and detected using the Hough transform. This approach acts as a complement to detecting the radar shadow of a moving target, improving detection probability. The method is robust enough to discriminate between a ridge associated with a moving target and false alarms due to vegetation, boulders, or stationary manmade objects. Simulated and flight test data collected by General Atomics Aeronautical Systems, Inc. (GA-ASI) validate the method.

  14. Determining the mixing of oil and sea water using polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Minchew, Brent

    2012-08-01

    Knowledge of the characteristics of spilled oil in the ocean is important for cleanup operations, predictions of the impact on wildlife, and studies of the nature of the ocean surface and currents. Herein I discuss a method for evaluating the characteristics of oil in a marine environment using synthetic aperture radar (SAR) and present a new, simple classification, called the oil/water mixing index (Mdex), to quickly assess the results. I link the Mdex results to the Bonn Agreement for Oil Appearance Codes (BAOAC) for aerial observers and demonstrate the Mdex on Uninhabited Aerial Vehicle SAR (UAVSAR) data collected June 23, 2010 over the former site of the Deepwater Horizon (DWH) drilling rig. The Mdex map shows a more heterogeneous oil swath than do radar backscatter images and features within the oil are consistent with features present in previously published, near-coincident optical imagery. The Mdex results indicate that most of the oil near the DWH was mixed with sea water to a minimum depth of a few millimeters, though some areas containing relatively thin films are observed.

  15. Space Radar Image of Taal Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of Taal volcano, near Manila on the island of Luzon in the Philippines. The black area in the center is Taal Lake, which nearly fills the 30-kilometer-diameter (18-mile) caldera. The caldera rim consists of deeply eroded hills and cliffs. The large island in Taal Lake, which itself contains a crater lake, is known as Volcano Island. The bright yellow patch on the southwest side of the island marks the site of an explosion crater that formed during a deadly eruption of Taal in 1965. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 78th orbit on October 5, 1994. The image shows an area approximately 56 kilometers by 112 kilometers (34 miles by 68 miles) that is centered at 14.0 degrees north latitude and 121.0 degrees east longitude. North is toward the upper right of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Since 1572, Taal has erupted at least 34 times. Since early 1991, the volcano has been restless, with swarms of earthquakes, new steaming areas, ground fracturing, and increases in water temperature of the lake. Volcanologists and other local authorities are carefully monitoring Taal to understand if the current activity may foretell an eruption. Taal is one of 15 'Decade Volcanoes' that have been identified by the volcanology community as presenting large potential hazards to population centers. The bright area in the upper right of the image is the densely populated city of Manila, only 50 kilometers (30 miles) north of the central crater. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth

  16. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This color composite C-band and L-band image of the Kilauea volcano on the Big Island of Hawaii was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) flying on space shuttle Endeavour. The city of Hilo can be seen at the top. The image shows the different types of lava flows around the crater Pu'u O'o. Ash deposits which erupted in 1790 from the summit of Kilauea volcano show up as dark in this image, and fine details associated with lava flows which erupted in 1919 and 1974 can be seen to the south of the summit in an area called the Ka'u Desert. In addition, the other historic lava flows created in 1881 and 1984 from Mauna Loa volcano (out of view to the left of this image) can be easily seen despite the fact that the surrounding area is covered by forest. Such information will be used to map the extent of such flows, which can pose a hazard to the subdivisions of Hilo. Highway 11 is the linear feature running from Hilo to the Kilauea volcano. The Kilauea volcano has been almost continuously active for more than the last 11 years. Field teams that were on the ground specifically to support these radar observations report that there was vigorous surface activity about 400 meters (one-quarter mile) inland from the coast. A moving lava flow about 200 meters (660 feet) in length was observed at the time of the shuttle overflight, raising the possibility that subsequent images taken during this mission will show changes in the landscape. This image is centered at 19.2 degrees north latitude and 155.2 degrees west longitude. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific

  17. Radar imaging of intense nonlinear Ekman divergence

    NASA Astrophysics Data System (ADS)

    Liu, Guoqiang; Perrie, William; Kudryavtsev, Vladimir; He, Yijun; Shen, Hui; Zhang, Biao; Hu, Haibo

    2016-09-01

    In general, given an oceanic thermal front, there is a strong positive correlation between sea surface temperature (SST) gradients and surface winds, and the marine atmospheric boundary layer is unstable over the warm side of the oceanic thermal front. The Gulf Stream is a notable example of an oceanic thermal front, and its warm side is often detected as enhanced backscatter in synthetic aperture radar (SAR) images. However, in some "anomalous" SAR images, low backscatter is sometimes observed on the warm side of the front, which seems inconsistent. Therefore, we propose a mechanism to interpret the generation of the low backscatter, based on interactions between ocean surface wind waves and intense nonlinear Ekman divergence. This mechanism is verified by showing that patterns in an observed anomalous SAR image are in good agreement with those in the simulated radar signature. In addition, this methodology and analysis demonstrate that SAR is potentially important for detecting and diagnosing small scale air-sea interactions and upper ocean dynamics with strong vertical transports induced by submesoscale processes.

  18. SPace Radar Image of Mt. Pinatubo, Philippines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a false color L-band and C-band image of the area around Mount Pinatubo in the Philippines, centered at about 15 degrees north latitude, 120.5 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 78 on April 13, 1994. The false-color composite is made by displaying the L-band HH return in red, the L-band HV return in green and the C-band HV return in blue. The area shown is approximately 45 by 68 kilometers (28 by 42 miles). The main volcanic crater on Mount Pinatubo produced by the June 1991 eruptions, and the steep slopes on the upper flanks of the volcano, are easily seen in this image. The red color on the high slopes show the rougher ash deposited during the 1991 eruption. The dark drainages are the smooth mudflows which continue to flood the river valleys after heavy rain. Radar images such as this one can be used to identify the areas flooded by mudflows, which are difficult to distinguish visually, and to assess the rate at which the erosion and deposition continues. A key aspect of the second SIR-C/X-SAR mission in August 1994 will be to collect a second image of Pinatubo during the summer monsoon season -- new mudflows will have occurred -- and to evaluate the short-term changes. The 1991 eruption of Mount Pinatubo in the Philippines is well known for its near-global effects on the atmosphere and climate due to the large amount of sulfur dioxide that was injected into the upper atmosphere. What is less widely known is that even today the volcano continues to be a major hazard to the people who have returned to the area around the volcano. Dangerous mudflows (called 'lahars') are often generated by heavy rains, and these can still sweep down river valleys and wash out roads and villages, or bury low lying areas in several meters of mud and volcanic debris. These mudflows will continue to be a severe hazard around Pinatubo for

  19. Space Radar Image of Colombian Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  20. Coherent synthetic imaging using multi-aperture scanning Fourier ptychography

    NASA Astrophysics Data System (ADS)

    Xie, Zongliang; Ma, Haotong; Qi, Bo; Ren, Ge

    2016-10-01

    The high resolution is what the synthetic aperture technique quests for. In this paper, we propose an approach of coherent synthetic imaging with sparse aperture systems using multi-aperture scanning Fourier ptychography algorithm, which can further improve the resolution of sparse aperture systems. The reported technique first acquires a series of raw images by scanning a sparse aperture system and then the captured images are used to synthesize a larger spectrum in the frequency domain using aperture-scanning Fourier ptychography algorithm. The system's traveling circumvent its diffraction limit so that a super-resolution image can be obtained. Numerical simulation demonstrates the validity. The technique proposed in this paper may find wide applications in synthetic aperture imaging and astronomy.

  1. Three-dimensional imaging using differential synthetic aperture interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Zhou, Yu; Sun, Jianfeng; Zhi, Ya'nan; Lu, Zhiyong; Xu, Qian; Sun, Zhiwei; Liu, Liren

    2014-09-01

    Synthetic aperture radar interferometry (InSAR) can gain three-dimensional topography with high spatial resolution and height accuracy using across track interferometry[1]. Conventional InSAR produce three-dimensional images from SAR data. But when the working wavelength transit from microwave to optical wave, the transmission antenna and receive antenna become very sensitive to platform vibration and beam quality[2]. Through differential receive antenna formation, we can relax the requirement of platform and laser using synthetic aperture imaging ladar (SAIL) concept[3]. Line-of-sight motion constraints are reduced by several orders of magnitude. We introduce two distinctive forms of antenna formation according to the position of interferogram. The first architecture can simplify the interferogram processing and phase extraction algorithm under time-division multiplex operation. The second architecture can process the 2D coordinate and height coordinate at the same time. Using optical diffraction theory, a systematic theory of side-looking SAIL is mathematically formulated and the necessary conditions for assuring a correct phase history are established[4]. Based on optical transformation and regulation of wavefront, a side-looking SAIL of two distinctive architectures is invented and the basic principle, systematic theory, design equations and necessary conditions are presented. It is shown that high height accuracy can be reached and the influences from atmospheric turbulence and unmodeled line-of-sight motion can be automatically compensated.

  2. Current Measurements in Rivers by Spaceborne Along-Track Interferometric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Romeiser, R.; Gruenler, S.; Stammer, D.

    2007-12-01

    The along-track interferometric synthetic aperture radar (along-track InSAR) technique permits a high-resolution imaging of ocean surface current fields all over the world from satellites. Results of the Shuttle Radar Topography Mission (SRTM) in early 2000 and theoretical findings indicate that spaceborne along-track InSARs are also suitable for current retrievals in rivers if the water surface is at least 200-300 m wide and sufficiently rough for microwave backscattering at slanting incidence. Accordingly, the technique is quite attractive for global river runoff monitoring, where it can complement water level and surface slope measurements by advanced radar altimeters and other efforts. The German satellite TerraSAR-X, which was launched in June 2007, will permit along-track interferometry in an experimental mode of operation. This will be the first opportunity for repeated current measurements from space at selected test sites during a period of several years. In this presentation we give an overview of basic principles and theoretical limits of current measurements by along-track InSAR, example results from SRTM, and predicted along-track InSAR capabilities of TerraSAR-X. An SRTM-derived surface current field in the lower Elbe river (Germany) agrees well with numerical hydrodynamic model results; characteristic lateral current variations around a pronounced main flow channel in the 1500 m wide river are resolved. Despite clearly suboptimal instrument parameters, TerraSAR-X simulations indicate an even better data quality. Depending on width, surface roughness, and relative flow direction of a river, current estimates with an accuracy better than 0.1 m/s will be possible with an effective spatial resolution of a few hundred meters to kilometers.

  3. Dual-sided coded-aperture imager

    DOEpatents

    Ziock, Klaus-Peter

    2009-09-22

    In a vehicle, a single detector plane simultaneously measures radiation coming through two coded-aperture masks, one on either side of the detector. To determine which side of the vehicle a source is, the two shadow masks are inverses of each other, i.e., one is a mask and the other is the anti-mask. All of the data that is collected is processed through two versions of an image reconstruction algorithm. One treats the data as if it were obtained through the mask, the other as though the data is obtained through the anti-mask.

  4. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  5. Space Radar Image of Mammoth, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The image on the left is a false-color composite of the Mammoth Mountain area in California's Sierra Nevada Mountains centered at 37.6 degrees north, 119.0 degrees west. It was acquired on-board the space shuttle Endeavour on its 67th orbit on April 13, 1994. In the image on the left, red is C-band HV-polarization, green is C-band HH-polarization and blue is the ratio of C-band VV-polarization to C-band HV-polarization. On the right is a classification map of the surface features which was developed by SIR-C/X-SAR science team members at the University of California, Santa Barbara. The area is about 23 by 46 kilometers (14 by 29 miles). In the classification image, the colors represent the following surfaces: White snow Red frozen lake, covered by snow Brown bare ground Blue lake (open water) Yellow short vegetation (mainly brush) Green sparse forest Dark green dense forest Maps like this one are helpful to scientists studying snow wetness and snow water equivalent in the snow pack. Across the globe, over major portions of the middle and high latitudes, and at high elevations in the tropical latitudes, snow and alpine glaciers are the largest contributors to run-off in rivers and to ground-water recharge. Snow hydrologists are using radar in an attempt to estimate both the quantity of water held by seasonal snow packs and the timing of snow melt. Snow and ice also play important roles in regional climates; understanding the processes in seasonal snow cover is also important for studies of the chemical balance of alpine drainage basins. SIR-C/X-SAR is a powerful tool because it is sensitive to most snow pack conditions and is less influenced by weather conditions than other remote sensing instruments, such as the Landsat satellite. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth

  6. Space Radar Image of Bebedauro, Brazil, seasonal

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band image showing seasonal changes at the hydrological test site of Bebedouro in Brazil. The image is centered at 9 degrees south latitude and 40.2 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994, during the first flight of the radar system, and on October 1, 1994, during the second mission. The swath width is approximately 16.5 kilometers (10.5 miles) wide. The image channels have the following color assignments: red represents data acquired on April 10; green represents data acquired on October 1; blue corresponds to the ratio of the two data sets. Agriculture plays an important economic and social role in Brazil. One of the major problems related to Brazilian agriculture is estimating the size of planting areas and their productivity. Due to cloud cover and the rainy season, which occurs from November through April, optical and infrared Earth observations are seldom used to survey the region. An additional goal of monitoring this region is to watch the floodplains of rivers like Rio Sao Francisco in order to determine suitable locations for additional agricultural fields. This area belongs to the semi-arid northeastern region of Brazil, where estimates have suggested that about 10 times more land could be used for agriculture, including some locations which could be used for irrigation projects. Monitoring of soil moisture during the important summer crop season is of high priority for the future development and productivity of this region. In April the area was covered with vegetation because of the moisture of the soil and only small differences could be seen in X-band data. In October the run-off channels of this hilly region stand out quite clearly because the greenish areas indicated much less soil moisture and water content in plants. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR

  7. An atlas of November 1978 synthetic aperture radar digitized imagery for oil spill studies

    NASA Technical Reports Server (NTRS)

    Maurer, H. E.; Oderman, W.; Crosswell, W. F.

    1982-01-01

    A data set is described which consists of digitized synthetic aperture radar (SAR) imagery plus correlative data and some preliminary analysis results. This data set should be of value to experimenters who are interested in the SAR instrument and its application to the detection and monitoring of oil on water and other distributed targets.

  8. Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning.

    PubMed

    Witomski, Arnaud; Lacot, Eric; Hugon, Olivier; Jacquin, Olivier

    2008-02-20

    We have improved the resolution of our laser optical feedback imaging (LOFI) setup by using a synthetic aperture (SA) process. We report a two-dimensional (2D) SA LOFI experiment where the unprocessed image (i.e., the classical LOFI image) is obtained point by point, line after line using full 2D galvanometric scanning. The 2D superresolved image is then obtained by successively computing two angular SA operations while a one-dimensional angular synthesis is preceded by a frequency synthesis to obtain a 2D superresolved image conventionally in the synthetic aperture radar (SAR) method and their corresponding laser method called synthetic aperture ladar. The numerical and experimental results are compared.

  9. Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters.

    PubMed

    Sadjadi, Firooz A; Mahalanobis, Abhijit

    2006-05-01

    We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.

  10. Exploiting synthetic aperture radar imagery for retrieving vibration signatures of concealed machinery

    NASA Astrophysics Data System (ADS)

    Pérez, Francisco; Campbell, Justin B.; Jaramillo, Monica; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2016-05-01

    It has been demonstrated that the instantaneous acceleration associated with vibrating objects that are directly imaged by synthetic aperture radar (SAR) can be estimated through the application of the discrete fractional Fourier transform (DFrFT) using the information contained in the complex SAR image. In general, vibration signatures may include, for example, the number of chirped sinusoids as well as their respective base frequencies and chirp rates. By further processing the DFrFT-processed data for clutter-noise rejection by means of pseudo- subspace methods, has been shown that the SAR-vibrometry method can be reliable as long as the signal-to-noise ratio (SNR) and the signal-to-clutter ratio (SCR) of the slow-time SAR signal at the range-line of interest exceeds 15dB. Meanwhile, the Nyquist theorem dictates that the maximum measurable vibration frequency is limited by half of the pulse-repetition frequency. This paper focuses on the detection and estimation of vibrations generated by machinery concealed within buildings and other structures. This is a challenging task in general because the vibration signatures of the source are typically altered by their housing structure; moreover, the SNR at the surface of the housing structure tends to be reduced. Here, experimental results for three different vibrating targets, including one concealed target, are reported using complex SAR images acquired by the General Atomics Lynx radar at resolutions of 1-ft and 4-in. The concealed vibrating target is actuated by a gear motor with an off-balance weight attached to it, which is enclosed by a wooden housing. The vibrations of the motor are transmitted to a chimney that extends above the housing structure. Using the SAR vibrometry approach, it is shown that it is possible to distinguish among the three vibrating objects based upon their vibration signatures.

  11. Inverse synthetic aperture radar processing using parametric time-frequency estimators Phase I

    SciTech Connect

    Candy, J.V., LLNL

    1997-12-31

    This report summarizes the work performed for the Office of the Chief of Naval Research (ONR) during the period of 1 September 1997 through 31 December 1997. The primary objective of this research was aimed at developing an alternative time-frequency approach which is recursive-in-time to be applied to the Inverse Synthethic Aperture Radar (ISAR) imaging problem discussed subsequently. Our short term (Phase I) goals were to: 1. Develop an ISAR stepped-frequency waveform (SFWF) radar simulator based on a point scatterer vehicular target model incorporating both translational and rotational motion; 2. Develop a parametric, recursive-in-time approach to the ISAR target imaging problem; 3. Apply the standard time-frequency short-term Fourier transform (STFT) estimator, initially to a synthesized data set; and 4. Initiate the development of the recursive algorithm. We have achieved all of these goals during the Phase I of the project and plan to complete the overall development, application and comparison of the parametric approach to other time-frequency estimators (STFT, etc.) on our synthesized vehicular data sets during the next phase of funding. It should also be noted that we developed a batch minimum variance translational motion compensation (TMC) algorithm to estimate the radial components of target motion (see Section IV). This algorithm is easily extended to recursive solution and will probably become part of the overall recursive processing approach to solve the ISAR imaging problem. Our goals for the continued effort are to: 1. Develop and extend a complex, recursive-in-time, time- frequency parameter estimator based on the recursive prediction error method (RPEM) using the underlying Gauss- Newton algorithms. 2. Apply the complex RPEM algorithm to synthesized ISAR data using the above simulator. 3. Compare the performance of the proposed algorithm to standard time-frequency estimators applied to the same data sets.

  12. Space Radar Image of Safsaf, North Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a false-color image of the uninhabited Safsaf Oasis in southern Egypt near the Egypt/Sudan border. It was produced from data obtained from the L-band and C-band radars that are part of the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on April 9, 1994. The image is centered at 22 degree north latitude, 29 degrees east longitude. It shows detailed structures of bedrock; the dark blue sinuous lines are braided channels that occupy part of an old broad river valley. On the ground and in optical photographs, this big valley and the channels in it are invisible because they are entirely covered by windblown sand. Some of these same channels were observed in SIR-A images in 1981. It is hypothesized that the large valley was carved by one of several ancient predecessor rivers that crossed this part of North Africa, flowing westward, tens of millions of years before the Nile River existed. The Nile flows north about 300 kilometers (200 miles) to the east. The small channels are younger, and probably formed during relatively wet climatic periods within the past few hundred thousand years. This image shows that the channels are in a river valley located in an area where U.S. Geological Survey geologists and archeologists discovered an unusual concentration of hand axes (stone tools) used by Early Man (Homo erectus) hundreds of thousands of years ago. The image clearly shows that in wetter times, the valley would have supported game animals and vegetation. Today, as a result of climate change, the area in uninhabited and lacks water except fora few scattered oases. This color composite image was produced from C-band and L-band horizontal polarization images. The C-band image was assigned red, the L-band (HH) polarization image is shown in green, and the ratio of these two images (LHH/CHH) appears in blue. The primary and composite colors on the image indicate the degree to which the C-band, H-band, their

  13. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang

    2015-01-01

    Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.

  14. On the detection of crevasses in glacial ice with synthetic-aperture radar.

    SciTech Connect

    Brock, Billy C.

    2010-02-01

    The intent of this study is to provide an analysis of the scattering from a crevasse in Antarctic ice, utilizing a physics-based model for the scattering process. Of primary interest is a crevasse covered with a snow bridge, which makes the crevasse undetectable in visible-light images. It is demonstrated that a crevasse covered with a snow bridge can be visible in synthetic-aperture-radar (SAR) images. The model of the crevasse and snow bridge incorporates a complex dielectric permittivity model for dry snow and ice that takes into account the density profile of the glacier. The surface structure is based on a fractal model that can produce sastrugi-like features found on the surface of Antarctic glaciers. Simulated phase histories, computed with the Shooting and Bouncing Ray (SBR) method, are processed into SAR images. The viability of the SBR method for predicting scattering from a crevasse covered with a snow bridge is demonstrated. Some suggestions for improving the model are given.

  15. Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.

    1994-01-01

    Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.

  16. Observations of the marine environment from spaceborne side-looking real aperture radars

    NASA Technical Reports Server (NTRS)

    Kalmykov, A. I.; Velichko, S. A.; Tsymbal, V. N.; Kuleshov, Yu. A.; Weinman, J. A.; Jurkevich, I.

    1993-01-01

    Real aperture, side looking X-band radars have been operated from the Soviet Cosmos-1500, -1602, -1766 and Ocean satellites since 1984. Wind velocities were inferred from sea surface radar scattering for speeds ranging from approximately 2 m/s to those of hurricane proportions. The wind speeds were within 10-20 percent of the measured in situ values, and the direction of the wind velocity agreed with in situ direction measurements within 20-50 deg. Various atmospheric mesoscale eddies and tropical cyclones were thus located, and their strengths were inferred from sea surface reflectivity measurements. Rain cells were observed over both land and sea with these spaceborne radars. Algorithms to retrieve rainfall rates from spaceborne radar measurements were also developed. Spaceborne radars have been used to monitor various marine hazards. For example, information derived from those radars was used to plan rescue operations of distressed ships trapped in sea ice. Icebergs have also been monitored, and oil spills were mapped. Tsunamis produced by underwater earthquakes were also observed from space by the radars on the Cosmos 1500 series of satellites. The Cosmos-1500 satellite series have provided all weather radar imagery of the earths surface to a user community in real time by means of a 137.4 MHz Automatic Picture Transmission channel. This feature enabled the radar information to be used in direct support of Soviet polar maritime activities.

  17. Oil Spill Dectection by Imaging Radars: Challenges and Pitfalls

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Zeng, Kan; Tang, DanLing

    2016-08-01

    Criteria for discriminating between radar signatures of oil films and oil-spill look-alikes visible on synthetic aperture radar (SAR) images of the sea surface are critically reviewed. The main challenge in oil spill detection using SAR is to discriminate between mineral oil films and biogenic slicks originating from secretions (exudations) of biota in the water column. The claim that oil spill detection algorithms based on measuring 1) the reduction of the normalized radar cross section (NRCS), 2) the differences in the geometry and shape of the surface films, and 3) the differences in texture have a high success rate is questioned. Furthermore, it is questioned that polarimetric SAR data are of great help for discriminating between mineral oil films and biogenic slicks. However, differences in the statistical behavior of the radar backscattering is expected due to the fact that, other than monomolecular biogenic surface films, mineral oil films can form multi-layers.

  18. Spaceborne Synthetic Aperture Radar (SAR) Doppler anomalies due to volcanic eruption induced phenomena

    NASA Astrophysics Data System (ADS)

    de Michele, Marcello; Raucoules, Daniel; Minet, Christian

    2015-04-01

    In the frame of the EU funded "MEDSUV" supersite project, we use multiple SAR data to investigate Doppler anomalies in the SAR signal occurring during volcanic eruptions. In Synthetic Aperture Radar, variations in the Electro Magnetic Waves travel time results in a change in the Doppler frequency that adds up to the one that is naturally generated by the relative motion between the platform and the ground targets. Within the SAR system, frequencies modulations control the image focusing along the two fundamental SAR directions, the azimuth (i.e. the platform motion direction) and the range (i. e. the sensor looking direction). During the synthetic aperture process (the so called image focusing) a target on the surface is seen along different paths. In standard focusing processing it is assumed both that ground targets are stationary and that between the sensor and the target the medium is the vacuum or a totally homogeneous medium. Therefore, if there is a significant path delay variation along the paths to a specific target this can result either in image defocusing or in pixel misregistration or both. It has been shown that SAR Doppler history anomalies can occur over volcanic areas. The goal of this study is to highlight Doppler history anomalies occurring during the SAR image formation over active volcanoes on a number of test cases. To do so, we apply a sub-aperture cross correlation algorithm on Single Look Complex data. Practically, we measure any pixel misregistration between two sub-looks of the same SAR acquisition. If a pixel shift occurs, it means that the expected radar wave path has been lengthened (or shortened) during the time when ground surface scatterers were illuminated by the sensor radiation either by a ground feature velocity (e. g. water flows, vehicles) or it is refracted by a strong medium discontinuity in the air (volcanic ash plume?). If a Doppler history anomaly is detected by the sub-aperture cross correlation, we try to explore

  19. Space Radar Image of Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a vertically polarized L-band image of the southern half of Moscow, an area which has been inhabited for 2,000 years. The image covers a diameter of approximately 50 kilometers (31 miles) and was taken on September 30, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour. The city of Moscow was founded about 750 years ago and today is home to about 8 million residents. The southern half of the circular highway (a road that looks like a ring) can easily be identified as well as the roads and railways radiating out from the center of the city. The city was named after the Moskwa River and replaced Russia's former capital, St. Petersburg, after the Russian Revolution in 1917. The river winding through Moscow shows up in various gray shades. The circular structure of many city roads can easily be identified, although subway connections covering several hundred kilometers are not visible in this image. The white areas within the ring road and outside of it are buildings of the city itself and it suburban towns. Two of many airports are located in the west and southeast of Moscow, near the corners of the image. The Kremlin is located north just outside of the imaged city center. It was actually built in the 16th century, when Ivan III was czar, and is famous for its various churches. In the surrounding area, light gray indicates forests, while the dark patches are agricultural areas. The various shades from middle gray to dark gray indicate different stages of harvesting, ploughing and grassland. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific

  20. Tissue harmonic synthetic aperture ultrasound imaging.

    PubMed

    Hemmsen, Martin Christian; Rasmussen, Joachim Hee; Jensen, Jørgen Arendt

    2014-10-01

    Synthetic aperture sequential beamforming (SASB) and tissue harmonic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a comparative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined with THI improves the image quality compared to DRF-THI. The major benefit of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for offline evaluation. The acquisition was made interleaved between methods, and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technology 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and penetration. In vivo scans were also performed for a visual comparison. The spatial resolution for SASB-THI is on average 19% better than DRI-THI, and the investigation of penetration showed equally good signal-to-noise ratio. In vivo B-mode scans were made and compared. The comparison showed that SASB-THI reduces the artifact and noise interference and improves image contrast and spatial resolution.

  1. Space Radar Image of Hong Kong, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-SAR image spanning an area of approximately 20 kilometers by 40 kilometers (12 miles by 25 miles) of the island of Hong Kong, the Kowloon Peninsula and the new territories in southern China, taken by the imaging radar on board the space shuttle Endeavour on October 4, 1994. North is toward the top left corner of the image. The Kaitak Airport runway on Kowloon Peninsula (center right of image) was built on reclaimed land and extends almost 3 kilometers (nearly 2 miles) into Victoria Harbor. To the south of the harbor lies the island of Hong Kong. The bright areas around the harbor are the major residential and business districts. Housing more than six million residents, Hong Kong is the most densely populated area in the world. The large number of objects visible in the harbor and surrounding waters are a variety of sea-going vessels, anchored in one of the busiest seaports in the Far East. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in

  2. Imaging performance of annular apertures. II - Line spread functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1978-01-01

    Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.

  3. Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation

    NASA Technical Reports Server (NTRS)

    Fielding, Eric J.; Talebian, M.; Rosen, P. A.; Nazari, H.; Jackson, J. A.; Ghorashi, M.; Walker, R.

    2005-01-01

    We use the interferometric correlation from Envisat synthetic aperture radar (SAR) images to map the details of the surface ruptures related to the 26 December 2003 earthquake that devastated Bam, Iran. The main strike-slip fault rupture south of the city of Bam has a series of four segments with left steps shown by a narrow line of low correlation in the coseismic interferogram. This also has a clear expression in the field because of the net extension across the fault. Just south of the city limits, the surface strain becomes distributed over a width of about 500 m, probably because of a thicker layer of soft sedimentary material.

  4. Space Radar Image of Mt. Rainer, Washington

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of Mount Rainier in Washington state. The volcano last erupted about 150 years ago and numerous large floods and debris flows have originated on its slopes during the last century. Today the volcano is heavily mantled with glaciers and snowfields. More than 100,000 people live on young volcanic mudflows less than 10,000 years old and, consequently, are within the range of future, devastating mudslides. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 20th orbit on October 1, 1994. The area shown in the image is approximately 59 kilometers by 60 kilometers (36.5 miles by 37 miles). North is toward the top left of the image, which was composed by assigning red and green colors to the L-band, horizontally transmitted and vertically, and the L-band, horizontally transmitted and vertically received. Blue indicates the C-band, horizontally transmitted and vertically received. In addition to highlighting topographic slopes facing the space shuttle, SIR-C records rugged areas as brighter and smooth areas as darker. The scene was illuminated by the shuttle's radar from the northwest so that northwest-facing slopes are brighter and southeast-facing slopes are dark. Forested regions are pale green in color; clear cuts and bare ground are bluish or purple; ice is dark green and white. The round cone at the center of the image is the 14,435-foot (4,399-meter) active volcano, Mount Rainier. On the lower slopes is a zone of rock ridges and rubble (purple to reddish) above coniferous forests (in yellow/green). The western boundary of Mount Rainier National Park is seen as a transition from protected, old-growth forest to heavily logged private land, a mosaic of recent clear cuts (bright purple/blue) and partially regrown timber plantations (pale blue). The prominent river seen curving away from the mountain at the top of the image (to the northwest) is the

  5. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  6. Synthetic aperture radar imagery of airports and surrounding areas: Philadelphia Airport

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.

    1990-01-01

    The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic Aperture Radar (SAR) data were collected at the Philadelphia Airport. These data and the results of the clutter study are described. This 13 km x 10 km scene was imaged at 9.38 GHz and HH-polarization and contained airport grounds and facilities (6 percent), industrial (14 percent), residential (14 percent), fields (10 percent), forest (8 percent), and water (33 percent). Incidence angles ranged from 40 to 84 deg. Even at the smallest incidence angles, the distributed targets such as forest, fields, water, and residential rarely had mean scattering coefficients greater than -10 dB. Eighty-seven percent of the image had scattering coefficients less than -17.5 dB. About 1 percent of the scattering coefficients exceeded 0 dB, with about 0.1 percent above 10 dB. Sources which produced the largest cross sections were largely confined to the airport grounds and areas highly industrialized. The largest cross sections were produced by observing broadside large buildings surrounded by smooth surfaces.

  7. Synthetic Aperture Radar Imagery of Airports and Surrounding Areas: Denver Stapleton International Airport

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.

    1990-01-01

    This is the third in a series of three reports which address the statistical description of ground clutter at an airport and in the surrounding area. These data are being utilized in a program to detect microbursts. Synthetic aperture radar (SAR) data were collected at the Denver Stapleton Airport using a set of parameters which closely match those which are anticipated to be utilized by an aircraft on approach to an airport. These data and the results of the clutter study are described. Scenes of 13 x 10 km were imaged at 9.38 GHz and HH-, VV-, and HV-polarizations, and contain airport grounds and facilities (up to 14 percent), cultural areas (more than 50 percent), and rural areas (up to 6 percent). Incidence angles range from 40 to 84 deg. At the largest depression angles the distributed targets, such as forest, fields, water, and residential, rarely had mean scattering coefficients greater than -10 dB. From 30 to 80 percent of an image had scattering coefficients less than -20 dB. About 1 to 10 percent of the scattering coefficients exceeded 0 dB, and from 0 to 1 percent above 10 dB. In examining the average backscatter coefficients at large angles, the clutter types cluster according to the following groups: (1) terminals (-3 dB), (2) city and industrial (-7 dB), (3) warehouse (-10 dB), (4) urban and residential (-14 dB), and (5) grass (-24 dB).

  8. Enhanced synthetic aperture radar automatic target recognition method based on novel features.

    PubMed

    Ning, Chen; Liu, Wenbo; Zhang, Gong; Yin, Jiejun; Ji, Xiuxia

    2016-11-01

    This paper proposes a set of uncommonly rich feature representations for automatic target recognition (ATR) in synthetic aperture radar (SAR) images. The proposed novel feature representations capture both the spatial and spectral properties of a target in a unified framework, while simultaneously offering discrimination and robustness to aspect variations. Specifically, the proposed features are mainly derived from the ideas of the monogenic signal and polar mapping. The applicability of the monogenic signal within the field of SAR target recognition is demonstrated by its capability of capturing both the broad spectral information and spatial localization with compact support. Further, to reduce the influence of inevitable variations due to aspect changes in SAR images, the monogenic components are transformed from Cartesian to polar coordinates through polar mapping. Additionally, a new target-shadow feature is also presented to compensate for the important discriminative information about target geometry, which exists in the shadow area. Finally, the proposed features are jointly considered into a unified multiple kernel learning framework for target recognition. Experiments on the moving and stationary target acquisition and recognition (MSTAR) public dataset demonstrate the strength and applicability of the proposed representations to SAR ATR. Moreover, it is also shown that overall high recognition accuracy can be obtained by the established unified framework.