Synthetic aperture integration (SAI) algorithm for SAR imaging
Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald
2013-07-09
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Radar studies related to the earth resources program. [remote sensing programs
NASA Technical Reports Server (NTRS)
Holtzman, J.
1972-01-01
The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.
Radar signal pre-processing to suppress surface bounce and multipath
Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald
2013-12-31
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Spot restoration for GPR image post-processing
Paglieroni, David W; Beer, N. Reginald
2014-05-20
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Buried object detection in GPR images
Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald
2014-04-29
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Spatially assisted down-track median filter for GPR image post-processing
Paglieroni, David W; Beer, N Reginald
2014-10-07
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Processing for spaceborne synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Lybanon, M.
1973-01-01
The data handling and processing in using synthetic aperture radar as a satellite-borne earth resources remote sensor is considered. The discussion covers the nature of the problem, the theory, both conventional and potential advanced processing techniques, and a complete computer simulation. It is shown that digital processing is a real possibility and suggests some future directions for research.
Radar systems for the water resources mission, volume 1
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.
Spatially adaptive migration tomography for multistatic GPR imaging
Paglieroni, David W; Beer, N. Reginald
2013-08-13
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Zero source insertion technique to account for undersampling in GPR imaging
Chambers, David H; Mast, Jeffrey E; Paglieroni, David W
2014-02-25
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Real-time system for imaging and object detection with a multistatic GPR array
Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M
2014-10-07
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrove, Cameron
For synthetic aperture radars radio frequency interference from sources external to the radar system and techniques to mitigate the interference can degrade the quality of the image products. Usually the radar system designer will try to balance the amount of mitigation for an acceptable amount of interference to optimize the image quality. This dissertation examines the effect of interference mitigation upon coherent data products of fine resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. New metricsmore » are applied to evaluate multiple mitigation techniques for image quality and average coherence. The underlying mechanism for interference mitigation techniques that affect coherence is revealed.« less
Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum
2017-10-17
The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.
Hughes integrated synthetic aperture radar: High performance at low cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayma, R.W.
1996-11-01
This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8more » figs.« less
APQ-102 imaging radar digital image quality study
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1982-01-01
A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.
Synthetic aperture radar and digital processing: An introduction
NASA Technical Reports Server (NTRS)
Dicenzo, A.
1981-01-01
A tutorial on synthetic aperture radar (SAR) is presented with emphasis on digital data collection and processing. Background information on waveform frequency and phase notation, mixing, Q conversion, sampling and cross correlation operations is included for clarity. The fate of a SAR signal from transmission to processed image is traced in detail, using the model of a single bright point target against a dark background. Some of the principal problems connected with SAR processing are also discussed.
Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn;
2016-01-01
Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.
Radar systems for a polar mission, volume 1
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.
1977-01-01
The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.
Real-time multiple-look synthetic aperture radar processor for spacecraft applications
NASA Technical Reports Server (NTRS)
Wu, C.; Tyree, V. C. (Inventor)
1981-01-01
A spaceborne synthetic aperture radar (SAR) having pipeline multiple-look data processing is described which makes use of excessive azimuth bandwidth in radar echo signals to produce multiple-looking images. Time multiplexed single-look image lines from an azimuth correlator go through an energy analyzer which analyzes the mean energy in each separate look to determine the radar antenna electric boresight for use in generating the correct reference functions for the production of high quality SAR images. The multiplexed single look image lines also go through a registration delay to produce multi-look images.
NASA Astrophysics Data System (ADS)
Dobrynchenko, VV; Kokorinand, IS; Shebalkova, LV
2018-03-01
The authors discuss applicability of synthesized aperture radars to monitorthe ground surface displacement in mineral mining areas in terms of a synthesized-aperture interferometric radar. The operation principle of the interferometric method is demonstrated on studies of the ground surface displacements in areas of oil and gas reservoirs. The advantages of the synthetic aperture radar are substantiated.
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.
1996-01-01
This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.
National Radar Conference, Los Angeles, CA, March 12, 13, 1986, Proceedings
NASA Astrophysics Data System (ADS)
The topics discussed include radar systems, radar subsystems, and radar signal processing. Papers are presented on millimeter wave radar for proximity fuzing of smart munitions, a solid state low pulse power ground surveillance radar, and the Radarsat prototype synthetic-aperture radar signal processor. Consideration is also given to automatic track quality assessment in ADT radar systems instrumentation of RCS measurements of modulation spectra of aircraft blades.
NASA Astrophysics Data System (ADS)
Bergeron, Alain; Turbide, Simon; Terroux, Marc; Marchese, Linda; Harnisch, Bernd
2017-11-01
The quest for real-time high resolution is of prime importance for surveillance applications specially in disaster management and rescue mission. Synthetic aperture radar provides meter-range resolution images in all weather conditions. Often installed on satellites the revisit time can be too long to support real-time operations on the ground. Synthetic aperture lidar can be lightweight and offers centimeter-range resolution. Onboard airplane or unmanned air vehicle this technology would allow for timelier reconnaissance. INO has developed a synthetic aperture radar table prototype and further used a real-time optronic processor to fulfill image generation on-demand. The early positive results using both technologies are presented in this paper.
NASA Astrophysics Data System (ADS)
Murata, Koji; Murano, Kosuke; Watanabe, Issei; Kasamatsu, Akifumi; Tanaka, Toshiyuki; Monnai, Yasuaki
2018-02-01
We experimentally demonstrate see-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing. The application of terahertz waves to radar has received increasing attention in recent years for its potential to high-resolution and see-through detection. Among others, the implementation using a leaky-wave antenna is promising for compact system integration with beam steering capability based on frequency sweep. However, the use of a leaky-wave antenna poses a challenge on signal processing. Since a leaky-wave antenna combines the entire signal captured by each part of the aperture into a single output, the conventional array signal processing assuming access to a respective antenna element is not applicable. In this paper, we apply an iterative recovery algorithm "CoSaMP" to signals acquired with terahertz leaky-wave radar for clutter mitigation and aperture synthesis. We firstly demonstrate see-through detection of target location even when the radar is covered with an opaque screen, and therefore, the radar signal is disturbed by clutter. Furthermore, leveraging the robustness of the algorithm against noise, we also demonstrate 3D reconstruction of distributed targets by synthesizing signals collected from different orientations. The proposed approach will contribute to the smart implementation of terahertz leaky-wave radar.
Radar data processing and analysis
NASA Technical Reports Server (NTRS)
Ausherman, D.; Larson, R.; Liskow, C.
1976-01-01
Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.
NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission
NASA Astrophysics Data System (ADS)
Hoffman, James P.; Shaffer, Scott; Perkovic-Martin, Dragana
2016-05-01
The National Aeronautics and Space Administration (NASA) in the United States and the Indian Space Research Organization (ISRO) have partnered to develop an Earth-orbiting science and applications mission that exploits synthetic aperture radar to map Earth's surface every 12 days or less. To meet demanding coverage, sampling, and accuracy requirements, the system was designed to achieve over 240 km swath at fine resolution, and using full polarimetry where needed. To address the broad range of disciplines and scientific study areas of the mission, a dual-frequency system was conceived, at L-band (24 cm wavelength) and S-band (10 cm wavelength). To achieve these observational characteristics, a reflector-feed system is considered, whereby the feed aperture elements are individually sampled to allow a scan-on-receive ("SweepSAR") capability at both L-band and S-band. The instrument leverages the expanding capabilities of on-board digital processing to enable real-time calibration and digital beamforming. This paper describes the mission characteristics, current status of the L-band Synthetic Aperture Radar (L-SAR) portion of the instrument, and the technology development efforts in the United States that are reducing risk on the key radar technologies needed to ensure proper SweepSAR operations.
Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.
2015-01-01
The USGS has compiled a continuous, cloud-free 12.5-meter resolution radar mosaic of SAR data of approximately 212,000 square kilometers to examine the suitability of this technology for geologic mapping. This mosaic was created from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data collected from 2007 to 2010 spanning the Kahiltna terrane and the surrounding area. Interpretation of these data may help geologists understand past geologic processes and identify areas with potential for near-surface mineral resources for further ground-based geological and geochemical investigations.
Wildey, R.L.
1980-01-01
An economical method of digitally extracting sea-wave spectra from synthetic-aperture radar-signal records, which can be performed routinely in real or near-real time with the reception of telemetry from Seasat satellites, would be of value to a variety of scientific disciplines. This paper explores techniques for such data extraction and concludes that the mere fact that the desired result is devoid of phase information does not, of itself, lead to a simplification in data processing because of the nature of the modulation performed on the radar pulse by the backscattering surface. -from Author
Radar image processing module development program, phase 3
NASA Technical Reports Server (NTRS)
1977-01-01
The feasibility of using charge coupled devices in an IPM for processing synthetic aperture radar signals onboard the NASA Convair 990 (CV990) aircraft was demonstrated. Radar data onboard the aircraft was recorded and processed using a CCD sampler and digital tape recorder. A description of equipment and testing was provided. The derivation of the digital presum filter was documented. Photographs of the sampler/tape recorder, real time display and circuit boards in the IPM were also included.
NASA Technical Reports Server (NTRS)
Stroke, G. W.
1972-01-01
Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.
SEASAT views oceans and sea ice with synthetic aperture radar
NASA Technical Reports Server (NTRS)
Fu, L. L.; Holt, B.
1982-01-01
Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.
NASA Technical Reports Server (NTRS)
Thompson, T. W.
1983-01-01
Airborne synthetic aperture radars and scatterometers are operated with the goals of acquiring data to support shuttle imaging radars and support ongoing basic active microwave remote sensing research. The aircraft synthetic aperture radar is an L-band system at the 25-cm wavelength and normally operates on the CV-990 research aircraft. This radar system will be upgraded to operate at both the L-band and C-band. The aircraft scatterometers are two independent radar systems that operate at 6.3-cm and 18.8-cm wavelengths. They are normally flown on the C-130 research aircraft. These radars will be operated on 10 data flights each year to provide data to NASA-approved users. Data flights will be devoted to Shuttle Imaging Radar-B (SIR-B) underflights. Standard data products for the synthetic aperture radars include both optical and digital images. Standard data products for the scatterometers include computer compatible tapes with listings of radar cross sections (sigma-nought) versus angle of incidence. An overview of these radars and their operational procedures is provided by this user's manual.
Airborne Radar Interferometric Repeat-Pass Processing
NASA Technical Reports Server (NTRS)
Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.
2011-01-01
Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.
Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho
2017-01-01
A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036
NASA Technical Reports Server (NTRS)
Smith, Robert C.
2006-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.
SAR Processing Based On Two-Dimensional Transfer Function
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.
1994-01-01
Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.
Unmanned Aircraft Systems (UAS) Sensor and Targeting
2010-07-27
4.7.1 Objective. The objective of this subtest is to determine the detection performance of the Synthetic Aperture Radar (SAR) with the radar...Detection SAR – Synthetic Aperture Radar 4.7.3 Data Required. Section 5.1 outlines general test data required. The following additional data may...m – meter No. – Number PC – Probability of Classification SAR – Synthetic Aperture Radar 4.8.3 Data Required. Section 5.1 outlines
NASA Astrophysics Data System (ADS)
Turpin, Terry M.; Lafuse, James L.
1993-02-01
ImSynTM is an image synthesis technology, developed and patented by Essex Corporation. ImSynTM can provide compact, low cost, and low power solutions to some of the most difficult image synthesis problems existing today. The inherent simplicity of ImSynTM enables the manufacture of low cost and reliable photonic systems for imaging applications ranging from airborne reconnaissance to doctor's office ultrasound. The initial application of ImSynTM technology has been to SAR processing; however, it has a wide range of applications such as: image correlation, image compression, acoustic imaging, x-ray tomographic (CAT, PET, SPECT), magnetic resonance imaging (MRI), microscopy, range- doppler mapping (extended TDOA/FDOA). This paper describes ImSynTM in terms of synthetic aperture microscopy and then shows how the technology can be extended to ultrasound and synthetic aperture radar. The synthetic aperture microscope (SAM) enables high resolution three dimensional microscopy with greater dynamic range than real aperture microscopes. SAM produces complex image data, enabling the use of coherent image processing techniques. Most importantly SAM produces the image data in a form that is easily manipulated by a digital image processing workstation.
Radar image enhancement and simulation as an aid to interpretation and training
NASA Technical Reports Server (NTRS)
Frost, V. S.; Stiles, J. A.; Holtzman, J. C.; Dellwig, L. F.; Held, D. N.
1980-01-01
Greatly increased activity in the field of radar image applications in the coming years demands that techniques of radar image analysis, enhancement, and simulation be developed now. Since the statistical nature of radar imagery differs from that of photographic imagery, one finds that the required digital image processing algorithms (e.g., for improved viewing and feature extraction) differ from those currently existing. This paper addresses these problems and discusses work at the Remote Sensing Laboratory in image simulation and processing, especially for systems comparable to the formerly operational SEASAT synthetic aperture radar.
Examples of current radar technology and applications, chapter 5, part B
NASA Technical Reports Server (NTRS)
1975-01-01
Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.
Radar Based Navigation in Unknown Terrain
2012-12-31
localization and mapping ( SLAM ) approach. The radar processing algorithms detect strong, persistent, and stationary reflectors embedded in the...Global System for Mobile Communications . . . . . . . . . 2 LIDAR Light Detection and Ranging . . . . . . . . . . . . . . . . 2 SAR Synthetic Aperture...22 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 25 FDM Frequency Division Multiplexing
A VLSI implementation for synthetic aperture radar image processing
NASA Technical Reports Server (NTRS)
Premkumar, A.; Purviance, J.
1990-01-01
A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory.
NASA Astrophysics Data System (ADS)
Tian, Biao; Liu, Yang; Xu, Shiyou; Chen, Zengping
2014-01-01
Interferometric inverse synthetic aperture radar (InISAR) imaging provides complementary information to monostatic inverse synthetic aperture radar (ISAR) imaging. This paper proposes a new InISAR imaging system for space targets based on wideband direct sampling using two antennas. The system is easy to realize in engineering since the motion trajectory of space targets can be known in advance, which is simpler than that of three receivers. In the preprocessing step, high speed movement compensation is carried out by designing an adaptive matched filter containing speed that is obtained from the narrow band information. Then, the coherent processing and keystone transform for ISAR imaging are adopted to reserve the phase history of each antenna. Through appropriate collocation of the system, image registration and phase unwrapping can be avoided. Considering the situation not to be satisfied, the influence of baseline variance is analyzed and compensation method is adopted. The corresponding size can be achieved by interferometric processing of the two complex ISAR images. Experimental results prove the validity of the analysis and the three-dimensional imaging algorithm.
NASA Astrophysics Data System (ADS)
Ranney, Kenneth; Phelan, Brian; Sherbondy, Kelly; Kirose, Getachew; Smith, Gregory; Clark, John; Harrison, Arthur; Ressler, Marc; Nguyen, Lam; Narayanan, Ram
2017-05-01
A new, versatile, UHF/L band, ultrawideband (UWB), vehicle-mounted radar system developed at the U.S. Army Research Laboratory (ARL) has recently been exercised at an arid U.S. test site. The unique switching scheme implemented to record data from all receive channels is described, along with the current calibration procedure. Radar and global positioning system (GPS) data collected in both forwardand side-looking configurations are processed, and synthetic aperture radar (SAR) images are formed. Results are presented for various target emplacement scenarios.
Estimating Elevation Angles From SAR Crosstalk
NASA Technical Reports Server (NTRS)
Freeman, Anthony
1994-01-01
Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.
Addendum to proceedings of the 1978 Synthetic Aperture Radar Technology Conference
NASA Technical Reports Server (NTRS)
1978-01-01
Various research projects on synthetic aperture radar are reported, including SAR calibration techniques. Slot arrays, sidelobe suppression, and wide swaths on satellite-borne radar were examined. The SAR applied to remote sensing was also considered.
Mathematical modeling and SAR simulation multifunction SAR technology efforts
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
The orbital SAR (synthetic aperture radar) simulation data was used in several simulation efforts directed toward advanced SAR development. Efforts toward simulating an operational radar, simulation of antenna polarization effects, and simulation of SAR images at serveral different wavelengths are discussed. Avenues for improvements in the orbital SAR simulation and its application to the development of advanced digital radar data processing schemes are indicated.
SEASAT synthetic-aperture radar data user's manual
NASA Technical Reports Server (NTRS)
Pravdo, S. H.; Huneycutt, B.; Holt, B. M.; Held, D. N.
1983-01-01
The SEASAT Synthetic-Aperture Radar (SAR) system, the data processors, the extent of the image data set, and the means by which a user obtains this data are described and the data quality is evaluated. The user is alerted to some potential problems with the existing volume of SEASAT SAR image data, and allows him to modify his use of that data accordingly. Secondly, the manual focuses on the ultimate focuses on the ultimate capabilities of the raw data set and evaluates the potential of this data for processing into accurately located, amplitude-calibrated imagery of high resolution. This allows the user to decide whether his needs require special-purpose data processing of the SAR raw data.
2018-03-01
offset designs . Particularly, the proposed CA-CFO is compared with uniform linear array and uniform frequency offset (ULA-UFO). Uniform linear array...and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing (Grant No. N00014-13-1-0061) Submitted to...Contents 1. Executive Summary …………………………………………………………………………. 1 1.1. Generalized Co-Prime Array Design ………………………………………………… 1 1.2. Wideband
An acceleration framework for synthetic aperture radar algorithms
NASA Astrophysics Data System (ADS)
Kim, Youngsoo; Gloster, Clay S.; Alexander, Winser E.
2017-04-01
Algorithms for radar signal processing, such as Synthetic Aperture Radar (SAR) are computationally intensive and require considerable execution time on a general purpose processor. Reconfigurable logic can be used to off-load the primary computational kernel onto a custom computing machine in order to reduce execution time by an order of magnitude as compared to kernel execution on a general purpose processor. Specifically, Field Programmable Gate Arrays (FPGAs) can be used to accelerate these kernels using hardware-based custom logic implementations. In this paper, we demonstrate a framework for algorithm acceleration. We used SAR as a case study to illustrate the potential for algorithm acceleration offered by FPGAs. Initially, we profiled the SAR algorithm and implemented a homomorphic filter using a hardware implementation of the natural logarithm. Experimental results show a linear speedup by adding reasonably small processing elements in Field Programmable Gate Array (FPGA) as opposed to using a software implementation running on a typical general purpose processor.
Design considerations for eye-safe single-aperture laser radars
NASA Astrophysics Data System (ADS)
Starodubov, D.; McCormick, K.; Volfson, L.
2015-05-01
The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.
NASA Technical Reports Server (NTRS)
Mehlis, J. G.
1976-01-01
Results of an implementation study for a synthetic aperture radar for the space shuttle orbiter are described. The overall effort was directed toward the determination of the feasibility and usefulness of a multifrequency, multipolarization imaging radar for the shuttle orbiter. The radar is intended for earth resource monitoring as well as oceanographic and marine studies.
Generation of topographic terrain models utilizing synthetic aperture radar and surface level data
NASA Technical Reports Server (NTRS)
Imhoff, Marc L. (Inventor)
1991-01-01
Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.
NASA Astrophysics Data System (ADS)
An, L.; Zhang, J.; Gong, L.
2018-04-01
Playing an important role in gathering information of social infrastructure damage, Synthetic Aperture Radar (SAR) remote sensing is a useful tool for monitoring earthquake disasters. With the wide application of this technique, a standard method, comparing post-seismic to pre-seismic data, become common. However, multi-temporal SAR processes, are not always achievable. To develop a post-seismic data only method for building damage detection, is of great importance. In this paper, the authors are now initiating experimental investigation to establish an object-based feature analysing classification method for building damage recognition.
Space shuttle search and rescue experiment using synthetic aperture radar
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.; Larson, R. W.; Zelenka, J. S.
1977-01-01
The feasibility of a synthetic aperture radar for search and rescue applications was demonstrated with aircraft experiments. One experiment was conducted using the ERIM four-channel radar and several test sites in the Michigan area. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system. An orbital experiment to demonstrate the application of synthetic aperture radar to search and rescue is proposed using the space shuttle.
Development of a ground signal processor for digital synthetic array radar data
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.
Interferometric synthetic aperture radar (InSAR)—its past, present and future
Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.
2007-01-01
Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.
A SEASAT-A synthetic aperture imaging radar system
NASA Technical Reports Server (NTRS)
Jordan, R. L.; Rodgers, D. H.
1975-01-01
The SEASAT, a synthetic aperture imaging radar system is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100 km swath with 25m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems. The end to end data system described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data requiring the use of an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground is described as well as the selected solutions to the problems.
Experiment in Onboard Synthetic Aperture Radar Data Processing
NASA Technical Reports Server (NTRS)
Holland, Matthew
2011-01-01
Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.
Ionospheric effects on synthetic aperture radar at VHF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.
1997-02-01
Synthetic aperture radars (SAR) operated from airplanes have been used at VHF because of their enhanced foliage and ground penetration compared to radars operated at UHF. A satellite-borne VHF SAR would have considerable utility but in order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. The presence of the ionosphere in the propagation path of the radar will cause a deterioration of the imaging because of dispersion over the bandwidth and group path changes in the imaged area over the collection aperture. In this paper we present calculations ofmore » the effects of a deterministic ionosphere on SAR imaging for a radar operated with a 100 MHz bandwidth centered at 250 MHz and over an angular aperture of 23{degrees}. The ionosphere induces a point spread function with an approximate half-width of 150 m in the slant-range direction and of 25 m in the cross-range direction compared to the nominal resolution of 1.5 m in both directions.« less
Ionospheric Specifications for SAR Interferometry (ISSI)
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco
2013-01-01
The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.
NASA Astrophysics Data System (ADS)
Sun, Qingyang; Shu, Ting; Tang, Bin; Yu, Wenxian
2018-01-01
A method is proposed to perform target deception jamming against spaceborne synthetic aperture radar. Compared with the traditional jamming methods using deception templates to cover the target or region of interest, the proposed method aims to generate a verisimilar deceptive target in various attitude with high fidelity using the electromagnetic (EM) scattering. Based on the geometrical model for target deception jamming, the EM scattering data from the deceptive target was first simulated by applying an EM calculation software. Then, the proposed jamming frequency response (JFR) is calculated offline by further processing. Finally, the deception jamming is achieved in real time by a multiplication between the proposed JFR and the spectrum of intercepted radar signals. The practical implementation is presented. The simulation results prove the validity of the proposed method.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar
NASA Technical Reports Server (NTRS)
Constaninides, N. J.; Bicknell, T. J. (Inventor)
1980-01-01
A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.
Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander
2008-01-01
The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments. PMID:27879759
Apodized RFI filtering of synthetic aperture radar images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin Walter
2014-02-01
Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFImore » Filtering (ARF).« less
Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths
NASA Technical Reports Server (NTRS)
Jain, A. (Inventor)
1982-01-01
A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.
Poro-elastic Rebound Along the Landers 1992 Earthquake Surface Rupture
NASA Technical Reports Server (NTRS)
Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.
1998-01-01
Maps of post-seismic surface displacement after the 1992, Landers, California earthquake, generated by interferometric processing of ERS-1 Synthetic Aperture Radar (SAR) images, reveal effects of various deformation processes near the 1992 surface rupture.
Fisheries imaging radar surveillance test /FIRST/ - Bering Sea test
NASA Technical Reports Server (NTRS)
Woods, E. G.; Ivey, J. H.
1977-01-01
A joint NOAA, U.S. Coast Guard and NASA program is being conducted to determine if a synthetic aperture radar (SAR) system, such as planned for NASA's SEASAT, can be useful in monitoring fishing vessels within the newly established 200-mile fishing limit. As part of this program, data gathering field operations were conducted over concentrations of foreign fishing vessels in the Bering Sea off Alaska in April 1976. The Jet Propulsion Laboratory developed synthetic aperture L-band radar which was flown aboard the NASA Convair 990 aircraft, with a Coast Guard cutter and C-130 aircraft simultaneously gathering data to provide both radar imagery and sea truth information on the vessels being imaged. Results indicate that synthetic aperture radar systems have potential for all weather detection, enumeration and classification of fishing vessels.
USDA-ARS?s Scientific Manuscript database
L-band airborne synthetic aperture radar observations were made over California shrublands to better understand the effects by soil and vegetation parameters on backscatter. Temporal changes in radar backscattering coefficient (s0) of up to 3 dB were highly correlated to surface soil moisture but no...
NASA Technical Reports Server (NTRS)
2008-01-01
A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.
NASA Technical Reports Server (NTRS)
Marthaler, J. G.; Heighway, J. E.
1979-01-01
An iceberg detection and identification system consisting of a moderate resolution Side Looking Airborne Radar (SLAR) interfaced with a Radar Image Processor (RIP) based on a ROLM 1664 computer with a 32K core memory updatable to 64K is described. The system can be operated in high- or low-resolution sampling modes. Specifically designed algorithms are applied to digitized signal returns to provide automatic target detection and location, geometrically correct video image display and data recording. The real aperture Motorola AN/APS-94D SLAR operates in the X-band and is tunable between 9.10 and 9.40 GHz; its output power is 45 kW peak with a pulse repetition rate of 750 pulses per hour. Schematic diagrams of the system are provided, together with preliminary test data.
NASA Oceanic Processes Program, Fiscal Year 1981
NASA Technical Reports Server (NTRS)
1982-01-01
Summaries are included for Nimbus 7, Seasat, TIROS-N, Altimetry, Color Radiometry, in situ data collection systems, Synthetic Aperture Radar (SAR)/Open Ocean, SAR/Sea Ice, Scatterometry, National Oceanic Satellite System, Free Flying Imaging Radar Experiment, TIROS-N/Scatterometer and/or ocean color scanner, and Ocean Topography Experiment. Summaries of individual research projects sponsored by the Ocean Processes Program are given. Twelve investigations for which contracting services are provided by NOAA are included.
Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung; Curlander, John C.
1991-01-01
Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.
DBSAR's First Multimode Flight Campaign
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Buenfil, Manuel; Geist, Alessandro; Hilliard, Lawrence; Racette, Paul
2010-01-01
The Digital Beamforming SAR (DBSAR) is an airborne imaging radar system that combines phased array technology, reconfigurable on-board processing and waveform generation, and advances in signal processing to enable techniques not possible with conventional SARs. The system exploits the versatility inherently in phased-array technology with a state-of-the-art data acquisition and real-time processor in order to implement multi-mode measurement techniques in a single radar system. Operational modes include scatterometry over multiple antenna beams, Synthetic Aperture Radar (SAR) over several antenna beams, or Altimetry. The radar was flight tested in October 2008 on board of the NASA P3 aircraft over the Delmarva Peninsula, MD. The results from the DBSAR system performance is presented.
Multibeam synthetic aperture radar for global oceanography
NASA Technical Reports Server (NTRS)
Jain, A.
1979-01-01
A single-frequency multibeam synthetic aperture radar concept for large swath imaging desired for global oceanography is evaluated. Each beam iilluminates a separate range and azimuth interval, and images for different beams may be separated on the basis of the Doppler spectrum of the beams or their spatial azimuth separation in the image plane of the radar processor. The azimuth resolution of the radar system is selected so that the Doppler spectrum of each beam does not interfere with the Doppler foldover due to the finite pulse repetition frequency of the radar system.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2016-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2017-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.
Homeland Security: Unmanned Aerial Vehicles and Border Surveillance
2010-07-08
outfit the Predator B with a synthetic aperture radar (SAR) system17 and a moving target indicator (MTI) radar. Adding SAR and MTI to the Predator B’s...Predator Squadrons,” Inside the Air Force, June 7, 2002. 17 For more information about Synthetic Aperture Radar, see http://www.sandia.gov/radar...contributed to the seizing of more than 22,000 pounds of marijuana and the apprehension of 5,000 illegal immigrants,” others disagree.24 “Unmanned aircraft
NASA Astrophysics Data System (ADS)
Liang, Cunren; Zeng, Qiming; Jia, Jianying; Jiao, Jian; Cui, Xi'ai
2013-02-01
Scanning synthetic aperture radar (ScanSAR) mode is an efficient way to map large scale geophysical phenomena at low cost. The work presented in this paper is dedicated to ScanSAR interferometric processing and its implementation by making full use of existing standard interferometric synthetic aperture radar (InSAR) software. We first discuss the properties of the ScanSAR signal and its phase-preserved focusing using the full aperture algorithm in terms of interferometry. Then a complete interferometric processing flow is proposed. The standard ScanSAR product is decoded subswath by subswath with burst gaps padded with zero-pulses, followed by a Doppler centroid frequency estimation for each subswath and a polynomial fit of all of the subswaths for the whole scene. The burst synchronization of the interferometric pair is then calculated, and only the synchronized pulses are kept for further interferometric processing. After the complex conjugate multiplication of the interferometric pair, the residual non-integer pulse repetition interval (PRI) part between adjacent bursts caused by zero padding is compensated by resampling using a sinc kernel. The subswath interferograms are then mosaicked, in which a method is proposed to remove the subswath discontinuities in the overlap area. Then the following interferometric processing goes back to the traditional stripmap processing flow. A processor written with C and Fortran languages and controlled by Perl scripts is developed to implement these algorithms and processing flow based on the JPL/Caltech Repeat Orbit Interferometry PACkage (ROI_PAC). Finally, we use the processor to process ScanSAR data from the Envisat and ALOS satellites and obtain large scale deformation maps in the radar line-of-sight (LOS) direction.
UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.
Radar image and data fusion for natural hazards characterisation
Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong
2010-01-01
Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.
Differential Optical Synthetic Aperture Radar
Stappaerts, Eddy A.
2005-04-12
A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.
NASA Technical Reports Server (NTRS)
Webb, F.; Hensley, S.; Rosen, P.; Langbein, J.
1994-01-01
The results using interferometric synthetic aperture radar(SAR) to measure the co-seismic displacement from the June 28, 1992 Landers earthquake suggest that this technique may be applicable to other problems in crustal deformation.
X-SAR: The X-band synthetic aperture radar on board the Space Shuttle
NASA Technical Reports Server (NTRS)
Werner, Marian U.
1993-01-01
The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.
EISCAT Aperture Synthesis Imaging (EASI _3D) for the EISCAT_3D Project
NASA Astrophysics Data System (ADS)
La Hoz, Cesar; Belyey, Vasyl
2012-07-01
Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. The underlying physico-mathematical principles of the technique are the same as the technique employed in radioastronomy to image stellar objects; both require sophisticated inversion techniques to obtain reliable images.
Future of synthetic aperture radar
NASA Technical Reports Server (NTRS)
Barath, F. T.
1978-01-01
The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.
Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping
NASA Technical Reports Server (NTRS)
Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas
2010-01-01
During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.
Acousto-Optic Processing of 2-D Signals Using Temporal and Spatial Integration.
1983-05-31
Documents includes data on: Architectures; Coherence Properties of Pulsed Laser Diodes; Acousto - optic device data; Dynamic Range Issues; Image correlation; Synthetic aperture radar; 2-D Fourier transform; and Moments.
Dynamic imaging and RCS measurements of aircraft
NASA Astrophysics Data System (ADS)
Jain, Atul; Patel, Indu
1995-01-01
Results on radar cross section (RCS) measurements and inverse synthetic aperture radar images of a Mooney 231 aircraft using a ground-to-air measurement system (GTAMS) and a KC-135 airplane using an airborne radar are presented. The Mooney 231 flew in a controlled path in both clockwise and counterclockwise orbits, and successively with the gear down, flaps in the take-off position and with the speed brakes up. The data indicates that RCS pattern measurements from both ground-based and airborne radar of flying aircraft are useful and that the inverse synthetic aperture radar (ISAR) images obtained are valuable for signature diagnostics.
Optimal sampling and quantization of synthetic aperture radar signals
NASA Technical Reports Server (NTRS)
Wu, C.
1978-01-01
Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.
Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.
Shen, Shijian; Nie, Xin; Zhang, Xinggan
2018-02-03
Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.
NASA Astrophysics Data System (ADS)
Nguyen, Lam
2017-05-01
The U.S. Army Research Laboratory (ARL) recently designed and tested a new prototype radar, the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar system, based on a stepped-frequency architecture to address issues associated with our previous impulse-based radars. This is a low-frequency ultra-wideband (UWB) radar with frequencies spanning from 300 to 2000 MHz. Mounted on a vehicle, the radar can be configured in either sidelooking or forward-looking synthetic aperture radar (SAR) mode. We recently conducted our first experiment at Yuma Proving Grounds (YPG). This paper summarizes the radar configurations, parameters, and SAR geometry. The radar data and other noise sources, to include the self-interference signals and radio-frequency interference (RFI) noise sources, are presented and characterized in both the raw (pre-focus) and SAR imagery domains. This paper also describes our signal processing techniques for extracting noise from radar data, as well as the SAR imaging algorithms for forming SAR imagery in both forward- and side-looking modes. Finally, this paper demonstrates our spectral recovery technique and results for a radar operating in a spectrally restricted environment.
Space Radar Image of Kilauea, Hawaii - Interferometry 1
1999-05-01
This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. http://photojournal.jpl.nasa.gov/catalog/PIA01763
Determining Snow Depth Using Airborne Multi-Pass Interferometric Synthetic Aperture Radar
2013-09-01
relatively low resolution 10m DEM of the survey area was obtained from the USDA NAIP and then geocorrected to match the SAR image area. Centered on...Propulsion Laboratory LiDAR Light Detection and Ranging METAR Meteorological reporting observations medivac Medical Evacuation NASA National...Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X- SAR) mission was a joint National Aeronautical and Space Administration ( NASA
Hybrid space-airborne bistatic SAR geometric resolutions
NASA Astrophysics Data System (ADS)
Moccia, Antonio; Renga, Alfredo
2009-09-01
Performance analysis of Bistatic Synthetic Aperture Radar (SAR) characterized by arbitrary geometric configurations is usually complex and time-consuming since system impulse response has to be evaluated by bistatic SAR processing. This approach does not allow derivation of general equations regulating the behaviour of image resolutions with varying the observation geometry. It is well known that for an arbitrary configuration of bistatic SAR there are not perpendicular range and azimuth directions, but the capability to produce an image is not prevented as it depends only on the possibility to generate image pixels from time delay and Doppler measurements. However, even if separately range and Doppler resolutions are good, bistatic SAR geometries can exist in which imaging capabilities are very poor when range and Doppler directions become locally parallel. The present paper aims to derive analytical tools for calculating the geometric resolutions of arbitrary configuration of bistatic SAR. The method has been applied to a hybrid bistatic Synthetic Aperture Radar formed by a spaceborne illuminator and a receiving-only airborne forward-looking Synthetic Aperture Radar (F-SAR). It can take advantage of the spaceborne illuminator to dodge the limitations of monostatic FSAR. Basic modeling and best illumination conditions have been detailed in the paper.
NASA Astrophysics Data System (ADS)
Tao, Qiuxiang; Gao, Tengfei; Liu, Guolin; Wang, Zhiwei
2017-04-01
The external digital elevation model (DEM) error is one of the main factors that affect the accuracy of mine subsidence monitored by two-pass differential interferometric synthetic aperture radar (DInSAR), which has been widely used in monitoring mining-induced subsidence. The theoretical relationship between external DEM error and monitored deformation error is derived based on the principles of interferometric synthetic aperture radar (DInSAR) and two-pass DInSAR. Taking the Dongtan and Yangcun mine areas of Jining as test areas, the difference and accuracy of 1:50000, ASTER GDEM V2, and SRTM DEMs are compared and analyzed. Two interferometric pairs of Advanced Land Observing Satellite Phased Array L-band SAR covering the test areas are processed using two-pass DInSAR with three external DEMs to compare and analyze the effect of three external DEMs on monitored mine subsidence in high- and low-coherence subsidence regions. Moreover, the reliability and accuracy of the three DInSAR-monitored results are compared and verified with leveling-measured subsidence values. Results show that the effect of external DEM on mine subsidence monitored by two-pass DInSAR is not only related to radar look angle, perpendicular baseline, slant range, and external DEM error, but also to the ground resolution of DEM, the magnitude of subsidence, and the coherence of test areas.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.
2008-01-01
The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.
A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar
NASA Technical Reports Server (NTRS)
Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete;
2016-01-01
Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.
Reflectometric measurement of plasma imaging and applications
NASA Astrophysics Data System (ADS)
Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.
2012-01-01
Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.
Unmanned Aircraft Systems: A Logical Choice for Homeland Security Support
2011-12-01
UAS] has contributed to the seizure of more than 15,000 pounds of marijuana and the apprehension of more than 4,000 undocumented people.”6 Also, CBP...technology includes transponders, electro-optical, infrared radar, and synthetic aperture radar. Although each type of technology has advantages and...addition, the video and synthetic aperture radar capabilities on UAS can be used to provide imagery of river basins in support of flood response efforts
GMES Sentinel-1 Analysis of Marine Applications Potential (AMAP)
2008-10-01
Synthetic Aperture Radar (EUSAR 2008), 2 to 5 June 2008, Friedrichshafen, Germany. Vol. 1, 179-182. VDE Verlag, Berlin, ISBN 978-3-8007-3084-1...European Conference on Synthetic Aperture Radar (EUSAR 2008), on CD-ROM. 2 to 5 June 2008, Friedrichshafen, Germany. Vol. 2, 257-260. VDE Verlag
Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena
2013-01-01
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804
Computational burden resulting from image recognition of high resolution radar sensors.
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena
2013-04-22
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.
Synthetic aperture radar range - Azimuth ambiguity design and constraints
NASA Technical Reports Server (NTRS)
Mehlis, J. G.
1980-01-01
Problems concerning the design of a system for mapping a planetary surface with a synthetic aperture radar (SAR) are considered. Given an ambiguity level, resolution, and swath width, the problems are related to the determination of optimum antenna apertures and the most suitable pulse repetition frequency (PRF). From the set of normalized azimuth ambiguity ratio curves, the designer can arrive at the azimuth antenna length, and from the sets of normalized range ambiguity ratio curves, he can arrive at the range aperture length or pulse repetition frequency. A procedure based on this design method is shown in an example. The normalized curves provide results for a SAR using a uniformly or cosine weighted rectangular antenna aperture.
Computer simulation of a multiple-aperture coherent laser radar
NASA Astrophysics Data System (ADS)
Gamble, Kevin J.; Weeks, Arthur R.
1996-06-01
This paper presents the construction of a 2D multiple aperture coherent laser radar simulation that is capable of including the effects of the time evolution of speckle on the laser radar output. Every portion of a laser radar system is modeled in software, including quarter and half wave plates, beamsplitters (polarizing and non-polarizing), the detector, the laser source, and all necessary lenses. Free space propagation is implemented using the Rayleigh- Sommerfeld integral for both orthogonal polarizations. Atmospheric turbulence is also included in the simulation and is modeled using time correlated Kolmogorov phase screens. The simulation itself can be configured to simulate both monostatic and bistatic systems. The simulation allows the user to specify component level parameters such as extinction ratios for polarizing beam splitters, detector sizes and shapes. orientation of the slow axis for quarter/half wave plates and other components used in the system. This is useful from a standpoint of being a tool in the design of a multiple aperture laser radar system.
NASA Astrophysics Data System (ADS)
Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.
1993-01-01
Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).
2014-06-01
antenna beamwidth and R is the range distance. Antenna beam width is proportional to the real aperture size and is given as antennaL ...18) where is the wavelength and antennaL is the physical length of the radar antenna; therefore, cross-range resolution for a real aperture... antennaL R (20) A value of 50 meters for cross-range resolution is rather high and signifies poor resolution. Under these conditions, obtaining
Phase correction system for automatic focusing of synthetic aperture radar
Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.
1990-01-01
A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.
3D Imaging Millimeter Wave Circular Synthetic Aperture Radar
Zhang, Renyuan; Cao, Siyang
2017-01-01
In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140
2011-07-01
radar [e.g., synthetic aperture radar (SAR)]. EO/IR includes multi- and hyperspectral imaging. Signal processing of data from nonimaging sensors, such...enhanced recognition ability. Other nonimage -based techniques, such as category theory,45 hierarchical systems,46 and gradient index flow,47 are possible...the battle- field. There is a plethora of imaging and nonimaging sensors on the battlefield that are being networked together for trans- mission of
Reducing Speckle In One-Look SAR Images
NASA Technical Reports Server (NTRS)
Nathan, K. S.; Curlander, J. C.
1990-01-01
Local-adaptive-filter algorithm incorporated into digital processing of synthetic-aperture-radar (SAR) echo data to reduce speckle in resulting imagery. Involves use of image statistics in vicinity of each picture element, in conjunction with original intensity of element, to estimate brightness more nearly proportional to true radar reflectance of corresponding target. Increases ratio of signal to speckle noise without substantial degradation of resolution common to multilook SAR images. Adapts to local variations of statistics within scene, preserving subtle details. Computationally simple. Lends itself to parallel processing of different segments of image, making possible increased throughput.
Applications of high-frequency radar
NASA Astrophysics Data System (ADS)
Headrick, J. M.; Thomason, J. F.
1998-07-01
Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.
Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.
Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan
2016-04-28
This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.
Bistatic Synthetic Aperture Radar, TIF - Report (Phase 1)
2004-11-01
Cette recherche permet d’obtenir une compr6hension en profondeur des capacit6s et des difficult6s associ6es aux concepts du ROS bistatique et...Radar (SAR) Bistatic SAR Performance Analysis Defence R&D Canada R & D pour la defense Canada Canada’s Leader in Defence Chef de file au Canada en ...I 1f1 Defence Research and Recherche et developpement Development Canada pour la defense Canada DEFENCE DEFENSE Bistatic Synthetic Aperture Radar TIF
Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop
NASA Technical Reports Server (NTRS)
Vanzyl, Jakob J. (Editor)
1991-01-01
The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.
Development of a synthetic aperture radar design approach for wide-swath implementation
NASA Technical Reports Server (NTRS)
Jean, B. R.
1981-01-01
The first phase of a study program to develop an advanced synthetic aperture radar design concept is presented. Attributes of particular importance for the system design include wide swath coverage, reduced power requirements, and versatility in the selection of frequency, polarization and incident angle. The multiple beam configuration provides imaging at a nearly constant angle of incidence and offers the potential of realizing a wide range of the attributes desired for an orbital imaging radar for Earth resources applications.
Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures
NASA Astrophysics Data System (ADS)
Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.
2013-05-01
An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.
The Born approximation, multiple scattering, and the butterfly algorithm
NASA Astrophysics Data System (ADS)
Martinez, Alejandro F.
Radar works by focusing a beam of light and seeing how long it takes to reflect. To see a large region the beam is pointed in different directions. The focus of the beam depends on the size of the antenna (called an aperture). Synthetic aperture radar (SAR) works by moving the antenna through some region of space. A fundamental assumption in SAR is that waves only bounce once. Several imaging algorithms have been designed using that assumption. The scattering process can be described by iterations of a badly behaving integral. Recently a method for efficiently evaluating these types of integrals has been developed. We will give a detailed implementation of this algorithm and apply it to study the multiple scattering effects in SAR using target estimates from single scattering algorithms.
Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery
2010-03-01
Color Spaces and Synthetic Aperture Radar (SAR) Multicolor Imaging. 15 2.3.1 Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2...III. Decomposition Techniques on SAR Polarimetry and Colorimetry applied to SAR Imagery...space polarimetric SAR systems. Colorimetry is also introduced in this chapter, presenting the fundamentals of the RGB and CMY color spaces, defined for
Forest-cover-type separation using RADARSAT-1 synthetic aperture radar imagery
Mark D. Nelson; Kathleen T. Ward; Marvin E. Bauer
2009-01-01
RADARSAT-1 synthetic aperture radar data, speckle reduction, and texture measures provided for separation among forest types within the Twin Cities metropolitan area, MN, USA. The highest transformed divergence values for 16-bit data resulted from speckle filtering while the highest values for 8-bit data resulted from the orthorectified image, before and after...
P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin
2000-01-01
Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...
User guide to the Magellan synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Wall, Stephen D.; Mcconnell, Shannon L.; Leff, Craig E.; Austin, Richard S.; Beratan, Kathi K.; Rokey, Mark J.
1995-01-01
The Magellan radar-mapping mission collected a large amount of science and engineering data. Now available to the general scientific community, this data set can be overwhelming to someone who is unfamiliar with the mission. This user guide outlines the mission operations and data set so that someone working with the data can understand the mapping and data-processing techniques used in the mission. Radar-mapping parameters as well as data acquisition issues are discussed. In addition, this user guide provides information on how the data set is organized and where specific elements of the set can be located.
Space Radar Image of Kilauea, Hawaii - interferometry 1
NASA Technical Reports Server (NTRS)
1994-01-01
This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.
Digital Beamforming Scatterometer
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul
2009-01-01
This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics
Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar
Gaddis, L.R.
1992-01-01
Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author
Internal wave observations made with an airborne synthetic aperture imaging radar
NASA Technical Reports Server (NTRS)
Elachi, C.; Apel, J. R.
1976-01-01
Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.
Interferometric synthetic aperture radar imagery of the Gulf Stream
NASA Technical Reports Server (NTRS)
Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.
1993-01-01
The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.
Acoustooptic Processing of Two Dimensional Signals Using Temporal and Spatial Integration.
1987-05-29
DIMENSIONAL SIGNALS USING N TEMPORAL AND SPATIAL INTEGRATION TM 00 Demetri Psaltis, John Hong, Scott Hudson, Fai ’Mok, MNyark Neifeld, and - Nabeel Riza ELECTE...DIMENSIONAL SIGNALS USING TEMPORAL AND SPATIAL INTEGRATION Demetri Psaltis, John Hong, Scott Hudson, Fai Mok, Mark Neifeld, and Nabeel Riza DTIC ELECTE...Induced Radar Imaging, IEEE Trans. Aero. and Elect. Sys .,AES-16,2,(1980). i31 Prickett,M.J. and Chen,C.C., Principles of Inverse Synthetic Aperture Radar
Distributed Arrays and Signal Processing for the TechSat21 Space-Based Radar
2009-04-01
lIlustrating the derivation of minimum aperture size and coherent integration time ............. 25 B 4. Global coordinate system and satellite-based...work of Dr. Robert Mailloux. Dr. Peter Franchi . and Dr. Scott Santarelli. VII Summary The TechSat2l space-based radar concept, suggested by AFRUVS...Linearization for small motions around a reference point in a global circular orbit leads to the Hill equations, derived in 1878, and alternatively named
1984-05-01
transform (FFT) techniques achieve the required azi- muthal compression of the SAR Doppler history (Ausherman, 1980). Specially- designed digital...processors have also been designed for 3 -[RIM RADAR DIVISION real-time processing of SAR data aboard the aircraft for display or transmission to a ground...included a multi-sided box pattern designed to image the dominant waves from various directions. Figure 2 presents the results obtained as a function of
NASA Technical Reports Server (NTRS)
Evans, Diane L. (Editor); Plaut, Jeffrey (Editor)
1996-01-01
The Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is the most advanced imaging radar system to fly in Earth orbit. Carried in the cargo bay of the Space Shuttle Endeavour in April and October of 1994, SIR-C/X-SAR simultaneously recorded SAR data at three wavelengths (L-, C-, and X-bands; 23.5, 5.8, and 3.1 cm, respectively). The SIR-C/X-SAR Science Team consists of 53 investigator teams from more than a dozen countries. Science investigations were undertaken in the fields of ecology, hydrology, ecology, and oceanography. This report contains 44 investigator team reports and several additional reports from coinvestigators and other researchers.
High-Level Performance Modeling of SAR Systems
NASA Technical Reports Server (NTRS)
Chen, Curtis
2006-01-01
SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.
Glacier and snow hydrology investigation in the Upper Indus Basin using Synthetic Aperture Radar
NASA Astrophysics Data System (ADS)
Jouvet, G.; Stastny, T.; Oettershagen, P.; Hugentobler, M.; Mantel, T.; Melzer, A.; Weidmann, Y.; Funk, M.; Siegwart, R.; Lund, J.; Forster, R. R.; Burgess, E. W.
2017-12-01
The flows of the Indus River are a vital resource for food security, ecosystem services, hydropower and economy for China, India and Pakistan. Glaciers of the Karakoram Mountains are the largest drivers of discharge in the Upper Indus Basin, and combined with snowmelt constitute the majority of runoff. While recently verified in near balance, the glaciers of the Karakoram exhibit substantial variation both spatially and temporally. Complex climatology, coupled with the challenges of field study in this rugged range, illicit notable uncertainties in observation and prediction of glacial status. Satellite-borne radar sensors acquire imagery regardless of cloud cover or time of day, and offer unique insights into physical processes due to their wavelength. Here we utilize Sentinel-1 synthetic aperture radar (SAR) imagery to track transient snow lines on glaciers of the Shigar watershed throughout multiple ablation seasons, and discuss the utility of this information in relation to snow and glacier mass balance. As the Sentinel-1 sensor ascending and descending passes capture morning and evening imagery in this region, diurnal radar variations will also be explored as indicators of melt-refreeze cycles and their correlation with peak runoff.
Synthetic aperture imaging in astronomy and aerospace: introduction.
Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael
2017-05-01
Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.
Digital Data Recording System (DDRS) operating and maintenance manual
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Jones, J. I.
1980-01-01
The digital data recording system (DDRS) was designed, fabricated, tested, and delivered. This unit is the interface between the synthetic aperture radar (SAR) and the recording system. The SAR data are formatted in the DDRS for data processing on the ground.
Detecting and mitigating wind turbine clutter for airspace radar systems.
Wang, Wen-Qin
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.
Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems
2013-01-01
It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880
Space Radar Image of Mammoth Mountain, California
1999-05-01
This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. http://photojournal.jpl.nasa.gov/catalog/PIA01746
An atlas of November 1978 synthetic aperture radar digitized imagery for oil spill studies
NASA Technical Reports Server (NTRS)
Maurer, H. E.; Oderman, W.; Crosswell, W. F.
1982-01-01
A data set is described which consists of digitized synthetic aperture radar (SAR) imagery plus correlative data and some preliminary analysis results. This data set should be of value to experimenters who are interested in the SAR instrument and its application to the detection and monitoring of oil on water and other distributed targets.
Transponder data processing methods and systems
Axline, Robert M.
2003-06-10
This invention is a radar/tag system where pulses from a radar cause a tag (or transponder) to respond to the radar. The radar, along with its conventional pulse transmissions, sends a reference signal to the tag. The tag recovers the reference signal and uses it to shift the center frequency of the received radar pulse to a different frequency. This shift causes the frequencies of the tag response pulses to be disjoint from those of the transmit pulse. In this way, radar clutter can be eliminated from the tag responses. The radar predicts, to within a small Doppler offset, the center frequency of tag response pulses. The radar can create synthetic-aperture-radar-like images and moving-target-indicator-radar-like maps containing the signature of the tag against a background of thermal noise and greatly attenuated radar clutter. The radar can geolocate the tag precisely and accurately (to within better than one meter of error). The tag can encode status and environmental data onto its response pulses, and the radar can receive and decode this information.
A perspective of synthetic aperture radar for remote sensing
NASA Technical Reports Server (NTRS)
Skolnik, M. I.
1978-01-01
The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.
An all-optronic synthetic aperture lidar
NASA Astrophysics Data System (ADS)
Turbide, Simon; Marchese, Linda; Terroux, Marc; Babin, François; Bergeron, Alain
2012-09-01
Synthetic Aperture Radar (SAR) is a mature technology that overcomes the diffraction limit of an imaging system's real aperture by taking advantage of the platform motion to coherently sample multiple sections of an aperture much larger than the physical one. Synthetic Aperture Lidar (SAL) is the extension of SAR to much shorter wavelengths (1.5 μm vs 5 cm). This new technology can offer higher resolution images in day or night time as well as in certain adverse conditions. It could be a powerful tool for Earth monitoring (ship detection, frontier surveillance, ocean monitoring) from aircraft, unattended aerial vehicle (UAV) or spatial platforms. A continuous flow of high-resolution images covering large areas would however produce a large amount of data involving a high cost in term of post-processing computational time. This paper presents a laboratory demonstration of a SAL system complete with image reconstruction based on optronic processing. This differs from the more traditional digital approach by its real-time processing capability. The SAL system is discussed and images obtained from a non-metallic diffuse target at ranges up to 3m are shown, these images being processed by a real-time optronic SAR processor origiinally designed to reconstruct SAR images from ENVISAT/ASAR data.
Automatic Feature Extraction System.
1982-12-01
exploitation. It was used for * processing of black and white and multispectral reconnaissance photography, side-looking synthetic aperture radar imagery...the image data and different software modules for image queing and formatting, the result of the input process will be images in standard AFES file...timely manner. The FFS configuration provides the environment necessary for integrated testing of image processing functions and design and
Radar Image of Galapagos Island
1996-10-23
This is an image showing part of Isla Isabella in the western Galapagos Islands. It was taken by the L-band radar in HH polarization from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar on the 40th orbit of NASA’s space shuttle Endeavour.
UAVSAR Radar Imagery of Boreal Forests Around Quebec City, Canada
2009-09-01
JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar collected this composite radar image around Québec City, Canada, during an 11-day campaign to study the structure of temperate and boreal forests.
Tradeoff between picture element dimensions and noncoherent averaging in side-looking airborne radar
NASA Technical Reports Server (NTRS)
Moore, R. K.
1979-01-01
An experiment was performed in which three synthetic-aperture images and one real-aperture image were successively degraded in spatial resolution, both retaining the same number of independent samples per pixel and using the spatial degradation to allow averaging of different numbers of independent samples within each pixel. The original and degraded images were provided to three interpreters familiar with both aerial photographs and radar images. The interpreters were asked to grade each image in terms of their ability to interpret various specified features on the image. The numerical interpretability grades were then used as a quantitative measure of the utility of the different kinds of image processing and different resolutions. The experiment demonstrated empirically that the interpretability is related exponentially to the SGL volume which is the product of azimuth, range, and gray-level resolution.
Generation and evaluation of Cryosat-2 SARIn L1b Interferometric elevation
NASA Astrophysics Data System (ADS)
DONG, Y.; Zhang, K.; Liu, Q.; MA, J.; WANG, J.
2016-12-01
CryoSat-2 radar altimeter data have successfully used in mapping surface elevations of ice caps and ice sheets, finding the change of surface height in polar area. The SARIn mode of Synthetic Aperture Interferometric Altimeter (SIRAL), which working similar with the traditional Interferometric Synthetic Aperture Radar (IFSAR) method, can improve the across- and along-track resolution by IFSAR processing algorithm. In this study, three L1b Baseline-C SARIn tracks over the Filchner ice shelf are used to generate the location and height of ground points in sloping glacial terrain. The elevation data is mapped and validated with IceBridge Airborne Topographic Mapper (ATM) data acquired at Nov. 2, 2012. The comparison with ATM data shows a mean difference of -1.91 m with a stand deviation of 4.04 m.
Height Error Correction for the New SRTM Elevation Product
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Simard, Marc; Buckley, Sean; Shimada, Joanne; Gurrola, Eric; Martin, Jan; Hensley, Scott; Rosen, Paul
2013-01-01
The Shuttle Radar Topography Mission (SRTM), carrying a single-pass interferometric synthetic aperture radar(SAR) instrument, collected a global elevation data set, which has been widely used in scientific, military and commercial communities. In the new proposed NASA SRTM reprocessing task, the SRTM elevation data is going to be processed at higher spatial resolution and with improved height accuracy. Upon completion, the improved SRTM product will be freely available. This paper describes the calibration approaches for reduction of elevation ripple effects and height accuracy improvements.
2014-12-01
Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2014 Abstract …….. Defence Research and Development... International Symposium on Phased Array Systems and Technology, 551-558 (2010). [10] Chetty, K., Smith, G. E., Woodbridge, K., “Through-the-wall sensing of...radar,” IEEE International Conference on Communications and Signal Processing, 579-583 (2011). [13] Sévigny, P., DiFilippo, D., Laneve, T., Chan, B
Origin of storm footprints on the sea seen by synthetic aperture radar.
Atlas, D
1994-11-25
Spaceborne synthetic aperture radar can detect storm footprints on the sea. Coastal weather radar from Cape Hatteras provides evidence that the echo-free hole at the footprint core is the result of wave damping by rain. The increased radar cross section of the sea surrounding the echo-free hole results from the divergence of the precipitation-forced downdraft impacting the sea. The footprint boundary is the gust front; its oriention is aligned with the direction of the winds aloft, which are transported down with the downdraft, and its length implies downdraft impact 1 hour earlier at a quasi-stationary impact spot. The steady, localized nature of the storm remains a mystery.
USDA-ARS?s Scientific Manuscript database
This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...
Antenna dimensions of synthetic aperture radar systems on satellites
NASA Technical Reports Server (NTRS)
Richter, K. R.
1973-01-01
Design of a synthetic aperture radar (SAR) for a satellite must take into account the limitation in weight and dimensions of the antenna. The lower limits of the antenna area are derived from the conditions of unambiguity of the SAR system. This result is applied to estimate the antenna requirements for SARs on satellites in circular orbits of various altitudes around Earth and Venus.
Global search and rescue - A new concept. [orbital digital radar system with passive reflectors
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.
1976-01-01
A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.
Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging
Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao
2016-01-01
Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114
A study of image quality for radar image processing. [synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.
1982-01-01
Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.
Onboard FPGA-based SAR processing for future spaceborne systems
NASA Technical Reports Server (NTRS)
Le, Charles; Chan, Samuel; Cheng, Frank; Fang, Winston; Fischman, Mark; Hensley, Scott; Johnson, Robert; Jourdan, Michael; Marina, Miguel; Parham, Bruce;
2004-01-01
We present a real-time high-performance and fault-tolerant FPGA-based hardware architecture for the processing of synthetic aperture radar (SAR) images in future spaceborne system. In particular, we will discuss the integrated design approach, from top-level algorithm specifications and system requirements, design methodology, functional verification and performance validation, down to hardware design and implementation.
Wavelet Filter Banks for Super-Resolution SAR Imaging
NASA Technical Reports Server (NTRS)
Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess
2011-01-01
This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.
Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project
NASA Astrophysics Data System (ADS)
La Hoz, C.; Belyey, V.
2012-12-01
EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.
1991-01-01
Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.
NASA Astrophysics Data System (ADS)
Fabbrini, L.; Messina, M.; Greco, M.; Pinelli, G.
2011-10-01
In the context of augmented integrity Inertial Navigation System (INS), recent technological developments have been focusing on landmark extraction from high-resolution synthetic aperture radar (SAR) images in order to retrieve aircraft position and attitude. The article puts forward a processing chain that can automatically detect linear landmarks on highresolution synthetic aperture radar (SAR) images and can be successfully exploited also in the context of augmented integrity INS. The processing chain uses constant false alarm rate (CFAR) edge detectors as the first step of the whole processing procedure. Our studies confirm that the ratio of averages (RoA) edge detector detects object boundaries more effectively than Student T-test and Wilcoxon-Mann-Whitney (WMW) test. Nevertheless, all these statistical edge detectors are sensitive to violation of the assumptions which underlie their theory. In addition to presenting a solution to the previous problem, we put forward a new post-processing algorithm useful to remove the main false alarms, to select the most probable edge position, to reconstruct broken edges and finally to vectorize them. SAR images from the "MSTAR clutter" dataset were used to prove the effectiveness of the proposed algorithms.
Waveform-Diverse Multiple-Input Multiple-Output Radar Imaging Measurements
NASA Astrophysics Data System (ADS)
Stewart, Kyle B.
Multiple-input multiple-output (MIMO) radar is an emerging set of technologies designed to extend the capabilities of multi-channel radar systems. While conventional radar architectures emphasize the use of antenna array beamforming to maximize real-time power on target, MIMO radar systems instead attempt to preserve some degree of independence between their received signals and to exploit this expanded matrix of target measurements in the signal-processing domain. Specifically the use of sparse “virtual” antenna arrays may allow MIMO radars to achieve gains over traditional multi-channel systems by post-processing diverse received signals to implement both transmit and receive beamforming at all points of interest within a given scene. MIMO architectures have been widely examined for use in radar target detection, but these systems may yet be ideally suited to real and synthetic aperture radar imaging applications where their proposed benefits include improved resolutions, expanded area coverage, novel modes of operation, and a reduction in hardware size, weight, and cost. While MIMO radar's theoretical benefits have been well established in the literature, its practical limitations have not received great attention thus far. The effective use of MIMO radar techniques requires a diversity of signals, and to date almost all MIMO system demonstrations have made use of time-staggered transmission to satisfy this requirement. Doing so is reliable but can be prohibitively slow. Waveform-diverse systems have been proposed as an alternative in which multiple, independent waveforms are broadcast simultaneously over a common bandwidth and separated on receive using signal processing. Operating in this way is much faster than its time-diverse equivalent, but finding a set of suitable waveforms for this technique has proven to be a difficult problem. In light of this, many have questioned the practicality of MIMO radar imaging and whether or not its theoretical benefits may be extended to real systems. Work in this writing focuses specifically on the practical aspects of MIMO radar imaging systems and provides performance data sourced from experimental measurements made using a four-channel software-defined MIMO radar platform. Demonstrations of waveform-diverse imaging data products are provided and compared directly against time-diverse equivalents in order to assess the performance of prospective MIMO waveforms. These are sourced from the pseudo-noise, short-term shift orthogonal, and orthogonal frequency multiplexing signal families while experimental results demonstrate waveform-diverse measurements of polarimetric radar cross section, top-down stationary target images, and finally volumetric MIMO synthetic aperture radar imagery. The data presented represents some of the first available concerning the overall practicality of waveform-diverse MIMO radar architectures, and results suggest that such configurations may achieve a reasonable degree of performance even in the presence of significant practical limitations.
The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar
NASA Astrophysics Data System (ADS)
Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian
2017-10-01
This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.
NASA Technical Reports Server (NTRS)
Spencer, Michael; Dunbar, Scott; Chen, Curtis
2013-01-01
The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.
User-friendly InSAR Data Products: Fast and Simple Timeseries (FAST) Processing
NASA Astrophysics Data System (ADS)
Zebker, H. A.
2017-12-01
Interferometric Synthetic Aperture Radar (InSAR) methods provide high resolution maps of surface deformation applicable to many scientific, engineering and management studies. Despite its utility, the specialized skills and computer resources required for InSAR analysis remain as barriers for truly widespread use of the technique. Reduction of radar scenes to maps of temporal deformation evolution requires not only detailed metadata describing the exact radar and surface acquisition geometries, but also a software package that can combine these for the specific scenes of interest. Furthermore, the radar range-Doppler radar coordinate system itself is confusing, so that many users find it hard to incorporate even useful products in their customary analyses. And finally, the sheer data volume needed to represent interferogram time series makes InSAR analysis challenging for many analysis systems. We show here that it is possible to deliver radar data products to users that address all of these difficulties, so that the data acquired by large, modern satellite systems are ready to use in more natural coordinates, without requiring further processing, and in as small volume as possible.
NASA Astrophysics Data System (ADS)
Samsonov, S. V.; Feng, W.
2017-12-01
InSAR-based mapping of surface deformation (displacement) has proven valuable to a variety of geoscience applications within NRCan. Conventional approaches to InSAR analysis require significant expert intervention to separate useful signal from noise and are not suited to the address the opportunities and challenges presented by the large multi-temporal SAR datasets provided by future radar constellations. The Canada Centre for Mapping and Earth Observation (CCMEO) develops, in support of NRCAN and Government of Canada priorities a framework for automatic generation of standard and advanced deformation products based on Interferometric Synthetic Aperture Radar (InSAR) technology from RADARSAT Constellation Mission (RCM) Synthetic Aperture Radar data. We utilize existing processing algorithms that are currently used for processing RADARSAT-2 data and adapt them to RCM specifications. In addition we develop novel advanced processing algorithms that address large data sets made possible by the satellites' rapid revisit cycle and expand InSAR functionality to regional and national scales across a wide range of time scales. Through automation the system makes it possible to extend the mapping of surface deformation to non-SAR experts. The architecture is scalable and expandable to serve large number of clients and simultaneously address multiple application areas including: natural and anthropogenic hazards, natural resource development, permafrost and glacier monitoring, coastal and environmental change and wetlands mapping.
Space Radar Image of Manaus, Brazil
1999-01-27
This false-color L-band image of the Manaus region of Brazil was acquired by NASA Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar SIR-C/X-SAR aboard the space shuttle Endeavour on orbit 46 of the mission.
Space Radar Image of Kilauea, Hawaii
1999-01-27
This color composite C-band and L-band image of the Kilauea volcano on the Big Island of Hawaii was acquired by NASA Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar SIR-C/X-SAR flying on space shuttle Endeavour.
Software For Calibration Of Polarimetric SAR Data
NASA Technical Reports Server (NTRS)
Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce
1994-01-01
POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.
An Investigation of Synthetic Aperture Radar Autofocus,
1985-04-01
uniform straight line motion of the aircraft. Unknown aircraft motions alter the matched filter required for processing . Autofocussing involves determi...REFERENCES APPENDIX 1 RESOLUTION OF SAR APPENDIX 2 AIRCRAFT MOTION TOLERANCE APPENDIX 3 INITIAL RESOLUTION FOR FOLLOW-DOWN PROCESSING APPENDIX 4 DEPENDENCE OF...Range resolution is achieved using on-board pulse-compression techniques, while azimuth processing is currently done at RSRE on a Marconi hardware
Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites
2014-09-30
Constellation of Synthetic Aperture Radar Satellites RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...fax: (305) 421-4696 email: pminnett@rsmas.miami.edu Award Number: N00014-12-1-0448 LONG-TERM GOALS Utilize a constellation of satellite...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation . b) Develop a Neural Network algorithm for ice-type
Interferometric synthetic aperture radar: Building tomorrow's tools today
Lu, Zhong
2006-01-01
A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.
New formulation for interferometric synthetic aperture radar for terrain mapping
NASA Astrophysics Data System (ADS)
Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.
1994-06-01
The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.
The SEASAT-A synthetic aperture radar design and implementation
NASA Technical Reports Server (NTRS)
Jordan, R. L.
1978-01-01
The SEASAT-A synthetic aperture imaging radar system is the first imaging radar system intended to be used as a scientific instrument designed for orbital use. The requirement of the radar system is to generate continuous radar imagery with a 100 kilometer swath with 25 meter resolution from an orbital altitude of 800 kilometers. These requirements impose unique system design problems and a description of the implementation is given. The end-to-end system is described, including interactions of the spacecraft, antenna, sensor, telemetry link, recording subsystem, and data processor. Some of the factors leading to the selection of critical system parameters are listed. The expected error sources leading to degradation of image quality are reported as well as estimate given of the expected performance from data obtained during a ground testing of the completed subsystems.
Analysis of synthetic aperture radar data acquired over a variety of land cover
NASA Technical Reports Server (NTRS)
Wu, S.-T.
1984-01-01
The results of Synthetic Aperture Radar (SAR) measurements over Kershaw County, South Carolina, using HH, HV, and VV polarization and two-incidence angle X-band airborne SAR system and over Baldwin County, Alabama, using HH polarization L-band Shuttle Imaging Radar (SIR-A) are presented. The X-band data indicate higher HH than VV radar return for cypress forest with standing water. Multipolarization (HH, HV, and VV) data help delineate several land-cover types that are difficult to delineate by the single polarization (HH) data. The L-band data indicate that radar return signal strength is highly correlated with tree height or age for three types of pine forest. It is found that delineation of urban/residential from deciduous forest is significantly improved by the inclusion of Landsat multispectral scanner data.
Synthetic aperture radar target simulator
NASA Technical Reports Server (NTRS)
Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.
1984-01-01
A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.
NASA Technical Reports Server (NTRS)
Atlas, David; Black, Peter G.
1994-01-01
SEASAT synthetic aperture radar (SAR) echoes from the sea have previously been shown to be the result of rain and winds produced by convective stroms; rain damps the surface waves and causes ech-free holes, while the diverging winds associated with downdraft generate waves and associated echoes surrounding the holes. Gust fronts are also evident. Such a snapshot from 8 July 1978 has been examined in conjunction with ground-based radar. This leads to the conclusion that the SAR storm footprints resulted from storm processes that occurred up to an hour or more prior to the snapshot. A sequence of events is discerned from the SAR imagery in which new cell growth is triggered in between the converging outflows of two preexisting cells. In turn, the new cell generates a mini-squall line along its expanding gust front. While such phenomena are well known over land, the spaceborne SAR now allows important inferences to be made about the nature and frequency of convective storms over the oceans. The storm effects on the sea have significant implications for spaceborne wind scatterometry and rainfall measurements. Some of the findings herein remain speculative because of the great distance to the Miami weather radar-the only source of corroborative data.
NASA Astrophysics Data System (ADS)
Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter
2015-05-01
The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.
Waves and mesoscale features in the marginal ice zone
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Peng, Chih Y.
1993-01-01
Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.
Soderblom, L.A.; Kirk, R.L.; Lunine, J.I.; Anderson, J.A.; Baines, K.H.; Barnes, J.W.; Barrett, J.M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; Elachi, C.; Janssen, M.A.; Jaumann, R.; Karkoschka, E.; Le Mouélic, Stéphane; Lopes, R.M.; Lorenz, R.D.; McCord, T.B.; Nicholson, P.D.; Radebaugh, J.; Rizk, B.; Sotin, Christophe; Stofan, E.R.; Sucharski, T.L.; Tomasko, M.G.; Wall, S.D.
2007-01-01
Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as "brown" and "blue" in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3 ??m). In such composites bluer materials exhibit higher reflectance at 1.3 ??m and lower at 1.6 and 2.0 ??m. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001-0.01 ??m/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30 km south of the nearest occurrence of dunes visible in the RADAR SAR images. Fluvial/pluvial processes, every few centuries or millennia, must be cleansing the dark floors of the incised channels and scouring the dark plains at the Huygens landing site both imaged by Descent Imager/Spectral Radiometer (DISR). ?? 2007 Elsevier Ltd. All rights reserved.
NASA Radar Captures Earth Deformation from 2010 Baja Calif. Quake
2011-03-04
This radar image from NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar UAVSAR shows the deformed Earth caused by a 7.2 earthquake in Mexico state of Baja California and parts of the American Southwest on April 4, 2010.
NASA Technical Reports Server (NTRS)
1998-01-01
The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.
Observation of wave refraction at an ice edge by synthetic aperture radar
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.
1991-01-01
In this note the refraction of waves at the ice edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the ice cover was observed by SAR during the Labrador Ice Margin Experiment (LIMEX), conducted on the marginal ice zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an ice edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the ice cover. The observed variations of wave spectra from SAR near the ice edge are consistent with the model prediction of wave refraction at the ice edge due to the change of wave dispersion relation in ice developed by Liu and Mollo-Christensen (1988).
Synthetic aperture radar/LANDSAT MSS image registration
NASA Technical Reports Server (NTRS)
Maurer, H. E. (Editor); Oberholtzer, J. D. (Editor); Anuta, P. E. (Editor)
1979-01-01
Algorithms and procedures necessary to merge aircraft synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) imagery were determined. The design of a SAR/LANDSAT data merging system was developed. Aircraft SAR images were registered to the corresponding LANDSAT MSS scenes and were the subject of experimental investigations. Results indicate that the registration of SAR imagery with LANDSAT MSS imagery is feasible from a technical viewpoint, and useful from an information-content viewpoint.
Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop
NASA Technical Reports Server (NTRS)
Kim, Yun-Jin (Editor)
1996-01-01
The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.
Study on Persistent Monitoring of Maritime, Great Lakes and St. Lawrence Seaway Border Regions
2011-12-01
narcotics between both countries, particularly due to the burgeoning marijuana market originating in British Columbia (BC). Additionally, due to the...Sensors 2008, Vol. 8, pp. 2959-2973 Crisp D. J., The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery, DSTO– RR–0272...Network SAR – Synthetic Aperture radar SII-Surveillance Intelligence and Interdiction SNR - Signal-to-Noise SOLAS - Safety of Life at Sea
Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Rodriguez, Ernesto
2006-01-01
We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.
Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests
NASA Technical Reports Server (NTRS)
Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.
1984-01-01
The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.
Complex phase error and motion estimation in synthetic aperture radar imaging
NASA Astrophysics Data System (ADS)
Soumekh, M.; Yang, H.
1991-06-01
Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.
1998-04-06
These images show two views of a region of south-central Egypt. On the left is an optical image from NASA Landsat Thematic Mapper, and on the right is a radar image from NASA Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar SIR-C/X-SAR.
Calibration of a polarimetric imaging SAR
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.
1991-01-01
Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.
1992-08-01
limits of these topics will be included. Digital SAR processing is for SAR indispensible. Theories and special algorithms will be given along with basic...traitement num~rique est indispensable aux SAP,. Des theories et des algorithmes sp~cifiques; seront proposes, ainsi que des configurations de processeur...equation If N independent pixel values are added than fol- lows from the laws of probability theory that the ra mean value of the sum is identical with
Accounting For Gains And Orientations In Polarimetric SAR
NASA Technical Reports Server (NTRS)
Freeman, Anthony
1992-01-01
Calibration method accounts for characteristics of real radar equipment invalidating standard 2 X 2 complex-amplitude R (receiving) and T (transmitting) matrices. Overall gain in each combination of transmitting and receiving channels assumed different even when only one transmitter and one receiver used. One characterizes departure of polarimetric Synthetic Aperture Radar (SAR) system from simple 2 X 2 model in terms of single parameter used to transform measurements into format compatible with simple 2 X 2 model. Data processed by applicable one of several prior methods based on simple model.
Synthetic Aperture Radar (SAR) data processing
NASA Technical Reports Server (NTRS)
Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.
1978-01-01
The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.
Revealing the face of Venus: Magellan
NASA Technical Reports Server (NTRS)
1993-01-01
An overview of the Magellan spacecraft and mission is presented. Topics covered include: a description of the Magellan spacecraft; Venus geology; Venus gravity; synthetic aperture radar; and radar sensing.
Shuttle Radar Topography Mission (SRTM)
,
2009-01-01
Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.
NASA Technical Reports Server (NTRS)
Spencer, Michael; Dunbar, Scott; Chen, Curtis
2013-01-01
The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.
2003-01-01
The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.
NASA Technical Reports Server (NTRS)
Madsen, S. N.; Carsey, F. D.; Turtle, E. P.
2003-01-01
The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.
InSAR Scientific Computing Environment
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Sacco, Gian Franco; Gurrola, Eric M.; Zabker, Howard A.
2011-01-01
This computing environment is the next generation of geodetic image processing technology for repeat-pass Interferometric Synthetic Aperture (InSAR) sensors, identified by the community as a needed capability to provide flexibility and extensibility in reducing measurements from radar satellites and aircraft to new geophysical products. This software allows users of interferometric radar data the flexibility to process from Level 0 to Level 4 products using a variety of algorithms and for a range of available sensors. There are many radar satellites in orbit today delivering to the science community data of unprecedented quantity and quality, making possible large-scale studies in climate research, natural hazards, and the Earth's ecosystem. The proposed DESDynI mission, now under consideration by NASA for launch later in this decade, would provide time series and multiimage measurements that permit 4D models of Earth surface processes so that, for example, climate-induced changes over time would become apparent and quantifiable. This advanced data processing technology, applied to a global data set such as from the proposed DESDynI mission, enables a new class of analyses at time and spatial scales unavailable using current approaches. This software implements an accurate, extensible, and modular processing system designed to realize the full potential of InSAR data from future missions such as the proposed DESDynI, existing radar satellite data, as well as data from the NASA UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), and other airborne platforms. The processing approach has been re-thought in order to enable multi-scene analysis by adding new algorithms and data interfaces, to permit user-reconfigurable operation and extensibility, and to capitalize on codes already developed by NASA and the science community. The framework incorporates modern programming methods based on recent research, including object-oriented scripts controlling legacy and new codes, abstraction and generalization of the data model for efficient manipulation of objects among modules, and well-designed module interfaces suitable for command- line execution or GUI-programming. The framework is designed to allow users contributions to promote maximum utility and sophistication of the code, creating an open-source community that could extend the framework into the indefinite future.
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.
1977-01-01
This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.
Ramsey, Elijah W.; Werle, Dirk; Lu, Zhong; Rangoonwala, Amina; Suzuoki, Yukihiro
2009-01-01
The synergistic application of optical and radar satellite imagery improves emergency response and advance coastal monitoring from the realm of “opportunistic” to that of “strategic.” As illustrated by the Hurricane Ike example, synthetic aperture radar imaging capabilities are clearly applicable for emergency response operations, but they are also relevant to emergency environmental management. Integrated with optical monitoring, the nearly real-time availability of synthetic aperture radar provides superior consistency in status and trends monitoring and enhanced information concerning causal forces of change that are critical to coastal resource sustainability, including flooding extent, depth, and frequency.
Synthetic aperture radar target detection, feature extraction, and image formation techniques
NASA Technical Reports Server (NTRS)
Li, Jian
1994-01-01
This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.
Passive Multistatic Radar Imaging using an OFDM Based Signal of Opportunity
2012-03-22
PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Matthew B.P. Rapson, Flight Lieutenant, Royal Australian Air Force...PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Presented to the Faculty Department of Electrical and Computer...for use in radar ap- plications such as synthetic aperture radar (SAR). The orthogonal frequency divi- sion multiplexing ( OFDM ) specific Worldwide
Multi-Antenna Radar Systems for Doppler Rain Measurements
NASA Technical Reports Server (NTRS)
Durden, Stephen; Tanelli, Simone; Siqueira, Paul
2007-01-01
Use of multiple-antenna radar systems aboard moving high-altitude platforms has been proposed for measuring rainfall. The basic principle of the proposed systems is a variant of that of along-track interferometric synthetic-aperture radar systems used previously to measure ocean waves and currents.
Measurements of ionospheric effects on wideband signals at VHF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, T.J.
1998-08-17
Radars operating at very high frequency (VHF) have enhanced foliage and ground penetration compared to radars operated at higher frequencies. For example, VHF systems operated from airplanes have been used as synthetic aperture radars (SAR); a satellite-borne VHF SAR would have considerable utility. In order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. A satellite-borne radar would likely have to operate at altitudes above the maximum density of the ionosphere; the presence of the ionosphere in the propagation path of the radar will cause a deterioration of the performancemore » because of dispersion over the bandwidth. The author presents measurements of the effects of the ionosphere on radar signals propagated from a source on the surface of the Earth and received by instruments on the FORTE satellite at altitudes of 800 km. The author employs signals with a 90 MHz bandwidth centered at 240 MHz with a continuous digital recording period of 0.6 s.« less
Sadjadi, Firooz A; Mahalanobis, Abhijit
2006-05-01
We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.
Using phase for radar scatterer classification
NASA Astrophysics Data System (ADS)
Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.
2017-04-01
Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.
Two-Way Pattern Design for Distributed Subarray Antennas
2012-09-01
GUI Graphical User Interface HPBW Half-power Beamwidth MFR Multifunction Radar RCS Radar Cross Section RRE Radar Range Equation...The Aegis ships in the US Navy use phased arrays for the AN/SPY-1 multifunction radar ( MFR ) [2]. The phased array for the AN/SPY-1 radar is shown in...arrays. This is a challenge for design of antenna apertures for shipboard radar systems. One design approach is to use multi-function subarray
1986-08-01
SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONAVAILABILITY OF REPORT N/A \\pproved for public release, 21b. OECLASS FI) CAT ) ON/OOWNGRAOING SCMEOLLE...from this set of projections. The Convolution Back-Projection (CBP) algorithm is widely used technique in Computer Aide Tomography ( CAT ). In this work...University of Illinois at Urbana-Champaign. 1985 Ac % DTICEl_ FCTE " AUG 1 11986 Urbana. Illinois U,) I A NEW METHOD OF SYNTHETIC APERTURE RADAR IMAGE
2009-06-01
Border Initiative SUAV Small Unmanned Aerial Vehicle SAR Synthetic Aperture Radar TTPs Tactics, Techniques, And Procedures TRVS Trailer Remote...2008). 4 3. Overview of Illegal Activities According to the CBP, 178,770 pounds of cocaine, 2,178 pounds of heroin, 2,471,931 pounds of marijuana ...Raytheon Company Web Site) Another component of Predator B is the high- resolution Lynx Synthetic Aperture Radar (SAR). In their study, Tsunoda, et
Sea Ice Movements from Synthetic Aperture Radar
1981-12-01
correlating these components. B-l8 These correlations are also plotted in figure l1. 5.3.3.2 AUlications of the space correlation. The spatial...aperture radar. To appear in J. of Geophys. Res. Hastings, A. D. Jr., 1971. Surface climate of the Arctic Basin. Report ETL- TR-71-5, Earth Sciences Division...Administration Grant NA50-AA-D-00015, which was funded in part by the Global Atmospheric Research Program and the Office of Climate Dynarics, Divisic
Information extraction and transmission techniques for spaceborne synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.
1984-01-01
Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.
Command, Control and Integration of Weaponized Unmanned Aircraft into the Air-to-Ground System
2007-02-23
munitions. A synthetic aperture radar (SAR) payload is also available for the MQ-1 which allows the system to see through weather and clouds but the...SOF) can pull mensurated or “ sweetened ” coordinates for PGM engagement.70 The ISR deck should be serviced by traditional assets such as F-16s with...Operating Zone RSTA Reconnaissance, Surveillance and Target Acquisition SAR Synthetic Aperture Radar SIAP Standard Integrated Air Picture SDB
A data compression technique for synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Minden, G. J.
1986-01-01
A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple.
Operational Use of Civil Space-Based Synthetic Aperture Radar (SAR)
NASA Technical Reports Server (NTRS)
Montgomery, Donald R. (Editor)
1996-01-01
Synthetic Aperture Radar (SAR) is a remote-sensing technology which uses the motion of the aircraft or spacecraft carrying the radar to synthesize an antenna aperture larger than the physical antenna to yield a high-spatial resolution imaging capability. SAR systems can thus obtain high-spatial resolution geophysical measurements of the Earth over wide surface areas, under all-weather, day/night conditions. This report was prepared to document the results of a six-month study by an Ad Hoc Interagency Working Group on the Operational Use of Civil (i.e., non-military) Space-based Synthetic Aperture Radar (SAR). The Assistant Administrator of NOAA for Satellite and Information Services convened this working group and chaired three meetings of the group over a six-month period. This action was taken in response to a request by the Associate Administrator of NASA for Mission to Planet Earth for an assessment of operational applications of SAR to be accomplished in parallel with a separate study requested of the Committee on Earth Studies of the Space Studies Board of the National Research Council on the scientific results of SAR research missions. The representatives of participating agencies are listed following the Preface. There was no formal charter for the working group or long term plans for future meetings. However, the working group may be reconstituted in the future as a coordination body for multiagency use of operational SAR systems.
Di Martire, Diego; Novellino, Alessandro; Ramondini, Massimo; Calcaterra, Domenico
2016-04-15
This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town. Copyright © 2016 Elsevier B.V. All rights reserved.
Techniques for Microwave Imaging.
1981-01-18
reduce cross-range sidelobes in tht subsequent -’ FT and the array was padd ,,d with 64 additional r,wis containing zeros . The configuration of the array is...of microwave imagery obtained by synthetic aperture processing described in reference 1-2. This type of image. generated by processing radar data...1,000 wavelengths. Althouigh these are the intended applications, the imaging methods con- sidered have general applicability to environments outside
Data Intensive Systems (DIS) Benchmark Performance Summary
2003-08-01
models assumed by today’s conventional architectures. Such applications include model- based Automatic Target Recognition (ATR), synthetic aperture...radar (SAR) codes, large scale dynamic databases/battlefield integration, dynamic sensor- based processing, high-speed cryptanalysis, high speed...distributed interactive and data intensive simulations, data-oriented problems characterized by pointer- based and other highly irregular data structures
Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to Multi-GPU Clusters
2012-12-01
Experimental results were generated with 10 nVidia Tesla C2050 GPUs having maximum throughput of 972 Gflop /s. Our approach scales well for output...Experimental results were generated with 10 nVidia Tesla C2050 GPUs having maximum throughput of 972 Gflop /s. Our approach scales well for output
Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points - A Review.
Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli
2009-01-01
Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.
Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review
Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli
2009-01-01
Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram. PMID:22399966
NASA Technical Reports Server (NTRS)
Wu, S. T.
1983-01-01
Data acquired by synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) were processed and analyzed to derive forest-related resources inventory information. The SAR data were acquired by using the NASA aircraft X-band SAR with linear (HH, VV) and cross (HV, VH) polarizations and the SEASAT L-band SAR. After data processing and data quality examination, the three polarization (HH, HV, and VV) data from the aircraft X-band SAR were used in conjunction with LANDSAT MSS for multisensor data classification. The results of accuracy evaluation for the SAR, MSS and SAR/MSS data using supervised classification show that the SAR-only data set contains low classification accuracy for several land cover classes. However, the SAR/MSS data show that significant improvement in classification accuracy is obtained for all eight land cover classes. These results suggest the usefulness of using combined SAR/MSS data for forest-related cover mapping. The SAR data also detect several small special surface features that are not detectable by MSS data.
G0-WISHART Distribution Based Classification from Polarimetric SAR Images
NASA Astrophysics Data System (ADS)
Hu, G. C.; Zhao, Q. H.
2017-09-01
Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.
GeoSAR: A Radar Terrain Mapping System for the New Millennium
NASA Technical Reports Server (NTRS)
Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert
2000-01-01
GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.
Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)
NASA Technical Reports Server (NTRS)
Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing
2011-01-01
An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.
NASA Astrophysics Data System (ADS)
Essen, Helmut; Brehm, Thorsten; Boehmsdorff, Stephan
2007-10-01
Interferometric Synthetic Aperture Radar has the capability to provide the user with the 3-D-Information of land surfaces. To gather data with high height estimation accuracy it is necessary to use a wide interferometric baseline or a high radar frequency. However the problem of resolving the phase ambiguity at smaller wavelengths is more critical than at longer wavelengths, as the unambiguous height interval is inversely proportional to the radar wavelength. To solve this shortcoming, a multiple baseline approach can be used with a number of neighbouring horns and an increasing baselength going from narrow to wide. The narrowest, corresponding to adjacent horns, is then assumed to be unambiguous in phase. This initial interferogram is used as a starting point for the algorithm, which in the next step, unwraps the interferogram with the next wider baseline using the coarse height information to solve the phase ambiguities. This process is repeated consecutively until the interferogram with highest precision is unwrapped. On the expense of this multi-channel-approach the algorithm is simple and robust, and even the amount of processing time is reduced considerably, compared to traditional methods. The multiple baseline approach is especially adequate for millimeterwave radars as antenna horns with relatively small aperture can be used, while a sufficient 3-dB beamwidth is maintained. The paper describes the multiple baseline algorithm and shows the results of tests on real data and a synthetic area. Possibilities and limitations of this approach are discussed. Examples of digital elevation maps derived from measured data at millimeterwaves are shown.
Simulation of noise involved in synthetic aperture radar
NASA Astrophysics Data System (ADS)
Grandchamp, Myriam; Cavassilas, Jean-Francois
1996-08-01
The synthetic aperture radr (SAR) returns from a linear distribution of scatterers are simulated and processed in order to estimate the reflectivity coefficients of the ground. An original expression of this estimate is given, which establishes the relation between the terms of signal and noise. Both are compared. One application of this formulation consists of detecting a surface ship wake on a complex SAR image. A smoothing is first accomplished on the complex image. The choice of the integration area is determined by the preceding mathematical formulation. Then a differential filter is applied, and results are shown for two parts of the wake.
Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing
2017-01-01
This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057
Radar systems for the water resources mission. Volume 4: Appendices E-I
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.
Synthetic-Aperture Coherent Imaging From A Circular Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1995-01-01
Imaging algorithms based on exact point-target responses. Developed for use in reconstructing image of target from data gathered by radar, sonar, or other transmitting/receiving coherent-signal sensory apparatus following circular observation path around target. Potential applications include: Wide-beam synthetic-aperture radar (SAR) from aboard spacecraft in circular orbit around target planet; SAR from aboard airplane flying circular course at constant elevation around central ground point, toward which spotlight radar beam pointed; Ultrasonic reflection tomography in medical setting, using one transducer moving in circle around patient or else multiple transducers at fixed positions on circle around patient; and Sonar imaging of sea floor to high resolution, without need for large sensory apparatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, Ann Marie; William H. Hensley, Jr.; Burns, Bryan L.
2014-11-01
The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage ratemore » performance.« less
Ground Deformation from Chilean Volcanic Eruption Shown by Satellite Radar Image
2015-04-29
This satellite interferometric synthetic aperture radar image-pair shows relative deformation of the Earth surface when nn April 22-23, 2015, significant explosive eruptions occurred at Calbuco volcano, Chile.
NASA Astrophysics Data System (ADS)
Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.
1988-12-01
The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.
NASA Technical Reports Server (NTRS)
Sader, Steven A.
1987-01-01
The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.
SAR Ambiguity Study for the Cassini Radar
NASA Technical Reports Server (NTRS)
Hensley, Scott; Im, Eastwood; Johnson, William T. K.
1993-01-01
The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.
Laser radar: from early history to new trends
NASA Astrophysics Data System (ADS)
Molebny, Vasyl; Kamerman, Gary; Steinvall, Ove
2010-10-01
The first steps of laser radar are discussed with the examples from range finding and designation. The followed successes in field tests and further fast development provided their wide use. Coherent laser radar, developed almost simultaneously, tried the ideas from microwaves including chirp technology for pulse compression, and Doppler mode of operation. This latter found a unique implementation in a cruise missile. In many applications, environmental studies very strongly rely upon the lidars sensing the wind, temperature, constituents, optical parameters. Lidars are used in the atmosphere and in the sea water measurements. Imaging and mapping is an important role prescribed to ladars. One of the prospective trends in laser radar development is incorporation of range and velocity data into the image information. Deep space program, even having not come to the finish, gave a lot for 3D imaging. Gated imaging, as one of the 3D techniques, demonstrated its prospects (seeing through scattering layers) for military and security usage. Synthetic aperture laser radar, which had a long incubation period, started to show first results, at least in modeling. Coherent laser radar baptized as the optical coherence tomography, along with the position sensitive laser radar, synthetic aperture laser radar, multispectral laser radar demonstrated very pragmatic results in the micro-scale applications.
EXPERIMENTS IN LITHOGRAPHY FROM REMOTE SENSOR IMAGERY.
Kidwell, R. H.; McSweeney, J.; Warren, A.; Zang, E.; Vickers, E.
1983-01-01
Imagery from remote sensing systems such as the Landsat multispectral scanner and return beam vidicon, as well as synthetic aperture radar and conventional optical camera systems, contains information at resolutions far in excess of that which can be reproduced by the lithographic printing process. The data often require special handling to produce both standard and special map products. Some conclusions have been drawn regarding processing techniques, procedures for production, and printing limitations.
Design of an Airborne L-Band Cross-Track Scanning Scatterometer
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence M. (Technical Monitor)
2002-01-01
In this report, we describe the design of an airborne L-band cross-track scanning scatterometer suitable for airborne operation aboard the NASA P-3 aircraft. The scatterometer is being designed for joint operation with existing L-band radiometers developed by NASA for soil moisture and ocean salinity remote sensing. In addition, design tradeoffs for a space-based radar system have been considered, with particular attention given to antenna architectures suitable for sharing the antenna between the radar and radiometer. During this study, we investigated a number of imaging techniques, including the use of real and synthetic aperture processing in both the along track and cross-track dimensions. The architecture selected will permit a variety of beamforming algorithms to be implemented, although real aperture processing, with hardware beamforming, provides better sidelobe suppression than synthetic array processing and superior signal-to-noise performance. In our discussions with the staff of NASA GSFC, we arrived at an architecture that employs complete transmit/receive modules for each subarray. Amplitude and phase control at each of the transmit modules will allow a low-sidelobe transmit pattern to be generated over scan angles of +/- 50 degrees. Each receiver module will include all electronics necessary to downconvert the received signal to an IF offset of 30 MHz where it will be digitized for further processing.
Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming
2017-12-22
The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.
2017-09-01
The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.
Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case
Ao, Dongyang; Hu, Cheng; Tian, Weiming
2017-01-01
The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917
Reconfigurable metasurface aperture for security screening and microwave imaging
NASA Astrophysics Data System (ADS)
Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.
2017-05-01
Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.
Application of Ifsar Technology in Topographic Mapping: JUPEM's Experience
NASA Astrophysics Data System (ADS)
Zakaria, Ahamad
2018-05-01
The application of Interferometric Synthetic Aperture Radar (IFSAR) in topographic mapping has increased during the past decades. This is due to the advantages that IFSAR technology offers in solving data acquisition problems in tropical regions. Unlike aerial photography, radar technology offers wave penetration through cloud cover, fog and haze. As a consequence, images can be made free of any natural phenomenon defects. In Malaysia, Department of Survey and Mapping Malaysia (JUPEM) has been utilizing the IFSAR products since 2009 to update topographic maps at 1 : 50,000 map scales. Orthorectified radar imagery (ORI), Digital Surface Models (DSM) and Digital Terrain Models (DTM) procured under the project have been further processed before the products are ingested into a revamped mapping workflow consisting of stereo and mono digitizing processes. The paper will highlight the experience of Department of Survey and Mapping Malaysia (DSMM)/ JUPEM in using such technology in order to speed up mapping production.
Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data
NASA Technical Reports Server (NTRS)
Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.
2011-01-01
The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.
Playback system designed for X-Band SAR
NASA Astrophysics Data System (ADS)
Yuquan, Liu; Changyong, Dou
2014-03-01
SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.
2009-08-06
This mosaic of image swaths from Cassini’s Titan Radar Mapper, taken with the synthetic-aperture radar SAR, features a large dark region several hundred kilometers across that differs in several significant ways from potential lakes observed on Titan.
UAVSAR Active Electronically-Scanned Array
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Brown, Kyle; Chamberlain, Neil; Figueroa, Harry; Fisher, Charlie; Grando, Maurio; Hamilton, Gary; Vorperian, Vatche; Zawadzki, Mark
2010-01-01
The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) L-band (1.2-1.3 GHz) repeat pass, interferometric synthetic aperture radar (InSAR) used for Earth science applications. Using complex radar images collected during separate passes on time scales of hours to years, changes in surface topography can be measured. The repeat-pass InSAR technique requires that the radar look angle be approximately the same on successive passes. Due to variations in aircraft attitude between passes, antenna beam steering is required to replicate the radar look angle. This paper describes an active, electronically steered array (AESA) that provides beam steering capability in the antenna azimuth plane. The array contains 24 transmit/receive modules generating 2800 W of radiated power and is capable of pulse-to-pulse beam steering and polarization agility. Designed for high reliability as well as serviceability, all array electronics are contained in single 178cm x 62cm x 12 cm air-cooled panel suitable for operation up 60,000 ft altitude.
AIRSAR Automated Web-based Data Processing and Distribution System
NASA Technical Reports Server (NTRS)
Chu, Anhua; vanZyl, Jakob; Kim, Yunjin; Lou, Yunling; Imel, David; Tung, Wayne; Chapman, Bruce; Durden, Stephen
2005-01-01
In this paper, we present an integrated, end-to-end synthetic aperture radar (SAR) processing system that accepts data processing requests, submits processing jobs, performs quality analysis, delivers and archives processed data. This fully automated SAR processing system utilizes database and internet/intranet web technologies to allow external users to browse and submit data processing requests and receive processed data. It is a cost-effective way to manage a robust SAR processing and archival system. The integration of these functions has reduced operator errors and increased processor throughput dramatically.
Processing Ultra Wide Band Synthetic Aperture Radar Data with Motion Detectors
NASA Technical Reports Server (NTRS)
Madsen, Soren Norvang
1996-01-01
Several issues makes the processing of ultra wide band (UWB) SAR data acquired from an airborne platform difficult. The character of UWB data invalidates many of the usual SAR batch processing techniques, leading to the application of wavenumber domain type processors...This paper will suggest and evaluate an algorithm which combines a wavenumber domain processing algorithm with a motion compensation procedure which enables motion compensation to be applied as a function of target range and the azimuth angle.
A Novel Reflector/Reflectarray Antenna: An Enabling Technology for NASA's Dual-Frequency ACE Radar
NASA Technical Reports Server (NTRS)
Racette, Paul E.; Heymsfield, Gerald; Li, Lihua; Cooley, Michael E.; Park, Richard; Stenger, Peter
2011-01-01
This paper describes a novel dual-frequency shared aperture Ka/W-band antenna design that enables wide-swath Imaging via electronic scanning at Ka-band and Is specifically applicable to NASA's Aerosol, Cloud and Ecosystems (ACE) mission. The innovative antenna design minimizes size and weight via use of a shared aperture and builds upon NASA's investments in large-aperture reflectors and high technology-readiness-level (TRL) W-band radar architectures. The antenna is comprised of a primary cylindrical reflector/reflectarray surface illuminated by a fixed W-band feed and a Ka-band Active Electronically Scanned Array (AESA) line feed. The reflectarray surface provides beam focusing at W-band, but is transparent at Ka-band.
NASA Technical Reports Server (NTRS)
Sekhon, R.
1981-01-01
Digital SEASAT-1 synthetic aperture radar (SAR) data were used to enhance linear features to extract geologically significant lineaments in the Appalachian region. Comparison of Lineaments thus mapped with an existing lineament map based on LANDSAT MSS images shows that appropriately processed SEASAT-1 SAR data can significantly improve the detection of lineaments. Merge MSS and SAR data sets were more useful fo lineament detection and landcover classification than LANDSAT or SEASAT data alone. About 20 percent of the lineaments plotted from the SEASAT SAR image did not appear on the LANDSAT image. About 6 percent of minor lineaments or parts of lineaments present in the LANDSAT map were missing from the SEASAT map. Improvement in the landcover classification (acreage and spatial estimation accuracy) was attained by using MSS-SAR merged data. The aerial estimation of residential/built-up and forest categories was improved. Accuracy in estimating the agricultural and water categories was slightly reduced.
Method and apparatus for reducing range ambiguity in synthetic aperture radar
Kare, Jordin T.
1999-10-26
A modified Synthetic Aperture Radar (SAR) system with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation (e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.
Singha, Suman; Vespe, Michele; Trieschmann, Olaf
2013-08-15
Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.
Indoor imagery with a 3D through-wall synthetic aperture radar
NASA Astrophysics Data System (ADS)
Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan
2012-06-01
Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.
From Vision to Reality: 50 Years of Phased Array Development
2016-09-30
This paper cites the most prominent U.S.-deployed phased array radars as viewed by one phased-array radar advocate. Key words: radar, antenna array...phased array, phased array radar, radar antennas , array I. INTRODUCTION I welcome the opportunity to talk with today’s phased array engineers and...their test site in Fullerton, CA in the mid-1960s and was impressed by the size of the antennas . Eight apertures were deployed on each ship to
Observations of the marine environment from spaceborne side-looking real aperture radars
NASA Technical Reports Server (NTRS)
Kalmykov, A. I.; Velichko, S. A.; Tsymbal, V. N.; Kuleshov, Yu. A.; Weinman, J. A.; Jurkevich, I.
1993-01-01
Real aperture, side looking X-band radars have been operated from the Soviet Cosmos-1500, -1602, -1766 and Ocean satellites since 1984. Wind velocities were inferred from sea surface radar scattering for speeds ranging from approximately 2 m/s to those of hurricane proportions. The wind speeds were within 10-20 percent of the measured in situ values, and the direction of the wind velocity agreed with in situ direction measurements within 20-50 deg. Various atmospheric mesoscale eddies and tropical cyclones were thus located, and their strengths were inferred from sea surface reflectivity measurements. Rain cells were observed over both land and sea with these spaceborne radars. Algorithms to retrieve rainfall rates from spaceborne radar measurements were also developed. Spaceborne radars have been used to monitor various marine hazards. For example, information derived from those radars was used to plan rescue operations of distressed ships trapped in sea ice. Icebergs have also been monitored, and oil spills were mapped. Tsunamis produced by underwater earthquakes were also observed from space by the radars on the Cosmos 1500 series of satellites. The Cosmos-1500 satellite series have provided all weather radar imagery of the earths surface to a user community in real time by means of a 137.4 MHz Automatic Picture Transmission channel. This feature enabled the radar information to be used in direct support of Soviet polar maritime activities.
Radar transponder apparatus and signal processing technique
Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.
1996-01-01
An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.
Radar transponder apparatus and signal processing technique
Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.
1996-01-23
An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.
Training site statistics from Landsat and Seasat satellite imagery registered to a common map base
NASA Technical Reports Server (NTRS)
Clark, J.
1981-01-01
Landsat and Seasat satellite imagery and training site boundary coordinates were registered to a common Universal Transverse Mercator map base in the Newport Beach area of Orange County, California. The purpose was to establish a spatially-registered, multi-sensor data base which would test the use of Seasat synthetic aperture radar imagery to improve spectral separability of channels used for land use classification of an urban area. Digital image processing techniques originally developed for the digital mosaics of the California Desert and the State of Arizona were adapted to spatially register multispectral and radar data. Techniques included control point selection from imagery and USGS topographic quadrangle maps, control point cataloguing with the Image Based Information System, and spatial and spectral rectifications of the imagery. The radar imagery was pre-processed to reduce its tendency toward uniform data distributions, so that training site statistics for selected Landsat and pre-processed Seasat imagery indicated good spectral separation between channels.
Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, Michael P.; Miklius, Asta
2011-01-01
Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.
Strain Partitioning and Present-Day Fault Kinematics in NW Tibet From Envisat SAR Interferometry
NASA Astrophysics Data System (ADS)
Daout, Simon; Doin, Marie-Pierre; Peltzer, Gilles; Lasserre, Cécile; Socquet, Anne; Volat, Matthieu; Sudhaus, Henriette
2018-03-01
An 8 year archive of Envisat synthetic aperture radar (SAR) data over a 300 × 500 km2 wide area in northwestern Tibet is analyzed to construct a line-of-sight map of the current surface velocity field. The resulting velocity map reveals (1) a velocity gradient across the Altyn Tagh fault, (2) a sharp velocity change along a structure following the base of the alluvial fans in southern Tarim, and (3) a broad velocity gradient, following the Jinsha suture. The interferometric synthetic aperture radar velocity field is combined with published GPS data to constrain the geometry and slip rates of a fault model consisting of a vertical fault plane under the Altyn Tagh fault and a shallow flat décollement ending in a steeper ramp on the Tarim side. The solutions converge toward 0.7 mm/yr of pure thrusting on the décollement-ramp system and 10.5 mm/yr of left-lateral strike-slip movement on the Altyn Tagh fault, below a 17 km locking depth. A simple elastic dislocation model across the Jinsha suture shows that data are consistent with 4-8 mm/yr of left-lateral shear across this structure. Interferometric synthetic aperture radar processing steps include implementing a stepwise unwrapping method starting with high-quality interferograms to assist in unwrapping noisier interferograms, iteratively estimating long-wavelength spatial ramps, and referencing all interferograms to bedrock pixels surrounding sedimentary basins. A specific focus on atmospheric delay estimation using the ERA-Interim model decreases the uncertainty on the velocity across the Tibet border by a factor of 2.
Data volume reduction for imaging radar polarimetry
NASA Technical Reports Server (NTRS)
Zebker, Howard A. (Inventor); Held, Daniel N. (Inventor); Vanzyl, Jakob J. (Inventor); Dubois, Pascale C. (Inventor); Norikane, Lynne (Inventor)
1988-01-01
Two alternative methods are presented for digital reduction of synthetic aperture multipolarized radar data using scattering matrices, or using Stokes matrices, of four consecutive along-track pixels to produce averaged data for generating a synthetic polarization image.
INSAR Images Hawaii Kilauea Volcano
2011-03-10
This satellite interferometric synthetic aperture radar image using COSMO-SkyMed radar data, depicts the relative deformation of Earth surface at Kilauea between Feb. 11, 2011 and March 7, 2011 two days following the start of the current eruption.
Data volume reduction for imaging radar polarimetry
NASA Technical Reports Server (NTRS)
Zebker, Howard A. (Inventor); Held, Daniel N. (Inventor); van Zul, Jakob J. (Inventor); Dubois, Pascale C. (Inventor); Norikane, Lynne (Inventor)
1989-01-01
Two alternative methods are disclosed for digital reduction of synthetic aperture multipolarized radar data using scattering matrices, or using Stokes matrices, of four consecutive along-track pixels to produce averaged data for generating a synthetic polarization image.
Passive synthetic aperture radar imaging of ground moving targets
NASA Astrophysics Data System (ADS)
Wacks, Steven; Yazici, Birsen
2012-05-01
In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.
UAVSAR Active Electronically Scanned Array
NASA Technical Reports Server (NTRS)
Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.
2011-01-01
The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection
Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.
Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret
2008-01-01
In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing
2014-01-01
The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.
Shuttle Radar Topography Mission (SRTM)
,
2003-01-01
Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.
Magellan radar to reveal secrets of enshrouded Venus
NASA Technical Reports Server (NTRS)
Saunders, R. Stephen
1990-01-01
Imaging Venus with a synthetic aperture radar (SAR) with 70 percent global coverage at 1-km optical line-pair resolution to provide a detailed global characterization of the volcanic land-forms on Venus by an integration of image data with altimetry is discussed. The Magellan radar system uses navigation predictions to preset the radar data collection parameters. The data are collected in such a way as to preserve the Doppler signature of surface elements and later they are transmitted to the earth for processing into high-resolution radar images. To maintain high accuracy, a complex on-board filter algorithm allows the altitude control logic to respond only to a narrow range of expected photon intensity levels and only to signals that occur within a small predicted interval of time. Each mapping pass images a swath of the planet that varies in width from 20 to 25 km. Since the orbital plane of the spacecraft remains fixed in the inertial space, the slow rotation of Venus continually brings new areas into view of the spacecraft.
Effect of phase errors in stepped-frequency radar systems
NASA Astrophysics Data System (ADS)
Vanbrundt, H. E.
1988-04-01
Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.
UAV-based Radar Sounding of Antarctic Ice
NASA Astrophysics Data System (ADS)
Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad
2014-05-01
We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of deep temperate glaciers—examples from the Northern Patagonian Icefield, 14th International Conference on Ground Penetrating Radar (GPR) June 4-8, 2012, Shanghai, China, ISBN 978-1-4673-2663-6.
Jung, H.-S.; Lu, Z.; Lee, C.-W.
2011-01-01
Interferometric synthetic aperture radar (InSAR) technique has been successfully used for mapping surface deformations [1-2], but it has been normally limited to a measurement along the radar line-of-sight (LOS) direction. For this reason, it is impossible to determine the north (N-S) component of surface deformation because of using data from near-polar orbiting satellites, and it is not sufficient to resolve the parameters of models for earthquakes and volcanic activities because there is a marked trade-off among model parameters [3]. ?? 2011 KIEES.
Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar
Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM
2008-06-24
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
Synthetic aperture radar images with composite azimuth resolution
Bielek, Timothy P; Bickel, Douglas L
2015-03-31
A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.
New inverse synthetic aperture radar algorithm for translational motion compensation
NASA Astrophysics Data System (ADS)
Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.
1991-10-01
Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.
Synthetic Aperture Acoustic Imaging of Non-Metallic Cords
2012-04-01
Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302...collected with a research prototype synthetic aperture acoustic ( SAA ) imaging system. SAA imaging is an emerging technique that can serve as an...inexpensive alternative or logical complement to synthetic aperture radar (SAR). The SAA imaging system uses an acoustic transceiver (speaker and
New Eye on High--or is it an Ear?
ERIC Educational Resources Information Center
Eberhart, Jonathan
1978-01-01
Describes Seasat, a big satellite, launched for monitoring conditions at the top of the ocean. The Seasat's radar is called a synthetic-aperture radar (SAR). How it offers intriguing perspective on the world below is also presented. (HM)
Digital correlation of DDRS data
NASA Technical Reports Server (NTRS)
Griffin, C. R.; Estes, J. M.
1981-01-01
The reduction of digital SAR (synthetic aperture radar) data to radar images for use in remote sensing applications was investigated. The critical software operations are discussed in detail, and suggestions and recommendations are made for improving the algorithms currently being used.
Radar Image with Color as Height, Sman Teng, Temple, Cambodia
2002-10-11
This image, taken by NASA Airborne Synthetic Aperture Radar AIRSAR in 2002, is of Cambodia Angkor region revealing a temple upper-right not depicted on early 19th Century French archeological survey maps and American topographic maps.
NASA Astrophysics Data System (ADS)
Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.
1988-04-01
The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.
STS-59 payload SIR-C/X-SAR antenna view
1993-10-30
S93-48551 (October 1993) --- The Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) antenna, developed by the Jet Propulsion Laboratory (JPL) as part of NASA's Mission to Planet Earth (MTPE), will fly aboard the Space Shuttle Endeavour. The radar antenna uses microwave energy which gives it the ability to collect data over virtually any region at any time, regardless of weather or sunlight conditions. The radar waves can penetrate clouds, and under certain conditions the radar can also see through vegetation, ice and dry sand. In many cases, spaceborne radar is the only way scientists can explore large-scale and inaccessible regions of the Earth's surface. SIR-C/X-SAR uses three microwave wavelengths: L-Band (24 cm), C-Band (6 cm) and X-Ban (3 cm). The multi-frequency data will be used by the international scientific community to monitor global environmental processes with a focus on climate change. The MTPE spaceborne data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, D.W.; Murphy, M.; Rimmel, G.
1994-08-01
NATO and former Warsaw Pact nations have agreed to allow overflights of their countries in the interest of easing world tension. The United States has decided to implement two C-135 aircraft with a Synthetic Aperture Radar (SAR) that has a 3-meter resolution. This work is being sponsored by the Defense Nuclear Agency (DNA) and will be operational in Fall 1995. Since the SAR equipment must be exportable to foreign nations, a 20-year-old UPD-8 analog SAR system was selected as the front-end and refurbished for this application by Loral Defense Systems. Data processing is being upgraded to a currently exportable digitalmore » design by Sandia National Laboratories. Amplitude and phase histories will be collected during these overflights and digitized on VHS cassettes. Ground stations will use reduction algorithms to process the data and convert it to magnitude-detected images for member nations. System Planning Corporation is presently developing a portable ground station for use on the demonstration flights. Aircraft integration into the C-135 aircraft is being done by the Air Force at Wright-Patterson AFB, Ohio.« less
NASA Astrophysics Data System (ADS)
Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Quicho, E.; Collivignarelli, F.; Maunahan, A.; Gatti, L.; Romuga, G. C.
2017-01-01
Reliable and regular rice information is essential part of many countries’ national accounting process but the existing system may not be sufficient to meet the information demand in the context of food security and policy. Synthetic Aperture Radar (SAR) imagery is highly suitable for detecting lowland paddy rice, especially in tropical region where pervasive cloud cover in the rainy seasons limits the use of optical imagery. This study uses multi-temporal X-band and C-band SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations across Tropical Asia and assimilate the information into ORYZA Crop Growth Simulation model (CGSM) to generate high resolution yield maps. The resulting cultivated rice area maps had classification accuracies above 85% and yield estimates were within 81-93% agreement against district level reported yields. The study sites capture much of the diversity in water management, crop establishment and rice maturity durations and the study demonstrates the feasibility of rice detection, yield monitoring, and damage assessment in case of climate disaster at national and supra-national scales using multi-temporal SAR imagery combined with CGSM and automated methods.
The forthcoming EISCAT_3D as an extra-terrestrial matter monitor
NASA Astrophysics Data System (ADS)
Pellinen-Wannberg, Asta; Kero, Johan; Häggström, Ingemar; Mann, Ingrid; Tjulin, Anders
2016-04-01
It is important to monitor the extra-terrestrial dust flux in the Earth's environment and into the atmosphere. Meteoroids threaten the infrastructure in space as hypervelocity hits by micron-sized granules continuously degrade the solar panels and other satellite surfaces. Through their orbital elements meteoroids can be associated to the interplanetary dust cloud, comets, asteroids or the interstellar space. The ablation products of meteoroids participate in many physical and chemical processes at different layers in the atmosphere, many of them occurring in the polar regions. High-power large-aperture (HPLA) radars, such as the tristatic EISCAT UHF together with the EISCAT VHF, have been versatile instruments for studying many properties of the meteoroid population, even though they were not initially designed for this purpose. The future EISCAT_3D will comprise a phased-array transmitter and several phased-array receivers distributed in northern Scandinavia. These will work at 233 MHz centre frequency with power up to 10 MW and run advanced signal processing systems. The facility will in many aspects be superior to its predecessors as the first radar to combine volumetric-, aperture synthesis- and multistatic imaging as well as adaptive experiments. The technical design goals of the radar respond to the scientific requests from the user community. The VHF frequency and the volumetric imaging capacity will increase the collecting volume compared to the earlier UHF, the high transmitter power will increase the sensitivity of the radar, and the interferometry will improve the spatial resolution of the orbit estimates. The facility will be able to observe and define orbits to about 10% of the meteors from the established mass flux distribution that are large or fast enough to produce an ionization mantle around the impacting meteoroid within the collecting volume. The estimated annual mean of about 190 000 orbits per day with EISCAT_3D gives many orders of magnitude higher detected orbit rates than the earlier tristatic UHF radar.
Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery
NASA Astrophysics Data System (ADS)
Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.
2017-12-01
Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.
NASA Astrophysics Data System (ADS)
Pradhan, O.; Gasiewski, A. J.; Stone, W.
2017-12-01
We present the design, analyses and field testing of a forward-looking endfire synthetic aperture radar (SAR) for the `Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. The project consists of (1) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form the radiating elements, (2) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (3) field testing of the SAR system. The antennas were designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar analog and digital system were also designed and integrated at CET utilizing rugged RF components and FPGA based digital waveform generation. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. In this presentation we will describe in detail the following aspects pertaining to the design, analysis and testing of the endfire SAR system; (1) Waveform generation capability of the radar as well as transmit and receive channel calibration (2) Theoretical analysis of the radial resolution improvement made possible by using the radar in an endfire SAR mode along with the free space radar tests performed to validate the proposed endfire SAR system (3) A method for azimuth ambiguity resolution by operating the endfire SAR in a bistatic mode (4) Modal analysis of the layered cylindrical LPFSA antenna structure and a forward model of the wave propagation path through planar layered ice medium and (5) Analysis and interpretation of the in-situ measurements of the antennas and endfire SAR operation on the Matanuska glacier.
Imaging synthetic aperture radar
Burns, Bryan L.; Cordaro, J. Thomas
1997-01-01
A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.
Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products
NASA Astrophysics Data System (ADS)
Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.
2017-12-01
The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.
2014-12-01
Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.
Space Radar Image of Raco Biomass Map
NASA Technical Reports Server (NTRS)
1999-01-01
This biomass map of the Raco, Michigan, area was produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. Biomass is the amount of plant material on an area of Earth's surface. Radar can directly sense the quantity and organizational structure of the woody biomass in the forest. Science team members at the University of Michigan used the radar data to estimate the standing biomass for this Raco site in the Upper Peninsula of Michigan. Detailed surveys of 70 forest stands will be used to assess the accuracy of these techniques. The seasonal growth of terrestrial plants, and forests in particular, leads to the temporary storage of large amounts of carbon, which could directly affect changes in global climate. In order to accurately predict future global change, scientists need detailed information about current distribution of vegetation types and the amount of biomass present around the globe. Optical techniques to determine net biomass are frustrated by chronic cloud-cover. Imaging radar can penetrate through cloud-cover with negligible signal losses. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.
Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing
Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang
2016-01-01
Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341
NASA Technical Reports Server (NTRS)
Rignot, Eric
1998-01-01
The synthetic-aperture radar interferometry technique is used to detect the migration of the limit of tidal flexing, or hinge line, of the floating ice tongue of Petermann Gletscher, a major outlet glacier of north Greenland.
Remote sensing at the University of Kansas in radar systems
NASA Technical Reports Server (NTRS)
Moore, R. K.
1970-01-01
Demonstration that a spectral response across an octave bandwidth in the microwave region is as variable as the comparable response in the visible and infrared region is a major mile-stone and indicates the potential of polypanchromatic radar systems is analogous with that of color photography. Averaging of the returns from a target element appears necessary to obtain a grey scale adequate for many earth-science applications of radar systems. This result can be obtained either by azimuth averaging or by the use of panchromatic techniques (range averaging). Improvement with panchromatic techniques has been demonstrated both with a landbased electromagnetic system and with an ultrasonic simulator. The advantage of the averaging achieved in azimuth with the real-aperture version of the DPD-2 when compared with the synthetic aperture version confirms the concept.
Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrove, Cameron
2014-05-01
For synthetic aperture radar image products interference can degrade the quality of the images while techniques to mitigate the interference also reduce the image quality. Usually the radar system designer will try to balance the amount of mitigation for the amount of interference to optimize the image quality. This may work well for many situations, but coherent data products derived from the image products are more sensitive than the human eye to distortions caused by interference and mitigation of interference. This dissertation examines the e ect that interference and mitigation of interference has upon coherent data products. An improvement tomore » the standard notch mitigation is introduced, called the equalization notch. Other methods are suggested to mitigation interference while improving the quality of coherent data products over existing methods.« less
NASA Astrophysics Data System (ADS)
Chau, J. L.; Urco, J. M.; Milla, M. A.; Vierinen, J.
2017-12-01
We have recently implemented Multiple-input multiple-output (MIMO) radar techniques to resolve temporal and spatial ambiguities of ionospheric and atmospheric irregularities, with improve capabilities than previously experiments using single-input multi-output (SIMO) techniques. SIMO techniques in the atmospheric and ionospheric coherent scatter radar field are usually called aperture synthesis radar imaging. Our implementations have done at the Jicamarca Radio Observatory (JRO) in Lima, Peru, and at the Middle Atmosphere Alomar Radar System (MAARSY) in Andenes, Norway, to study equatorial electrojet (EEJ) field-aligned irregularities and polar mesospheric summer echoes (PMSE), respectively. Figure 1 shows an example of a configuration used at MAARSY and the comparison between the SIMO and MIMO resulting antenna point spread functions, respectively. Although in this work we present the details of the implementations at each facility, we will focus on the observed peculiarities of each phenomenon, making emphasis in the underlying physical mechanisms that govern their existence and their spatial and temporal modulation. For example, what are the typical horizontal scales of PMSE variability in both intensity and wind field?
The aperture synthesis imaging capability of the EISCAT_3D radars
NASA Astrophysics Data System (ADS)
La Hoz, Cesar; Belyey, Vasyl
2010-05-01
The built-in Aperture Synthesis Imaging Radar (ASIR) capabilities of the EISCAT_3D system, complemented with multiple beams and rapid beam scanning, is what will make the new radar truly three dimensional and justify its name. With the EISCAT_3D radars it will be possible to make investigations in 3-dimensions of several important phenomena such as Natural Enhanced Ion Acoustic Lines (NEIALs), Polar Mesospheric Summer and Winter Echoes (PMSE and PMWE), meteors, space debris, atmospheric waves and turbulence in the mesosphere, upper troposphere and possibly the lower stratosphere. Of particular interest and novelty is the measurement of the structure in electron density created by aurora that produce incoherent scatter. With scale sizes of the order of tens of meters, the imaging of these structures will be conditioned only by the signal to noise ratio which is expected to be high during some of these events, since the electron density can be significantly enhanced. The electron density inhomogeneities and plasma structures excited by artificial ionospheric heating could conceivable be resolved by the radars provided that their variation during the integration time is not great.
Contribution to the glaciology of northern Greenland from satellite radar interferometry
NASA Technical Reports Server (NTRS)
Rignot, E.; Gogineni, S.; Joughin, I.; Krabill, W.
2001-01-01
Interferometric synthetic aperture radar (InSAR) data from the ERS-1 and ERS-2 satellites are used to measure the surface velocity, topography, and grounding line position of the major outletglaciers in the northern sector of the Greenland ice sheet.
Likelihood parameter estimation for calibrating a soil moisture using radar backscatter
USDA-ARS?s Scientific Manuscript database
Assimilating soil moisture information contained in synthetic aperture radar imagery into land surface model predictions can be done using a calibration, or parameter estimation, approach. The presence of speckle, however, necessitates aggregating backscatter measurements over large land areas in or...
Space Radar Image of Kilauea Volcano, Hawaii
NASA Technical Reports Server (NTRS)
1994-01-01
This three-dimensional image of the volcano Kilauea was generated based on interferometric fringes derived from two X-band Synthetic Aperture Radar data takes on April 13, 1994 and October 4, 1994. The altitude lines are based on quantitative interpolation of the topographic fringes. The level difference between neighboring altitude lines is 20 meters (66 feet). The ground area covers 12 kilometers by 4 kilometers (7.5 miles by 2.5 miles). The altitude difference in the image is about 500 meters (1,640 feet). The volcano is located around 19.58 degrees north latitude and 155.55 degrees west longitude. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in the interferometry analysis.
Effects of Deadly California Debris Flows Seen in Before/After Images from NASA's UAVSAR
2018-02-12
Extreme winter rains in January 2018 following the Thomas Fire in Ventura and Santa Barbara Counties caused severe debris flows, resulting in significant loss of life and considerable property damage in the town on Montecito, just east of Santa Barbara. NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne radar platform detected changes caused by the debris flows between two images acquired on Nov. 2, 2017, and Feb. 5, 2018. An enhanced image pair (top left) shows disturbed areas in orange. In areas of severe surface disruption from the fire scar and debris flows the two image pairs can't be matched and decorrelate (top right). In the middle panels, the radar images are overlaid on the structure damage map produced by the County of Santa Barbara. The fire scars and damage correspond well with the risk map (lower left) and damage map (lower right). With an operational system, products such as these have the potential to augment information available for search and rescue, and for damage assessment for government agencies or the insurance industry. Radar has the advantage of being available in all weather conditions, as it can image through clouds. NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), developed and managed by the Jet Propulsion Laboratory, Pasadena, California, can record changes on the ground beneath the aircraft that occur between multiple flights, which take exactly the same flight path. The instrument is used to monitor how volcanoes, earthquakes, and other natural hazards are changing Earth. The JPL UAVSAR team collected and processed the imagery for Principal Investigator Andrea Donnellan who performed the analysis. She has been conducting ground change research using UAVSAR in this and other regions of California since 2009. https://photojournal.jpl.nasa.gov/catalog/PIA22243
NASA Astrophysics Data System (ADS)
Jitrik, Oliverio; Lanzagorta, Marco; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.
2017-05-01
The study of plate tectonic motion is important to generate theoretical models of the structure and dynamics of the Earth. In turn, understanding tectonic motion provides insight to develop sophisticated models that can be used for earthquake early warning systems and for nuclear forensics. Tectonic geodesy uses the position of a network of points on the surface of earth to determine the motion of tectonic plates and the deformation of the earths crust. GPS and interferometric synthetic aperture radar are commonly used techniques used in tectonic geodesy. In this paper we will describe the feasibility of interferometric synthetic aperture quantum radar and its theoretical performance for tectonic geodesy.
Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas
2010-08-17
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
Comparison of three different detectors applied to synthetic aperture radar data
NASA Astrophysics Data System (ADS)
Ranney, Kenneth I.; Khatri, Hiralal; Nguyen, Lam H.
2002-08-01
The U.S. Army Research Laboratory has investigated the relative performance of three different target detection paradigms applied to foliage penetration (FOPEN) synthetic aperture radar (SAR) data. The three detectors - a quadratic polynomial discriminator (QPD), Bayesian neural network (BNN) and a support vector machine (SVM) - utilize a common collection of statistics (feature values) calculated from the fully polarimetric FOPEN data. We describe the parametric variations required as part of the algorithm optimizations, and we present the relative performance of the detectors in terms of probability of false alarm (Pfa) and probability of detection (Pd).
Mapping biomass for a northern forest ecosystem using multi-frequency SAR data
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Sun, Guoqing
1992-01-01
Image processing methods for mapping standing biomass for a forest in Maine, using NASA/JPL airborne synthetic aperture radar (AIRSAR) polarimeter data, are presented. By examining the dependence of backscattering on standing biomass, it is determined that the ratio of HV backscattering from a longer wavelength (P- or L-band) to a shorter wavelength (C) is a good combination for mapping total biomass. This ratio enhances the correlation of the image signature to the standing biomass and compensates for a major part of the variations in backscattering attributed to radar incidence angle. The image processing methods used include image calibration, ratioing, filtering, and segmentation. The image segmentation algorithm uses both means and variances of the image, and it is combined with the image filtering process. Preliminary assessment of the resultant biomass maps suggests that this is a promising method.
Pre-Processes for Urban Areas Detection in SAR Images
NASA Astrophysics Data System (ADS)
Altay Açar, S.; Bayır, Ş.
2017-11-01
In this study, pre-processes for urban areas detection in synthetic aperture radar (SAR) images are examined. These pre-processes are image smoothing, thresholding and white coloured regions determination. Image smoothing is carried out to remove noises then thresholding is applied to obtain binary image. Finally, candidate urban areas are detected by using white coloured regions determination. All pre-processes are applied by utilizing the developed software. Two different SAR images which are acquired by TerraSAR-X are used in experimental study. Obtained results are shown visually.
Using Sentinel-1 SAR satellites to map wind speed variation across offshore wind farm clusters
NASA Astrophysics Data System (ADS)
James, S. F.
2017-11-01
Offshore wind speed maps at 500m resolution are derived from freely available satellite Synthetic Aperture Radar (SAR) data. The method for processing many SAR images to derive wind speed maps is described in full. The results are tested against coincident offshore mast data. Example wind speed maps for the UK Thames Estuary offshore wind farm cluster are presented.
2017-08-01
filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrove, Cameron H.; West, James C.
Missing samples within synthetic aperture radar data result in image distortions. For coherent data products, such as coherent change detection and interferometric processing, the image distortion can be devastating to these second order products, resulting in missed detections and inaccurate height maps. Earlier approaches to repair the coherent data products focus upon reconstructing the missing data samples. This study demonstrates that reconstruction is not necessary to restore the quality of the coherent data products.
H.-E. Andersen; R.J. McGaughey; S.E. Reutebuch
2008-01-01
High resolution, active remote sensing technologies, such as interferometric synthetic aperture radar (IFSAR) and airborne laser scanning (LIDAR) have the capability to provide forest managers with direct measurements of 3-dimensional forest canopy surface structure. Although LIDAR systems can provide highly accurate measurements of canopy and terrain surfaces, high-...
Synthetic aperture radar operator tactical target acquisition research
NASA Technical Reports Server (NTRS)
Hershberger, M. L.; Craig, D. W.
1978-01-01
A radar target acquisition research study was conducted to access the effects of two levels of 13 radar sensor, display, and mission parameters on operator tactical target acquisition. A saturated fractional-factorial screening design was employed to examine these parameters. Data analysis computed ETA squared values for main and second-order effects for the variables tested. Ranking of the research parameters in terms of importance to system design revealed four variables (radar coverage, radar resolution/multiple looks, display resolution, and display size) accounted for 50 percent of the target acquisition probability variance.
Impact of the ionosphere on an L-band space based radar
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Chan, Samuel F.; Chapman, Bruce D.; Chen, Curtis W.; Martin, Jan M.; Michel, Thierry R.; Muellerschoen, Ronald J.; Pi, Xiaoqing; Rosen, Paul A.
2006-01-01
We have quantified the impact that the ionosphere would have on a L-band interferometric Synthetic Aperture Radar (SAR) mission using a combination of simulation, modeling, Global Positioning System (GPS) data collected during the last solar maximum, and existing spaceborne SAR data.
NASA Astrophysics Data System (ADS)
Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.
2016-03-01
A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.
High-resolution imaging using a wideband MIMO radar system with two distributed arrays.
Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi
2010-05-01
Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.
NASA Technical Reports Server (NTRS)
Held, D.; Werner, C.; Wall, S.
1983-01-01
The absolute amplitude calibration of the spaceborne Seasat SAR data set is presented based on previous relative calibration studies. A scale factor making it possible to express the perceived radar brightness of a scene in units of sigma-zero is established. The system components are analyzed for error contribution, and the calibration techniques are introduced for each stage. These include: A/D converter saturation tests; prevention of clipping in the processing step; and converting the digital image into the units of received power. Experimental verification was performed by screening and processing the data of the lava flow surrounding the Pisgah Crater in Southern California, for which previous C-130 airborne scatterometer data were available. The average backscatter difference between the two data sets is estimated to be 2 dB in the brighter, and 4 dB in the dimmer regions. For the SAR a calculated uncertainty of 3 dB is expected.
STS-68 radar image: Glasgow, Missouri
1994-10-07
STS068-S-055 (7 October 1994) --- This is a false-color L-Band image of an area near Glasgow, Missouri, centered at about 39.2 degrees north latitude and 92.8 degrees west longitude. The image was acquired using the L-Band radar channel (horizontally transmitted and received and horizontally transmitted and vertically received) polarization's combined. The data were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour on orbit 50 on October 3, 1994. The area shown is approximately 37 by 25 kilometers (23 by 16 miles). The radar data, coupled with pre-flood aerial photography and satellite data and post-flood topographic and field data, are being used to evaluate changes associated with levee breaks in land forms, where deposits formed during the widespread flooding in 1993 along the Missouri and Mississippi Rivers. The distinct radar scattering properties of farmland, sand fields and scoured areas will be used to inventory flood plains along the Missouri River and determine the processes by which these areas return to preflood conditions. The image shows one such levee break near Glasgow, Missouri. In the upper center of the radar image, below the bend of the river, is a region covered by several meters of sand, shown as dark regions. West (left) of the dark areas, a gap in the levee tree canopy shows the area where the levee failed. Radar data such as these can help scientists more accurately assess the potential for future flooding in this region and how that might impact surrounding communities. Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses the three microwave wavelengths: the L-Band (24 centimeters), C-Band (6 centimeters) and X-Band (3 centimeters). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory (JPL). X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR. (P-44734)
Radar measurement of L-band signal fluctuations caused by propagation through trees
NASA Technical Reports Server (NTRS)
Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.
1991-01-01
Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.
Global Boreal Forest Mapping with JERS-1: North America
NASA Technical Reports Server (NTRS)
Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce
2000-01-01
Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.
HELIRADAR technology for helicopter all-weather operations
NASA Astrophysics Data System (ADS)
Kreitmair-Steck, Wolfgang; Braun, Guenter
1997-06-01
Currently available radar instruments are not capable of guiding a helicopter pilot safely during approach and landing under poor visibility conditions. This is due to lack of resolution and lack of elevation information. The RADAR technology that promises to improve this situation is called ROSAR, which stands for Synthetic Aperture Radar based on ROtating Antennas. In 1992 Eurocopter and Daimler- Benz Aerospace investigated the feasibility of an imaging radar based on ROSAR technology. The objective was to provide a video-like image with a resolution good enough to safely guide a helicopter pilot under poor visibility conditions. ROSAR proved to be especially well suited for this type of application since it allows for a stationary carrier platform: Rotating arms with antennas integrated into their tips can be mounted on top of the rotor head. In this way the scanning region of the antennas can cover 360 degree(s). While rotating, the antenna scans the environment from various visual angles without assuming a movement of the carrier platform itself. The signal is then processed as a function of the rotation angle of the antenna movement along a circular path. A radar system of this type is now under development at Eurocopter and Daimler-Benz Aerospace: HeliRadar. HeliRadar is designed as a frequency modulated continuous wave radar working in a frequency band around 35 GHz. The complete transmitter/receiver system is fixed mounted on top of the rotating axis of the helicopter. The received signals are transferred through the center of the rotor axis down into the cabin of the helicopter, where they are processed in a high performance digital signal processor (processing power: 10 GFLOPS). First encouraging results have been obtained from an experiment with `slow motion' movement of the antenna arm.
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Dessay, Nadine
2018-01-01
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field. PMID:29518988
PTBS segmentation scheme for synthetic aperture radar
NASA Astrophysics Data System (ADS)
Friedland, Noah S.; Rothwell, Brian J.
1995-07-01
The Image Understanding Group at Martin Marietta Technologies in Denver, Colorado has developed a model-based synthetic aperture radar (SAR) automatic target recognition (ATR) system using an integrated resource architecture (IRA). IRA, an adaptive Markov random field (MRF) environment, utilizes information from image, model, and neighborhood resources to create a discrete, 2D feature-based world description (FBWD). The IRA FBWD features are peak, target, background and shadow (PTBS). These features have been shown to be very useful for target discrimination. The FBWD is used to accrue evidence over a model hypothesis set. This paper presents the PTBS segmentation process utilizing two IRA resources. The image resource (IR) provides generic (the physics of image formation) and specific (the given image input) information. The neighborhood resource (NR) provides domain knowledge of localized FBWD site behaviors. A simulated annealing optimization algorithm is used to construct a `most likely' PTBS state. Results on simulated imagery illustrate the power of this technique to correctly segment PTBS features, even when vehicle signatures are immersed in heavy background clutter. These segmentations also suppress sidelobe effects and delineate shadows.
A modified sparse reconstruction method for three-dimensional synthetic aperture radar image
NASA Astrophysics Data System (ADS)
Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin
2018-03-01
There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.
Balser, Andrew W.; Wylie, Bruce K.
2010-01-01
Tracking landscape-scale water status in high-latitude boreal systems is indispensible to understanding the fate of stored and sequestered carbon in a climate change scenario. Spaceborne synthetic aperture radar (SAR) imagery provides critical information for water and moisture status in Alaskan boreal environments at the landscape scale. When combined with results from optical sensor analyses, a complementary picture of vegetation, biomass, and water status emerges. Whereas L-band SAR showed better inherent capacity to map water status, C-band had much more temporal coverage in this study. Analysis through the use of L- and C-band SARs combined with Landsat Enhanced Thematic Mapper Plus (ETM+) enables landscape stratification by vegetation and by seasonal and interannual hydrology. Resultant classifications are highly relevant to biogeochemistry at the landscape scale. These results enhance our understanding of ecosystem processes relevant to carbon balance and may be scaled up to inform regional carbon flux estimates and better parameterize general circulation models (GCMs).
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Gurgel, Helen; Mangeas, Morgan; Seyler, Frédérique; Dessay, Nadine
2018-03-07
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.
Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.
1994-01-01
Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.
Multi-static MIMO along track interferometry (ATI)
NASA Astrophysics Data System (ADS)
Knight, Chad; Deming, Ross; Gunther, Jake
2016-05-01
Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.
YSAR: a compact low-cost synthetic aperture radar
NASA Astrophysics Data System (ADS)
Thompson, Douglas G.; Arnold, David V.; Long, David G.; Miner, Gayle F.; Karlinsey, Thomas W.; Robertson, Adam E.
1997-09-01
The Brigham Young University Synthetic Aperture Radar (YSAR) is a compact, inexpensive SAR system which can be flown on a small aircraft. The system has exhibited a resolution of approximately 0.8 m by 0.8 m in test flights in calm conditions. YSAR has been used to collect data over archeological sites in Israel. Using a relatively low frequency (2.1 GHz), we hope to be able to identify walls or other archeological features to assist in excavation. A large data set of radar and photographic data have been collected over sites at Tel Safi, Qumran, Tel Micnah, and the Zippori National Forest in Israel. We show sample images from the archeological data. We are currently working on improved autofocus algorithms for this data and are developing a small, low-cost interferometric SAR system (YINSAR) for operation from a small aircraft.
Theory and measure of certain image norms in SAR
NASA Technical Reports Server (NTRS)
Raney, R. K.
1984-01-01
The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms.
Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT.
Pang, Cunsuo; Han, Yan; Hou, Huiling; Liu, Shengheng; Zhang, Nan
2016-09-24
This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT) for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT's performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated) pulse radar, SAR (Synthetic aperture radar), or ISAR (Inverse synthetic aperture radar), for improving the probability of target recognition.
Remote sensing with spaceborne synthetic aperture imaging radars: A review
NASA Technical Reports Server (NTRS)
Cimino, J. B.; Elachi, C.
1983-01-01
A review is given of remote sensing with Spaceborne Synthetic Aperture Radars (SAR's). In 1978, a spaceborne SA was flown on the SEASAT satellite. It acquired high resulution images over many regions in North America and the North Pacific. The acquired data clearly demonstrate the capability of spaceborne SARs to: image and track polar ice floes; image ocean surface patterns including swells, internal waves, current boundaries, weather boundaries and vessels; and image land features which are used to acquire information about the surface geology and land cover. In 1981, another SAR was flown on the second shuttle flight. This Shuttle Imaging Radar (SIR-A) acquired land and ocean images over many areas around the world. The emphasis of the SIR-A experiment was mainly toward geologic mapping. Some of the key results of the SIR-A experiment are given.
A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity
NASA Technical Reports Server (NTRS)
Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James
2003-01-01
The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument and will be ideally suited to large apertures, possibly at GEO, and could possibly be implemented on a swarm of micro-satellites. This instrument will have wide application for validation studies, and will have application for other microwave frequencies.
USDA-ARS?s Scientific Manuscript database
The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...
Technology Development for 3-D Wide Swath Imaging Supporting ACE
NASA Technical Reports Server (NTRS)
Racette, Paul; Heymsfield, Gerry; Li, Lihua; Mclinden, Matthew; Park, Richard; Cooley, Michael; Stenger, Pete; Hand, Thomas
2014-01-01
The National Academy of Sciences Decadal Survey (DS) Aerosol-Cloud-Ecosystems Mission (ACE) aims to advance our ability to observe and predict changes to the Earth's hydrological cycle and energy balance in response to climate forcing, especially those changes associated with the effects of aerosol on clouds and precipitation. ACE is focused on obtaining measurements to reduce the uncertainties in current climate models arising from the lack in understanding of aerosol-cloud interactions. As part of the mission instrument suite, a dual-frequency radar comprised of a fixed-beam 94 gigahertz (W-band) radar and a wide-swath 35 gigahertz (Ka-band) imaging radar has been recommended by the ACE Science Working Group.In our 2010 Instrument Incubator Program project, we've developed a radar architecture that addresses the challenge associated with achieving the measurement objectives through an innovative, shared aperture antenna that allows dual-frequency radar operation while achieving wide-swath (100 kilometers) imaging at Ka-band. The antenna system incorporates 2 key technologies; a) a novel dual-band reflectorreflectarray and b) a Ka-band Active Electronically Scanned Array (AESA) feed module. The dual-band antenna is comprised of a primary cylindrical reflectorreflectarray surface illuminated by a point-focus W-band feed (compatible with a quasi-optical beam waveguide feed, such as that employed on CloudSat); the Ka-band AESA line feed provides wide-swath across-track scanning. The benefits of this shared-aperture approach include significant reductions in ACE satellite payload size, weight, and cost, as compared to a two aperture approach. Four objectives were addressed in our project. The first entailed developing the tools for the analysis and design of reflectarray antennas, assessment of candidate reflectarray elements, and validation using test coupons. The second objective was to develop a full-scale aperture design utilizing the reflectarray surface and to detail specific requirements and trades for the Ka-band AESA line feed. As part of the third objective a subscale antenna, similar to the full-scale aperture design, was developed, integrated, and flown with the Cloud Radar System during the 2014 Integrated Precipitation and Hydrology Experiment. The fourth and ongoing objective entails developing a GaN MMIC (Gallium Nitride Monolithic Microwave Integrated Circuits) power amplifier for use in the Ka-band AESA. An overview of the progress made on this project and a look ahead at the 2013 IIP (Instrument Incubator Program) award selection will be presented.
Carter, William D.
1981-01-01
Launched in June 1978, Seasat operated for only 100 days, but successfully acquired much information over both sea and land. The collection of synthetic aperture radar (SAR) imagery and radar altimetry was particularly important to geologists. Although there are difficulties in processing and distributing these data in a timely manner, initial evaluations indicate that the radar imagery supplements Landsat data by increasing the spectral range and offering a different look angle. The radar altimeter provides accurate profiles over narrow strips of land (1 km wide) and has demonstrated usefulness in measuring icecap surfaces (Greenland, Iceland, and Antarctica). The Salar of Uyuni in southern Bolivia served as a calibration site for the altimeter and has enabled investigators to develop a land-based smoothing algorithm that is believed to increase the accuracy of the system to 10 cm. Data from the altimeter are currently being used to measure subsidence resulting from ground water withdrawal in the Phoenix-Tucson area.
Radar sensing via a Micro-UAV-borne system
NASA Astrophysics Data System (ADS)
Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine
2017-04-01
In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar-equipped drone. The system is made by a commercial radar system, whose mass, size, power and cost budgets is compatible with the installation on micro-UAV. The radar system has been mounted on a DJI 550 UAV, a flexible hexacopter allowing both complex flight operations and static flight, and has been equipped with small size log-periodic antennas, having a 6 dB gain over the frequency range from 2 GHz to 11 GHz. An ad-hoc signal processing chain has been adopted to process the collected raw data and obtain an image of the investigated scenario providing an accurate target detection and localization. This chain involves a SVD-based noise filter procedure and an advanced data processing approach, which assumes a linear model of the underlying scattering phenomenon. REFERENCES [1] K. Whitehead, C. H. Hugenholtz, "Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges", J. Unmanned Vehicle Systems, vol.2, pp. 69-85, 2014. [2] K. Ouchi, Recent trend and advance of synthetic aperture radar with selected topics, Remote Sens, vol.5, pp.716-807, 2013. [3] D. Altdor et al., UAV-borne electromagnetic induction and ground-penetrating radar measurements: a feasibility test, 74th Annual Meeting of the Deutsche Geophysikalische Gesellschaft in Karlsruhe, Germany, March 9 - 13, 2014.
The SIR-B science investigations plan
NASA Technical Reports Server (NTRS)
1984-01-01
Shuttle Imaging Radar-B (SIR-B) is the second synthetic aperture radar (SAR) to be flown on the National Aeronautics and Space Administration's Space Transportation System (Shuttle). It is the first spaceborne SAR to feature an antenna that allows acquisition of multiincidence angle imagery. An international team of scientists will use SIR-B to conduct investigations in a wide range of disciplines. The radar, the mission, and the investigations are described.
Propagation Effects in Space-Based Surveillance Systems
1982-02-01
This report describes the first year’s effort to investigate propagation effects in space - based radars. A model was developed for analyzing the...deleterious systems effects by first developing a generalized aperture distribution that ultimately can be applied to any space - based radar configuration...The propagation effects are characterized in terms of the SATCOM model striation parameters. The form of a generalized channel model for space - based radars
Reduction and coding of synthetic aperture radar data with Fourier transforms
NASA Technical Reports Server (NTRS)
Tilley, David G.
1995-01-01
Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.
Comparison of simulated and actual wind shear radar data products
NASA Technical Reports Server (NTRS)
Britt, Charles L.; Crittenden, Lucille H.
1992-01-01
Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.
Mobile high-performance computing (HPC) for synthetic aperture radar signal processing
NASA Astrophysics Data System (ADS)
Misko, Joshua; Kim, Youngsoo; Qi, Chenchen; Sirkeci, Birsen
2018-04-01
The importance of mobile high-performance computing has emerged in numerous battlespace applications at the tactical edge in hostile environments. Energy efficient computing power is a key enabler for diverse areas ranging from real-time big data analytics and atmospheric science to network science. However, the design of tactical mobile data centers is dominated by power, thermal, and physical constraints. Presently, it is very unlikely to achieve required computing processing power by aggregating emerging heterogeneous many-core processing platforms consisting of CPU, Field Programmable Gate Arrays and Graphic Processor cores constrained by power and performance. To address these challenges, we performed a Synthetic Aperture Radar case study for Automatic Target Recognition (ATR) using Deep Neural Networks (DNNs). However, these DNN models are typically trained using GPUs with gigabytes of external memories and massively used 32-bit floating point operations. As a result, DNNs do not run efficiently on hardware appropriate for low power or mobile applications. To address this limitation, we proposed for compressing DNN models for ATR suited to deployment on resource constrained hardware. This proposed compression framework utilizes promising DNN compression techniques including pruning and weight quantization while also focusing on processor features common to modern low-power devices. Following this methodology as a guideline produced a DNN for ATR tuned to maximize classification throughput, minimize power consumption, and minimize memory footprint on a low-power device.
Mitigation of tropospheric InSAR phase artifacts through differential multisquint processing
NASA Technical Reports Server (NTRS)
Chen, Curtis W.
2004-01-01
We propose a technique for mitigating tropospheric phase errors in repeat-pass interferometric synthetic aperture radar (InSAR). The mitigation technique is based upon the acquisition of multisquint InSAR data. On each satellite pass over a target area, the radar instrument will acquire images from multiple squint (azimuth) angles, from which multiple interferograms can be formed. The diversity of viewing angles associated with the multisquint acquisition can be used to solve for two components of the 3-D surface displacement vector as well as for the differential tropospheric phase. We describe a model for the performance of the multisquint technique, and we present an assessment of the performance expected.
USDA-ARS?s Scientific Manuscript database
This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...
NASA Technical Reports Server (NTRS)
McDonald, K. C.; Qualls, B.; Hardy, J.
2002-01-01
We examine the sensitivity of ERS-1 C-band synthetic aperture radar (SAR) backscatter to springtime snow and vegetation thaw dynamics for boreal forest stands within the BOREAS Southern Study Area (SSA) in Canada during the 1994 winter-spring thaw transition.
Sandia National Laboratories: Pathfinder Radar ISR and Synthetic Aperture
Eyes for the Warfighter Actionable Intelligence for the Decision Maker Actionable Intelligence for the Decision Maker All Weather, Persistent, Optical Like All Weather, Persistent, Optical Like Real-time, High radar systems encompass the entire end-to-end connectivity needed for decision superiority to ensure
Detection and Classification of Objects in Synthetic Aperture Radar Imagery
2006-02-01
a higher False Alarm Rate (FAR). Currently, a standard edge detector is the Canny algorithm, which is available with the mathematics package MATLAB ...the algorithm used to calculate the Radon transform. The MATLAB implementation uses the built in Radon transform procedure, which is extremely... MATLAB code for a faster forward-backwards selection process has also been provided. In both cases, the feature selection was accomplished by using
A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.
Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui
2017-01-08
Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.
NASA Technical Reports Server (NTRS)
Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.
2001-01-01
This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.
Measurement of hurricane winds and waves with a synthetic aperture radar
NASA Technical Reports Server (NTRS)
Shemdin, O. H.; King, D. B.
1979-01-01
An analysis of data collected in a hurricane research program is presented. The data were collected with a Synthetic Aperture Radar (SAR) during five aircraft flights in the Atlantic in August and September, 1976. Work was conducted in two areas. The first is an analysis of the L-band SAR data in a scatterometer mode to determine the surface windspeeds in hurricanes, in a similar manner to that done by an X-band scatterometer. The second area was to use the SAR to examine the wave patterns in hurricanes. The wave patterns in all of the storms are similar and show a marked radial asymmetry.
Onboard Data Compression of Synthetic Aperture Radar Data: Status and Prospects
NASA Technical Reports Server (NTRS)
Klimesh, Matthew A.; Moision, Bruce
2008-01-01
Synthetic aperture radar (SAR) instruments on spacecraft are capable of producing huge quantities of data. Onboard lossy data compression is commonly used to reduce the burden on the communication link. In this paper an overview is given of various SAR data compression techniques, along with an assessment of how much improvement is possible (and practical) and how to approach the problem of obtaining it. Synthetic aperture radar (SAR) instruments on spacecraft are capable of acquiring huge quantities of data. As a result, the available downlink rate and onboard storage capacity can be limiting factors in mission design for spacecraft with SAR instruments. This is true both for Earth-orbiting missions and missions to more distant targets such as Venus, Titan, and Europa. (Of course for missions beyond Earth orbit downlink rates are much lower and thus potentially much more limiting.) Typically spacecraft with SAR instruments use some form of data compression in order to reduce the storage size and/or downlink rate necessary to accommodate the SAR data. Our aim here is to give an overview of SAR data compression strategies that have been considered, and to assess the prospects for additional improvements.
Vasco, D. W.; Rutqvist, Jonny; Ferretti, Alessandro; ...
2013-06-07
In this study, we resolve deformation at The Geysers Geothermal Field using two distinct sets of interferometric synthetic aperture radar (InSAR) data. The first set of observations utilize archived European Space Agency C-band synthetic aperture radar data from 1992 through 1999 to image the long-term and large-scale subsidence at The Geysers. The peak range velocity of approximately 50 mm/year agrees with previous estimates from leveling and global positioning system observations. Data from a second set of measurements, acquired by TerraSAR-X satellites, extend from May 2011 until April 2012 and overlap the C-band data spatially but not temporally. These X-band data,more » analyzed using a combined permanent and distributed scatterer algorithm, provide a higher density of scatterers (1122 per square kilometer) than do the C-band data (12 per square kilometer). The TerraSAR-X observations resolve 1 to 2 cm of deformation due to water injection into a Northwest Geysers enhanced geothermal system well, initiated on October 2011. Lastly, the temporal variation of the deformation is compatible with estimates from coupled numerical modeling.« less
The browse file of NASA/JPL quick-look radar images from the Loch Linnhe 1989 experiment
NASA Technical Reports Server (NTRS)
Brown, Walter E., Jr. (Editor)
1989-01-01
The Jet Propulsion Laboratory (JPL) Aircraft Synthetic Aperture Radar (AIRSAR) was deployed to Scotland to obtain radar imagery of ship wakes generated in Loch Linnhe. These observations were part of a joint US and UK experiment to study the internal waves generated by ships under partially controlled conditions. The AIRSAR was mounted on the NASA-Ames DC-8 aircraft. The data acquisition sequence consisted of 8 flights, each about 6 hours in duration, wherein 24 observations of the instrumented site were made on each flight. This Browse File provides the experimenters with a reference of the real time imagery (approximately 100 images) obtained on the 38-deg track. These radar images are copies of those obtained at the time of observation and show the general geometry of the ship wake features. To speed up processing during this flight, the images were all processed around zero Doppler, and thus azimuth ambiguities often occur when the drift angel (yaw) exceeded a few degrees. However, even with the various shortcomings, it is believed that the experimenter will find the Browse File useful in establishing a basis for further investigations.
Modified Polar-Format Software for Processing SAR Data
NASA Technical Reports Server (NTRS)
Chen, Curtis
2003-01-01
HMPF is a computer program that implements a modified polar-format algorithm for processing data from spaceborne synthetic-aperture radar (SAR) systems. Unlike prior polar-format processing algorithms, this algorithm is based on the assumption that the radar signal wavefronts are spherical rather than planar. The algorithm provides for resampling of SAR pulse data from slant range to radial distance from the center of a reference sphere that is nominally the local Earth surface. Then, invoking the projection-slice theorem, the resampled pulse data are Fourier-transformed over radial distance, arranged in the wavenumber domain according to the acquisition geometry, resampled to a Cartesian grid, and inverse-Fourier-transformed. The result of this process is the focused SAR image. HMPF, and perhaps other programs that implement variants of the algorithm, may give better accuracy than do prior algorithms for processing strip-map SAR data from high altitudes and may give better phase preservation relative to prior polar-format algorithms for processing spotlight-mode SAR data.
NASA Technical Reports Server (NTRS)
Young, Lawrence E. (Inventor)
1991-01-01
A system for measuring ocean surface currents from an airborne platform is disclosed. A radar system having two spaced antennas wherein one antenna is driven and return signals from the ocean surface are detected by both antennas is employed to get raw ocean current data which are saved for later processing. There are a pair of global positioning system (GPS) systems including a first antenna carried by the platform at a first location and a second antenna carried by the platform at a second location displaced from the first antenna for determining the position of the antennas from signals from orbiting GPS navigational satellites. Data are also saved for later processing. The saved data are subsequently processed by a ground-based computer system to determine the position, orientation, and velocity of the platform as well as to derive measurements of currents on the ocean surface.
Automated absolute phase retrieval in across-track interferometry
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Zebker, Howard A.
1992-01-01
Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.
NASA Astrophysics Data System (ADS)
Alzeyadi, Ahmed; Yu, Tzuyang
2018-03-01
Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.
UAVSAR Instrument: Current Operations and Planned Upgrades
NASA Technical Reports Server (NTRS)
Lou, Yunling; Hensley, Scott; Chao, Roger; Chapin, Elaine; Heavy, Brandon; Jones, Cathleen; Miller, Timothy; Naftel, Chris; Fratello, David
2011-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument is a pod-based Lband polarimetric synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. This instrument is currently installed on the NASA Gulfstream- III (G-III) aircraft with precision real-time Global Positioning System (GPS) and a sensor-controlled flight management system for precision repeat-pass data acquisitions. UAVSAR has conducted engineering and preliminary science data flights since October 2007 on the G-III. We are porting the radar to the Global Hawk Unmanned Airborne Vehicle (UAV) to enable long duration/long range data campaigns. We plan to install two radar pods (each with its own active array antenna) under the wings of the Global Hawk to enable the generation of precision topographic maps and single pass polarimetric-interferometry (SPI) providing vertical structure of ice and vegetation. Global Hawk's range of 8000 nm will enable regional surveys with far fewer sorties as well as measurements of remote locations without the need for long and complicated deployments. We are also developing P-band polarimetry and Ka-band single-pass interferometry capabilities on UAVSAR by replacing the radar antenna and front-end electronics to operate at these
Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation
NASA Astrophysics Data System (ADS)
Zhang, P.; Zhao, Z.
2018-04-01
In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.
Space Radar Image of Long Valley, California - 3-D view
1999-05-01
This is a three-dimensional perspective view of Long Valley, California by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This view was constructed by overlaying a color composite SIR-C image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle and, which then, are compared to obtain elevation information. The data were acquired on April 13, 1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR radar instrument. The color composite radar image was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is off the image to the left. http://photojournal.jpl.nasa.gov/catalog/PIA01757
Extending interferometric synthetic aperture radar measurements from one to two dimensions
NASA Astrophysics Data System (ADS)
Bechor, Noah
Interferometric synthetic aperture radar (InSAR), a very effective technique for measuring crustal deformation, provides measurements in only one dimension, along the radar line of sight. Imaging radar measurements from satellite-based systems are sensitive to both vertical and across-track displacements, but insensitive to along-track displacement. Multiple observations can resolve the first two components, but the along-track component remains elusive. The best existing method to obtain the along-track displacement involves pixel-level azimuth cross-correlation. The measurements are quite coarse (typically 15 cm precision), and they require large computation times. In contrast, across-track and vertical InSAR measurements can reach centimeter-level precision and are readily derived. We present a new method to extract along-track displacements from InSAR data. The new method, multiple aperture InSAR (MAI), is based on split-beam processing of InSAR data to create forward- and backward-looking interferograms. The phase difference between the two modified interferograms provides the along-track displacement component. Thus, from each conventional InSAR pair we extract two components of the displacement vector: one along the line of sight, the other in the along-track direction. Multiple MAI observations, either at two look angles or from the ascending and descending radar passes, then yield the three-dimensional displacement field. We analyze precision of our method by comparing our solution to GPS and offset-derived along-track displacements from interferograms of the M7.1 1999, Hector Mine earthquake. The RMS error between GPS displacements and our results ranges from 5 to 8.8cm. Our method is consistent with along-track displacements derived by pixel-offsets, themselves limited to 12-15cm precision. The theoretical MAI precision depends on SNR and coherence. For SNR=100 the expected precision is 3, 11cm for coherence of 0.8, 0.4, respectively. Finally, we evaluate how the new measurements improve the determination of the earthquake coseismic slip distribution by comparison of models derived from multiple data types. We find that MAI data help constrain the southern portion of the lip distribution, by adding information where GPS data are sparse and the deformation is below the azimuth pixel-offsets detection threshold.
STS-68 radar image: Kilauea, Hawaii
1994-10-10
STS068-S-054 (10 October 1994) --- This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data - that is data acquired on different passes of the Space Shuttle Endeavour which are then overlaid to obtain elevation information - acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 by 80 kilometers (25 by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in that direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrain's on Earth. Several regions show motion over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's "plumbing" system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging radar missions to help in better understanding the processes responsible for volcanic eruptions and earthquakes. Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. (P-44753)
Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA
NASA Astrophysics Data System (ADS)
Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David
2016-05-01
Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.
A portfolio of products from the rapid terrain visualization interferometric SAR
NASA Astrophysics Data System (ADS)
Bickel, Douglas L.; Doerry, Armin W.
2007-04-01
The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor was built by Sandia National Laboratories for the Joint Programs Sustainment and Development (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieved better than HRTe Level IV position accuracy in near real-time. The system was flown on a deHavilland DHC-7 Army aircraft. This paper presents a collection of images and data products from the Rapid Terrain Visualization interferometric synthetic aperture radar. The imagery includes orthorectified images and DEMs from the RTV interferometric SAR radar.
NASA Astrophysics Data System (ADS)
Xie, Yanan; Zhou, Mingliang; Pan, Dengke
2017-10-01
The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.
Statistical Approach To Extraction Of Texture In SAR
NASA Technical Reports Server (NTRS)
Rignot, Eric J.; Kwok, Ronald
1992-01-01
Improved statistical method of extraction of textural features in synthetic-aperture-radar (SAR) images takes account of effects of scheme used to sample raw SAR data, system noise, resolution of radar equipment, and speckle. Treatment of speckle incorporated into overall statistical treatment of speckle, system noise, and natural variations in texture. One computes speckle auto-correlation function from system transfer function that expresses effect of radar aperature and incorporates range and azimuth resolutions.
Spaceborne synthetic aperture radar signal processing using FPGAs
NASA Astrophysics Data System (ADS)
Sugimoto, Yohei; Ozawa, Satoru; Inaba, Noriyasu
2017-10-01
Synthetic Aperture Radar (SAR) imagery requires image reproduction through successive signal processing of received data before browsing images and extracting information. The received signal data records of the ALOS-2/PALSAR-2 are stored in the onboard mission data storage and transmitted to the ground. In order to compensate the storage usage and the capacity of transmission data through the mission date communication networks, the operation duty of the PALSAR-2 is limited. This balance strongly relies on the network availability. The observation operations of the present spaceborne SAR systems are rigorously planned by simulating the mission data balance, given conflicting user demands. This problem should be solved such that we do not have to compromise the operations and the potential of the next-generation spaceborne SAR systems. One of the solutions is to compress the SAR data through onboard image reproduction and information extraction from the reproduced images. This is also beneficial for fast delivery of information products and event-driven observations by constellation. The Emergence Studio (Sōhatsu kōbō in Japanese) with Japan Aerospace Exploration Agency is developing evaluation models of FPGA-based signal processing system for onboard SAR image reproduction. The model, namely, "Fast L1 Processor (FLIP)" developed in 2016 can reproduce a 10m-resolution single look complex image (Level 1.1) from ALOS/PALSAR raw signal data (Level 1.0). The processing speed of the FLIP at 200 MHz results in twice faster than CPU-based computing at 3.7 GHz. The image processed by the FLIP is no way inferior to the image processed with 32-bit computing in MATLAB.
Space Radar Image of Baikal Lake, Russia
NASA Technical Reports Server (NTRS)
1994-01-01
This is an X-band black-and-white image of the forests east of the Baikal Forest in the Jablonowy Mountains of Russia. The image is centered at 52.5 degrees north latitude and 116 degrees east longitude near the mining town of Bukatschatscha. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on October 4, 1994, during the second flight of the spaceborne radar. This area is part of an international research project known as the Taiga Aerospace Investigation using Geographic Information System Applications.
Digital Beamforming Interferometry
NASA Technical Reports Server (NTRS)
Rincon, Rafael F. (Inventor)
2016-01-01
Airborne or spaceborne Syntheic Aperture Radar (SAR) can be used in a variety of ways, and is often used to generate two dimensional images of a surface. SAR involves the use of radio waves to determine presence, properties, and features of extended areas. Specifically, radio waves are 10 transmitted in the presence of a ground surface. A portion of the radio wave's energy is reflected back to the radar system, which allows the radar system to detect and image the surface. Such radar systems may be used in science applications, military contexts, and other commercial applications.
Mapping the Antarctic grounding line with CryoSat-2 radar altimetry
NASA Astrophysics Data System (ADS)
Bamber, J. L.; Dawson, G. J.
2017-12-01
The grounding line, where grounded ice begins to float, is the boundary at which the ocean has the greatest influence on the ice-sheet. Its position and dynamics are critical in assessing the stability of the ice-sheet, for mass budget calculations and as an input into numerical models. The most reliable approaches to map the grounding line remotely are to measure the limit of tidal flexure of the ice shelf using differential synthetic aperture radar interferometry (DInSAR) or ICESat repeat-track measurements. However, these methods are yet to provide satisfactory spatial and temporal coverage of the whole of the Antarctic grounding zone. It has not been possible to use conventional radar altimetry to map the limit of tidal flexure of the ice shelf because it performs poorly near breaks in slope, commonly associated with the grounding zone. The synthetic aperture radar interferometric (SARin) mode of CryoSat-2, performs better over steeper margins of the ice sheet and allows us to achieve this. The SARin mode combines "delay Doppler" processing with a cross-track interferometer, and enables us to use elevations based on the first return (point of closest approach or POCA) and "swath processed" elevations derived from the time-delayed waveform beyond the first return, to significantly improve coverage. Here, we present a new method to map the limit of tidal motion from a combination of POCA and swath data. We test this new method on the Siple Coast region of the Ross Ice Shelf, and the mapped grounding line is in good agreement with previous observations from DinSAR and ICESat measurements. There is, however, an approximately constant seaward offset between these methods and ours, which we believe is due to the poorer precision of CryoSat-2. This new method has improved the coverage of the grounding zone across the Siple Coast, and can be applied to the rest of Antarctica.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxwall, W.
2000-07-24
Ground surface subsidence resulting from the March 1992 JUNCTION underground nuclear test at the Nevada Test Site (NTS) imaged by satellite synthetic aperture radar interferometry (InSAR) wholly occurred during a period of several months after the shot (Vincent et al., 1999) and after the main cavity collapse event. A significant portion of the subsidence associated with the small (less than 20 kt) GALENA and DIVIDER tests probably also occurred after the shots, although the deformation detected in these cases contains additional contributions from coseismic processes, since the radar scenes used to construct the deformation interferogram bracketed these two later events,more » The dimensions of the seas of subsidence resulting from all three events are too large to be solely accounted for by processes confined to the damage zone in the vicinity of the shot point or the collapse chimney. Rather, the subsidence closely corresponds to the span dimensions predicted by Patton's (1990) empirical relationship between spall radius and yield. This suggests that gravitational settlement of damaged rock within the spall zone is an important source of post-shot subsidence, in addition to settlement of the rubble within the collapse chimney. These observations illustrate the potential power of InSAR as a tool for Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and on-site inspection in that the relatively broad ({approx} 100 m to 1 km) subsidence signatures resulting from small shots detonated at normal depths of burial (or even significantly overburied) are readily detectable within large geographical areas (100 km x 100 km) under favorable observing conditions. Furthermore, the present results demonstrate the flexibility of the technique in that the two routinely gathered satellite radar images used to construct the interferogram need not necessarily capture the event itself, but can cover a time period up to several months following the shot.« less
MetaSensing's FastGBSAR: ground based radar for deformation monitoring
NASA Astrophysics Data System (ADS)
Rödelsperger, Sabine; Meta, Adriano
2014-10-01
The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early Warning system, to determine the state and danger of a slope or structure. In this paper, the technical principles of the instrument are described and case studies of different monitoring tasks are presented.
Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.
Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen
2018-01-19
As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.
Two microstrip arrays for interferometric SAR applications
NASA Technical Reports Server (NTRS)
Huang, J.
1993-01-01
Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1997-01-01
Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.
Wivell, Charles E.; Olmsted, Coert; Steinwand, Daniel R.; Taylor, Christopher
1993-01-01
Because the pixel location in a line of Synthetic Aperture Radar (SAR) image data is directly related to the distance the pixel is from the radar, terrain elevations cause large displacement errors in the geo-referenced location of the pixel. This is especially true for radar systems with small angles between the nadir and look vectors. Thus, to geo-register a SAR image accurately, the terrain of the area must be taken into account. (Curlander et al., 1987; Kwok et al., 1987, Schreier et al., 1990; Wivell et al., 1992). As part of the 1992 National Aeronautics and Space Administration's Earth Observing System Version 0 activities, a prototype SAR geocod-. ing and terrain correction system was developed at the US. Geological Survey's (USGS) E~os Data Center (EDC) in Sioux Falls, South Dakota. Using this system with 3-arc-second digital elevation models (DEMs) mosaicked at the ED^ Alaska Field Office, 21 ERS-I s.4~ scenes acquired at the Alaska SAR Facility were automatically geocoded, terrain corrected, and mosaicked. The geo-registered scenes were mosaicked using a simple concatenation.
Active microwave measurements of Arctic sea ice under summer conditions
NASA Technical Reports Server (NTRS)
Onstott, R. G.; Gogineni, S. P.
1985-01-01
Radar provides a valuable tool in the study of sea-ice conditions and the solution of sea-ice operational problems. For this reason, the U.S. and Canada have conducted studies to define a bilateral synthetic aperture radar (SAR) satellite program. The present paper is concerned with work which has been performed to explore the needs associated with the study of sea-ice-covered waters. The design of a suitable research or operational spaceborne SAR or real aperture radar must be based on an adequate knowledge of the backscatter coefficients of the ice features which are of interest. In order to obtain the needed information, studies involving the use of a helicopter were conducted. In these studies L-C-X-Ku-band calibrated radar data were acquired over areas of Arctic first-year and multiyear ice during the first half of the summer of 1982. The results show that the microwave response in the case of sea ice is greatly influenced by summer melt, which produces significant changes in the properties of the snowpack and ice sheet.
NASA Astrophysics Data System (ADS)
Ingemi, Christopher M.; Owusu Twumasi, Jones; Yu, Tzuyang
2018-03-01
Detection and quantification of moisture content inside wood (timber) is key to ensuring safety and reliability of timber structures. Moisture inside wood attracts insects and fosters the development of fungi to attack the timber, causing significant damages and reducing the load bearing capacity during their design life. The use of non-destructive evaluation (NDE) techniques (e.g., microwave/radar, ultrasonic, stress wave, and X-ray) for condition assessment of timber structures is a good choice. NDE techniques provide information about the level of deterioration and material properties of timber structures without obstructing their functionality. In this study, microwave/radar NDE technique was selected for the characterization of wood at different moisture contents. A 12 in-by-3.5 in-by-1.5 in. white spruce specimen (picea glauca) was imaged at different moisture contents using a 10 GHz synthetic aperture radar (SAR) sensor inside an anechoic chamber. The presence of moisture was found to increase the SAR image amplitude as expected. Additionally, integrated SAR amplitude was found beneficial in modeling the moisture content inside the wood specimen.
Spaceborne Imaging Radar-C instrument
NASA Technical Reports Server (NTRS)
Huneycutt, Bryan L.
1993-01-01
The Spaceborne Imaging Radar-C is the next radar in the series of spaceborne radar experiments, which began with Seasat and continued with SIR-A and SIR-B. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar that will be flown during at least two different seasons. The instrument operates in the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument uses engineering techniques such as beam nulling for echo tracking, pulse repetition frequency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating-point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.
Analysis of High Grazing Angle Sea-clutter with the KK-Distribution
2013-11-01
work undertaken at the DSTO in characterising the maritime environment from high altitude airborne platforms. The focus of this report is to characterise...multichannel synthetic aperture radar through Adelaide University. He has worked at the DSTO as an RF engineer in the missile simulation centre, as a...with the Cooperative Research Centre for Sensor, Signal and Information Processing where he worked in the Pattern Recognition Group on the application
Mitigating Effects of Missing Data for SAR Coherent Images
Musgrove, Cameron H.; West, James C.
2017-01-01
Missing samples within synthetic aperture radar data result in image distortions. For coherent data products, such as coherent change detection and interferometric processing, the image distortion can be devastating to these second order products, resulting in missed detections and inaccurate height maps. Earlier approaches to repair the coherent data products focus upon reconstructing the missing data samples. This study demonstrates that reconstruction is not necessary to restore the quality of the coherent data products.
NASA Technical Reports Server (NTRS)
Arvidson, R. E.
1992-01-01
Magellan synthetic aperture radar (SAR) and altimetry data were analyzed to determine the nature and extent of surface modification for venusian plains in the Sedna Planitia, Alpha Regio, and western Ovda Regio areas. Specific cross sections derived from the SAR data were also compared to similar data for dry terrestrial basaltic lava flows (Lunar Crater and Cima volcanic fields) and playas (Lunar and Lavic Lakes) for which microtopographic profiles (i.e., quantitative roughness information) were available.
Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1996-01-01
An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.
Remote-Sensing Data Distribution and Processing in the Cloud at the ASF DAAC
NASA Astrophysics Data System (ADS)
Stoner, C.; Arko, S. A.; Nicoll, J. B.; Labelle-Hamer, A. L.
2016-12-01
The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) has been tasked to archive and distribute data from both SENTINEL-1 satellites and from the NASA-ISRO Synthetic Aperture Radar (NISAR) satellite in a cost effective manner. In order to best support processing and distribution of these large data sets for users, the ASF DAAC enhanced our data system in a number of ways that will be detailed in this presentation.The SENTINEL-1 mission comprises a constellation of two polar-orbiting satellites, operating day and night performing C-band Synthetic Aperture Radar (SAR) imaging, enabling them to acquire imagery regardless of the weather. SENTINEL-1A was launched by the European Space Agency (ESA) in April 2014. SENTINEL-1B is scheduled to launch in April 2016.The NISAR satellite is designed to observe and take measurements of some of the planet's most complex processes, including ecosystem disturbances, ice-sheet collapse, and natural hazards such as earthquakes, tsunamis, volcanoes and landslides. NISAR will employ radar imaging, polarimetry, and interferometry techniques using the SweepSAR technology employed for full-resolution wide-swath imaging. NISAR data files are large, making storage and processing a challenge for conventional store and download systems.To effectively process, store, and distribute petabytes of data in a High-performance computing environment, ASF took a long view with regard to technology choices and picked a path of most flexibility and Software re-use. To that end, this Software tools and services presentation will cover Web Object Storage (WOS) and the ability to seamlessly move from local sunk cost hardware to public cloud, such as Amazon Web Services (AWS). A prototype of SENTINEL-1A system that is in AWS, as well as a local hardware solution, will be examined to explain the pros and cons of each. In preparation for NISAR files which will be even larger than SENTINEL-1A, ASF has embarked on a number of cloud initiatives, including processing in the cloud at scale, processing data on-demand, and processing end-user computations on DAAC data in the cloud.
NASA Astrophysics Data System (ADS)
Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.
2013-12-01
Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.
Salehpour, Mehdi; Behrad, Alireza
2017-10-01
This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.
Moving receive beam method and apparatus for synthetic aperture radar
Kare, Jordin T.
2001-01-01
A method and apparatus for improving the performance of Synthetic Aperture Radar (SAR) systems by reducing the effect of "edge losses" associated with nonuniform receiver antenna gain. By moving the receiver antenna pattern in synchrony with the apparent motion of the transmitted pulse along the ground, the maximum available receiver antenna gain can be used at all times. Also, the receiver antenna gain for range-ambiguous return signals may be reduced, in some cases, by a large factor. The beam motion can be implemented by real-time adjustment of phase shifters in an electronically-steered phased-array antenna or by electronic switching of feed horns in a reflector antenna system.
Flood Extent Mapping Using Dual-Polarimetric SENTINEL-1 Synthetic Aperture Radar Imagery
NASA Astrophysics Data System (ADS)
Jo, M.-J.; Osmanoglu, B.; Zhang, B.; Wdowinski, S.
2018-04-01
Rapid generation of synthetic aperture radar (SAR) based flood extent maps provide valuable data in disaster response efforts thanks to the cloud penetrating ability of microwaves. We present a method using dual-polarimetric SAR imagery acquired on Sentinel-1a/b satellites. A false-colour map is generated using pre- and post- disaster imagery, allowing operators to distinguish between existing standing water pre-flooding, and recently flooded areas. The method works best in areas of standing water and provides mixed results in urban areas. A flood depth map is also estimated by using an external DEM. We will present the methodology, it's estimated accuracy as well as investigations into improving the response in urban areas.
Theory and design of interferometric synthetic aperture radars
NASA Technical Reports Server (NTRS)
Rodriguez, E.; Martin, J. M.
1992-01-01
A derivation of the signal statistics, an optimal estimator of the interferometric phase, and the expression necessary to calculate the height-error budget are presented. These expressions are used to derive methods of optimizing the parameters of the interferometric synthetic aperture radar system (InSAR), and are then employed in a specific design example for a system to perform high-resolution global topographic mapping with a one-year mission lifetime, subject to current technological constraints. A Monte Carlo simulation of this InSAR system is performed to evaluate its performance for realistic topography. The results indicate that this system has the potential to satisfy the stringent accuracy and resolution requirements for geophysical use of global topographic data.
Spatially variant apodization for squinted synthetic aperture radar images.
Castillo-Rubio, Carlos F; Llorente-Romano, Sergio; Burgos-García, Mateo
2007-08-01
Spatially variant apodization (SVA) is a nonlinear sidelobe reduction technique that improves sidelobe level and preserves resolution at the same time. This method implements a bidimensional finite impulse response filter with adaptive taps depending on image information. Some papers that have been previously published analyze SVA at the Nyquist rate or at higher rates focused on strip synthetic aperture radar (SAR). This paper shows that traditional SVA techniques are useless when the sensor operates with a squint angle. The reasons for this behaviour are analyzed, and a new implementation that largely improves the results is presented. The algorithm is applied to simulated SAR images in order to demonstrate the good quality achieved along with efficient computation.
Three-dimensional radar imaging techniques and systems for near-field applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.
2016-05-12
The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.
Seasat radar geomorphic applications in coastal and wetland environments, southeastern U.S
NASA Technical Reports Server (NTRS)
Macdonald, H. C.
1981-01-01
The application of Seasat Synthetic Aperture Radar (SAR) to the assessment of terrain conditions in coastal environments is considered. Drainage patterns and plant community spatial relationships can be adequately mapped as is shown by Seasat L-band imagery of the southeastern Gulf Coast and Atlantic Coastal Plain. Anomalously bright radar signatures are identified as characteristic of mangrove and cypress swamps. Marshes have a low radar return, less than that from non-marsh areas and open water in tidal channels. Drainage patterns for coastal plain transition zones can also be determined. Spaceborne imaging radar provides information which complements geomorphic analyses presently obtained with optical sensors.
Beam Width Robustness of a 670 GHz Imaging Radar
NASA Technical Reports Server (NTRS)
Cooper, K. B.; Llombart, N.; Dengler, R. J.; Siegel, P. H.
2009-01-01
Detection of a replica bomb belt concealed on a mannequin at 4 m standoff range is achieved using a 670 GHz imaging radar. At a somewhat larger standoff range of 4.6 m, the radar's beam width increases substantially, but the through-shirt image quality remains good. This suggests that a relatively modest increase in aperture size over the current design will be sufficient to detect person-borne concealed weapons at ranges exceeding 25 meters.
Detection and imaging of moving objects with SAR by a joint space-time-frequency processing
NASA Astrophysics Data System (ADS)
Barbarossa, Sergio; Farina, Alfonso
This paper proposes a joint spacetime-frequency processing scheme for the detection and imaging of moving targets by Synthetic Aperture Radars (SAR). The method is based on the availability of an array antenna. The signals received by the array elements are combined, in a spacetime processor, to cancel the clutter. Then, they are analyzed in the time-frequency domain, by computing their Wigner-Ville Distribution (WVD), in order to estimate the instantaneous frequency, to be used for the successive phase compensation, necessary to produce a high resolution image.
Process for combining multiple passes of interferometric SAR data
Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.
2000-11-21
Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.
Ground-penetrating radar: use and misuse
NASA Astrophysics Data System (ADS)
Olhoeft, Gary R.
1999-10-01
Ground penetrating radar (GPR) has been used to explore the subsurface of the earth since 1929. Over the past 70 years, it has been widely used, misused and abused. Use includes agriculture, archaeology, environmental and geotechnical site characterization, minerals, groundwater and permafrost exploration, tunnel, utility, and unexploded ordnance location, dam inspection, and much more. Misuse includes mistaking above ground reflections for subsurface events or mapping things from off to the side as if they were directly below, synthetic aperture processing of dispersive data, minimum phase deconvolution, locating objects smaller than resolution limits of the wavelength in the ground, ignoring Fresnel zone limitations in mapping subsurface structure, processing radar data through seismic software packages without allowing for the differences, mapping the bottom of metal pipes from the top, claiming to see through thousands of feet of sediments, and more. GPR is also being abused as the regulatory environment changes and the radiofrequency spectrum is becoming more crowded by cellular phones, pagers, garage door openers, wireless computer networks, and the like. It is often thought to be a source of interference (though it never is) and it is increasingly interfered with by other radiofrequency transmitters.
Atoche, Alejandro Castillo; Castillo, Javier Vázquez
2012-01-01
A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964
Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper
Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.
2007-01-01
The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.
Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations
Lu, Zhong; Mann, Dörte; Freymueller, Jeffrey T.; Meyer, David
2000-01-01
ERS-1/ERS-2 synthetic aperture radar interferometry was used to study the 1997 eruption of Okmok volcano in Alaska. First, we derived an accurate digital elevation model (DEM) using a tandem ERS-1/ERS-2 image pair and the preexisting DEM. Second, by studying changes in interferometric coherence we found that the newly erupted lava lost radar coherence for 5-17 months after the eruption. This suggests changes in the surface backscattering characteristics and was probably related to cooling and compaction processes. Third, the atmospheric delay anomalies in the deformation interferograms were quantitatively assessed. Atmospheric delay anomalies in some of the interferograms were significant and consistently smaller than one to two fringes in magnitude. For this reason, repeat observations are important to confidently interpret small geophysical signals related to volcanic activities. Finally, using two-pass differential interferometry, we analyzed the preemptive inflation, coeruptive deflation, and posteruptive inflation and confirmed the observations using independent image pairs. We observed more than 140 cm of subsidence associated with the 1997 eruption. This subsidence occurred between 16 months before the eruption and 5 months after the eruption, was preceded by ∼18 cm of uplift between 1992 and 1995 centered in the same location, and was followed by ∼10 cm of uplift between September 1997 and 1998. The best fitting model suggests the magma reservoir resided at 2.7 km depth beneath the center of the caldera, which was ∼5 km from the eruptive vent. We estimated the volume of the erupted material to be 0.055 km3 and the average thickness of the erupted lava to be ∼7.4 m. Copyright 2000 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Rukao, S.; Tsuda, T.; Sato, T.; Kato, S.
1989-01-01
A large clear air radar with the sensitivity of an incoherent scatter radar for observing the whole equatorial atmosphere up to 1000 km altitude is now being designed in Japan. The radar, called the Equatorial Radar, will be built in Pontianak, Kalimantan Island, Indonesia (0.03 N, 109.3 E). The system is a 47 MHz monostatic Doppler radar with an active phased array configuration similar to that of the MU radar in Japan, which has been in successful operation since 1983. It will have a PA product of more than 5 x 10(9) sq. Wm (P = average transmitter power, A = effective antenna aperture) with sensitivity more than 10 times that of the MU radar. This system configuration enables pulse-to-pulse beam steering within 25 deg from the zenith. As is the case of the MU radar, a variety of sophisticated operations will be made feasible under the supervision of the radar controller. A brief description of the system configuration is presented.
Lu, Z.; Fielding, E.; Patrick, M.R.; Trautwein, C.M.
2003-01-01
Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.
NASA Astrophysics Data System (ADS)
Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji
2016-09-01
Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.
SAR observation and model tracking of an oil spill event in coastal waters.
Cheng, Yongcun; Li, Xiaofeng; Xu, Qing; Garcia-Pineda, Oscar; Andersen, Ole Baltazar; Pichel, William G
2011-02-01
Oil spills are a major contributor to marine pollution. The objective of this work is to simulate the oil spill trajectory of oil released from a pipeline leaking in the Gulf of Mexico with the GNOME (General NOAA Operational Modeling Environment) model. The model was developed by NOAA (National Oceanic and Atmospheric Administration) to investigate the effects of different pollutants and environmental conditions on trajectory results. Also, a Texture-Classifying Neural Network Algorithm (TCNNA) was used to delineate ocean oil slicks from synthetic aperture radar (SAR) observations. During the simulation, ocean currents from NCOM (Navy Coastal Ocean Model) outputs and surface wind data measured by an NDBC (National Data Buoy Center) buoy are used to drive the GNOME model. The results show good agreement between the simulated trajectory of the oil spill and synchronous observations from the European ENVISAT ASAR (Advanced Synthetic Aperture Radar) and the Japanese ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) images. Based on experience with past marine oil spills, about 63.0% of the oil will float and 18.5% of the oil will evaporate and disperse. In addition, the effects from uncertainty of ocean currents and the diffusion coefficient on the trajectory results are also studied. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng
2016-01-01
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385
Marapareddy, Ramakalavathi; Aanstoos, James V.; Younan, Nicolas H.
2016-01-01
Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ1, λ2, and λ3), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers. PMID:27322270
Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA).
Bekaert, D P S; Hamlington, B D; Buzzanga, B; Jones, C E
2017-11-07
Over the past century, the Hampton Roads area of the Chesapeake Bay region has experienced one of the highest rates of relative sea level rise on the Atlantic coast of the United States. This rate of relative sea level rise results from a combination of land subsidence, which has long been known to be present in the region, and rising seas associated with global warming on long timescales and exacerbated by shifts in ocean dynamics on shorter timescales. An understanding of the current-day magnitude of each component is needed to create accurate projections of future relative sea level rise upon which to base planning efforts. The objective of this study is to estimate the land component of relative sea level rise using interferometric synthetic aperture radar (InSAR) analysis applied to ALOS-1 synthetic aperture radar data acquired during 2007-2011 to generate high-spatial resolution (20-30 m) estimates of vertical land motion. Although these results are limited by the uncertainty associated with the small set of available historical SAR data, they highlight both localized rates of high subsidence and a significant spatial variability in subsidence, emphasizing the need for further measurement, which could be done with Sentinel-1 and NASA's upcoming NISAR mission.
NASA Astrophysics Data System (ADS)
Lee, Won-Jin; Jung, Hyung-Sup; Park, Sun-Cheon; Lee, Duk Kee
2016-04-01
Mt. Baekdu (Changbaishan in Chinese) is located on the border between China and North Korea. It has recently attracted the attention of volcanic unrest during 2002-2005. Many researchers have applied geophysical approaches to detect magma system of beneath Mt.Baekdu such as leveling, Global Positioning System (GPS), gases analysis, seismic analysis, etc. Among them, deformation measuring instruments are important tool to evaluate for volcanism. In contrast to GPS or other deformation measuring instruments, Synthetic Aperture Radar Interferometry (InSAR) has provided high resolution of 2-D surface displacement from remote sensed data. However, Mt. Baekdu area has disturbed by decorrelation on interferogram because of wide vegetation coverage. To overcome this limitation, L-band system of long wavelength is more effective to detect surface deformation. In spite of this advantage, L-band can surfer from more severe ionospheric phase distortions than X- or C- band system because ionospheric phase distortions are inverse proportion to the radar frequency. Recently, Multiple Aperture Interferometry (MAI) based ionospheric phase distortions mitigation method have proposed and investigated. We have applied this technique to the Mt.Baekdu area to measure surface deformation precisely using L-band Advanced Land Observing Satellite-1(ALOS-1) Phased Array type L-band Synthetic Aperture Radar(PALSAR) data acquiring from 2006 to 2011.
NASA Astrophysics Data System (ADS)
Wang, X.; Zhang, P.; Sun, Z.
2018-04-01
Interferometric synthetic aperture radar(InSAR), as a space geodetictechnology, had been testified a high potential means of earth observation providing a method fordigital elevation model (DEM) and surface deformation monitoring of high precision. However, the accuracy of the interferometric synthetic aperture radar is mainly limited by the effects of atmospheric water vapor. In order to effectively measure topography or surface deformations by synthetic aperture radar interferometry (InSAR), it is necessary to mitigate the effects of atmospheric water vapor on the interferometric signals. This paper analyzed the atmospheric effects on the interferogram quantitatively, and described a result of estimating Precipitable Water Vapor (PWV) from the the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and the ground-based GPS, compared the MERIS/MODIS PWV with the GPS PWV. Finally, a case study for mitigating atmospheric effects in interferogramusing with using the integration of MERIS and MODIS PWV overSouthern California is given. The result showed that such integration approach benefits removing or reducing the atmospheric phase contribution from the corresponding interferogram, the integrated Zenith Path Delay Difference Maps (ZPDDM) of MERIS and MODIS helps reduce the water vapor effects efficiently, the standard deviation (STD) of interferogram is improved by 23 % after the water vapor correction than the original interferogram.
New Processing of Spaceborne Imaging Radar-C (SIR-C) Data
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Gracheva, V.; Arko, S. A.; Labelle-Hamer, A. L.
2017-12-01
The Spaceborne Imaging Radar-C (SIR-C) was a radar system, which successfully operated on two separate shuttle missions in April and October 1994. During these two missions, a total of 143 hours of radar data were recorded. SIR-C was the first multifrequency and polarimetric spaceborne radar system, operating in dual frequency (L- and C- band) and with quad-polarization. SIR-C had a variety of different operating modes, which are innovative even from today's point of view. Depending on the mode, it was possible to acquire data with different polarizations and carrier frequency combinations. Additionally, different swaths and bandwidths could be used during the data collection and it was possible to receive data with two antennas in the along-track direction.The United States Geological Survey (USGS) distributes the synthetic aperture radar (SAR) images as single-look complex (SLC) and multi-look complex (MLC) products. Unfortunately, since June 2005 the SIR-C processor has been inoperable and not repairable. All acquired SLC and MLC images were processed with a course resolution of 100 m with the goal of generating a quick look. These images are however not well suited for scientific analysis. Only a small percentage of the acquired data has been processed as full resolution SAR images and the unprocessed high resolution data cannot be processed any more at the moment.At the Alaska Satellite Facility (ASF) a new processor was developed to process binary SIR-C data to full resolution SAR images. ASF is planning to process the entire recoverable SIR-C archive to full resolution SLCs, MLCs and high resolution geocoded image products. ASF will make these products available to the science community through their existing data archiving and distribution system.The final paper will describe the new processor and analyze the challenges of reprocessing the SIR-C data.
Survey of United States Commercial Satellites in Geosynchronous Earth Orbit
1994-09-01
248 a. Imaging Sensors ...... ............ 248 (1) Return Beam Vidicon Camera . ... 249 (2) Scanners. ...... ............ 249 b. Nonimaging ...251 a. Imaging Microwave Sensors ......... .. 251 (1) Synthetic Aperture Radar . ... 251 b. Nonimaging Microwave Sensors ..... .. 252 (1) Radar...The stream of electrons travels alonq the axis oa the tube, constrained by focusing magnets, until it reaches the collector . Surrounding this electron
Selected results from LLNL-Hughes RAR for West Coast Scotland Experiment 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S.K.; Johnston, B.; Twogood, R.
1993-01-05
The joint US-UK 1992 West Coast Scotland Experiment (WCSEX) was held in the Sound of Sleat from June 6 to 25. The LLNL-Hughes team fielded a fully polarimetric X-band hill-side real aperture radar to collect internal wave wake data. We present here a sample data set of the best radar runs.
Tropical-forest biomass estimation at X-Band from the spaceborne TanDEM-X interferometer
R. Treuhaft; F. Goncalves; J.R. dos Santos; M. Keller; M. Palace; S.N. Madsen; F. Sullivan; P.M.L.A. Graca
2014-01-01
This letter reports the sensitivity of X-band interferometric synthetic aperture radar (InSAR) data from the first dual-spacecraft radar interferometer, TanDEM-X, to variations in tropical-forest aboveground biomass (AGB). It also reports the first tropical-forest AGB estimates fromTanDEM-X data. Tropical forests account for...
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
Exploiting Synthetic Aperture Radar data to map and observe landslides
NASA Astrophysics Data System (ADS)
Bekaert, D. P.; Agram, P. S.; Fattahi, H.; Kirschbaum, D.; Amatya, P. M.; Stanley, T.
2017-12-01
Synthetic Aperture Radar instruments onboard satellites or airborne platforms are a powerful means to study landslides. How to best exploit the data and which techniques to apply strongly depend on the region of study and the landslide type which occurs. The amount of vegetation, snowfall, and steepness of the terrain, as well the shadowing effects of the mountain will determine if SAR is suitable to map a given landslide. Fast moving landslides occurring over a large area (e.g. >100 m) could benefit from pixel or feature tracking, while for slower moving landslides Interferometric SAR could be a more favorable approach. However, neither of those methods would work for critical landslide failures which do not preserve surface features. This type of slides would benefit from a change detection approach. Here we look at these three different cases and utilize Sentinel-1 space-borne SAR data and state-of-the-art processing techniques to map multiple landslides along the California State Route 1 and the Trishuli highway in the Langtang valley of Nepal. Our findings correlate with existing landslide catalogues and also identify landslides in regions earlier mapped to be dormant.
NASA Astrophysics Data System (ADS)
Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui
2018-01-01
Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1983-01-01
Results of digital processing of airborne X-band synthetic aperture radar (SAR) data acquired over Dade County, Florida, and Acadia Parish, Louisiana are presented. The goal was to investigate the utility of SAR data for land cover mapping and area estimation under the AgRISTARS Domestic Crops and Land Cover Project. In the case of the Acadia Paris study area, LANDSAT multispectral scanner (MSS) data were also used to form a combined SAR and MSS data set. The results of accuracy evaluation for the SAR, MSS, and SAR/MSS data using supervised classification show that the combined SAR/MSS data set results in an improved classification accuracy of the five land cover classes as compared with SAR-only and MSS-only data sets. In the case of the Dade County study area, the results indicate that both HH and VV polarization data are highly responsive to the row orientation of the row crop but not to the specific vegetation which forms the row structure. On the other hand, the HV polarization data are relatively insensitive to the orientation of row crop. Therefore, the HV polarization data may be used to discriminate the specific vegetation that forms the row structure.
Heywood, Charles E.; Galloway, Devin L.; Stork, Sylvia V.
2002-01-01
Six synthetic aperture radar (SAR) images were processed to form five unwrapped interferometric (InSAR) images of the greater metropolitan area in the Albuquerque Basin. Most interference patterns in the images were caused by range displacements resulting from changes in land-surface elevation. Loci of land- surface elevation changes correlate with changes in aquifer-system water levels and largely result from the elastic response of the aquifer-system skeletal material to changes in pore-fluid pressure. The magnitude of the observed land-surface subsidence and rebound suggests that aquifer-system deformation resulting from ground-water withdrawals in the Albuquerque area has probably remained in the elastic (recoverable) range from July 1993 through September 1999. Evidence of inelastic (permanent) land subsidence in the Rio Rancho area exists, but its relation to compaction of the aquifer system is inconclusive because of insufficient water-level data. Patterns of elastic deformation in both Albuquerque and Rio Rancho suggest that intrabasin faults impede ground- water-pressure diffusion at seasonal time scales and that these faults are probably important in controlling patterns of regional ground-water flow.
Space Radar Image of Kilauea, Hawaii
NASA Technical Reports Server (NTRS)
1994-01-01
Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar on board the space shuttle Endeavour were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The yellow line indicates the area below which was used for the three-dimensional image using altitude lines. The yellow rectangular frame fences the area for the final topographic image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.
Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-01-01
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813
Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue
2017-06-24
With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.
NASA Astrophysics Data System (ADS)
Fallahpour, Mojtaba Behzad; Dehghani, Hamid; Jabbar Rashidi, Ali; Sheikhi, Abbas
2018-05-01
Target recognition is one of the most important issues in the interpretation of the synthetic aperture radar (SAR) images. Modelling, analysis, and recognition of the effects of influential parameters in the SAR can provide a better understanding of the SAR imaging systems, and therefore facilitates the interpretation of the produced images. Influential parameters in SAR images can be divided into five general categories of radar, radar platform, channel, imaging region, and processing section, each of which has different physical, structural, hardware, and software sub-parameters with clear roles in the finally formed images. In this paper, for the first time, a behaviour library that includes the effects of polarisation, incidence angle, and shape of targets, as radar and imaging region sub-parameters, in the SAR images are extracted. This library shows that the created pattern for each of cylindrical, conical, and cubic shapes is unique, and due to their unique properties these types of shapes can be recognised in the SAR images. This capability is applied to data acquired with the Canadian RADARSAT1 satellite.
Laser radar: historical prospective-from the East to the West
NASA Astrophysics Data System (ADS)
Molebny, Vasyl; McManamon, Paul; Steinvall, Ove; Kobayashi, Takao; Chen, Weibiao
2017-03-01
This article discusses the history of laser radar development in America, Europe, and Asia. Direct detection laser radar is discussed for range finding, designation, and topographic mapping of Earth and of extraterrestrial objects. Coherent laser radar is discussed for environmental applications, such as wind sensing and for synthetic aperture laser radar development. Gated imaging is discussed through scattering layers for military, medical, and security applications. Laser microradars have found applications in intravascular studies and in ophthalmology for vision correction. Ghost laser radar has emerged as a new technology in theoretical and simulation applications. Laser radar is now emerging as an important technology for applications such as self-driving cars and unmanned aerial vehicles. It is also used by police to measure speed, and in gaming, such as the Microsoft Kinect.
Tropical Cyclone Boundary Layer Rolls in Synthetic Aperture Radar Imagery
NASA Astrophysics Data System (ADS)
Huang, Lanqing; Li, Xiaofeng; Liu, Bin; Zhang, Jun A.; Shen, Dongliang; Zhang, Zenghui; Yu, Wenxian
2018-04-01
Marine atmospheric boundary layer (MABL) roll plays an important role in the turbulent exchange of momentum, sensible heat, and moisture throughout MABL of tropical cyclone (TC). Hence, rolls are believed to be closely related to TC's development, intensification, and decay processes. Spaceborne synthetic aperture radar (SAR) provides a unique capability to image the sea surface imprints of quasi-linear streaks induced by the MABL rolls within a TC. In this study, sixteen SAR images, including three images acquired during three major hurricanes: Irma, Jose, and Maria in the 2017 Atlantic hurricane season, were utilized to systematically map the distribution and wavelength of MABL rolls under the wide range of TC intensities. The images were acquired by SAR onboard RADARSAT-1/2, ENVISAT, and SENTINEL-1 satellites. Our findings are in agreement with the previous one case study of Hurricane Katrina (2005), showing the roll wavelengths are between 600 and 1,600 m. We also find that there exist roll imprints in eyewall and rainbands, although the boundary layer heights are shallower there. Besides, the spatial distribution of roll wavelengths is asymmetrical. The roll wavelengths are found to be the shortest around the storm center, increase and then decrease with distance from storm center, reaching the peak values in the range of d∗-2d∗, where d∗ is defined as the physical location to TC centers normalized by the radius of maximum wind. These MABL roll characteristics cannot be derived using conventional aircraft and land-based Doppler radar observations.
A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing
Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui
2017-01-01
Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343
NASA Technical Reports Server (NTRS)
Stevens, G. H.; Ramler, J. R.
1974-01-01
A preliminary study was made of a radar imaging satellite for earth applications. A side-looking synthetic-aperture radar was considered and the feasibility of obtaining a wide area coverage to reduce the time required to image a given area was investigated. Two basic approaches were examined; low altitude sun-synchronous orbits using a multibeam/multifrequency radar system and equatorial orbits up to near-synchronous altitude using a single beam system. Surveillance and mapping of ice on the Great Lakes was used as a typical application to focus the study effort.
Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark
2014-01-01
NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.
Space Radar Image of Baikal Lake, Russia
1999-05-01
This is an X-band black-and-white image of the forests east of the Baikal Forest in the Jablonowy Mountains of Russia. The image is centered at 52.5 degrees north latitude and 116 degrees east longitude near the mining town of Bukatschatscha. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on October 4, 1994, during the second flight of the spaceborne radar. This area is part of an international research project known as the Taiga Aerospace Investigation using Geographic Information System Applications. http://photojournal.jpl.nasa.gov/catalog/PIA01754
Titan Radar Mapper observations from Cassini's T3 fly-by
Elachi, C.; Wall, S.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Lorenz, R.; Lunine, J.; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.
2006-01-01
Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity. ?? 2006 Nature Publishing Group.
Radar systems for the water resources mission, volume 2
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence.
Space Radar Image of Long Valley, California in 3-D
1999-05-01
This three-dimensional perspective view of Long Valley, California was created from data taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This image was constructed by overlaying a color composite SIR-C radar image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The interferometry data were acquired on April 13,1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR instrument. The color composite radar image was taken in October and was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is the large dark feature in the foreground. http://photojournal.jpl.nasa.gov/catalog/PIA01769
Object recognition of ladar with support vector machine
NASA Astrophysics Data System (ADS)
Sun, Jian-Feng; Li, Qi; Wang, Qi
2005-01-01
Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.
Ship Detection and Measurement of Ship Motion by Multi-Aperture Synthetic Aperture Radar
2014-06-01
Reconstructed periodic components of the Doppler histories shown in Fig. 27, (b) splined harmonic component amplitudes as a function of range...78 Figure 42: (a) Reconstructed periodic components of the Doppler histories shown in Figure 30, (b) Splined amplitudes of the...Figure 29 (b) Splined amplitudes of the harmonic components. ............................................ 79 Figure 44: Ship focusing by standard
Limits to Clutter Cancellation in Multi-Aperture GMTI Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.; Bickel, Douglas L.
2015-03-01
Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.
Calibration of complex polarimetric SAR imagery using backscatter correlations
NASA Technical Reports Server (NTRS)
Klein, Jeffrey D.
1992-01-01
A new technique for calibration of multipolarization synthetic aperture radar (SAR) imagery is described. If scatterer reciprocity and lack of correlation between co- and cross-polarized radar echoes (for azimuthally symmetric distributed targets) is assumed, the effects of signal leakage between the radar data channels can be removed without the use of known ground targets. If known targets are available, all data channels may be calibrated relative to one another and radiometrically as well. The method is verified with simulations and application to airborne SAR data.
Preliminary analysis of the sensitivity of AIRSAR images to soil moisture variations
NASA Technical Reports Server (NTRS)
Pardipuram, Rajan; Teng, William L.; Wang, James R.; Engman, Edwin T.
1993-01-01
Synthetic Aperture Radar (SAR) images acquired from various sources such as Shuttle Imaging Radar B (SIR-B) and airborne SAR (AIRSAR) have been analyzed for signatures of soil moisture. The SIR-B measurements have shown a strong correlation between measurements of surface soil moisture (0-5 cm) and the radar backscattering coefficient sigma(sup o). The AIRSAR measurements, however, indicated a lower sensitivity. In this study, an attempt has been made to investigate the causes for this reduced sensitivity.
Replacing missing data between airborne SAR coherent image pairs
Musgrove, Cameron H.; West, James C.
2017-07-31
For synthetic aperture radar systems, missing data samples can cause severe image distortion. When multiple, coherent data collections exist and the missing data samples do not overlap between collections, there exists the possibility of replacing data samples between collections. For airborne radar, the known and unknown motion of the aircraft prevents direct data sample replacement to repair image features. Finally, this paper presents a method to calculate the necessary phase corrections to enable data sample replacement using only the collected radar data.
Replacing missing data between airborne SAR coherent image pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrove, Cameron H.; West, James C.
For synthetic aperture radar systems, missing data samples can cause severe image distortion. When multiple, coherent data collections exist and the missing data samples do not overlap between collections, there exists the possibility of replacing data samples between collections. For airborne radar, the known and unknown motion of the aircraft prevents direct data sample replacement to repair image features. Finally, this paper presents a method to calculate the necessary phase corrections to enable data sample replacement using only the collected radar data.
Archived 1976-1985 JPL Aircraft SAR Data
NASA Technical Reports Server (NTRS)
Thompson, Thomas W.; Blom, Ronald G.
2016-01-01
This report describes archived data from the Jet Propulsion Laboratory (JPL) aircraft radar expeditions in the mid-1970s through the mid-1980s collected by Ron Blom, JPL Radar Geologist. The dataset was collected during Ron's career at JPL from the 1970s through 2015. Synthetic Aperture Radar (SAR) data in the 1970s and 1980s were recorded optically on long strips of film. SAR imagery was produced via an optical, holographic technique that resulted in long strips of film imagery.
NASA Technical Reports Server (NTRS)
Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana
2011-01-01
The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.
NASA Technical Reports Server (NTRS)
1974-01-01
The present work gathers together numerous papers describing the use of remote sensing technology for mapping, monitoring, and management of earth resources and man's environment. Studies using various types of sensing equipment are described, including multispectral scanners, radar imagery, spectrometers, lidar, and aerial photography, and both manual and computer-aided data processing techniques are described. Some of the topics covered include: estimation of population density in Tokyo districts from ERTS-1 data, a clustering algorithm for unsupervised crop classification, passive microwave sensing of moist soils, interactive computer processing for land use planning, the use of remote sensing to delineate floodplains, moisture detection from Skylab, scanning thermal plumes, electrically scanning microwave radiometers, oil slick detection by X-band synthetic aperture radar, and the use of space photos for search of oil and gas fields. Individual items are announced in this issue.
Tomographic Processing of Synthetic Aperture Radar Signals for Enhanced Resolution
1989-11-01
to image 3 larger scenes, this problem becomes more important. A byproduct of this investigation is a duality theorem which is a generalization of the...well-known Projection-Slice Theorem . The second prob- - lem proposed is that of imaging a rapidly-spinning object, for example in inverse SAR mode...slices is absent. There is a possible connection of the word to the Projection-Slice Theorem , but, as seen in Chapter 4, even this is absent in the
Ocean-ice interaction in the marginal ice zone
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Peng, Chich Y.
1994-01-01
Ocean ice interaction processes in the Marginal Ice Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean ice interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.
NASA Astrophysics Data System (ADS)
Reed, A.; Baker, S.
2016-12-01
Several cities in the Houston-Galveston (HG) region in Texas have subsided up to 13 feet over several decades due to natural and anthropogenic processes [Yu et al. 2014]. Land subsidence, a gradual sinking of the Earth's surface, is an often human-induced hazard and a major environmental problem expedited by activities such as mining, oil and gas extraction, urbanization and excessive groundwater pumping. We are able to detect and measure subsidence in HG using interferometric synthetic aperture radar (InSAR) and global positioning systems (GPS). Qu et al. [2015] used ERS, Envisat, and ALOS-1 to characterize subsidence in HG from 1995 to 2011, but a five-year gap in InSAR measurements exists due to a lack of freely available SAR data. We build upon the previous study by comparing subsidence patterns detected by Sentinel-1 data starting in July 2015. We used GMT5SAR to generate a stack of interferograms with perpendicular baselines less than 100 meters and temporal baselines less than 100 days to minimize temporal and spatial decorrelation. We applied the short baseline subset (SBAS) time series processing using GIAnT and compared our results with GPS measurements. The implications of this work will strengthen land subsidence monitoring systems in HG and broadly aid in the development of effective water resource management policies and strategies.
Detecting and monitoring UCG subsidence with InSAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellors, R J; Foxall, W; Yang, X
2012-03-23
The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidencemore » related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.« less
Workshop on Radar Investigations of Planetary and Terrestrial Environments
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.
Digital SAR processing using a fast polynomial transform
NASA Technical Reports Server (NTRS)
Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.
1981-01-01
A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.
Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)
Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.
2011-01-01
The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.
NASA Technical Reports Server (NTRS)
Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.
1992-01-01
The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.
Large Phased Array Radar Using Networked Small Parabolic Reflectors
NASA Technical Reports Server (NTRS)
Amoozegar, Farid
2006-01-01
Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.
NASA Technical Reports Server (NTRS)
Monaldo, Frank M.; Lyzenga, David R.
1988-01-01
During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.
Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data
NASA Technical Reports Server (NTRS)
Henderson, F. M. (Principal Investigator)
1980-01-01
Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.
Study of Movement and Seepage Along Levees Using DINSAR and the Airborne UAVSAR Instrument
NASA Technical Reports Server (NTRS)
Jones, Cathleen E.; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott
2012-01-01
We have studied the utility of high resolution SAR (synthetic aperture radar) for levee monitoring using UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) data collected along the dikes and levees in California's Sacramento-San Joaquin Delta and along the lower Mississippi River. Our study has focused on detecting and tracking changes that are indicative of potential problem spots, namely deformation of the levees, subsidence along the levee toe, and seepage through the levees, making use of polarimetric and interferometric SAR techniques. Here was present some results of those studies, which show that high resolution, low noise SAR imaging could supplement more traditional ground-based monitoring methods by providing early indicators of seepage and deformation.
NASA Technical Reports Server (NTRS)
Schuchmann, R. A.; Onstott, R. G.; Sutherland, L. L.; Wackerman, C. C.
1988-01-01
Active microwave measurements were made of various sea ice forms in March and April 1987 during the Marginal Ice Zone Experiment, at 1, 5, 10, 18, and 35 GHz using a synthetic aperture radar (SAR) and helicopter and ship-based scatterometers. The X-band (9.8 GHz) SAR data were compared to the scatterometer data and it was determined that for 5 GHz and higher frequencies both the SAR and scatterometers can differentiate open water, new ice (5 to 30 cm), first-year ice with rubble (0.60 -1.5 m), and multiyear ice. The analysis further confirmed that the C-band (5 GHz) SAR's flying on ESA ERS-1 and Radarsat will differentiate the mentioned ice types.
NASA Astrophysics Data System (ADS)
Tao, Gang; Wei, Guohua; Wang, Xu; Kong, Ming
2018-03-01
There has been increased interest over several decades for applying ground-based synthetic aperture radar (GB-SAR) for monitoring terrain displacement. GB-SAR can achieve multitemporal surface deformation maps of the entire terrain with high spatial resolution and submilimetric accuracy due to the ability of continuous monitoring a certain area day and night regardless of the weather condition. The accuracy of the interferometric measurement result is very important. In this paper, the basic principle of InSAR is expounded, the influence of the platform's instability on the interferometric measurement results are analyzed. The error sources of deformation detection estimation are analyzed using precise geometry of imaging model. Finally, simulation results demonstrates the validity of our analysis.
NASA Technical Reports Server (NTRS)
Fielding, Eric J.; Talebian, M.; Rosen, P. A.; Nazari, H.; Jackson, J. A.; Ghorashi, M.; Walker, R.
2005-01-01
We use the interferometric correlation from Envisat synthetic aperture radar (SAR) images to map the details of the surface ruptures related to the 26 December 2003 earthquake that devastated Bam, Iran. The main strike-slip fault rupture south of the city of Bam has a series of four segments with left steps shown by a narrow line of low correlation in the coseismic interferogram. This also has a clear expression in the field because of the net extension across the fault. Just south of the city limits, the surface strain becomes distributed over a width of about 500 m, probably because of a thicker layer of soft sedimentary material.
A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)
NASA Astrophysics Data System (ADS)
Peng, Zhengyu; Li, Changzhi
2017-05-01
A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)
NASA Technical Reports Server (NTRS)
Mader, G. L.
1981-01-01
A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.
NASA Astrophysics Data System (ADS)
Lavender, Samantha; Haria, Kajal; Cooksley, Geraint; Farman, Alex; Beaton, Thomas
2016-08-01
The aim was to understand a future market for NovaSAR-S, with a particular focus on flood mapping, through developing a simple Synthetic Aperture Radar (SAR) simulator that can be used in advance of NovaSAR-S data becoming available.The return signal was determined from a combination of a terrain or elevation model, Envisat S-Band Radar Altimeter (RA)-2, Landsat and CORINE land cover information; allowing for a simulation of a SAR image that's influenced by both the geometry and surface type. The test sites correspond to data from the 2014 AirSAR campaign, and validation is performed by using AirSAR together with Envisat Advanced (ASAR) and Advanced Land Observing Satellite "Daichi" (ALOS) Phased Array type L-Band Synthetic Aperture Radar (PALSAR) data.It's envisaged that the resulting simulated data, and the simulator, will not only aid early understanding of NovaSAR-S, but will also aid the development of flood mapping applications.
NASA Astrophysics Data System (ADS)
Yun, S. H.; Hudnut, K. W.; Owen, S. E.; Webb, F.; Simons, M.; Macdonald, A.; Sacco, P.; Gurrola, E. M.; Manipon, G.; Liang, C.; Fielding, E. J.; Milillo, P.; Hua, H.; Coletta, A.
2015-12-01
The April 25, 2015 M7.8 Gorkha earthquake caused more than 8,000 fatalities and widespread building damage in central Nepal. Four days after the earthquake, the Italian Space Agency's (ASI's) COSMO-SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area. Nine days after the earthquake, the Japan Aerospace Exploration Agency's (JAXA's) ALOS-2 SAR satellite covered larger area. Using these radar observations, we rapidly produced damage proxy maps derived from temporal changes in Interferometric SAR (InSAR) coherence. These maps were qualitatively validated through comparison with independent damage analyses by National Geospatial-Intelligence Agency (NGA) and the UNITAR's (United Nations Institute for Training and Research's) Operational Satellite Applications Programme (UNOSAT), and based on our own visual inspection of DigitalGlobe's WorldView optical pre- vs. post-event imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.
Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco
2008-01-01
Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932
Radar detection of surface oil accumulations
NASA Technical Reports Server (NTRS)
Estes, J. E.; Oneill, P.; Wilson, M.
1980-01-01
The United States Coast Guard is developing AIREYE, an all weather, day/night airborne surveillance system, for installation aboard future medium range surveillance aircraft. As part of this program, a series of controlled tests were conducted off southern California to evaluate the oil slick detection capabilities of two Motorola developed, side looking radars. The systems, a real aperture AN/APS-94D and a synthetic aperture coherent on receive (COR) were flown over the Santa Barbara Channel on May 19, 1976. Targets imaged during the coincident overflights included natural oil seepage, simulated oil spills, oil production platforms, piers, mooring buoys, commercial boats and barges at other targets. Based on an analysis of imagery from the coincident radar runs, COR provides better detection of natural and man made oil slicks, whereas the AN/APS-94D consistently exhibited higher surface target detection results. This and other tests have shown that active microwave systems have considerable potential for aiding in the detection and analysis of surface oil accumulations.
Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina
2018-01-16
The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.
NASA Technical Reports Server (NTRS)
Kelly, Kenneth C.; Huang, John
1999-01-01
A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.
NASA Technical Reports Server (NTRS)
Kelly, Kenneth C.; Huang, John
2000-01-01
A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1997-01-01
Ice Sheet grounding lines are sensitive indicator of changes in ice thickness, sea level or elevation of the sea bed. Here, we use the synthetic-aperture radar interferometry technique to detect the migration of thel imit of tidal flexing, or hinge line, of Petermann Gletscher, a major outlet glacier of north Greenland which develops an extensive floating tongue.
2005-07-01
Progress in Applied Computational Electro- magnetics. ACES, Syracuse, NY, 2004. 91. Mahafza, Bassem R. Radar Systems Analysis and Design Using MATLAB...Figure Page 4.5. RCS chamber coordinate system . . . . . . . . . . . . . . . . . 88 4.6. AFIT’s RCS Chamber...4.11. Frequency domain schematic of RCS data collection . . . . . . 98 4.12. Spherical coordinate system for RCS data calibration . . . . . . 102 4.13
Sentinel-1 - the radar mission for GMES operational land and sea services
NASA Astrophysics Data System (ADS)
Attema, Evert; Bargellini, Pierre; Edwards, Peter; Levrini, Guido; Lokas, Svein; Moeller, Ludwig; Rosich-Tell, Betlem; Secchi, Patrizia; Torres, Ramon; Davidson, Malcolm; Snoeij, Paul
2007-08-01
The ESA Sentinels will be the first series of operational satellites to meet the Earth observation needs of the European Union - ESA Global Monitoring for Environment and Security (GMES) programme. Existing and planned space assets will be complemented by new developments from ESA. The first is Sentinel-1, a pair of synthetic aperture radar (SAR) imaging satellites.
NASA Astrophysics Data System (ADS)
Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic
2016-04-01
This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Yueh, Herng-Aung; Han, Hsiu C.; Lim, Harold H.; Arnold, David V.
1990-01-01
Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images.
Space Radar Image of San Francisco, California
NASA Technical Reports Server (NTRS)
1994-01-01
This is a radar image of San Francisco, California, taken on October 3,1994. The image is about 40 kilometers by 55 kilometers (25 miles by 34 miles) with north toward the upper right. Downtown San Francisco is visible in the center of the image with the city of Oakland east (to the right) across San Francisco Bay. Also visible in the image is the Golden Gate Bridge (left center) and the Bay Bridge connecting San Francisco and Oakland. North of the Bay Bridge is Treasure Island. Alcatraz Island appears as a small dot northwest of Treasure Island. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 56. The image is centered at 37 degrees north latitude, 122degrees west longitude. This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do other smooth surfaces such as airport runways. Suburban areas, with the low-density housing and tree-lined streets that are typical of San Francisco, appear as lighter gray. Areas with high-rise buildings, such as those seen in the downtown areas, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.
Doppler-Only Synthetic Aperture Radar
2006-12-01
5 B. TARGET RECOGNITION TECHNIQUES .................................................6 1. Cooperative Targets...6 3. Techniques ............................................................................................6 C. TARGET RECOGNITION...3. Implementation of High Range Resolution Techniques .................12 F. TWO-DIMENSIONAL IMAGING
Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications
NASA Astrophysics Data System (ADS)
Vivekanandan, Jothiram; Loew, Eric
2018-01-01
NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.
NASA Astrophysics Data System (ADS)
Cicchetti, A.; Nenna, C.; Plaut, J. J.; Plettemeier, D.; Noschese, R.; Cartacci, M.; Orosei, R.
2017-11-01
The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005) is a synthetic aperture low frequency radar altimeter, onboard the ESA Mars Express orbiter, launched in June 2003. It is the first and so far the only spaceborne radar that has observed the Martian moon Phobos. Radar echoes were collected on different flyby trajectories. The primary aim of sounding Phobos is to prove the feasibility of deep sounding, into its subsurface. MARSIS is optimized for deep penetration investigations and is capable of transmitting at four different bands between 1.3 MHz and 5.5 MHz with a 1 MHz bandwidth. Unfortunately the instrument was originally designed to operate exclusively on Mars, assuming that Phobos would not be observed. Following this assumption, a protection mechanism was implemented in the hardware (HW) to maintain a minimum time separation between transmission and reception phases of the radar. This limitation does not have any impact on Mars observation but it prevented the observation of Phobos. In order to successfully operate the instrument at Phobos, a particular configuration of the MARSIS onboard software (SW) parameters, called ;Range Ambiguity,; was implemented to override the HW protection zone, ensuring at the same time a high level of safety of the instrument. This paper describes the principles of MARSIS onboard processing, and the procedure through which the parameters of the processing software were tuned to observe targets below the minimum distance allowed by hardware. Some preliminary results of data analysis will be shown, with the support of radar echo simulations. A qualitative comparison between the simulated results and the actual data, does not support the detection of subsurface reflectors.
Radar signatures of road vehicles: airborne SAR experiments
NASA Astrophysics Data System (ADS)
Palubinskas, G.; Runge, H.; Reinartz, P.
2005-10-01
The German radar satellite TerraSAR-X is a high resolution, dual receive antenna SAR satellite, which will be launched in spring 2006. Since it will have the capability to measure the velocity of moving targets, the acquired interferometric data can be useful for traffic monitoring applications on a global scale. DLR has started already the development of an automatic and operational processing system which will detect cars, measure their speed and assign them to a road. Statistical approaches are used to derive the vehicle detection algorithm, which require the knowledge of the radar signatures of vehicles, especially under consideration of the geometry of the radar look direction and the vehicle orientation. Simulation of radar signatures is a very difficult task due to the lack of realistic models of vehicles. In this paper the radar signatures of the parking cars are presented. They are estimated experimentally from airborne E-SAR X-band data, which have been collected during flight campaigns in 2003-2005. Several test cars of the same type placed in carefully selected orientation angles and several over-flights with different heading angles made it possible to cover the whole range of aspect angles from 0° to 180°. The large synthetic aperture length or beam width angle of 7° can be divided into several looks. Thus processing of each look separately allows to increase the angle resolution. Such a radar signature profile of one type of vehicle over the whole range of aspect angles in fine resolution can be used further for the verification of simulation studies and for the performance prediction for traffic monitoring with TerraSAR-X.
Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.
2004-01-01
The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.
Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview
NASA Technical Reports Server (NTRS)
Shen, Yuhsyen; Shaffer, Scott J.; Jordan, Rolando L.
2000-01-01
This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.
Space Radar Laboratory photos taken at Kennedy Space Center
1994-03-18
S94-30393 (23 Nov 1993) --- In the south level IV stand of the Operations and Checkout Building low bay, the Space Radar Laboratory -1 (SRL-1) antenna is being placed atop a pallet which holds the antenna electronics. SRL-1 is scheduled to fly on Space Shuttle mission STS-59 next year. It is comprised of two different imaging radars, the Spaceborne Imaging Radar-C (SIR-C) and the X-band Synthetic Aperture Radar (X-SAR). These radars are the most advanced of their kind to fly in space to date, and will allow scientists to make highly detailed studies of the Earth's surface on a global scale. An Interface Verification Test of the antenna and a Mission Sequence Test will be performed on the fully assembled SRL-1 later this month.
1985-03-01
DIVISION ;! -0 N xr-0 n 0n4 1 1 I- C) 0 Ic 0 C WIx W Qr - - r -r 01............................. I Cq I1 -a I- I X 0’ an w I w kI~r 1 0r- r- r . 0~~~ Cs CW 1...object from the SAR platform . Ground range, the 102 ~RIM RADAR DIVISION 0 0 sc 0’. C4 C4 Xn en % >4-4 441i V-u -- - W 1-11 04 v4 0o 0 4 0 (A~U Go 4J...Rg = rRF -hy ,(3) for the flat earth or low-altitude case, where h is the platform altitude. Because the range and azimuth scales are not the same
Synthetic aperture radar signal data compression using block adaptive quantization
NASA Technical Reports Server (NTRS)
Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian
1994-01-01
This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.
2018-03-10
can be generated using only two sensors in the physical array. In case ofredundancy in the difference coarray, there is more than one antenna pair that...estimation results based on the MUSIC algorithm using multi- frequency co-prime arrays. Both proportional and nonproportional source spectra cases are...be made in this case as well. However, two differences can be noticed by comparing the RMSE plots in Figs. 11 and 13. First, the RMSE takes on lower
Space Radar Image of West Texas - SAR scan
NASA Technical Reports Server (NTRS)
1999-01-01
This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.
SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing
NASA Astrophysics Data System (ADS)
Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane
2013-04-01
Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of operational services on the base of pre-existing algorithms and sensors on the one hand, and to aid the extension of radar remote sensing techniques to a broader field of application on the other. SAR-EDU therefore combines the knowledge, expertise and experience of an excellent German consortium.
NASA Technical Reports Server (NTRS)
1998-01-01
This radar image shows the dramatic landscape in the Phang Hoei Range of north central Thailand, about 40 kilometers (25 miles) northeast of the city of Lom Sak. The plateau, shown in green to the left of center, is the area of Phu Kradung National Park. This plateau is a remnant of a once larger plateau, another portion of which is seen along the right side of the image. The plateaus have been dissected by water erosion over thousands of years. Forest areas appear green on the image; agricultural areas and settlements appear as red and blue. North is toward the lower right. The area shown is 38 by 50 kilometers (24 by 31 miles) and is centered at 16.96 degrees north latitude, 101.67 degrees east longitude. Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; blue is C-band horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar on October 3, 1994, when it flew aboard the space shuttle Endeavour. SIR-C/X-SAR is a joint mission of the U.S./German and Italian space agencies.
Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.Partitioning Ocean Wave Spectra Obtained from Radar Observations
NASA Astrophysics Data System (ADS)
Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine
2016-08-01
2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.
Sentinel-1 Interferometry from the Cloud to the Scientist
NASA Astrophysics Data System (ADS)
Garron, J.; Stoner, C.; Johnston, A.; Arko, S. A.
2017-12-01
Big data problems and solutions are growing in the technological and scientific sectors daily. Cloud computing is a vertically and horizontally scalable solution available now for archiving and processing large volumes of data quickly, without significant on-site computing hardware costs. Be that as it may, the conversion of scientific data processors to these powerful platforms requires not only the proof of concept, but the demonstration of credibility in an operational setting. The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC), in partnership with NASA's Jet Propulsion Laboratory, is exploring the functional architecture of Amazon Web Services cloud computing environment for the processing, distribution and archival of Synthetic Aperture Radar data in preparation for the NASA-ISRO Synthetic Aperture Radar (NISAR) Mission. Leveraging built-in AWS services for logging, monitoring and dashboarding, the GRFN (Getting Ready for NISAR) team has built a scalable processing, distribution and archival system of Sentinel-1 L2 interferograms produced using the ISCE algorithm. This cloud-based functional prototype provides interferograms over selected global land deformation features (volcanoes, land subsidence, seismic zones) and are accessible to scientists via NASA's EarthData Search client and the ASF DAACs primary SAR interface, Vertex, for direct download. The interferograms are produced using nearest-neighbor logic for identifying pairs of granules for interferometric processing, creating deep stacks of BETA products from almost every satellite orbit for scientists to explore. This presentation highlights the functional lessons learned to date from this exercise, including the cost analysis of various data lifecycle policies as implemented through AWS. While demonstrating the architecture choices in support of efficient big science data management, we invite feedback and questions about the process and products from the InSAR community.
Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long
2018-01-01
With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637
Characterization of steel rebar spacing using synthetic aperture radar imaging
NASA Astrophysics Data System (ADS)
Hu, Jie; Tang, Qixiang; Twumasi, Jones Owusu; Yu, Tzuyang
2018-03-01
Steel rebars is a vital component in reinforced concrete (RC) and prestressed concrete structures since they provide mechanical functions to those structures. Damages occurred to steel rebars can lead to the premature failure of concrete structures. Characterization of steel rebars using nondestructive evaluation (NDE) offers engineers and decision makers important information for effective/good repair of aging concrete structures. Among existing NDE techniques, microwave/radar NDE has been proven to be a promising technique for surface and subsurface sensing of concrete structures. The objective of this paper is to use microwave/radar NDE to characterize steel rebar grids in free space, as a basis for the subsurface sensing of steel rebars inside RC structures. A portable 10-GHz radar system based on synthetic aperture radar (SAR) imaging was used in this paper. Effect of rebar grid spacing was considered and used to define subsurface steel rebar grids. Five rebar grid spacings were used; 12.7 cm (5 in.), 17.78 cm (7 in.), 22.86 cm (9 in.), 27.94 cm (11 in.), and 33.02 cm (13 in.) # 3 rebars were used in all grid specimens. All SAR images were collected inside an anechoic chamber. It was found that SAR images can successfully capture the change of rebar grid spacing and used for quantifying the spacing of rebar grids. Empirical models were proposed to estimate actual rebar spacing and contour area using SAR images.
Motion measurement for synthetic aperture radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.
Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision andmore » accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.« less
Geologic process studies using Synthetic Aperture Radar (SAR) data
NASA Technical Reports Server (NTRS)
Evans, Diane L.
1992-01-01
The use of SAR data to study geologic processes for better understanding of recent tectonic activity and climate change as well as the mitigation of geologic hazards and exploration for nonrenewable resources is discussed. The geologic processes that are particularly amenable to SAR-based data include volcanism; soil erosion, degradation, and redistribution; coastal erosion and inundation; glacier fluctuations; permafrost; and crustal motions. When SAR data are combined with data from other planned spaceborne sensors including ESA ERS, the Japanese Earth Resources Satellite, and the Canadian Radarsat, it will be possible to build a time-series view of temporal changes over many regions of earth.
InSAR data for monitoring land subsidence: time to think big
NASA Astrophysics Data System (ADS)
Ferretti, A.; Colombo, D.; Fumagalli, A.; Novali, F.; Rucci, A.
2015-11-01
Satellite interferometric synthetic aperture radar (InSAR) data have proven effective and valuable in the analysis of urban subsidence phenomena based on multi-temporal radar images. Results obtained by processing data acquired by different radar sensors, have shown the potential of InSAR and highlighted the key points for an operational use of this technology, namely: (1) regular acquisition over large areas of interferometric data stacks; (2) use of advanced processing algorithms, capable of estimating and removing atmospheric disturbances; (3) access to significant processing power for a regular update of the information over large areas. In this paper, we show how the operational potential of InSAR has been realized thanks to the recent advances in InSAR processing algorithms, the advent of cloud computing and the launch of new satellite platforms, specifically designed for InSAR analyses (e.g. Sentinel-1a operated by the ESA and ALOS2 operated by JAXA). The processing of thousands of SAR scenes to cover an entire nation has been performed successfully in Italy in a project financed by the Italian Ministry of the Environment. The challenge for the future is to pass from the historical analysis of SAR scenes already acquired in digital archives to a near real-time monitoring program where up to date deformation data are routinely provided to final users and decision makers.
Broad perspectives in radar for ocean measurements
NASA Technical Reports Server (NTRS)
Jain, A.
1978-01-01
The various active radar implementation options available for the measurement functions of interest for the SEASAT follow-on missions were evaluated. These functions include surface feature imaging, surface pressure and vertical profile, atmospheric sounding, surface backscatter and wind speed determination, surface current location, wavelength spectra, sea surface topography, and ice/snow thickness. Some concepts for the Synthetic Aperture Imaging Radar were examined that may be useful in the design and selection of the implementation options for these missions. The applicability of these instruments for the VOIR mission was also kept under consideration.
NASA Technical Reports Server (NTRS)
Gower, J. F. R. (Editor); Salomonson, V. V. (Editor); Engman, E. T. (Editor); Ormsby, J. P. (Editor); Gupta, R. K. (Editor)
1993-01-01
New results from satellite studies of the ocean and radar mapping of the earth are presented. Atttention is given to data from the ERS-1 satellite. Synthetic aperture radar mapping of land surface features and sea ice, radar backscatter measurements, and orbit altitude measurements are discussed. The use of remote sensing in hydrology, soil moisture determination, precipitation measurement, agricultural meteorology, and crop growth estimation is reviewed.
Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space
NASA Technical Reports Server (NTRS)
Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer
2012-01-01
The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.
Polarization-Based Radar Detection in Sea Clutter
2015-02-27
Boerner, "Introduction to Synthetic Aperture Radar (SAR) Polarimetry ," Wexford College Press, 2007. [7] E. Pottier, J. S. Lee, and L. Ferro...Application, US 20140169428 Al, December 10, 2013 T. Pratt, "Methods and Apparatus for Radio Frequency Polarimetry Sensing," non- provisional... Polarimetry ," submitted to IEEE Transactions on Instrumentation and Measurement, 2012 J. Mueller and T. Pratt, "A Radio Frequency Polarimetric Sensor for
Monitoring Canopy Moisture Using an Inversion Algorithm Applied to SAR Data from Boreas
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Saatchi, S.
1995-01-01
During several intensive field campaigns in 1993 & 1994, the JPL airborne synthetic aperture radar obtained multifrequency polarimetric radar data over various areas in the Canadian boreal forest designated as primary BOREAS study sites. These were part of a major remote sensing effort geared toward studying the interaction of the forest biome and the atmosphere to identify their role in global change.
Hardware Development and Error Characterization for the AFIT RAIL SAR System
This research is focused on updating the Air Force Institute of Technology (AFIT) Radar Instrumentation Lab (RAIL)Synthetic Aperture Radar ( SAR ...collections from a receiver in motion. Secondly, orthogonal frequency-division multiplexing (OFDM) signals are used to form ( SAR ) images in multiple...experimental and simulation configurations. This research analyses, characterizes and attempts compensation of relevant SAR image error sources, such as Doppler
Mathematical modeling and simulation of the space shuttle imaging radar antennas
NASA Technical Reports Server (NTRS)
Campbell, R. W.; Melick, K. E.; Coffey, E. L., III
1978-01-01
Simulations of space shuttle synthetic aperture radar antennas under the influence of space environmental conditions were carried out at L, C, and X-band. Mathematical difficulties in modeling large, non-planar array antennas are discussed, and an approximate modeling technique is presented. Results for several antenna error conditions are illustrated in far-field profile patterns, earth surface footprint contours, and summary graphs.
Design of a Ku band Instrumentation Synthetic Aperture Radar System
2015-10-14
was 13 MHz, that the noise levels were minimal, and that the variable attenuator was able to raise and lower the power level of the signal. Once all...20 40 60 80 100 120 M ag ni tu de (d B) 0 10 20 30 40 50 60 70 80 Abs-Mean Raw IQ Pulses David Kelly Project: Radar Design WPI MQP Project 34
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Saatchi, S.
1996-01-01
Several scattering mechanisms contribute to the total radar backscatter cross section measured by the synthetic aperture radar. These are volume scattering, trunk-ground double-bounce scattering, branch-ground double-bounce scattering, and surface scattering. All of these mechanisms are directly related to the dielectric constant of forest components responsible for that mechanism and their moisture.
An Autonomous Cryobot Synthetic Aperture Radar for Subsurface Exploration of Europa
NASA Astrophysics Data System (ADS)
Pradhan, O.; Gasiewski, A. J.
2015-12-01
We present the design and field testing of a forward-looking end-fire synthetic aperture radar (SAR) for the 'Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. Results proving the feasibility of an end-fire SAR system for vehicle guidance and obstacle avoidance in a sub-surface ice environment will be presented. Data collected by the SAR will also be used for constructing sub-surface images of the glacier which can be used for: (i) mapping of englacial features such as crevasses, moulins, and embedded liquid water and (ii) ice-depth and glacier bed analysis to construct digital elevation models (DEM) that can help in the selection of crybot trajectories and future drill sites for extracting long-term climate records. The project consists of three parts, (i) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form agile radiating elements, (ii) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (iii) field testing of the SAR in melt holes. The antennas have been designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar system was also designed and integrated at CET utilizing rugged RF components and FPGA based digital processing. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. The antennas are designed to operate inside ice while being immersed in a thin layer of surrounding low-conductivity melt water. Small holes in the corners of the cavities allow flooding of these cavities with the same melt-water thus allowing for quarter-wavelength cavity-backed reflection. Testing of the antenna array was first carried out by characterizing their operation inside a large ice block at the Stone Aerospace facility in Austin, TX. The complete radar system was then tested on the Matanuska glacier in Alaska, which is an effective Earth analog to Europan sub-surface exploration.