VizieR Online Data Catalog: Mass Distribution of Infrared Dark Clouds (Gomez+, 2014)
NASA Astrophysics Data System (ADS)
Gomez, L.; Wyrowski, F.; Shculler, F.; Menten, K. M.; Ballesteros-Paredes, J.
2014-01-01
Six southern hemisphere clouds with high extinction were observed on 2007-08-25/28 with the LABOCA (Large APEX BOlometer CAmera) instrument on the APEX 12m telescope, at a frequency of 345GHz and a bandwidth of 610GHz (for the instrument, see Siringo et al. 2009A&A...497..945S). (2 data files).
The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study
NASA Astrophysics Data System (ADS)
Gómez, L.; Wyrowski, F.; Schuller, F.; Menten, K. M.; Ballesteros-Paredes, J.
2014-01-01
Aims: We present an analysis of the dust continuum emission at 870 μm in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). Methods: We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of σrms = 28-44 mJy beam-1. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N2H+ (3-2) line toward selected positions to obtain kinematic information. Results: The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 M⊙ (Gaussclumps) and 7-4254 M⊙ (Clumpfind), and the ranges in effective radius are ~0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition method used, is fitted by a power law, dN/dM ∝ Mα, with an index (α) of -1.60 ± 0.06, consistent with the CO mass distribution and other high-mass star-forming regions. Based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A148
A superconducting bolometer camera for APEX
NASA Astrophysics Data System (ADS)
Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.
2006-06-01
We present the experimental results of voltage-biased superconducting bolometers (VSB) on silicon nitride (Si 3N 4) membranes with niobium wiring developed in collaboration between the Institut fur Physikalische Hochtechnologie (IPHT), Jena, Germany and the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn, Germany. The bolometer current is measured with the superconducting quantum interference device (SQUID), and as expected, the current responsivity is proportional to the inverse of the bias voltage. The experiments were performed with bilayer gold-palladium molybdenum thermistor at 300 mK 3He cooled cryostat and the desired transition temperature of T c = 450 mK is achieved. The strong negative electro-thermal feedback of the VSB maintains the constant bolometer temperature and reduces the response time from 4 ms to 100 μs. We have tested thermistors of various size and shape on a continuous membrane and achieved a noise equivalent power (NEP) of 3.5 × 10 -16 W/√Hz. The measured NEP is relatively high due to the comparatively high background and high thermal conductance of the unstructured silicon nitride (Si 3N 4) membrane. We have fabricated 8-leg spider structured membranes in three different geometries and the relation between the geometry and the thermal conductance (G) is studied. Using the COSMOS finite element analysis tool, we have modeled the TES bolometers to determine the thermal conductance for different geometries and calculated the various parameters. Due to the demands of large number pixel bolometer camera we plan to implement multiplex readout with integrated SQUIDs in our design.
The Polarization-Sensitive Bolometers for SPICA and their Potential Use for Ground-Based Application
NASA Astrophysics Data System (ADS)
Reveret, Vincent
2018-01-01
CEA is leading the development of Safari-POL, an imaging-polarimeter aboard the SPICA space observatory (ESA M5). SPICA will be able to reach unprecedented sensitivities thanks to its cooled telescope and its ultra-sensitive detectors. The detector assembly of Safari-POL holds three arrays that are cooled down to 50 mK and correspond to three spectral bands : 100, 200 and 350 microns. The detectors (silicon bolometers), benefit from the Herschel/PACS legacy and are also a big step forward in term of sensitivity (improved by two orders of magnitude compared to PACS bolometers) and for polarimetry capabilities. Indeed, each pixel is intrinsically sensitive to two polarization components (Horizontal and Vertical). We will present the Safari-POL concept, the first results of measurements made on the detectors, and future plans for possible ground-based instruments using this technology. We will also present the example of the ArTéMiS camera, installed at APEX, that was developped as a ground-based conterpart of the PACS photometer.
NASA Technical Reports Server (NTRS)
Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.;
2012-01-01
We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.
NASA Astrophysics Data System (ADS)
De Breuck, Carlos
2018-03-01
The APEX telescope has a range instruments that are highly complementary to ALMA. The single pixel heterodyne receivers cover virtually all atmospheric windows from 157 GHz to above 1 THz, augmented by 7-pixel heterodyne arrays covering 280 to 950 GHz, while the bolometer arrays cover the 870, 450 and 350µm bands.
Cryogenic system for the ArTeMiS large sub millimeter camera
NASA Astrophysics Data System (ADS)
Ercolani, E.; Relland, J.; Clerc, L.; Duband, L.; Jourdan, T.; Talvard, M.; Le Pennec, J.; Martignac, J.; Visticot, F.
2014-07-01
A new photonic camera has been developed in the framework of the ArTéMis project (Bolometers architecture for large field of view ground based telescopes in the sub-millimeter). This camera scans the sky in the sub-millimeter range at simultaneously three different wavelengths, namely 200 μm, 350 μm, 450 μm, and is installed inside the APEX telescope located at 5100m above sea level in Chile. Bolometric detectors cooled to 300 mK are used in the camera, which is integrated in an original cryostat developed at the low temperature laboratory (SBT) of the INAC institut. This cryostat contains filters, optics, mirrors and detectors which have to be implemented according to mass, size and stiffness requirements. As a result the cryostat exhibits an unusual geometry. The inner structure of the cryostat is a 40 K plate which acts as an optical bench and is bound to the external vessel through two hexapods, one fixed and the other one mobile thanks to a ball bearing. Once the cryostat is cold, this characteristic enabled all the different elements to be aligned with the optical axis. The cryogenic chain is built around a pulse tube cooler (40 K and 4 K) coupled to a double stage helium sorption cooler (300 mK). The cryogenic and vacuum processes are managed by a Siemens PLC and all the data are showed and stored on a CEA SCADA system. This paper describes the mechanical and thermal design of the cryostat, its command control, and the first thermal laboratory tests. This work was carried out in collaboration with the Astrophysics laboratory SAp of the IRFU institut. SAp and SBT have installed the camera in July 2013 inside the Cassegrain cabin of APEX.
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.;
2002-01-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.
2002-01-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.
The ArTéMiS wide-field sub-millimeter camera: preliminary on-sky performance at 350 microns
NASA Astrophysics Data System (ADS)
Revéret, Vincent; André, Philippe; Le Pennec, Jean; Talvard, Michel; Agnèse, Patrick; Arnaud, Agnès.; Clerc, Laurent; de Breuck, Carlos; Cigna, Jean-Charles; Delisle, Cyrille; Doumayrou, Eric; Duband, Lionel; Dubreuil, Didier; Dumaye, Luc; Ercolani, Eric; Gallais, Pascal; Groult, Elodie; Jourdan, Thierry; Leriche, Bernadette; Maffei, Bruno; Lortholary, Michel; Martignac, Jérôme; Rabaud, Wilfried; Relland, Johan; Rodriguez, Louis; Vandeneynde, Aurélie; Visticot, François
2014-07-01
ArTeMiS is a wide-field submillimeter camera operating at three wavelengths simultaneously (200, 350 and 450 μm). A preliminary version of the instrument equipped with the 350 μm focal plane, has been successfully installed and tested on APEX telescope in Chile during the 2013 and 2014 austral winters. This instrument is developed by CEA (Saclay and Grenoble, France), IAS (France) and University of Manchester (UK) in collaboration with ESO. We introduce the mechanical and optical design, as well as the cryogenics and electronics of the ArTéMiS camera. ArTeMiS detectors consist in Si:P:B bolometers arranged in 16×18 sub-arrays operating at 300 mK. These detectors are similar to the ones developed for the Herschel PACS photometer but they are adapted to the high optical load encountered at APEX site. Ultimately, ArTeMiS will contain 4 sub-arrays at 200 μm and 2×8 sub-arrays at 350 and 450 μm. We show preliminary lab measurements like the responsivity of the instrument to hot and cold loads illumination and NEP calculation. Details on the on-sky commissioning runs made in 2013 and 2014 at APEX are shown. We used planets (Mars, Saturn, Uranus) to determine the flat-field and to get the flux calibration. A pointing model was established in the first days of the runs. The average relative pointing accuracy is 3 arcsec. The beam at 350 μm has been estimated to be 8.5 arcsec, which is in good agreement with the beam of the 12 m APEX dish. Several observing modes have been tested, like "On- The-Fly" for beam-maps or large maps, spirals or raster of spirals for compact sources. With this preliminary version of ArTeMiS, we concluded that the mapping speed is already more than 5 times better than the previous 350 μm instrument at APEX. The median NEFD at 350 μm is 600 mJy.s1/2, with best values at 300 mJy.s1/2. The complete instrument with 5760 pixels and optimized settings will be installed during the first half of 2015.
Wurden, G.A.
1999-01-19
Radiation-hard, steady-state imaging bolometer is disclosed. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas. 2 figs.
Wurden, Glen A.
1999-01-01
Radiation-hard, steady-state imaging bolometer. A bolometer employing infrared (IR) imaging of a segmented-matrix absorber of plasma radiation in a cooled-pinhole camera geometry is described. The bolometer design parameters are determined by modeling the temperature of the foils from which the absorbing matrix is fabricated by using a two-dimensional time-dependent solution of the heat conduction equation. The resulting design will give a steady-state bolometry capability, with approximately 100 Hz time resolution, while simultaneously providing hundreds of channels of spatial information. No wiring harnesses will be required, as the temperature-rise data will be measured via an IR camera. The resulting spatial data may be used to tomographically investigate the profile of plasmas.
NASA Technical Reports Server (NTRS)
Staguhn, Johannes G.; Benford, Dominic J.; Dwek, Eli; Hilton, Gene; Fixsen, Dale J.; Irwin, Kent; Jhabvala, Christine; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.;
2014-01-01
We present the main design features for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 and 2 mm atmospherical windows. The 1 mm channel uses a 32 × 40 TES-based backshort under grid (BUG) bolometer array, the 2 mm channel operates with a 16 × 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2mm bolometer camera, which is successfully operating at the 30 m telescope. GISMO is accessible to the astronomical community through the regularIRAMcall for proposals.
Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R
2012-07-01
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope
NASA Technical Reports Server (NTRS)
Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark
2004-01-01
In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.
Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II
NASA Astrophysics Data System (ADS)
Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. D.; Harper, D. A.; Jhabvala, Murzy D.; Moseley, S. H.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Staguhn, Johannes G.
2003-02-01
The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 × 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 × 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posada, C. M.; Ade, P. A. R.; Ahmed, Z.
2015-08-11
This work presents the procedures used by Argonne National Laboratory to fabricate large arrays of multichroic transition-edge sensor (TES) bolometers for cosmic microwave background (CMB) measurements. These detectors will be assembled into the focal plane for the SPT-3G camera, the third generation CMB camera to be installed in the South Pole Telescope. The complete SPT-3G camera will have approximately 2690 pixels, for a total of 16,140 TES bolometric detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a Nb microstrip line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed tomore » the respective Ti/Au TES bolometers. There are six TES bolometer detectors per pixel, which allow for measurements of three band-passes (95 GHz, 150 GHz and 220 GHz) and two polarizations. The steps involved in the monolithic fabrication of these detector arrays are presented here in detail. Patterns are defined using a combination of stepper and contact lithography. The misalignment between layers is kept below 200 nm. The overall fabrication involves a total of 16 processes, including reactive and magnetron sputtering, reactive ion etching, inductively coupled plasma etching and chemical etching.« less
Submillimeter Bolometer Array for the CSO
NASA Astrophysics Data System (ADS)
Wang, Ning; Hunter, T. R.; Benford, D. J.; Phillips, T. G.
We are building a bolometer array for use as a submillimeter continuum camera for the Caltech Submillimeter Observatory (CSO) located on Mauna Kea. This effort is a collaboration with Moseley et al. at Goddard Space Flight Center, who have developed the technique for fabricating monolithic bolometer arrays on Si wafers, as well as a sophisticated data taking system to use with these arrays (Moseley et al. 1984). Our primary goal is to construct a camera with 1x24 bolometer pixels operating at 350 and 450 microns using a 3He refrigerator. The monolithic bolometer arrays are fabricated using the techniques of photolithography and micromachining. Each pixel of the array is suspended by four thin Si legs 2 mm long and 12x14 square microns in cross section. These thin legs, obtained by wet Si etching, provide the weak thermal link between the bolometer pixel and the heat sink. A thermistor is formed on each bolometer pixel by P implantation compensated with 50% B. The bolometer array to be used for the camera will have a pixel size of 1x2 square millimeters, which is about half of the CSO beam size at a wavelength of 400 microns. We plan to use mirrors to focus the beam onto the pixels intead of Winston cones. In order to eliminate background radiation from warm surroundings reaching the bolometers, cold baffles will be inserted along the beam passages. To increase the bolometer absorption to radiation, a thin metal film will be deposited on the back of each bolometer pixel. It has been demonstrated that a proper impedance match of the bolometer element can increase the bolometer absorption efficiency to about 50% (Clarke et al., 1978). The use of baffle approach to illumination will make it easier for us to expand to more pixels in the future. The first stage amplification will be performed with cold FETs, connected to each bolometer pixel. Signals from each bolometer will be digitized using a 16 bit A/D with differential inputs. The digitizing frequency will be up to 40 kHz, though 1 kHz should be sufficient for our application. The output from the A/D will be fed to a digital signal processing (DSP) board via fiber optic cables, which will minimize the RF interference to the bolometers. To date, we have assembled a 1x24 bolometer array, and we are in the process of testing it. We are also designing and bulding cryogenic optics. The data acquisition hardware is nearly completed, as well as the electronics. Our goal is to get the instrument working after a new chopping secondary mirror in installed at the CSO in the summer of 1994. References: Moseley, S.H. et al. 1984, J. Appl. Phys.,56,1257; Clarke et al. 1977, J. Appl. Phys., 48, 4865.
A 90GHz Bolometer Camera Detector System for the Green Bank Telescope
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.
2004-01-01
We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.
A 90GHz Bolometer Camera Detector System for the Green
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.
2004-01-01
We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi; Peterson, Byron J.
An Infrared imaging Video Bolometer (IRVB) diagnostic is currently being used in the Large Helical Device (LHD) for studying the localization of radiation structures near the magnetic island and helical divertor X-points during plasma detachment and for 3D tomography. This research demands high signal to noise ratio (SNR) and sensitivity to improve the temporal resolution for studying the evolution of radiation structures during plasma detachment and a wide IRVB field of view (FoV) for tomography. Introduction of an infrared periscope allows achievement of a higher SNR and higher sensitivity, which in turn, permits a twofold improvement in the temporal resolutionmore » of the diagnostic. Higher SNR along with wide FoV is achieved simultaneously by reducing the separation of the IRVB detector (metal foil) from the bolometer's aperture and the LHD plasma. Altering the distances to meet the aforesaid requirements results in an increased separation between the foil and the IR camera. This leads to a degradation of the diagnostic performance in terms of its sensitivity by 1.5-fold. Using an infrared periscope to image the IRVB foil results in a 7.5-fold increase in the number of IR camera pixels imaging the foil. This improves the IRVB sensitivity which depends on the square root of the number of IR camera pixels being averaged per bolometer channel. Despite the slower f-number (f/# = 1.35) and reduced transmission (τ{sub 0} = 89%, due to an increased number of lens elements) for the periscope, the diagnostic with an infrared periscope operational on LHD has improved in terms of sensitivity and SNR by a factor of 1.4 and 4.5, respectively, as compared to the original diagnostic without a periscope (i.e., IRVB foil being directly imaged by the IR camera through conventional optics). The bolometer's field of view has also increased by two times. The paper discusses these improvements in apt details.« less
The Atacama Cosmology Telescope: Instrument
NASA Astrophysics Data System (ADS)
Thornton, Robert J.; Atacama Cosmology Telescope Team
2010-01-01
The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.
NASA Astrophysics Data System (ADS)
Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain
2015-10-01
Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.
Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics.
Turner, A D; Bock, J J; Beeman, J W; Glenn, J; Hargrave, P C; Hristov, V V; Nguyen, H T; Rahman, F; Sethuraman, S; Woodcraft, A L
2001-10-01
We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-mum photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 x 10(-17) W/ radicalHz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45-0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope.
Development of Radiated Power Diagnostics for NSTX-U
NASA Astrophysics Data System (ADS)
Reinke, Matthew; van Eden, G. G.; Lovell, Jack; Peterson, Byron; Gray, Travis; Chandra, Rian; Stratton, Brent; Ellis, Robert; NSTX-U Team
2016-10-01
New tools to measure radiated power in NSTX-U are under development to support a range of core and boundary physics research. Multiple resistive bolometer pinhole cameras are being built and calibrated to support FY17 operations, all utilizing standard Au-foil sensors from IPT-Albrecht. The radiation in the lower divertor will be measured using two, 8 channel arrays viewing both vertically and radially to enable estimates of the 2D radiation structure. The core radiation will be measured using a 24 channel array viewing tangentially near the midplane, observing the full cross-section from the inner to outer limiter. This enables characterization of the centrifugally-driven in/out radiation asymmetry expected from mid-Z and high-Z impurities in highly rotating NSTX-U plasmas. All sensors utilize novel FPGA-based BOLO8BLF analyzers from D-tAcq Solutions. Resistive bolometer measurements are complemented by an InfraRed Video Bolometer (IRVB) which measures the temperature change of radiation absorber using an IR camera. A prototype IRVB system viewing the lower divertor was installed on NSTX-U for FY16 operations. Initial results from the plasma and benchtop testing are used to demonstrate the relative advantages between IRVB and resistive bolometers. Supported in Part by DE-AC05-00OR22725 & DE-AC02-09CH11466.
Development of a prototype infrared imaging bolometer for NSTX-U
NASA Astrophysics Data System (ADS)
van Eden, G. G.; Delgado-Aparicio, L. F.; Gray, T. K.; Jaworski, M. A.; Morgan, T. W.; Peterson, B. J.; Reinke, M. L.; Sano, R.; Mukai, K.; Differ/Pppl Collaboration; Nifs/Pppl Collaboration
2015-11-01
Measurements of the radiated power in fusion reactors are of high importance for studying detachment and the overall power balance. A prototype Infrared Video Bolometer (IRVB) is being developed for NSTX-U complementing resistive bolometer and AXUV diode diagnostics. The IRVB has proven to be a powerful tool on LHD and JT-60U for its 2D imaging quality and reactor environment compatibility. For NSTX-U, a poloidal view of the lower center stack and lower divertor are envisaged for the 2016 run campaign. The IRVB concept images radiation from the plasma onto a 2.5 μm thick 9 x 7 cm2 calibrated Pt foil and monitors its temperature evolution using an IR camera (SB focal plane, 2-12 μm, 128x128 pixels, 1.6 kHz). The power incident on the foil is calculated by solving the 2D +time heat diffusion equation. Benchtop characterization is presented, demonstrating a sensitivity of approximately 20 mK and a noise equivalent power density of 71.5 μW cm-2 for 4x20 bolometer super-pixels and a 50 Hz time response. The hardware design, optimization of camera and detector settings as well as first results of both synthetic and experimental origin are discussed.
Astronomer's new guide to the galaxy: largest map of cold dust revealed
NASA Astrophysics Data System (ADS)
2009-07-01
Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre-wave camera on the ESO-operated APEX telescope. APEX is located at an altitude of 5100 m on the arid plateau of Chajnantor in the Chilean Andes -- a site that allows optimal viewing in the submillimetre range. The Universe is relatively unexplored at submillimetre wavelengths, as extremely dry atmospheric conditions and advanced detector technology are required for such observations. The interstellar medium -- the material between the stars -- is composed of gas and grains of cosmic dust, rather like fine sand or soot. However, the gas is mostly hydrogen and relatively difficult to detect, so astronomers often search for these dense regions by looking for the faint heat glow of the cosmic dust grains. Submillimetre light allows astronomers to see these dust clouds shining, even though they obscure our view of the Universe at visible light wavelengths. Accordingly, the ATLASGAL map includes the denser central regions of our galaxy, in the direction of the constellation of Sagittarius -- home to a supermassive black hole (ESO 46/08) -- that are otherwise hidden behind a dark shroud of dust clouds. The newly released map also reveals thousands of dense dust clumps, many never seen before, which mark the future birthplaces of massive stars. The clumps are typically a couple of light-years in size, and have masses of between ten and a few thousand times the mass of our Sun. In addition, ATLASGAL has captured images of beautiful filamentary structures and bubbles in the interstellar medium, blown by supernovae and the winds of bright stars. Some striking highlights of the map include the centre of the Milky Way, the nearby massive and dense cloud of molecular gas called Sagittarius B2, and a bubble of expanding gas called RCW120, where the interstellar medium around the bubble is collapsing and forming new stars (see ESO 40/08). "It's exciting to get our first look at ATLASGAL, and we will be increasing the size of the map over the next year to cover all of the galactic plane visible from the APEX site on Chajnantor, as well as combining it with infrared observations to be made by the ESA Herschel Space Observatory. We look forward to new discoveries made with these maps, which will also serve as a guide for future observations with ALMA", said Leonardo Testi from ESO, who is a member of the ATLASGAL team and the European Project Scientist for the ALMA project. Note [1] The map was constructed from individual APEX observations in radiation at 870 µm (0.87 mm) wavelength. More information: The ATLASGAL observations are presented in a paper by Frederic Schuller et al., ATLASGAL -- The APEX Telescope Large Area Survey of the Galaxy at 870 µm, published in Astronomy & Astrophysics. ATLASGAL is a collaboration between the Max Planck Institute for Radio Astronomy, the Max Planck Institute for Astronomy, ESO, and the University of Chile. LABOCA (Large APEX Bolometer Camera), one of APEX's major instruments, is the world's largest bolometer camera (a "thermometer camera", or thermal camera that measures and maps the tiny changes in temperature that occur when sub-millimetre wavelength light falls on its absorbing surface; see ESO 35/07). LABOCA's large field of view and high sensitivity make it an invaluable tool for imaging the "cold Universe". LABOCA was built by the Max Planck Institute for Radio Astronomy. The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a "pathfinder" for ALMA -- it is based on a prototype antenna constructed for the ALMA project, it is located on the same plateau and will find many targets that ALMA will be able to study in extreme detail. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U
van Eden, G. G.; Reinke, M. L.; Peterson, B. J.; ...
2016-07-12
The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm 2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solvingmore » the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. Here, the optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.« less
Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eden, G. G. van; Morgan, T. W.; Reinke, M. L.
The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm{sup 2} Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solvingmore » the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.« less
Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Eden, G. G.; Reinke, M. L.; Peterson, B. J.
The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm 2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solvingmore » the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. Here, the optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.« less
GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies
NASA Technical Reports Server (NTRS)
Staguhn, J.
2007-01-01
The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.
Investigation of the Neutral Gas Pressure Effect on the Metal Resistive Bolometer
NASA Astrophysics Data System (ADS)
Zhang, D.; Giannone, L.; Grulke, O.; Piechotka, M.; Windisch, T.; Stark, A.; Klinger, T.
2008-03-01
The bolometer system planned for W7-X consists mainly of metal (Au) resistive detector arrays. All the detectors are exposed to neutral gas environment. The thin bolometer foil used for detecting the radiated power loss may be sensitive to the neutral gas pressure due to the strain gauge effect. Recently, a prototype of this kind of bolometer camera consisting of 12 channels has been installed on the cylindrical plasma device VINETA in order to investigate the influences of the neutral gas pressure on the bolometer signals. Experiments are carried out for Ar-discharges under different gas pressure conditions. It is found that the pressure effect of the neutral gas can make considerable contributions, thus inducing non-negligible errors of the results in most of the investigated cases. Using the VINETA plasmas (Ar, Te<10 eV, ne<10-19 m-3) as examples, the paper demonstrates and discusses how to minimize the neutral gas effects, especially in the data analysis process. The radiated power and the radiation intensity profile obtained in helicon discharges are presented.
Black hole outflows from Centaurus A detected with APEX
NASA Astrophysics Data System (ADS)
2009-01-01
Astronomers have a new insight into the active galaxy Centaurus A (NGC 5128), as the jets and lobes emanating from the central black hole have been imaged at submillimetre wavelengths for the first time. The new data, from the Atacama Pathfinder Experiment (APEX) telescope in Chile, which is operated by ESO, have been combined with visible and X-ray wavelengths to produce this striking new image. ESO PR Photo 03a/09 Centaurus A Centaurus A is our nearest giant galaxy, at a distance of about 13 million light-years in the southern constellation of Centaurus. It is an elliptical galaxy, currently merging with a companion spiral galaxy, resulting in areas of intense star formation and making it one of the most spectacular objects in the sky. Centaurus A hosts a very active and highly luminous central region, caused by the presence of a supermassive black hole (see ESO 04/01), and is the source of strong radio and X-ray emission. In the image, we see the dust ring encircling the giant galaxy, and the fast-moving radio jets ejected from the galaxy centre, signatures of the supermassive black hole at the heart of Centaurus A. In submillimetre light, we see not only the heat glow from the central dust disc, but also the emission from the central radio source and - for the first time in the submillimetre - the inner radio lobes north and south of the disc. Measurements of this emission, which occurs when fast-moving electrons spiral around the lines of a magnetic field, reveal that the material in the jet is travelling at approximately half the speed of light. In the X-ray emission, we see the jets emerging from the centre of Centaurus A and, to the lower right of the galaxy, the glow where the expanding lobe collides with the surrounding gas, creating a shockwave. The Large APEX Bolometer Camera (LABOCA), built by the Max-Planck-Institute for Radio Astronomy (MPIfR), is mounted on APEX, a 12-metre diameter submillimetre-wavelength telescope located on the 5000 m high plateau of Chajnantor in the Chilean Atacama region. APEX is a collaboration between the MPIfR, the Onsala Space Observatory and ESO. The telescope is based on a prototype antenna constructed for the next generation Atacama Large Millimeter/submillimeter Array (ALMA) project. Operation of APEX at Chajnantor is entrusted to ESO. The APEX observations of Centaurus A are presented in the paper by Axel Weiss et al. 2008, LABOCA observations of nearby, active galaxies, A&A, 490, 77-86. A German-language page about this image, "Radiosignale aus der Richtung des Schwarzen Lochs im Zentrum von Centaurus A", is available on the MPIfR website.
NASA Astrophysics Data System (ADS)
Miettinen, O.
2018-02-01
Context. Filamentary molecular clouds, such as many of the infrared dark clouds (IRDCs), can undergo hierarchical fragmentation into substructures (clumps and cores) that can eventually collapse to form stars. Aims: We aim to determine the occurrence of fragmentation into cores in the clumps of the filamentary IRDC G304.74+01.32 (hereafter, G304.74). We also aim to determine the basic physical characteristics (e.g. mass, density, and young stellar object (YSO) content) of the clumps and cores in G304.74. Methods: We mapped the G304.74 filament at 350 μm using the Submillimetre APEX Bolometer Camera (SABOCA) bolometer. The new SABOCA data have a factor of 2.2 times higher resolution than our previous Large APEX BOlometer CAmera (LABOCA) 870 μm map of the cloud (9″ vs. 19\\farcs86). We also employed the Herschel far-infrared (IR) and submillimetre, and Wide-field Infrared Survey Explorer (WISE) IR imaging data available for G304.74. The WISE data allowed us to trace the IR emission of the YSOs associated with the cloud. Results: The SABOCA 350 μm data show that G304.74 is composed of a dense filamentary structure with a mean width of only 0.18 ± 0.05 pc. The percentage of LABOCA clumps that are found to be fragmented into SABOCA cores is 36% ± 16%, but the irregular morphology of some of the cores suggests that this multiplicity fraction could be higher. The WISE data suggest that 65% ± 18% of the SABOCA cores host YSOs. The mean dust temperature of the clumps, derived by comparing the Herschel 250, 350, and 500 μm flux densities, was found to be 15.0 ± 0.8 K. The mean mass, beam-averaged H2 column density, and H2 number density of the LABOCA clumps are estimated to be 55 ± 10M⊙, (2.0 ± 0.2) × 1022 cm-2, and (3.1 ± 0.2) × 104 cm-3. The corresponding values for the SABOCA cores are 29 ± 3M⊙, (2.9 ± 0.3) × 1022 cm-2, and (7.9 ± 1.2) × 104 cm-3. The G304.74 filament is estimated to be thermally supercritical by a factor of ≳ 3.5 on the scale probed by LABOCA, and by a factor of ≳ 1.5 for the SABOCA filament. Conclusions: Our data strongly suggest that the IRDC G304.74 has undergone hierarchical fragmentation. On the scale where the clumps have fragmented into cores, the process can be explained in terms of gravitational Jeans instability. Besides the filament being fragmented, the finding of embedded YSOs in G304.74 indicates its thermally supercritical state, although the potential non-thermal (turbulent) motions can render the cloud a virial equilibrium system on scale traced by LABOCA. The IRDC G304.74 has a seahorse-like morphology in the Herschel images, and the filament appears to be attached by elongated, perpendicular striations. This is potentially evidence that G304.74 is still accreting mass from the surrounding medium, and the accretion process can contribute to the dynamical evolution of the main filament. One of the clumps in G304.74, IRAS 13039-6108, is already known to be associated with high-mass star formation, but the remaining clumps and cores in this filament might preferentially form low and intermediate-mass stars owing to their mass reservoirs and sizes. Besides the presence of perpendicularly oriented, dusty striations and potential embedded intermediate-mass YSOs, G304.74 is a relatively nearby (d 2.5 kpc) IRDC, which makes it a useful target for future star formation studies. Owing to its observed morphology, we propose that G304.74 could be nicknamed the Seahorse Nebula. This publication is based on data acquired with the Atacama Pathfinder EXperiment (APEX) under programmes 083.F-9302(A) and 089.F-9310(A). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.The SABOCA and LABOCA maps shown in Fig. 1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A123
Development of imaging bolometers for magnetic fusion reactors (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko
2008-10-15
Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version ofmore » this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.« less
Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems
NASA Astrophysics Data System (ADS)
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.
2011-06-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
The Atacama Cosmology Telescope: The Receiver and Instrumentation
NASA Technical Reports Server (NTRS)
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.;
2010-01-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
Array of Bolometers for Submillimeter- Wavelength Operation
NASA Technical Reports Server (NTRS)
Bock, James; Turner, Anthony
2007-01-01
A feed-horn-coupled monolithic array of micromesh bolometers is undergoing development for use in a photometric camera. The array is designed for conducting astrophysical observations in a wavelength band centered at 350 m. The bolometers are improved versions of previously developed bolometers comprising metalized Si3N4 micromesh radiation absorbers coupled with neutron- transmutation-doped Ge thermistors. Incident radiation heats the absorbers above a base temperature, changing the electrical resistance of each thermistor. In the present array of improved bolometers (see figure), the thermistors are attached to the micromesh absorbers by indium bump bonds and are addressed by use of lithographed, vapor-deposited electrical leads. This architecture reduces the heat capacity and minimizes the thermal conductivity to 1/20 and 1/300, respectively, of earlier versions of these detectors, with consequent improvement in sensitivity and speed of response. The micromesh bolometers, intended to operate under an optical background set by thermal emission from an ambient-temperature space-borne telescope, are designed such that the random arrival of photons ("photon noise") dominates the noise sources arising from the detector and readout electronics. The micromesh is designed to be a highly thermally and optically efficient absorber with a limiting response time of about 100 s. The absorber and thermistor heat capacity are minimized in order to give rapid speed of response. Due to the minimization of the absorber volume, the dominant source of heat capacity arises from the thermistor.
TES development for a frequency selective bolometer camera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datesman, A. M.; Downes, T. P.; Perera, T. A.
2009-06-01
We discuss the development, at Argonne National Laboratory (ANL), of a four-pixel camera with four spectral channels centered at 150, 220, 270, and 360 GHz. The scientific motivation involves photometry of distant dusty galaxies located by Spitzer and SCUBA, as well as the study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich effect in clusters, and galactic dust. The camera incorporates Frequency Selective Bolometer (FSB) and superconducting Transition-Edge Sensor (TES) technology. The current generation of TES devices we examine utilizes proximity effect superconducting bilayers of Mo/Au, Ti, or Ti/Au as TESs, located along with frequency selective absorbingmore » structures on silicon nitride membranes. The detector incorporates lithographically patterned structures designed to address both TES device stability and detector thermal transport concerns. The membrane is not perforated, resulting in a detector which is comparatively robust mechanically. In this paper, we report on the development of the superconducting bilayer TES technology, the design and testing of the detector thermal transport and device stability control structures, optical and thermal test results, and the use of new materials.« less
BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund
NASA Technical Reports Server (NTRS)
Telesco, C. M.; Decher, R.; Baugher, C.
1985-01-01
The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.
Oh, Hyun Jun; Yang, Il-Hyung
2016-01-01
Objectives: To propose a novel method for determining the three-dimensional (3D) root apex position of maxillary teeth using a two-dimensional (2D) panoramic radiograph image and a 3D virtual maxillary cast model. Methods: The subjects were 10 adult orthodontic patients treated with non-extraction. The multiple camera matrices were used to define transformative relationships between tooth images of the 2D panoramic radiographs and the 3D virtual maxillary cast models. After construction of the root apex-specific projective (RASP) models, overdetermined equations were used to calculate the 3D root apex position with a direct linear transformation algorithm and the known 2D co-ordinates of the root apex in the panoramic radiograph. For verification of the estimated 3D root apex position, the RASP and 3D-CT models were superimposed using a best-fit method. Then, the values of estimation error (EE; mean, standard deviation, minimum error and maximum error) between the two models were calculated. Results: The intraclass correlation coefficient values exhibited good reliability for the landmark identification. The mean EE of all root apices of maxillary teeth was 1.88 mm. The EE values, in descending order, were as follows: canine, 2.30 mm; first premolar, 1.93 mm; second premolar, 1.91 mm; first molar, 1.83 mm; second molar, 1.82 mm; lateral incisor, 1.80 mm; and central incisor, 1.53 mm. Conclusions: Camera calibration technology allows reliable determination of the 3D root apex position of maxillary teeth without the need for 3D-CT scan or tooth templates. PMID:26317151
Low-cost far infrared bolometer camera for automotive use
NASA Astrophysics Data System (ADS)
Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick
2007-04-01
A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.
NASA Astrophysics Data System (ADS)
Graham, Jeffrey
2005-10-01
A bolometer with microsecond scale response time is under construction for the Caltech spheromak experiment to measure radiation from a ˜20 μs duration plasma discharge emitting ˜10^2---10^3 kW/m^2. A gold film several micrometers thick absorbs the radiation, heats up, and the consequent change in resistance can be measured. The film itself is vacuum deposited upon a glass slide. Several geometries for the film are under consideration to optimize the amount of radiation absorbed, the response time and the signal-to-noise ratio. We measure the change in voltage across the film for a known current driven through it; a square pulse (3---30A, ˜20 μs) is used to avoid Joule heating. Results from prototypes tested with a UV flashlamp will be presented. After optimizing the bolometer design, the final vacuum-compatible diagnostic would consist of a plasma-facing bolometer and a reference in a camera obscura. This device could provide a design for fast resistive bolometry.
NASA Astrophysics Data System (ADS)
Fukuhara, T.; Kouyama, T.; Kato, S.; Nakamura, R.
2016-12-01
University International Formation Mission (UNIFORM) in Japan started in 2011 is an ambitious project that specialized to surveillance of small wildfire to contribute to provide fire information for initial suppression. Final aim of the mission is to construct a constellation with several 50 kg class satellites for frequent and exclusive observation. The uncooled micro-bolometer camera with 640 x 480 pixels based on commercial products has been newly developed for the first satellite. It has been successfully launched on 24 May 2014 and injected to the Sun-Synchronous orbit at local time of 12:00 with altitude of 628 km. The camera has been detected considerable hotspots not only wildfire but also volcanoes. Brightness temperature observed on orbit has been verified and scale of observed wildfire has been roughly presumed; the smallest wildfire ever detected has flame zone less than 2 x 103 m2. It is one tenth of initial requirement estimated in design process; our camera has enough ability to discover small wildfire and to provide beneficial information for fire control with low cost and quick fabrication; it would contribute to practical utility especially in developing nations. A next camera is available for new wildfire mission with satellite constellation; it has already developed for flight. Pixel arrays increasing to 1024 x 768, spatial resolution becomes fine to detect smaller wildfire whereas the swath of image is kept. This camera would be applied to the future planetary mission for Mars and Asteroid explore, too. When it observes planetary surface, thermal inertia can be estimated from continuous observation. When it observes atmosphere, cloud-top altitude can be estimated from horizontal temperature distribution.
Detailed in situ laser calibration of the infrared imaging video bolometer for the JT-60U tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parchamy, H.; Peterson, B. J.; Konoshima, S.
2006-10-15
The infrared imaging video bolometer (IRVB) in JT-60U includes a single graphite-coated gold foil with an effective area of 9x7 cm{sup 2} and a thickness of 2.5 {mu}m. The thermal images of the foil resulting from the plasma radiation are provided by an IR camera. The calibration technique of the IRVB gives confidence in the absolute levels of the measured values of the plasma radiation. The in situ calibration is carried out in order to obtain local foil properties such as the thermal diffusivity {kappa} and the product of the thermal conductivity k and the thickness t{sub f} of themore » foil. These quantities are necessary for solving the two-dimensional heat diffusion equation of the foil which is used in the experiments. These parameters are determined by comparing the measured temperature profiles (for kt{sub f}) and their decays (for {kappa}) with the corresponding results of a finite element model using the measured HeNe laser power profile as a known radiation power source. The infrared camera (Indigo/Omega) is calibrated by fitting the temperature rise of a heated plate to the resulting camera data using the Stefan-Boltzmann law.« less
Implementation and performance of shutterless uncooled micro-bolometer cameras
NASA Astrophysics Data System (ADS)
Das, J.; de Gaspari, D.; Cornet, P.; Deroo, P.; Vermeiren, J.; Merken, P.
2015-06-01
A shutterless algorithm is implemented into the Xenics LWIR thermal cameras and modules. Based on a calibration set and a global temperature coefficient the optimal non-uniformity correction is calculated onboard of the camera. The limited resources in the camera require a compact algorithm, hence the efficiency of the coding is important. The performance of the shutterless algorithm is studied by a comparison of the residual non-uniformity (RNU) and signal-to-noise ratio (SNR) between the shutterless and shuttered correction algorithm. From this comparison we conclude that the shutterless correction is only slightly less performant compared to the standard shuttered algorithm, making this algorithm very interesting for thermal infrared applications where small weight and size, and continuous operation are important.
Optical Characterization of the SPT-3G Camera
NASA Astrophysics Data System (ADS)
Pan, Z.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.
2018-05-01
The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ˜ 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.
NASA Astrophysics Data System (ADS)
Battistelli, E. S.; Amiri, M.; Burger, B.; Halpern, M.; Knotek, S.; Ellis, M.; Gao, X.; Kelly, D.; Macintosh, M.; Irwin, K.; Reintsema, C.
2008-05-01
We have developed multi-channel electronics (MCE) which work in concert with time-domain multiplexors developed at NIST, to control and read signals from large format bolometer arrays of superconducting transition edge sensors (TESs). These electronics were developed as part of the Submillimeter Common-User Bolometer Array-2 (SCUBA2 ) camera, but are now used in several other instruments. The main advantages of these electronics compared to earlier versions is that they are multi-channel, fully programmable, suited for remote operations and provide a clean geometry, with no electrical cabling outside of the Faraday cage formed by the cryostat and the electronics chassis. The MCE is used to determine the optimal operating points for the TES and the superconducting quantum interference device (SQUID) amplifiers autonomously. During observation, the MCE execute a running PID-servo and apply to each first stage SQUID a feedback signal necessary to keep the system in a linear regime at optimal gain. The feedback and error signals from a ˜1000-pixel array can be written to hard drive at up to 2 kHz.
Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope
NASA Technical Reports Server (NTRS)
Staguhn, Johannes
2008-01-01
In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda1D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here I will we present early results from our observing run with the first fielded BUG bolometer array.
Imaging of breast cancer with mid- and long-wave infrared camera.
Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R
2008-01-01
In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory.
The Role of APEX as a Pathfinder for AtLAST
NASA Astrophysics Data System (ADS)
Wyrowski, Friedrich
2018-01-01
Now more than 12 years in operation, the Atacama Pathfinder Experiment (APEX) 12 m submillimeter telescope has significantly contributed to a wide variety of submillimeter astronomy science areas, ranging from the discoveries of new molecules to large and deep imaging of the submillimeter sky. While ALMA operation is in full swing, APEX is strengthening its role not only as pathfinder for studying large source samples and spatial scales to prepare detailed high angular resolution ALMA follow ups, but also as fast response instruments to complement new results from ALMA. Furthermore, APEX ensures southern hemisphere access for submillimeter projects complementing archival Herschel research as well as new SOFIA science. With new broadband and multipixel receivers as well as large cameras for wide-field continuum imaging, APEX will pave the way towards the science envisioned with ATLAST. In this contribution, the current status and ongoing upgrades of APEX will be discussed, with an emphasis on the importance of continuous cutting edge science and state-of-the-art instrumentation that will bridge the gap towards ATLAST.
First Tests of Prototype SCUBA-2 Superconducting Bolometer Array
NASA Astrophysics Data System (ADS)
Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike
2006-09-01
We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.
NASA Astrophysics Data System (ADS)
Aguirre, Paula; Lindner, Robert R.; Baker, Andrew J.; Bond, J. Richard; Dünner, Rolando; Galaz, Gaspar; Gallardo, Patricio; Hilton, Matt; Hughes, John P.; Infante, Leopoldo; Lima, Marcos; Menten, Karl M.; Sievers, Jonathan; Weiss, Axel; Wollack, Edward J.
2018-03-01
We present a multiwavelength analysis of 48 submillimeter galaxies (SMGs) detected in the Large APEX Bolometer Camera/Atacama Cosmology Telescope (ACT) Survey of Clusters at All Redshifts, LASCAR, which acquired new 870 μm and Australia Telescope Compact Array 2.1 GHz observations of 10 galaxy clusters detected through their Sunyaev–Zel’dovich effect (SZE) signal by the ACT. Far-infrared observations were also conducted with the Photodetector Array Camera and Spectrometer (100/160 μm) and SPIRE (250/350/500 μm) instruments on Herschel for sample subsets of five and six clusters. LASCAR 870 μm maps were reduced using a multiscale iterative pipeline that removes the SZE increment signal, yielding point-source sensitivities of σ ∼ 2 mJy beam‑1. We detect in total 49 sources at the 4σ level and conduct a detailed multiwavelength analysis considering our new radio and far-IR observations plus existing near-IR and optical data. One source is identified as a foreground galaxy, 28 SMGs are matched to single radio sources, four have double radio counterparts, and 16 are undetected at 2.1 GHz but tentatively associated in some cases to near-IR/optical sources. We estimate photometric redshifts for 34 sources with secure (25) and tentative (9) matches at different wavelengths, obtaining a median z={2.8}-1.7+2.1. Compared to previous results for single-dish surveys, our redshift distribution has a comparatively larger fraction of sources at z > 3, and the high-redshift tail is more extended. This is consistent with millimeter spectroscopic confirmation of a growing number of high-z SMGs and relevant for testing of cosmological models. Analytical lens modeling is applied to estimate magnification factors for 42 SMGs at clustercentric radii >1.‧2 with the demagnified flux densities and source-plane areas, we obtain integral number counts that agree with previous submillimeter surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, Munetake; Hiramatsu, Masaaki; Tsukagoshi, Takashi
2009-08-05
We carried out an imaging survey of dust continuum emissions toward the Chamaeleon and Lupus regions. Observations were made with the 144-element bolometer array camera AzTEC mounted on the 10-meter sub-millimeter telescope ASTE during 2007-2008. The preliminary results of disk search and the cloud structure of Lupus III are presented.
Preliminary design of a tangentially viewing imaging bolometer for NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K.; SOKENDAI
2016-11-15
The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a timemore » resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.« less
Preliminary design of a tangentially viewing imaging bolometer for NSTX-U
Peterson, B. J.; Sano, R.; Reinke, M. L.; ...
2016-08-03
The InfraRed imaging Video Bolometer measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 x 480 (1280 x 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm x 9 cm x 2 μm Pt foil. The foil is divided into 40 x 40 (64 x 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm 2 for a time resolutionmore » of 33 (20) ms. Synthetic images derived from SOLPS data using the IRVB geometry show peak signal levels ranging from ~0.8 - ~80 (~0.36 - ~26) mW/cm 2.« less
Bolometer Results in the Long-Microwave-Heated WEGA Stellarator
NASA Astrophysics Data System (ADS)
Zhang, D.; Otte, M.; Giannone, L.
2006-01-01
A 12 channel bolometer camera based on a gold foil absorber has been installed on the WEGA stellarator to measure the radiation power losses of the plasma. The measured total radiation power is typically less than 30% of the ECRH input power. However, this radiated power fraction depends on the ECRH input power, the magnetic configuration and the field strength as well as the working gas. For separatrix-bounded configurations, core-peaked radiation intensity profiles are usually detected, while in a limiter-configuration they are flatter, broader and more asymmetric. In addition, significant radiation originating from the SOL region is measured for all the cases studied. The SOL radiation changes with changing the plasma-wave interaction region, indicating a strong correlation between radiation and power deposition. Under the WEGA-plasma conditions (Te<10 eV), it is considered that the radiation profile reflects the plasma pressure associated with the power deposition distribution of the ECRH.
Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives
NASA Astrophysics Data System (ADS)
Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno
2017-05-01
As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.
BAE Systems' 17μm LWIR camera core for civil, commercial, and military applications
NASA Astrophysics Data System (ADS)
Lee, Jeffrey; Rodriguez, Christian; Blackwell, Richard
2013-06-01
Seventeen (17) µm pixel Long Wave Infrared (LWIR) Sensors based on vanadium oxide (VOx) micro-bolometers have been in full rate production at BAE Systems' Night Vision Sensors facility in Lexington, MA for the past five years.[1] We introduce here a commercial camera core product, the Airia-MTM imaging module, in a VGA format that reads out in 30 and 60Hz progressive modes. The camera core is architected to conserve power with all digital interfaces from the readout integrated circuit through video output. The architecture enables a variety of input/output interfaces including Camera Link, USB 2.0, micro-display drivers and optional RS-170 analog output supporting legacy systems. The modular board architecture of the electronics facilitates hardware upgrades allow us to capitalize on the latest high performance low power electronics developed for the mobile phones. Software and firmware is field upgradeable through a USB 2.0 port. The USB port also gives users access to up to 100 digitally stored (lossless) images.
Can camera traps monitor Komodo dragons a large ectothermic predator?
Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S
2013-01-01
Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.
Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?
Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.
2013-01-01
Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site*survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species. PMID:23527027
Preparing ZEUS-2 for Observing Run at the APEX Telescope
NASA Astrophysics Data System (ADS)
Dahlin, Patrick; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.
2017-01-01
ZEUS-2 is a direct detection grating spectrometer that was designed to maximize sensitivity for the detection of the far-infrared fine-structure lines from distant star forming galaxies as they are redshifted into the short submillimeter windows. ZEUS-2 employs two NIST TES bolometer arrays as its detector: one tuned to 400 μm and the other that consists of two sub-arrays, one tuned to 215 μm and the other tuned to 645 μm. Therefore, by placing bandpass filters directly above the detector ZEUS-2 can address four telluric windows (200 μm, 350 μm, 450 μm, and 650 μm) simultaneously on extended objects, and two windows (200 and 650 μm, or 350 and 450 μm) simultaneously on point sources. ZEUS-2 has now been deployed four times on the APEX telescope in Chile and demonstrated background limited performance both at 350 and 450 μm. As part of my NSF REU experience at Cornell in the summer of 2016, I helped with testing of ZEUS-2 in the lab and improving components for its use on the telescope. This poster will cover the principles of the ZEUS-2 instrument and some of the recent scientific results.
Recent results obtained on the APEX 12 m antenna with the ArTeMiS prototype camera
NASA Astrophysics Data System (ADS)
Talvard, M.; André, P.; Rodriguez, L.; Le-Pennec, Y.; De Breuck, C.; Revéret, V.; Agnèse, P.; Boulade, O.; Doumayrou, E.; Dubreuil, D.; Ercolani, E.; Gallais, P.; Horeau, B.; Lagage, PO; Leriche, B.; Lortholary, M.; Martignac, J.; Minier, V.; Pantin, E.; Rabanus, D.; Relland, J.; Willmann, G.
2008-07-01
ArTeMiS is a camera designed to operate on large ground based submillimetric telescopes in the 3 atmospheric windows 200, 350 and 450 µm. The focal plane of this camera will be equipped with 5760 bolometric pixels cooled down at 300 mK with an autonomous cryogenic system. The pixels have been manufactured, based on the same technology processes as used for the Herschel-PACS space photometer. We review in this paper the present status and the future plans of this project. A prototype camera, named P-ArTeMiS, has been developed and successfully tested on the KOSMA telescope in 2006 at Gornergrat 3100m, Switzerland. Preliminary results were presented at the previous SPIE conference in Orlando (Talvard et al, 2006). Since then, the prototype camera has been proposed and successfully installed on APEX, a 12 m antenna operated by the Max Planck Institute für Radioastronomie, the European Southern Observatory and the Onsala Space Observatory on the Chajnantor site at 5100 m altitude in Chile. Two runs have been achieved in 2007, first in March and the latter in November. We present in the second part of this paper the first processed images obtained on star forming regions and on circumstellar and debris disks. Calculated sensitivities are compared with expectations. These illustrate the improvements achieved on P-ArTeMiS during the 3 experimental campaigns.
An Extreme Protocluster of Luminous Dusty Starbursts in the Early Universe
NASA Astrophysics Data System (ADS)
Oteo, I.; Ivison, R. J.; Dunne, L.; Manilla-Robles, A.; Maddox, S.; Lewis, A. J. R.; de Zotti, G.; Bremer, M.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Greenslade, J.; Omont, A.; Perez–Fournón, I.; Riechers, D.; Scott, D.; van der Werf, P.; Weiss, A.; Zhang, Z.-Y.
2018-03-01
We report the identification of an extreme protocluster of galaxies in the early universe whose core (nicknamed Distant Red Core, DRC, because of its very red color in Herschel SPIRE bands) is formed by at least 10 dusty star-forming galaxies (DSFGs), spectroscopically confirmed to lie at {z}spec}=4.002 via detection of [C I](1–0), 12CO(6–5), 12CO(4–3), 12CO(2–1), and {{{H}}}2{{O}}({2}11{--}{2}02) emission lines with ALMA and ATCA. These DSFGs are distributed over a 260 {kpc}× 310 {kpc} region and have a collective obscured star formation rate (SFR) of ∼ 6500 {M}ȯ {yr}}-1, considerably higher than those seen before in any protocluster at z≳ 4. Most of the star formation is taking place in luminous DSFGs since no Lyα emitters are detected in the protocluster core, apart from a Lyα blob located next to one of the DRC components, extending over 60 {kpc}. The total obscured SFR of the protocluster could rise to {SFR}∼ {{14,400}} {M}ȯ {yr}}-1 if all the members of an overdensity of bright DSFGs discovered around DRC in a wide-field Large APEX BOlometer CAmera 870 μm image are part of the same structure. [C I](1–0) emission reveals that DRC has a total molecular gas mass of at least {M}{{{H}}2}∼ 6.6× {10}11 {M}ȯ , and its total halo mass could be as high as ∼ 4.4× {10}13 {M}ȯ , indicating that it is the likely progenitor of a cluster at least as massive as Coma at z = 0.
Cold dust in the giant barred galaxy NGC 1365
NASA Astrophysics Data System (ADS)
Tabatabaei, F. S.; Weiß, A.; Combes, F.; Henkel, C.; Menten, K. M.; Beck, R.; Kovács, A.; Güsten, R.
2013-07-01
Constraining the physcial properties of dust requires observations at submm wavelengths. This will provide important insight into the gas content of galaxies. We mapped NGC 1365 at 870 μm with LABOCA, the Large APEX Bolometer Camera, allowing us to probe the central mass concentration as well as the rate at which the gas flows to the center. We obtained the dust physical properties both globally and locally for different locations in the galaxy. A 20 K modified black body represents about 98% of the total dust content of the galaxy, the rest can be represented by a warmer dust component of 40 K. The bar exhibits an east-west asymmetry in the dust distribution: The eastern bar is heavier than the western bar by more than a factor of 4. Integrating the dust spectral energy distribution, we derived a total infrared luminosity, LTIR, of 9.8 × 1010 L⊙, leading to a dust-enshrouded star formation rate of SFRTIR ≃ 16.7 M⊙ yr-1 in NGC 1365. We derived the gas mass from the measurements of the dust emission, resulting in a CO-to-H2 conversion factor of XCO ≃ 1.2 × 1020 mol cm-2 (K km s-1)-1 in the central disk, including the bar. Taking into account the metallicity variation, the central gas mass concentration is only ≃20% at R < 40″ (3.6 kpc). On the other hand, the timescale on which the gas flows into the center, ≃300 Myr, is relatively short. This indicates that the current central mass in NGC 1365 is evolving fast because of the strong bar.
NIKA2, a dual-band millimetre camera on the IRAM 30 m telescope to map the cold universe
NASA Astrophysics Data System (ADS)
Désert, F.-X.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Macías-Pérez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roussel, H.; Ruppin, F.; Soler, J.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.
2016-12-01
A consortium led by Institut Néel (Grenoble) has just finished installing a new powerful millimetre camera NIKA2 on the IRAM 30 m telescope. It has an instantaneous field-of-view of 6.5 arcminutes at both 1.2 and 2.0 mm with polarimetric capabilities at 1.2 mm. NIKA2 provides a near diffraction-limited angular resolution (resp. 12 and 18 arcseconds). The 3 detector arrays are made of more than 1000 KIDs each. KIDs are new superconducting devices emerging as an alternative to bolometers. The commissionning is ongoing in 2016 with a likely opening to the IRAM community in early 2017. NIKA2 is a very promising multi-purpose instrument which will enable many scientific discoveries in the coming decade.
Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras
NASA Technical Reports Server (NTRS)
Brown, Ari; Benford, Dominic; Chervenak, James; Wollack, Edward
2012-01-01
A document describes a zeptobolometer for ultrasensitive, long-wavelength sensors. GSFC is developing pixels based on the zeptobolometer design that sense three THz wavelengths simultaneously. Two innovations are described in the document: (1) a quasiparticle (QO) filter arrangement that enables a compact multicolor spectrum at the focal plane, and (2) a THz antenna readout by up to three bolometers. The innovations enable high efficiency by greatly reducing high, frequency-dependent microstrip losses, and pixel compactness by eliminating the need for bulky filters in the focal plane. The zeptobolometer is a small TES bolometer, on the scale of a few microns, which can be readily coupled through an impedance-matching resistor to a metal or dielectric antenna. The bolometer is voltage-biased in its superconducting transition, allowing the use of superconducting RF multiplexers to read out large arrays. The antenna is geometrically tapped at three locations so as to efficiently couple radiation of three distinct wavelengths to the individual TESs. The transition edge hot electrons in metals offer a simple, compact arrangement for antenna readout, which can be crucial in the THz where line losses at high frequencies can be substantial. A metallic grill filter acts as a high-pass filter and directs the low-frequency components to a location where they will be absorbed. The absorption spectrum shows that three well-separated THz bands are feasible. The filters can be made from high-purity dielectrics such as float zone silicon or sapphire.
NASA Astrophysics Data System (ADS)
Lewis, Keith
2014-10-01
Biological systems exploiting light have benefitted from thousands of years of genetic evolution and can provide insight to support the development of new approaches for imaging, image processing and communication. For example, biological vision systems can provide significant diversity, yet are able to function with only a minimal degree of neural processing. Examples will be described underlying the processes used to support the development of new concepts for photonic systems, ranging from uncooled bolometers and tunable filters, to asymmetric free-space optical communication systems and new forms of camera capable of simultaneously providing spectral and polarimetric diversity.
Optical Characterization of the SPT-3G Focal Plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Z.; et al.
The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (95, 150 and 220 GHz) with ~16,000 transition-edge sensor (TES) bolometers. Each multichroic pixel on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarization directions, via lumped element filters. Ten detector wafers populate the focal plane, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, andmore » optical and polarization efficiencies of the focal plane. The detectors have frequency bands consistent with our simulations, and have high average optical efficiency which is 86%, 77% and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 ms and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers« less
Near-field observation platform
NASA Astrophysics Data System (ADS)
Schlemmer, Harry; Baeurle, Constantin; Vogel, Holger
2008-04-01
A miniaturized near-field observation platform is presented comprising a sensitive daylight camera and an uncooled micro-bolometer thermal imager each equipped with a wide angle lens. Both cameras are optimised for a range between a few meters and 200 m. The platform features a stabilised line of sight and can therefore be used also on a vehicle when it is in motion. The line of sight either can be directed manually or the platform can be used in a panoramic mode. The video output is connected to a control panel where algorithms for moving target indication or tracking can be applied in order to support the observer. The near-field platform also can be netted with the vehicle system and the signals can be utilised, e.g. to designate a new target to the main periscope or the weapon sight.
A novel carbon coating technique for foil bolometers
NASA Astrophysics Data System (ADS)
Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.
2016-11-01
Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.
Passive stand-off terahertz imaging with 1 hertz frame rate
NASA Astrophysics Data System (ADS)
May, T.; Zieger, G.; Anders, S.; Zakosarenko, V.; Starkloff, M.; Meyer, H.-G.; Thorwirth, G.; Kreysa, E.
2008-04-01
Terahertz (THz) cameras are expected to be a powerful tool for future security applications. If such a technology shall be useful for typical security scenarios (e.g. airport check-in) it has to meet some minimum standards. A THz camera should record images with video rate from a safe distance (stand-off). Although active cameras are conceivable, a passive system has the benefit of concealed operation. Additionally, from an ethic perspective, the lack of exposure to a radiation source is a considerable advantage in public acceptance. Taking all these requirements into account, only cooled detectors are able to achieve the needed sensitivity. A big leap forward in the detector performance and scalability was driven by the astrophysics community. Superconducting bolometers and midsized arrays of them have been developed and are in routine use. Although devices with many pixels are foreseeable nowadays a device with an additional scanning optic is the straightest way to an imaging system with a useful resolution. We demonstrate the capabilities of a concept for a passive Terahertz video camera based on superconducting technology. The actual prototype utilizes a small Cassegrain telescope with a gyrating secondary mirror to record 2 kilopixel THz images with 1 second frame rate.
Antenna-Coupled Bolometer Arrays for Astrophysics
NASA Astrophysics Data System (ADS)
Bock, James
Bolometers offer the best sensitivity in the far-infrared to millimeter-wave region of the electromagnetic spectrum. We are developing arrays of feedhorn-coupled bolometers for the ESA/NASA Planck Surveyor and Herschel Space Observatory. Advances in the format and sensitivity of bolometric focal plane array enables future astrophysics mission opportunities, such as CMB polarimetry and far-infrared/submillimeter spectral line surveys. Compared to bolometers with extended area radiation absorbers, antenna-coupled bolometers offer active volumes that are orders of magnitude smaller. Coupled to lithographed micro-strip filters and antennas, antenna-coupled bolometer arrays allow flexible focal plane architectures specialized for imaging, polarimetry, and spectroscopy. These architectures greatly reduce the mass of sub-Kelvin bolometer focal planes that drive the design of bolometric instrumentation.
Integrated Electron-tunneling Refrigerator and TES Bolometer for Millimeter Wave Astronomy
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Benford, D. J.; Chen, T. C.; Chervenak, J.; Finkbeiner, F.; Moseley, S. H.; Duncan, W.; Miller, N.; Schmidt, D.; Ullom, J.
2005-01-01
We describe progress in the development of a close-packed array of bolometers intended for use in photometric applications at millimeter wavelengths from ground- based telescopes. Each bolometer in the may uses a proximity-effect Transition Edge Sensor (TES) sensing element and each will have integrated Normal-Insulator-Superconductor (NIS) refrigerators to cool the bolometer below the ambient bath temperature. The NIS refrigerators and acoustic-phonon-mode-isolated bolometers are fabricated on silicon. The radiation-absorbing element is mechanically suspended by four legs, whose dimensions are used to control and optimize the thermal conductance of the bolometer. Using the technology developed at NIST, we fabricate NIS refrigerators at the base of each of the suspension legs. The NIS refrigerators remove hot electrons by quantum-mechanical tunneling and are expected to cool the biased (approx.10 pW) bolometers to <170 mK while the bolometers are inside a pumped 3He-cooled cryostat operating at approx.280 mK. This significantly lower temperature at the bolometer allows the detectors to approach background-limited performance despite the simple cryogenic system.
Infrared Spectroscopy Data Reduction with ORAC-DR
NASA Astrophysics Data System (ADS)
Economou, F.; Jenness, T.; Cavanagh, B.; Wright, G. S.; Bridger, A. B.; Kerr, T. H.; Hirst, P.; Adamson, A. J.
ORAC-DR is a flexible and extensible data reduction pipeline suitable for both on-line and off-line use. Since its development it has been in use on-line at UKIRT for data from the infrared cameras UFTI and IRCAM and at JCMT for data from the sub-millimetre bolometer array SCUBA. We have now added a suite of on-line reduction recipes that produces publication quality (or nearly so) data from the CGS4 near-infrared spectrometer and the MICHELLE mid-infrared Echelle spectrometer. As an example, this paper briefly describes some pipeline features for one of the more commonly used observing modes.
NASA Astrophysics Data System (ADS)
Klaessens, John H.; van der Veen, Albert; Verdaasdonk, Rudolf M.
2017-03-01
Recently, low cost smart phone based thermal cameras are being considered to be used in a clinical setting for monitoring physiological temperature responses such as: body temperature change, local inflammations, perfusion changes or (burn) wound healing. These thermal cameras contain uncooled micro-bolometers with an internal calibration check and have a temperature resolution of 0.1 degree. For clinical applications a fast quality measurement before use is required (absolute temperature check) and quality control (stability, repeatability, absolute temperature, absolute temperature differences) should be performed regularly. Therefore, a calibrated temperature phantom has been developed based on thermistor heating on both ends of a black coated metal strip to create a controllable temperature gradient from room temperature 26 °C up to 100 °C. The absolute temperatures on the strip are determined with software controlled 5 PT-1000 sensors using lookup tables. In this study 3 FLIR-ONE cameras and one high end camera were checked with this temperature phantom. The results show a relative good agreement between both low-cost and high-end camera's and the phantom temperature gradient, with temperature differences of 1 degree up to 6 degrees between the camera's and the phantom. The measurements were repeated as to absolute temperature and temperature stability over the sensor area. Both low-cost and high-end thermal cameras measured relative temperature changes with high accuracy and absolute temperatures with constant deviations. Low-cost smart phone based thermal cameras can be a good alternative to high-end thermal cameras for routine clinical measurements, appropriate to the research question, providing regular calibration checks for quality control.
New technologies for the detection of millimeter and submillimeter waves
NASA Technical Reports Server (NTRS)
Richards, P. L.; Clarke, J.; Gildemeister, J. M.; Lanting, T.; Lee, A. T.
2001-01-01
Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID (superconducting quantum interference device) readout multiplexer.
A progress report on using bolometers cooled by adiabatic demagnetization refrigeration
NASA Technical Reports Server (NTRS)
Lesyna, L.; Roellig, T.; Savage, M.; Werner, Michael W.
1989-01-01
For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers.
The readout system for the ArTeMis camera
NASA Astrophysics Data System (ADS)
Doumayrou, E.; Lortholary, M.; Dumaye, L.; Hamon, G.
2014-07-01
During ArTeMiS observations at the APEX telescope (Chajnantor, Chile), 5760 bolometric pixels from 20 arrays at 300mK, corresponding to 3 submillimeter focal planes at 450μm, 350μm and 200μm, have to be read out simultaneously at 40Hz. The read out system, made of electronics and software, is the full chain from the cryostat to the telescope. The readout electronics consists of cryogenic buffers at 4K (NABU), based on CMOS technology, and of warm electronic acquisition systems called BOLERO. The bolometric signal given by each pixel has to be amplified, sampled, converted, time stamped and formatted in data packets by the BOLERO electronics. The time stamping is obtained by the decoding of an IRIG-B signal given by APEX and is key to ensure the synchronization of the data with the telescope. Specifically developed for ArTeMiS, BOLERO is an assembly of analogue and digital FPGA boards connected directly on the top of the cryostat. Two detectors arrays (18*16 pixels), one NABU and one BOLERO interconnected by ribbon cables constitute the unit of the electronic architecture of ArTeMiS. In total, the 20 detectors for the tree focal planes are read by 10 BOLEROs. The software is working on a Linux operating system, it runs on 2 back-end computers (called BEAR) which are small and robust PCs with solid state disks. They gather the 10 BOLEROs data fluxes, and reconstruct the focal planes images. When the telescope scans the sky, the acquisitions are triggered thanks to a specific network protocol. This interface with APEX enables to synchronize the acquisition with the observations on sky: the time stamped data packets are sent during the scans to the APEX software that builds the observation FITS files. A graphical user interface enables the setting of the camera and the real time display of the focal plane images, which is essential in laboratory and commissioning phases. The software is a set of C++, Labview and Python, the qualities of which are respectively used for rapidity, powerful graphic interfacing and scripting. The commands to the camera can be sequenced in Python scripts. The paper describes the whole electronic and software readout chain designed to fulfill the specificities of ArTeMiS and its performances. The specific options used are explained, for example, the limited room in the Cassegrain cabin of APEX has led us to a quite compact design. This system was successfully used in summer 2013 for the commissioning and the first scientific observations with a preliminary set of 4 detectors at 350μm.
HFI Bolometer Detectors Programmatic CDR
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
2002-01-01
Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.
Coordinated Instruments for Source Detection and Characterization
NASA Astrophysics Data System (ADS)
Wilson, G. W.
2007-10-01
I describe two instruments designed for coordinated observations of the submillimeter galaxy population. AzTEC is a 144-element bolometer camera designed to survey fields and detect submillimeter galaxies in the 1.1 mm band. In June of 2005, AzTEC completed a successful engineering run at the JCMT. The instrument then returned to the JCMT in October for a series of science programs, which will result in a set of catalogs of the submillimeter galaxy population that span a wide range of environments. SPEED is a 4-pixel photometer that uses frequency selective bolometers to observe in four colors simultaneously in each pixel (for a total of 16 detectors). SPEED will be used for follow-up observations of sources found by AzTEC as well as for the measurement of the Sunyaev-Zel'dovich effect in clusters. SPEED's band centers are 2.1 mm, 1.4 mm, 1.1 mm, and 0.85 mm. Because each color is observed through the same optics, the relative calibration of the four bands will be excellent. SPEED is under construction now with a planned deployment to the SMT in 2006. These two instruments will eventually be installed at the LMT as facility instruments.
Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aikin, R. W.; Amiri, M.
We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less
Antenna-coupled TES bolometers used in BICEP2, Keck Array, and SPIDER
Ade, P. A. R.; Aikin, R. W.; Amiri, M.; ...
2015-10-20
We have developed antenna-coupled transition-edge sensor bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including Bicep2, Keck Array, and the balloon borne Spider. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%–30% bandwidth at 95, 150, or 230 GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typicallymore » $$\\sim 0.5\\%$$, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET ~ 300 $$\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of $$\\sim 9\\;\\mu {{\\rm{K}}}_{\\mathrm{CMB}}\\sqrt{{\\rm{s}}}$$, as measured directly from CMB maps in the 2013 season. Furthermore, similar arrays have recently flown in the Spider instrument, and development of this technology is ongoing.« less
Efficient Broadband Terahertz Radiation Detectors Based on Bolometers with a Thin Metal Absorber
NASA Astrophysics Data System (ADS)
Dem'yanenko, M. A.
2018-01-01
The matrix method has been used to calculate the coefficients of absorption of terahertz radiation in conventional (with radiation incident from vacuum adjacent to the bolometer) and inverted (with radiation incident from the substrate on which the bolometer was fabricated) bolometric structures. Near-unity absorption coefficients were obtained when an additional cavity in the form of a gap between the bolometer and the input or output window was introduced. Conventional bolometers then became narrowband, while inverted-type devices remained broadband.
Bolometers for millimeter-wave Cosmology
NASA Astrophysics Data System (ADS)
Bock, James J.
2002-05-01
Bolometers offer high sensitivity for observations of the cosmic microwave background, Sunyaev-Zel'Dovich effect in clusters, and far-infrared galaxies. Near background-limited performance may be realized even under the low background conditions available from a space-borne platform. We discuss the achieved performance of silicon nitride micromesh (`spider web') bolometers readout by NTD Ge thermistors. We are developing arrays of such bolometers coupled to single-mode feedhorns. CMB polarization may be studies using a new absorber geometry allowing simultaneous detection of both linear polarizations in a single feedhorn with two individual detectors. Finally we discuss a new bolometer architecture consisting of an array of slot antennae coupled to filters and bolometers via superconducting microstrip. .
Infrared-Bolometer Arrays with Reflective Backshorts
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Abrahams, John; Allen, Christine A.
2011-01-01
Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to interlock with the support beams on the backshort-array structure to provide structural support and precise relative positioning. The backshort-array structure is inserted in the silicon support frame behind the bolometer array, and the notches in the frame serve to receive the support beams of the backshort-array structure and thus determine the distance between the backshort and bolometer planes. The depth of the notches and, thus, the distance between the backshort and bolometer planes, can be tailored to a value between 25 to 300 m adjusting only a few process steps. The backshort array is designed so as not to interfere with the placement of indium bumps for subsequent indium bump-bonding to the multiplexing readout circuitry
Diagnostics for Z-pinch implosion experiments on PTS
NASA Astrophysics Data System (ADS)
Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.
2014-12-01
The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.
A 65 nm CMOS LNA for Bolometer Application
NASA Astrophysics Data System (ADS)
Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei
2016-04-01
Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.
Testing of 100 mK bolometers for space applications
NASA Technical Reports Server (NTRS)
Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.
1996-01-01
Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.
A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout
NASA Astrophysics Data System (ADS)
Miao, W.; Gao, H.; Wang, Z.; Zhang, W.; Ren, Y.; Zhou, K. M.; Shi, S. C.; Yu, C.; He, Z. Z.; Liu, Q. B.; Feng, Z. H.
2018-05-01
In this paper, we present the development of a graphene-based hot electron bolometer with Johnson noise readout. The bolometer is a graphene microbridge connected to a log spiral antenna by Au contact pads. The Fourier transform spectrometer measurement shows the bolometer has high coupling efficiency in the frequency range from 0.3 to 1.6 THz. Using 300/77 K blackbody loads, we measure an optical noise equivalent power of 5.6 × 10-12 W/Hz0.5 at 3.0 K. To understand the thermal transport inside the graphene microbridge, we measure the bolometers with different microbridge lengths at different bath temperatures. We find that the thermal conductance due to electron diffusion is significant in the bolometers.
ZEUS-2: a second generation submillimeter grating spectrometer for exploring distant galaxies
NASA Astrophysics Data System (ADS)
Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Irwin, Kent D.; Cho, Hsiao-Mei; Halpern, Mark
2010-07-01
ZEUS-2, the second generation (z)Redshift and Early Universe Spectrometer, like its predecessor is a moderate resolution (R~1000) long-slit, echelle grating spectrometer optimized for the detection of faint, broad lines from distant galaxies. It is designed for studying star-formation across cosmic time. ZEUS-2 employs three TES bolometer arrays (555 pixels total) to deliver simultaneous, multi-beam spectra in up to 4 submillimeter windows. The NIST Boulder-built arrays operate at ~100mK and are readout via SQUID multiplexers and the Multi-Channel Electronics from the University of British Columbia. The instrument is cooled via a pulse-tube cooler and two-stage ADR. Various filter configurations give ZEUS-2 access to 7 different telluric windows from 200 to 850 micron enabling the simultaneous mapping of lines from extended sources or the simultaneous detection of the 158 micron [CII] line and the [NII] 122 or 205 micron lines from z = 1-2 galaxies. ZEUS-2 is designed for use on the CSO, APEX and possibly JCMT.
A Kinematic, Kevlar(registered) Suspension System for an ADR
NASA Technical Reports Server (NTRS)
Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.
2003-01-01
The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their bolometer detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar@ suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists or two parts that can be assembled and tensioned offline, and later bolted onto the salt pill. The resulting assembly constrains each degree of freedom only once, yielding a kinematic, tensile structure.
Improved fabrication techniques for infrared bolometers
NASA Technical Reports Server (NTRS)
Lange, A. E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.; Kreysa, E.
1983-01-01
Ion implantation and sputter metallization are used to produce ohmic electrical contacts to Ge:Ga chips. The method is shown to give a high yield of small monolithic bolometers with very little low-frequency noise. It is noted that when one of the chips is used as the thermometric element of a composite bolometer it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond is measured and found to be undesirably large. A procedure for soldering the chip to a metallized portion of the substrate in such a way as to reduce this resistance is outlined. An evaluation is made of the contribution of the metal film absorber to the heat capacity of a composite bolometer. It is found that the heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber possesses significantly lower heat capacity. A low-temperature blackbody calibrator is built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approximately 0.1 sr sq cm is constructed using the new techniques. The noise in this bolometer is white above 2.5 Hz and is slightly below the value predicted by thermodynamic equilibrium theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, K.; Akiba, Y.; Arnold, K.
The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less
NASA Technical Reports Server (NTRS)
Davis, C. J.; Davis, J. A.; Meyer-Vernet, Nicole; Crothers, S.; Lintott, C.; Smith, A.; Bamford, S.; Baeten, E. M. L.; SaintCyr, O. C.; Campbell-Brown, M.;
2012-01-01
The distribution of dust in the ecliptic plane between 0.96 and 1.04 au has been inferred from impacts on the two Solar Terrestrial Relations Observatory (STEREO) spacecraft through observation of secondary particle trails and unexpected off-points in the heliospheric imager (HI) cameras. This study made use of analysis carried out by members of a distributed webbased citizen science project Solar Stormwatch. A comparison between observations of the brightest particle trails and a survey of fainter trails shows consistent distributions. While there is no obvious correlation between this distribution and the occurrence of individual meteor streams at Earth, there are some broad longitudinal features in these distributions that are also observed in sources of the sporadic meteor population. The different position of the HI instrument on the two STEREO spacecraft leads to each sampling different populations of dust particles. The asymmetry in the number of trails seen by each spacecraft and the fact that there are many more unexpected off-points in the HI-B than in HI-A indicates that the majority of impacts are coming from the apex direction. For impacts causing off-points in the HI-B camera, these dust particles are estimated to have masses in excess of 10 (exp-17) kg with radii exceeding 0.1 µm. For off-points observed in the HI-A images, which can only have been caused by particles travelling from the anti-apex direction, the distribution is consistent with that of secondary 'storm' trails observed by HI-B, providing evidence that these trails also result from impacts with primary particles from an anti-apex source. Investigating the mass distribution for the off-points of both HI-A and HI-B, it is apparent that the differential mass index of particles from the apex direction (causing off-points in HI-B) is consistently above 2. This indicates that the majority of the mass is within the smaller particles of this population. In contrast, the differential mass index of particles from the anti-apex direction (causing off-points in HI-A) is consistently below 2, indicating that the majority of the mass is to be found in larger particles of this distribution.
NASA Astrophysics Data System (ADS)
André, Ph.; Revéret, V.; Könyves, V.; Arzoumanian, D.; Tigé, J.; Gallais, P.; Roussel, H.; Le Pennec, J.; Rodriguez, L.; Doumayrou, E.; Dubreuil, D.; Lortholary, M.; Martignac, J.; Talvard, M.; Delisle, C.; Visticot, F.; Dumaye, L.; De Breuck, C.; Shimajiri, Y.; Motte, F.; Bontemps, S.; Hennemann, M.; Zavagno, A.; Russeil, D.; Schneider, N.; Palmeirim, P.; Peretto, N.; Hill, T.; Minier, V.; Roy, A.; Rygl, K. L. J.
2016-07-01
Context. Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which filaments of ~0.1 pc width form first in the cold interstellar medium, probably as a result of large-scale compression of interstellar matter by supersonic turbulent flows, and then prestellar cores arise from gravitational fragmentation of the densest filaments. Whether this scenario also applies to regions of high-mass star formation is an open question, in part because the resolution of Herschel is insufficient to resolve the inner width of filaments in the nearest regions of massive star formation. Aims: In an effort to characterize the inner width of filaments in high-mass star-forming regions, we imaged the central part of the NGC 6334 complex at a resolution higher by a factor of >3 than Herschel at 350 μm. Methods: We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 μm with Herschel/HOBYS data at 70-500 μm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the structure of the main narrow filament of the complex with a resolution of 8″ or <0.07 pc at d ~ 1.7 kpc. Results: Our study confirms that this filament is a very dense, massive linear structure with a line mass ranging from ~500 M⊙/pc to ~2000 M⊙/pc over nearly 10 pc. It also demonstrates for the first time that its inner width remains as narrow as W ~ 0.15 ± 0.05 pc all along the filament length, within a factor of <2 of the characteristic 0.1 pc value found with Herschel for lower-mass filaments in the Gould Belt. Conclusions: While it is not completely clear whether the NGC 6334 filament will form massive stars in the future, it is two to three orders of magnitude denser than the majority of filaments observed in Gould Belt clouds, and has a very similar inner width. This points to a common physical mechanism for setting the filament width and suggests that some important structural properties of nearby clouds also hold in high-mass star-forming regions. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX) in ESO program 091.C-0870. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.The final ArTéMiS+SPIRE 350 μm map (Fig. 1b) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A54
NASA Astrophysics Data System (ADS)
Chapellier, M.
2009-08-01
The scintillation properties of luminescent crystals are well known at room temperature. It is only recently, for the sake of dark matter and rare events searches that the studies have been extended to very low temperatures in the millikelvin range. Some little-known facts on the behaviour of bolometers , and more specifically on scintillating ones, are recalled in a simple manner. A few experiments to better understand them are proposed. The term bolometer is used here for calorimeter. Normally a bolometer will measure a flux of energy whereas a calorimeter measures a deposited energy. The tendency is to use bolometer for both types of measurement. A germanium bolometer does not measure the total energy received, part of it is transformed in ionization energy. The same is true for scintillating bolometer.
Improved fabrication techniques for infrared bolometers
NASA Technical Reports Server (NTRS)
Lange, A. E.; Kreysa, E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.
1983-01-01
Techniques are described for producing improved infrared bolometers from doped germanium. Ion implantation and sputter metalization have been used to make ohmic electrical contacts to Ge:Ga chips. This method results in a high yield of small monolithic bolometers with very little low-frequency noise. When one of these chips is used as the thermometric element of a composite bolometer, it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond has been measured and found to be undesirably large. A procedure for soldering the chip to a metalized portion of the substrate is described which reduced this resistance. The contribution of the metal film absorber to the heat capacity of a composite bolometer has been measured. The heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber has significantly lower heat capacity. A low temperature blackbody calibrator has been built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approx. 0.1 sr sq cm was constructed using the new techniques. In negligible background it has an optical NEP of 3.6 10((exp -15) W/sq root of Hz at 1.0 K with a time constant of 20 ms. The noise in this bolometer is white above 2.5 Hz and is somewhat below the value predicted by thermodynamic equilibrium theory. It is in agreement with calculations based on a recent nonequilibrium theory.
NASA Technical Reports Server (NTRS)
Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.
1997-01-01
The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.
Superconducting bolometers for millimeter and sub-millimeter wavelengths
NASA Astrophysics Data System (ADS)
Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; Menten, K. M.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.
2008-07-01
We present the experimental results and a bolometer model of the voltage-biased superconducting bolometer on the low stress silicon nitride (Si3N4) membrane, developed in collaboration between the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn and the Institute for Photonic Technology (IPHT), Jena, Germany. The superconducting thermistor, deposited on the low stress silicon nitride membrane, is a bilayer of gold-palladium and molybdenum and is designed for a transition temperature of 450 mK. Bolometers for the 1.2 mm atmospheric window were designed, built and tested. The thermal conductance of the bolometer is tuned by structuring the silicon nitride membrane into spider-like geometries. The incident radiation is absorbed by crossed dipoles made from gold-palladium alloy with a surface resistance of 10 Ω/. Using the COSMOS finite element analysis package, the thermal conductance is obtained for the bolometers of different geometries. FEA simulations showed that the deposition of a gold ring around the absorbing area could increase the sensitivity of the bolometer. Therefore, a gold ring is deposited around the center absorbing patch of the silicon nitride membrane. For the bolometer with a gold ring, the measured NEP is 1.7 × 10-16W/√ Hz and the time constant is in the range between 1.4 and 2 ms.
Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment
Hattori, K.; Akiba, Y.; Arnold, K.; ...
2016-01-06
The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less
The Herschel Space Observatory, Opening the Far Infrared
NASA Astrophysics Data System (ADS)
Pearson, John C.
2009-06-01
The Herschel Space Observatory (Herschel) is a multi user observatory operated by the European Space Agency with a significant NASA contribution. Herschel features a passively cooled 3.5 meter telescope expected to operate near 78 Kelvin and three cryogenic instruments covering the 670 to 57 μm spectral region. The mission life time, determined by the consumption of 2500 liters of liquid helium, is expected to be at least 3.5 years with at least 3 years of operational lifetime in an L2 orbit. The three payload instruments are the Spectral and Photometric Imaging Receiver (SPIRE), Photodetector Array Camera and Spectrometer (PACS), and the Heterodyne Instrument for Far Infrared (HIFI). SPIRE covers 200-670 μm and is a three band bolometer based photometer and a two band imaging Martin-Puplett FTS with a spectral resolution of up to 600. PACS covers 57-200 μm and is a three band bolometer based photometer and a grating slit spectrometer illuminating photoconductor arrays in two bands with a resolution of up to 5000. HIFI covers 480-1272 GHz and 1440-1910 GHz and is a series of seven dual polarization heterodyne receivers with a spectral resolution up to 5×10^6. The observatory performance, selected science program and upcoming opportunities will be discussed.
ORAC-DR: One Pipeline for Multiple Telescopes
NASA Astrophysics Data System (ADS)
Cavanagh, B.; Hirst, P.; Jenness, T.; Economou, F.; Currie, M. J.; Todd, S.; Ryder, S. D.
ORAC-DR, a flexible and extensible data reduction pipeline, has been successfully used for real-time data reduction from UFTI and IRCAM (infrared cameras), CGS4 (near-infrared spectrometer), Michelle (mid-infrared imager and echelle spectrometer), at UKIRT; and SCUBA (sub-millimeter bolometer array) at JCMT. We have now added the infrared imaging spectrometers IRIS2 at the Anglo-Australian Telescope and UIST at UKIRT to the list of officially supported instruments. We also present initial integral field unit support for UIST, along with unofficial support for the imager and multi-object spectrograph GMOS at Gemini. This paper briefly describes features of the pipeline along with details of adopting ORAC-DR for other instruments on telescopes around the world.
Comparison of the Effects of Magnetic Field on Low Noise MoAu and TiAu TES Bolometers
NASA Astrophysics Data System (ADS)
Hijmering, R. A.; Khosropanah, P.; Ridder, M.; Gao, J. R.; Hoevers, H.; Jackson, B.; Goldie, D.; Withington, S.; Kozorezov, A. G.
2014-08-01
Recently we have reported on the effects of magnetic field on our low noise (NEP = 4 W/Hz) [1] TiAu TES bolometers that are being developed at SRON for the SAFARI FIR Imaging Spectrometer on SPICA telescope that will be operated in three different wavelength bands: S-band for 30-60 , M-band for 60-110 and L-band for 110-210 . The arrays for the S- and M- band will be based on TiAu TES bolometer arrays, developed by SRON. The L-band array will be based on a MoAu TES bolometer developed by University of Cambridge. We have investigated the effect of the magnetic field on the current, responsivity, speed and critical current for both the TiAu and MoAu TES bolometers in our high accuracy magnetic field set-up. A clear difference in weak link behavior is observed between the two types of TES bolometers in both strength of the effect and period of the oscillations.
Selenium immersed thermistor bolometer study
NASA Technical Reports Server (NTRS)
Rolls, W. H.
1979-01-01
The noise characteristics of thermistor bolometers immersed in layers of arsenic/selenium glass uniform in composition were examined. Using a controlled deposition technique, layers of glass were deposited, thermistor bolometers immersed, and their electrical characteristics measured after various thermal treatments. Markedly improved stability of the detector noise was observed using this new technique.
A progress report on bolometers operating at 0.1 K using adiabatic demagnetization refrigeration
NASA Technical Reports Server (NTRS)
Roellig, T.; Lesyna, L.; Werner, M.; Kittel, P.
1986-01-01
Bolometers are still the detectors of choice for low background infrared observations at wavelengths longer than 200 microns. In the low background limit, bolometers become more sensitive as their operating temperature decreases, due to fundamental thermodynamic laws. The adiabatic demagnetization technique was evaluated by building a bolometer detection system operating at a wavelength of 1 millimeter for use at a ground based telescope. The system was fit checked at the telescope and is expected to take its first data in November, 1985.
The 160 TES bolometer read-out using FDM for SAFARI
NASA Astrophysics Data System (ADS)
Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.
2014-07-01
For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.
NASA Astrophysics Data System (ADS)
Yun, Min S.; Scott, K. S.; Guo, Yicheng; Aretxaga, I.; Giavalisco, M.; Austermann, J. E.; Capak, P.; Chen, Yuxi; Ezawa, H.; Hatsukade, B.; Hughes, D. H.; Iono, D.; Johnson, S.; Kawabe, R.; Kohno, K.; Lowenthal, J.; Miller, N.; Morrison, G.; Oshima, T.; Perera, T. A.; Salvato, M.; Silverman, J.; Tamura, Y.; Williams, C. C.; Wilson, G. W.
2012-02-01
We report the results of the counterpart identification and a detailed analysis of the physical properties of the 48 sources discovered in our deep 1.1-mm wavelength imaging survey of the Great Observatories Origins Deep Survey-South (GOODS-S) field using the AzTEC instrument on the Atacama Submillimeter Telescope Experiment. One or more robust or tentative counterpart candidate is found for 27 and 14 AzTEC sources, respectively, by employing deep radio continuum, Spitzer/Multiband Imaging Photometer for Spitzer and Infrared Array Camera, and Large APEX Bolometer Camera 870 μm data. Five of the sources (10 per cent) have two robust counterparts each, supporting the idea that these galaxies are strongly clustered and/or heavily confused. Photometric redshifts and star formation rates (SFRs) are derived by analysing ultraviolet(UV)-to-optical and infrared(IR)-to-radio spectral energy distributions (SEDs). The median redshift of zmed˜ 2.6 is similar to other earlier estimates, but we show that 80 per cent of the AzTEC-GOODS sources are at z≥ 2, with a significant high-redshift tail (20 per cent at z≥ 3.3). Rest-frame UV and optical properties of AzTEC sources are extremely diverse, spanning 10 mag in the i- and K-band photometry (a factor of 104 in flux density) with median values of i= 25.3 and K= 22.6 and a broad range of red colour (i-K= 0-6) with an average value of i-K≈ 3. These AzTEC sources are some of the most luminous galaxies in the rest-frame optical bands at z≥ 2, with inferred stellar masses M*= (1-30) × 1010 M⊙ and UV-derived SFRs of SFRUV≳ 101-3 M⊙ yr-1. The IR-derived SFR, 200-2000 M⊙ yr-1, is independent of z or M*. The resulting specific star formation rates, SSFR ≈ 1-100 Gyr-1, are 10-100 times higher than similar mass galaxies at z= 0, and they extend the previously observed rapid rise in the SSFR with redshift to z= 2-5. These galaxies have a SFR high enough to have built up their entire stellar mass within their Hubble time. We find only marginal evidence for an active galactic nucleus (AGN) contribution to the near-IR and mid-IR SEDs, even among the X-ray detected sources, and the derived M* and SFR show little dependence on the presence of an X-ray bright AGN.
Mirror Illumination and Spillover Measurements of the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Gallardo, Patricio; Dunner, Rolando; Wollack, Ed; Jerez-Hanckes, Carlos
2012-01-01
The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220GHz and 280GHz, The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band, The detector performance depends critically on the total optical loading, requiring the spmover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1 m W source and a chopper wheel to produce a time-varying signal with a broad heam proflle, We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5,72 plus or minus 0,17m in diameter (95 plus or minus 3% of its geometrical size), while the aperture of the secondary yielded 2 plus or minus 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 plus or minus 4,8%. We found that the attenuation outside the primary aperture was -16 plus or minus 2dB, which is below the theoretical expectations, and -22 plus or minus 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2,24 pW to 188pW.
Two-dimensional array of cold-electron bolometers for high-sensitivity polarization measurements
NASA Astrophysics Data System (ADS)
Kuzmin, L. S.
2012-01-01
A new concept of a two-dimensional array of cold-electron bolometers with distributed dipole antennas in the focal plane for high-sensitivity polarization measurements is proposed. The concept gives a unique combination of high polarization resolution due to a large uniforms array of cold-electron bolometers and optimal matching with junction field effect transistor (JFET) amplifiers because of flexibility in direct-current connections. The noise characteristics are improved due to arriving-signal power distribution among numerous cold-electron bolometers and an increase in their response. This should lead to a significant increase in the sensitivity and dynamic range compared with competing alternative bolometer technologies. The reliability of the twodimensional array significantly increases due to a series-parallel connection of a large number of cold-electron bolometers. High polarization resolution should be ensured due to uniform covering of a substrate by a two-dimensional array over a large area and the absence of the beam compression to small lumped elements. The fundamental sensitivity limit of the cold-electron bolometer array is smaller than photon noise which is considered to be the ultimate level restricted by the background radiation. Estimates of noise of bolometers with the JFET reading system show the possibility of realizing the ultimate sensitivity below the photon-noise level 5 ・10-17 W/Hz1/2 at a frequency of 350 GHz for an optical load with a power of 5 pW. These parameters correspond to the requirements to the receiving system of a BOOMERanG balloon telescope.
Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G
2015-09-07
Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. © 2015 The Author(s).
Mesopredator behavioral response to olfactory signals of an apex predator.
Wikenros, Camilla; Jarnemo, Anders; Frisén, Marielle; Kuijper, Dries P J; Schmidt, Krzysztof
2017-01-01
Olfactory signals constitute an important mechanism in interspecific interactions, but little is known regarding their role in communication between predator species. We analyzed the behavioral responses of a mesopredator, the red fox ( Vulpes vulpes ), to an olfactory cue (scat) of an apex predator, the lynx ( Lynx lynx ) in Białowieża Primeval Forest, Poland, using video camera traps. Red fox visited sites with scats more often than expected and the duration of their visits was longer at scat sites than at control sites (no scat added). Vigilant behavior, sniffing and scent marking (including over-marking) occurred more often at scat sites compared to control sites, where foxes mainly passed by. Vigilance was most pronounced during the first days of the recordings. Red fox behavior was also influenced by foxes previously visiting scat sites. They sniffed and scent marked (multiple over-marking) more frequently when the lynx scat had been over-marked previously by red fox. Fox visits to lynx scats may be seen as a trade-off between obtaining information on a potential food source (prey killed by lynx) and the potential risk of predation by an apex predator.
Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.
2015-01-01
Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169
Automated recognition and tracking of aerosol threat plumes with an IR camera pod
NASA Astrophysics Data System (ADS)
Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan
2012-06-01
Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.
First Astronomical Use of Multiplexed Transition Edge Sensor Bolometers
NASA Technical Reports Server (NTRS)
Staguhn, J. G.; Ames, T. A.; Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; Khan, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.
2004-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda approx. 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 m and 450 m bands. These bands cover line emission from the important star formation tracers neutral carbon (CI) and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.
First Astronomical Use Of Multiplexed Transition Edge Bolometers
NASA Technical Reports Server (NTRS)
Benford, D. J.; Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; DeKotwara, S. A.; Maffei, B.; Moseley, S. H.; Pajot, F.; Phillips, T. G.; Reintsema, C. D.
2001-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing five orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering delta-lamda/lamda = 1/7 at a resolution of delta-lamda/lamda = 1/1200 can be acquired. This spectral resolution is sufficient to resolve doppler broadened line emission from external galaxies. FIBRE operates in the 350 micrometer and 450 micrometer bands. These bands cover line emission from the important PDR tracers neutral carbon [CI] and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.
Predicting the response of a submillimeter bolometer to cosmic rays.
Woodcraft, Adam L; Sudiwala, Rashmi V; Ade, Peter A R; Griffin, Matthew J; Wakui, Elley; Bhatia, Ravinder S; Lange, Andrew E; Bock, James J; Turner, Anthony D; Yun, Minhee H; Beeman, Jeffrey W
2003-09-01
Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.
Predicting the response of a submillimeter bolometer to cosmic rays
NASA Astrophysics Data System (ADS)
Woodcraft, Adam L.; Sudiwala, Rashmi V.; Ade, Peter A. R.; Griffin, Matthew J.; Wakui, Elley; Bhatia, Ravinder S.; Lange, Andrew E.; Bock, James J.; Turner, Anthony D.; Yun, Minhee H.; Beeman, Jeffrey W.
2003-09-01
Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.
Ultralow-Background Large-Format Bolometer Arrays
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)
2002-01-01
In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.
Development of plasma bolometers using fiber-optic temperature sensors
NASA Astrophysics Data System (ADS)
Reinke, M. L.; Han, M.; Liu, G.; van Eden, G. G.; Evenblij, R.; Haverdings, M.; Stratton, B. C.
2016-11-01
Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ˜ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ˜150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m2 when compared to those of the resistive bolometer which can achieve <0.5 W/m2 in the laboratory, but this can degrade to 1-2 W/m2 or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.
Investigation of electrical noise in selenium-immersed thermistor bolometers
NASA Technical Reports Server (NTRS)
Tarpley, J. L.; Sarmiento, P. D.
1980-01-01
The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.
CCAM: A novel millimeter-wave instrument using a close-packed TES bolometer array
NASA Astrophysics Data System (ADS)
Lau, Judy M.
This thesis describes CCAM, an instrument designed to map the Cosmic Microwave Background (CMB), and also presents some of the initial measurements made with CCAM on the Atacama Cosmology Telescope (ACT). CCAM uses a CCD-like camera of millimeter-wave TES bolometers. It employs new detector technology, read-out electronics, cold re-imaging optics, and cryogenics to obtain high sensitivity CMB anisotropy measurements. The free-standing 8×32 close-packed array of pop- up TES detectors is the first of its kind to observe the sky at 145 GHz. We present the design of the receiver including the antireflection coated silicon lens re-imaging system, construction and optimization of the pulse tube/ sorption refrigerator cryogenic system, as well as the technology developed to integrate eight 1×32 TES columns and accompanying read-out electronics in to an array of 256 millimeter-wave detectors into a focal plane area of 3.5 cm 2. The performance of the detectors and optics prior to deployment at the ACT site in Chile are reported as well as preliminary performance results of the instrument when optically paired with the ACT telescope in the summer of 2007. Here, we also report on the feasibility of the TES detector array to measure polarization when coupled to a rotating birefringent sapphire half wave plate and wire-grid polarizer.
Mapping TES Aerobreaking Data of The Martian Polar Caps
NASA Astrophysics Data System (ADS)
Altunaiji, E. S.; Edwards, C. S.; Smith, M. D.; AlShamsi, M. R.; AlJanaahi, A. A.
2016-12-01
The purpose of this paper is to create maps of the north and south Mars polar caps using Thermal Emission Spectrometer (TES) aerobreaking surface temperature data in south and north as well as Lambert albedo data in the south. TES is an instrument on board the Mars Global Surveyor (MGS) spacecraft. It has six detectors arranged in a 2x3 array with a nominal spot size of 3 × 6 km; however, given the elliptical nature of the orbit during aerobreaking the footprint can be significantly larger (10s of km), especially over the southern hemisphere. TES is a Fourier transform infrared spectrometer designed to study the Martian surface and atmosphere using thermal infrared emission spectroscopy. It is composed of 2 separate channels, a broadband visible/near-infrared bolometer and hyperspectral thermal infrared spectrometer with a broadband thermal infrared bolometer. TES aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. To determine the footprint location on the surface, geometry is calculated using the Spacecraft Planet Instrument Camera Matrix and Event (SPICE) Toolkit. These data were then binned and mapped to surface in polar stereographic projection. While some early studies focused on these data, we have expanded upon the ranges, generated time-/seasonally-binned data, and re-examined this largely underutilized set of data from TES ultimately extending the record of polar science on Mars.
Bolometer Simulation Using SPICE
NASA Technical Reports Server (NTRS)
Jones, Hollis H.; Aslam, Shahid; Lakew, Brook
2004-01-01
A general model is presented that assimilates the thermal and electrical properties of the bolometer - this block model demonstrates the Electro-Thermal Feedback (ETF) effect on the bolometers performance. This methodology is used to construct a SPICE model that by way of analogy combines the thermal and electrical phenomena into one simulation session. The resulting circuit diagram is presented and discussed.
Remote sensing and spectral analysis of plumes from ocean dumping in the New York Bight Apex
NASA Technical Reports Server (NTRS)
Johnson, R. W.
1980-01-01
The application of the remote sensing techniques of aerial photography and multispectral scanning in the qualitative and quantitative analysis of plumes from ocean dumping of waste materials is investigated in the New York Bight Apex. Plumes resulting from the dumping of acid waste and sewage sludge were observed by Ocean Color Scanner at an altitude of 19.7 km and by Modular Multispectral Scanner and mapping camera at an altitude of 3.0 km. Results of the qualitative analysis of multispectral and photographic data for the mapping, location, and identification of pollution features without concurrent sea truth measurements are presented which demonstrate the usefulness of in-scene calibration. Quantitative distributions of the suspended solids in sewage sludge released in spot and line dumps are also determined by a multiple regression analysis of multispectral and sea truth data.
Three-meter balloon-borne telescope
NASA Technical Reports Server (NTRS)
Hoffmann, William F.; Fazio, G. G.; Harper, D. A.
1988-01-01
The Three-Meter Balloon-Borne Telescope is planned as a general purpose facility for making far-infrared and submillimeter astronomical observations from the stratosphere. It will operate throughout the spectral range 30 microns to 1 millimeter which is largely obscurred from the ground. The design is an f/13.5 Cassegrain telescope with an f/1.33 3-meter primary mirror supported with a 3-axis gimbal and stabilization system. The overall structure is 8.0 m high by 5.5 m in width by 4.0 m in depth and weighs 2000 kg. This low weight is achieved through the use of an ultra lightweight primary mirror of composite construction. Pointing and stabilization are achieved with television monitoring of the star field, flex-pivot bearing supports, gyroscopes, and magnetically levitated reaction wheels. Two instruments will be carried on each flight; generally a photometric camera and a spectrometer. A 64-element bolometer array photometric camera operating from 30 to 300 microns is planned as part of the facility. Additional instruments will be derived from KAO and other development programs.
A Hot-electron Direct Detector for Radioastronomy
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.
1999-01-01
A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.
Verification of the test stand for microbolometer camera in accredited laboratory
NASA Astrophysics Data System (ADS)
Krupiński, Michal; Bareła, Jaroslaw; Chmielewski, Krzysztof; Kastek, Mariusz
2017-10-01
Microbolometer belongs to the group of thermal detectors and consist of temperature sensitive resistor which is exposed to measured radiation flux. Bolometer array employs a pixel structure prepared in silicon technology. The detecting area is defined by a size of thin membrane, usually made of amorphous silicon (a-Si) or vanadium oxide (VOx). FPAs are made of a multitude of detector elements (for example 384 × 288 ), where each individual detector has different sensitivity and offset due to detector-to-detector spread in the FPA fabrication process, and additionally can change with sensor operating temperature, biasing voltage variation or temperature of the observed scene. The difference in sensitivity and offset among detectors (which is called non-uniformity) additionally with its high sensitivity, produces fixed pattern noise (FPN) on produced image. Fixed pattern noise degrades parameters of infrared cameras like sensitivity or NETD. Additionally it degrades image quality, radiometric accuracy and temperature resolution. In order to objectively compare the two infrared cameras ones must measure and compare their parameters on a laboratory test stand. One of the basic parameters for the evaluation of a designed camera is NETD. In order to examine the NETD, parameters such as sensitivity and pixels noise must be measured. To do so, ones should register the output signal from the camera in response to the radiation of black bodies at two different temperatures. The article presets an application and measuring stand for determining the parameters of microbolometers camera. Prepared measurements were compared with the result of the measurements in the Institute of Optoelectronics, MUT on a METS test stand by CI SYSTEM. This test stand consists of IR collimator, IR standard source, rotating wheel with test patterns, a computer with a video grabber card and specialized software. The parameters of thermals cameras were measure according to norms and method described in literature.
A Hot-electron Direct Detector for Radioastronomy
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or superconductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as 7(exp 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10 - 100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant approx. 10(exp -3) to 10(exp -5) S at T approx. = 0.1 - 0.3 K will exhibit photon-noise limited performance in millimeter and subn-millimeter range. The bolometer will have a figure-of-merit NEk square root of tau approx. = 10(exp -22) 10(exp -21) W/Hz at 100 mK which is 10(exp 3) times smaller than that of a state-of-the-art bolometer. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity This research was performed by the Center for Space Microelectronics Technology, JPL, California Institute of Technology, under the contract for NASA.
Silicon Hot-Electron Bolometers
NASA Technical Reports Server (NTRS)
Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.
2004-01-01
We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.
Development of plasma bolometers using fiber-optic temperature sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinke, M. L., E-mail: reinkeml@ornl.gov; Han, M.; Liu, G.
Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry–Pérot cavity when broadband light, λ{sub o} ∼ 1550 nm, is transmitted along the fiber.more » Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m{sup 2} when compared to those of the resistive bolometer which can achieve <0.5 W/m{sup 2} in the laboratory, but this can degrade to 1-2 W/m{sup 2} or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.« less
Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.
We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devicesmore » and present measurements of their sensitivity.« less
NASA Technical Reports Server (NTRS)
Benford, D. J.; Ames, T. A.; Chervenak, J. A.; Moseley, S. H.; Shafer, R. A.; Staguhn, J. G.; Voellmer, G. M.; Pajot, F.; Rioux, C.; Phillips, T. G.;
2002-01-01
We present performance results based on the first astronomical use of multiplexed superconducting bolometers as direct detectors (i.e., with cold electrons) for spectroscopy. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer for the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda = 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE has been operated in the 350 Am (850 GHz) band. These bands cover line emission from the important star formation tracers neutral carbon [CI] and carbon monoxide (CO).
Multimode bolometer development for the PIXIE instrument
NASA Astrophysics Data System (ADS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-07-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polar- ization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ˜ 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Multimode Bolometer Development for the PIXIE Instrument
NASA Technical Reports Server (NTRS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With approximately 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Multimode Bolometer Development for the Primordial Inflation Explorer (PIXIE) Instrument
NASA Technical Reports Server (NTRS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background [1]. In this work, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a tensioning scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Film Vetoes for Alpha Background Rejection in Bolometer Detectors
NASA Astrophysics Data System (ADS)
Deporzio, Nicholas; Bucci, Carlo; Canonica, Lucia; Divacri, Marialaura; Cuore Collaboration; Absurd Team
2015-04-01
This study characterizes the effectiveness of encasing bolometer detectors in scintillator, metal ionization, and more exotic films to veto alpha radiation background. Bolometers are highly susceptible to alpha background and a successful veto should boost the statistical strength, speed, and signal-background ratio of bolometer particle searches. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4 MeV to 6.0 MeV alpha particles representative of detector conditions. Photomultipliers detect the keV range scintillation light and produce a veto signal. Also, layered films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased with 0.1V to 100V to produce a current signal when incident 1.4 MeV to 6.0 MeV alpha particles ionize conduction paths through the film. Veto signals are characterized by their affect on bolometer detection of 865 keV target signals. Similar methods are applied to more exotic films. Early results show scintillator films raise target signal count rate and suppress counts above target energy by at least a factor of 10. This indicates scintillation vetoes are effective and that metal ionization and other films under study will also be effective.
Superconducting Bolometer Array Architectures
NASA Technical Reports Server (NTRS)
Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)
2002-01-01
The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.
A Hot-Electron Far-Infrared Direct Detector
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.
Commissioning of the FTS-2 Data Reduction Pipeline
NASA Astrophysics Data System (ADS)
Sherwood, M.; Naylor, D.; Gom, B.; Bell, G.; Friberg, P.; Bintley, D.
2015-09-01
FTS-2 is the intermediate resolution Fourier Transform Spectrometer coupled to the SCUBA-2 facility bolometer camera at the James Clerk Maxwell Telescope in Hawaii. Although in principle FTS instruments have the advantage of relatively simple optics compared to other spectrometers, they require more sophisticated data processing to compute spectra from the recorded interferogram signal. In the case of FTS-2, the complicated optical design required to interface with the existing telescope optics introduces performance compromises that complicate spectral and spatial calibration, and the response of the SCUBA-2 arrays introduce interferogram distortions that are a challenge for data reduction algorithms. We present an overview of the pipeline and discuss new algorithms that have been written to correct the noise introduced by unexpected behavior of the SCUBA-2 arrays.
Light curves of flat-spectrum radio sources (Jenness+, 2010)
NASA Astrophysics Data System (ADS)
Jenness, T.; Robson, E. I.; Stevens, J. A.
2010-05-01
Calibrated data for 143 flat-spectrum extragalactic radio sources are presented at a wavelength of 850um covering a 5-yr period from 2000 April. The data, obtained at the James Clerk Maxwell Telescope using the Submillimetre Common-User Bolometer Array (SCUBA) camera in pointing mode, were analysed using an automated pipeline process based on the Observatory Reduction and Acquisition Control - Data Reduction (ORAC-DR) system. This paper describes the techniques used to analyse and calibrate the data, and presents the data base of results along with a representative sample of the better-sampled light curves. A re-analysis of previously published data from 1997 to 2000 is also presented. The combined catalogue, comprising 10493 flux density measurements, provides a unique and valuable resource for studies of extragalactic radio sources. (2 data files).
Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications
NASA Technical Reports Server (NTRS)
Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.
2000-01-01
Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.
NASA Astrophysics Data System (ADS)
Murari, A.; Cecconello, M.; Marrelli, L.; Mast, K. F.
2004-08-01
Bolometers are radiation sensors designed to have a spectral response as constant as possible in the region of interest. In high-temperature plasmas, the main radiation output is in the ultraviolet and SXR part of the spectrum and the metal foil bolometers are special detectors developed for this interval. For such sensors, as in general for all bolometers, the absolute calibration is a crucial issue. This problem becomes particularly severe when, like in nuclear fusion, the sensors are not easily accessible. In this article, a detailed description of the in situ calibration methods for the bolometer sensitivity S and the cooling time τc, the two essential parameters characterizing the behavior of the sensor, is provided and an estimate of the uncertainties for both constants is presented. The sensitivity S is determined via an electrical calibration, in which the effect of the cables connecting the bolometers to the powering circuitry is taken into account leading to an effective estimate for S. Experimental measurements confirming the quality of the adopted coaxial cable modelling are reported. The cooling time constant τc is calculated via an optical calibration, in which the bolometer is stimulated by a light-emitting diode. The behavior of τc in a broad pressure range is investigated, showing that it does not depend upon this quantity up until 10-2 mbar, well above the standard operating conditions of many applications. The described methods were tested on 36 bolometric channels of RFX tomography, providing a significant statistical basis for present applications and future developments of both the calibration procedures and the detectors.
NASA Astrophysics Data System (ADS)
Sauvé, Alexandre; Montier, Ludovic
2016-12-01
Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.
Approaches on calibration of bolometer and establishment of bolometer calibration device
NASA Astrophysics Data System (ADS)
Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong
2015-10-01
Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.
IR detector system based on high-Tc superconducting bolometer on SI membrane
NASA Astrophysics Data System (ADS)
Burnus, M.; Hefle, G.; Heidenblut, T.; Khrebtov, Igor A.; Laukemper, J.; Michalke, W.; Neff, H.; Schwierzi, B.; Semtchinova, O. K.; Steinbeiss, E.; Tkachenko, A. D.
1996-06-01
An infrared detector system based on high-T(subscript c) superconducting (HTS) membrane bolometer is reported. Superconducting transition-edge bolometer has been manufactured by silicon micromachining using an epitaxial GdBa(subscript 2)Cu(subscript 3)O(subscript 7-x) film on an epitaxial yttria- stabilized zirconia buffer layer on silicon. The active area of the element is 0.85 X 0.85 mm(superscript 2). The membrane thickness is 1 micrometers , those of the buffer layer and HTS films are 50 nm. The detectivity of bolometer, D(superscript *), is 3.8 X 10(superscript 9) cm Hz(superscript 1/2) W(superscript -1) at 84.5 K and within the frequency regime 100 < f < 300 Hz. The optical response is 580 V/W at time constant 0.4 ms. This is one of the fastest composite type HTS-bolometer ever reported. The bolometer is mounted on a metal N(subscript 2)-liquid cryostat, which fits the preamplifier. With the volume of N(subscript 2)-reservoir being 0.1 liter, the cryostat holds nitrogen for about 8 hours. Using only wire heater with constant current, the temperature stability of about 0.03 K/h is achieved. The detector system can be used in IR- Fourier spectroscopy at wavelengths longer than the typical operating range of semiconductor detectors (wavelength greater than about 20 micrometers ).
NASA Astrophysics Data System (ADS)
Kaila, M. M.; Russell, G. J.
2000-12-01
We present a theory of noise equivalent power (NEP) and related parameters for a high-temperature superconductor (HTSC) bolometer in which temperature and resistance are the noise sources for open circuit operation and phonon and resistance are the noise sources for voltage-biased operation of the bolometer. The bolometer is designed to use a photo-thermoelectrical mode of operation. A mathematical formulation for the open circuit operation is first presented followed by an analysis of the heterodyne case with a bias applied in constant voltage mode. For the first time electrothermal (ET) and thermoelectrical (TE) feedback are treated in the heat balance equation simultaneously. A parallel resistance geometry consisting of thermoelectric and HTSC material legs has been chosen for the device. Computations for the ET-TE feedback show that the response time improves by three orders of magnitude and the responsivity becomes double for the same TE feedback. In the heat balance equation we have included among the heat transfer processes the temperature dependence of the thermal conductance at the bolometer-substrate interface for the dynamic state.
Design of an adiabatic demagnetization refrigerator for studies in astrophysics
NASA Technical Reports Server (NTRS)
Castles, S.
1983-01-01
An adiabatic demagnetization refrigerator was designed for cooling infrared bolometers for studies in astrophysics and aeronomy. The design was tailored to the requirements of a Shuttle sortie experiment. The refrigerator should be capable of maintaining three bolometers at 0.1 K with a 90% cycle. The advantage are of operations the bolometer at 0.1K. greater sensitivity, faster response time, and the ability to use larger bolometer elements without compromising the response time. The design presented is the first complete design of an ADR intended for use in space. The most important of these specifications are to survive a Shuttle launch, to operate with 1.5 K - 2.0 K space-pumped liquid helium as a heat sink, to have a 90% duty cycle, and to be highly efficient.
NASA Astrophysics Data System (ADS)
Barrado, D.; de Gregorio Monsalvo, I.; Huélamo, N.; Morales-Calderón, M.; Bayo, A.; Palau, A.; Ruiz, M. T.; Rivière-Marichalar, P.; Bouy, H.; Morata, Ó.; Stauffer, J. R.; Eiroa, C.; Noriega-Crespo, A.
2018-04-01
Aims: The early evolutionary stage of brown dwarfs (BDs) is not very well characterized, especially during the embedded phase. Our goal is to gain insight into the dominant formation mechanism of very low-mass objects and BDs. Methods: We have conducted deep observations at 870 μm obtained with the LABOCA bolometer at the APEX telescope in order to identify young submillimeter (submm) sources in the Barnard 30 dark cloud. We have complemented these data with multi-wavelength observations from the optical to the far-IR and compiled complete spectral energy distributions in order to identify the counterparts, characterize the sources and to assess their membership to the association and stellar or substellar status based on the available photometric information. Results: We have identified 34 submm sources and a substantial number of possible and probable Barnard 30 members within each individual APEX/LABOCA beam. They can be classified into three distinct groups. First, 15 of these 34 have a clear optical or IR counterpart to the submm peak and nine of them are potential proto-BD candidates. Moreover, a substantial number of them could be multiple systems. A second group of 13 sources comprises candidate members with significant infrared excesses located away from the central submm emission. All of them include BD candidates, some displaying IR excess, but their association with submm emission is unclear. In addition, we have found six starless cores and, based on the total dust mass estimate, three might be pre-substellar (or pre-BDs) cores. Finally, the complete characterization of our APEX/LABOCA sources, focusing on those detected at 24 and/or 70 μm, indicates that in our sample of 34 submm sources there are, at least: two WTTs, four CTTs, five young stellar objects, eight proto-BD candidates (with another three dubious cases), and one very low luminosity objects. Conclusions: Our findings provide additional evidence concerning the BD formation mechanism, which seems to be a downsized version of the stellar formation. Tables 3-7 and reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/vol/page
High Tc bolometer developments for planetary missions
NASA Technical Reports Server (NTRS)
Brasunas, J.; Lakew, B.
1991-01-01
A simple polishing technique was developed for thinning the LaAlO3 substrates for high-quality Tc bolometer films, and thus reducing their heat capacity. A 150-ms bolometer was made on a LaAlO3 substrate with a 5-Hz D* value of 1.5 x 10 exp 8. It is shown that passive temperature stabilization is adequate for operation at the transition. There remained excess noise at the transition, but this noise appears to be of nonbolometric origin.
The initial design of LAPAN's IR micro bolometer using mission analysis process
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.
2016-11-01
As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M. C., E-mail: mthompson@trialphaenergy.com; Gota, H.; Putvinski, S.
The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions ofmore » the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.« less
Preliminary performance measurements of bolometers for the planck high frequency instrument
NASA Technical Reports Server (NTRS)
Holmes, W.; Bock, J.; Ganga, K.; Hristov, V. V.; Hustead, L.; Koch, T.; Lange, A. E.; Paine, C.; Yun, M.
2002-01-01
We report on the characterization of bolometers fabricated at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2007.
Bu, Hongliang; Wang, Fang; McShea, William J; Lu, Zhi; Wang, Dajun; Li, Sheng
2016-01-01
Understanding the interactions between species and their coexistence mechanisms will help explain biodiversity maintenance and enable managers to make sound conservation decisions. Mesocarnivores are abundant and diverse mid-sized carnivores and can have profound impacts on the function, structure and dynamics of ecosystem after the extirpation of apex predators in many ecosystems. The moist temperate forests of Southwest China harbor a diverse community of mesocarnivores in the absence of apex predators. Sympatric species tend to partition limited resources along time, diet and space to facilitate coexistence. We determined the spatial and temporal patterns for five species of mesocarnivores. We used detection histories from a large camera-trap dataset collected from 2004-2015 with an extensive effort of 23,313 camera-days from 495 camera locations. The five mesocarnivore species included masked palm civet Paguma larvata, leopard cat Prionailurus bengalensis, hog badger Arctonyx collaris, yellow-throated marten Martes flavigula, and Siberian weasel Mustela sibirica. Only the masked palm civet and hog badger tended to avoid each other; while for other pairs of species, they occurred independently of each other, or no clear pattern observed. With regard to seasonal activity, yellow-throated marten was most active in winter, opposite the pattern observed for masked palm civet, leopard cat and hog badger. For diel activity, masked palm civet, leopard cat and hog badger were primarily nocturnal and crepuscular; yellow-throated marten was diurnal, and Siberian weasel had no clear pattern for most of the year (March to November), but was nocturnal in the winter (December to February). The seasonal shift of the Siberian weasel may be due to the high diet overlap among species in winter. Our results provided new facts and insights into this unique community of mesocarnivores of southwest China, and will facilitate future studies on the mechanism determining coexistence of animal species within complex system.
Antarctic observations at long wavelengths with the IRAIT-ITM Telescope at Dome C
NASA Astrophysics Data System (ADS)
Durand, Gilles A.; Tremblin, Pascal; Minier, Vincent; Reinert, Yann; Leroy dos Santos, Christophe; Rodriguez, Louis; Joffrin, Xavier; Busso, Maurizio; Tosti, Gino; Nucciarelli, Giuliano; Dolci, Mauro; Straniero, Oscar; Valentini, Angelo; Abia, Carlos; Christille, Jean Marc; Doumayrou, Eric; Lortholary, Michel; Charron, Patrice; Lotrus, Paul; Walter, Christian; Ronayette, Samuel; Challita, Zalpha; Fromont, Laurent; Condamin, Mathieu; Kwon, Min Kyong; Tavagnacco, Daniele
2014-07-01
We illustrate the status of the international infra-red telescope IRAIT-ITM, a project developed thanks to an Italian- Spanish-French collaboration and now sited at the Dome C Antarctic base. The telescope and its subsystems were installed at DomeC by a team of Italian and French scientists. The 80 cm telescope is placed on a small snow hill next to a laboratory of astronomy. The operations started in January 2013, with the Nasmyth focal planes equipped with the midinfrared camera AMICA for 1.25 to 25 μm and the sub-millimetre camera CAMISTIC for observation of the sky noise at 200 and 350 μm using a bolometer camera. During 2013 the two winter-overs worked mainly on technological duties, learning how to operate the telescope, while temperatures decreased down to -80°C. The cryogenic systems could be operated respectively at 0.25K and 4K at all times, with satisfactory use of the heat from the compressors of the cryocoolers to the warm-up the laboratory through a closed loop glycol system. The lack of tests and reliability in extreme conditions of some components and difficult access to maintenance hampered regular observations below -50°C. Using the lessons of this first winter, the summer team improves the robustness of the failing systems and ease the access to maintenance. The winter 2014 is the first one with programmed observations. Because of power restrictions, the two instruments are used each one at a time by periods of 2 weeks. The Camistic camera continues to observe the stability of the sky at a fixed altitude in chopping mode and performs skydips. The TCS is being upgraded in order to prepare the next summer season with extensive observations of the sun with Camistic.
Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy.
Revéret, Vincent; Rodriguez, Louis; Agnèse, Patrick
2010-12-10
Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band.
Infrared technology for satellite power conversion. [antenna arrays and bolometers
NASA Technical Reports Server (NTRS)
Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.
1984-01-01
Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.
Enhanced performance of VOx-based bolometer using patterned gold black absorber
NASA Astrophysics Data System (ADS)
Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.
2015-06-01
Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.
The ITER bolometer diagnostic: Status and plansa)
NASA Astrophysics Data System (ADS)
Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.
2008-10-01
A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.
SINIS bolometer with a suspended absorber
NASA Astrophysics Data System (ADS)
Tarasov, M.; Edelman, V.; Mahashabde, S.; Fominsky, M.; Lemzyakov, S.; Chekushkin, A.; Yusupov, R.; Winkler, D.; Yurgens, A.
2018-03-01
We have developed a Superconductor-Insulator-Normal Metal-Insulator-Superconductor (SINIS) bolometer with a suspended normal metal bridge. The suspended bridge acts as a bolometric absorber with reduced heat losses to the substrate. Such bolometers were characterized at 100-350 mK bath temperatures and electrical responsivity of over 109 V/W was measured by dc heating the absorber through additional contacts. Suspended bolometers were also integrated in planar twin-slot and log-periodic antennas for operation in the submillimetre-band of radiation. The measured voltage response to radiation at 300 GHz and at 100 mK bath temperature is 3*108 V/W and a current response is 1.1*104 A/W which corresponds to a quantum efficiency of ~15 electrons per photon. An important feature of such suspended bolometers is the thermalization of electrons in the absorber heated by optical radiation, which in turn provides better quantum efficiency. This has been confirmed by comparison of bolometric response to dc and rf heating. We investigate the performance of direct SN traps and NIS traps with a tunnel barrier between the superconductor and normal metal trap. Increasing the volume of superconducting electrode helps to reduce overheating of superconductor. Influence of Andreev reflection and Kapitza resistance, as well as electron-phonon heat conductivity and thermal conductivity of N-wiring are estimated for such SINIS devices.
Technological development of multispectral filter assemblies for micro bolometer
NASA Astrophysics Data System (ADS)
Le Goff, Roland; Tanguy, François; Fuss, Philippe; Etcheto, Pierre
2017-11-01
Since 2007 Sodern has successfully developed visible and near infrared multispectral filter assemblies for Earth remote sensing imagers. Filter assembly is manufactured by assembling several sliced filter elements (so-called strips), each corresponding to one spectral band. These strips are cut from wafers using a two dimensional accuracy precision process. In the frame of a 2011 R&T preparatory initiative undertaken by the French agency CNES, the filter assembly concept was adapted by Sodern to the long wave infrared spectral band taken into account the germanium substrate, the multilayer bandpass filters and the F-number of the optics. Indeed the current trend in space instrumentation toward more compact uncooled infrared radiometer leads to replace the filter wheel with a multispectral filter assembly mounted directly above the micro bolometer window. The filter assembly was customized to fit the bolometer size. For this development activity we consider a ULIS VGA LWIR micro bolometer with 640 by 480 pixels and 25 microns pixel pitch. The feasibility of the concept and the ability to withstand space environment were investigated and demonstrated by bread boarding activities. The presentation will contain a detailed description of the bolometer and filter assembly design, the stray light modeling analysis assessing the crosstalk between adjacent spectral bands and the results of the manufacturing and environmental tests (damp heat and thermal vacuum cycling).
NASA Technical Reports Server (NTRS)
Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.
1998-01-01
Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.
Submillimeter Galaxy Surveys with AzTEC
NASA Astrophysics Data System (ADS)
Wilson, Grant W.; Ade, P. A.; Aretxaga, I.; Austermann, J.; Battersby, C.; Bock, J. J.; Glenn, J.; Golwala, S. R.; Haig, D.; Hughes, D. H.; Kang, Y.; Kim, S.; Lowenthal, J.; Mauskopf, P. D.; Perera, T.; Scott, K.; Roberts, C.; Yoon, I.; Yun, M. S.
2006-06-01
We describe a recent large scale survey of the Submillimeter Galaxy (SMG) population by AzTEC, a 144 element bolometer camera, on the 15m diameter James Clerk Maxwell Telescope. From November 2005 to February 2006, over 400 hours of telescope time were spent imaging over 1 square degree of sky with an area weighted target sensitivity of 0.7 mJy rms. Several fields with large multi-wavelength data sets were mapped including the Subaru/XMM-Newton Deep Survey field, the Lockmann Hole, GOODS-N, and a subset of the COSMOS field. In addition we mapped fields spanning a wide range of environments including several regions with known mass over-density. Together this represents the largest/deepest survey of the SMG population. Herein we report on the technical details of the surveys, describe the reduction pipeline, and show preliminary results from a subsection of the survey fields.
Imaging live humans through smoke and flames using far-infrared digital holography.
Locatelli, M; Pugliese, E; Paturzo, M; Bianco, V; Finizio, A; Pelagotti, A; Poggi, P; Miccio, L; Meucci, R; Ferraro, P
2013-03-11
The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.
Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)
NASA Astrophysics Data System (ADS)
Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.
2012-09-01
The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.
Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)
NASA Technical Reports Server (NTRS)
Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.
2012-01-01
The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.
NASA Astrophysics Data System (ADS)
Jenness, T.; Robson, E. I.; Stevens, J. A.
2010-01-01
Calibrated data for 143 flat-spectrum extragalactic radio sources are presented at a wavelength of 850μm covering a 5-yr period from 2000 April. The data, obtained at the James Clerk Maxwell Telescope using the Submillimetre Common-User Bolometer Array (SCUBA) camera in pointing mode, were analysed using an automated pipeline process based on the Observatory Reduction and Acquisition Control - Data Reduction (ORAC-DR) system. This paper describes the techniques used to analyse and calibrate the data, and presents the data base of results along with a representative sample of the better-sampled light curves. A re-analysis of previously published data from 1997 to 2000 is also presented. The combined catalogue, comprising 10493 flux density measurements, provides a unique and valuable resource for studies of extragalactic radio sources.
Thermoelectric bolometers based on silicon membranes
NASA Astrophysics Data System (ADS)
Varpula, Aapo; Timofeev, Andrey V.; Shchepetov, Andrey; Grigoras, Kestutis; Ahopelto, Jouni; Prunnila, Mika
2017-05-01
State-of-the-art high performance IR sensing and imaging systems utilize highly expensive photodetector technology, which requires exotic and toxic materials and cooling. Cost-effective alternatives, uncooled bolometer detectors, are widely used in commercial long-wave IR (LWIR) systems. Compared to the cooled detectors they are much slower and have approximately an order of magnitude lower detectivity in the LWIR. We present uncooled bolometer technology which is foreseen to be capable of narrowing the gap between the cooled and uncooled technologies. The proposed technology is based on ultra-thin silicon membranes, the thermal conductivity and electrical properties of which can be controlled by membrane thickness and doping, respectively. The thermal signal is transduced into electric voltage using thermocouple consisting of highly-doped n and p type Si beams. Reducing the thickness of the Si membrane improves the performance (i.e. sensitivity and speed) as thermal conductivity and thermal mass of Si membrane decreases with decreasing thickness. Based on experimental data we estimate the performance of these uncooled thermoelectric bolometers.
NASA Astrophysics Data System (ADS)
Myers, Michael James
We describe the development of a novel millimeter-wave cryogenic detector. The device integrates a planar antenna, superconducting transmission line, bandpass filter, and bolometer onto a single silicon wafer. The bolometer uses a superconducting Transition-Edge Sensor (TES) thermistor, which provides substantial advantages over conventional semiconductor bolometers. The detector chip is fabricated using standard micro-fabrication techniques. This highly-integrated detector architecture is particularly well-suited for use in the de- velopment of polarization-sensitive cryogenic receivers with thousands of pixels. Such receivers are needed to meet the sensitivity requirements of next-generation cosmic microwave background polarization experiments. The design, fabrication, and testing of prototype array pixels are described. Preliminary considerations for a full array design are also discussed. A set of on-chip millimeter-wave test structures were developed to help understand the performance of our millimeter-wave microstrip circuits. These test structures produce a calibrated transmission measurement for an arbitrary two-port circuit using optical techniques, rather than a network analyzer. Some results of fabricated test structures are presented.
The detector calibration system for the CUORE cryogenic bolometer array
Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...
2016-11-14
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less
Fabrication and Test of Large Area Spider-Web Bolometers for CMB Measurements
NASA Astrophysics Data System (ADS)
Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Gatti, F.; Orlando, A.; Pizzigoni, G.
2016-08-01
Detecting the primordial 'B-mode' polarization of the cosmic microwave background is one of the major challenges of modern observational cosmology. Microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. In this paper, we present the development status of large area (about 1 cm2) spider-web bolometer, which imply additional fabrication challenges. The spider-web is a suspended Si3N4 1 \\upmu m-thick and 8-mm diameter with mesh size of 250 \\upmu m. The thermal sensitive element is a superconducting transition edge sensor (TES) at the center of the bolometer. The first prototype is a Ti-Au TES with transition temperature tuned around 350 mK, new devices will be a Mo-Au bilayer tuned to have a transition temperature of 500 mK. We present the fabrication process with micro-machining techniques from silicon wafer covered with SiO2 - Si3N4 CVD films, 0.3 and 1 \\upmu m- thick, respectively, and preliminary tests.
Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms
NASA Astrophysics Data System (ADS)
Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.
2018-02-01
We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.
Experimental study of a SINIS detector response time at 350 GHz signal frequency
NASA Astrophysics Data System (ADS)
Lemzyakov, S.; Tarasov, M.; Mahashabde, S.; Yusupov, R.; Kuzmin, L.; Edelman, V.
2018-03-01
Response time constant of a SINIS bolometer integrated in an annular ring antenna was measured at a bath temperature of 100 mK. Samples comprising superconducting aluminium electrodes and normal-metal Al/Fe strip connected to electrodes via tunnel junctions were fabricated on oxidized Si substrate using shadow evaporation. The bolometer was illuminated by a fast black-body radiation source through a band-pass filter centered at 350 GHz with a passband of 7 GHz. Radiation source is a thin NiCr film on sapphire substrate. For rectangular 10÷100 μs current pulse the radiation front edge was rather sharp due to low thermal capacitance of NiCr film and low thermal conductivity of substrate at temperatures in the range 1-4 K. The rise time of the response was ~1-10 μs. This time presumably is limited by technical reasons: high dynamic resistance of series array of bolometers and capacitance of a long twisted pair wiring from SINIS bolometer to a room-temperature amplifier.
Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer
Zong, Y.; Datla, R. U.
1998-01-01
A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364
NASA Astrophysics Data System (ADS)
Ravicz, Michael E.; Cho, Nam-Hyun; Maftoon, Nima; Puria, Sunil
2018-05-01
Recent developments in Optical Coherence Tomography (OCT) allow measurements of cochlear motions through the bony cochlear wall without holes at spatial resolutions approaching about 10 µm. Measurements to date have been made with custom OCT systems with long development times. We present measurements made with a commercial OCT system driven by custom software (VibOCT) that facilitates near real-time frequency response measurements. The 905-nm wavelength laser and high-speed (100 kHz) camera provide higher axial resolution (3 µm in air) and temporal resolution than previous studies and a sub-nanometer noise floor in air. We gathered anatomical images of the gerbil cochlear apex in vivo at higher resolution than available previously, sufficient to resolve individual outer hair cells, pillar cells, tunnel of Corti and inner sulcus regions. Images from the 3rd apical turn show a bulging of Reissners membrane in vivo that flattened post-mortem with a concomitant reduction in the distance between the Henson cell border and the stria vascularis wall. Vibrometry of the organ of Corti shows a low-pass characteristic in-vivo and post-mortem with a traveling wave-like phase delay similar to a recent study rather than the sharp tuning seen more basally. This system can provide valuable information on cochlear function, which is also useful for the development of detailed cochlear models of the passive and active gerbil apex.
NASA Astrophysics Data System (ADS)
Kaila, M. M.
2002-11-01
Dynamical theory of responsivity and response time for an high temperature superconductor (HTSC) photo-thermoelectrical bolometer is analysed in this paper. There is a thermoelectric feedback (TEF) due to the heat transfer from the sensitive area (HTSC-BiSb thermojunction) towards the cold junction of the thermocouple. This is in addition to the normal electrothermal feedback (ETF) between the detector and the substrate, in a photoelectrical bolometer. The two legs of the thermocouple are connected in a parallel geometry configuration. It is seen that TEF can be used in combination with the ETF to enhance responsivity and response time of the detector.
NASA Astrophysics Data System (ADS)
Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank
2013-09-01
Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.
An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers
NASA Astrophysics Data System (ADS)
Mancuso, M.; Beeman, J. W.; Giuliani, A.; Dumoulin, L.; Olivieri, E.; Pessina, G.; Plantevin, O.; Rusconi, C.; Tenconi, M.
2014-01-01
Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers) consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% - 35%) and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.
A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator
NASA Technical Reports Server (NTRS)
Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.
2003-01-01
We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.
Neutron transmutation doped Ge bolometers
NASA Technical Reports Server (NTRS)
Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.
1983-01-01
Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.
A report on the laboratory performance of the spectroscopic detector arrays for SPIRE/HSO
NASA Astrophysics Data System (ADS)
Nguyen, Hien T.; Bock, James J.; Ringold, Peter; Battle, John; Elliott, Steven C.; Turner, Anthony D.; Weilert, Mark; Hristov, Viktor V.; Schulz, Bernhard; Ganga, Ken; Zhang, L.; Beeman, Jeffrey W.; Ade, Peter A. R.; Hargrave, Peter C.
2004-10-01
We report the performance of the flight bolometer arrays for the Spectral and Photometric Imaging REceiver (SPIRE) instrument to be on board of the Herschel Space Observatory (HSO). We describe the test setup for the flight Bolometric Detector Assembly (BDA) that allows the characterization of its performance, both dark and optical, in one instrument's cool down. We summarize the laboratory procedure to measure the basic bolometer parameters, optical response time, optical efficiency of bolometer and feedhorn, dark and optical noise, and the overall thermal conductance of the BDA unit. Finally, we present the test results obtained from the two flight units, Spectroscopic Long Wavelength (SLW) and Spectroscopic Short Wavelength (SSW).
High-temperature-superconducting magnetic susceptibility bolometer
NASA Technical Reports Server (NTRS)
Brasunas, J.; Lakew, B.; Lee, C.
1992-01-01
An infrared detector called the magnetic susceptibility bolometer is introduced which is based on the tmperature dependence of the diamagnetic screening of a high-Tc superconductor film near Tc. Results are reported for the response of a prototype model to modulated blackbody radiation. Possible improvements are discussed as is the potential sensitivity of an improved device.
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
High-Tc superconducting microbolometer for terahertz applications
NASA Astrophysics Data System (ADS)
Ulysse, C.; Gaugue, A.; Adam, A.; Kreisler, A. J.; Villégier, J.-C.; Thomassin, J.-L.
2002-05-01
Superconducting hot electron bolometer mixers are now a competitive alternative to Schottky diode mixers in the terahertz frequency range because of their ultra wideband (from millimeter waves to visible light), high conversion gain, and low intrinsic noise level. High Tc superconductor materials can be used to make hot electron bolometers and present some advantage in term of operating temperature and cooling. In this paper, we present first a model for the study of superconducting hot electron bolometers responsivity in direct detection mode, in order to establish a firm basis for the design of future THz mixers. Secondly, an original process to realize YBaCuO hot electron bolometer mixers will be described. Submicron YBaCuO superconducting structures are expitaxially sputter deposited on MgO substrates and patterned by using electron beam lithography in combination with optical lithography. Metal masks achieved by electron beam lithography are insuring a good bridge definition and protection during ion etching. Finally, detection experiments are being performed with a laser at 850 nm wavelength, in homodyne mode in order to prove the feasibility and potential performances of these devices.
NASA Technical Reports Server (NTRS)
Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J. J.; Leduc, H. G.
2006-01-01
To determine the lowest attainable phonon noise equivalent power (NEP) for membrane-isolation bolometers, we fabricated and measured the thermal conductance of suspended Si3N4 beams with different geometries via a noise thermometry technique. We measured beam cross-sectional areas ranging from 0.35 x 0.5 (micro)m(sup 2) to 135 x 1.0 (micro)m(sup 2) and beam lengths ranging from (micro)m to 8300 (micro)m. The measurements directly imply that membrane-isolation bolometers are capable of reaching a phonon noise equivalent power (NEP) of 4 x 10(sup -20)W/Hz(sup 1)/O . This NEP adequate for the Background-Limited Infrared-Submillimeter Spectrograph (BLISS) proposed for the Japanese SPICA observatory, and adequate for NASA's SAFIR observatory, a 10-meter, 4 K telescope to be deployed at L2. Further, we measured the heat capacity of a suspended Si
Upcoming planetary missions and the applicability of high temperature superconductor bolometers
NASA Technical Reports Server (NTRS)
Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.
1991-01-01
Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. Cassini and Comet Rendezvous/Asteroid Fly-by (CRAF), both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is slated for a 1994 launch. Cassini was chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn's orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer, the Composite Infrared Spectrometer (CIRS), for the Cassini mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement, and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce the 1/4 noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using a metal-organic chemical vapor deposition (MOCVD) technique.
Upcoming planetary missions and the applicability of high temperature superconductor bolometers
NASA Technical Reports Server (NTRS)
Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.
1990-01-01
Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. CRAF and CASSINI, both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is a cometary rendezvous mission slated for a 1994 launch. CASSINI has been chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer (CIRS) that will be proposed for the CASSINI mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce th 1/f noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using an MOCVD technique.
NASA Astrophysics Data System (ADS)
Zhou, Jun-Wei
1991-02-01
A dilution refrigerator has been put into work from 30 mK to 300 K to study bolometer characteristics relevant to its potential use as a high resolution X-ray and alpha, beta, gamma particle spectrometer. Tests of the energy deposited in the detector by measuring the temperature rise following absorption of individual nuclear particles or X- or gamma-rays have been done. Essential studies were made of electromagnetic and acoustic noise. A composite-composite bolometer fabricated by the group of N. Coron (Institute of Space Astrophysics, France), with whom we collaborate, was used. This design allows the separate optimization of the absorber and thermistor, and avoids problems with absorption inhomogeneties. A FWHM resolution of 10.5 KeV for 5 to 6 MeV alpha spectra was obtained. This resolution exceeds the best obtainable with surface barrier semiconductor detectors. A broad spectrum recording simultaneously gamma-rays, beta and alpha particles from 15 KeV to 6 MeV was obtained with the same bolometer cooled below 0.1 K. Other bolometers were also tested. 6 KeV X-rays have been observed with a resolution of 472 eV. The bolometers were also used for determination of specific heat of the sapphire at low temperatures. Assuming a specific heat C = AT^3, we find in a 2.3 g sample A ~eq 1.4 times 10^{-8} J/Kcdotg from T = 0.1 K to T = 0.4 K. A discussion of the systematic errors in determining A is given. From our measurements, it was determined that a bolometer designed for a future possible neutrino mass measurement would have a resolution of 7.5 eV at 80 mK under optimal operation. Since tritium was implanted in this detector, systematic errors associated with electron spectrometer beta spectrum measurements can be, in principle, avoided.
NASA Astrophysics Data System (ADS)
Theule, Joshua; Crema, Stefano; Comiti, Francesco; Cavalli, Marco; Marchi, Lorenzo
2015-04-01
Large scale particle image velocimetry (LSPIV) is a technique mostly used in rivers to measure two dimensional velocities from high resolution images at high frame rates. This technique still needs to be thoroughly explored in the field of debris flow studies. The Gadria debris flow monitoring catchment in Val Venosta (Italian Alps) has been equipped with four MOBOTIX M12 video cameras. Two cameras are located in a sediment trap located close to the alluvial fan apex, one looking upstream and the other looking down and more perpendicular to the flow. The third camera is in the next reach upstream from the sediment trap at a closer proximity to the flow. These three cameras are connected to a field shelter equipped with power supply and a server collecting all the monitoring data. The fourth camera is located in an active gully, the camera is activated by a rain gauge when there is one minute of rainfall. Before LSPIV can be used, the highly distorted images need to be corrected and accurate reference points need to be made. We decided to use IMGRAFT (an opensource image georectification toolbox) which can correct distorted images using reference points and camera location, and then finally rectifies the batch of images onto a DEM grid (or the DEM grid onto the image coordinates). With the orthorectified images, we used the freeware Fudaa-LSPIV (developed by EDF, IRSTEA, and DeltaCAD Company) to generate the LSPIV calculations of the flow events. Calculated velocities can easily be checked manually because of the already orthorectified images. During the monitoring program (since 2011) we recorded three debris flow events at the sediment trap area (each with very different surge dynamics). The camera in the gully was in operation in 2014 which managed to record granular flows and rockfalls, which particle tracking may be more appropriate for velocity measurements. The four cameras allows us to explore the limitations of camera distance, angle, frame rate, and image quality.
Progress on the FDM Development at SRON: Toward 160 Pixels
NASA Astrophysics Data System (ADS)
den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.
2014-08-01
SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.
Hot-Electron Bolometer Mixers on Silicon-on-Insulator Substrates for Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Skalare, Anders; Stern, Jeffrey; Bumble, Bruce; Maiwald, Frank
2005-01-01
A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.
APEX reveals glowing stellar nurseries
NASA Astrophysics Data System (ADS)
2008-11-01
Illustrating the power of submillimetre-wavelength astronomy, an APEX image reveals how an expanding bubble of ionised gas about ten light-years across is causing the surrounding material to collapse into dense clumps that are the birthplaces of new stars. Submillimetre light is the key to revealing some of the coldest material in the Universe, such as these cold, dense clouds. Glowing Stellar Nurseries ESO PR Photo 40/08 Glowing Stellar Nurseries The region, called RCW120, is about 4200 light years from Earth, towards the constellation of Scorpius. A hot, massive star in its centre is emitting huge amounts of ultraviolet radiation, which ionises the surrounding gas, stripping the electrons from hydrogen atoms and producing the characteristic red glow of so-called H-alpha emission. As this ionised region expands into space, the associated shock wave sweeps up a layer of the surrounding cold interstellar gas and cosmic dust. This layer becomes unstable and collapses under its own gravity into dense clumps, forming cold, dense clouds of hydrogen where new stars are born. However, as the clouds are still very cold, with temperatures of around -250˚ Celsius, their faint heat glow can only be seen at submillimetre wavelengths. Submillimetre light is therefore vital in studying the earliest stages of the birth and life of stars. The submillimetre-wavelength data were taken with the LABOCA camera on the 12-m Atacama Pathfinder Experiment (APEX) telescope, located on the 5000 m high plateau of Chajnantor in the Chilean Atacama desert. Thanks to LABOCA's high sensitivity, astronomers were able to detect clumps of cold gas four times fainter than previously possible. Since the brightness of the clumps is a measure of their mass, this also means that astronomers can now study the formation of less massive stars than they could before. The plateau of Chajnantor is also where ESO, together with international partners, is building a next generation submillimetre telescope, ALMA, the Atacama Large Millimeter/submillimeter Array. ALMA will use over sixty 12-m antennas, linked together over distances of more than 16 km, to form a single, giant telescope. APEX is a collaboration between the Max-Planck-Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. The telescope is based on a prototype antenna constructed for the ALMA project. Operation of APEX at Chajnantor is entrusted to ESO.
Save our secondary: recovering a broken 1.3-m mirror
NASA Astrophysics Data System (ADS)
Abbott, Timothy M. C.; Probst, Ronald G.; Poczulp, Gary; Tighe, Roberto; Schurter, Patricio; Montané, Andrés.; DeVries, Joseph; Harris, Ronald C.; Elias, Jonathan; Martinez, Manuel; Saa, Oscar
2014-07-01
In an inauspicious start to the ultimately very successful installation of the Dark Energy Camera on the V. M. Blanco 4- m telescope at CTIO, the light-weighted Cer-Vit 1.3-m-diameter secondary mirror suffered an accident in which it fell onto its apex. This punched out a central plug of glass and destroyed the focus and tip/tilt mechanism. However, the mirror proved fully recoverable, without degraded performance. This paper describes the efforts through which the mirror was repaired and the tip/tilt mechanism rebuilt and upgraded. The telescope re-entered full service as a Ritchey- Chrétien platform in October of 2013.
SWIR, VIS and LWIR observer performance against handheld objects: a comparison
NASA Astrophysics Data System (ADS)
Adomeit, Uwe
2016-10-01
The short wave infrared spectral range caused interest to be used in day and night time military and security applications in the last years. This necessitates performance assessment of SWIR imaging equipment in comparison to the one operating in the visual (VIS) and thermal infrared (LWIR) spectral range. In the military context (nominal) range is the main performance criteria. Discriminating friend from foe is one of the main tasks in today's asymmetric scenarios and so personnel, human activities and handheld objects are used as targets to estimate ranges. The later was also used for an experiment at Fraunhofer IOSB to get a first impression how the SWIR performs compared to VIS and LWIR. A human consecutively carrying one of nine different civil or military objects was recorded from five different ranges in the three spectral ranges. For the visual spectral range a 3-chip color-camera was used, the SWIR range was covered by an InGaAs-camera and the LWIR by an uncooled bolometer. It was ascertained that the nominal spatial resolution of the three cameras was in the same magnitude in order to enable an unbiased assessment. Daytime conditions were selected for data acquisition to separate the observer performance from illumination conditions and to some extend also camera performance. From the recorded data, a perception experiment was prepared. It was conducted as a nine-alternative forced choice, unlimited observation time test with 15 observers participating. Before the experiment, the observers were trained on close range target data. Outcome of the experiment was the average probability of identification versus range between camera and target. The comparison of the range performance achieved in the three spectral bands gave a mixed result. On one hand a ranking VIS / SWIR / LWIR in decreasing order can be seen in the data, but on the other hand only the difference between VIS and the other bands is statistically significant. Additionally it was not possible to explain the outcome with typical contrast metrics. Probably form is more important than contrast here as long as the contrast is generally high enough. These results were unexpected and need further exploration.
Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements
NASA Astrophysics Data System (ADS)
Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.
2018-03-01
We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.
NASA Astrophysics Data System (ADS)
Jenniskens, Peter
2017-09-01
Recent work on meteor showers is reviewed. New data is presented on the long duration showers that wander in sun-centered ecliptic coordinates. Since the early days of meteor photography, much progress has been made in mapping visual meteor showers, using low-light video cameras instead. Now, some 820,000 meteoroid orbits have been measured by four orbit surveys during 2007-2015. Mapped in sun-centered ecliptic coordinates in 5° intervals of solar longitude, the data show a number of long duration (>15 days) meteor showers that have drifting radiants and speeds with solar longitude. 18 showers emerge from the antihelion source and follow a drift pattern towards high ecliptic latitudes. 27 Halley-type showers in the apex source move mostly towards lower ecliptic longitudes, but those at high ecliptic latitudes move backwards. Also, 5 low-speed showers appear between the toroidal ring and the apex source, moving towards the antihelion source. Most other showers do not last long, or do not move much in sun-centered ecliptic coordinates. The surveys also detected episodic showers, which mostly document the early stages of meteoroid stream formation. New data on the sporadic background have shed light on the dynamical evolution of the zodiacal cloud.
Upcoming planetary missions and the applicability of high temperature superconductor bolometers
NASA Technical Reports Server (NTRS)
Brasunas, J.; Kunde, V.; Moseley, H.; Lakew, B.
1990-01-01
Past and present planetary exploration is briefly reviewed, and the planned 1996 Cassini mission to Saturn and Titan is examined. The CIRS experiment aboard Cassini, which will retrieve information on the atmospheres of Titan and Saturn, is discussed. Ongoing efforts to build a high-sensitivity, high-Tc bolometer that would greatly improve detection in Titan's atmosphere are addressed.
Liquid helium-cooled MOSFET preamplifier for use with astronomical bolometer
NASA Technical Reports Server (NTRS)
Goebel, J. H.
1977-01-01
A liquid helium-cooled p-channel enhancement mode MOSFET, the 3N167, is found to have sufficiently low noise for use as a preamplifier with helium-cooled bolometers that are used in infrared astronomy. Its characteristics at 300, 77, and 4.2 K are presented. It is also shown to have useful application with certain photoconductive and photovoltaic infrared detectors.
Thermal response of large area high temperature superconducting YBaCuO infrared bolometers
NASA Technical Reports Server (NTRS)
Khalil, Ali E.
1991-01-01
Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.
Measurements of Plasma Power Losses in the C-2 Field-Reversed Configuration Experiment
NASA Astrophysics Data System (ADS)
Korepanov, Sergey; Smirnov, Artem; Garate, Eusebio; Donin, Alexandr; Kondakov, Alexey; Singatulin, Shavkat
2013-10-01
A high-confinement operating regime with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection in the C-2 field-reversed configuration (FRC) experiment. To analyze the power balance in C-2, two new diagnostic instruments - the pyroelectric (PE) and infrared (IR) bolometers - were developed. The PE bolometer, designed to operate in the incident power density range from 0.1-100 W/cm2, is used to measure the radial power loss, which is dominated by charge-exchange neutrals and radiation. The IR bolometer, which measures power irradiated onto a thin metal foil inserted in the plasma, is designed for the power density range from 0.5-5 kW/cm2. The IR bolometer is used to measure the axial power loss from the plasma near the end divertors. The maximum measurable pulse duration of ~ 10 ms is limited by the heat capacitance of the IR detector. Both detectors have time resolution of about 10-100 μs and were calibrated in absolute units using a high power neutral beam. We present the results of first direct measurements of axial and radial plasma power losses in C-2.
NASA Astrophysics Data System (ADS)
Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Matsukawa, Takeshi; Takida, Yuma; Minamide, Hiroaki
2014-03-01
Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and arts. In this letter, we report on real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal. The active projection-imaging system consisted of (1) THz wave generation, (2) THz-near-infrared hybrid optics, (3) THz wave up-conversion, and (4) an InGaAs camera working at 60 frames per second. The pumping laser system consisted of two optical parametric oscillators pumped by a nano-second frequency-doubled Nd:YAG laser. THz-wave images of handmade samples at 19.3 THz were taken, and videos of a sample moving and a ruler stuck with a black polyethylene film moving were supplied online to show real-time ability. Thanks to the high speed and high responsivity of this technology, real-time THz imaging with a higher signal-to-noise ratio than a commercially available THz micro-bolometer camera was proven to be feasible. By changing the phase-matching condition, i.e., by changing the wavelength of the pumping laser, we suggest THz imaging with a narrow THz frequency band of interest in a wide range from approximately 2 to 30 THz is possible.
NASA Astrophysics Data System (ADS)
Morikawa, Junko
2015-05-01
The mobile type apparatus for a quantitative micro-scale thermography using a micro-bolometer was developed based on our original techniques such as an achromatic lens design to capture a micro-scale image in long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. The total size of the instrument was designed as it was put in the 17 cm x 28 cm x 26 cm size carrying box. The video signal synthesizer enabled to record a direct digital signal of monitoring temperature or positioning data. The encoded digital signal data embedded in each image was decoded to read out. The protocol to encode/decode the measured data was originally defined. The mixed signals of IR camera and the imposed data were applied to the pixel by pixel emissivity corrections and the pseudo-acceleration of the periodical thermal phenomena. Because the emissivity of industrial materials and biological tissues were usually inhomogeneous, it has the different temperature dependence on each pixel. The time-scale resolution for the periodic thermal event was improved with the algorithm for "pseudoacceleration". It contributes to reduce the noise by integrating the multiple image data, keeping a time resolution. The anisotropic thermal properties of some composite materials such as thermal insulating materials of cellular plastics and the biometric composite materials were analyzed using these techniques.
NASA Astrophysics Data System (ADS)
Terroux, Marc; Marchese, Linda; Bolduc, Martin; Mercier, Luc; Chevalier, Claude; Gagnon, Lucie; Tremblay, Bruno; Généreux, Francis; Paultre, Jacques-Edmond; Provençal, Francis; Beaupré, Patrick; Desroches, Yan; Châteauneuf, François; Bergeron, Alain
2017-11-01
In the past, bolometer-based imagers have been used for earth observation. Uncooled-bolometer based imagers are especially well suited for this due to their low power consumption. NIRST (New Infra-Red Sensor Technology), an example of an imager based on uncooled bolometers, monitors high temperature events on the ground related to fires and volcanic events, and will measure their physical parameters and takes measurements of sea surface temperatures mainly off the coast of South America as well as other targeted opportunities. NIRST has one band in the mid-wave infrared centered at 3.8 um with a bandwidth of 0.8 um, and two bands in the thermal infrared, centered respectively at 10.85 and 11.85 um with a bandwidth of 0.9 um.
Construction and performance of a high-temperature-superconductor composite bolometer
NASA Technical Reports Server (NTRS)
Brasunas, J. C.; Moseley, S. H.; Lakew, B.; Ono, R. H.; Mcdonald, D. G.
1989-01-01
A high-Tc superconducting bolometer has been constructed using a YBa2Cu3O(x) thin-film meander line 20 microns wide and 76,000 microns long, deposited on a SrTiO3 substrate. Radiation is absorbed by a thin film of Bi with well-characterized absorption properties deposited on a Si substrate in contact with the SrTiO3. At 1.8 Hz the measured bolometer response to a 500-K blackbody is 5.2 V/W (820 V/W extrapolated to dc). The impact of apparent nonohmic behavior at the transition is discussed, as are ways of reducing the observed 1/f noise. The response time is 32 s and is dominated by the heat capacity of the SrTiO3 substrate.
Gold absorbing film for a composite bolometer
NASA Technical Reports Server (NTRS)
Dragovan, M.; Moseley, S. H.
1984-01-01
The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.
First array of enriched Zn$$^{82}$$Se bolometers to search for double beta decay
Artusa, D. R.; Balzoni, A.; Beeman, J. W.; ...
2016-07-01
The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in 82Se, the Zn 82Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn 82Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution,more » background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-o.« less
NASA Astrophysics Data System (ADS)
Kaila, M. M.; Russell, G. J.
2000-12-01
We have designed a liquid nitrogen cooled detector where a thermoelectric feedback is combined with electrothermal feedback to produce an improvement of three orders of magnitude in the response time of the detector. We have achieved this by considering a parallel resistance combination of thermoelectric and High Temperature Superconductor (HTSC) material legs of an approximate geometry 1mm /spl times/ 2 mm /spl times/ 1micron operated at 80K. One end of this thermocouple acts as the sensitive area where the radiation is absorbed. The other end remains unexposed and stays basically at substrate temperature. It is found that micron thick films in our bolometer produce characteristics very close to those found for nanometer thick films required in semiconductor detectors and Low Temperature Superconductor (LTSC) bolometers.
Cosmic evolution of star formation properties of galaxies
NASA Astrophysics Data System (ADS)
Kim, Sungeun
2014-01-01
Development of bolometer array and camera at submillimeter wavelength has played an important role in detecting submillimeter bright galaxies, so called submillimeter galaxies. These galaxies seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates if there is a close link between the submillimeter galaxies and the star formation activities, and the interstellar dust in galaxies is mainly heated by the star light. We review assembly of submillimeter galaxies chosen from the AzTEC and the Herschel SPIRE/PACS data archives, and investigate their spectral energy distribution fits including the data at other wavelengths to deduce details about stellar parameters including star formation rates and parameters yielding the metallicity, composition and abundance in dust, and disc structure of these galaxies. This work has been supported in part by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2011-0028001.
Long-wave infrared profile feature extractor (PFx) sensor
NASA Astrophysics Data System (ADS)
Sartain, Ronald B.; Aliberti, Keith; Alexander, Troy; Chiu, David
2009-05-01
The Long Wave Infrared (LWIR) Profile Feature Extractor (PFx) sensor has evolved from the initial profiling sensor that was developed by the University of Memphis (Near IR) and the Army Research Laboratory (visible). This paper presents the initial signatures of the LWIR PFx for human with and without backpacks, human with animal (dog), and a number of other animals. The current version of the LWIR PFx sensor is a diverging optical tripwire sensor. The LWIR PFx signatures are compared to the signatures of the Profile Sensor in the visible and Near IR spectral regions. The LWIR PFx signatures were collected with two different un-cooled micro bolometer focal plane array cameras, where the individual pixels were used as stand alone detectors (a non imaging sensor). This approach results in a completely passive, much lower bandwidth, much longer battery life, low weight, small volume sensor that provides sufficient information to classify objects into human Vs non human categories with a 98.5% accuracy.
NASA Astrophysics Data System (ADS)
Bergé, L.; Chapellier, M.; de Combarieu, M.; Dumoulin, L.; Giuliani, A.; Gros, M.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Paul, B.; Poda, D. V.; Redon, T.; Siebenborn, B.; Zolotarova, A. S.; Armengaud, E.; Augier, C.; Benoît, A.; Billard, J.; Broniatowski, A.; Camus, P.; Cazes, A.; Charlieux, F.; De Jesus, M.; Eitel, K.; Foerster, N.; Gascon, J.; Jin, Y.; Juillard, A.; Kleifges, M.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Maisonobe, R.; Navick, X.-F.; Pari, P.; Queguiner, E.; Rozov, S.; Sanglard, V.; Vagneron, L.; Weber, M.; Yakushev, E.
2018-03-01
In the present work, we describe the results obtained with a large (≈133 cm3 ) TeO2 bolometer, with a view to a search for neutrinoless double-β decay (0 ν β β ) of 130Te. We demonstrate an efficient α -particle discrimination (99.9%) with a high acceptance of the 0 ν β β signal (about 96%), expected at ≈2.5 MeV. This unprecedented result was possible thanks to the superior performance (10-eV rms baseline noise) of a Neganov-Luke-assisted germanium bolometer used to detect a tiny (70-eV) light signal from the TeO2 detector, dominated by γ (β )-induced Cherenkov radiation but exhibiting also a clear scintillation component. The obtained results represent a major breakthrough toward the TeO2-based version of the CUORE Upgrade with Particle IDentification (CUPID), a ton-scale cryogenic 0 ν β β experiment proposed as a followup to the Cryogenic Underground Observatory for Rare Events (CUORE) project with particle identification. The CUORE experiment recently began a search for neutrinoless double-β decay of 130Te with an array of 988 125-cm3TeO2 bolometers. The lack of α discrimination in CUORE makes α decays at the detector surface the dominant background component, at the level of ≈0.01 counts/(keV kg y) in the region of interest. We show here, for the first time with a CUORE-size bolometer and using the same technology as CUORE for the readout of both heat and light signals, that surface α background can be fully rejected.
Fabrication of sensitive high Tc bolometers
NASA Technical Reports Server (NTRS)
Nahum, Michael; Verghese, S.; Hu, Qing; Richards, Paul L.; Char, K.; Newman, N.; Sachtjen, Scott A.
1990-01-01
The rapid change of resistance with temperature of high quality films of high T sub c superconductors can be used to make resistance thermometers with very low temperature noise. Measurements on c-axis yttrium barium copper oxide (YBCO) films have given a spectral intensity of temperature noise less than 4 times 10(exp -8) K/Hz(exp 1/2) at 10 Hz. Consequently, the opportunity exists to make useful bolometric infrared detectors that operate near 90 K which can be cooled with liquid nitrogen. The fabrication and measurement of two bolometer architectures are discussed. The first is a conventional bolometer which consists of a 3000 A thick YBCO film deposited in situ by laser ablation on top of a 500 A thick SrTiO3 thickness and diced into 1x1 mm(exp 2) bolometer chips. Gold black smoke was used as the radiation absorber. The voltage noise was less than the amplifier noise when the film was current biased. Optical measurements gave an NEP of 5 times 10(exp -11) W/Hz(exp 1/2) at 10 Hz. The second architecture is that of an antenna-coupled microbolometer which consists of a small (5x10 cubic microns) YBCO film deposited directly on a bulk substrate with a low thermal conductance (YSZ) and an impedance matched planar lithographed spiral or log-periodic antenna. This structure is produced by standard photolithographic techniques. Measurements gave an electrical NEP of 4.7 times 10(exp -12) W/Hz(exp 1/2) at 10 kHz. Measurements of the optical efficiency are in progress. The measured performance of both bolometers will be compared to other detectors operating at or above liquid nitrogen temperatures so as to identify potential applications.
Thermistor bolometer radiometer signal contamination due to parasitic heat diffusion
NASA Astrophysics Data System (ADS)
Priestley, Kory J.; Mahan, J. R.; Haeffelin, Martial P.; Savransky, Maxim; Nguyen, Tai K.
1995-12-01
Current efforts are directed at creating a high-level end-to-end numerical model of scanning thermistor bolometer radiometers of the type used in the Earth Radiation Budget Experiment (ERBE) and planned for the clouds and the earth's radiative energy system (CERES) platforms. The first-principle model accurately represents the physical processes relating the electrical signal output to the radiative flux incident to the instrument aperture as well as to the instrument thermal environment. Such models are useful for the optimal design of calibration procedures, data reduction strategies, and the instruments themselves. The modeled thermistor bolometer detectors are approximately 40 micrometers thick and consist of an absorber layer, the thermistor layer, and a thermal impedance layer bonded to a thick aluminum substrate which acts as a heat sink. Thermal and electrical diffusion in the thermistor bolometer detectors is represented by a several-hundred-node- finite-difference formulation, and the temperature field within the aluminum substrate is computed using the finite-element method. The detectors are electrically connected in adjacent arms of a two-active-arm bridge circuit so that the effects of common mode thermal noise are minimized. However, because of a combination of thermistor self heating, loading of the bridge by the bridge amplifier, and the nonlinear thermistor resistance-temperature relationship, bridge deflections can still be provoked by substrate temperature changes, even when the change is uniform across the substrate. Of course, transient temperature gradients which may occur in the substrate between the two detectors will be falsely interpreted as a radiation input. The paper represents the results of an investigation to define the degree of vulnerability of thermistor bolometer radiometers to false signals provoked by uncontrolled temperature fluctuations in the substrate.
An FPGA-based bolometer for the MAST-U Super-X divertor.
Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray
2016-11-01
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.
Growth plate closure: Apex view on bone scan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giles, P.H.; Trochei, M.; Yeates, K.
1984-01-01
Angular deformities of the extremities in children following premature closure of the growth plate are well known. The deformities depend on the position of an osseus bridge which forms between the epiphysis and metaphysis. Several surgical procedures including resection of the osseus bridge have been described, however, delineation of the site of fusion is difficult to define. The commonest site of growth plate arrest is the distal femoral or proximal tibial growth plate. A new technique using the bone scan has been developed which accurately defines the area and position of these osseus bridges. Two hours after injection of technetiummore » 99m methylene diphosphonate apex views of the affected distal femoral growth plate were performed. The knee was flexed into its smallest angle. Using a pinhole collimator the gamma camera was angled to face the affected growth plate end on. The image was collected onto computer and analysed by: (I) regions of interest over segments of the growth plate to calculate the relative area of total growth plate affected: (II) generating histograms: (III) thresholding or performing isocontours to accentuate abnormal areas. The growth plate is normally uniformly increased when compared to the normal shaft of the bone. Fusion across the plate appears as an area of diminished uptake. The apex view gives a unique functional map of the growth plate such that abnormal areas are displayed, and the site, size and position of osseus fusion obtained. The technique has the potential for determining the metabolic activity of the growth plate before and after surgery. Serial studies will allow assessment of regneration of the plate and reformation of new osseus bridges.« less
Antenna-coupled high T.sub.c superconducting microbolometer
Hu, Qing
1992-01-01
A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T.sub.c superconducting material disposed on the substrate in an area that is about 1.times.5 .mu.m.sup.2 and about 0.02 .mu.m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer.
Illumination analysis of LAPAN's IR micro bolometer
NASA Astrophysics Data System (ADS)
Bustanul, A.; Irwan, P.; Andi M., T.
2016-10-01
We have since 2 years ago been doing a research in term of an IR Micrometer Bolometer which aims to fulfill our office, LAPAN, desire to put it as one of payloads into LAPAN's next micro satellite project, either at LAPAN A4 or at LAPAN A5. Due to the lack of experience on the subject, everything had been initiated by spectral radiance analysis adjusted by catastrophes sources in Indonesia, mainly wild fire (forest fire) and active volcano. Based on the result of the appropriate spectral radiance wavelength, 3.8 - 4 μm, and field of view (FOV), we, then, went through the further analysis, optical analysis. Focusing in illumination matter, the process was done by using Zemax software. Optical pass Interference and Stray light were two things that become our concern throughout the work. They could also be an evaluation of the performance optimization of illumination analysis of our optical design. The results, graphs, show that our design performance is close diffraction limited and the image blur of the geometrical produced by Lapan's IR Micro Bolometer lenses is in the pixel area range. Therefore, our optical design performance is relatively good and will produce image with high quality. In this paper, the Illumination analysis and process of LAPAN's Infra Red (IR) Micro Bolometer is presented.
Rejection of randomly coinciding events in ZnMoO scintillating bolometers
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.
2014-06-01
Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and methods were applied to discriminate randomly coinciding events in ZnMoO cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99 % by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92 % by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95 % of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of Mo for enriched ZnMoO detectors, of the order of counts/(y keV kg). Pulse-shape parameters have been chosen on the basis of the performance of a real massive ZnMoO scintillating bolometer. Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.
NASA Astrophysics Data System (ADS)
Suzuki, Aritoki; Bebek, Chris; Garcia-Sciveres, Maurice; Holland, Stephen; Kusaka, Akito; Lee, Adrian T.; Palaio, Nicholas; Roe, Natalie; Steinmetz, Leo
2018-04-01
We report on the development of commercially fabricated multichroic antenna-coupled transition edge sensor (TES) bolometer arrays for cosmic microwave background (CMB) polarimetry experiments. CMB polarimetry experiments have deployed instruments in stages. Stage II experiments deployed with O(1000) detectors and reported successful detection of B-mode (divergence-free) polarization pattern in the CMB. Stage III experiments have recently started observing with O(10,000) detectors with wider frequency coverage. A concept for a stage IV experiment, CMB-S4, is emerging to make a definitive measurement of CMB polarization from the ground with O(400,000) detectors. The orders of magnitude increase in detector count for CMB-S4 require a new approach in detector fabrication to increase fabrication throughput and reduce the cost. We report on collaborative efforts with two commercial micro-fabrication foundries to fabricate antenna-coupled TES bolometer detectors. The detector design is based on the sinuous antenna-coupled dichroic detector from the POLARBEAR-2 experiment. The TES bolometers showed the expected I-V response, and the RF performance agrees with the simulation. We will discuss the motivation, design consideration, fabrication processes, test results, and how industrial detector fabrication could be a path to fabricate hundreds of detector wafers for future CMB polarimetry experiments.
van Duren, B H; Sugand, K; Wescott, R; Carrington, R; Hart, A
2018-05-01
Hip fractures contribute to a significant clinical burden globally with over 1.6 million cases per annum and up to 30% mortality rate within the first year. Insertion of a dynamic hip screw (DHS) is a frequently performed procedure to treat extracapsular neck of femur fractures. Poorly performed DHS fixation of extracapsular neck of femur fractures can result in poor mobilisation, chronic pain, and increased cut-out rate requiring revision surgery. A realistic, affordable, and portable fluoroscopic simulation system can improve performance metrics in trainees, including the tip-apex distance (the only clinically validated outcome), and improve outcomes. We developed a digital fluoroscopic imaging simulator using orthogonal cameras to track coloured markers attached to the guide-wire which created a virtual overlay on fluoroscopic images of the hip. To test the accuracy with which the augmented reality system could track a guide-wire, a standard workshop femur was used to calibrate the system with a positional marker fixed to indicate the apex; this allowed for comparison between guide-wire tip-apex distance (TAD) calculated by the system to be compared to that physically measured. Tests were undertaken to determine: (1) how well the apex could be targeted; (2) the accuracy of the calculated TAD. (3) The number of iterations through the algorithm giving the optimal accuracy-time relationship. The calculated TAD was found to have an average root mean square error of 4.2 mm. The accuracy of the algorithm was shown to increase with the number of iterations up to 20 beyond which the error asymptotically converged to an error of 2 mm. This work demonstrates a novel augmented reality simulation of guide-wire insertion in DHS surgery. To our knowledge this has not been previously achieved. In contrast to virtual reality, augmented reality is able to simulate fluoroscopy while allowing the trainee to interact with real instrumentation and performing the procedure on workshop bone models. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
Antenna-coupled high T[sub c] superconducting microbolometer
Hu, Q.
1992-12-15
A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T[sub c] superconducting material disposed on the substrate in an area that is about 1[times]5 [mu]m[sup 2] and about 0.02 [mu]m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Dongcheol; Peterson, B. J.; Lee, Seung Hun
The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and {approx}1 kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectorsmore » of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.« less
Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane.
Meister, H; Eich, T; Endstrasser, N; Giannone, L; Kannamüller, M; Kling, A; Koll, J; Trautmann, T; Detemple, P; Schmitt, S
2010-10-01
Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.
Development of Solid Xenon Bolometers
NASA Astrophysics Data System (ADS)
Dolinski, Michelle; Hansen, Erin
2016-09-01
Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.
NASA Astrophysics Data System (ADS)
Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S. S.; Nastasi, M.; Nisi, S.; Nones, C.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.
2017-09-01
Future experiments on neutrinoless double beta-decay with the aim of exploring the inverted hierarchy region have to employ detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers turn out to be a suitable candidate since they offer particle discrimination: the dual channel detection of the heat and the scintillation light signal allows for particle identification. In particular such detectors permit for a suppression of α-induced backgrounds, a key-issue for next-generation tonne-scale bolometric experiments. We report on the progress and current status of the LUCIFER/CUPID-0 demonstrator, the first array of scintillating bolometers based on enriched Zn82Se crystals which is expected to start data taking in 2016 and the potential of this detection technique for a future tonne-scale bolometric experiment after CUORE.
Far Infrared Spectrometry of the Cosmic Background Radiation
DOE R&D Accomplishments Database
Mather, J. C.
1974-01-01
I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.
Optimization of a bolometer detector for ITER based on Pt absorber on SiN membranea)
NASA Astrophysics Data System (ADS)
Meister, H.; Eich, T.; Endstrasser, N.; Giannone, L.; Kannamüller, M.; Kling, A.; Koll, J.; Trautmann, T.; ASDEX Upgrade Team; Detemple, P.; Schmitt, S.
2010-10-01
Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... companies: (1) Apex Ribbon; (2) Apex Trimmings Inc. (d.b.a. Papillon Ribbon & Bow (Canada)) (Apex Trimmings... an administrative review for the following companies: (1) Apex Ribbon; (2) Apex Trimmings; (3...; (2) Apex Trimmings; (3) Hubschercorp; (4) [[Page 14964
Development of NTD Ge Sensors for Superconducting Bolometer
NASA Astrophysics Data System (ADS)
Garai, A.; Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Ramakrishnan, S.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.
2016-08-01
Neutron transmutation-doped (NTD) Ge sensors have been prepared by irradiating device-grade Ge with thermal neutrons at Dhruva reactor, BARC, Mumbai. These sensors are intended to be used for the study of neutrinoless double beta decay in ^{124}Sn with a superconducting Tin bolometer. Resistance measurements are performed on NTD Ge sensors in the temperature range 100-350 mK. The observed temperature dependence is found to be consistent with the variable-range hopping mechanism.
Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.
2007-01-01
The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.
Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors
NASA Astrophysics Data System (ADS)
Zmuidzinas, Jonas
Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling is successful, we will have a path for continuously adapting the high-background, high-NEP detectors we have demonstrated on the ground to the ultralow-NEP detectors needed for space.
High resolution infrared acquisitions droning over the LUSI mud eruption.
NASA Astrophysics Data System (ADS)
Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano
2016-04-01
The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be to use a multi-spectral thermal camera to perform a complete near remote sensing to detect, not only temperature, but gas, sensitive to particular wavelengths.
Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications
NASA Technical Reports Server (NTRS)
Haller, E. E.; Itoh, K. M.; Beeman, J. W.
1996-01-01
Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.
Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers
NASA Technical Reports Server (NTRS)
Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry
2004-01-01
A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.
Bloch oscillating transistor as the readout element for hot electron bolometers
NASA Astrophysics Data System (ADS)
Hassel, Juha; Seppä, Heikki; Lindell, Rene; Hakonen, Pertti
2004-10-01
In this paper we analyse the properties of the Bloch oscillating transistor as a preamplifier in cryogenic devices. We consider here especially the readout of hot electron bolometers (HEBs) based on Normal-Superconductor-Insulator tunnel junctions, but the results also apply more generally. We show that one can get an equivalent noise voltage below 1 nV/√Hz with a single BOT. By using N BOTs in a parallel array configuration, a further reduction by factor √N may be achieved.
MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.
2012-01-01
A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Astrophysics Data System (ADS)
Hildebrand, R. H.
1985-10-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.
1986-01-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Astrophysics Data System (ADS)
Hildebrand, R. H.
1986-02-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer
NASA Astrophysics Data System (ADS)
Wang, Bin; Lai, Jianjun; Li, Hui; Hu, Haoming; Chen, Sihai
2013-03-01
In order to obtain high quality of thermal sensitive material, VOx thin film of high temperature coefficient of resistance (TCR) of 6.5%/K at room temperature has been deposited by reactive ion beam sputtering and post annealing method. AFM and XRD measurements indicate that the VOx thin film with nanostructured crystalline is composed of VO2 and V2O3. The nanostructured VOx microbolometer has been designed and fabricated. The measurement of the film system with TiN absorbing layer indicates that it has about 92% infrared absorption in the range of 8-14 μm. The performance of this bolometer, comparing with that of bolometer with common VOx, has a better result. At 20 Hz frequency and 10 μA bias current, the bolometer with high TCR has reached detectivity of 1.0 × 109 cm Hz1/2/W. It also indicates that this nanostructured VOx thin film has not only a higher TCR but also a lower noise than common VOx thin film without annealing.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.
1985-01-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less
A Low-Noise NbTiN Hot Electron Bolometer Mixer
NASA Technical Reports Server (NTRS)
Tong, C. Edward; Stern, Jeffrey; Megerian, Krikor; LeDuc, Henry; Sridharan, T. K.; Gibson, Hugh; Blundell, Raymond
2001-01-01
Hot electron bolometer (HEB) mixer elements, based on niobium titanium nitride (NbTiN) thin film technology, have been fabricated on crystalline quartz substrates over a 20 nm thick AlN buffer layer. The film was patterned by optical lithography, yielding bolometer elements that measure about 1 micrometer long and between 2 and 12 micrometers wide. These mixer chips were mounted in a fixed-tuned waveguide mixer block, and tested in the 600 and 800 GHz frequency range. The 3-dB output bandwidth of these mixers was determined to be about 2.5 GHz and we measured a receiver noise temperature of 270 K at 630 GHz using an intermediate frequency of 1.5 GHz. The receiver has excellent amplitude stability and the noise temperature measurements are highly repeatable. An 800 GHz receiver incorporating one of these mixer chips has recently been installed at the Sub-Millimeter Telescope in Arizona for field test and for astronomical observations.
Rejection of randomly coinciding 2ν2β events in ZnMoO4 scintillating bolometers
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.
2014-01-01
Random coincidence of 2ν2β decay events could be one of the main sources of background for 0ν2β decay in cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, the mean-time and χ2 methods was applied to discriminate randomly coinciding 2ν2β events in ZnMoO4 cryogenic scintillating bolometers. The background can be effectively rejected on the level of 99% by the mean-time analysis of heat signals with the rise time about 14 ms and the signal-to-noise ratio 900, and on the level of 98% for the light signals with 3 ms rise time and signal-to-noise ratio of 30 (under a requirement to detect 95% of single events). Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.
NASA Astrophysics Data System (ADS)
Armengaud, E.; Augier, C.; Barabash, A. S.; Beeman, J. W.; Bekker, T. B.; Bellini, F.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; Boiko, R. S.; Broniatowski, A.; Brudanin, V.; Camus, P.; Capelli, S.; Cardani, L.; Casali, N.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; de Combarieu, M.; Coron, N.; Danevich, F. A.; Dafinei, I.; Jesus, M. De; Devoyon, L.; Domizio, S. Di; Dumoulin, L.; Eitel, K.; Enss, C.; Ferroni, F.; Fleischmann, A.; Foerster, N.; Gascon, J.; Gastaldo, L.; Gironi, L.; Giuliani, A.; Grigorieva, V. D.; Gros, M.; Hehn, L.; Hervé, S.; Humbert, V.; Ivannikova, N. V.; Ivanov, I. M.; Jin, Y.; Juillard, A.; Kleifges, M.; Kobychev, V. V.; Konovalov, S. I.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Laubenstein, M.; Sueur, H. Le; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Nagorny, S.; Navick, X.-F.; Nikolaichuk, M. O.; Nones, C.; Novati, V.; Olivieri, E.; Pagnanini, L.; Pari, P.; Pattavina, L.; Pavan, M.; Paul, B.; Penichot, Y.; Pessina, G.; Piperno, G.; Pirro, S.; Plantevin, O.; Poda, D. V.; Queguiner, E.; Redon, T.; Rodrigues, M.; Rozov, S.; Rusconi, C.; Sanglard, V.; Schäffner, K.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tomei, C.; Tretyak, V. I.; Umatov, V. I.; Vagneron, L.; Vasiliev, Ya. V.; Velázquez, M.; Vignati, M.; Weber, M.; Yakushev, E.; Zolotarova, A. S.
2017-11-01
This paper reports on the development of a technology involving ^{100}Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (˜ 1 kg), high optical quality, radiopure ^{100}Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of ^{100}Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8σ . Less than 10 μ Bq/kg activity of ^{232}Th (^{228}Th) and ^{226}Ra in the crystals is ensured by boule recrystallization. The potential of ^{100}Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg× d exposure: the two neutrino double-beta decay half-life of ^{100}Mo has been measured with the up-to-date highest accuracy as T_{1/2} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10^{18} years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of ^{100}Mo.
Radiation patterns of multimode feed-horn-coupled bolometers for FAR-IR space applications
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, J. Anthony; McAuley, Ian; Trappe, Neal A.; McCarthy, Darragh N.; Bracken, Colm P.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Créidhe; Wilson, Daniel; Peacocke, Tully; Maffei, Bruno; Lamarre, Jean-Michel; Ade, Peter A. R.; Savini, Giorgio
2017-02-01
A multimode horn differs from a single mode horn in that it has a larger sized waveguide feeding it. Multimode horns can therefore be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of the beam pattern characteristics. Although a cavity mounted bolometer can be modelled as a perfect black body radiator (using reciprocity in order to calculate beam patterns), nevertheless, this is an approximation. In this paper we present how this approach can be improved to actually include the cavity coupled bolometer, now modelled as a thin absorbing film. Generally, this is a big challenge for finite element software, in that the structures are typically electrically large. However, the radiation pattern of multimode horns can be more efficiently simulated using mode matching, typically with smooth-walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system. Another issue on the optical efficiency of the detectors is the presence of any free space gaps, through which power can escape. This is best dealt with treating the system as an absorber. Appropriate reflection and transmission matrices can be determined for the cavity using the natural eigenfields of the bolometer cavity system. We discuss how the approach can be applied to proposed terahertz systems, and also present results on how the approach was applied to improve beam pattern predictions on the sky for the multi-mode HFI 857GHz channel on Planck.
NASA Astrophysics Data System (ADS)
Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D. V.; Redon, T.; Sand, J.-B.; Veber, P.; Velázquez, M.; Zolotarova, A. S.
2018-05-01
A new R&D on lithium molybdate scintillators has begun within a project CLYMENE (Czochralski growth of Li2MoO4 crYstals for the scintillating boloMeters used in the rare EveNts sEarches). One of the main goals of the CLYMENE is a realization of a Li2MoO4 crystal growth line to be complementary to the one recently developed by LUMINEU in view of a mass production capacity for CUPID, a next-generation tonne-scale bolometric experiment to search for neutrinoless double-beta decay. In the present paper we report the investigation of performance and radiopurity of 158-g and 13.5-g scintillating bolometers based on a first large-mass (230 g) Li2MoO4 crystal scintillator developed within the CLYMENE project. In particular, a good energy resolution (2-7 keV FWHM in the energy range of 0.2-5 MeV), one of the highest light yield (0.97 keV/MeV) amongst Li2MoO4 scintillating bolometers, an efficient alpha particles discrimination (10 σ) and potentially low internal radioactive contamination (below 0.2-0.3 mBq/kg of U/Th, but 1.4 mBq/kg of 210Po) demonstrate prospects of the CLYMENE in the development of high quality and radiopure Li2MoO4 scintillators for CUPID.
Design and Fabrication Highlights Enabling a 2 mm, 128 Element Bolometer Array for GISMO
NASA Technical Reports Server (NTRS)
Allen, Christine; Benford, Dominic; Miller, Timothy; Staguhn, Johannes; Wollack, Edward; Moseley, Harvey
2007-01-01
The Backshort-Under-Grid (BUG) superconducting bolometer array architecture is intended to be highly versatile, operating in a large range of wavelengths and background conditions. We have undertaken a three-year program to develop key technologies and processes required to build kilopixel arrays. To validate the basic array design and to demonstrate its applicability for future kilopixel arrays, we have chosen to demonstrate a 128 element bolometer array optimized for 2 mm wavelength using a newly built Goddard instrument, GISMO (Goddard /RAM Superconducting 2-millimeter Observer). The arrays are fabricated using batch wafer processing developed and optimized for high pixel yield, low noise, and high uniformity. The molybdenum-gold superconducting transition edge sensors are fabricated using batch sputter deposition and are patterned using dry etch techniques developed at Goddard. With a detector pitch of 2 mm 8x16 array for GISMO occupies nearly one half of the processing area of a 100 mm silicon-on-insulator starting wafer. Two such arrays are produced from a single wafer along with witness samples for process characterization. To provide thermal isolation for the detector elements, at the end of the process over 90% of the silicon must be removed using deep reactive ion etching techniques. The electrical connections for each bolometer element are patterned on the top edge of the square grid supporting the array. The design considerations unique to GISMO, key fabrication challenges, and laboratory experimental results will be presented.
Modelling of Divertor Detachment in MAST Upgrade
NASA Astrophysics Data System (ADS)
Moulton, David; Carr, Matthew; Harrison, James; Meakins, Alex
2017-10-01
MAST Upgrade will have extensive capabilities to explore the benefits of alternative divertor configurations such as the conventional, Super-X, x divertor, snowflake and variants in a single device with closed divertors. Initial experiments will concentrate on exploring the Super-X and conventional configurations, in terms of power and particle loads to divertor surfaces, access to detachment and its control. Simulations have been carried out with the SOLPS5.0 code validated against MAST experiments. The simulations predict that the Super-X configuration has significant advantages over the conventional, such as lower detachment threshold (2-3x lower in terms of upstream density and 4x higher in terms of PSOL). Synthetic spectroscopy diagnostics from these simulations have been created using the Raysect ray tracing code to produce synthetic filtered camera images, spectra and foil bolometer data. Forward modelling of the current set of divertor diagnostics will be presented, together with a discussion of future diagnostics and analysis to improve estimates of the plasma conditions. Work supported by the RCUK Energy Programme [Grant Number EP/P012450/1] and EURATOM.
NASA Astrophysics Data System (ADS)
Chardin, G.
2000-03-01
Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.
A Study of Al-Mn Transition Edge Sensor Engineering for Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, E. M.; et al.
2013-11-10
The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.
Pei, De-Sheng; Yang, Xiao-Jie; Liu, Wei; Guikema, Jeroen E. J.; Schrader, Carol E.; Strauss, Phyllis R.
2011-01-01
DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex+/− mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes. PMID:21172930
Autonomous Microstructure EM-APEX Floats
2016-01-01
Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats
The Atacama Cosmology Telescope: Development and preliminary results of point source observations
NASA Astrophysics Data System (ADS)
Fisher, Ryan P.
2009-06-01
The Atacama Cosmology Telescope (ACT) is a six meter diameter telescope designed to measure the millimeter sky with arcminute angular resolution. The instrument is currently conducting its third season of observations from Cerro Toco in the Chilean Andes. The primary science goal of the experiment is to expand our understanding of cosmology by mapping the temperature fluctuations of the Cosmic Microwave Background (CMB) at angular scales corresponding to multipoles up to [cursive l] ~ 10000. The primary receiver for current ACT observations is the Millimeter Bolometer Array Camera (MBAC). The instrument is specially designed to observe simultaneously at 148 GHz, 218 GHz and 277 GHz. To accomplish this, the camera has three separate detector arrays, each containing approximately 1000 detectors. After discussing the ACT experiment in detail, a discussion of the development and testing of the cold readout electronics for the MBAC is presented. Currently, the ACT collaboration is in the process of generating maps of the microwave sky using our first and second season observations. The analysis used to generate these maps requires careful data calibration to produce maps of the arcminute scale CMB temperature fluctuations. Tests and applications of several elements of the ACT calibrations are presented in the context of the second season observations. Scientific exploration has already begun on preliminary maps made using these calibrations. The final portion of this thesis is dedicated to discussing the point sources observed by the ACT. A discussion of the techniques used for point source detection and photometry is followed by a presentation of our current measurements of point source spectral indices.
A generic readout system for astrophysical detectors
NASA Astrophysics Data System (ADS)
Doumayrou, E.; Lortholary, M.
2012-09-01
We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.
Meteor velocity distribution from CILBO double station video camera data
NASA Astrophysics Data System (ADS)
Drolshagen, Esther; Ott, Theresa; Koschny, Detlef; Drolshagen, Gerhard; Poppe, Bjoern
2014-02-01
This paper is based on data from the double-station meteor camera setup on the Canary Islands - CILBO. The data has been collected from July 2011 until August 2014. The CILBO meteor data of one year (1 June 2013 - 31 May 2014) were used to analyze the velocity distribution of sporadic meteors and to compare the distribution to a reference distribution for near-Earth space. The velocity distribution for 1 AU outside the influence of Earth derived from the Harvard Radio Meteor Project (HRMP) was used as a reference. This HRMP distribution was converted to an altitude of 100 km by considering the gravitational attraction of Earth. The new, theoretical velocity distribution for a fixed meteoroid mass ranges from 11 - 71 𝑘𝑚/𝑠 and peaks at 12.5 𝑘𝑚/𝑠. This represents the predicted velocity distribution. The velocity distribution of the meteors detected simultaneously by both cameras of the CILBO system was examined. The meteors are sorted by their stream association and especially the velocity distribution of the sporadics is studied closely. The derived sporadic velocity distribution has a maximum at 64 𝑘𝑚/𝑠. This drastic difference to the theoretical curve confirms that fast meteors are usually greatly over-represented in optical and radar measurements of meteors. The majority of the fast sporadics are apparently caused by the Apex contribution in the early morning hours. This paper presents first results of the ongoing analysis of the meteor velocity distribution.
A broadband THz receiver for low background space applications
NASA Technical Reports Server (NTRS)
Hagmann, C.; Benford, D. J.; Clapp, A. C.; Richards, P. L.; Timbie, P.
1992-01-01
We have developed a sensitive bolometric receiver for low background space applications. In a 10 percent bandwidth at 1 THz, this receiver is approximately 100 times more sensitive than a quantum limited heterodyne receiver with a 1 GHz IF bandwidth. This receiver is designed to be used for the long wavelength band (200-700 microns) in the MIPS instrument on NASA's SIRTF satellite. The bolometers are cooled to 100 mK by an adiabatic demagnetization refrigerator. Roughly 60 g of cesium chrome alum salt is partially demagnetized to 100 mK, followed by a slow regulated downramp to compensate for the heat leak. The hold time of the ADR system is about 18 hours with a temperature stability of delta T(sub rms) approx. equals 10 micro-K. The composite bolometers have electrical responsivities of 10(exp 9)V/W and electrical NEP's of about 3x10(exp -17) W/square root of Hz. The bolometer signals are read out by JFET preamplifiers located on the helium plate and operated at 120 K. We have addressed a number of space qualification issues, such as the development of an analog magnet controller, construction of a cryogenic shake-table for bolometers and selection of the paramagnetic salt CCA which can survive a bakeout at 50 C. The receiver is scheduled to be flown in the spring of 1992 on a balloon telescope. This flight has a dual purpose. One is to provide realistic test of the capabilities of the new receiver. The other is to search for anisotropies in the cosmic microwave background on scales of a few degrees.
Superconducting noise bolometer with microwave bias and readout for array applications
NASA Astrophysics Data System (ADS)
Kuzmin, A. A.; Semenov, A. D.; Shitov, S. V.; Merker, M.; Wuensch, S. H.; Ustinov, A. V.; Siegel, M.
2017-07-01
We present a superconducting noise bolometer for terahertz radiation, which is suitable for large-format arrays. It is based on an antenna-coupled superconducting micro-bridge embedded in a high-quality factor superconducting resonator for a microwave bias and readout with frequency-division multiplexing in the GHz range. The micro-bridge is kept below its critical temperature and biased with a microwave current of slightly lower amplitude than the critical current of the micro-bridge. The response of the detector is the rate of superconducting fluctuations, which depends exponentially on the concentration of quasiparticles in the micro-bridge. Excess quasiparticles are generated by an incident THz signal. Since the quasiparticle lifetime increases exponentially at lower operation temperature, the noise equivalent power rapidly decreases. This approach allows for large arrays of noise bolometers operating above 1 K with sensitivity, limited by 300-K background noise. Moreover, the response of the bolometer always dominates the noise of the readout due to relatively large amplitude of the bias current. We performed a feasibility study on a proof-of-concept device with a 1.0 × 0.5 μm2 micro-bridge from a 9-nm thin Nb film on a sapphire substrate. Having a critical temperature of 5.8 K, it operates at 4.2 K and is biased at the frequency 5.6 GHz. For the quasioptical input at 0.65 THz, we measured the noise equivalent power ≈3 × 10-12 W/Hz1/2, which is close to expectations for this particular device in the noise-response regime.
Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver
NASA Astrophysics Data System (ADS)
Bender, A. N.; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Basu Thakur, R.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Crawford, T. M.; Cukierman, A.; Czaplewski, D. A.; Ding, J.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Groh, J. C.; Guyser, R.; Halverson, N. W.; Harke-Hosemann, A.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Korman, M.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Lendinez, S.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, Ian; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.
2016-07-01
The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of 16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.
5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey;
2010-01-01
We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.
Large-format 17μm high-end VOx μ-bolometer infrared detector
NASA Astrophysics Data System (ADS)
Mizrahi, U.; Argaman, N.; Elkind, S.; Giladi, A.; Hirsh, Y.; Labilov, M.; Pivnik, I.; Shiloah, N.; Singer, M.; Tuito, A.; Ben-Ezra, M.; Shtrichman, I.
2013-06-01
Long range sights and targeting systems require a combination of high spatial resolution, low temporal NETD, and wide field of view. For practical electro-optical systems it is hard to support these constraints simultaneously. Moreover, achieving these needs with the relatively low-cost Uncooled μ-Bolometer technology is a major challenge in the design and implementation of both the bolometer pixel and the Readout Integrated Circuit (ROIC). In this work we present measured results from a new, large format (1024×768) detector array, with 17μm pitch. This detector meets the demands of a typical armored vehicle sight with its high resolution and large format, together with low NETD of better than 35mK (at F/1, 30Hz). We estimate a Recognition Range for a NATO target of better than 4 km at all relevant atmospheric conditions, which is better than standard 2nd generation scanning array cooled detector. A new design of the detector package enables improved stability of the Non-Uniformity Correction (NUC) to environmental temperature drifts.
Sassi, U; Parret, R; Nanot, S; Bruna, M; Borini, S; De Fazio, D; Zhao, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A
2017-01-31
There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K -1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K -1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO 3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K -1 , and the ability to resolve temperature variations down to 15 μK.
Status of NTD Ge bolometer material and devices
NASA Technical Reports Server (NTRS)
Haller, E. E.; Haegel, N. M.; Park, I. S.
1986-01-01
The first IR Detector Technology Workshop took place at NASA Ames Research Center on July 12 and 13, 1983. The conclusions presented at that meeting are still valid. More was learned about the physics of hopping conduction at very low temperatures which will be important for bolometer design and operation at ever decreasing temperatures. Resistivity measurements were extended down to 50 mK. At such low temperatures, precise knowledge of the neutron capture cross sections sigma (sub n) of the various Ge isotopes is critical if one is to make an accurate prediction of the dopant concentrations and compensation, and therefore resistivity, that will result from a given irradiation. An empirical approach for obtaining the desired resistivity material is described and the process of conducting a set of experiments which will improve the knowledge of the effective sigma (sub n) values for a given location in a particular reactor is discussed. A wider range of NTD Ge samples is now available. Noise measurements on bolometers with ion implanted contacts show the no 1/f noise component appears down to 1 Hz and probably lower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y., E-mail: zhangya@iis.u-tokyo.ac.jp; Watanabe, Y.; Hosono, S.
We propose a room temperature, all electrical driving and detecting, very sensitive thermometer structure using a microelectromechanical (MEMS) resonator for bolometer applications. We have fabricated a GaAs doubly clamped MEMS beam resonator whose oscillation can be excited and detected by the piezoelectric effect. When a heating power is applied to a NiCr film deposited on the MEMS beam surface, internal thermal stress is generated in the beam, leading to a reduction in the resonance frequency. The present device detects the shift in the resonance frequency caused by heating and works as a very sensitive thermometer. When the resonator was drivenmore » by a voltage slightly below the threshold for the nonlinear, hysteretic oscillation, the thermometer showed a voltage responsivity of about 3300 V/W, while keeping a low noise spectral density of about 60 nV/Hz{sup 1/2}, demonstrating a noise equivalent power of <20 pW/Hz{sup 1/2} even at room temperature. The observed effect can be used for realizing high-sensitivity terahertz bolometers for room-temperature operation.« less
NASA Astrophysics Data System (ADS)
Miller, Timothy M.; Abrahams, John H.; Allen, Christine A.
2006-04-01
We report a fabrication process for deep etching silicon to different depths with a single masking layer, using standard masking and exposure techniques. Using this technique, we have incorporated a deep notch in the support walls of a transition-edge-sensor (TES) bolometer array during the detector back-etch, while simultaneously creating a cavity behind the detector. The notches serve to receive the support beams of a separate component, the Backshort-Under-Grid (BUG), an array of adjustable height quarter-wave backshorts that fill the cavities behind each pixel in the detector array. The backshort spacing, set prior to securing to the detector array, can be controlled from 25 to 300 μm by adjusting only a few process steps. In addition to backshort spacing, the interlocking beams and notches provide positioning and structural support for the ˜1 mm pitch, 8×8 array. This process is being incorporated into developing a TES bolometer array with an adjustable backshort for use in far-infrared astronomy. The masking technique and machining process used to fabricate the interlocking walls will be discussed.
Backshort-Under-Grid arrays for infrared astronomy
NASA Astrophysics Data System (ADS)
Allen, C. A.; Benford, D. J.; Chervenak, J. A.; Chuss, D. T.; Miller, T. M.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.
2006-04-01
We are developing a kilopixel, filled bolometer array for space infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; (1) a transition edge sensor bolometer array, operating in the milliKelvin regime, (2) a quarter-wave backshort grid, and (3) superconducting quantum interference device multiplexer readout. The detector array is designed as a filled, square grid of suspended, silicon bolometers with superconducting sensors. The backshort arrays are fabricated separately and will be positioned in the cavities created behind each detector during fabrication. The grids have a unique interlocking feature machined into the walls for positioning and mechanical stability. The spacing of the backshort beneath the detector grid can be set from ˜30 300 μm, by independently adjusting two process parameters during fabrication. The ultimate goal is to develop a large-format array architecture with background-limited sensitivity, suitable for a wide range of wavelengths and applications, to be directly bump bonded to a multiplexer circuit. We have produced prototype two-dimensional arrays having 8×8 detector elements. We present detector design, fabrication overview, and assembly technologies.
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.;
2015-01-01
NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver
A low-power CMOS readout IC design for bolometer applications
NASA Astrophysics Data System (ADS)
Galioglu, Arman; Abbasi, Shahbaz; Shafique, Atia; Ceylan, Ömer; Yazici, Melik; Kaynak, Mehmet; Durmaz, Emre C.; Arsoy, Elif Gul; Gurbuz, Yasar
2017-02-01
A prototype of a readout IC (ROIC) designed for use in high temperature coefficient of resistance (TCR) SiGe microbolometers is presented. The prototype ROIC architecture implemented is based on a bridge with active and blind bolometer pixels with a capacitive transimpedance amplifier (CTIA) input stage and column parallel integration with serial readout. The ROIC is designed for use in high (>= 4 %/K) TCR and high detector resistance Si/SiGe microbolometers with 17x17 μm2 pixel sizes in development. The prototype has been designed and fabricated in 0.25- μm SiGe:C BiCMOS process.
Neutron-transmutation-doped germanium bolometers
NASA Technical Reports Server (NTRS)
Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.
1983-01-01
Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; SOKENDAI
The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.
Success and challenges met during the calibration of APEX on large plots
USDA-ARS?s Scientific Manuscript database
As the APEX model is increasingly considered for the evaluation of agricultural systems, satisfactory performance of APEX on fields is critical. APEX was applied to 16 replicated large plots established in 1991 in Northeast Missouri. Until 2009, each phase of each rotation was represented every year...
The JCMT Plane Survey: early results from the ℓ = 30° field
NASA Astrophysics Data System (ADS)
Moore, T. J. T.; Plume, R.; Thompson, M. A.; Parsons, H.; Urquhart, J. S.; Eden, D. J.; Dempsey, J. T.; Morgan, L. K.; Thomas, H. S.; Buckle, J.; Brunt, C. M.; Butner, H.; Carretero, D.; Chrysostomou, A.; deVilliers, H. M.; Fich, M.; Hoare, M. G.; Manser, G.; Mottram, J. C.; Natario, C.; Olguin, F.; Peretto, N.; Polychroni, D.; Redman, R. O.; Rigby, A. J.; Salji, C.; Summers, L. J.; Berry, D.; Currie, M. J.; Jenness, T.; Pestalozzi, M.; Traficante, A.; Bastien, P.; diFrancesco, J.; Davis, C. J.; Evans, A.; Friberg, P.; Fuller, G. A.; Gibb, A. G.; Gibson, S.; Hill, T.; Johnstone, D.; Joncas, G.; Longmore, S. N.; Lumsden, S. L.; Martin, P. G.; Nguyen Lu'o'ng, Q.; Pineda, J. E.; Purcell, C.; Richer, J. S.; Schieven, G. H.; Shipman, R.; Spaans, M.; Taylor, A. R.; Viti, S.; Weferling, B.; White, G. J.; Zhu, M.
2015-11-01
We present early results from the JCMT (James Clerk Maxwell Telescope) Plane Survey (JPS), which has surveyed the northern inner Galactic plane between longitudes ℓ = 7° and ℓ = 63° in the 850-μm continuum with SCUBA-2 (Submm Common-User Bolometer Array 2), as part of the JCMT Legacy Survey programme. Data from the ℓ = 30° survey region, which contains the massive-star-forming regions W43 and G29.96, are analysed after approximately 40 per cent of the observations had been completed. The pixel-to-pixel noise is found to be 19 mJy beam-1 after a smooth over the beam area, and the projected equivalent noise levels in the final survey are expected to be around 10 mJy beam-1. An initial extraction of compact sources was performed using the FELLWALKER method, resulting in the detection of 1029 sources above a 5σ surface-brightness threshold. The completeness limits in these data are estimated to be around 0.2 Jy beam-1 (peak flux density) and 0.8 Jy (integrated flux density) and are therefore probably already dominated by source confusion in this relatively crowded section of the survey. The flux densities of extracted compact sources are consistent with those of matching detections in the shallower APEX (Atacama Pathfinder Experiment) Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. We analyse the virial and evolutionary state of the detected clumps in the W43 star-forming complex and find that they appear younger than the Galactic-plane average.
METRO-APEX Volume 8.1: Water Quality Manager's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The water Quality Manager's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air…
METRO-APEX Volume 21.1: Pressure Groups' Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Pressure Groups' Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution…
METRO-APEX Volume 20.1: News Media Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The News Media Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution Exercise…
METRO-APEX Volume 18.1: Legal Reference Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Legal Reference Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution…
METRO-APEX Volume 10.1: Developer's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Developer's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution Exercise…
METRO-APEX Volume 4.1: County Politician's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The County Politician's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution…
METRO-APEX Volume 9.1: Solid Waste Manager's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Solid Waste Manager's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution…
METRO-APEX Volume 3.1: City Politician's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The City Politician's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution…
METRO-APEX Volume 5.1: Planner's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Planner's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution Exercise…
METRO-APEX Volume 2.1: Computer Operator's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Computer Operator's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air Pollution…
METRO-APEX Volume 6.1: Environmental Quality Agency's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Environmental Quality Agency's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air…
METRO-APEX Volume 1.1: Game Overall Director's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Game Overall Director's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air…
[Contrast of Z-Pinch X-Ray Yield Measure Technique].
Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi
2015-03-01
Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.
Ultrasensitive Superconducting Transition Edge Sensors Based On Electron-Phonon Decoupling
NASA Technical Reports Server (NTRS)
Jethava, Nikhil; Chervenak, James; Brown, Ari-David; Benford, Dominic; Kletetschka, Gunther; Mikula, Vilem; U-yen, Kongpop
2011-01-01
We have successfully fabricated the superconducting transition edge sensor (TES), bolometer technology that centers on the use of electron-phonon decoupling (EPD) to thermally isolate the bolometer. Along with material characterization for large format antenna coupled bolometer arrays, we present the initial test results of bolometer based on EPD designed for THz detection. We have selected a design approach that separates the two functions of photon absorption and temperature measurement, allowing separate optimization of the performance of each element. We have integrated Molybdenum/Gold (Mo/Au) bilayer TES and ion assisted thermally evaporated (IAE) Bismuth (Bi) films as radiation absorber coupled to a low-loss microstripline from Niobium (Nb) ground plane to a twin-slot antenna structure. The thermal conductance and the time constant of these devices have been measured, and are consistent with our calculations. The device exhibits a single time constant at 0.1 K of approx.160 IlS, which is compatible with readout by a high-bandwidth single SQUID or a time domain SQUID multiplexer. The effects of thermal conductance and electrothermal feedback are major determinants of the time constant, but the electronic heat capacity also plays a major role. The NEP achieved in the device described above is 2.5x10(exp -17)W(gamma)Hz. Our plan is to demonstrate a reduction of the volume in the superconducting element to 5 microns x 5 microns in films of half the thickness at Tc = 60mK. By calculation, this new geometry corresponds to an NEP reduction of two orders of magnitude to 2.5x10(exp -19)W/(gamma)Hz, with a time constant of 130/ls.
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio
2016-07-01
Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.
Submillimeter video imaging with a superconducting bolometer array
NASA Astrophysics Data System (ADS)
Becker, Daniel Thomas
Millimeter wavelength radiation holds promise for detection of security threats at a distance, including suicide bombers and maritime threats in poor weather. The high sensitivity of superconducting Transition Edge Sensor (TES) bolometers makes them ideal for passive imaging of thermal signals at millimeter and submillimeter wavelengths. I have built a 350 GHz video-rate imaging system using an array of feedhorn-coupled TES bolometers. The system operates at standoff distances of 16 m to 28 m with a measured spatial resolution of 1.4 cm (at 17 m). It currently contains one 251-detector sub-array, and can be expanded to contain four sub-arrays for a total of 1004 detectors. The system has been used to take video images that reveal the presence of weapons concealed beneath a shirt in an indoor setting. This dissertation describes the design, implementation and characterization of this system. It presents an overview of the challenges associated with standoff passive imaging and how these problems can be overcome through the use of large-format TES bolometer arrays. I describe the design of the system and cover the results of detector and optical characterization. I explain the procedure used to generate video images using the system, and present a noise analysis of those images. This analysis indicates that the Noise Equivalent Temperature Difference (NETD) of the video images is currently limited by artifacts of the scanning process. More sophisticated image processing algorithms can eliminate these artifacts and reduce the NETD to 100 mK, which is the target value for the most demanding passive imaging scenarios. I finish with an overview of future directions for this system.
NASA Astrophysics Data System (ADS)
Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.
2002-12-01
This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.
NASA Astrophysics Data System (ADS)
Wilson, Robert S.; Priestley, Kory J.; Thomas, Susan; Hess, Phillip
2009-08-01
The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers were used to measure earth-reflected solar and earth-emitted longwave radiances, at satellite altitude. The bolometers measured the earth radiances in the broadband shortwave solar (0.3 - 5.0 micrometers) and total (0.3->100 micrometers) spectral bands as well as in the (8 - 12 micrometers) water vapor window spectral band over geographical footprints as small as 10 kilometers at nadir. In May 2002, the fourth and fifth sets of CERES bolometers were launched aboard the Aqua spacecraft. Ground vacuum calibrations defined the initial count conversion coefficients that were used to convert the bolometer output voltages into filtered earth radiances. The mirror attenuator mosaic (MAM), a solar diffuser plate, was built into the CERES instrument package calibration system in order to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields-of-view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, overcoated with silicon dioxide. Temperature sensors are located in each MAM plate and baffle. The CERES MAM wass designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. In this paper, the MAM solar calibration procedures are presented along with on-orbit results. Comparisons are also made between the Aqua,Terra and the Tropical Rainfall Measurement Mission (TRMM) CERES MAM solar calibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenski, M; Stoyanova, R; Abramowitz, M
2015-06-15
Purpose: Previous research has demonstrated that following radiation therapy for prostate cancer, there is a relative increase in positive biopsies in the apex versus the rest of the prostate. The increase could be due to: 1) Inter-fraction apex motion or deformation, 2) Intra-fraction apex motion or deformation, 3) Suboptimal dose coverage in the apex, 4) Tissue composition in the apex and/or 5) Prostate size. In this initial study, the potential for suboptimal dose coverage in the apex was assessed by splitting the prostate planning target volume into the apex (inferior third) and remainder. Methods: 69 patients were selected from 303more » patients treated on a clinical radiotherapy trial for prostate cancer. These patients were selected as they had both a localized (sextant template) 2-year post-treatment biopsy and 3D dose information. Of these patients, 10 had positive biopsies in the apex, 8 in the remainder and 11 in both locations. For all patients, the following dosimetric data was acquired from the apex dose volume histogram: Dmean, Dmax, Dmin, D95% and V100%. Unpaired, one-tailed t-tests were used to test for statistical significance (p < 0.05) between all dosimetric parameters for patients with positive versus negative apical biopsies. Additionally, D95% for the apex was plotted against D95% of the remainder. Results: There was no statistical difference for the selected apical dosimetric parameters for patients with positive versus negative biopsies (p-values > 0.05). No correlation was found between D95% (normalized to the prescription dose) for the apex and remainder (R{sup 2} = 0.0116). Conclusion: No correlation was found between positive apical biopsy and suboptimal dosimetric coverage. Current research is looking into inter-fraction apex motion and deformation as a potential source of the increased apical failure using daily CBCT images.« less
Superconducting hot electron bolometers for terahertz sensing
NASA Astrophysics Data System (ADS)
Reese, Matthew Owen
Superconducting Hot Electron Bolometers (HEBs) are good candidates for detecting weak signals in the submillimeter or terahertz range. In this thesis work, a novel fabrication method was developed to make two types of niobium HEBs for different applications. HEBs were designed, fabricated, and then characterized at dc, microwave, and THz frequencies. The first type is a diffusion-cooled HEB, made with a short bridge that determines its cooling time. In this thesis, bridges were typically 400 nm long with bandwidths of about 1 GHz. These diffusion-cooled HEBs were developed as part of a collaboration with the University of Arizona (UA), to develop a proof-of-concept heterodyne array submillimeter camera. Devices were fabricated on thin fused quartz and silica substrates for waveguide coupling in the UA system for the astrophysically interesting 345 and 810 GHz atmospheric windows. The goal of this collaboration is to provide a basis of comparison between Nb diffusion-cooled HEB mixers and superconductorinsulator-superconductor mixers at these frequencies. The second type is a phonon-cooled HEB, made with a ˜3 mum long bridge. Its thermal response is dictated by the electron-phonon relaxation time. These devices were developed in collaboration with Prof. C. Schmuttenmaer's lab in the Yale Chemistry department, Prof. G. Blake at Caltech, and Dr. J. Pearson at the Jet Propulsion Laboratory. These devices were developed for use in quasi-optic systems to be used as fast (>100 MHz) direct detectors that can view room temperature sources without saturating. A variety of experimental applications are envisioned for these detectors including charge transport measurements of novel materials. A series of dc and microwave measurements were performed on the diffusion-cooled devices. A better understanding of the resistance vs. temperature profile was realized, including what design/fabrication parameters affect it and insight into how it affects device performance. This led to a do screening process that can identify good quality devices. The Nb phonon-cooled HEBs studied in this thesis were fully carried through the design, fabrication, and characterization process at dc, microwave and THz frequencies. The saturation power, responsivity, thermal response time, and noise performance were all measured to be within the expected range predicted by the initial design parameters.
The E and B EXperiment: Implementation and Analysis of the 2009 Engineering Flight
NASA Astrophysics Data System (ADS)
Milligan, Michael Bryce
The E and B EXperiment (EBEX) is a balloon-borne telescope designed to map the polarization of the cosmic microwave background (CMB) and emission from galactic dust at millimeter wavelengths from 150 to 410 GHz. The primary science objectives of EBEX are to: detect or constrain the primordial B-mode polarization of the CMB predicted by inflationary cosmology; measure the CMB B-mode signal induced by gravitational lensing; and characterize the polarized thermal emission from interstellar dust. EBEX will observe a 420 square degree patch of the sky at high galactic latitude with a telescope and camera that provide an 8 arcminute beam at three observing bands (150, 250, and 410 GHz) and a 6.2 degree diffraction limited field of view to two large-format bolometer array focal planes. Polarimetry is achieved via a continuously rotating half-wave plate (HWP), and the optical system is designed from the ground up for control of sidelobe response and polarization systematic errors. EBEX is intended to execute fly or more Antarctic long duration balloon campaigns. In June 2009 EBEX completed a North American engineering flight launched from NASA's Columbia Scientific Ballooning Facility (CSBF) in Ft. Sumner, NM and operated in the stratosphere above 30 km altitude for ˜10 hours. During flight EBEX must be largely autonomous as it conducts pointed, scheduled observations; tunes and operates 1432 TES bolometers via 28 embedded Digital frequency-domain multiplexing (DfMux) computers; logs over 3 GiB/hour of science and housekeeping data to onboard redundant disk storage arrays; manages and dispatches jobs over a fault-tolerant onboard Ethernet network; and feeds a complex real-time data processing infrastructure on the ground via satellite and line-of-sight (LOS) downlinks. In this thesis we review the EBEX instrument, present the optical design and the computational architecture for in-flight control and data handling, and the quick-look software stack. Finally we describe the 2009 North American test flight and present analysis of data collected at the end of that flight that characterizes scan-synchronous signals and the expected response to emission from thermal dust in our galaxy.
METRO-APEX Volume 7.1: Air Pollution Control Officer's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Air Pollution Control Officer's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air…
VizieR Online Data Catalog: An ALMA survey of ECDFS submillimeter galaxies (Simpson+, 2014)
NASA Astrophysics Data System (ADS)
Simpson, J. M.; Swinbank, A. M.; Smail, I.; Alexander, D. M.; Brandt, W. N.; Bertoldi, F.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; da Cunha, E.; Danielson, A. L. R.; Dannerbauer, H.; Greve, T. R.; Hodge, J. A.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Poggianti, B. M.; Schinnerer, E.; Thomson, A. P.; Walter, F.; Wardlow, J. L.; Weiss, A.; van der Werf, P. P.
2017-07-01
In this study we undertake a multi-wavelength analysis of the ALMA-detected submm galaxies from the catalog presented by Hodge et al. (2013, J/ApJ/768/91) (see also Karim et al. 2013MNRAS.432....2K). To briefly summarize the observations, we obtained 120 s integrations of 122 of the original 126 LESS submm sources, initially identified using the LABOCA camera on the APEX telescope (Weiss et al. 2009, J/ApJ/707/1201). These Cycle 0 observations used the compact configuration, yielding a median synthesized beam of ~1.6"x1.2". The observing frequency was matched to the original LESS survey, 344 GHz (Band 7), and we reach a typical rms across our velocity-integrated maps of 0.4 mJy/beam. (3 data files).
NASA Technical Reports Server (NTRS)
2002-01-01
This image of the northern portion of the Nile River was captured by MISR's nadir camera on January 30, 2001 (Terra orbit 5956). The Nile is the longest river in the world, extending for about 6700 kilometers from its headwaters in the highlands of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to the east. Also visible in this image is the Suez Canal, a shipping waterway connecting Port Said on the Mediterranean Sea with the Gulf of Suez. The Gulf is an arm of the Red Sea, and is located on the righthand side of the picture. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.
Weak-Link Phenomena in AC-Biased Transition Edge Sensors
NASA Astrophysics Data System (ADS)
Gottardi, L.; Akamatsu, H.; Bruijn, M.; Gao, J.-R.; den Hartog, R.; Hijmering, R.; Hoevers, H.; Khosropanah, P.; Kozorezov, A.; van der Kuur, J.; van der Linden, A.; Ridder, M.
2014-08-01
It has been recently demonstrated that superconducting transition edge-sensors behave as weak-links due to longitudinally induced superconductivity from the leads with higher . In this work we study the implication of this behaviour for transition-edge sensors (TES)-based bolometers and microcalorimeter under ac bias. The TESs are read-out at frequencies between 1 and by a frequency domain multiplexer based on a linearised two-stage SQUID amplifier and high- lithographically made superconducting resonators. In particular, we focus on SRON TiAu TES bolometers with a measured dark noise equivalent power of developed for the short wavelength band for the instrument SAFARI on the SPICA telescope.
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Costen, Nick; Allen, Christine
2007-01-01
This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.
Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Degoda, V. Ya.; Dulger, L. L.; Dumoulin, L.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Pavlyuk, A. A.; Poda, D. V.; Trifonov, V. A.; Yushina, I. V.; Zolotarova, A. S.
2018-05-01
Lithium magnesium molybdate (Li2Mg2(MoO4)3) crystals were grown by the low-thermal-gradient Czochralski method. Luminescence properties of the material (emission spectra, thermally stimulated luminescence, dependence of intensity on temperature, phosphorescence) have been studied under X-ray excitation in the temperature interval from 8 to 400 K, while at the same being operated as a scintillating bolometer at 20 mK for the first time. We demonstrated that Li2Mg2(MoO4)3 crystals are a potentially promising detector material to search for neutrinoless double beta decay of 100Mo.
Lithographed spectrometers for tomographic line mapping of the Epoch of Reionization
NASA Astrophysics Data System (ADS)
O'Brient, R.; Bock, J. J.; Bradford, C. M.; Crites, A.; Duan, R.; Hailey-Dunsheath, S.; Hunacek, J.; LeDuc, R.; Shirokoff, E.; Staniszewski, Z.; Turner, A.; Zemcov, M.
2014-08-01
The Tomographic Ionized carbon Mapping Experiment (TIME) is a multi-phased experiment that will topographically map [CII] emission from the Epoch of Reionization. We are developing lithographed spectrometers that couple to TES bolometers in anticipation of the second generation instrument. Our design intentionally mirrors many features of the parallel SuperSpec project, inductively coupling power from a trunk-line microstrip onto half-wave resonators. The resonators couple to a rat-race hybrids that feeds TES bolometers. Our 25 channel prototype shows spectrally positioned lines roughly matching design with a receiver optical efficiency of 15-20%, a level that is dominated by loss in components outside the spectrometer.
In situ calibration of an infrared imaging video bolometer in the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; Pandya, S. N.
The InfraRed imaging Video Bolometer (IRVB) is a powerful diagnostic to measure multi-dimensional radiation profiles in plasma fusion devices. In the Large Helical Device (LHD), four IRVBs have been installed with different fields of view to reconstruct three-dimensional profiles using a tomography technique. For the application of the measurement to plasma experiments using deuterium gas in LHD in the near future, the long-term effect of the neutron irradiation on the heat characteristics of an IRVB foil should be taken into account by regular in situ calibration measurements. Therefore, in this study, an in situ calibration system was designed.
AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers
NASA Technical Reports Server (NTRS)
Gottardi, L.; van de Kuur, J.; Bandler, S.; Bruijn, M.; de Korte, P.; Gao, J. R.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.;
2011-01-01
SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions.
Low-Noise Wide Bandwith, Hot Electron Bolometer Mixers for Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
McGrath, W. R.
1995-01-01
Recently a novel superconductive hot-electron micro-bolometer has been proposed which is both fast and sensitive (D. E. Prober, Appl. Phys. Lett. 62, 2119, 1993). This device has several important properties which make it useful as a heterodyne sensor for radioastronomy applications at frequencies above 1 THz. The thermal response time of the device is fast enough, several 10's of picoseconds, to allow for IF's of several GHz. This bolometer mixer should operate well up to at least 10 THz. There is no energy gap limitation as in an SIS mixer, since the mixing process relies on heating of the electron gas. In fact, rf power is absorbed more uniformly above the gap frequency. The mixer noise should be near quantum-limited, and the local oscillator (LO) power requirement is very low: / 10 nW for a Nb device. One of the unique features of this device is that it employs rapid electron diffusion into a normal metal, rather than phonon emission, as the thermal conductance that cools the heated electrons. In order for diffusion to dominate over phonon emission, the device must be short, less than 0.5.
Bolometer detection of magnetic resonances in nanoscaled objects
NASA Astrophysics Data System (ADS)
Rod, Irina; Meckenstock, Ralf; Zähres, Horst; Derricks, Christian; Mushenok, Fedor; Reckers, Nathalie; Kijamnajsuk, Puchong; Wiedwald, Ulf; Farle, Michael
2014-10-01
We report on a nanoscaled thermocouple (ThC) as a temperature sensor of a highly sensitive bolometer for probing the dissipative damping of spin dynamics in nanosized Permalloy (Py) stripes. The Au-Pd ThC based device is fabricated by standard electron beam lithography on a 200 nm silicon nitride membrane to minimize heat dissipation through the substrate. We show that this thermal sensor allows not only measurements of the temperature change on the order of a few mK due to the uniform resonant microwave (MW) absorption by the Py stripe but also detection of standing spin waves of different mode numbers. Using a 3D finite element method, we estimate the absorbed MW power by the stripe in resonance and prove the necessity of using substrates with an extremely low heat dissipation like a silicon nitride membrane for successful thermal detection. The voltage responsivity and the noise equivalent power for the ThC-based bolometer are equal to 15 V W-1 and 3 nW Hz-1/2, respectively. The ThC device offers a magnetic resonance response of 1 nV/(μB W) corresponding to a sensitivity of 109 spins and a temperature resolution of 300 μK under vacuum conditions.
Far infrared through millimeter backshort-under-grid arrays
NASA Astrophysics Data System (ADS)
Allen, Christine A.; Abrahams, John; Benford, Dominic J.; Chervenak, James A.; Chuss, David T.; Staguhn, Johannes G.; Miller, Timothy M.; Moseley, S. Harvey; Wollack, Edward J.
2006-06-01
We are developing a large-format, versatile, bolometer array for a wide range of infrared through millimeter astronomical applications. The array design consists of three key components - superconducting transition edge sensor bolometer arrays, quarter-wave reflective backshort grids, and Superconducting Quantum Interference Device (SQUID) multiplexer readouts. The detector array is a filled, square grid of bolometers with superconducting sensors. The backshort arrays are fabricated separately and are positioned in the etch cavities behind the detector grid. The grids have unique three-dimensional interlocking features micromachined into the walls for positioning and mechanical stability. The ultimate goal of the program is to produce large-format arrays with background-limited sensitivity, suitable for a wide range of wavelengths and applications. Large-format (kilopixel) arrays will be directly indium bump bonded to a SQUID multiplexer circuit. We have produced and tested 8×8 arrays of 1 mm detectors to demonstrate proof of concept. 8×16 arrays of 2 mm detectors are being produced for a new Goddard Space Flight Center instrument. We have also produced models of a kilopixel detector grid and dummy multiplexer chip for bump bonding development. We present detector design overview, several unique fabrication highlights, and assembly technologies.
PACS photometer calibration block analysis
NASA Astrophysics Data System (ADS)
Moór, A.; Müller, T. G.; Kiss, C.; Balog, Z.; Billot, N.; Marton, G.
2014-07-01
The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5 % (standard deviation) or about 8 % peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2 % (stdev) or 2 % in the blue, 3 % in the green and 5 % in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic heat influences via the Kevlar wires which connect the bolometers with the PACS Focal Plane Unit. No aging effect or degradation of the photometric system during the mission lifetime has been found.
Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.
Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N
2017-12-01
Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.
NASA Astrophysics Data System (ADS)
Ramaswamy, Rahul
Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro watt range. Our studies suggest that such room temperature detectors from GaN semiconductor, with reasonable bandwidth, low LO power requirements and high sensitivity have numerous applications, ranging from precise identification of complex molecules, environmental monitoring of critical substances, remote detection of various pollutants in the atmosphere, and noninvasive medical imaging as well as a variety of applications for defense and homeland security.
NASA Astrophysics Data System (ADS)
Pattle, Kate; Ward-Thompson, Derek; Hasegawa, Tetsuo; Bastien, Pierre; Kwon, Woojin; Lai, Shih-Ping; Qiu, Keping; Furuya, Ray; Berry, David; JCMT BISTRO Survey Team
2018-06-01
We present the first high-resolution, submillimeter-wavelength polarimetric observations of—and thus direct observations of the magnetic field morphology within—the dense gas of the Pillars of Creation in M16. These 850 μm observations, taken as part of the B-Fields in Star-forming Region Observations Survey (BISTRO) using the POL-2 polarimeter on the Submillimeter Common-User Bolometer Array 2 (SCUBA-2) camera on the James Clerk Maxwell Telescope (JCMT), show that the magnetic field runs along the length of the Pillars, perpendicular to and decoupled from the field in the surrounding photoionized cloud. Using the Chandrasekhar–Fermi method we estimate a plane-of-sky magnetic field strength of 170–320 μG in the Pillars, consistent with their having been formed through the compression of gas with initially weak magnetization. The observed magnetic field strength and morphology suggests that the magnetic field may be slowing the Pillars’ evolution into cometary globules. We thus hypothesize that the evolution and lifetime of the Pillars may be strongly influenced by the strength of the coupling of their magnetic field to that of their parent photoionized cloud—i.e., that the Pillars’ longevity results from magnetic support.
Wire array K-shell sources on the SPHINX generator
NASA Astrophysics Data System (ADS)
D'Almeida, Thierry; Lassalle, Francis; Grunenwald, Julien; Maury, Patrick; Zucchini, Frédéric; Niasse, Nicolas; Chittenden, Jeremy
2014-10-01
The SPHINX machine is a LTD based Z-pinch driver operated by the CEA Gramat (France) and primarily used for studying K-shell radiation effects. We present the results of experiments carried out with single and nested large diameter aluminium wire array loads driven by a current of ~5 MA in ~800 ns. The dynamic of the implosion is studied with filtered X-UV time-integrated pin-hole cameras. The plasma electron temperature and the characteristics of the sources are estimated with time and spatially dependent spectrographs and PCDs. It is shown that Al K-shell yields (>1 keV) up to 27 kJ are obtained for a total radiation of ~ 230 kJ. These results are compared with simulations performed using the latest implementation of the non-LTE DCA code Spk in the 3D Eulerian MHD framework Gorgon developed at Imperial College. Filtered synthetic bolometers and PCD signals, time-dependent spatially integrated spectra and X-UV images are produced and show a good agreement with the experimental data. The capabilities of a prospective SPHINX II machine (20 MA ~ 800 ns) are also assessed for a wider variety of sources (Ti, Cu and W).
The HERSCHEL/PACS early Data Products
NASA Astrophysics Data System (ADS)
Wieprecht, E.; Wetzstein, M.; Huygen, R.; Vandenbussche, B.; De Meester, W.
2006-07-01
ESA's Herschel Space Observatory to be launched in 2007, is the first space observatory covering the full far-infrared and submillimeter wavelength range (60 - 670 microns). The Photodetector Array Camera & Spectrometer (PACS) is one of the three science instruments. It contains two Ge:Ga photoconductor arrays and two bolometer arrays to perform imaging line spectroscopy and imaging photometry in the 60 - 210 micron wavelength band. The HERSCHEL ground segment (Herschel Common Science System - HCSS) is implemented using JAVA technology and written in a common effort by the HERSCHEL Science Center and the three instrument teams. The PACS Common Software System (PCSS) is based on the HCSS and used for the online and offline analysis of PACS data. For telemetry bandwidth reasons PACS science data are partially processed on board, compressed, cut into telemetry packets and transmitted to the ground. These steps are instrument mode dependent. We will present the software model which allows to reverse the discrete on board processing steps and evaluate the data. After decompression and reconstruction the detector data and instrument status information are organized in two main PACS Products. The design of these JAVA classes considers the individual sampling rates, data formats, memory and performance optimization aspects and comfortable user interfaces.
Optical and IR applications in astronomy and astrophysics
NASA Astrophysics Data System (ADS)
McLean, Ian S.
2009-06-01
The set comprising silicon charge-coupled devices, low band-gap infrared arrays and bolometer arrays provide astronomers with position-sensitive photon detectors from the X-ray to the sub-mm. In recent years the most significant advances have occurred in the near-infrared part of the spectrum because not only have the detector formats caught up with those of charge-coupled device (CCDs) but also because the advent of adaptive optics (AO) has meant that the very largest telescopes can achieve their diffraction limit in the near-infrared. Thus infrared cameras, spectrometers and hybrid instruments that measure spatial and spectral information simultaneously are now commanding the greatest attention on telescopes from 6.5 to 10 m in effective aperture. Scientific applications of these new infrared instruments span everything from the search for nearby solar systems to the orbital motions of stars about the massive black hole at the center of the Milky Way, and studies of the first galaxies to form in the high redshift Universe. Background, principles and applications of infrared array detectors to astronomy and astrophysics will be discussed with particular emphasis on work at the W.M. Keck 10-m telescope on Mauna Kea, Hawaii.
Spectroscopic Capabilities and Possibilities of the Far Infrared and Submillimeter Telescope Mission
NASA Technical Reports Server (NTRS)
Pearson, J. C.
2000-01-01
The Far Infrared and Submillimeter Telescope (FIRST) mission is the fourth European Space Agency corner stone mission. FIRST will be an observatory with a passively cooled (80 Kelvin) 3.5 meter class telescope and three cryogenic instruments covering the 670 to 80 mm spectral region. The mission is slated for a 4.5 year operational lifetime in an L2 orbit. It will share an Arian 5 launch with PLANCK in early 2007. The three payload instruments include the Spectral and Photometric Imaging Receiver (SPIRE), which is a bolometer array with Martin-Puplett FTS for 200-670 microns, the Photoconductor Array Camera and Spectrometer (PACS), which is a photoconductor array with a grating spectrometer for 80-210 microns and the Heterodyne Instrument for FIRST (HIFI), which is a series of seven heterodyne receivers covering 480-1250 GHz and portions of 1410-1910 GHz and 2400-2700 GHz. FIRST will make many detailed spectral surveys of a wide variety of objects previously obscured by the atmosphere and in regions of the spectrum seldom used for astronomical observations, With all of the spectroscopic capability on FIRST a great deal of laboratory spectroscopic support will be needed for accurate interpretation of the spectral data.
Applications of superconducting bolometers in security imaging
NASA Astrophysics Data System (ADS)
Luukanen, A.; Leivo, M. M.; Rautiainen, A.; Grönholm, M.; Toivanen, H.; Grönberg, L.; Helistö, P.; Mäyrä, A.; Aikio, M.; Grossman, E. N.
2012-12-01
Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ~ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.
Performance analysis of a new positron camera geometry for high speed, fine particle tracking
NASA Astrophysics Data System (ADS)
Sovechles, J. M.; Boucher, D.; Pax, R.; Leadbeater, T.; Sasmito, A. P.; Waters, K. E.
2017-09-01
A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical region for tracking particles with low activities and high speeds. To determine the capabilities of this system a comprehensive analysis of the tracking performance was conducted to determine the 3D location error and location frequency as a function of tracer activity and speed. The 3D error was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m · s-1. For lower activity tracers (<10-2 MBq), the error was more sensitive to increases in speed, increasing to 28 mm (at 4 m · s-1), indicating that at these conditions a reliable trajectory is not possible. These results expanded on, but correlated well with, previous literature that only contained location errors for tracer speeds up to 1.5 m · s-1. The camera was also used to track directly activated mineral particles inside a two-inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the hydrocyclone, of a -212 + 106 µm (10-1 MBq) quartz particle displayed the expected spiralling motion towards the apex. This was the first time a mineral particle of this size had been successfully traced within a hydrocyclone, however more work is required to develop detailed velocity fields.
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Walters, Jerry L.
1991-01-01
Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.
Coppedè, Fabio; Lo Gerfo, Annalisa; Carlesi, Cecilia; Piazza, Selina; Mancuso, Michelangelo; Pasquali, Livia; Murri, Luigi; Migliore, Lucia; Siciliano, Gabriele
2010-02-01
Impairments in DNA repair enzymes have been observed in amyotrophic lateral sclerosis (ALS) tissues, particularly in the activity of the apurinic/apyrimidinic endonuclease 1 (APEX1). Moreover, it was suggested that the common APEX1 Asp148Glu polymorphism might be associated with ALS risk. To further address this question we performed the present study aimed at evaluating the contribution of the APEX1 Asp148Glu polymorphism in sporadic ALS (sALS) risk and clinical presentation, including age and site of onset and disease progression. We screened 134 sALS Italian patients and 129 matched controls for the presence of the APEX1 Asp148Glu polymorphism. No difference in APEX1 Asp148Glu allele and genotype frequencies was found between the groups, nor was the polymorphism associated with age and site of onset or disease progression. Present results do not support a role for the APEX1 Asp148Glu polymorphism in sALS pathogenesis in the Italian population.
Development of Low-Noise High Value Chromium Silicide Resistors for Cryogenic Detector Applications
NASA Technical Reports Server (NTRS)
Jhabvala, Murzy; Babu, Sachi; Monroy, Carlos; Darren, C.; Krebs, Carolyn A. (Technical Monitor)
2001-01-01
Extremely high sensitivity detectors, such as silicon bolometers are required in many NASA missions for detection of photons from the x-ray to the far infrared regions. Typically, these detectors are cooled to well below the liquid helium (LHe) temperature (4.2 K) to achieve the maximum detection performance. As photoconductors, they are generally operated with a load resistor and a pre-set bias voltage, which is then coupled to the input gate of a source-follower Field Effect Transistor (FET) circuit. It is imperative that the detector system signal to noise performance be limited by the noise of the detector and not by the noise of the external components. The load resistor value is selected to optimize the detector performance. These two criteria tend to be contradictory in that these detectors require load resistors in the hundreds of megaohms, which leads to a higher Johnson noise. Additionally, the physical size of the resistor must be small for device integration as required by such missions as the NASA High Resolution Airborne Wide-Band Camera (HAWC) instrument and the Submillimeter High Angular Resolution Camera (SHARC) for the Caltech Submillimeter Observatory (CSO). We have designed, fabricated and characterized thin film resistors using a CrSi/TiW/Al metal system on optical quality quartz substrates. The resistor values range from 100 megaohms to over 650 megaohms and are Johnson noise limited at LHe temperatures. The resistor film is sputtered with a sheet resistance ranging from 300 ohms to 1600 ohms and the processing sequence developed for these devices allows for chemically fine tuning the sheet resistance in-situ. The wafer fabrication process was of sufficiently high yield (>80%) providing clusters of good resistors for integrated multiple detector channels, a very important feature in the assembly of these two instruments.
Design of the SAC-D/NIRST camera module
NASA Astrophysics Data System (ADS)
Gauvin, Jonny; Châteauneuf, François; Marchese, Linda; Coté, Patrice; Leclerc, Mélanie; Chevalier, Claude; Marraco, Hugo; Phong, Linh N.
2007-09-01
Aquarius/SAC-D is a cooperative international mission conducted jointly by the National Aeronautics and Space Administration (NASA) of the United States of America (USA) and the Comisión Nacional de Actividades Espaciales (CONAE) of Argentina. The overall mission targets the understanding of the total Earth system and the consequences of the natural and man-made changes in the environment of the planet. Jointly developed by CONAE and the Canadian Space Agency (CSA), the New IR Sensor Technology (NIRST) instrument will monitor high temperature events on the ground related to fires and volcanic events, and will measure their physical parameters. Furthermore, NIRST will take measurements of sea surface temperatures mainly off the coast of South America as well as other targeted opportunities. NIRST has one band in the mid-wave infrared centered at 3.8 um with a bandwidth of 0.8 um, and two bands in the thermal infrared, centered respectively at 10.85 and 11.85 um with a bandwidth of 0.9 um. The temperature range is from 300 to 600 K with an NEDT < 0.5 K for the mid-infrared band and from 200 to 400 K with an NEDT < 0.4 K for the thermal bands. The baseline design of the NIRST is based on micro-bolometer technology developed jointly by INO and the CSA. Two arrays of 512x3 uncooled bolometric sensors will be used to measure brightness temperatures. The instantaneous field-of-view is 534 microradians corresponding to a ground sampling distance of 350 m at the subsatellite point. A pointing mirror allows a total swath of +/- 500 km. This paper describes the detailed design of the NIRST camera module. Key performance parameters are also presented.
Cholesterol granuloma of the petrous apex: CT diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.
Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.
Design of an adjustable bipod flexure for a large-aperture mirror of a space camera.
Liu, Bei; Wang, Wei; Qu, Yan-Jun; Li, Xu-Peng; Wang, Xiao; Zhao, Hui
2018-05-20
An adjustable bipod flexure (ABF) technique for a large-aperture mirror of a space camera is presented. The proposed flexure mount can decrease the surface distortions caused by the machining error and the assembly error of the mirror assembly (MA) in a horizontal optical testing layout. Through the analysis of the compliance matrix of conventional bipod flexure, the positional relationship between the rotation center and the apex of the flexure is investigated. Then, the principle of the adjustable flexure, known as the trapezoidal switching principle, is proposed based on the analysis result. The structure and application of the flexure are also described. The optical performance of the mirror mounted by the adjustable flexures in different misalignments was performed using finite element methods. The result shows that the astigmatic aberration due to gravity is effectively reduced by adjusting the mount, and the root-mean-square value of the mirror can be minimized with the misalignment between the flexure pivot and the neutral plane minimized. New monolithic bipod flexures, based on the optimal regulating variable Δ u according to the measurement results, are manufactured to replace the ABFs to secure the mirror's safety against launch loads. Modal analysis verified the mechanical safety of the MA with respect to the new monolithic flexures.
Simulation and Calculation of the APEX Attitude
1992-07-29
attitude computation. As a by-product, several interesting features that may be present in the APEX attitude behavior are noted. The APEX satellite...DEFINITION OF THE ATTITUDE Generally speaking, it is possible to define the spacecraft . ttitude in several ways, so long as the process of computation and...actual APEX attitude behavior . However, it is not the purpose of this work to assess the probable degree of attitude
Ataya, Farid Shokry; Fouad, Dalia; Malik, Ajamaluddin; Saeed, Hesham Mahmoud
2012-01-01
The domesticated one-humped camel, Camelus dromedarius, is one of the most important animals in the Arabian Desert. It is exposed most of its life to both intrinsic and extrinsic genotoxic factors that are known to cause gross DNA alterations in many organisms. Ionic radiation and sunlight are known producers of Reactive Oxygen Species (ROS), one of the causes for DNA lesions. The damaged DNA is repaired by many enzymes, among of them Base Excision Repair enzymes, producing the highly mutagenic apurinic/apyrimidinicsites (AP sites). Therefore, recognition of AP sites is fundamental to cell/organism survival. In the present work, the full coding sequence of a putative cAPEX1 gene was amplified for the first time from C. dromedarius by RT-PCR and cloned (NCBI accession number are HM209828 and ADJ96599 for nucleotides and amino acids, respectively). cDNA sequencing was deduced to be 1041 nucleotides, of which 954 nucleotides encode a protein of 318 amino acids, similar to the coding region of the APEX1 gene and the protein from many other species. The calculated molecular weight and isoelectric point of cAPEX1 using Bioinformatics tools was 35.5 kDa and 8.11, respectively. The relative expressions of cAPEX1 in camel kidney, spleen, lung and testis were examined using qPCR and compared with that of the liver using a 18S ribosomal subunit as endogenous control. The highest level of cAPEX1 transcript was found in the testis; 325% higher than the liver, followed by spleen (87%), kidney (20%) and lung (5%), respectively. The cAPEX1 is 94%–97% similar to their mammalian counterparts. Phylogenetic analysis revealed that cAPEX1 is grouped together with that of S. scrofa. The predicted 3D structure of cAPEX1 has similar folds and topology with the human (hAPEX1). The root-mean-square deviation (rmsd) between cAPEX1 and hAPEX1 was 0.582 and the Q-score was 0.939. PMID:22942721
NASA Astrophysics Data System (ADS)
Greve, T. R.; Weiβ, A.; Walter, F.; Smail, I.; Zheng, X. Z.; Knudsen, K. K.; Coppin, K. E. K.; Kovács, A.; Bell, E. F.; de Breuck, C.; Dannerbauer, H.; Dickinson, M.; Gawiser, E.; Lutz, D.; Rix, H.-W.; Schinnerer, E.; Alexander, D.; Bertoldi, F.; Brandt, N.; Chapman, S. C.; Ivison, R. J.; Koekemoer, A. M.; Kreysa, E.; Kurczynski, P.; Menten, K.; Siringo, G.; Swinbank, M.; van der Werf, P.
2010-08-01
Using the 330 hr ESO-MPG 870 μm survey of the Extended Chandra Deep Field South (ECDF-S) obtained with the Large Apex BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX), we have carried out a stacking analysis at submillimeter (submm) wavelengths of a sample of 8266 near-infra-red (near-IR) selected (K vega <= 20) galaxies, including 893 BzK galaxies, 1253 extremely red objects (EROs), and 737 distant red galaxies (DRGs), selected from the Multi-wavelength Survey by Yale-Chile (MUSYC). We measure average 870 μm fluxes of 0.22 ± 0.01 mJy (22.0σ), 0.48 ± 0.04 mJy (12.0σ), 0.39 ± 0.03 mJy (13.0σ), and 0.43 ± 0.04 mJy (10.8σ) for the K vega <= 20, BzK, ERO, and DRG samples, respectively. For the BzK, ERO, and DRG sub-samples, which overlap to some degree and are likely to be at z ~= 1-2, this implies an average far-IR luminosity of ~(1-5) × 1011 Lsun and star formation rate (SFR) of ~20-90 Msun . Splitting the BzK galaxies into star-forming (sBzK) and passive (pBzK) galaxies, the former is significantly detected (0.50 ± 0.04 mJy, 12.5σ) while the latter is only marginally detected (0.34 ± 0.10 mJy, 3.4σ), thus confirming that the sBzK and pBzK criteria to some extent select obscured, star-forming, and truly passive galaxies, respectively. The K vega <= 20 galaxies are found to contribute 7.27 ± 0.34 Jy deg-2 (16.5% ± 5.7%) to the 870 μm extragalactic background light (EBL). sBzK and pBzK galaxies contribute 1.49 ± 0.22 Jy deg-2 (3.4% ± 1.3%) and 0.20 ± 0.14 Jy deg-2 (0.5% ± 0.3%) to the EBL. We present the first delineation of the average submm signal from the K vega <= 20 selected galaxies and their contribution to the submm EBL as a function of (photometric) redshift, and find a decline in the average submm signal (and therefore IR luminosity and SFR) by a factor ~2-3 from z ~ 2 to z ~ 0. This is in line with a cosmic star formation history in which the star formation activity in galaxies increases significantly at z >~ 1. A linear correlation between the average 24 μm and 870 μm flux densities is found for the K vega <= 20 galaxies with 24 μm fluxes lsim350 μJy (corresponding to L IR ~= 1.5 × 1012 Lsun at z ~= 2), while at higher 24 μm fluxes there is no correlation. This behavior suggests that star formation, and not active galactic nuclei (AGNs), is in general responsible for the bulk of the mid-IR emission of L IR <~ 1.5 × 1012 Lsun systems, while in more luminous systems the AGN makes a significant contribution to the 24 μm emission. By mapping the stacked 870 μm signal across the B - z versus z - K diagram we have confirmed the ability of the sBzK selection criterion to select star-forming galaxies at z > 1, although our analysis suggests that the subset of sBzK galaxies which are also EROs are responsible for >80% of the submm emission from the entire sBzK population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y
2016-06-15
Purpose: To test the impact of the use of apex optimization points for new vaginal cylinder (VC) applicators. Methods: New “ClickFit” single channel VC applicators (Varian) that have a different top thicknesses but the same diameters as the old VC applicators (2.3 cm diameter, 2.6 cm, 3.0 cm, and 3.5 cm) were compared using phantom studies. Old VC applicator plans without apex optimization points were also compared to the plans with the optimization points. The apex doses were monitored at 5 mm depth doses (8 points) where a prescription dose (Rx) of 6Gy was prescribed. VC surface doses (8 points)more » were also analyzed. Results: The new VC applicator plans without apex optimization points presented significantly lower 5mm depth doses than Rx (on average −31 ± 7%, p <0.00001) due to their thicker VC tops (3.4 ± 1.1 mm thicker with the range of 1.2 to 4.4 mm) than the old VC applicators. Old VC applicator plans also showed a statistically significant reduction (p <0.00001) due to Ir-192 source anisotropic effect at the apex region but the % reduction over Rx was only −7 ± 9%. However, by adding apex optimization points to the new VC applicator plans, the plans improved 5 mm depth doses (−7 ± 9% over Rx) that were not statistically different from old VC plans (p = 0.923), along with apex VC surface doses (−22 ± 10% over old VC versus −46 ± 7% without using apex optimization points). Conclusion: The use of apex optimization points are important in order to avoid significant additional cold doses (−24 ± 2%) at the prescription depth (5 mm) of apex, especially for the new VC applicators that have thicker tops.« less
Force and moment measurements on a 74 deg delta wing with an apex flap
NASA Technical Reports Server (NTRS)
Buter, T. A.; Rao, D. M.
1984-01-01
Results are presented of a subsonic experimental investigation of an apex flap concept on a 74 deg swept delta wing with trailing-edge flaps. The apex flap comprised approximately 6 percent of the wing area forward of a transverse hinge, allowing for upward and downward deflection angles from +40 deg to -20 deg. Upward deflection forces leading-edge vortex formation on the apex flap, resulting in an increased lift component on the apex area. The associated nose-up moment balances the nose-down moment due to trailing-edge flaps, resulting in sizeable increase in the trimmed lift coefficient particularly at low angles of attack. Nose-down apex deflection may be used to augment the pitch control for rapid recovery from high-alpha maneuvers. This report presents the balance data without analysis.
Wang, Dongmiao; He, Xiaotong; Wang, Yanling; Zhou, Guangchao; Sun, Chao; Yang, Lianfeng; Bai, Jianling; Gao, Jun; Wu, Yunong; Cheng, Jie
2016-01-01
The present study was aimed to determine the topographic relationship between root apex of the mesially and horizontally impacted mandibular third molar and lingual plate of mandible. The original cone beam computed tomography (CBCT) data of 364 teeth from 223 patients were retrospectively collected and analyzed. The topographic relationship between root apex and lingual plate on cross-sectional CBCT images was classified as non-contact (99), contact (145) and perforation (120). The cross-sectional morphology of lingual plate at the level of root apex was defined as parallel (28), undercut (38), slanted (29) and round (4). The distribution of topographic relationship between root apex and lingual plate significantly associated with gender, impaction depth, root number and lingual plate morphology. Moreover, the average bone thickness of lingual cortex and distance between root apex and the outer surface of lingual plate were 1.02 and 1.39 mm, respectively. Furthermore, multivariate regression analyses identified impaction depth and lingual plate morphology as the risk factors for the contact and perforation subtypes between root apex and lingual plate. Collectively, our findings reveal the topographic proximity of root apex of impacted mandibular third molar to the lingual plate, which might be associated with intraoperative and postoperative complications during tooth extraction. PMID:27991572
Evaluation of detectable angle of mid-infrared slot antennas
NASA Astrophysics Data System (ADS)
Obara, R.; Horikawa, J.; Shimakage, H.; Kawakami, A.
2017-07-01
For evaluations of a mid-infrared (MIR) detectors with antenna, we constructed an angular dependence measurement system of the antenna properties. The fabricated MIR detector consisted of twin slot antennas and a bolometer. The area of the slot antennas was designed to be 2.6 × 0.2 μm2 as to resonate at 61 THz, and they were located parallel and separated 1.6 μm each other. The bolometer was fabricated using by a 7.0-nm thick NbN thin film, and located at the center of the twin antennas. We measured polarization angle dependence and directivity, and showed that the MIR antennas have polarization dependence and directivity like radiofrequency antennas.
Infrared bolometers with silicon nitride micromesh absorbers
NASA Technical Reports Server (NTRS)
Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.
1996-01-01
Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.
Design and construction of high-sensitivity, infrared bolometers for operation at 300 mK
NASA Technical Reports Server (NTRS)
Alsop, D. C.; Inman, C.; Lange, A. E.; Wibanks, T.
1992-01-01
The design and construction of 300-mK composite bolometers developed for millimeter-wave astronomical observations are described. Graphite fibers are used as the electrical leads for the thermistor to reduce the thermal conductance and heat capacity associated with the leads. A mechanical suspension made of Nylon fibers provides the required thermal conductance. Electrical noise equivalent powers below 1 x 10 exp -16 W/sq rt Hz have been achieved for detectors with thermal time constants of 11 ms. The detectors were installed in a millimeter-wave photometer and used to perform observations of the cosmic microwave background from a balloonborne platform. The flight performance was consistent with the measured laboratory properties.
A dynamic analysis of rotary combustion engine seals
NASA Technical Reports Server (NTRS)
Knoll, J.; Vilmann, C. R.; Schock, H. J.; Stumpf, R. P.
1984-01-01
Real time work cell pressures are incorporated into a dynamic analysis of the gas sealing grid in Rotary Combustion Engines. The analysis which utilizes only first principal concepts accounts for apex seal separation from the crochoidal bore, apex seal shifting between the sides of its restraining channel, and apex seal rotation within the restraining channel. The results predict that apex seals do separate from the trochoidal bore and shift between the sides of their channels. The results also show that these two motions are regularly initiated by a seal rotation. The predicted motion of the apex seals compares favorably with experimental results. Frictional losses associated with the sealing grid are also calculated and compare well with measurements obtained in a similar engine. A comparison of frictional losses when using steel and carbon apex seals has also been made as well as friction losses for single and dual side sealing.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group places the APEX-04 science kits into the Double Cold Bag (DCB), which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent. The cold bricks in the lower right of the photo are placed in the DCB prior to closure. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Employing Simulation to Evaluate Designs: The APEX Approach
NASA Technical Reports Server (NTRS)
Freed, Michael A.; Shafto, Michael G.; Remington, Roger W.; Null, Cynthia H. (Technical Monitor)
1998-01-01
The key innovations of APEX are its integrated approaches to task analysis, procedure definition, and intelligent, resource-constrained multi-tasking. This paper presents a step-by-step description of how APEX is used, from scenario development through trace analysis.
Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI
NASA Astrophysics Data System (ADS)
Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.
2014-09-01
We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Brasunas, J.
2012-01-01
The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.
A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less
Microwave SQUID multiplexer demonstration for cosmic microwave background imagers
NASA Astrophysics Data System (ADS)
Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.
2017-12-01
Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.
Methodology to set up nozzle-to-substrate gap for high resolution electrohydrodynamic jet printing
NASA Astrophysics Data System (ADS)
Park, Jaehong; Park, Ji-Woon; Nasrabadi, Ali Mohamadi; Hwang, Jungho
2016-09-01
Several efforts have been made for the prediction of jet diameter in electrohydrodynamic jet printing; however, not much attention has been paid to the jet length, which is the distance from the cone apex to the location where the jet is unstable and is broken into atomized droplets. In this study, we measured both the cone length and the jet length using a high-speed camera, and measured the line pattern width with an optical microscope to investigate the effects of cone length and jet length on the pattern quality. Measurements were carried out with variations in nozzle diameter, flow rate, and applied voltage. The pattern width was theoretically predicted for the case when the nozzle-to-substrate distance was more than the cone length, and smaller than the summation of the cone and jet lengths (which is the case when there is no jet breakup).
"Nile River Delta, Cairo and the Pyramids taken from Atlantis during STS-106"
2000-09-09
STS106-701-025 (8-20 September 2000) --- One of the STS-106 crew members on board the Space Shuttle Atlantis used a handheld 70mm camera to photograph this image of Cairo, Egypt, the largest city in Africa. Its population is nearly 16 million, a figure which translates to approximately 130,000 people per square mile. Metropolitan Cairo shows as a gray area in the green of the Nile River valley at the apex of the Delta. The shadows of the three major pyramids at Giza on the Western edge of the city are visible. They are right below the bright new road construction. This side of the metropolitan area is experiencing rapid growth. According to geologists who have been studying shuttle-to-Earth imagery for many years, this photograph documents some of the many changes in land use in the Western Desert.
Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes.
Meister, H; Willmeroth, M; Zhang, D; Gottwald, A; Krumrey, M; Scholze, F
2013-12-01
The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.
Superconducting Hot-Electron Submillimeter-Wave Detector
NASA Technical Reports Server (NTRS)
Karasik, Boris; McGrath, William; Leduc, Henry
2009-01-01
A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in order to make its heat capacity very small; this is the approach followed in developing the present device.
NASA Astrophysics Data System (ADS)
Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.
2014-09-01
The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm α-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far-infrared to submillimeter and millimeter regions of the electromagnetic spectrum.
Large mass bolometers for neutrinoless double beta decay detection: model and last results
NASA Astrophysics Data System (ADS)
Pedretti, Marisa; Barucci, Marco; Giuliani, Andrea; Pasca, Edoardo; Risegari, Lara; Olivieri, Emiliano; Ventura, Guglielmo
2004-01-01
Milano collaboration has been developing for many years large mass bolometers for particle detection, and in particular for the study of neutrinoless double beta decay of 130Te. The active components of the detectors are large mass (340 g and 790 g) TeO2 crystals, while Neutron Transmutation Doped Ge thermistors are used as phonon sensors. These devices work at low temperatures, about 5-10 mK. The mechanical and thermal connections of the detector to the thermal bath are made with PTFE pieces that hold the crystal on copper frames. Gold wires are used as electric connections. We have developed a complete thermal model for the bolometers and "ad hoc" measurements of the thermal parameters involved were performed in the Florence cryogenic laboratory. These studies have permitted to simulate the static and dynamic behaviours of the detectors. A satisfactory agreement between simulated and the experimental response has been obtained as far as the static behaviour is concerned, while the dynamic behaviour is not yet fully understood. These preliminary results however will enable us to design new detector structures in order to improve the signal-to-noise ratio and the reproducibility. Given the good performances of these devices (excellent energy resolutions were obtained, of the order of 2 keV at 911 keV and of 5 keV at 2615 keV), this technique is particularly suitable to detectors for gamma ray spectroscopy. Encouraged by this results, the Milano-Como group has joined a large international collaboration for the realization of CUORE (Cryogenic Underground Observatory for Rare Events), seraching for Dark Matter and neutrinoless Double Beta Decay, a crucial phenomenon for neutrino physics. The Cuoricino detector, a small scale test of CUORE detector, is an array of 62 large mass bolometers like those already described, and it is now in operation in the Gran Sasso undergrand laboratory, Italy). It is the largest array of bolometric detectors ever constructed.
Evolution mediates the effects of apex predation on aquatic food webs
Urban, Mark C.
2013-01-01
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance. PMID:23720548
Evolution mediates the effects of apex predation on aquatic food webs.
Urban, Mark C
2013-07-22
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.
21 CFR 870.2840 - Apex cardiographic transducer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Apex cardiographic transducer. 870.2840 Section 870.2840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2840 Apex...
21 CFR 870.2310 - Apex cardiograph (vibrocardiograph).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Apex cardiograph (vibrocardiograph). 870.2310 Section 870.2310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2310 Apex...
21 CFR 870.2310 - Apex cardiograph (vibrocardiograph).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Apex cardiograph (vibrocardiograph). 870.2310 Section 870.2310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2310 Apex...
21 CFR 870.2840 - Apex cardiographic transducer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Apex cardiographic transducer. 870.2840 Section 870.2840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2840 Apex...
APEX/SPIN: a free test platform to measure speech intelligibility.
Francart, Tom; Hofmann, Michael; Vanthornhout, Jonas; Van Deun, Lieselot; van Wieringen, Astrid; Wouters, Jan
2017-02-01
Measuring speech intelligibility in quiet and noise is important in clinical practice and research. An easy-to-use free software platform for conducting speech tests is presented, called APEX/SPIN. The APEX/SPIN platform allows the use of any speech material in combination with any noise. A graphical user interface provides control over a large range of parameters, such as number of loudspeakers, signal-to-noise ratio and parameters of the procedure. An easy-to-use graphical interface is provided for calibration and storage of calibration values. To validate the platform, perception of words in quiet and sentences in noise were measured both with APEX/SPIN and with an audiometer and CD player, which is a conventional setup in current clinical practice. Five normal-hearing listeners participated in the experimental evaluation. Speech perception results were similar for the APEX/SPIN platform and conventional procedures. APEX/SPIN is a freely available and open source platform that allows the administration of all kinds of custom speech perception tests and procedures.
Integrated focal plane arrays for millimeter-wave astronomy
NASA Astrophysics Data System (ADS)
Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas
2002-02-01
We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .
A dc-coupled, high sensitivity bolometric detector system for the Infrared Telescope in Space
NASA Technical Reports Server (NTRS)
Devlin, M.; Lange, A. E.; Wilbanks, T.; Sato, S.
1993-01-01
We report the performance of an ac bridge readout system that has been developed for use on the Infrared Telescope in Space which is scheduled for launch in 1994. The ac bridge readout provides excellent dc stability enabling observing strategies well-suited to space-borne observations. The ability to modulate the optical signal slowly allows the use of new, highly sensitive, long time-constant bolometers. At 300 mK, the bolometers have an electrical noise equivalent power of 3 x 10 exp -17 W/sq rt Hz. The total noise of the differential signal, including amplifier noise, is less than 8 x 10 exp -17 W/sq rt Hz at frequencies as low as 35 mHz.
An in-house manual for building APEX projects using ArcAPEX
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy Environmental eXtender (APEX) provides the foundation for water quality and natural resource analysis across a wide array of USDA initiatives, projects and programs. The model has been utilized in both the national Conservation Effects Assessment Project (CEAP) analysis and ...
Bacteria transport simulation using apex model in the toenepi watershed, New Zealand
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy/Environmental eXtender (APEX) model is a distributed, continuous, daily-timestep small watershed-scale hydrologic and water quality model. In this study, the newly developed fecal-derived bacteria fate and transport subroutine was applied and validated using APEX model. The ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Clearing and Outsourcing Solutions, Inc. as an Exchange Equities Member Organization and ATP Holder... Apex Clearing Corporation, f/k/a Ridge Clearing and Outsourcing Solutions, Inc. (``Apex Clearing'') as... to the Transaction, Apex Clearing's name was Ridge Clearing & Outsourcing Solutions, Inc. Prior to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Clearing and Outsourcing Solutions, Inc. (``Apex Clearing'') as a C2 Permit Holder, subject to Apex... Transaction, Apex Clearing's name was Ridge Clearing & Outsourcing Solutions, Inc. Prior to the transaction, Ridge Clearing & Outsourcing Solutions, Inc. contributed its outsourcing operations and all associated...
Bacteria transport simulation using APEX model in the Toenepi watershed, New Zealand
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy/Environmental eXtender (APEX) model is a distributed, continuous, daily-time step small watershed-scale hydrologic and water quality model. In this study, the newly developed fecal-derived bacteria fate and transport subroutine was applied and evalated using APEX model. The e...
Modeling the fate and transport of bacteria in agricultural and pasture lands using APEX
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy/Environmental eXtender (APEX) model is a whole farm to small watershed scale continuous simulation model developed for evaluating various land management strategies. The current version, APEX0806, does not have the modeling capacity for fecal indicator bacteria fate and trans...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
..., Adex Corporation, American Cybersystems, Inc., Apeiron, Inc., Apex Systems, Inc., ARC Partners, Inc..., Adex Corporation, American Cybersystems Inc., Apeiron Inc., Apex Systems Inc., ARC Partners Inc., Avion...., Cortech LLC, Adex Corporation, American Cybersystems Inc., Apeiron Inc., Apex Systems Inc., ARC Partners...
APEX simulation: environmental benefits of agroforestry and grass buffers on corn-soybean watersheds
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy Environmental Extender (APEX) model has the ability to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. The objectives of this study were to calibrate and validate the APEX model for three adjacent watersheds and...
Ahn, Hyo-Suk; Kim, Hyung-Kwan; Park, Eun-Ah; Lee, Whal; Park, Jae-Hyung; Sohn, Dae-Won
2013-10-01
In spite of the frequent involvement of many cardiac diseases, it is difficult to evaluate the left ventricular apex in detail with transthoracic echocardiography, a first-line imaging modality in cardiovascular diseases, because the apex is very closely located at the echocardiographic probe. Cardiac magnetic resonance enables us to evaluate the cardiac apex without any limitation to the image acquisition. We here present a case regarding a broad-based apical diverticulum, which was initially confused with apical aneurysm.
"Ring pledget": a new concept for secure apex closure during transapical aortic valve implantation.
Astarci, Parla; Glineur, David; Kefer, Joelle; Renkin, Jean; Vanoverschelde, Jean-Louis; El Khoury, Gebrine
2010-03-01
Transapical aortic valve implantation requires puncture of the left ventricle apex and insertion of a 32-French delivery sheath. A critical step in the procedure consists of secure closure of the ventricular apex. We describe 2 cases of apical rupture of 42 transapical aortic valve implantations. Furthermore, we describe the use of a newly designed single circular Teflon pledget that can help to avoid this complication. This pledget provides a more secure and uniform shrinkage of the entire apex to close the defect left by the delivery sheath.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group fits items into the Double Cold Bag (DCB) which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent.. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Cotton fiber tips have diverse morphologies and show evidence of apical cell wall synthesis
Stiff , Michael R.; Haigler, Candace H.
2016-01-01
Cotton fibers arise through highly anisotropic expansion of a single seed epidermal cell. We obtained evidence that apical cell wall synthesis occurs through examining the tips of young elongating Gossypium hirsutum (Gh) and G. barbadense (Gb) fibers. We characterized two tip types in Gh fiber (hemisphere and tapered), each with distinct apical diameter, central vacuole location, and distribution of cell wall components. The apex of Gh hemisphere tips was enriched in homogalacturonan epitopes, including a relatively high methyl-esterified form associated with cell wall pliability. Other wall components increased behind the apex including cellulose and the α-Fuc-(1,2)-β-Gal epitope predominantly found in xyloglucan. Gb fibers had only one narrow tip type featuring characters found in each Gh tip type. Pulse-labeling of cell wall glucans indicated wall synthesis at the apex of both Gh tip types and in distal zones. Living Gh hemisphere and Gb tips ruptured preferentially at the apex upon treatment with wall degrading enzymes, consistent with newly synthesized wall at the apex. Gh tapered tips ruptured either at the apex or distantly. Overall, the results reveal diverse cotton fiber tip morphologies and support primary wall synthesis occurring at the apex and discrete distal regions of the tip. PMID:27301434
NASA Astrophysics Data System (ADS)
Idris, N.; Maswati; Yusibani, E.
2018-05-01
The influence of the apex angle of a hollow prism used as a simple refractometer to the accuracy of a refractive index measurement of the edible oil samples was studied. The hollow prism was made from an ordinary commercial glass plate with a thickness of 2 mm. The apex angle of the constructed hollow prism was varied. The edible oil sample used in this study was palm oil, namely the packaged, branded oil sample and the bulk oil sample. For measuring the refractive index, the oil sample was filled in the constructed hollow prism, and then a helium-neon laser beam was passed through the oil sample at a certain angle of incidence. The angle of minimum deviation of the transmitted laser He-Ne beam was measured and then was used for calculating the refractive index of the oil sample. The refractive index measurement was made using the hollow prism with different apex angles, ranging from 300 to 600. The measurement accuracy was estimated by comparing the refractive index measured using the hollow prisms to that of obtained using a standard Abbe refractometer. It was found that the refractive index of the edible oil can be measured accurately by using the hollow prism. It was also found that the accuracy of the refractive index measurement significantly changes with the apex angle of the hollow prism. The refractive index values measured using this simple refractometer deviate up to 3,49% from the refractive index value measured using the standard Abbe refractometer, especially when the apex angle of the prism is 30°. The measurement results with high accuracies obtained when using the hollow prisms with apex angles of 450 and 600. The optimum apex angle for the present constructed hollow prism is 450. The refractive index obtained using the hollow prism with the apex angle of 450 is 1,4623 and 1,4438 for the bulk oil and the packed, branded oil samples, respectively. This result suggests that the apex angle of the prism used affects largely the accuracy of the refractive index measurement.
The subsurface of Pluto from submillimetre observations
NASA Astrophysics Data System (ADS)
Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.
2015-04-01
Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.
Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors
NASA Astrophysics Data System (ADS)
Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.
2016-07-01
Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.
NASA Astrophysics Data System (ADS)
Schuster, Norbert; Franks, John
2011-06-01
In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.
Reproductive responses of an apex predator to changing climatic conditions
Susan Rebecca Salafsky
2015-01-01
Apex predators are ideal subjects for evaluating the effects of changing climatic conditions on the productivity of forested landscapes, because the quality of their breeding habitat depends primarily on the availability of resources at lower trophic levels. Identifying the environmental factors that influence the reproductive output of apex predators can, therefore,...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... contracts and all customer and introducing broker proprietary accounts along with key personnel to Apex Clearing (the ``Transferring Accounts'').\\5\\ \\4\\ Prior to the Transaction, Apex Clearing's name was Ridge... Transferring Accounts by PFSI. On May 31, 2012, Apex Clearing submitted an application for approval as an...
77 FR 24483 - Kern River Gas Transmission Company; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... funds used during construction (AFUDC) capitalized as a component of the construction costs of its Apex Expansion project (Apex), by recording AFUDC on the Apex project as though it was compounded monthly during... Transmission Company; Notice of Filing Take notice that on March 29, 2012, Kern River Gas Transmission Company...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Outsourcing Solutions, Inc. (``Apex Clearing'') as a CBOE and CBSX Trading Permit Holder, subject to Apex... applicable to CBSX, including several rules in Chapter 3 of the CBOE rules related to the application process...'').\\4\\ \\3\\ Prior to the Transaction, Apex Clearing's name was Ridge Clearing & Outsourcing Solutions...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Ridge Clearing and Outsourcing Solutions, Inc. as an NYSE Member Organization, Subject to Apex Clearing... order to approve Apex Clearing Corporation, f/ k/a Ridge Clearing and Outsourcing Solutions, Inc... Transaction, Apex Clearing's name was Ridge Clearing & Outsourcing Solutions, Inc. Prior to the transaction...
USDA-ARS?s Scientific Manuscript database
The NTT (Nutrient Tracking Tool) was designed to provide an opportunity for all users, including producers, to simulate the complex models, such as APEX (Agricultural Policy Environmental eXtender) and associated required databases. The APEX model currently nested within NTT provides estimates of th...
Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy.
Martell, Jeffrey D; Deerinck, Thomas J; Sancak, Yasemin; Poulos, Thomas L; Mootha, Vamsi K; Sosinsky, Gina E; Ellisman, Mark H; Ting, Alice Y
2012-11-01
Electron microscopy (EM) is the standard method for imaging cellular structures with nanometer resolution, but existing genetic tags are inactive in most cellular compartments or require light and can be difficult to use. Here we report the development of 'APEX', a genetically encodable EM tag that is active in all cellular compartments and does not require light. APEX is a monomeric 28-kDa peroxidase that withstands strong EM fixation to give excellent ultrastructural preservation. We demonstrate the utility of APEX for high-resolution EM imaging of a variety of mammalian organelles and specific proteins using a simple and robust labeling procedure. We also fused APEX to the N or C terminus of the mitochondrial calcium uniporter (MCU), a recently identified channel whose topology is disputed. These fusions give EM contrast exclusively in the mitochondrial matrix, suggesting that both the N and C termini of MCU face the matrix. Because APEX staining is not dependent on light activation, APEX should make EM imaging of any cellular protein straightforward, regardless of the size or thickness of the specimen.
Information on the Advanced Plant Experiment (APEX) Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis Lee
The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, "Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing," Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J.more » King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.« less
Nakada, Tomoo; Motoyoshi, Mitsuru; Horinuki, Eri; Shimizu, Noriyoshi
2016-01-01
We investigated the effects of proximity of the root apex to the maxillary labial cortical plate, palatal cortical plate, and incisive canal cortical plate on apical root resorption. Cone-beam computed tomography was used to measure the amount of root resorption and root apex movement around maxillary right and left central incisors in 30 adults who underwent four-bicuspid extraction followed by treatment with multibracket appliances. The patients were divided into three groups on the basis of the direction of root apex movement, after which the correlation between the amount of root resorption and root apex movement was determined. Mean apical root resorption was 1.80 ± 0.82 mm (range, 0.18-3.96 mm). The amount of root apex movement was positively correlated with the amount of root resorption on the side of pressure. Root apex proximity to the maxillary labial cortical plate, palatal cortical plate, and incisive canal cortical plate was associated with apical root resorption. Orthodontic treatment plans should carefully consider root proximity to the maxillary cortical plate. (J Oral Sci 58, 231-236, 2016).
Electromagnetic Considerations for Planar Bolometer Arrays in the Single Mode Limit
NASA Technical Reports Server (NTRS)
Wollack, Edward J.; Chuss, David T.; Moseley, Samuel
2006-01-01
Filled arrays of planar bolometers are finding astronomical applications at wavelengths as long as several millimeters. In an effort to keep focal planes to a reasonable size while maintaining large numbers of detectors, a common strategy is to push these arrays to operate close to or at the single mode limit. Doing so introduces several new challenges that are not experienced in the multi-mode case of far-infrared detectors having similar pixel sizes. First, diffractive effects of the pixels themselves are no longer insignificant and will ultimately contribute to the resolution limit of the optical system in which they reside. We use the method of Withlngton et al. (2003) to model the polarized diffraction in this limit. Second, it is necessary to re-examine the coupling between the radiation and the absorbing element that is thermally connected to the bolometers. The small f-numbers that are often employed to make use of large focal planes makes backshort construction problematic. We introduce a new strategy to increase detector efficiency that uses an antireflective layer on the front side of the detector array. In addition, typical methods for stray light control that rely on multiple reflections in a lossy medium fail due to physical size constraints. For this application, we find that resonant absorbers are a more effective strategy that can be implemented in the space available.
Bolometric Array Detectors for Space-Borne Astronomy
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
2000-01-01
Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.
Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
NASA Astrophysics Data System (ADS)
Hubmayr, Johannes; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Benton, Steven J.; Bergman, A. Stevie; Bond, J. Richard; Bryan, Sean; Duff, Shannon M.; Duivenvoorden, Adri J.; Eriksen, H. K.; Filippini, Jeffrey P.; Fraisse, A.; Galloway, Mathew; Gambrel, Anne E.; Ganga, K.; Grigorian, Arpi L.; Gualtieri, Riccardo; Gudmundsson, Jon E.; Hartley, John W.; Halpern, M.; Hilton, Gene C.; Jones, William C.; McMahon, Jeffrey J.; Moncelsi, Lorenzo; Nagy, Johanna M.; Netterfield, C. B.; Osherson, Benjamin; Padilla, Ivan; Rahlin, Alexandra S.; Racine, B.; Ruhl, John; Rudd, T. M.; Shariff, J. A.; Soler, J. D.; Song, Xue; Ullom, Joel N.; Van Lanen, Jeff; Vissers, Michael R.; Wehus, I. K.; Wen, Shyang; Wiebe, D. V.; Young, Edward
2016-07-01
We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter spider. A primary science goal of spider is to measure the large-scale B-mode polarization of the cosmic microwave background (cmb) in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16x16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The spider receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7° FHWM Gaussian-shaped beams with <1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 x 10-17 W/√Hz, consistent with the phonon noise prediction.
Auxiliary Components for Kilopixel Transition Edge Sensor Arrays
NASA Technical Reports Server (NTRS)
Brown, Ari-David; Chervenak, James A.; Chuss, David; Hilton Gene C.; Mikula, Vilem; Henry, ROss; Wollack, Edward; Zhao, Yue
2007-01-01
We have fabricated transition edge sensor bolometer focal plane arrays sensitive to mm-submillimeter (0.1-3 THz) radiation for the Atacama Cosmology Telescope (ACT), which will probe the cosmic microwave background at 0.147,0.215, and 0.279 GHz. Central to the performance of these bolometers is a set of auxiliary resistive components. Here we discuss shunt resistors, which allow for tight optimization of bolometer time constant and sensitivity. Our shunt resistors consist of AuPd strips grown atop of interdigitated superconducting MoN, wires. We can tailor the shunt resistance by altering the dimensions of the AuPd strips and the pitch and width of the MoN, wires and can fabricate over 1000 shunts on a single 4" wafer. By modeling the resistance dependence of these parameters, a variety of different 0.77 +I-0.13 mOhm shunt resistors have been fabricated. This variety includes different shunts possessing MoN, wires with wire width equal to 1.5 and 10 microns and pitch equal to 4.5 and 26 microns, respectively. Our ability to set the resistance of the shunts hints at the scalability of our design. We have also integrated a Si02 capping layer into our shunt resistor fabrication scheme, which inhibits metal corrosion and eventual degradation of the shunt. Consequently, their robustness coupled with their high packing density makes these resistive components attractive for future kilopixel detector arrays.
Apex predator and the cyclic competition in a rock-paper-scissors game of three species
NASA Astrophysics Data System (ADS)
Souza-Filho, C. A.; Bazeia, D.; Ramos, J. G. G. S.
2017-06-01
This work deals with the effects of an apex predator on the cyclic competition among three distinct species that follow the rules of the rock-paper-scissors game. The investigation develops standard stochastic simulations but is motivated by a procedure which is explained in the work. We add the apex predator as the fourth species in a system that contains three species that evolve following the standard rules of migration, reproduction, and predation, and study how the system evolves in this new environment, in comparison with the case in the absence of the apex predator. The results show that the apex predator engenders the tendency to spread uniformly in the lattice, contributing to destroy the spiral patterns, keeping biodiversity but diminishing the average size of the clusters of the species that compete cyclically.
Ex vivo accuracy of an apex locator using digital signal processing in primary teeth.
Leonardo, Mário Roberto; da Silva, Lea Assed Bezerra; Nelson-Filho, Paulo; da Silva, Raquel Assed Bezerra; Lucisano, Marília Pacífico
2009-01-01
The purpose of this study was to evaluate ex vivo the accuracy an electronic apex locator during root canal length determination in primary molars. One calibrated examiner determined the root canal length in 15 primary molars (total=34 root canals) with different stages of root resorption. Root canal length was measured both visually with the placement of a K-file 1 mm short of the apical foramen or the apical resorption bevel, and electronically using an electronic apex locator (Digital Signal Processing). Data were analyzed statistically using the intraclass correlation (ICC) test. Comparing the actual and electronic root canal length measurements in the primary teeth showed a high correlation (ICC=0.95). The Digital Signal Processing apex locator is useful and accurate for apex foramen location during root canal length measurement in primary molars.
Dhanasekar, G; Jones, N S
2011-02-01
We report a case of cholesterol granuloma of the petrous apex which was surgically treated via an endoscopic trans-sphenoidal approach. Case report and review of the literature concerning cholesterol granulomas of the petrous apex and their management. The lesion was approached endoscopically via a bilateral sphenoidotomy with removal of the vomer. A large cholesterol granuloma was evacuated and marsupialised. The patient made an uneventful recovery. Trans-sphenoidal access to the petrous apex represents an alternative route for the drainage and ventilation of cholesterol granulomas. This approach is the technique of choice when the cholesterol granuloma abuts the posterior wall of the sphenoid sinus. The trans-sphenoid approach, unlike other lateral approaches to the petrous apex, spares cochlear and vestibular function and allows post-operative endoscopic follow up.
NASA Astrophysics Data System (ADS)
Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.
2017-12-01
Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations.
ElAyouti, A; Kimionis, I; Chu, A-L; Löst, C
2005-11-01
To assess ex vivo the accuracy of various electronic apex locators in locating the apical terminus of root-end resected teeth. Ninety extracted human posterior teeth (182 root canals) were prepared to a minimum size of 40 and filled with gutta-percha and sealer. After resection of the apical 3 mm of the root, the root canal filling was removed using HERO rotary instruments. The size of the root canal at the apical terminus after removal of the filling ranged from size 50 to 90. The root canal length to the apical terminus was determined using 3 apex locators (Root ZX, Raypex4 and Apex Pointer). A new mounting model that utilized a micrometer was used to perform the measurements and to visually determine the actual position of the apical terminus. The frequency of locating the apical terminus and the corresponding 95% confidence interval (CI) were calculated. Additionally, the coefficient of repeatability of each apex locator and the limits of inter-operator agreement were determined. All apex locators showed an acceptable repeatability (0.02-0.03 mm coefficient of repeatability) and narrow limits of inter-operator agreement (+0.07 and -0.07 mm). The accuracy of determining the apical terminus within 1 mm in the root canal was as follows: Root ZX 90% (164/182 root-canals) [95%CI: 86-94%], Raypex4 74% (135/182 root-canals) [95%CI: 68-80%], and Apex Pointer 71% (129/182 root canals) [95%CI: 65-77%]. No over-instrumentation resulted when the Root ZX device was used. In contrast, using the Raypex4 or the Apex Pointer device resulted in over-instrumentation in 8 of 182 root canals (4%). Under the conditions of this study all three apex locators were able to detect the apical terminus of root-end resected teeth with an acceptable range. The Root ZX device was the most accurate without over-instrumentation of the root canals.
Compositional Analysis of Martian Soil: Synergism of APEX and MECA Experiments on MPS 2001
NASA Technical Reports Server (NTRS)
Arvidson, R.; Marshall, J.
1999-01-01
The APEX (ATHENA Precursor Experiment) payload for the Mars 2001 mission will analyze soil and dust with a multispectral panoramic imager and an emission spectrometer on a mast on the lander, a Moessbauer spectrometer on the lander robotic arm (RA), and APXS measurements on the Marie Curie rover. These analytical methods will provide data on elemental abundances and mineralogy. The MECA payload on the lander will apply microscopy, AFM, wet chemistry, adhesive substrates, and electrometry to determine the shape and size of particles in the soil and dust, the presence of toxic substances, and electrostatic, magnetic, and hardness qualities of particles. The two experiments will complement one another through several interactions: (1) The panoramic imager provides the geological setting in which both APEX and MECA samples are acquired, (2) The RA provides samples to MECA from the surface and subsurface and will permit APEX analytical tools access to materials below the immediate surface, (3) Comparisons can be made between elemental analyses of the Moessbauer, IR, APXS on APEX and the wet chemistry of MECA which will define trace elements (ionic species in solution) and soil redox potential and conductivity. (4) APEX bulk compositional measurements will place MECA trace measurements in context, and similarly, MECA microscopy will provide particle size data that may correlate with compositional differences determined by the APEX instruments. Additionally, lithic fragments viewed by the MECA microscope station should correlate with mineral/rock species inferred by APEX data, (5) If APEX instruments detect quartz for example, the scratch plates of the MECA microscope stage will define if a mineral of this hardness is registered during abrasion tests. This is by no means an exhaustive list of potential interactions, but it is clear that both the sheer number of analytical techniques and their complementarity should provide an analytically powerful capability for both planetary and HEDS communities.
Compositional Analysis of Martian Soil: Synergism of APEX and MECA Experiments on MPS 2001
NASA Technical Reports Server (NTRS)
Arvidson, R.; Marshall, J.
1999-01-01
The APEX (ATHENA Precursor Experiment) payload for the Mars 2001 mission will analyze soil and dust with a multispectral panoramic imager and an emission spectrometer on a mast on the lander, a Moessbauer spectrometer on the lander robotic arm (RA), and APXS measurements on the Marie Curie rover. These analytical methods will provide data on elemental abundances and mineralogy. The MECA payload on the lander will apply microscopy, AFM, wet chemistry, adhesive substrates, and electrometry to determine the shape and size of particles in the soil and dust, the presence of toxic substances, and electrostatic, magnetic, and hardness qualities of particles. The two experiments will complement one another through several interactions: (1) The panoramic imager provides the geological setting in which both APEX and MECA samples are acquired, (2) The RA provides samples to MECA from the surface and subsurface and will permit APEX analytical tools access to materials below the inunediate surface, (3) Comparisons can be made between elemental analyses of the Moessbauer, IR, APXS on APEX and the wet chemistry of MECA which will define trace elements (ionic species in solution) and soil redox potential and conductivity. (4) APEX bulk compositional measurements will place MECA trace measurements in context, and similarly, MECA microscopy will provide particle size data that may correlate with compositional differences determined by the APEX instruments. Additionally, lithic fragments viewed by the NMCA microscope station should correlate with mineral/rock species inferred by APEX data, (5) If APEX instruments detect quartz for example, the scratch plates of the N4ECA microscope stage will define if a mineral of this hardness is registered during abrasion tests. This is by no means an exhaustive list of potential interactions, but it is clear that both the sheer number of analytical techniques and their complementarity should provide an analytically powerful capability for both planetary and BEDS communities.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovell, Jack, E-mail: jack.lovell@durham.ac.uk; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB; Naylor, Graham
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of themore » JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.« less
Fabrication of Low-Noise TES Arrays for the SAFARI Instrument on SPICA
NASA Astrophysics Data System (ADS)
Ridder, M. L.; Khosropanah, P.; Hijmering, R. A.; Suzuki, T.; Bruijn, M. P.; Hoevers, H. F. C.; Gao, J. R.; Zuiddam, M. R.
2016-07-01
Ultra-low-noise transition edge sensors (TES) with noise equivalent power lower than 2 × 10^{-19} W/Hz^{1/2 } have been fabricated by SRON, which meet the sensitivity requirements for the far-infrared SAFARI instrument on space infrared telescope for cosmology and astrophysics. Our TES detector is based on a titanium/gold (Ti/Au) thermistor on a silicon nitride (SiN) island. The island is thermally linked with SiN legs to a silicon support structure at the bath temperature. The SiN legs are very thin (250 nm), narrow (500 nm), and long (above 300 {\\upmu } m); these dimensions are needed in leg-isolated bolometers to achieve the required level of sensitivity. In this paper, we describe the latest fabrication process for our TES bolometers with improved sensitivity.
YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer
NASA Technical Reports Server (NTRS)
Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.
1993-01-01
Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.
Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy
NASA Astrophysics Data System (ADS)
Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John
We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.
Superconducting cuprate heterostructures for hot electron bolometers
NASA Astrophysics Data System (ADS)
Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.
2013-11-01
Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.
Temperature stability limits for an isothermal demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Kittel, P.
1984-01-01
It is pointed out that magnetic refrigeration can provide additional cooling for infrared detectors on space missions, taking into account the Shuttle Infrared Telescope Facility (SIRTF) and the Large Deployable Reflector (LDR). From a temperature of 2 K provided by the primary cryogens, magnetic refrigerators could cool bolometers or pumped photoconductors to 0.1 K or below. Such a reduction in operating temperature would increase the sensitivity for bolometers, while the response at longer wavelengths for pumped photoconductors would be improved. Two types of magnetic refrigeration cycles have been proposed. One type uses a complete demagnetization. The present investigation is concerned with the second type, which uses a feedback-controlled isothermal demagnetization, taking into account the temperature stability limits. Attention is given to control system resolution, thermometer noise, reaction time, and thermal time constants.
Smith, Evan M; Panjwani, Deep; Ginn, James; Warren, Andrew P; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Nath, Janardan; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E; Shelton, David
2016-03-10
Infrared-absorbing gold black has been selectively patterned onto the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves much of gold black's high absorptance. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. For our fabricated devices, infrared responsivity is improved 22% in the long-wave IR and 70% in the mid-wave IR by the gold black coating, with no significant change in detector noise, using a 300°C blackbody and 80 Hz chopping rate. The increase in the time constant caused by the additional mass of gold black is ∼15%.
Low Noise in a Diffusion-Cooled Hot-Electron Mixer at 2.5 THz
NASA Technical Reports Server (NTRS)
Karasik, B. S.; Gaidis, M. C.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.
1997-01-01
The noise performance of a Nb hot-electron bolometer mixer at 2.5 THz has been investigated. The devices are fabricated from a 12-nm-thick Nb film, and have a 0.30 micrometer x 0.15 micrometer in-plane size, thus exploiting diffusion as the electron cooling mechanism. The rf coupling was provided by a twin-slot planar antenna on an elliptical Si lens. The experimentally measured double sideband noise temperature of the receiver was as low as 2750 +/- 250 K with an estimated mixer noise temperature of approximately equal 900 K. The mixer bandwidth derived from both noise bandwidth and IF impedance measurements was approximately equal 1.4 GHz. These results demonstrate the low-noise operation of the diffusion-cooled bolometer mixer above 2 THz.
Advanced Plant Experiment, APEX-4
2017-03-10
Advanced Plant Experiment, APEX-4, support in the Telescience Support Center at NASA Glenn. APEX-4 continues a highly successful investigation into the effects of microgravity on the development of roots and cells on plant seedlings. After four days of growth, the petri plate will be inserted into the Fluids Integrated Rack (FIR) Light Microscopy Module (LMM) facility for detailed imaging.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Rules and Procedures in Order To Approve Apex Clearing Corporation, f/k/a Ridge Clearing and Outsourcing... Clearing Corporation, f/k/a Ridge Clearing and Outsourcing Solutions, Inc. (``Apex Clearing'') as an NSX... regarding the application process for ETP Holders in order to immediately approve Apex Clearing as an NSX...
77 FR 5730 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... necessary; and, for certain MLG shock strut assemblies, replacement or rework of the apex nut. Since we...) Replacement or Rework of the Apex Nut for Model CL-600-2C10 Airplanes For any MLG shock strut assembly... hours after May 18, 2011, replace or rework the apex nut, in accordance with Part B of the...
METRO-APEX Volume 17.1: Industrialist's Manual No. 7, Shick Cannery. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Industrialist's Manual No. 7 (Shick Cannery) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of…
METRO-APEX Volume 19.1: City Manager and County Administrative Officer's Manual. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The City Manager and County Administrative Officer's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an…
The Air Pollutants Exposure Model (APEX(3.0)) is a PC-based model that was derived from the probabilistic NAAQS Exposure Model for carbon monoxide (pNEM/CO). APEX will be one of the tools used to estimate human population exposure for criteria and air toxic pollutants as part ...
METRO-APEX Volume 13.1: Industrialist's Manual No. 3, Rusty's Iron Foundry. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Industrialist's Manual No. 3 (Rusty's Iron Foundry) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion…
METRO-APEX Volume 11.1: Industrialists' Manual No. 1, Shear Power Company. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Industrialist's Manual No. 1 (Shear Power Company) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion…
METRO-APEX Volume 12.1: Industrialist's Manual No. 2, People's Pulp Plant. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Industrialist's Manual No. 2 (People's Pulp Plant) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion…
METRO-APEX Volume 15.1: Industrialist's Manual No. 5, Caesar's Rendering Plant. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Industrialist's Manual No. 5 (Caesar's Rendering Plant) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an…
METRO-APEX Volume 16.1: Industrialist's Manual No. 6, Dusty Rhodes Cement Company. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Industrialist's Manual No. 6 (Dusty Rhodes Cement Company) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an…
METRO-APEX Volume 14.1: Industrialist's Manual No. 4, Gestalt Malt Brewery. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Industrialist's Manual No. 4 (Gestalt Malt Brewery) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion…
Patient position alters attenuation effects in multipinhole cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca
2015-03-15
Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic andmore » a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The position-dependent changes were removed with attenuation correction. Conclusions: Translation of a source relative to a multipinhole camera caused only small changes in homogeneous phantoms with SPS changing <1.5. Inhomogeneous attenuating media cause much larger changes to occur when the source is translated. Changes in SPS of up to six were seen in an anthropomorphic phantom for axial translations. Attenuation correction removes the position-dependent changes in attenuation.« less
Apex Reference Manual 3.0 Beta
NASA Technical Reports Server (NTRS)
Freed, Michael A.
2005-01-01
Apex is a toolkit for constructing software that behaves intelligently and responsively in demanding task environments. Reflecting its origin at NASA where Apex continues to be developed, current applications include: a) Providing autonomous mission management and tactical control capabilities for unmanned aerial vehicles including an autonomous surveillance helicopter and a simulation prototype of an unmanned fixed-wing aircraft to be used for wildfire mapping; b) Simulating human air traffic controllers, pilots and astronauts to help predict how people might respond to changes in equipment or procedures; and c) Predicting the precise duration and sequence of routine human behaviors based on a human-computer interaction engineering technique called CPM-GOMS. Among Apex s components are a set of implemented reasoning services, such as those for reactive planning and temporal pattern recognition; a software architecture that embeds and integrates these services and allows additional reasoning elements to be added as extensions; a formal language for specifying agent knowledge; a simulation environment to facilitate prototyping and analysis; and Sherpa, a set of tools for visualizing autonomy logic and runtime behavior. In combination, these are meant to provide a flexible and usable framework for creating, testing, and deploying intelligent agent software. Overall, our goal in developing Apex is to lower economic barriers to developing intelligent software agents. New ideas about how to extend or modify the system are evaluated in terms of their impact in reducing the time, expertise, and inventiveness required to build and maintain applications. For example, potential enhancements to the AI reasoning capabilities in the system are reviewed not only for usefulness and distinctiveness, but also for their impact on the readability and general usability of Apex s behavior representation language (PDL) and on the transparency of resulting behavior. A second central part of our approach is to iteratively refine Apex based on lessons learned from as diverse a set of applications as possible. Many applications have been developed by users outside the core development team including engineers, researchers, and students. Usability is thus a central concern for every aspect of Apex visible to a user, including PDL, Sherpa, the Apex installation process, APIs, and user documentation. Apex users vary in their areas of expertise and in their familiarity with autonomy technology. Focusing on usability, a development philosophy summarized by the project motto "Usable Autonomy," has been important part of enabling diverse users to employ Apex successfully and to provide feedback needed to guide iterative, user-centered refinement.
Gharechahi, Maryam; Ghoddusi, Jamileh
2012-02-01
The authors' objective in this case report is to demonstrate an effective nonsurgical endodontic treatment in open-apex teeth affected by dens invaginatus (DI) by using a collagen membrane as an apical barrier and using a mineral trioxide aggregate (MTA) apical plug. . The authors present two cases of DI with open apexes in maxillary lateral incisors. In the first case, an adolescent had bilateral Oehlers type II DI and extensive periradicular radiolucency, internal root resorption and a vestibular fistula in the left maxillary lateral incisor. In the second case, an adult had Oehlers type II DI and an incomplete apex in the left maxillary lateral incisor. For both patients, the clinician placed a collagen membrane through the apexes of the left maxillary incisors to provide a resorbable extraradicular barrier against which MTA cement could be packed. The clinician obturated the adolescent's right lateral incisor. In the adolescent, the vestibular sinus tract was closed after one week. At subsequent follow-up examinations, the periradicular regions were completely healed, and postoperative radiographs revealed good bone healing in the lateral incisors. The teeth were asymptomatic and healing was achieved without any need for further endodontic surgical intervention. In the adult patient, the tooth was symptom free after one week, and radiography performed six months after the procedure showed complete healing. and Despite complex anatomy and diagnoses of DI and open apexes, both patients successfully underwent nonsurgical endodontic treatment involving the use of a collagen membrane and an MTA apical plug. Using an extraradicular barrier clinically can help improve the adaptation of MTA in the apexes of open-apex teeth to achieve a complete seal.
Tayebi Meybodi, Ali; Benet, Arnau; Rodriguez Rubio, Roberto; Yousef, Sonia; Lawton, Michael T
2018-03-03
The orbitozygomatic approach is generally advocated over the pterional approach for basilar apex aneurysms. However, the impact of the extensions of the pterional approach on the obtained maneuverability over multiple vascular targets (relevant to basilar apex surgery) has not been studied before. To analyze the patterns of surgical freedom change across the basilar bifurcation between the pterional, orbitopterional, and orbitozygomatic approaches. Surgical freedom was assessed for 3 vascular targets important in basilar apex aneurysm surgery (ipsilateral and contralateral P1-P2 junctions, and basilar apex), and compared between the pterional, orbitopterional, and orbitozygomatic approaches in 10 cadaveric specimens. Transitioning from the pterional to orbitopterional approach, the surgical freedom increased significantly at all 3 targets (P < .05). However, the gain in surgical freedom declined progressively from the most superficial target (60% for ipsilateral P1-P2 junction) to the deepest target (35% for contralateral P1-P2 junction). Conversely, transitioning from the orbitopterional to the orbitozygomatic approach, the gain in surgical freedom was minimal for the ipsilateral P1-P2 and basilar apex (<4%), but increased dramatically to 19% at the contralateral P1-P2 junction. The orbitopterional approach provides a remarkable increase in surgical maneuverability compared to the pterional approach for the basilar apex target and the relevant adjacent arterial targets. However, compared to the orbitopterional, the orbitozygomatic approach adds little maneuverability except for the deepest target (ie, contralateral P1-P2 junction). Therefore, the orbitozygomatic approach may be most efficacious with larger basilar apex aneurysms limiting the control over of the contralateral P1 PCA.
Sub-millimeter science with the Heinrich-Hertz-Telescope
NASA Astrophysics Data System (ADS)
Dumke, Michael
The Heinrich-Hertz-Telescope on Mt. Graham, Arizona, is a state-of-the-art single-dish radio telescope for observations in the sub-millimeter wavelength range. It is operated by the Sub-Millimeter Telescope Observatory (SMTO), which is a collaboration between the University of Arizona, Tucson, and the Max-Planck-Institut für Radioastronomie, Bonn. In this talk I give an overview over the telescope and its instrumentation, and show some examples of forefront research performed by astronomers from both the U.S. and Europe using this instrument. The telescope is located on Mt. Graham, Arizona, at an altitude of 3178 m, which ensures sub-mm weather conditions during a significant amount of available observing time. It has a primary reflector of 10 m diameter, mounted on a carbon fiber backup structure, and is equipped with a corotating enclosure. The surface accuracy of the primary reflector is 12 microns rms, what makes the HHT the most accurate radio telescope ever built. For spectral line observations, SIS receivers covering the frequency range from 200 to 500 GHz are available. Furthermore, a Hot-Electron-Bolometer, developed at the CfA, can be used for spectral line observations above 800 GHz. The continuum receivers are a 4-color bolometer, observing at 1300, 870, 450, and 350 microns, and a 19-channel bolometer array, developed at the MPIfR, which is sensitive around 850 microns. In the last few years, the HHT has been used by several groups to perform astronomical research. The most notable result was the measurement of the CO(9--8) line in Orion at 1.037 THz with the Hot-Electron Bolometer -- the first radioastronomical observation above 1 THz from a ground-based telescope. Several galactic molecular line sources have been mapped in the CO(7--6) line at 806 GHz, and in two fine-structure lines of atomic carbon. A continuum map of the galactic center at 850 microns could be produced using the new 19-channel bolometer array. Even external galaxies, where molecular line emission can be observed at much smaller brightness temperatures, could be mapped in the higher CO transitions. While CO(7--6) studies have been restricted to starburst galaxies like M 82 in the past, the CO(4--3) and especially the CO(3--2) line could be mapped also in fairly normal galaxies, showing that the warmer and denser gas is distributed throughout the galactic disks. Recently several nearby galaxies of different types could be mapped also in the continuum emission at 850 microns, allowing the determination of dust properties in various environments. Some interesting results following from observations with the Heinrich-Hertz-Telescope will be shown in this talk, with some emphasis on extragalactic astronomy.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.
1990-01-01
The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.
The design and performance of high resolution échelle spectrographs in astronomy
NASA Astrophysics Data System (ADS)
Barnes, Stuart
The design and performance of several high resolution spectrographs for use in astronomy will be described. After a basic outline of the required theory, the design and performance of HERCULES will be presented. HERCULES is an R2 spectrograph fibre-fed from the MJUO 1-m telescope. The échelle grating has 31.6 grooves/mm and it uses a BK7 prism with a 50° apex angle in double-pass for cross-dispersion. A folded Schmidt camera is used for imaging. With a detector having an area 50 x 50 mm, and pixels less than 25 µm, HERCULES is capable of resolving powers of 40,000 to 80,000 and wavelength coverage from 380 to 880 nm. The total throughput (from the fibre entrance to the CCD) is expected to be nearly 20% (in 1" seeing). Measured efficiencies are only slightly less than this. HERCULES is also shown to be capable of excellent radial velocity precision with no apparent difference between long-term and short-term stability. Several significant upgrade options are also described. As part of the evolution of the design of a high resolution spectrograph for SALT, several instruments were developed for 10-metre class telescopes. Early designs, based in part on the successful HERCULES design, did not meet the requirements of a number of potential users, due in particular to the limited ability to inter-leave object and sky orders. This resulted in the design of SALT HRS R2 which uses a mosaic of two 308 x 413 mm R2 échelle gratings with 87 grooves/mm. Cross-dispersion is achieved with a pair of large 40° apex angle BK7 prisms used in double-pass. The échelle grating accepts a 365-mm collimated beam. The camera is a catadioptric system having a 1.2-m primary mirror and three lenses made of BK7 each around 850 mm in diameter. Complete unvignetted (except by the CCD obstruction) wavelength coverage from 370nm to 890nm is possible on a mosaic of three 2k by 4k CCDS with 15 µm pixels. A maximum resolving power of R ≈ 80,000 is possible. For immunity to atmospheric pressure and temperature changes the entire spectrograph is designed to be housed inside either a helium atmosphere or a light vacuum. The spectrograph chamber is nearly seven metres long. An alternative to the R2 SALT HRS is also described. This instrument is an R4 dual beam spectrograph based on a white pupil layout. The design is based on suggestions by B. Delabre and follows closely this authors SOAR HRS instrument. SALT HRS R4 uses volume-phased holographic gratings for cross-dispersion and a 836 x 204 mm échelle grating with 41.6 grooves/mm. The grating will be replicated from two smaller gratings onto a single Zerodur blank. The spectrograph is split into blue and red arms by a dichroic located near the white pupil relay intermediate focus. Wavelengths from 370 nm to 890 nm are covered by two fixed format blue and red dedicated dioptric cameras. The detectors will be a single 2k by 4k CCD with 15 µm pixels for the blue camera and a 4k by 4k CCD with 15 µm pixels for the red. The size of the cameras is reduced significantly by white pupil demagnification from an initial 200-mm diameter collimated beam incident on the échelle grating to around 100 mm (in undispersed light) on the VPH gratings. The final SALT HRS R4 instrument is also designed to be immersed in a vacuum vessel which is considerably smaller than that proposed for the R2 spectrograph. SALT HRS R4 is currently being developed in detail and will be presented for a critical design review in 2005 April.
New Sub-Millimetre Light in the Desert
NASA Astrophysics Data System (ADS)
2005-07-01
The Atacama Pathfinder Experiment (APEX) project has just passed another major milestone by successfully commissioning its new technology 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, has just performed its first scientific observations. This new front-line facility will provide access to the "Cold Universe" with unprecedented sensitivity and image quality. Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project is excited: " Among the first observations, we have obtained wonderful spectra, which took only minutes to take but offer a fascinating view of the highly complex organic chemistry in star-forming regions. In addition, we have also obtained exquisite images from the Magellanic Clouds and observed molecules in the active nuclei of several external galaxies. Traditionally, telescopes turn to weak extragalactic sources only after they are well in operation. With APEX, we could pick them amongst our first targets!" Because sub-millimetre radiation from space is heavily absorbed by water vapour in the Earth's atmosphere, APEX is located at an altitude of 5100 metres in the high Chilean Atacama desert on the Chajnantor plains, 50 km east of San Pedro de Atacama in northern Chile. The Atacama desert is one of the driest places on Earth, thus providing unsurpassed observing opportunities - at the costs of the demanding logistics required to operate a frontier science observatory at this remote place. Along with the Japanese 10-m ASTE telescope, which is operating at a neighbouring, lower altitude location, APEX is the first and largest sub-millimetre facility under southern skies. With its precise antenna and large collecting area, it will provide, at this exceptional location, unprecedented access to a whole new domain in astronomical observations. Indeed, millimetre and sub-millimetre astronomy opens exciting new possibilities in the study of the first galaxies to have formed in the Universe and of the formation processes of stars and planets. APEX will, among other things, allow astronomers to study the chemistry and physical conditions of molecular clouds, that is, dense regions of gas and dust in which new stars are forming. APEX follows in the footsteps of the 15m Swedish-ESO Submillimetre Telescope (SEST) which was operated at ESO La Silla from 1987 until 2003 in a collaboration between ESO and the Onsala Space Observatory. SEST operated in the wavelength range from 0.8 to 3 mm. Says Catherine Cesarsky, ESO's Director General: "SEST was for a long time the only instrument of its kind in the southern hemisphere. With it, ESO and our collaborators have gained valuable operational experience with regard to ground-based observations in the non-optical spectral domain. With APEX, we offer the ESO community a most exciting new facility that will pave the way for ALMA." As its name implies, APEX is the pathfinder to the ALMA project. It is indeed a modified ALMA prototype antenna and is located at the future site of the ALMA observatory. ALMA is planned to consist of a giant array of 12-m antennas separated by baselines of up to 14 km and is expected to start operation by the end of the decade. It will bring to sub-millimetre astronomy the aperture synthesis techniques of radio astronomy, enabling precision imaging to be done on sub-arcsecond angular scales, and will so nicely complement the ESO VLT/VLTI observatory. In order to operate at the shorter sub-millimetre wavelengths, APEX presents a surface of exceedingly high quality: after a series of high precision adjustments, the APEX project team was able to adjust the surface of the mirror with remarkable precision: over the 12m diameter of the antenna, the deviation from the perfect parabola is now less than 17 thousandths of a millimetre. This is smaller than one fifth of the average thickness of a human hair! "From the engineering point of view, APEX is already a big success and its performance surpasses our expectations", says APEX Project Manager Rolf Güsten. "This could only be achieved thanks to the highly committed teams from the constructor, from the MPIfR and from the APEX project whose endless hours of work, often at high altitudes, made this project become reality." In parallel to the construction and commissioning of the APEX telescope, a demanding cutting-edge technology program has been launched to provide the best possible detectors for this outstanding facility. For its first observations, APEX was equipped with state-of-the-art sub-millimetre spectrometers developed by MPIfR's Division for Sub-Millimetre Technology and, more recently, with the first facility receiver built at Chalmers University (OSO). APEX is a collaboration between the Max-Planck-Institute for Radio Astronomy (MPIfR), Onsala Space Observatory (OSO), and the European Organisation for Astronomical Research in the Southern Hemisphere (ESO). The telescope was designed and constructed by VERTEX Antennentechnik GmbH (Germany), under contract by MPIfR, and is based on a prototype antenna constructed for the ALMA project. Operation of APEX in Chajnantor is entrusted to ESO. Background information on sub-millimetre astronomy and on the first APEX results can be found as PDF files on the APEX Fact Sheets page. A press release in German was also issued by the Max-Planck Society.
M.E.T.R.O.-Apex Gaming Simulation, Volume 28 (OS/360 Version).
ERIC Educational Resources Information Center
Michigan Univ., Ann Arbor. Environmental Simulation Lab.
Operator's instructions and technical support materials needed for processing the M.E.T.R.O.-APEX (Air Pollution Exercise) game decisions on an IBM 360 computer are compiled in this volume. M.E.T.R.O.-APEX is a computerized college and professional level "real world" simulation of a community with urban and rural problems, industrial activities,…
Coding Instructions, Worksheets, and Keypunch Sheets for M.E.T.R.O.-APEX Simulation.
ERIC Educational Resources Information Center
Michigan Univ., Ann Arbor. Environmental Simulation Lab.
Compiled in this resource are coding instructions, worksheets, and keypunch sheets for use in the M.E.T.R.O.-APEX simulation, described in detail in documents ED 064 530 through ED 064 550. Air Pollution Exercise (APEX) is a computerized college and professional level "real world" simulation of a community with urban and rural problems, industrial…
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
An In Vitro Comparison of Propex II Apex Locator to Standard Radiographic Method
Chakravarthy Pishipati, Kalyan Vinayak
2013-01-01
Introduction The aim of this in vitro study was to compare the accuracy of radiography in assessing working length to Propex II apex locator. Materials and Methods Thirty single canal extracted human teeth with patent apical foramen were selected. Access cavities were prepared. Anatomic length (AL) was determined by inserting a K-file into the root canal until the file tip was just visible at the most coronal aspect of the apical foramen; subsequently 0.5 mm was deducted from this measured length. Working length by radiographic method (RL) was determined using Ingle’s method. Propex II apex locator was used to determine the electronic working length (EL). From these calculated lengths, AL was deducted to obtain D-value. D-value in the range of +/-0.5 mm was considered to be acceptable. Results The percentage accuracy of RL and Propex II apex locator was 76.6% and 86.6%, respectively. Paired t-test revealed significant difference between the RL and Propex II apex locator (P<0.05). Conclusion: Under these in vitro conditions, Propex II apex locator has determined working length more accurately than radiographic method. PMID:23922572
Novel Multiplexing Technique for Detector and Mixer Arrays
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McGrath, William R.
2001-01-01
Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature electronics. This can significantly reduce the complexity of the readout circuits.
Zhu, Zhi-Rong; Zeng, Chang-Chun; Yang, Li; Liu, Han-Ping; Liu, Song-Hao
2011-12-01
In this study, to analyze the influence of the brightness value of the supranasal point and the apex nasi on their dominant wavelength and excitation purity according to the spectrocolorimetry data of the supranasal point and the apex nasi in healthy adults that were collected based on optical spectrum colorimetry. A total of 516 healthy adults were taken as the research subjects. The brightness, dominant wavelength and excitation purity values of the supranasal point and the apex nasi during the complexion inspection of subjects were calculated. This was based on the visible reflection spectrum, and the linear correlation/regression analysis between the brightness Y value and the dominant wavelength or excitation purity value. There was no correlation between the brightness Y value and the dominant wavelength of the normal supranasal point and the apex nasi; however, there was negative correlation between the brightness Y value and the excitation purity of the normal supranasal point and apex nasi. During the complexion inspection, the brightness Y value would not influence the dominant wavelength value, indicating that whiteness and/or blackness would not influence the normal individual complexion. However, the brightness Y value would influence the excitation purity of the supranasal point and the apex nasi, and the degree of saturation should be referred to as the brightness. This research provides a basic reference for diagnosing facial complexion in traditional Chinese medicine.
Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.
Nakielski, Jerzy; Lipowczan, Marcin
2013-01-01
Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.
NASA Astrophysics Data System (ADS)
McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.
2015-12-01
Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.
Development of a Proximity Labeling System to Map the Chlamydia trachomatis Inclusion Membrane
Rucks, Elizabeth A.; Olson, Macy G.; Jorgenson, Lisa M.; Srinivasan, Rekha R.; Ouellette, Scot P.
2017-01-01
Chlamydia grows within a membrane-bound vacuole termed an inclusion. The cellular processes that support the biogenesis and integrity of this pathogen-specified parasitic organelle are not understood. Chlamydia secretes integral membrane proteins called Incs that insert into the chlamydial inclusion membrane (IM). Incs contain at least two hydrophobic transmembrane domains flanked by termini, which vary in size and are exposed to the host cytosol. In addition, Incs are temporally expressed during the chlamydial developmental cycle. Data examining Inc function are limited because of (i) the difficulty in working with hydrophobic proteins and (ii) the inherent fragility of the IM. We hypothesize that Incs function collaboratively to maintain the integrity of the chlamydial inclusion with small Incs organizing the IM and larger Incs interfacing with host cell machinery. To study this hypothesis, we have adapted a proximity-labeling strategy using APEX2, a mutant soybean ascorbate peroxidase that biotinylates interacting and proximal proteins within minutes in the presence of H2O2 and its exogenous substrate, biotin-phenol. We successfully expressed, from an inducible background, APEX2 alone, or fusion proteins of IncATM (TM = transmembrane domain only), IncA, and IncF with APEX2 in Chlamydia trachomatis serovar L2. IncF-APEX2, IncATM-APEX2, and IncA-APEX2 localized to the IM whereas APEX2, lacking a secretion signal, remained associated with the bacteria. We determined the impact of overexpression on inclusion diameter, plasmid stability, and Golgi-derived sphingomyelin acquisition. While there was an overall impact of inducing construct expression, IncF-APEX2 overexpression most negatively impacted these measurements. Importantly, Inc-APEX2 expression in the presence of biotin-phenol resulted in biotinylation of the IM. These data suggest that Inc expression is regulated to control optimal IM biogenesis. We subsequently defined lysis conditions that solubilized known Incs and were compatible with pulldown conditions. Importantly, we have created powerful tools to allow direct examination of the dynamic composition of the IM, which will provide novel insights into key interactions that promote chlamydial growth and development within the inclusion. PMID:28261569
Monolayer Graphene Bolometer as a Sensitive Far-IR Detector
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.
2014-01-01
In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few micro m(sup 2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature approx. 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity.
Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation
NASA Astrophysics Data System (ADS)
Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'Tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
2000-04-01
In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is Trx=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO ≈ 1 microwatt. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.
Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments
Sisti, M.; Artusa, D. R.; Avignone, F. T.; ...
2016-05-31
CUORE is a 741 kg array of TeO 2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV·kg·y) will be reached, in five years of data taking CUORE will have a 1σ half life sensitivity of 10 26y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013.more » The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.« less
Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments
NASA Astrophysics Data System (ADS)
Sisti, M.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Datskov, V.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nastasi, M.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.
2016-04-01
CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts / (keV ṡkg ṡy) will be reached, in five years of data taking CUORE will have a 1σ half life sensitivity of 1026 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
NASA Astrophysics Data System (ADS)
Silva, B. C.; de Oliveira, R.; Ribeiro, G. M.; Cury, L. A.; Leal, A. S.; Nagorny, S.; Krambrock, K.
2018-02-01
Zinc selenide (ZnSe), when enriched with 82Se isotope, is one of the most promising materials for the construction of a bolometer/scintillation detector to study neutrinoless double beta decay (0νDBD). Because the 0νDBD is a very rare event, a high quantity of high-purity monocrystalline ZnSe is needed, which means high costs. Therefore, the knowledge of the best material parameters, especially the presence of point defects, is essential to make feasible the construction of such a detector. In this work, both the as-grown and thermally annealed ZnSe enriched to 95% with the 82Se isotope grown by the Bridgman technique from high-purity starting materials were characterized by electron paramagnetic resonance (EPR), photo-EPR, neutron activation, photoluminescence, and electrical measurements. It is shown that although thermal annealing increases crystal homogeneity and reduces microcracks, the scintillation efficiency is much better for the as-grown material. The higher scintillation efficiency is due to the presence of donor acceptor pairs in the as-grown material, which are responsible for strong luminescence/scintillation in the red spectral region. By photo-EPR, the donor acceptor pairs are identified as closed VZn - AlZn pairs which are lost during the annealing procedure. Electrical characterization shows that the as-grown material is of good quality as it has high electron mobility at low temperatures. Excellent material parameters for the construction of the bolometer/scintillation detector based on enriched Zn82Se are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardani, L.; Bellini, F.; Casali, N.
The development of background-free detectors is essential for experiments searching for rare events. Bolometers, that are among the most competitive devices for the study of neutrino-less double beta decay (0νDBD) and Dark Matter interactions, suffer from the absence of techniques that allow to identify the nature of the interacting particles. This limit can be overcome by coupling the bolometer to an independent device for the measurement of the light emitted by interactions, as the combined read-out of the bolometric and light signals allows to identify and reject particles different from those of interest. CUORE, the most advanced bolometric experiment formore » 0νDBD searches, could disentangle the electrons produced by 0νDBD from the dangerous background due to α particles, by measuring the (tiny) Cherenkov light emitted by electrons and not by α’s. LUCIFER, a project based on ZnSe scintillating bolometers for the study of {sup 82}Se 0νDBD, would be competitive also in the search of Dark Matter interactions if equipped with light detectors that allow to distinguish and reject the background due to electrons and γ’s. These advances require cryogenic detectors characterized by noise lower than 20 eV, large active area, wide temperature range of operation, high radio-purity and ease in fabricating hundreds of channels. The CALDER collaboration aims to develop such detectors by exploiting the superb energy resolution and natural multiplexed read-out provided by Kinetic Inductance Detectors.« less
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; Marcillac, P. de; Marnieros, S.; Nones, C.; Olivieri, E.; Poda, D. V.; Tretyak, V. I.
2017-01-01
Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate ^{100} Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double-beta decay of ^{100} Mo in enriched Li_2^{100} MoO_4 detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of {˜ }750 on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of {˜ }6× 10^{-5} counts/(keV\\cdot kg\\cdot y), to the background counting rate in the region of interest for a large volume ({˜ }90 cm^3) Li_2^{100} MoO_4 detector. This background level is very encouraging in view of a possible use of the Li_2^{100} MoO_4 solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project.
Micromachined poly-SiGe bolometer arrays for infrared imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Leonov, Vladimir N.; Perova, Natalia A.; De Moor, Piet; Du Bois, Bert; Goessens, Claus; Grietens, Bob; Verbist, Agnes; Van Hoof, Chris A.; Vermeiren, Jan P.
2003-03-01
The state-of-the-art characteristics of micromachined polycrystalline SiGe microbolometer arrays are reported. An average NETD of 85 mK at a time constant of 14 ms is already achievable on typical self-supported 50 μm pixels in a linear 64-element array. In order to reach these values, the design optimization was performed based on the performance characteristics of linear 32-, 64- and 128-element arrays of 50-, 60- and 75-μm-pixel bolometers on several detector lots. The infrared and thermal modeling accounting for the read-out properties and self-heating effect in bolometers resulted in improved designs and competitive NETD values of 80 mK on 50 μm pixels in a 160x128 format at standard frame rates and f-number of 1. In parallel, the TCR-to-1/f noise ratio and the mechanical design of the pixels were improved making poly-SiGe a good candidate for a low-cost uncooled thermal array. The technological CMOS-based process possesses an attractive balance between characteristics and price, and allows the micromachining of thin structures, less than 0.2 μm. The resistance and TCR non-uniformity with σ/μ better than 0.2% combined with 99.93% yield are demonstrated. The first lots of fully processed linear arrays have already come from the IMEC process line and the results of characterization are presented. Next year, the first linear and small 2D arrays will be introduced on the market.
Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.
2009-04-01
Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of thismore » study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome points were higher for the apex model compared with the non-apex model. Mean doses to the optimization points for both the cylinder models and all the cylinder diameters were 6 Gy, matching with the prescription dose of 6 Gy. Iterative optimization routine resulted in the highest dose to apex point and dome points. The mean dose for optimization point was 6.01 Gy for iterative optimization and was much higher than 5.74 Gy for geometric and equal times routines. Step size of 1 cm gave the highest dose to the apex point. This step size was superior in terms of mean dose to optimization points. Selection of dose optimization points for the derivation of optimized dose distributions for vaginal cylinders affects the dose distributions.« less
Distributed Framework for Dynamic Telescope and Instrument Control
NASA Astrophysics Data System (ADS)
Ames, Troy J.; Case, Lynne
2002-12-01
Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see http://www.jxta.org) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device?s IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a principal investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High Angular Resolution Camera IInd Generation (SHARCII) at the CSO to investigate using IRC capabilities with the SHARC instrument.
VizieR Online Data Catalog: Galactic CHaMP. II. Dense gas clumps. (Ma+, 2013)
NASA Astrophysics Data System (ADS)
Ma, B.; Tan, J. C.; Barnes, P. J.
2015-04-01
A total of 303 dense gas clumps have been detected using the HCO+(1-0) line in the CHaMP survey (Paper I, Barnes et al. 2011, J/ApJS/196/12). In this article we have derived the SED for these clumps using Spitzer, MSX, and IRAS data. The Midcourse Space Experiment (MSX) was launched in 1996 April. It conducted a Galactic plane survey (0
Distributed Framework for Dynamic Telescope and Instrument Control
NASA Technical Reports Server (NTRS)
Ames, Troy J.; Case, Lynne
2002-01-01
Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see httD://www.jxta.org,) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device's IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High Angular Resolution Camera IInd Generation (SHARCII) at the CSO to investigate using IRC capabilities with the SHARC instrument.
KSC-20170216-MH-LCH01-0001-CRS_10_APH_Apex_4_and_Veggie_processing-3145683(H.265)
2017-02-16
APEX-04, or Advanced Plant Experiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX CRS-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Gordon, Christopher E.; Feit, Anna; Grüber, Jennifer; Letnic, Mike
2015-01-01
Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators' suppressive effects on mesopredators extend to alleviate both mesopredators' consumptive and non-consumptive effects on prey. PMID:25652837
VizieR Online Data Catalog: High-mass starless clump candidates from ATLASGAL (Yuan+, 2017)
NASA Astrophysics Data System (ADS)
Yuan, J.; Wu, Y.; Ellingsen, S. P.; Evans, N. J., II; Henkel, C.; Wang, K.; Liu, H.-L.; Liu, T.; Li, J.-Z.; Zavagno, A.
2017-08-01
This work is based on data from several Galactic plane surveys covering wavelengths from mid-IR to submillimeter. The sample of dense clumps from the ATLASGAL survey (Schuller+ 2009A&A...504..415S) provides the basis for our investigation. The ATLASGAL survey mapped 420 square degrees of the Galactic plane between -80°
Andrew M. Kittle; Anjali C. Watson; Samuel A. Cushman; David. W. Macdonald
2017-01-01
Apex predators fulfil potentially vital ecological roles. Typically wide-ranging and charismatic, they can also be useful surrogates for biodiversity preservation, making their targeted conservation imperative. The Sri Lankan leopard (Panthera pardus kotiya), an endangered, endemic sub-species, is the islandâs apex predator. Of potential keystone importance, this...
Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages.
Colman, N J; Gordon, C E; Crowther, M S; Letnic, M
2014-05-07
Disruption to species-interaction networks caused by irruptions of herbivores and mesopredators following extirpation of apex predators is a global driver of ecosystem reorganization and biodiversity loss. Most studies of apex predators' ecological roles focus on effects arising from their interactions with herbivores or mesopredators in isolation, but rarely consider how the effects of herbivores and mesopredators interact. Here, we provide evidence that multiple cascade pathways induced by lethal control of an apex predator, the dingo, drive unintended shifts in forest ecosystem structure. We compared mammal assemblages and understorey structure at seven sites in southern Australia. Each site comprised an area where dingoes were poisoned and an area without control. The effects of dingo control on mammals scaled with body size. Activity of herbivorous macropods, arboreal mammals and a mesopredator, the red fox, were greater, but understorey vegetation sparser and abundances of small mammals lower, where dingoes were controlled. Structural equation modelling suggested that both predation by foxes and depletion of understorey vegetation by macropods were related to small mammal decline at poisoned sites. Our study suggests that apex predators' suppressive effects on herbivores and mesopredators occur simultaneously and should be considered in tandem in order to appreciate the extent of apex predators' indirect effects.
Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages
Colman, N. J.; Gordon, C. E.; Crowther, M. S.; Letnic, M.
2014-01-01
Disruption to species-interaction networks caused by irruptions of herbivores and mesopredators following extirpation of apex predators is a global driver of ecosystem reorganization and biodiversity loss. Most studies of apex predators' ecological roles focus on effects arising from their interactions with herbivores or mesopredators in isolation, but rarely consider how the effects of herbivores and mesopredators interact. Here, we provide evidence that multiple cascade pathways induced by lethal control of an apex predator, the dingo, drive unintended shifts in forest ecosystem structure. We compared mammal assemblages and understorey structure at seven sites in southern Australia. Each site comprised an area where dingoes were poisoned and an area without control. The effects of dingo control on mammals scaled with body size. Activity of herbivorous macropods, arboreal mammals and a mesopredator, the red fox, were greater, but understorey vegetation sparser and abundances of small mammals lower, where dingoes were controlled. Structural equation modelling suggested that both predation by foxes and depletion of understorey vegetation by macropods were related to small mammal decline at poisoned sites. Our study suggests that apex predators’ suppressive effects on herbivores and mesopredators occur simultaneously and should be considered in tandem in order to appreciate the extent of apex predators’ indirect effects. PMID:24619441
Ramirez-Avila, John J; Radcliffe, David E; Osmond, Deanna; Bolster, Carl; Sharpley, Andrew; Ortega-Achury, Sandra L; Forsberg, Adam; Oldham, J Larry
2017-11-01
The Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia. Calibrated models satisfactorily predicted event-based surface runoff volumes at all sites (Nash-Sutcliffe efficiency [NSE] > 0.47, |percent bias [PBIAS]| < 34) except Arkansas (NSE < 0.11, |PBIAS| < 50) but did not satisfactory simulate sediment, dissolved P, or total P losses in runoff water. The APEX model tended to underestimate dissolved and total P losses from fields where manure was surface applied. The model also overestimated sediments and total P loads during irrigation events. We conclude that the capability of APEX to predict sediment and P losses is limited, and consequently so is the potential for using APEX to make P management recommendations to improve P Indices in the southern United States. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Nanda, Anil; Sonig, Ashish; Banerjee, Anirban Deep; Javalkar, Vijay Kumar
2014-01-01
Basilar artery apex aneurysms continue to generate technical challenges and management controversy. Endovascular intervention is becoming the mainstay in the management of these formidable aneurysms, but it has limitations, especially with large/giant or wide neck basilar apex aneurysms. There is paucity of data in the available literature pertaining to the successful management of large/giant, wide neck, and calcified/thrombosed basilar apex aneurysms. We present our experience with consecutively operated complex basilar apex aneurysms so as to present the role of microneurosurgery as a viable management option for these aneurysms. Ours is a retrospective analysis of case-records for operated cases of basilar artery aneurysms spanning 18 years. Basilar apex aneurysms >10 cm, calcified or thrombosed, neck ≥4 mm posterior direction, and retro/subsellar were considered as complex anatomy aneurysms. Basilar apex aneurysms with favorable anatomy were included in the study as a reference group for statistical analysis. Patient demographics, complex features of aneurysms, clinical grade, and outcomes were analyzed. A total of 33 (53.2%) patients had complex anatomy: large (>10 mm) in eight (24.2%); giant aneurysms (>25 mm) in seven (21.2%); wide-neck in 22 (66.7%); and calcified/thrombosed morphology in five (15.1%). The mean age was 48.5 years, and 22 (66.67%) were women. All aneurysms were clipped by the use of various skull base approaches. A total of 71.9% of patients harboring complex aneurysm had good outcomes. If only unruptured and good grade complex aneurysms also are considered, then 86.9% (n = 20) patients had good outcomes. Statistically there was no significant difference in the outcomes of complex and noncomplex aneurysm. Although concerning, the management of large/giant, wide neck, and calcified/thrombosed aneurysms with microneurosurgery is still a competitive alternative to endovascular therapy. After careful selection of appropriate skull base approaches based on the complexity of the basilar apex aneurysm, microneurosurgery can achieve acceptable results. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Xiaoliang; Wei, Jinyu; Xu, Ping; Yin, Xiangqian; Hu, Die; Zhang, Xiao; Liu, Li; Zhang, Kai; Zhou, Changchun; Wang, Tian; Zhang, Xiaomin; He, Meian; Wu, Tangchun; Yang, Ming; Guo, Huan
2015-06-01
Polycyclic aromatic hydrocarbons (PAHs) are the most significant contributors to tobacco-induced lung carcinogenesis. Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the removal of apurinic/apyrimidinic sites caused by DNA damaging agents. This study aimed to investigate the potential interaction of APEX1 polymorphisms and PAHs on genetic damage and lung cancer risk among male Chinese. We recruited an occupational cohort of 922 male coke oven workers and determined their DNA damage levels by calculating the lymphocytic micronucleus (MN) frequencies. Two well-studied APEX1 polymorphisms (-307A > C and Asp148Glu) and their associations with MN frequencies were examined. The impact of MN-related single nucleotide polymorphism (SNP) on lung cancer risk was further investigated in two case-control studies including 1634 male lung cancer patients and 1678 controls. It was shown that, the APEX1 148Glu allele was associated with significantly higher MN frequencies than 148Asp allele, with strongest associations among the highest PAH-exposure workers (P = 0.008). The APEX1 148Glu allele was also associated with increased lung cancer risk among male smokers, especially among heavy smokers in both case-control studies (odd ratio: 4.40, 95%CI: 3.29-5.72). In addition, APEX1 148Glu variant interacts with smoking in increasing male lung cancer risk, as measured by the attributable proportion due to interaction, which was 0.23 (95%CI: 0.06-0.39). This study showed evidence on interaction between APEX1 148Glu variant and cigarette smoking in increasing lung cancer susceptibility among male Chinese, which may be due to the synergistic effects of APEX1 148Glu and PAHs in increasing chromosome damage levels. The results provide a new insight into gene-interactions in lung carcinogenesis. © 2014 Wiley Periodicals, Inc.
Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX.
Ariotti, Nicholas; Hall, Thomas E; Parton, Robert G
2017-01-01
The use of green fluorescent protein (GFP) and related proteins has revolutionized light microscopy. Here we describe a rapid and simple method to localize GFP-tagged proteins in cells and in tissues by electron microscopy (EM) using a modular approach involving a small GFP-binding peptide (GBP) fused to the ascorbate peroxidase-derived APEX2 tag. We provide a method for visualizing GFP-tagged proteins by light and EM in cultured cells and in the zebrafish using modular APEX-GBP. Furthermore, we describe in detail the benefits of this technique over many of the currently available correlative light and electron microscopy approaches and demonstrate APEX-GBP is readily applicable to modern three-dimensional techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Shawn Stephens, Engineering Services Contract, and Dr. Anna Lisa Paul confirm proper orientation of the plates for launch prior to turnover to cold stowage. Dr. Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The petri plates are wrapped in black cloth and kept cold (+4 degrees Celsius) to prevent them from germinating prior to the experiment start on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
NASA Astrophysics Data System (ADS)
Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov
2017-04-01
Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices (grazing, cropping, and manure application), evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Future development should include modeling contributions of wildlife, manure weathering, and weather effects on manure-borne microorganism survival and release.
Further thoughts on the solar constant
NASA Astrophysics Data System (ADS)
Thompson, Frank
2018-05-01
I read with interest the recent paper (Brizova and Slegr 2017 Phys. Educ. 52 013008) regarding an experiment to measure the solar constant using a bolometer. The authors admitted that their measurements gave a value much lower than expected.
Bolometeric detector arrays for CMB polarimetry
NASA Technical Reports Server (NTRS)
Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.;
2005-01-01
We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.
A 100 micro Kelvin bolometer system for SIRTF
NASA Technical Reports Server (NTRS)
Bernstein, G. M.; Timbie, P. T.; Richards, P. L.
1989-01-01
Progress toward a prototype of 100 mK bolometric detection system for the Space Infrared Telescope Facility (SIRTF) is described. Two adiabatic demagnetization refrigerators (ADR's) were constructed and used to investigate the capabilities necessary for orbital operation. The first, a laboratory ADR, demonstrated a hold time at 0.1 K of over 12 hours, with temperature stability approx. 3 micro-K RMS achieved by controlling the magnetic field. A durable salt pill and an efficient support system have been demonstrated. A second ADR, the SIRTF flight prototype, has been built and will be flown on a balloon. Techniques for magnetic shielding, low heat leak current leads, and a mechanical heat switch are being developed in this ADR. Plans for construction of 100 mK bolometers are discussed. Three important cosmological investigations which will be carried out by these longest wavelength SIRTF detectors are described.
Reliability issues for a bolometer detector for ITER at high operating temperatures.
Meister, H; Kannamüller, M; Koll, J; Pathak, A; Penzel, F; Trautmann, T; Detemple, P; Schmitt, S; Langer, H
2012-10-01
The first detector prototypes for the ITER bolometer diagnostic featuring a 12.5 μm thick Pt-absorber have been realized and characterized in laboratory tests. The results show linear dependencies of the calibration parameters and are in line with measurements of prototypes with thinner absorbers. However, thermal cycling tests up to 450 °C of the prototypes with thick absorbers demonstrated that their reliability at these elevated operating temperatures is not yet sufficient. Profilometer measurements showed a deflection of the membrane hinting to stresses due to the deposition processes of the absorber. Finite element analysis (FEA) managed to reproduce the deflection and identified the highest stresses in the membrane in the region around the corners of the absorber. FEA was further used to identify changes in the geometry of the absorber with a positive impact on the intrinsic stresses of the membrane. However, further improvements are still necessary.
Optical characterization of ultra-sensitive TES bolometers for SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gerhard; Gao, Jian-Rong; Khosropanah, Pourya; Mauskopf, Philip D.; Morozov, Dmitry; Trappe, Neil A.; Doherty, Stephen; Withington, Stafford
2014-07-01
We have characterized the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays will image a 2'×2' field of view with spectral information over the wavelength range 34—210 μm. SAFARI requires extremely sensitive detectors (goal NEP ~ 0.2 aW/√Hz), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA's cooled optics. We have constructed an ultra-low background optical test facility containing an internal cold black-body illuminator and have recently added an internal hot black-body source and a light-pipe for external illumination. We illustrate the performance of the test facility with results including spectral-response measurements. Based on an improved understanding of the optical throughput of the test facility we find an optical efficiency of 60% for prototype SAFARI detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Chaoliang; Cao, Sheng; Yan, Shiguang
Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful formore » the pyroelectric materials (DB mode) applications.« less
Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J. M.; Liu, Y.; Li, W.
2013-09-15
An infrared imaging bolometer diagnostic has been developed recently for the HL-2A tokamak to measure the temporal and spatial distribution of plasma radiation. The three-dimensional tomography, reduced to a two-dimensional problem by the assumption of plasma radiation toroidal symmetry, has been performed. A three-dimensional geometry matrix is calculated with the one-dimensional pencil beam approximation. The solid angles viewed by the detector elements are taken into account in defining the chord brightness. And the local plasma emission is obtained by inverting the measured brightness with the minimum Fisher regularization method. A typical HL-2A plasma radiation model was chosen to optimize amore » regularization parameter on the criterion of generalized cross validation. Finally, this method was applied to HL-2A experiments, demonstrating the plasma radiated power density distribution in limiter and divertor discharges.« less
Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.;
2014-01-01
We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.
High T(sub c) Superconducting Bolometer on Chemically Etched 7 Micrometer Thick Sapphire
NASA Technical Reports Server (NTRS)
Lakew, B.; Brasunas, J. C.; Pique, A.; Fettig, R.; Mott, B.; Babu, S.; Cushman, G. M.
1997-01-01
A transition-edge IR detector, using a YBa2Cu3O(7-x) (YBCO) thin film deposited on a chemically etched, 7 micrometer thick sapphire substrate has been built. To our knowledge it is the first such high T(sub c) superconducting (HTS) bolometer on chemically thinned sapphire. The peak optical detectivity obtained is l.2 x 10(exp 10) cmHz(sup 1/2)/W near 4Hz. Result shows that it is possible to obtain high detectivity with thin films on etched sapphire with no processing after the deposition of the YBCO film. We discuss the etching process and its potential for micro-machining sapphire and fabricating 2-dimensional detector arrays with suspended sapphire membranes. A 30 micrometer thick layer of gold black provided IR absorption. Comparison is made with the current state of the art on silicon substrates.
Micromechanical Waveguide Mounts for Hot Electron Bolometer Terahertz Mixers
NASA Astrophysics Data System (ADS)
Brandt, Michael; Jacobs, Karl; Honingh, C. E.; Stodolka, Jörg
The superior beam matching of waveguide horn antennas to a telescope suggests using waveguide mounts even at THz-frequencies. In contrast to the more common quasi-optical (substrate lens) designs, the exceedingly small dimensions of the waveguide require novel micro-mechanical fabrication technologies. We will present a novel fabrication scheme for 1.9 THz waveguide mixers for SOFIA. Hot Electron Bolometer devices (HEB) are fabricated on 2 μm thick Si3N4 membrane strips. The strips are robust enough to be mounted on a separately fabricated Si support frame using an adapted flip-chip technology. Mounted onto the frame, the devices can be easily positioned and glued into a copper waveguide mount. Further developments regarding micro-mechanical processes to fabricate this copper waveguide mount and the receiving horn antenna will be presented, as well as the KOSMA Micro Assembly Station and its capabilities to handle mixer substrates.
Ultra-broadband photodetectors based on epitaxial graphene quantum dots
NASA Astrophysics Data System (ADS)
El Fatimy, Abdel; Nath, Anindya; Kong, Byoung Don; Boyd, Anthony K.; Myers-Ward, Rachael L.; Daniels, Kevin M.; Jadidi, M. Mehdi; Murphy, Thomas E.; Gaskill, D. Kurt; Barbara, Paola
2018-03-01
Graphene is an ideal material for hot-electron bolometers due to its low heat capacity and weak electron-phonon coupling. Nanostructuring graphene with quantum-dot constrictions yields detectors of electromagnetic radiation with extraordinarily high intrinsic responsivity, higher than 1×109 V W-1 at 3 K. The sensing mechanism is bolometric in nature: the quantum confinement gap causes a strong dependence of the electrical resistance on the electron temperature. Here, we show that this quantum confinement gap does not impose a limitation on the photon energy for light detection and these quantum-dot bolometers work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation, with responsivity independent of wavelength. We also measure the power dependence of the response. Although the responsivity decreases with increasing power, it stays higher than 1×108 V W-1 in a wide range of absorbed power, from 1 pW to 0.4 nW.
NASA Astrophysics Data System (ADS)
Lueker, Martin; Benson, Bradford A.; Chang, Clarence L.; Cho, Hsiao-Mei; Dobbs, Matt; Holzapfel, William L.; Lanting, Trevor; Lee, Adrian T.; Mehl, Jared; Plagge, Thomas; Shirokoff, Erik; Spieler, Helmuth G.; Vieira, Joaquin D.
2009-06-01
In contemporary cosmic microwave background experiments, bolometric detectors are often background limited, and in this case the sensitivity of instruments can only be improved by increasing the number of background-limited detectors, and so contemporary TES receivers contain as many pixels as possible. Frequency-domain multiplexing (fMUX) is one strategy for reading out many detectors with one SQUID. For any readout system, it is important to carefully evaluate the thermal design of detector, in conjunction with the readout bandwidth, in order to ensure stable electro-thermal feedback (ETF). We demonstrate a novel technique for characterizing the thermal circuit of our detectors, using am AC-bias and the fMUX electronics. This technique is used to study the internal thermal coupling of a TES bolometer. We illustrate how the insights gathered by this technique have been instrumental in improving the stability of our multiplexed detectors for the south pole telescope (SPT).
Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers
NASA Technical Reports Server (NTRS)
Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.
1998-01-01
A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.
High sensitive THz superconducting hot electron bolometer mixers and transition edge sensors
NASA Astrophysics Data System (ADS)
Zhang, W.; Miao, W.; Zhou, K. M.; Guo, X. H.; Zhong, J. Q.; Shi, S. C.
2016-11-01
Terahertz band, which is roughly defined as 0.1 THz to 10 THz, is an interesting frequency region of the electromagnetic spectrum to be fully explored in astronomy. THz observations play key roles in astrophysics and cosmology. High sensitive heterodyne and direct detectors are the main tools for the detection of molecular spectral lines and fine atomic structure spectral lines, which are very important tracers for probing the physical and chemical properties and dynamic processes of objects such as star and planetary systems. China is planning to build an THz telescope at Dome A, Antarctica, a unique site for ground-based THz observations. We are developing THz superconducting hot electron bolometer (HEB) mixers and transition edge sensors (TES), which are quantum limited and back-ground limited detectors, respectively. Here we first introduce the working principles of superconducting HEB and TES, and then mainly present the results achieved at Purple mountain Observatory.
NASA Technical Reports Server (NTRS)
Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.
2008-01-01
Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent < 7x10(exp -4) over 10 - 45 GHz. We have combined component simulations to predict the overall coupling from waveguide modes to bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.
Liu, Guangchao; Gao, Shan; Tian, Huiyu; Wu, Wenwen; Robert, Hélène S; Ding, Zhaojun
2016-10-01
Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.
Packiriswamy, Vasanthakumar; Kumar, Pramod; Bashour, Mounir
2018-05-03
In oculoplastic operations, knowledge of the dimensions of periorbital features based on age, gender, and race is essential for achieving better aesthetic result. This article seeks to determine the racial and gender differences of periorbital features among Malaysian Malay (MM), Malaysian Indian (MI), and Malaysian Chinese (MI) subjects. Evaluation of periorbital features was done on photographs of 200 MM, 200 MI, and 200 MC subjects, aged 18 to 26 years. The measured values were evaluated by an independent t -test. A significant difference was found between MM and MI in all measurements except interbrow distance in males, eyebrow thickness in females, and apex to lateral limbus distance in both sexes. Between MI and MC the difference was insignificant for interbrow distance in male groups, apex to lateral limbus distance in females, and palpebral fissure inclination and eyebrow apex angle in both sexes. Between MM and MC, significant differences were found for eyebrow thickness and medial canthus tilt in female group. Male groups showed significant difference for apex to lateral limbus and lateral canthus distance and eyebrow apex angle. Eyebrow height, palpebral fissure width, and intercanthal distance were significantly different in both sexes. Sexual dimorphism was found for all measurements in MI, but MM and MC showed insignificant difference for eyebrow apex angle. Four types of epicanthus were observed in MM and MC and three types in MI. Eyebrow apex between lateral limbus and lateral canthus was the most common position in all racial groups. Significant racial and gender differences exist for certain periorbital measurements. The knowledge of these differences is expected to influence the surgical outcome. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
VizieR Online Data Catalog: Selecting IRAC counterparts to SMGs (Alberts+, 2013)
NASA Astrophysics Data System (ADS)
Alberts, S.; Wilson, G. W.; Lu, Y.; Johnson, S.; Yun, M. S.; Scott, K. S.; Pope, A.; Aretxaga, I.; Ezawa, H.; Hughes, D. H.; Kawabe, R.; Kim, S.; Kohno, K.; Oshima, T.
2014-05-01
We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer Infrared Array Camera (IRAC) colours as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and Submillimeter Array-confirmed counterparts to AzTEC sources across three fields [Great Observatories Origins Deep Survey-North, -South and Cosmic Evolution Survey (COSMOS)], we develop a non-parametric IRAC colour-colour characteristic density distribution, which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around submillimetre galaxies (SMGs) and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beam size (~18"), this technique identifies ~85% of SMG counterparts. For much larger beam sizes (>~30"), we report identification rates of 33-49%. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the Large Millimeter Telescope and Submillimeter Common User Bolometer Array 2 on the James Clerk Maxwell Telescope. (3 data files).
NASA Astrophysics Data System (ADS)
Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew
2014-07-01
Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.
NASA Astrophysics Data System (ADS)
Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Junique, Stéphane; Savage, Susan; Vieider, Christian; Andersson, Jan Y.; Franks, John; Van Nylen, Jan; Vercammen, Hans; Kvisterøy, Terje; Niklaus, Frank; Stemme, Göran
2006-04-01
Pedestrian fatalities are around 15% of the traffic fatalities in Europe. A proposed EU regulation requires the automotive industry to develop technologies that will substantially decrease the risk for Vulnerable Road Users when hit by a vehicle. Automatic Brake Assist systems, activated by a suitable sensor, will reduce the speed of the vehicle before the impact, independent of any driver interaction. Long Wavelength Infrared technology is an ideal candidate for such sensors, but requires a significant cost reduction. The target necessary for automotive serial applications are well below the cost of systems available today. Uncooled bolometer arrays are the most mature technology for Long Wave Infrared with low-cost potential. Analyses show that sensor size and production yield along with vacuum packaging and the optical components are the main cost drivers. A project has been started to design a new Long Wave Infrared system with a ten times cost reduction potential, optimized for the pedestrian protection requirement. It will take advantage of the progress in Micro Electro-Mechanical Systems and Long Wave Infrared optics to keep the cost down. Deployable and pre-impact braking systems can become effective alternatives to passive impact protection systems solutions fulfilling the EU pedestrian protection regulation. Low-cost Long Wave Infrared sensors will be an important enabler to make such systems cost competitive, allowing high market penetration.
Autonomous power expert system advanced development
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Walters, Jerry L.
1991-01-01
The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.
NASA Astrophysics Data System (ADS)
Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.
2016-02-01
Sound processing in the inner ear involves separation of the constituent frequencies along the length of the cochlea. Frequencies relevant to human speech (100 to 500 Hz) are processed in the apex region. Among mammals, the guinea pig cochlear apex processes similar frequencies and is thus relevant for the study of speech processing in the cochlea. However, the requirement for extensive surgery has challenged the optical accessibility of this area to investigate cochlear processing of signals without significant intrusion. A simple method is developed to provide optical access to the guinea pig cochlear apex in two directions with minimal surgery. Furthermore, all prior vibration measurements in the guinea pig apex involved opening an observation hole in the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here, this limitation is overcome by measuring the vibrations through the unopened otic capsule using phase-sensitive Fourier domain optical coherence tomography. The optically and surgically advanced method described here lays the foundation to perform minimally invasive investigation of speech-related signal processing in the cochlea.
Williams works on the payload APEX TAGES in the JPM during Expedition 22
2009-12-15
ISS022-E-011304 (15 Dec. 2009) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a daily status check of the Advanced Plant Experiments on Orbit (APEX) experiment in the Kibo laboratory of the International Space Station. During each check, Williams looks for health and color of the plants, since the Cambium plants are removed from the Advanced Biological Research System (ABRS). When completed, the APEX-Cambium payload in conjunction with the NASA-sponsored Transgenic Arabidopsis Gene Expression System (TAGES) will determine the role of gravity in Cambium wood cell development and demonstrate non-destructive reporter gene technology and investigate spaceflight plant stress. APEX-Cambium provides NASA and the ISS community a permanent controlled environment capability to support growth of various organisms (i.e. whole plants).
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The 30 petri plates are bundled into groups of 10 and placed into one of three science kits. The science kits allow easy handling when the crew removes the plates from cold stowage on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas
NASA Astrophysics Data System (ADS)
Bothwell, M.; Cicone, C.; Wagg, J.; De Breuck, C..
2017-09-01
We report the completion of the APEX Low-redshift Legacy Survey for MOlecular Gas (ALLSMOG), an ESO Large Programme, carried out with the Atacama Pathfinder EXperiment (APEX) between 2013 and 2016. With a total of 327 hours of APEX observing time, we observed the 12CO(2-1) line in 88 nearby low-mass star-forming galaxies. We briefly outline the ALLSMOG goals and design, and describe a few science highlights that have emerged from the survey so far. We outline future work that will ensure that the ALLSMOG dataset continues to provide scientific value in the coming years. ALLSMOG was designed to be a reference legacy survey and as such all reduced data products are publicly available through the ESO Science Archive Phase 3 interface.
NASA Astrophysics Data System (ADS)
Koopman, B. J.; Cothard, N. F.; Choi, S. K.; Crowley, K. T.; Duff, S. M.; Henderson, S. W.; Ho, S. P.; Hubmayr, J.; Gallardo, P. A.; Nati, F.; Niemack, M. D.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Wollack, E. J.
2018-05-01
Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as {˜ } 1 pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.
A strained silicon cold electron bolometer using Schottky contacts
NASA Astrophysics Data System (ADS)
Brien, T. L. R.; Ade, P. A. R.; Barry, P. S.; Dunscombe, C.; Leadley, D. R.; Morozov, D. V.; Myronov, M.; Parker, E. H. C.; Prest, M. J.; Prunnila, M.; Sudiwala, R. V.; Whall, T. E.; Mauskopf, P. D.
2014-07-01
We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10-16 W Hz-1/2 when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz-1/2. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz-1/2 and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com
2015-11-15
Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less
First test results of the airborne dispersive pushbroom imaging spectrometer APEX
NASA Astrophysics Data System (ADS)
Meuleman, K.; Itten, K.; Schaepman, M.
2009-04-01
APEX, ESA-Prodex "Airborne Prism Experiment" comprises the development of an airborne dispersive pushbroom imaging spectrometer and has originally been designed as flexible hyperspectral mission simulator and calibrator for existing and upcoming or planned future space missions. The APEX project is co-funded by Switzerland and Belgium and built by a Belgian-Swiss industrial team under the prime RUAG Aerospace (CH), responsible for the total system and the mechanical components, OIP (Oudenaarde, BE) contributing the spectrometer, and Netcetera (Zurich, CH) being responsible for the electronics. RSL (University of Zurich, CH) acts as scientific PI together with the Co-PI VITO (Mol, BE). The APEX sensor is operating between 380 nm and 2500 nm in more than 300 freely configurable bands (up to 512 bands in full spectral mode), by means of two dispersive spectrometer channels. 1000 pixels across track and a total field of view of 28° define the ground pixel size (e.g. 2,5 m from 5000 m AGL). A stabilized platform (Leica PAV-30) reduces major geometric distortions due to aircraft instabilities while a GPS/IMU system (Applanix PosAV 410) measures continuously the sensors' position and orientation allowing direct georeferencing of the acquired data . The system is currently is phase D, the calibration and test phase, and first testflights have been performed on a Do-228 in cooperation of DLR while the acquired data is currently under evaluation. Discussions are ongoing to fly APEX on the new DLR High Altitude Research Aircraft (HALO) as well. The system is currently in phase D, the calibration and test phase, and will deliver first scientific data to users by mid 2009. The APEX processing and archiving facility (PAF) is hosted by VITO in the APEX Operations Center (AOC) at Mol, Belgium . A specific level 0-1 processing software module producing uniform, radiometrically calibrated data has been developed by RSL and is integrated into the PAF by VITO. An APEX Calibration Home Base has been developed at DLR and serves as generic institution for the calibration of imaging spectrometers. Since special emphasis is on delivering reliable, well calibrated data, an in-flight calibration tool in form of a diffuser disk and specific absorption filters are used to monitor the stability of the APEX system. We anticipate major application innovations in limnology and coastal oceans research, atmospheric studies, in agriculture as well as land use and ecosystems mapping and monitoring, in geology and security questions.. The paper describes the APEX system, overall specifications as well as system validation procedures and preliminary performance results. A 5-year's exploitation phase is planned form mid 2009 onwards. The programme and flight opportunities will be addressed, and researchers invited to propose experiments.
APEX 3: a multi-purpose test platform for auditory psychophysical experiments.
Francart, Tom; van Wieringen, Astrid; Wouters, Jan
2008-07-30
APEX 3 is a software test platform for auditory behavioral experiments. It provides a generic means of setting up experiments without any programming. The supported output devices include sound cards and cochlear implants from Cochlear Corporation and Advanced Bionics Corporation. Many psychophysical procedures are provided and there is an interface to add custom procedures. Plug-in interfaces are provided for data filters and external controllers. APEX 3 is supported under Linux and Windows and is available free of charge.
Measuring Turbulence Mixing in Indonesian Seas Using Microstructure EM-APEX Floats
2016-04-18
14 . ABSTRACT With the help of my graduate student at Columbia Univers ity (Asmi Napitu who is from Indonesia ) I have arranged a plan for the...and Fisheries of Republic of Indonesia (KKP), Bali BPPL lab on their Baruna Jaya 8 cruise in August 2016. Arrangement to sh ip the EM APEX float to... Indonesia in the spring 2016 are being arranged. 15. SUBJECT TERMS mixing within the Banda; EM APEX fl oats; upper ocean processes; mixed layer
Ponce, Jaime; Taheri, Shahrad; Lusco, Vincent; Cornell, Christopher; Ng-Mak, Daisy S; Shi, Rui; Okerson, Ted
2014-05-01
This 48 week combined analysis reports safety and clinical effectiveness of the LAP-BAND AP * laparoscopic adjustable gastric band (LAGB) in severely obese patients enrolled in the 5 year, prospective, observational, open-label APEX (NCT00501085) and HERO (NCT00953173) studies. The studies enrolled 1620 patients (APEX: N = 514; HERO: N = 1106), 1140 patients in the US (including all APEX patients), and 480 patients in the European Union (EU), Canada or Australia. APEX and HERO are non-randomized, non-comparator, open-label studies with differences in study management practices and follow-up. Notably, laboratory data were not collected during the APEX study. After 48 weeks, mean (SD) percentage weight loss (%WL) was for APEX: 18.7% (7.9); HERO-US: 17.9% (8.5); HERO-EU: 16.5% (10.3); HERO-Canada: 13.4% (8.9); and HERO-Australia: 12.3% (6.9). After 48 weeks, there were no significant differences in %WL for APEX vs. HERO-US. After 48 weeks in the combined analysis (APEX + HERO): (1) patients without vs. with type 2 diabetes at baseline had greater %WL (18% [8.7] vs. 16% [8.5], p = 0.002); (2) female patients had greater %WL vs. male patients (17.9% [8.5] vs. 15.9% [9.3], p = 0.003); (3) younger patients had greater %WL vs. older patients (<50 years: 17.8% [8.7] vs. ≥50 years: 16.7% [8.6], p = 0.035); (4) baseline BMI did not affect %WL (≤35 to ≤45 kg/m(2): 17.7% [8.4] vs. >45 kg/m(2): 17.1% [9.1], p = 0.272). Device-related serious adverse events and adverse events were reported in 1.9% and 17.7% of patients, respectively. Revision and explantation surgeries were carried out on 3.4% and 2.3% of patients, respectively during the 48 weeks of follow-up. This analysis demonstrates the effective weight loss and safety profile of the current LAGB system, with US patients achieving better weight loss than patients from outside the US.
NASA Astrophysics Data System (ADS)
Altieri, Bruno; Dannerbauer, Helmut
We present Herschel and APEX LABOCA 870 μm imaging of the field of the high-redshift radio galaxy MRC1138 at z = 2.16. We detect 16 submillimeter galaxies in this ˜140 arcmin2 large bolometer map, with flux densities in the range 3-11 mJy. The pure number counts indicate an overdensity of SMGs by a factor of five compared to blank field surveys. Based on an exquisite multi-wavelength database including VLA 1.4 GHz radio and infrared observations, we verifiy whether these sources are members of the proto-cluster structure at z = 2.2 or not. Based on Herschel PACS+ SPIRE and Spitzer MIPS photometry, we derived reliable far-infrared photometric redshifts for all of our sources. VLT-ISAAC near-infrared spectroscopic observations confirmed redshifts of z ≈ 2.2 for four of these SMGs. We conclude that in total at least seven sources are part of this proto-cluster at z = 2.16. We measure a star formation rate density S FRD ˜ 1500 M⊙ yr-1 Mpc-3, four magntiudes higher compared to the global SFRD at this redshift. Striklingly, these seven sources are concentrated within a region of 2 Mpc (the typical size of clusters in the local universe) and are not distributed in the filaments as predicted by theories and traced by the Hα emitters at z ≈ 2.2. This concentration of massive, dusty starbursts is not centered on the radio galaxy which is submm bright. A significant fraction, six out of 11 SMGs with z ≈ 2.2 Hα imaging coverage are associated with Hα emitters, demonstrating the potential of tracing SMG counterparts with this source population. Our results demonstrate that indeed submm observations enable us to reveal clusters of massive, dusty starbursts and will pave the road for systematic and detailed investigations with this technique in the future.
Ultrastructural localisation of protein interactions using conditionally stable nanobodies.
Ariotti, Nicholas; Rae, James; Giles, Nichole; Martel, Nick; Sierecki, Emma; Gambin, Yann; Hall, Thomas E; Parton, Robert G
2018-04-01
We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation ('EM split-fluorescent protein'), for localisation of protein-protein interactions at the ultrastructural level.
Ultrastructural localisation of protein interactions using conditionally stable nanobodies
Ariotti, Nicholas; Rae, James; Giles, Nichole; Martel, Nick; Sierecki, Emma; Gambin, Yann; Parton, Robert G.
2018-01-01
We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation (‘EM split-fluorescent protein’), for localisation of protein–protein interactions at the ultrastructural level. PMID:29621251
Directed translocation of a flexible polymer through a cone-shaped nano-channel
NASA Astrophysics Data System (ADS)
Nikoofard, Narges; Khalilian, Hamidreza; Fazli, Hossein
2013-08-01
Translocation of a flexible polymer through a cone-shaped channel is studied, theoretically and using computer simulations. Our simulations show that the shape of the channel causes the polymer translocation to be a driven process. The effective driving force of entropic origin acting on the polymer is calculated as a function of the length and the apex-angle of the channel, theoretically. It is found that the translocation time is a non-monotonic function of the apex-angle of the channel. By increasing the apex-angle from zero, the translocation time shows a minimum and then a maximum. Also, it is found that regardless of the value of the apex-angle, the translocation time is a uniformly decreasing function of the channel length. The results of the theory and the simulation are in good qualitative agreement.
The Green Bank Telescope: Transformational Science for the Next Decade.
NASA Astrophysics Data System (ADS)
Wootten, Al; GBO Staff
2018-01-01
The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. The accurate small beam of the telescope at high frequencies is leveraged by deployment of multi beam receivers. An overview is presented. Observers now have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. The Observatory plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5'x5', and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects. Observers also have access to MUSTANG-2, a 223-feedhorn bolometer camera which was commissioned on the GBT in spring 2016, and was offered for observations on a shared risk basis, in collaboration with the instrument team, in the 2018A GBO proposal call. Several features distinguish it from its predecessor, MUSTANG: A new, microstrip-coupled detector design yields higher sensitivity and less susceptibility to environmental microphonics. Detectors are feedhorn coupled, with the sum of two linear polarizations measured by a single TES per feed. The instantaneous field of view is 4 arcminutes (vs 42 arcseconds for MUSTANG) The receiver design incorporates a tilted refrigerator and receiver rotator, resulting in much lower dependence of cooling performance on telescope elevation. The detector readout is the first astronomical use of microwave resonators to multiplex TES bolometers. MUSTANG-2 has been developed by a collaboration including the University of Pennsylvania, NIST, NRAO, the University of Michigan, and Cardiff University. A 7-pixel K-band Feed Array covering 18-28 GHz with Dual polarization feeds and a noise temperature < 40-50 K has been available for several years. The array offers an instantaneous bandwidth/beam of 1.8 GHz. Future upgrade concepts under study envision increasing the number of beams by an order of magnitude.
Fabrication of High-T(sub c) Hot-Electron Bolometric Mixers for Terahertz Applications
NASA Technical Reports Server (NTRS)
Burns, M. J.; Kleinsasser, A. W.; Delin, K. A.; Vasquez, R. P.; Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.
1996-01-01
Superocnducting hot-electron bolometers (HEB) represent a promising candidate for heterodyne mixing at frequencies exceeding 1 THz. Nb HEB mixers offer performance competitive with tunnel junctions without the frequency limit imposed by the superconducting energy gap.
NASA Astrophysics Data System (ADS)
Biswas, Debabrata
2018-04-01
Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.
Apex Exponents for Polymer-Probe Interactions
NASA Astrophysics Data System (ADS)
Zandi, Roya; Slutsky, Michael; Kantor, Yacov
2005-03-01
We consider self-avoiding polymers attached to the tip of an impenetrable probe. The scaling exponents γ1 and γ2, characterizing the number of configurations for the attachment of the polymer by one end, or at its midpoint, vary continuously with the tip's angle. These apex exponents are calculated analytically by ɛ-expansion, and numerically by simulations in three dimensions. We find that when the polymer can move through the attachment point, it typically slides to one end; the apex exponents quantify the entropic barrier to threading the eye of the probe.
Apex Exponents for Polymer-Probe Interactions
NASA Astrophysics Data System (ADS)
Slutsky, Michael; Zandi, Roya; Kantor, Yacov; Kardar, Mehran
2005-05-01
We consider self-avoiding polymers attached to the tip of an impenetrable probe. The scaling exponents γ1 and γ2, characterizing the number of configurations for the attachment of the polymer by one end, or at its midpoint, vary continuously with the tip’s angle. These apex exponents are calculated analytically by ɛ expansion, and numerically by simulations in three dimensions. We find that when the polymer can move through the attachment point, it typically slides to one end; the apex exponents quantify the entropic barrier to threading the eye of the probe.
ORAC-DR -- SCUBA Pipeline Data Reduction
NASA Astrophysics Data System (ADS)
Jenness, Tim; Economou, Frossie
ORAC-DR is a flexible data reduction pipeline designed to reduce data from many different instruments. This document describes how to use the ORAC-DR pipeline to reduce data taken with the Submillimetre Common-User Bolometer Array (SCUBA) obtained from the James Clerk Maxwell Telescope.
In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines
NASA Astrophysics Data System (ADS)
Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik
2015-11-01
The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
The use of Metro-Apex in health administration and planning education and training.
Washburn, A W; McGinty, R T
1977-01-01
Metro-Apex is a computerized gaming-simulation designed to give practitioners and students an understanding of the environment of health care delivery systems. The exercise allows participants to explore the interaction of health roles and the health system's interaction with the larger community system. Originally developed as an air pollution control exercise, it has evolved to be a game about communities and how they operate. In 1972, the Department of Health, Education, and Welfare funded the Center for Multidisciplinary Educational Exercises (COMEX), of the University of Southern California to modify Metro-Apex for use with health service planners, health care administrators, and students in programs leading to these positions. The game runs in several rounds of from three to eight hours for groups of from 40 to 120 persons. Used in both educational and training settings, Metro-Apex is found to be a flexible addition to the health educator's tools.
Miyamoto, Yuji; Sakamoto, Yasuo; Ohuchi, Mayuko; Tokunaga, Ryuma; Shigaki, Hironobu; Kurashige, Junji; Iwatsuki, Masaaki; Baba, Yoshifumi; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo
2016-02-01
Continuous therapy with cytotoxic drugs suppresses humoral immune function and may result in local infection. We present a case of orbital apex syndrome caused by Aspergillus infection during chemotherapy for metastatic colorectal cancer. A 74-year-old man with colorectal liver metastases under long-term continuous systemic chemotherapy presented with painful, progressive orbital apex syndrome. Magnetic resonance imaging disclosed a small enhancing lesion around the right ethmoid sinus. We initially diagnosed colorectal cancer metastasis and he underwent biopsy via the endoscopic endonasal transethmoid approach. However, pathological examination of the cultured specimen revealed Aspergillus fumigatus. The patient was treated with voriconazole and the orbital apex syndrome resolved after 1 month. Orbital aspergillosis is a life-threatening disease and should be listed as a differential diagnosis of uncommon local infections during continuous chemotherapy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Deep-sea macrourid fishes scavenge on plant material: Evidence from in situ observations
NASA Astrophysics Data System (ADS)
Jeffreys, Rachel M.; Lavaleye, Marc S. S.; Bergman, Magda J. N.; Duineveld, Gerard C. A.; Witbaard, Rob; Linley, Thom
2010-04-01
Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).
Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera.
Cuddy-Walsh, Sarah G; Wells, R Glenn
2018-05-01
New single photon emission computed tomography (SPECT) cameras using fixed pinhole collimation are increasingly popular. Pinhole collimators are known to have variable sensitivity with distance and angle from the pinhole aperture. It follows that pinhole SPECT systems will also have spatially variant sensitivity and hence spatially variant image noise. The objective of this study was to develop and validate a rapid method for analytically estimating a map of the noise magnitude in a reconstructed image using data from a single clinical acquisition. The projected voxel (PV) noise estimation method uses a modified forward projector with attenuation effects to estimate the number of photons detected from each voxel in the field-of-view. We approximate the noise for each voxel as the standard deviation of a Poisson distribution with a mean equal to the number of detected photons. An empirical formula is used to address scaling discrepancies caused by image reconstruction. Calibration coefficients are determined for the PV method by comparing it with noise measured from a nonparametrically bootstrapped set of images of a spherical uniformly filled Tc-99m water phantom. Validation studies compare PV noise estimates with bootstrapped measured noise for 31 patient images (5 min, 340 MBq, 99m Tc-tetrofosmin rest study). Bland-Altman analysis shows R 2 correlations ≥70% between the PV-estimated and -measured image noise. For the 31 patient cardiac images, the PV noise estimate has an average bias of 0.1% compared to bootstrapped noise and have a coefficient of variation (CV) ≤ 17%. The bootstrap approach to noise measurement requires 5 h of computation for each image, whereas the PV noise estimate requires only 64 s. In cardiac images, image noise due to attenuation and camera sensitivity varies on average from 4% at the apex to 9% in the basal posterior region of the heart. The standard deviation between 15 healthy patient study images (including physiological variability in the population) ranges from 6% to 16.5% over the length of the heart. The PV method provides a rapid estimate for spatially variant patient-specific image noise magnitude in a pinhole-collimated dedicated cardiac SPECT camera with a bias of -0.3% and better than 83% precision. © 2018 American Association of Physicists in Medicine.
The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
NASA Astrophysics Data System (ADS)
Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.
2018-05-01
Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.
Characterization and Physical Explanation of Energetic Particles on Planck HFI Instrument
NASA Astrophysics Data System (ADS)
Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L.; Sudiwala, R.
2014-09-01
The Planck High Frequency Instrument (HFI) has been surveying the sky continuously from the second Lagrangian point (L2) between August 2009 and January 2012. It operates with 52 high impedance bolometers cooled at 100 mK in a range of frequency between 100 GHz and 1 THz with unprecedented sensitivity, but strong coupling with cosmic radiation. At L2, the particle flux is about 5 and is dominated by protons incident on the spacecraft. Protons with an energy above 40 MeV can penetrate the focal plane unit box causing two different effects: glitches in the raw data from direct interaction of cosmic rays with detectors (producing a data loss of about 15 % at the end of the mission) and thermal drifts in the bolometer plate at 100 mK adding non-Gaussian noise at frequencies below 0.1 Hz. The HFI consortium has made strong efforts in order to correct for this effect on the time ordered data and final Planck maps. This work intends to give a view of the physical explanation of the glitches observed in the HFI instrument in-flight. To reach this goal, we performed several ground-based experiments using protons and particles to test the impact of particles on the HFI spare bolometers with a better control of the environmental conditions with respect to the in-flight data. We have shown that the dominant part of glitches observed in the data comes from the impact of cosmic rays in the silicon die frame supporting the micro-machined bolometric detectors propagating energy mainly by ballistic phonons and by thermal diffusion. The implications of these results for future satellite missions will be discussed.