Metagenomic Analysis of Cucumber RNA from East Timor Reveals an Aphid lethal paralysis virus Genome
Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel
2017-01-01
ABSTRACT We present here the first complete genomic Aphid lethal paralysis virus (ALPV) sequence isolated from cucumber plant RNA from East Timor. We compare it with two complete ALPV genome sequences from China, and one each from Israel, South Africa, and the United States. It most closely resembled the Chinese isolate LGH genome. PMID:28082492
Dombrovsky, Aviv; Luria, Neta
2013-04-01
In a survey that was conducted during the year 2011, a local strain of Aphid lethal paralysis virus (ALPV) was identified and isolated from a wild population of Aphis nerii aphids living on Nerium oleander plants located in northern Israel. The new strain was tentatively named (ALPV-An). RNA extracted from the viral particles allowed the amplification and determination of the complete genome sequence. The virus genome is comprised of 9835 nucleotides. In a BLAST search analysis, the ALPV-An sequence showed 89 % nucleotide sequence identity with the whole genome of a South African ALPV and 96 and 94 % amino acid sequence identity with the ORF1 and ORF2 of that strain, respectively. In preliminary experiments, spray-applied, purified ALPV virions were highly pathogenic to the green peach aphid Myzus persicae; 95 % mortality was recorded 4 days post-infection. These preliminary results demonstrate the potential of ALPV for use as a biologic agent for some aphid control. Surprisingly, no visible ALPV pathogenic effects, such as morphological changes or paralysis, were observed in the A. nerii aphids infected with ALPV-An. The absence of clear ALPV symptoms in A. nerii led to the formulation of two hypotheses, which were partially examined in this study. The first hypothesis suggest that A. nerii is resistant or tolerant of ALPV, while the second hypothesis propose that ALPV-An may be a mild strain of ALPV. Currently, our results is in favor with the first hypothesis since ALPV-An is cryptic in A. nerii aphids and can be lethal for M. persicae aphids.
Wamonje, Francis O; Michuki, George N; Braidwood, Luke A; Njuguna, Joyce N; Musembi Mutuku, J; Djikeng, Appolinaire; Harvey, Jagger J W; Carr, John P
2017-10-02
Aphids are major vectors of plant viruses. Common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) are important crops that are vulnerable to aphid herbivory and aphid-transmitted viruses. In East and Central Africa, common bean is frequently intercropped by smallholder farmers to provide fixed nitrogen for cultivation of starch crops such as maize. We used a PCR-based technique to identify aphids prevalent in smallholder bean farms and next generation sequencing shotgun metagenomics to examine the diversity of viruses present in aphids and in maize leaf samples. Samples were collected from farms in Kenya in a range of agro-ecological zones. Cytochrome oxidase 1 (CO1) gene sequencing showed that Aphis fabae was the sole aphid species present in bean plots in the farms visited. Sequencing of total RNA from aphids using the Illumina platform detected three dicistroviruses. Maize leaf RNA was also analysed. Identification of Aphid lethal paralysis virus (ALPV), Rhopalosiphum padi virus (RhPV), and a novel Big Sioux River virus (BSRV)-like dicistrovirus in aphid and maize samples was confirmed using reverse transcription-polymerase chain reactions and sequencing of amplified DNA products. Phylogenetic, nucleotide and protein sequence analyses of eight ALPV genomes revealed evidence of intra-species recombination, with the data suggesting there may be two ALPV lineages. Analysis of BSRV-like virus genomic RNA sequences revealed features that are consistent with other dicistroviruses and that it is phylogenetically closely related to dicistroviruses of the genus Cripavirus. The discovery of ALPV and RhPV in aphids and maize further demonstrates the broad occurrence of these dicistroviruses. Dicistroviruses are remarkable in that they use plants as reservoirs that facilitate infection of their insect replicative hosts, such as aphids. This is the first report of these viruses being isolated from either organism. The BSRV-like sequences represent a potentially novel dicistrovirus infecting A. fabae.
Ants defend aphids against lethal disease
Nielsen, Charlotte; Agrawal, Anurag A.; Hajek, Ann E.
2010-01-01
Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies. PMID:19923138
Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.
Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun
2015-04-01
The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.
Vertical transmission of honey bee viruses in a Belgian queen breeding program.
Ravoet, Jorgen; De Smet, Lina; Wenseleers, Tom; de Graaf, Dirk C
2015-03-14
The Member States of European Union are encouraged to improve the general conditions for the production and marketing of apicultural products. In Belgium, programmes on the restocking of honey bee hives have run for many years. Overall, the success ratio of this queen breeding programme has been only around 50%. To tackle this low efficacy, we organized sanitary controls of the breeding queens in 2012 and 2014. We found a high quantity of viruses, with more than 75% of the egg samples being infected with at least one virus. The most abundant viruses were Deformed Wing Virus and Sacbrood Virus (≥40%), although Lake Sinai Virus and Acute Bee Paralysis Virus were also occasionally detected (between 10-30%). In addition, Aphid Lethal Paralysis Virus strain Brookings, Black Queen Cell Virus, Chronic Bee Paralysis Virus and Varroa destructor Macula-like Virus occurred at very low prevalences (≤5%). Remarkably, we found Apis mellifera carnica bees to be less infected with Deformed Wing Virus than Buckfast bees (p < 0.01), and also found them to have a lower average total number of infecting viruses (p < 0.001). This is a significant finding, given that Deformed Wing Virus has earlier been shown to be a contributory factor to winter mortality and Colony Collapse Disorder. Moreover, negative-strand detection of Sacbrood Virus in eggs was demonstrated for the first time. High pathogen loads were observed in this sanitary control program. We documented for the first time vertical transmission of some viruses, as well as significant differences between two honey bee races in being affected by Deformed Wing Virus. Nevertheless, we could not demonstrate a correlation between the presence of viruses and queen breeding efficacies.
Lawson, Sarah P; Sigle, Leah T; Lind, Abigail L; Legan, Andrew W; Mezzanotte, Jessica N; Honegger, Hans-Willi; Abbot, Patrick
2017-08-01
Some animals express a form of eusociality known as "fortress defense," in which defense rather than brood care is the primary social act. Aphids are small plant-feeding insects, but like termites, some species express division of labor and castes of aggressive juvenile "soldiers." What is the functional basis of fortress defense eusociality in aphids? Previous work showed that the acquisition of venoms might be a key innovation in aphid social evolution. We show that the lethality of aphid soldiers derives in part from the induction of exaggerated immune responses in insects they attack. Comparisons between closely related social and nonsocial species identified a number of secreted effector molecules that are candidates for immune modulation, including a convergently recruited protease described in unrelated aphid species with venom-like functions. These results suggest that aphids are capable of antagonizing conserved features of the insect immune response, and provide new insights into the mechanisms underlying the evolution of fortress defense eusociality in aphids. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Desneux, Nicolas; Han, Peng; Gao, Xiwu
2015-01-01
The wheat aphids, Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius), are key pests on wheat crops worldwide. Management practices rely primarily on insecticides. The pirimicarb (carbamate) is used extensively as an effective insecticide to control these two aphids. In addition to the mortality caused by pirimicarb, various sublethal effects may occur in aphids when exposed to low lethal or sublethal doses. Understanding the general effect of pirimicarb on aphids could help increasing rational use of this insecticide. Under laboratory conditions, we assessed the sublethal effects of a low lethal concentration of pirimicarb (LC25) on biological traits and acetylcholinesterase (AChE) activity of R. padi and S. avenae. Both direct and transgenerational effects, i.e. on parent and the F1 generations were assessed, respectively. We found that R. padi and S. avenae responded differentially to the LC25 of pirimicarb. The parent generation of R. padi showed a 39% decrease in fecundity and multiple transgenerational effects were observed in the F1 generation; overall juvenile development, reproductive period, adult longevity and lifespan were longer than those of the control group. By contrast, LC25 of pirimicarb showed almost no effects on S. avenae biological traits in both the parent and F1 generations; only the pre-reproductive duration was reduced in F1 generations. Demographic parameter estimates (e.g. rm) showed similar trend, i.e. significant negative effect on R. padi population growth and no effect on S. avenae. However, AChE activity decreased in both R. padi and S. avenae treated by the LC25 of pirimicarb. We demonstrated sublethal and transgenerational effects of pirimicarb in the two wheat aphid species; it hinted at the importance of considering sublethal effects (including hormesis) of pirimicarb for optimizing Integrated Pest Management (IPM) of wheat aphids. PMID:26121265
Zana, Brigitta; Kemenesi, Gábor; Urbán, Péter; Földes, Fanni; Görföl, Tamás; Estók, Péter; Boldogh, Sándor; Kurucz, Kornélia; Jakab, Ferenc
2018-03-01
The predominance of dietary viruses in bat guano samples had been described recently, suggesting a new opportunity to survey the prevalence and to detect new viruses of arthropods or even plant-infecting viruses circulating locally in the ecosystem. Here we describe the diversity of viruses belonging to the order Picornavirales in Hungarian insectivorous bat guano samples. The metagenomic analysis conducted on our samples has revealed the significant predominance of aphid lethal paralysis virus (ALPV) and Big Sioux River virus (BSRV) in Hungary for the first time. Phylogenetic analysis was used to clarify the relationship to previously identified ALPV strains infecting honey bees, showing that our strain possesses a close genetic relationship with the strains that have already been described as pathogenic to honey bees. Furthermore, studies have previously confirmed the ability of these viruses to replicate in adult honey bees; however, no signs related to these viruses have been revealed yet. With the identification of two recently described possibly honey bee infecting viruses for the first time in Hungary, our results might have importance for the health conditions of Hungarian honey bee colonies in the future.
The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid.
Grenier, Anne-Marie; Duport, Gabrielle; Pagès, Sylvie; Condemine, Guy; Rahbé, Yvan
2006-03-01
Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.
Stavrinides, John; No, Alexander; Ochman, Howard
2010-01-01
Aphids are typically exposed to a variety of epiphytic and phytopathogenic bacteria, many of which have entomopathogenic potential. Here we describe the interaction between Pantoea stewartii ssp. stewartii DC283 (DC283), an enteric phytopathogen and causal agent of Stewart's wilt, and the pea aphid, Acyrthosiphon pisum. When ingested by aphids, DC283 establishes and aggregates in the crop and gut, preventing honeydew flow and excretion, resulting in aphid death in 72 h. A mutagenesis screen identified a single locus, termed ucp1 (youcannot pass), whose disruption abolishes aphid pathogenicity. Moreover, the expression of ucp1 in Escherichia coli is sufficient to mediate the hindgut aggregation phenotype by this normally avirulent species. Ucp1 is related to six other proteins in the DC283 genome, each having a common N-terminal region and a divergent C-terminus, but only ucp1 has a role in pathogenicity. Based on predicted motifs and secondary structure, Ucp1 is a membrane-bound protein that functions in bacterial adhesion and promotes the formation of aggregates that are lethal to the insect host. These results illustrate that the enteric plant pathogenic bacteria have the capacity to exploit alternative non-plant hosts, and retain genetic determinants for colonizing the gut.
Ravoet, Jorgen; Maharramov, Jafar; Meeus, Ivan; De Smet, Lina; Wenseleers, Tom; Smagghe, Guy; de Graaf, Dirk C
2013-01-01
Since the last decade, unusually high honey bee colony losses have been reported mainly in North-America and Europe. Here, we report on a comprehensive bee pathogen screening in Belgium covering 363 bee colonies that were screened for 18 known disease-causing pathogens and correlate their incidence in summer with subsequent winter mortality. Our analyses demonstrate that, in addition to Varroa destructor, the presence of the trypanosomatid parasite Crithidia mellificae and the microsporidian parasite Nosema ceranae in summer are also predictive markers of winter mortality, with a negative synergy being observed between the two in terms of their effects on colony mortality. Furthermore, we document the first occurrence of a parasitizing phorid fly in Europe, identify a new fourth strain of Lake Sinai Virus (LSV), and confirm the presence of other little reported pathogens such as Apicystis bombi, Aphid Lethal Paralysis Virus (ALPV), Spiroplasma apis, Spiroplasma melliferum and Varroa destructor Macula-like Virus (VdMLV). Finally, we provide evidence that ALPV and VdMLV replicate in honey bees and show that viruses of the LSV complex and Black Queen Cell Virus tend to non-randomly co-occur together. We also noticed a significant correlation between the number of pathogen species and colony losses. Overall, our results contribute significantly to our understanding of honey bee diseases and the likely causes of their current decline in Europe.
Holistic screening of collapsing honey bee colonies in Spain: a case study.
Cepero, Almudena; Ravoet, Jorgen; Gómez-Moracho, Tamara; Bernal, José Luis; Del Nozal, Maria J; Bartolomé, Carolina; Maside, Xulio; Meana, Aránzazu; González-Porto, Amelia V; de Graaf, Dirk C; Martín-Hernández, Raquel; Higes, Mariano
2014-09-15
Here we present a holistic screening of collapsing colonies from three professional apiaries in Spain. Colonies with typical honey bee depopulation symptoms were selected for multiple possible factors to reveal the causes of collapse. Omnipresent were Nosema ceranae and Lake Sinai Virus. Moderate prevalences were found for Black Queen Cell Virus and trypanosomatids, whereas Deformed Wing Virus, Aphid Lethal Paralysis Virus strain Brookings and neogregarines were rarely detected. Other viruses, Nosema apis, Acarapis woodi and Varroa destructor were not detected. Palinologic study of pollen demonstrated that all colonies were foraging on wild vegetation. Consequently, the pesticide residue analysis was negative for neonicotinoids. The genetic analysis of trypanosomatids GAPDH gene, showed that there is a large genetic distance between Crithidia mellificae ATCC30254, an authenticated cell strain since 1974, and the rest of the presumed C. mellificae sequences obtained in our study or published. This means that the latter group corresponds to a highly differentiated taxon that should be renamed accordingly. The results of this study demonstrate that the drivers of colony collapse may differ between geographic regions with different environmental conditions, or with different beekeeping and agricultural practices. The role of other pathogens in colony collapse has to bee studied in future, especially trypanosomatids and neogregarines. Beside their pathological effect on honey bees, classification and taxonomy of these protozoan parasites should also be clarified.
Lethal and Sublethal Effects of Mineral Oil on Potato Pests.
Galimberti, Andrew; Alyokhin, Andrei
2018-05-28
Mineral oil is a product used to reduce Potato Virus Y transmission in potato fields. However, there is little information available about other effects that oil may have on insect pests of potato. To better understand how mineral oil affects potato pests, we performed a series of experiments testing the effects of oil on mortality, behavior, and development of potato aphids, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae), green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). All three species showed negative behavioral responses to oil-treated potato foliage. Oil treatment also increased aphid mortality. Colorado potato beetle mortality was not affected, but developing on oil-treated potato plants resulted in prolonged development and smaller adults. Additionally, oil acted synergistically with the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae); Colorado potato beetle larvae were killed more rapidly when sprayed with both products compared with when sprayed with B. bassiana alone. Based on these results, mineral oil has the potential for expanded use in potato IPM programs.
D'Ávila, Vinicius A; Barbosa, Wagner F; Guedes, Raul N C; Cutler, G Christopher
2018-05-28
Insecticides can affect biological control by parasitoids. Here, we examined the lethal and sublethal effects of two conventional insecticides, imidacloprid and lambda-cyhalothrin, and a reduced-risk bioinsecticide, spinosad, on the aphid parasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Concentration-mortality curves generated from insecticide residue bioassays found that wasps were nearly 20-fold more susceptible to spinosad than imidacloprid and lambda-cyhalothrin. Imidacloprid and lambda-cyhalothrin compromised adult parasitoid longevity, but not as dramatically as spinosad: concentrations >200 ng spinosad/cm2 reduced wasp longevity by half. Imidacloprid and lambda-cyhalothrin also compromised aphid parasitism by wasps. Although increasing imidacloprid concentrations led to increased host viability and reduced progeny production, lambda-cyhalothrin did not affect viability of parasitized hosts or parasitoid progeny production in a dose-dependent manner. Our results demonstrate that reduced risk bioinsecticide products like spinosad can be more toxic to biological control agents than certain conventional insecticides.
Fujii, Tsuguru; Yamamoto, Kimiko; Banno, Yutaka
2016-06-01
Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Roberts, John M K; Anderson, Denis L; Durr, Peter A
2018-06-01
The viral landscape of the honey bee (Apismellifera) has changed as a consequence of the global spread of the parasitic mite Varroa destructor and accompanying virulent strains of the iflavirus deformed wing virus (DWV), which the mite vectors. The presence of DWV in honey bee populations is known to influence the occurrence of other viruses, suggesting that the current known virome of A. mellifera may be undercharacterized. Here we tested this hypothesis by examining the honey bee virome in Australia, which is uniquely free of parasitic mites or DWV. Using a high-throughput sequencing (HTS) approach, we examined the RNA virome from nine pools of A. mellifera across Australia. In addition to previously reported honey bee viruses, several other insect viruses were detected, including strains related to aphid lethal paralysis virus (ALPV) and Rhopalosiphum padi virus (RhPV), which have recently been identified as infecting honey bees in the USA, as well as several other viruses recently found in Drosophila spp. A further 42 putative novel insect virus genomes spanning the order Picornavirales were assembled, which significantly increases the known viral diversity in A. mellifera. Among these novel genomes, we identified several that were similar (but different) to key A. mellifera viruses, such as DWV, that warrant further investigation. We propose that A. mellifera may be preferentially infected with viruses of the order Picornavirales and that a diverse population of these viruses may be representative of a Varroa-free landscape.
Flachsenberger, W A
The effects of crude blue-ringed octopus venom gland extract and tetrodotoxin (TTX) on anaesthetised rats and rabbits were studied. Paralysis of the respiratory musculature causing anoxia and cyanosis was overcome with positive, artificial respiration. The second lethal mechanism of the toxins: rapid and severe hypotension, had to be counteracted peripherally, since neural transmission had been drastically reduced by the toxins. Noradrenaline, d-amphetamine, phenylephrine and methoxamine, agonists acting on vascular adrenergic a-receptors, were tested.
O'Neal, Matthew E; Varenhorst, Adam J; Kaiser, Matthew C
2018-04-01
Preventing rapid evolution of herbivores to plant traits that confer resistance is an area of active research for applied entomologists. The subfield of insect resistance management (IRM) uses elements of population genetics and ecology to prevent increases in the frequency of virulent (i.e. resistant) sub-populations of an insect pest. Efforts to delay such an increase include using highly lethal toxins (i.e., a high dose), combining multiple resistance traits in one cultivar (i.e., pyramids), and using susceptible plants (i.e. a refuge) within or near plantings of the resistant crop. Even if fully implemented, theoretical models suggest that IRM plans for asexually-reproducing insects (e.g. aphids) cannot limit the frequency of resistance to provide sustainable use of a pest-resistant cultivar. We discuss how feeding by conspecifics aphids induces susceptibility such that a "within plant" refuge is created, allowing both virulent and avirulent (i.e. susceptible) populations to persist. We use the soybean aphid (Aphis glycines Matsumura), and the rapid occurrence of virulence in the US to resistant cultivars of soybean (Glycine max). We describe how feeding by A. glycines on soybeans alters the quality of the plant as a host. These systemic changes to the plants' physiology allow avirulent A. glycines to thrive on resistant cultivars. We explore how the induction of susceptibility by a herbivore can slow an increase in the frequency of virulent populations to resistant host plants. We suggest that a within plant refuge, combined with standard IRM practices, can allow for sustainable use of plant resistance to asexually-reproducing insect pests. Published by Elsevier Inc.
Li, Yan; Qin, Yukun; Liu, Song; Xing, Ronge; Yu, Huahua; Li, Kecheng; Li, Pengcheng
2016-01-01
Avermectin-grafted-N,O-carboxymethyl chitosan (NOCC) derivative was obtained by esterification reaction using dicyclohexylcarbodiimide (DCC) as dehydrating agent and 4-methylaminopyridine as catalyst. The structures of the conjugate were confirmed by FT-IR, 1H NMR, and XRD. Insecticidal activities against armyworms, carmine spider mites, black bean aphids, and brown plant hoppers were investigated at concentrations ranging from 0.16 to 1000 mg/L. At the concentration of 1000 mg/L and 500 mg/L, the lethal rate was 100%. Good insecticidal activity at 4 mg/L was still shown, especially against the black bean aphids and brown plant hoppers. Moreover, the photostability of the conjugate was evaluated and showed an apparent improvement. At 300 mins, the residual rate of the conjugate was 11.22%, much higher than 0.2% of the avermectin technical material. The conjugate we developed showed potential for further study and application in crop protection. PMID:27213156
Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon.
Arita, Minetaro; Nagata, Noriyo; Sata, Tetsutaro; Miyamura, Tatsuo; Shimizu, Hiroyuki
2006-11-01
Poliovirus (PV) infection causes severe paralysis, typically of the legs, by destruction of the motor neurons in the spinal cord. In this study, the relationship between PV replication in the spinal cord, damage in the motor neurons and poliomyelitis-like paralysis was analysed in transgenic mice expressing the human PV receptor (TgPVR21). First, a PV replicon encoding firefly luciferase in place of the capsid genes (PV-Fluc mc) was trans-encapsidated in 293T cells and the trans-encapsidated PV-Fluc mc (TE-PV-Fluc mc) was then inoculated into the spinal cords of TgPVR21 mice. TE-PV-Fluc mc was recovered with a titre of 6.3 x 10(7) infectious units ml(-1), which was comparable to those of PV1 strains. TgPVR21 mice inoculated with TE-PV-Fluc mc showed non-lethal paralysis of the hindlimbs, with severity ranging from a decline in grip strength to complete flaccid paralysis. The replication of TE-PV-Fluc mc in the spinal cord reached peak levels at 10 h post-inoculation (p.i.), followed by the appearance of paralysis at as early as 12 h p.i., reaching a plateau at 16 h p.i. Histological analysis showed a correlation between the lesion and the severity of the clinical symptoms in most mice. However, severe paralysis could also be observed with an apparently low lesion score, where as few as 5.3 x 10(2) motor neurons (1.4 % of the susceptible cells in the lumbar cord) were infected by TE-PV-Fluc mc. These results indicate that PV replication in a small population of the motor neurons was critical for severe residual poliomyelitis-like paralysis in TgPVR21 mice.
Selection of entomopathogenic fungi for aphid control.
Vu, Van Hanh; Hong, Suk Il; Kim, Keun
2007-12-01
Twelve strains of entomopathogenic fungi such as Lecanicillium lecanii, Paecilomyces farinosus, Beauveria bassiana, Metarhizium anisopliae, Cordyceps scarabaeicola, and Nomuraea rileyi were screened for aphid control. At 25 degrees C and 75% relative humidity (RH), among tested entomopathogenic fungi, L. lecanii 41185 showed the highest virulent pathogenicity for both Myzus persicae and Aphis gossypii, and their control values were both nearly 100% 5 and 2 d after treatment, respectively. Moreover, at an RH of 45% and in a wide temperature range (20-30 degrees C), L. lecanii 41185 also exhibited the highest virulence to M. persicae. The control value of M. persicae and the 50% lethal time (LT50) decreased significantly as the applied conidial concentration increased. The 50% lethal concentration (LC50) of the conidial suspension of this fungus was determined to be 6.55x10(5) conidia/ml. The control values of M. persicae resulting from the application of 1x10(7) and 1x10(8) conidia/ml were nearly the same and were significantly higher than that of 1x10(6) conidia/ml. The tested entomopathogenic fungi grew in a broad temperature range (15-30 degrees C). Lecanicillium strains showed optimum growth at 25 degrees C. The aerial conidia of Lecanicillium strains also could germinate in a broad temperature range (15-30 degrees C) and L. lecanii 41185 was the only strain with conidial germination at 35 degrees C.
de Araujo, José M; Marques, Edmilson J; de Oliveira, José V
2009-01-01
This work aimed to determine the efficiency of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana to control the aphid Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae) in kale Brassica oleracea var acephala D.C., as well as their compatibility with a neem oil formulation (Neemseto). Ten isolates of both fungi were tested and the most pathogenic ones were B. bassiana CG001 and M. anisopliae CG30 with 90% and 4.4 days, and 64% and 3.8 days of mortality and median lethal time, respectively. Bioassays with neem at concentrations of 0.5, 1.0 and 2.0% were done either by leaf discs dipping or spraying the aphids on the leaf discs. The neem spraying treatment at 2.0% provided 90% mortality. The use of B. bassiana isolate CG001 or M. anisopliae isolate CG30 with neem at 0.125, 0.25, and 0.5%, demonstrated that these isolates could have their spore viability or colony growth affected when exposed to neem concentrations higher than 0.25%. In absolute values, the isolates B. bassiana CG001 and M. anisopliae CG30 are the most virulent to L. erysimi, and could be utilized in the management of this pest.
Abal, Paula; Louzao, M Carmen; Antelo, Alvaro; Alvarez, Mercedes; Cagide, Eva; Vilariño, Natalia; Vieytes, Mercedes R; Botana, Luis M
2017-02-24
Tetrodotoxin (TTX) is starting to appear in molluscs from the European waters and is a hazard to seafood consumers. This toxin blocks sodium channels resulting in neuromuscular paralysis and even death. As a part of the risk assessment process leading to a safe seafood level for TTX, oral toxicity data are required. In this study, a 4-level Up and Down Procedure was designed in order to determine for the first time the oral lethal dose 50 (LD 50 ) and the No Observed Adverse Effect Level (NOAEL) in mice by using an accurate well-characterized TTX standard.
Immediate post-dosing paralysis following severe soman and VX toxicosis in guinea pigs.
Bide, R W; Schofield, L; Risk, D J
2005-01-01
There have been numerous studies of the central nervous system (CNS) involvement in organophosphate (OP) poisoning showing status epilepticus and/or 'electrographic seizures'. Brain damage has been demonstrated as 'neuronal necrosis' primarily in the cortex, thalamus and hippocampus. To the authors' knowledge there have been no reports of partial/total paralysis following close upon OP exposure although delayed paralysis has been reported. This report summarizes the immediate, OP induced paralytic events recorded in guinea pigs during development of the Canadian reactive skin decontaminant lotion (RSDL). As part of the development work, supra-lethal cutaneous doses of OP were applied to large numbers of guinea pigs followed by decontamination with the RSDL or predecessor lotions and solvents. Soman (pinacolyl methylphosphonofluoridate; GD) challenges were applied to 1277 animals and S-(2-diisopropyl-aminoethyl) methylphosphorothiolate (VX) challenges to 108. The classic sequence of clinical signs--ptyalism, tremors, fasciculations, convulsions, apnea and flaccid paralysis before death--was seen in the 658 animals that died and in many of the survivors. Eighty-four of 688 survivors of GD and 4 of 39 survivors of VX showed random paralysis of various distal regions following recovery from an insult which produced convulsions and/or flaccid paralysis. Because the experiments were designed to assess the decontamination procedures, there were no apparent relationships between the amounts of OP applied and the sequellae recorded. The observations of paralysis were also incidental to the prime focus of the experiments. Because of this, only ten animals paralysed following GD exposure were examined for histological effects. The pathologist diagnosed 'encephalomalacia' and 'focal necrotic lesions' in the cerebral cortex and 'focal necrotic lesions' in one spinal cord. Of the 84 guinea pigs paralysed after GD challenge, one was not decontaminated and the decontaminants used on the remainder were sufficiently varied that there appeared to be no relationship between the type of decontaminant and the resulting paralysis. 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Saska, Pavel; Skuhrovec, Jiří; Lukáš, Jan; Chi, Hsin; Tuan, Shu-Jen; Honěk, Alois
2016-06-01
Glyphosate is the number one herbicide in the world. We investigated the sub-lethal effects of this herbicide on the aphid Metopolophium dirhodum (Walker), using an age-stage, two-sex life table approach. Three concentrations of the herbicide (low - 33.5, medium - 66.9 and high - 133.8 mmol dm-3 of active ingredient) and distilled water as the control were used. The LC50 of the IPA salt of glyphosate on M. dirhodum was equivalent to 174.9 mmol dm-3 of the active ingredient (CI95: 153.0, 199.0). The population parameters were significantly negatively affected by herbicide application, and this negative effect was progressive with the increasing concentration of the herbicide. A difference of two orders of magnitude existed in the predicted population development of M. dirhodum between the high concentration of the herbicide and the control. This is the first study that comprehensively documents such a negative effect on the population of an herbivorous insect.
Saska, Pavel; Skuhrovec, Jiří; Lukáš, Jan; Chi, Hsin; Tuan, Shu-Jen; Honěk, Alois
2016-01-01
Glyphosate is the number one herbicide in the world. We investigated the sub-lethal effects of this herbicide on the aphid Metopolophium dirhodum (Walker), using an age-stage, two-sex life table approach. Three concentrations of the herbicide (low - 33.5, medium - 66.9 and high - 133.8 mmol dm−3 of active ingredient) and distilled water as the control were used. The LC50 of the IPA salt of glyphosate on M. dirhodum was equivalent to 174.9 mmol dm−3 of the active ingredient (CI95: 153.0, 199.0). The population parameters were significantly negatively affected by herbicide application, and this negative effect was progressive with the increasing concentration of the herbicide. A difference of two orders of magnitude existed in the predicted population development of M. dirhodum between the high concentration of the herbicide and the control. This is the first study that comprehensively documents such a negative effect on the population of an herbivorous insect. PMID:27302015
Abal, Paula; Louzao, M. Carmen; Antelo, Alvaro; Alvarez, Mercedes; Cagide, Eva; Vilariño, Natalia; Vieytes, Mercedes R.; Botana, Luis M.
2017-01-01
Tetrodotoxin (TTX) is starting to appear in molluscs from the European waters and is a hazard to seafood consumers. This toxin blocks sodium channels resulting in neuromuscular paralysis and even death. As a part of the risk assessment process leading to a safe seafood level for TTX, oral toxicity data are required. In this study, a 4-level Up and Down Procedure was designed in order to determine for the first time the oral lethal dose 50 (LD50) and the No Observed Adverse Effect Level (NOAEL) in mice by using an accurate well-characterized TTX standard. PMID:28245573
Desneux, Nicolas; Ramirez-Romero, Ricardo; Kaiser, Laure
2006-10-01
Neurotoxic pyrethroid insecticides are widely used for crop protection, and lethal and sublethal perturbations can be expected in beneficial insects. Under laboratory conditions, the lethal and sublethal effects of deltamethrin on the aphid parasitoid Diaeretiella rapae M'Intosh (Hymenoptera: Braconidae) were studied at the mummy stage and in emerging adults. Following a multistep bioassay, analyses were aimed at evaluating the effects of deltamethrin at various crucial steps in the recolonization process following a deltamethrin treatment: Parasitoid pupal development (emergence from the mummies), adult survival, and host-searching capacity. A four-armed olfactometer was used to investigate the effect of deltamethrin on host-searching behavior (a range of concentrations causing 0.4-79.4% mortality was tested), and a Potter tower was used to test the deltamethrin effect with a realistic application method (four concentrations were tested: 0.5, 5.0, 6.25, and 50 g active ingredient [a.i.]/ha). Deltamethrin reduced the percentage of emergence from mummies, but only when exposed to the 50 g a.i./ha concentration. However, for all concentrations tested, the insecticide induced a decrease in longevity after emergence from sprayed mummies and significant adult mortality when parasitoids walked on fresh residues on leaves. Indices were defined and predicted a high mortality and, thus, reduction of recolonization capacities. However, deltamethrin had no effect on orientation behavior toward aphid-infested plants for adults that survived a residual exposure to the insecticide. The impact of deltamethrin on recolonization via pupal emergence and interest in the methodology used are discussed.
Donnarumma, Pasquale; Tarantino, Roberto; Gennaro, Paolo; Mitro, Valeria; Valentini, Valentino; Magliulo, Giuseppe; Delfini, Roberto
2014-01-01
Gunshot wounds to the head (GSWH) account for the majority of penetrating brain injuries, and are the most lethal. Since they are rare in Europe, the number of neurosurgeons who have experienced this type of traumatic injury is decreasing, and fewer cases are reported in the literature. We describe a case of gunshot to the temporal bone in which the bullet penetrated the skull resulting in the facial nerve paralysis. It was excised with the transotic approach. Microsurgical anastomosis among the masseteric nerve and the facial nerve was performed. GSWH are often devastating. The in-hospital mortality for civilians with penetrating craniocerebral injury is very high. Survivors often have high rate of complications. When facial paralysis is present, masseteric-facial direct neurorraphy represent a good treatment.
Fernandes, Maria E S; Alves, Flávia M; Pereira, Renata C; Aquino, Leonardo A; Fernandes, Flávio L; Zanuncio, José C
2016-08-01
Lethal and sublethal effects of insecticides on target and non-target arthropods are a concern of pest management programs. Cycloneda sanguinea, Orius insidiosus and Chauliognathus flavipes are important biological control agents for aphids, whitefly, lepidopterus eggs, thrips and mites. All three test species were subjected to a toxicity study using the insecticides acephate, bifenthrin, chlorantraniliprole, chlorpyrifos, deltamethrin, imidacloprid, and thiamethoxam. Experiments were done in the lab and field. In the laboratory we evaluated the mortality and sublethal effects of the concentration that killed 20% of the population (LC20) on feeding, repellence and reproduction of the species tested. The lethal effects of these insecticides at the recommended doses was evaluated in the field. Concentration-response bioassays indicated chlorantraniliprole had the lowest toxicity, while chlorpyrifos and acephate were the most toxic. Test species exposed to filter paper surfaces treated with pyrethroids, neonicotinoids and organophosphates were repelled. On the other hand, test species were not repelled from surfaces treated with chlorantraniliprole. Chlorantraniliprole therefore seemed to be the least dangerous insecticide for these three beneficial arthropod test species. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Matsuura, Kenji; Yashiro, Toshihisa
2006-10-01
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.
Matsuura, Kenji; Yashiro, Toshihisa
2006-10-01
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.
Efficacy of Chemical Mimicry by Aphid Predators Depends on Aphid-Learning by Ants.
Hayashi, Masayuki; Nomura, Masashi; Nakamuta, Kiyoshi
2016-03-01
Chemical mimicry is an effective strategy when signal receivers recognize and discriminate models by relying on chemical cues. Some aphid enemies mimic the cuticular chemicals of aphids through various means thus avoiding detection and attack by aphid-tending ants. However, because ants have been reported to learn the chemical signatures of aphids in order to distinguish the aphids, the efficacy of chemical mimicry is predicted to depend on the experience of the ants that had tended aphids. The present study tested this hypothesis using two predator species: larvae of the green lacewing Mallada desjardinsi, and larvae of the ladybeetle Scymnus posticalis. Lacewing larvae carry the carcasses of aphids on which they have preyed upon their backs, and these function via chemical camouflage to reduce the aggressiveness of aphid-tending ants toward the larvae. Ladybeetle larvae reportedly produce a covering of wax structures, and their chemicals appear to attenuate ant aggression. We examined whether the behavior of the ant Tetramorium tsushimae toward these predators changed depending on their aphid-tending experience. Ants moderated their aggressiveness toward both predators when they had previously tended aphids, indicating that chemical mimicry by both aphid predators is dependent on previous experience of the ants in tending aphids. Chemical mimicry by the predators of ant-tended aphids is therefore considered to exploit learning-dependent aphid recognition systems of ants.
Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan
2014-01-01
Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios.
Persistence and Viability of Lecanicillium lecanii in Chinese Agricultural Soil
Peng, De-Liang; Zhou, Jie; Zhang, Xiao-Lin; Zhang, Zhao-Rong; Zhao, Jin-Jin; Wu, Yu-Huan
2015-01-01
The entomopathogenic fungus L. lecanii has been developed as biopesticides and used widely for biological control of several insects in agricultural practice. Due to the lack of isolation/count methods for L. lecanii in soil, the persistence of this fungus in soil appears to have attracted no attention. A selective medium and count method for L. lecanii in soil based on cetyl trimethyl ammonium bromide (CTAB) was developed, and then the persistence and viability of this fungus in soil were investigated under field conditions between 2012 and 2014. The results showed that the rate of recovery for L. lecanii in soil on the selective CTAB medium was satisfactory. The minimum CFUs for L. lecanii on the selective medium (0.5 g/L CTAB) was about 102 conidia/g soil. The L. lecanii density in soil declined quickly in the first month after inoculation with fungal conidia, kept stable for 6 to 10 months, and then decreased gradually until undetectable. L. lecanii could persist for at least 14 months in the agricultural soil of northern China. The colony growth, conidia yield and germination rate on plates, as well as the median lethal concentration or times (LC50 or LT50) to aphids, mycelium growth in aphids and sporulation on aphids of L. lecanii did not change significantly during the persistence in soil. In general, the count method developed here was a very useful tool for monitoring the dynamics of natural or introduced L. lecanii populations in soil, and the data on the persistence of L. lecanii in soil reported here were helpful for biological control and environmental risk assessment. PMID:26375030
Tripartite Interactions of Barley Yellow Dwarf Virus, Sitobion avenae and Wheat Varieties
Liu, Xiao-Feng; Hu, Xiang-Shun; Keller, Mike A.; Zhao, Hui-Yan; Wu, Yun-Feng; Liu, Tong-Xian
2014-01-01
The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing. PMID:25184214
The whole genome sequence assembly of the soybean aphid, Aphis glycines
USDA-ARS?s Scientific Manuscript database
Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only two aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, and the Russian wheat aphid, Diuraphis noxia. The soybean aphid (Aphis glycines) is an extreme special...
Volatile communication in plant-aphid interactions.
de Vos, Martin; Jander, Georg
2010-08-01
Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. Copyright 2010 Elsevier Ltd. All rights reserved.
AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome
Legeai, Fabrice; Shigenobu, Shuji; Gauthier, Jean-Pierre; Colbourne, John; Rispe, Claude; Collin, Olivier; Richards, Stephen; Wilson, Alex C. C.; Tagu, Denis
2015-01-01
AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at http://www.aphidbase.com. PMID:20482635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Sijun, E-mail: sliu@iastate.ed; Sivakumar, S., E-mail: sivaento@iastate.ed; Sparks, Wendy O., E-mail: wosparks@iastate.ed
2010-05-25
Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptakemore » of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.« less
Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer.
Shi, Xiaobin; Gao, Yang; Yan, Shuo; Tang, Xin; Zhou, Xuguo; Zhang, Deyong; Liu, Yong
2016-04-22
Cucumber mosaic virus (CMV) causes appreciable losses in vegetables, ornamentals and agricultural crops. The green peach aphid, Myzus persicae Sulzer (Aphididae) is one of the most efficient vectors for CMV. The transmission ecology of aphid-vectored CMV has been well investigated. However, the detailed description of the dynamic change in the plant-CMV-aphid interaction associated with plant defense and virus epidemics is not well known. In this report, we investigated the relationship of virus titer with plant defense of salicylic acid (SA) and jasmonic acid (JA) during the different infection time and their interaction with aphids in CMV-infected tobacco plants. Our results showed that aphid performance changed with virus titer and plant defense on CMV-inoculated plants. At first, plant defense was low and aphid number increased gradually. The plant defense of SA signaling pathway was induced when virus titer was at a high level, and aphid performance was correspondingly reduced. Additionally, the winged aphids were increased. Our results showed that aphid performance was reduced due to the induced plant defense mediated by Cucumber mosaic virus titer. Additionally, some wingless aphids became to winged aphids. In this way CMV could be transmitted with the migration of winged aphids. We should take measures to prevent aphids in the early stage of their occurrence in the field to prevent virus outbreak.
Aphid Alarm Pheromone as a Cue for Ants to Locate Aphid Partners
Verheggen, François J.; Diez, Lise; Sablon, Ludovic; Fischer, Christophe; Bartram, Stefan; Haubruge, Eric; Detrain, Claire
2012-01-01
The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E)-β-farnesene (EβF), by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field. PMID:22870255
Shrestha, Govinda; Enkegaard, Annie
2013-01-01
This study investigated the prey preference of 3rd instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed. PMID:24205864
Shrestha, Govinda; Enkegaard, Annie
2013-01-01
This study investigated the prey preference of 3(rd) instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed.
Bénard-Valle, Melisa; Carbajal-Saucedo, Alejandro; de Roodt, Adolfo; López-Vera, Estuardo; Alagón, Alejandro
2014-01-01
The objective of this study was to identify the venom components that could play a relevant role during envenomation caused by the coral snake Micrurus tener, through its biochemical characterization as well as the analysis of its effects on a murine model. Furthermore, it aimed to evaluate crude venom, in addition to its components, for possible specificity of action on a natural prey model (Conopsis lineata). The toxicity of the crude venom (delivered subcutaneously) showed a significant difference between the Median Lethal Dose (LD₅₀) in mice (4.4 μg/g) and in Conopsis lineata (12.1 μg/g) that was not observed when comparing the Median Paralyzing Dose (PD₅₀) values (mice = 4.7 μg/g; snakes = 4.1 μg/g). These results are evidence that the choice of study model strongly influences the apparent effects of crude venom. Moreover, based on the observed physical signs in the animal models, it was concluded that the most important physical effect caused by the venom is flaccid paralysis, which facilitates capture and subduing of prey regardless of whether it is alive; death is a logical consequence of the lack of oxygenation. Venom fractionation using a C18 reverse phase column yielded 35 fractions from which 16.6% caused paralysis and/or death to both animal models, 21.9% caused paralysis and/or death only to C. lineata and 1.6% were murine specific. Surprisingly, the diversity of snake-specific fractions did not reflect a difference between the PD₅₀s of the crude venom in mice and snakes, making it impossible to assume some type of specificity for either of the study models. Finally, the great diversity and abundance of fractions with no observable effect in snakes or mice (42.7%) suggested that the observed lethal fractions are not the only relevant toxic fractions within the venom and emphasized the possible relevance of interaction between components to generate the syndrome caused by the venom as a whole. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pinheiro, Patricia V.; Ghanim, Murad; Rebelo, Ana Rita; Santos, Rogerio S.; Orsburn, Benjamin C.; Gray, Stewart
2017-01-01
The green peach aphid, Myzus persicae, is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. PMID:27932519
Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).
Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E
2012-04-01
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance gene is limited for soybean aphid management, and that deployment strategies relying on multiple resistance genes may be needed to effectively use plant resistance against soybean aphid.
Geyer, Brian C; Larrimore, Katherine E; Kilbourne, Jacquelyn; Kannan, Latha; Mor, Tsafrir S
2013-01-01
Concerns about the safety of paralytics such as succinylcholine to facilitate endotracheal intubation limit their use in prehospital and emergency department settings. The ability to rapidly reverse paralysis and restore respiratory drive would increase the safety margin of an agent, thus permitting the pursuit of alternative intubation strategies. In particular, patients who carry genetic or acquired deficiency of butyrylcholinesterase, the serum enzyme responsible for succinylcholine hydrolysis, are susceptible to succinylcholine-induced apnea, which manifests as paralysis, lasting hours beyond the normally brief half-life of succinylcholine. We hypothesized that intravenous administration of plant-derived recombinant BChE, which also prevents mortality in nerve agent poisoning, would rapidly reverse the effects of succinylcholine. Recombinant butyrylcholinesterase was produced in transgenic plants and purified. Further analysis involved murine and guinea pig models of succinylcholine toxicity. Animals were treated with lethal and sublethal doses of succinylcholine followed by administration of butyrylcholinesterase or vehicle. In both animal models vital signs and overall survival at specified intervals post succinylcholine administration were assessed. Purified plant-derived recombinant human butyrylcholinesterase can hydrolyze succinylcholine in vitro. Challenge of mice with an LD100 of succinylcholine followed by BChE administration resulted in complete prevention of respiratory inhibition and concomitant mortality. Furthermore, experiments in symptomatic guinea pigs demonstrated extremely rapid succinylcholine detoxification with complete amelioration of symptoms and no apparent complications. Recombinant plant-derived butyrylcholinesterase was capable of counteracting and reversing apnea in two complementary models of lethal succinylcholine toxicity, completely preventing mortality. This study of a protein antidote validates the feasibility of protection and treatment of overdose from succinylcholine as well as other biologically active butyrylcholinesterase substrates.
Klein, Mathew L; Rondon, Silvia I; Walenta, Darrin L; Zeb, Qamar; Murphy, Alexzandra F
2017-08-01
Aphid species, such as the potato aphid, Macrosiphum euphorbiae Thomas, and the green peach aphid, Myzus persicae Sulzer, are routinely considered the most important pests of potatoes. Potato aphid, green peach aphid, and more recently, other aphids such as the bird cherry-oat aphid Rhopalosiphum padi L. have been identified as vectors of multiple plant pathogenic viruses in potatoes. Since 2006, an area-wide trapping network consisting of ∼60 sites was developed through collaboration between researchers, extension faculty, and stakeholders, to monitor aphid populations in the Columbia Basin of Oregon (Umatilla and Morrow counties) and in northeastern Oregon (Union and Baker counties). Over a 9-yr period (2006 to 2014), aphid specimens were collected weekly using yellow bucket traps and specimens were then identified and counted to determine population levels during the growing season (May-September). Thus, aphid population data were compiled and subjected to spatial and temporal distribution analysis. Weather data, obtained from an established network of weather stations located in the monitoring areas, were used in a nonparametric multiplicative regression analysis to determine which abiotic variables may impact aphid populations. Weather conditions were characterized using confidence intervals (CIs) established based on weather data from 1999 to 2005 for each environmental variable. Aphid populations were found to have a heterogeneous distribution in most years; a few sites had high aphid populations while low numbers were observed at most sites; aphids were also found to correlate with several abiotic variables, namely, elevation, previous season temperature, and previous season dew point. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Armet is an effector protein mediating aphid-plant interactions.
Wang, Wei; Dai, Huaien; Zhang, Yi; Chandrasekar, Raman; Luo, Lan; Hiromasa, Yasuaki; Sheng, Changzhong; Peng, Gongxin; Chen, Shaoliang; Tomich, John M; Reese, John; Edwards, Owain; Kang, Le; Reeck, Gerald; Cui, Feng
2015-05-01
Aphid saliva is predicted to contain proteins that modulate plant defenses and facilitate feeding. Armet is a well-characterized bifunctional protein in mammalian systems. Here we report a new role of Armet, namely as an effector protein in the pea aphid, Acyrthosiphon pisum. Pea aphid Armet's physical and chemical properties and its intracellular role are comparable to those reported for mammalian Armets. Uniquely, we detected Armet in aphid watery saliva and in the phloem sap of fava beans fed on by aphids. Armet's transcript level is several times higher in the salivary gland when aphids feed on bean plants than when they feed on an artificial diet. Knockdown of the Armet transcript by RNA interference disturbs aphid feeding behavior on fava beans measured by the electrical penetration graph technique and leads to a shortened life span. Inoculation of pea aphid Armet protein into tobacco leaves induced a transcriptional response that included pathogen-responsive genes. The data suggest that Armet is an effector protein mediating aphid-plant interactions. © FASEB.
Pinheiro, Patricia V; Ghanim, Murad; Alexander, Mariko; Rebelo, Ana Rita; Santos, Rogerio S; Orsburn, Benjamin C; Gray, Stewart; Cilia, Michelle
2017-04-01
The green peach aphid, Myzus persicae , is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Plant immunity in plant–aphid interactions
Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.
2014-01-01
Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727
Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?
Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi
2015-12-01
In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms.
Ortiz-Martínez, Sebastían; Silva, Andrea X.; Lavandero, Blas
2018-01-01
Bacterial endosymbionts that produce important phenotypic effects on their hosts are common among plant sap-sucking insects. Aphids have become a model system of insect-symbiont interactions. However, endosymbiont research has focused on a few aphid species, making it necessary to make greater efforts to other aphid species through different regions, in order to have a better understanding of the role of endosymbionts in aphids as a group. Aphid endosymbionts have frequently been studied by PCR-based techniques, using species-specific primers, nevertheless this approach may omit other non-target bacteria cohabiting a particular host species. Advances in high-throughput sequencing technologies are complementing our knowledge of microbial communities by allowing us the study of whole microbiome of different organisms. We used a 16S rRNA amplicon sequencing approach to study the microbiome of aphids in order to describe the bacterial community diversity in introduced populations of the cereal aphids, Sitobion avenae and Rhopalosiphum padi in Chile (South America). An absence of secondary endosymbionts and two common secondary endosymbionts of aphids were found in the aphids R. padi and S. avenae, respectively. Of those endosymbionts, Regiella insecticola was the dominant secondary endosymbiont among the aphid samples. In addition, the presence of a previously unidentified bacterial species closely related to a phytopathogenic Pseudomonad species was detected. We discuss these results in relation to the bacterial endosymbiont diversity found in other regions of the native and introduced range of S. avenae and R. padi. A similar endosymbiont diversity has been reported for both aphid species in their native range. However, variation in the secondary endosymbiont infection could be observed among the introduced and native populations of the aphid S. avenae, indicating that aphid-endosymbiont associations can vary across the geographic range of an aphid species. In addition, we discuss the potential role of aphids as vectors and/or alternative hosts of phytopathogenic bacteria. PMID:29761046
Specialization of bacterial endosymbionts that protect aphids from parasitoids
USDA-ARS?s Scientific Manuscript database
Infection by the bacterial endosymbiont HAMILTONELLA DEFENSA is capable of protecting the pea aphid from parasitism by APHIDIUS ERVI and the black bean aphid from parasitism by LYSIPHLEBUS FABARUM. Here we investigate protection of a third aphid species, the cowpea aphid, APHIS CRACCIVORA, from 4 p...
National Plant Diagnostic Network, Taxonomic training videos: Introduction to Aphids - Part 2
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on important subject areas for aphid regulatory issues. Here the subject of aphids as they relate to disease transmission, biology, identification, and pathways is addressed. Aphid topi...
USDA-ARS?s Scientific Manuscript database
Sugarcane in the U.S. is chiefly colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari, and the yellow sugarcane aphid, Sipha flava, which vector economically important viruses of the crop. Greenhouse experiments were conducted to categorize commercial sugarcane cultivars for the...
USDA-ARS?s Scientific Manuscript database
Sugarcane in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). The main problem associated with M. sacchari is transmission of sugarcane yellow leaf virus, a disease that has been added to certifica...
Arabidopsis thaliana—Aphid Interaction
Louis, Joe; Singh, Vijay; Shah, Jyoti
2012-01-01
Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177
A highly infective plant-associated bacterium influences reproductive rates in pea aphids
Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.
2016-01-01
Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321
Mechanisms and evolution of plant resistance to aphids.
Züst, Tobias; Agrawal, Anurag A
2016-01-06
Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions.
A highly infective plant-associated bacterium influences reproductive rates in pea aphids.
Hendry, Tory A; Clark, Kelley J; Baltrus, David A
2016-02-01
Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.
Tetramorium tsushimae Ants Use Methyl Branched Hydrocarbons of Aphids for Partner Recognition.
Sakata, Itaru; Hayashi, Masayuki; Nakamuta, Kiyoshi
2017-10-01
In mutualisms, partner discrimination is often the most important challenge for interacting organisms. The interaction between ants and aphids is a model system for studying mutualisms; ants are provided with honeydew by aphids and, in turn, the ants offer beneficial services to the aphids. To establish and maintain this system, ants must discriminate mutualistic aphid species correctly. Although recent studies have shown that ants recognize aphids as mutualistic partners based on their cuticular hydrocarbons (CHCs), it was unclear which CHCs are involved in recognition. Here, we tested whether the n-alkane or methylalkane fraction, or both, of aphid CHCs were utilized as partner recognition cues by measuring ant aggressiveness toward these fractions. When workers of Tetramorium tsushimae ants were presented with dummies coated with n-alkanes of their mutualistic aphid Aphis craccivora, ants displayed higher levels of aggression than to dummies treated with total CHCs or methyl alkanes of A. craccivora; responses to dummies treated with n-alkanes of A. craccivora were similar to those to control dummies or dummies treated with the CHCs of the non-mutualistic aphid Acyrthosiphon pisum. By contrast, ants exhibited lower aggression to dummies treated with either total CHCs or the methylalkane fraction of the mutualistic aphid than to control dummies or dummies treated with CHCs of the non-mutualistic aphid. These results suggest that T. tsushimae ants use methylalkanes of the mutualistic aphid's CHCs to recognize partners, and that these ants do not recognize aphids as partners on the basis of n-alkanes.
Three homicides with darts tainted with succinylcholine: autopsy and toxicology.
Xing, Jingjun; Li, Wenhe; Tong, Fang; Liang, Yue; He, Guanglong; Zhou, Yiwu
2016-11-01
In emergency departments, intoxication with the muscle relaxant succinylcholine (SUX) often leads to a potentially lethal respiratory paralysis or other deleterious side effects. However, homicide cases with SUX poisoning are very rare because the toxic or lethal concentration ranges of SUX have not yet been determined. We described three uncommon homicide cases due to acute poisoning by darts contaminated with SUX. All the victims died quickly (less than 30 min) after being shot by an especially designed dart gun. Succinylmonocholine (SMC), a metabolite of SUX, was used as a marker to detect the latter. HPLC-MS/MS analysis demonstrated the presence of SUX in the droplet residues of the darts and SMC in the blood and urine in all cases. SMC concentrations of 0.45, 14.0, and 17.9 ng/ml were detected in the victims' blood and 259.0 ng/ml in the urine from the third case. The main pathological changes consisted of hemorrhage of the injured soft tissues, visceral congestion, severe pulmonary edema, and multifocal petechial hemorrhage of the heart and lungs. Taken together, the findings supported a diagnosis of fatal SUX poisoning. Futhermore, our study provided a reference for the lethal concentrations of SUX poisoning.
Contribution of Noncolonizing Aphids to Potato Virus Y Prevalence in Potato in Idaho.
Mondal, Shaonpius; Wenninger, Erik J; Hutchinson, Pamela J S; Weibe, Monica A; Eigenbrode, Sanford D; Bosque-Pérez, Nilsa A
2016-12-01
Potato virus Y (PVY) is a major concern for potato production in the United States given its impact on both crop quality and yield. Although green peach aphid, Myzus persicae (Sulzer), is the most efficient PVY vector, it may be less abundant in potato-growing areas of Idaho relative to non-potato-colonizing aphid vectors of PVY that may disperse from nearby cereal fields and other crops. A field study was conducted during 2012-2013 to examine if noncolonizing aphids disperse to nearby potato fields as cereal crops dry down before harvest. The aphid fauna was sampled weekly in four different potato fields in south-central and southeastern Idaho using yellow sticky traps and yellow pan traps. Potato fields were chosen with an adjacent cereal field such that the prevailing westerly wind would facilitate aphid dispersal from cereal fields to potato. Non-potato-colonizing aphids sampled included 10 cereal aphid species, the most abundant of which were Rhopalosiphum padi L. and Metopolophium dirhodum (Walker). More than 35 species from noncereal hosts also were found. Overall, green peach aphid abundance was relatively low, ranging from 0.5-2.5% of the total aphid capture between years and among fields. In both years and all locations, cereal aphid abundance peaked in mid- to late July (cereal ripening stage) and decreased thereafter as cereal crops dried. PVY prevalence in the potato fields increased following these increases in aphid abundance. This study suggests that cereal aphids and other noncolonizing aphids are important contributors to PVY prevalence in potato in southern Idaho. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees.
Marroquín, Carlos; Olmos, Antonio; Teresa Gorris, María; Bertolini, Edson; Carmen Martínez, M; Carbonell, Emilio A; Hermoso de Mendoza, Alfonso; Cambra, Mariano
2004-03-01
Aphid species were counted on citrus trees in orchards in Valencia, Spain, in the spring and autumn of 1997, 1998 and 1999. Moericke yellow water traps, the 'sticky shoot' method and counts of established colonies were used in extensive surveys in which 29,502 aphids were recorded and identified. Aphis spiraecola and Aphis gossypii were the most abundant aphid species. The numbers of aphid species landing on mature trees of grapefruit, sweet orange, lemon and clementine and satsuma mandarins, were estimated by counting the numbers of young shoots/tree and aphids trapped on sticky shoots. The proportions of the different aphid species captured were: A. gossypii (53%), A. spiraecola (32%), Toxoptera aurantii (11%), Myzus persicae (1%), Aphis craccivora (1%) and other species (2%). Clementine was the most visited species with 266,700 aphids landing/tree in spring 2000, followed by lemon (147,000), sweet orange (129,150), grapefruit (103,200), and satsuma (92,400). The numbers and relative percentages of aphids carrying Citrus tristeza virus (CTV) were assessed by nested RT-PCR in single closed tubes and analysed by extraction of RNA-CTV targets from trapped aphids. An average of 37,190 CTV-carrying aphids visited each tree in spring 2000 (29 per shoot). The percentage detection of viral RNA in the aphid species that landed were 27% for A. gossypii, 23% for A. spiraecola and 19% for T. aurantii. This high incidence of aphids carrying CTV is consistent with the high prevalence and rapid spread of CTV in sweet orange, clementine, and satsuma mandarins in recent years in the region. The infection rate was proportional to the number of aphids landing/tree.
Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.
Ramirez, Ricardo A; Spears, Lori R
2014-10-01
Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.
Schwartzberg, Ezra G; Johnson, D W; Brown, G C
2010-12-01
In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest. © 2010 Entomological Society of America
Partial aphid resistance in lettuce negatively affects parasitoids.
Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy
2014-10-01
This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids.
Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas
2017-08-24
Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids ( Acyrthosiphon pisum ) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.
Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas
2017-01-01
Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops. PMID:28837113
Identification of Conditions for Successful Aphid Control by Ladybirds in Greenhouses
Riddick, Eric W.
2017-01-01
As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usually did not correlate with aphid reduction. The ratio of aphid reduction/release rate was slightly less for larvae than adults in some studies, suggesting that larvae were less effective (than adults) in suppressing aphids. Some adult releases were inside cages, thereby limiting adult dispersion from plants. Overall, the ratio of aphid reduction/release rate was greatest for ladybird adults of the normal strain (several species combined), but least for adults of a flightless Harmonia axyridis strain. The combined action of ladybirds and hymenopteran parasitoids could have a net positive effect on aphid population suppression and, consequently, on host (crop) plants. However, ladybird encounters with aphid-tending or foraging ants must be reduced. Deploying ladybirds to help manage aphids in greenhouses and similar protective structures is encouraged. PMID:28350349
Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins
Haubruge, Eric; Hance, Thierry; Thonart, Philippe; De Pauw, Edwin; Francis, Frédéric
2013-01-01
Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective. PMID:24086359
Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens
2014-01-01
Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501
Do aphid colonies amplify their emission of alarm pheromone?
Hatano, Eduardo; Kunert, Grit; Bartram, Stefan; Boland, Wilhelm; Gershenzon, Jonathan; Weisser, Wolfgang W
2008-09-01
When aphids are attacked by natural enemies, they emit alarm pheromone to alert conspecifics. For most aphids tested, (E)-beta-farnesene (EBF) is the main, or only, constituent of the alarm pheromone. In response to alarm pheromone, alerted aphids drop off the plant, walk away, or attempt to elude predators. However, under natural conditions, EBF concentration might be low due to the low amounts emitted, to rapid air movement, or to oxidative degradation. To ensure that conspecifics are warned, aphids might conceivably amplify the alarm signal by emitting EBF in response to EBF emitted by other aphids. To examine whether such amplification occurs, we synthesized deuterated EBF (DEBF), which allowed us to differentiate between applied and aphid-derived chemical. Colonies of Acyrthosiphon pisum were treated with DEBF, and headspace volatiles were collected and analyzed for evidence of aphid-derived EBF. No aphid-derived EBF was detected, suggesting that amplification of the alarm signal does not occur. We discuss the disadvantages of alarm signal reinforcement.
The significance of gut sucrase activity for osmoregulation in the pea aphid, Acyrthosiphon pisum.
Karley, A J; Ashford, D A; Minto, L M; Pritchard, J; Douglas, A E
2005-12-01
The osmotic pressure of the body fluids of aphids is lower than in their diet of plant phloem sap. It is hypothesised that aphids reduce the osmotic pressure of ingested food by sucrase-mediated hydrolysis of dietary sucrose to glucose and fructose, and the polymerisation of glucose into oligosaccharides of low osmotic pressure per hexose unit. To test this hypothesis, the impact of the alpha-glucosidase inhibitor acarbose on the sugar relations and osmoregulation of aphids was explored. Acarbose inhibited sucrase activity in gut homogenates and the production of monosaccharides and oligosaccharides in the honeydew of live aphids. Acarbose caused an increase in the haemolymph osmotic pressure for aphids reared on a diet (containing 0.75 M sucrose) hyperosmotic to the haemolymph and not on the isoosmotic diet containing 0.2 M sucrose. It did not affect aphid feeding rate over 2 days, except at high concentrations on 0.75 M sucrose diet, and this may have been a secondary consequence of osmotic dysfunction. Acarbose-treated aphids died prematurely. With 5 microM dietary acarbose, mean survivorship on 0.2 M sucrose diet was 4.2 days, not significantly different from starved aphids, indicating that, although these aphids fed, they were deprived of utilisable carbon; and on 0.75 M sucrose diet, mean survivorship was just 2.8 days, probably as a consequence of osmotic failure. It is concluded that the aphid gut sucrase activity is essential for osmoregulation of aphids ingesting food hyperosmotic to their body fluids.
Spruce aphid (Elatobium abietinum Walker) (Hemiptera: Aphididae) [Chapter XXIV
Ann M. Lynch
2014-01-01
Elatobium abietinum Walker is a spruce-feeding aphid that in Europe is referred to as the green spruce aphid (Day et al., 1998a) (Fig. 1). However, in North America E. abietinum is known simply as the spruce aphid, while the common name "green spruce aphid" refers to a different species, Cinara fornacula Hottes (Hemiptera: Aphididae) (http://www.entsoc.org/...
Buchman, N; Cuddington, K
2009-08-01
It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.
Losvik, Aleksandra; Beste, Lisa; Glinwood, Robert; Ivarson, Emelie; Stephens, Jennifer; Zhu, Li-Hua; Jonsson, Lisbeth
2017-01-01
Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses. PMID:29257097
Changes in the Russian Wheat Aphid (Hemiptera: Aphididae) Biotype Complex in South Africa.
Jankielsohn, Astrid
2016-04-01
Russian wheat aphid Diuraphis noxia (Kurdjumov) has spread from its native area in central Asia to all the major wheat-producing countries in the world to become an international wheat pest. Because the Russian wheat aphid is a serious threat to the wheat industry in South Africa, it is important to investigate the key factors involved in the distribution of Russian wheat aphid biotypes and in the changes of the Russian wheat aphid biotype complex in South Africa. There are currently four known Russian wheat aphid biotypes occurring in South Africa. Russian wheat aphid samples were collected from 2011 to 2014 during the wheat-growing season in spring and summer and these samples were screened to determine the biotype status. RWASA1 occurred predominantly in the Western Cape, while RWASA2 and RWASA3 occurred predominantly in the Eastern Free State. Following the first record of RWASA4 in 2011, this biotype was restricted to the Eastern Free State. The surveys suggest that the Russian wheat aphid bioype complex was more diverse in the Eastern Free State than in the other wheat production areas. There was also a shift in Russian wheat aphid biotype composition over time. The Russian wheat aphid biotype complex is dynamic, influenced by environmental factors such as host plants, altitude, and climate, and it can change and diversify over time causing fluctuation in populations over sites and years. This dynamic nature of the Russian wheat aphid will continue to challenge the development of Russian wheat aphid-resistant wheat cultivars in South Africa, and the continued monitoring of the biotypic and genetic structure, to determine genetic relatedness and variation in different biotypes, of Russian wheat aphid populations is important for protecting wheat.
Crossley, Michael S; Hogg, David B
2015-04-01
Soybean aphids, Aphis glycines Matsumura, depend on long-distance, wind-aided dispersal to complete their life cycle. Despite our general understanding of soybean aphid biology, little is explicitly known about dispersal of soybean aphids between winter and summer hosts in North America. This study compared genotypic diversity of soybean aphids sampled from several overwintering locations in the Midwest and soybean fields in Ohio and Wisconsin to test the hypothesis that these overwintering locations are sources of the soybean colonists. In addition, air parcel trajectory analyses were used to demonstrate the potential for long-distance dispersal events to occur to or from these overwintering locations. Results suggest that soybean aphids from overwintering locations along the Illinois-Iowa border and northern Indiana-Ohio are potential colonists of soybean in Ohio and Wisconsin, but that Ohio is also colonized by soybean aphids from other unknown overwintering locations. Soybean aphids in Ohio and Wisconsin exhibit a small degree of population structure that is not associated with the locations of soybean fields in which they occur, but that may be related to specific overwintering environments, multiple introductions to North America, or spatial variation in aphid phenology. There may be a limited range of suitable habitat for soybean aphid overwintering, in which case management of soybean aphids may be more effective at their overwintering sites. Further research efforts should focus on discovering more overwintering locations of soybean aphid in North America, and the relative impact of short- and long-distance dispersal events on soybean aphid population dynamics. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Florencio-Ortiz, Victoria; Sellés-Marchart, Susana; Zubcoff-Vallejo, José; Jander, Georg; Casas, José L
2018-01-01
Amino acids play a central role in aphid-plant interactions. They are essential components of plant primary metabolism, function as precursors for the synthesis of defense-related specialized metabolites, and are major growth-limiting nutrients for aphids. To quantify changes in the free amino acid content of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) feeding, plants were infested with a low (20 aphids/plant) or a high (200 aphids/plant) aphid density in time-course experiments ranging from 3 hours to 7 days. A parallel experiment was conducted with pepper plants that had been subjected to water stress. Factor Analysis of Mixed Data revealed a significant interaction of time x density in the free amino acid response of aphid-infested leaves. At low aphid density, M. persicae did not trigger a strong response in pepper leaves. Conversely, at high density, a large increase in total free amino acid content was observed and specific amino acids peaked at different times post-infestation. Comparing aphid-infested with water-stressed plants, most of the observed differences were quantitative. In particular, proline and hydroxyproline accumulated dramatically in response to water stress, but not in response to aphid infestation. Some additional differences and commonalities between the two stress treatments are discussed.
Yu, Xiu-Dao; Pickett, John; Ma, You-Zhi; Bruce, Toby; Napier, Johnathan; Jones, Huw D; Xia, Lan-Qin
2012-05-01
Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for long-term aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic crops engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. (E)-β-Farnesene (EβF) synthases catalyze the formation of EβF, which for many pest aphids is the main component of the alarm pheromone involved in the chemical communication within these species. EβF can also be synthesized by certain plants but is then normally contaminated with inhibitory compounds. Engineering of crop plants capable of synthesizing and emitting EβF could cause repulsion of aphids and also the attraction of natural enemies that use EβF as a foraging cue, thus minimizing aphid infestation. In this review, the effects of aphids on host plants, plants' defenses against aphid herbivory and the recruitment of natural enemies for aphid control in an agricultural setting are briefly introduced. Furthermore, the plant-derived EβF synthase genes cloned to date along with their potential roles in generating novel aphid resistance via genetically modified approaches are discussed. © 2012 Institute of Botany, Chinese Academy of Sciences.
Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi
2010-11-01
Black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding elicits localized chlorotic injury to pecan foliage [Carya illinoinensis (Wangenh.) K Koch] and apparent acceleration of leaf senescence and defoliation. The ability of certain plant growth regulators (PGRs) (forchlorfenuron, gibberellic acid and aviglycine) to prevent M. caryaefoliae from triggering pecan leaf chlorosis and senescence-like processes was evaluated on two dates in both 2006 and 2007. Treatments were applied to orchard foliage and used in laboratory leaf-disc bioassays to assess possible reduction in aphid-elicited chlorosis and concomitant effects on aphid mortality and development. Foliage pretreated with forchlorfenuron + gibberellic acid prior to being challenged with aphids resulted in significantly less aphid-elicited chlorosis than did control or aviglycine-treated leaf discs. No PGR affected aphid mortality; however, development time was increased by forchlorfenuron + gibberellic acid in 2006 and by aviglycine + gibberellic acid on one date in 2007. Certain PGRs possess the potential for usage on pecan to protect foliar canopies from M. caryaefoliae via changes in the susceptibility of the host leaf to senescence-like factors being introduced by feeding aphids. This protective effect on host foliage and the associated suppressive effect on development of feeding aphids might also be relevant to pest management programs on other aphid-crop systems in which aphid-elicited chlorosis and senescence-like processes can limit profitability. Published 2010 by John Wiley & Sons, Ltd.
Zhou, Hong-Xu; Wang, Xi-Cun; Yu, Yi; Tan, Xiu-Mei; Cheng, Zai-Quan; Zhang, An-Sheng; Men, Xing-Yuan; Li-Li, Li
2013-04-01
Chemical characteristics of normal, woolly apple aphid-damaged, and mechanically damaged twigs of six apple cultivars: Red Fuji, Golden Delicious, Qinguan, Zhaojin 108, Starkrimson, and Red General, were examined in autumn wood to provide abetter understanding of factors related to cultivar resistance to the woolly apple aphid, Eriosoma lanigerum (Hausmann). Chemical measures examined included soluble sugars, soluble proteins and amino acids, total phenolics, and polyphenol oxidase (that enhances the resistance of plants to insects) and superoxide dismutase, peroxidase, and catalase (that degrade waste products in plants). Soluble sugar, protein, and amino acid contents in normal (undamaged) twigs of Red Fuji, aphid-susceptible cultivar, were higher than in mechanically damaged and aphid-damaged twigs. Total phenolic compounds, an important group of defensive compounds against aphids, increased by 30.5 and 6.0% in mechanically damaged twigs of Qinguan and Zhaojin 108, respectively, and decreased by 21.7 and 16.1% in aphid-damaged twigs of Red Fuji and Red General, respectively. Compared with normal twigs, in aphid-damaged twigs, superoxide dismutase, peroxidase, and polyphenol activity all decreased in Red Fuji. The resistance of some apple cultivars to woolly apple aphid during the growth of autumn shoots was related to several of the physiological indices we monitored. The thin epidermis of callus tissue over healed wounds showed increased susceptibility to the attack by woolly apple aphid. Apple cultivar Qinguan with the highest level of resistance to woolly apple aphid in autumn had increased in amino acid, total phenolic compound levels, and enzyme activity after aphid feeding.
Climate warming may increase aphids' dropping probabilities in response to high temperatures.
Ma, Gang; Ma, Chun-Sen
2012-11-01
Dropping off is considered an anti-predator behavior for aphids since previous studies have shown that it reduces the risk of predation. However, little attention is paid to dropping behavior triggered by other external stresses such as daytime high temperatures which are predicted to become more frequent in the context of climate warming. Here we defined a new parameter, drop-off temperature (DOT), to describe the critical temperature at which an aphid drops off its host plant when the ambient temperature increases gradually and slowly. Detailed studies were conducted to reveal effects of short-term acclimation (temperature, exposure time at high-temperature and starvation) on DOT of an aphid species, Sitobion avenae. Our objectives were to test if the aphids dropped off host plant to avoid high temperatures and how short-term acclimation affected the aphids' dropping behavior in response to heat stress. We suggest that dropping is a behavioral thermoregulation to avoid heat stress, since aphids started to move before they dropped off and the dropped aphids were still able to control their muscles prior to knockdown. The adults starved for 12 h had higher DOT values than those that were unstarved or starved for 6 h, and there was a trade-off between behavioral thermoregulation and energy acquisition. Higher temperatures and longer exposure times at high temperatures significantly lowered the aphids' DOT, suggested that the aphids avoid heat stress by dropping when exposed to high temperatures. Climate warming may therefore increase the aphids' dropping probabilities and consequently affect the aphids' individual development and population growth. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evolutionary history of aphid-plant associations and their role in aphid diversification.
Peccoud, Jean; Simon, Jean-Christophe; von Dohlen, Carol; Coeur d'acier, Armelle; Plantegenest, Manuel; Vanlerberghe-Masutti, Flavie; Jousselin, Emmanuelle
2010-01-01
Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids' host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Wulff, Jason A.; Buckman, Karrie A.; Wu, Kongming; Heimpel, George E.; White, Jennifer A.
2013-01-01
Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies. PMID:23614027
Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A
2016-01-01
Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when transmitted via the dietary specialist aphid, but these effects varied substantially among predators-in both the magnitude and direction-when transmitted via the dietary generalist aphid. Accordingly, the cascading effect of plant defense on predators was stronger in magnitude and more consistent among predator taxa when transmitted by the specialist than generalist herbivore. Overall, these findings support a central role of herbivore diet breadth in mediating both the strength and contingency of tri-trophic interactions.
Aphid reproductive investment in response to mortality risks
2010-01-01
Background Aphids are striking in their prodigious reproductive capacity and reliance on microbial endosymbionts, which provision their hosts with necessary amino acids and provide protection against parasites and heat stress. Perhaps as a result of this bacterial dependence, aphids have limited immune function that may leave them vulnerable to bacterial pathogens. An alternative, non-immunological response that may be available to infected aphids is to increase reproduction, thereby ameliorating fitness loss from infection. Such a response would reduce the need to mount a potentially energetically costly immune response, and would parallel that of other hosts that alter life-history traits when there is a risk of infection. Here we examined whether pea aphids (Acyrthosiphon pisum) respond to immunological challenges by increasing reproduction. As a comparison to the response to the internal cue of risk elicited by immunological challenge, we also exposed pea aphids to an external cue of risk - the aphid alarm pheromone (E)-β-farnesene (EBF), which is released in the presence of predators. For each challenge, we also examined whether the presence of symbionts modified the host response, as maintaining host fitness in the face of challenge would benefit both the host and its dependent bacteria. Results We found that aphids stabbed abdominally with a sterile needle had reduced fecundity relative to control aphids but that aphids stabbed with a needle bearing heat-killed bacteria had reproduction intermediate, and statistically indistinguishable, to the aphids stabbed with a sterile needle and the controls. Aphids with different species of facultative symbiotic bacteria had different reproductive patterns overall, but symbionts in general did not alter aphid reproduction in response to bacterial exposure. However, in response to exposure to alarm pheromone, aphids with Hamiltonella defensa or Serratia symbiotica symbiotic infections increased reproduction but those without a facultative symbiont or with Regiella insecticola did not. Conclusions Overall, our results suggest that pea aphids are able to increase their reproduction in response to specific cues and that symbiont presence sometimes moderates this response. Such increased reproduction in response to risk of death increases the fitness of both aphids and their vertically transmitted symbionts, and since these organisms have high reproductive capacity, slight increases in reproduction could lead to a very large numerical advantage later in the season. Thus both symbiotic partners can benefit by increasing host fecundity under dangerous conditions. PMID:20716370
Herbert, John J; Horn, David J
2008-10-01
Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.
Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat
Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby
2016-01-01
ABSTRACT Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. IMPORTANCE Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to cause and initiate Fusarium head blight (FHB) disease in wheat, but F. langsethiae may be able to act as a dispersal agent. F. langsethiae contributes harmful toxins to wheat grain that need to be controlled, but as yet, its epidemiology is unresolved. This work reveals insights into the role aphids play in promoting the successful colonization of this species in wheat and the benefit of controlling aphid populations on crops that are at high risk of FHB. PMID:27590814
Bt crops benefit natural enemies to control non-target pests
Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M.
2015-01-01
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM. PMID:26559133
Bt crops benefit natural enemies to control non-target pests.
Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M
2015-11-12
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM.
Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi
2009-04-01
The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, when provided chlorotic pecan leaf discs resulting from previous black pecan aphid feeding and nonchlorotic leaf discs, under a normal photoperiod and constant dark. Additionally, aphid development from the first instar to the adult stage was examined when nymphs were either allowed to feed on the same leaf disc or moved daily to a new, nondamaged, same age leaf disc. After 24 h, a significantly higher percentage of black pecan aphids settled on chlorotic than on nonchlorotic leaf discs, regardless of photoperiod. When starting from the first instar, nymphs that were prevented from inducing leaf chlorosis by moving daily to new, same-age leaf discs took approximately 5 d longer to complete development, had a shorter body length, and had higher mortality than when aphids remained on the same leaf disc. These results show that black pecan aphid-induced leaf chlorosis plays an important role in the interaction of the black pecan aphid with its pecan host.
Kafeshani, Farzaneh Alizadeh; Rajabpour, Ali; Aghajanzadeh, Sirous; Gholamian, Esmaeil; Farkhari, Mohammad
2018-04-02
Aphis spiraecola Patch, Aphis gossypii Glover, and Toxoptera aurantii Boyer de Fonscolombe are three important aphid pests of citrus orchards. In this study, spatial distributions of the aphids on two orange species, Satsuma mandarin and Thomson navel, were evaluated using Taylor's power law and Iwao's patchiness. In addition, a fixed-precision sequential sampling plant was developed for each species on the host plant by Green's model at precision levels of 0.25 and 0.1. The results revealed that spatial distribution parameters and therefore the sampling plan were significantly different according to aphid and host plant species. Taylor's power law provides a better fit for the data than Iwao's patchiness regression. Except T. aurantii on Thomson navel orange, spatial distribution patterns of the aphids were aggregative on both citrus. T. aurantii had regular dispersion pattern on Thomson navel orange. Optimum sample size of the aphids varied from 30-2061 and 1-1622 shoots on Satsuma mandarin and Thomson navel orange based on aphid species and desired precision level. Calculated stop lines of the aphid species on Satsuma mandarin and Thomson navel orange ranged from 0.48 to 19 and 0.19 to 80.4 aphids per 24 shoots according to aphid species and desired precision level. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans (RVSP) software. This sampling program is useful for IPM program of the aphids in citrus orchards.
National Plant Diagnostic Network, Taxonomic training videos: Introduction to Aphids - Part 1
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on important subject areas for aphid examination and identification. Aphid topics such as classification, morphology, plant disease transmission, and references are discussed. This dis...
Aphids capable of fine resolution landing
USDA-ARS?s Scientific Manuscript database
Aphids vector many devastating plant viruses, including the non-persistent papaya ringspot virus (PRSV), which reduces yield in both cucurbits and papaya. It has been demonstrated that some aphids are more attracted to colors symptomatic of virus infection, especially yellow. However, alate aphids a...
Wu, Chengjun; Avila, Carlos A.; Goggin, Fiona L.
2015-01-01
Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2–) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. PMID:25504643
Shrestha, Govinda; Skovgård, Henrik; Reddy, Gadi V. P.; Steenberg, Tove; Enkegaard, Annie
2017-01-01
Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38%) compared to N. ribisnigri (30%). Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84%) and female-biased sex ratio (> 83%) were found irrespective of the aphid species. PMID:28854232
Shrestha, Govinda; Skovgård, Henrik; Reddy, Gadi V P; Steenberg, Tove; Enkegaard, Annie
2017-01-01
Aphid species feeding on lettuce occupy distinct feeding sites: the lettuce aphid Nasonovia ribisnigri prefers to feed on heart leaves, whereas the potato aphid Macrosiphum euphorbiae feeds only on outer leaves. The aphid parasitoid Aphelinus abdominalis, known to be able to regulate M. euphorbiae on many crops, has recently been indicated as a promising biocontrol candidate also for use against N. ribisnigri, a major pest of lettuce. This study therefore examined A. abdominalis parasitization preference between N. ribisnigri and M. euphorbiae and its ability to parasitize aphids feeding on different parts of lettuce plants. In addition, life history traits of A. abdominalis on these aphid species were investigated. In no-choice laboratory experiments on leaf discs and 24 h exposure, A. abdominalis successfully parasitized 54% and 60% of the offered N. ribisnigri and M. euphorbiae, respectively, with no significant difference. In the corresponding choice experiment, however, A. abdominalis had a tendency for a significantly higher preference for M. euphorbiae (38%) compared to N. ribisnigri (30%). Growth chamber experiments on whole plants demonstrated that A. abdominalis was able to parasitize aphids, regardless of their feeding locations on lettuce plants. However, aphid feeding behavior had a significant effect on the parasitization rate. A. abdominalis parasitized significantly higher percentages of M. euphorbiae or N. ribisnigri when aphids were exposed separately to parasitoids on whole lettuce plants as compared with N. ribisnigri exposed only on heart leaf. A significant preference of A. abdominalis for M. euphorbiae compared to N. ribisnigri was also observed in the growth chamber choice experiment. A high percentage of adult emergence (> 84%) and female-biased sex ratio (> 83%) were found irrespective of the aphid species.
Avila, Carlos A.; Arévalo-Soliz, Lirio M.; Jia, Lingling; Navarre, Duroy A.; Chen, Zhaorigetu; Howe, Gregg A.; Meng, Qing-Wei; Smith, Jonathon E.; Goggin, Fiona L.
2012-01-01
We report here that disruption of function of the ω-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families. PMID:22291202
Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min
2012-07-01
Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.
Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min
2012-01-01
Background and Aims Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Methods Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Key Results Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. Conclusions The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks. PMID:22437662
Aphid-encoded variability in susceptibility to a parasitoid
2014-01-01
Background Many animals exhibit variation in resistance to specific natural enemies. Such variation may be encoded in their genomes or derived from infection with protective symbionts. The pea aphid, Acyrthosiphon pisum, for example, exhibits tremendous variation in susceptibility to a common natural enemy, the parasitic wasp Aphidius ervi. Pea aphids are often infected with the heritable bacterial symbiont, Hamiltonella defensa, which confers partial to complete resistance against this parasitoid depending on bacterial strain and associated bacteriophages. That previous studies found that pea aphids without H. defensa (or other symbionts) were generally susceptible to parasitism, together with observations of a limited encapsulation response, suggested that pea aphids largely rely on infection with H. defensa for protection against parasitoids. However, the limited number of uninfected clones previously examined, and our recent report of two symbiont-free resistant clones, led us to explicitly examine aphid-encoded variability in resistance to parasitoids. Results After rigorous screening for known and unknown symbionts, and microsatellite genotyping to confirm clonal identity, we conducted parasitism assays using fifteen clonal pea aphid lines. We recovered significant variability in aphid-encoded resistance, with variation levels comparable to that contributed by H. defensa. Because resistance can be costly, we also measured aphid longevity and cumulative fecundity of the most and least resistant aphid lines under permissive conditions, but found no trade-offs between higher resistance and these fitness parameters. Conclusions These results indicate that pea aphid resistance to A. ervi is more complex than previously appreciated, and that aphids employ multiple tactics to aid in their defense. While we did not detect a tradeoff, these may become apparent under stressful conditions or when resistant and susceptible aphids are in direct competition. Understanding sources and amounts of variation in resistance to natural enemies is necessary to understand the ecological and evolutionary dynamics of antagonistic interactions, such as the potential for coevolution, but also for the successful management of pest populations through biological control. PMID:24916045
Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia
2009-11-01
Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.
Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M
2011-10-01
To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.
Schwarzkopf, Alexander; Rosenberger, Daniel; Niebergall, Martin; Gershenzon, Jonathan; Kunert, Grit
2013-01-01
The pea aphid (Acyrthosiphon pisum Harris), a legume specialist, encompasses at least 11 genetically distinct sympatric host races. Each host race shows a preference for a certain legume species. Six pea aphid clones from three host races were used to localize plant factors influencing aphid probing and feeding behavior on four legume species. Aphid performance was tested by measuring survival and growth. The location of plant factors influencing aphid probing and feeding was determined using the electrical penetration graph (EPG) technique. Every aphid clone performed best on the plant species from which it was originally collected, as well as on Vicia faba. On other plant species, clones showed intermediate or poor performance. The most important plant factors influencing aphid probing and feeding behavior were localized in the epidermis and sieve elements. Repetitive puncturing of sieve elements might be relevant for establishing phloem feeding, since feeding periods appear nearly exclusively after these repetitive sieve element punctures. A combination of plant factors influences the behavior of pea aphid host races on different legume species and likely contributes to the maintenance of these races.
Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids.
Kremer, Jenni M M; Nooten, Sabine S; Cook, James M; Ryalls, James M W; Barton, Craig V M; Johnson, Scott N
2018-04-27
Animal mutualisms, which involve beneficial interactions between individuals of different species, are common in nature. Insect-insect mutualism, for example, is widely regarded as a keystone ecological interaction. Some mutualisms are anticipated to be modified by climate change, but the focus has largely been on plant-microbe and plant-animal mutualisms rather than those between animals. Ant-aphid mutualisms, whereby ants tend aphids to harvest their honeydew excretions and, in return, provide protection for the aphids, are widespread. The mutualism is heavily influenced by the quality and quantity of honeydew produced by aphids, which is directly affected by host plant quality. As predicted increases in concentrations of atmospheric carbon dioxide (eCO 2 ) are widely reported to affect plant nutritional chemistry, this may also alter honeydew quality and hence the nature of ant-aphid mutualisms. Using glasshouse chambers and field-based open-top chambers, we determined the effect of eCO 2 on the growth and nutritional quality (foliar amino acids) of lucerne (Medicago sativa). We determined how cowpea aphid (Aphis craccivora) populations and honeydew production were impacted when feeding on such plants and how this affected the tending behaviour of ants (Iridomyrmex sp.). eCO 2 stimulated plant growth but decreased concentrations of foliar amino acids by 29% and 14% on aphid-infested plants and aphid-free plants, respectively. Despite the deterioration in host plant quality under eCO 2 , aphids maintained performance and populations were unchanged by eCO 2 . Aphids induced higher concentrations of amino acids (glutamine, asparagine, glutamic acid and aspartic acid) important for endosymbiont-mediated synthesis of essential amino acids. Aphids feeding under eCO 2 also produced over three times more honeydew than aphids feeding under ambient CO 2 , suggesting they were imbibing more phloem sap at eCO 2 . The frequency of ant tending of aphids more than doubled in response to eCO 2 . To our knowledge, this is the first study to demonstrate the effects of atmospheric change on an ant-aphid mutualism. In particular, these results highlight how impending changes to concentrations of atmospheric CO 2 may alter mutualistic behaviour between animals. These could include positive impacts, as reported here, shifts from mutualism to antagonism, partner switches and mutualism abandonment. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - overview
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This training video provides provides an overview of general aphid morphology by using a compound microscope. The narrator discusses and highlights structures on the aphid that are important to make a species identification....
Srinivasan, Dayalan G; Abdelhady, Ahmed; Stern, David L
2014-01-01
Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.
Srinivasan, Dayalan G.; Abdelhady, Ahmed; Stern, David L.
2014-01-01
Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity. PMID:25501006
Aphid Species Affect Foraging Behavior of Coccinella septempunctata (Coccinellidae: Coleoptera).
Farooq, Muhammad Umar; Qadri, Hafiz Faqir Hussain; Khan, Muhammad Ahmad
2017-01-01
Flowers are admirable in scenic good looks and artistic beautification. These are also playing necessary roles in therapeutic preparations. Aphid is an important sucking pest of various flowers in ornamental territories and it is generally controlled by predators, so it was necessary to evaluate which aphid species affect the predator more or less. Biocontrol agent Coccinella septempunctata was used against cosmos aphid (Aphis spiraecola, rose aphid (Macrosiphum rosea), gul e ashrafi aphid (Aphis fabae), kaner aphid (Aphis nerii), chandni aphid (Sitobion avenae), dahlia aphid (Myzus persicae) and annual chrysanthemum aphid (Macrosiphoniella sanborni). The grub of C. septempunctata consumed 283.8±9.04 M. rosea, 487.7±12.6 M. sanborni, 432.75±16.02 A. spiraecola, 478.2±8.07 A. fabae, 552.3±9.04 M. persicae, 142±1.32 A. nerii and 498.5±13.09 S. avenae in its whole larval life. The M. persicae and M. rosea consuming grubs showed 100% adult emergence while, M. sanborni, A. spiraecola, A. fabae and S. avenae showed 96.58, 89.02, 94.78 and 75.45% adult emergence, respectively. The C. septempunctata has significant predatory potential against A. spiraecola, M. rosea, A. fabae, S. avenae, M. persicae and M. sanborni except A. nerii. Thus, further studies are needed to find out alternate predator to control A. nerii on ornamentals.
Zhang, Yongdong; Lu, Zhiqiang
2015-05-01
Reactive oxygen species (ROSs) are generated in organisms in response to infections caused by invading microbes. However, excessive ROSs will inflict oxidative damage on the host. Peroxiredoxins (Prxs) are antioxidative enzymes that may eliminate ROSs efficiently. In this study, ApPrx1 from the pea aphid Acyrthosiphon pisum was cloned, and its function was investigated in vitro and in vivo. In the presence of DTT, recombinant ApPrx1 protein from Escherichia coli showed antioxidative activity by eliminating H2O2 effectively. The H2O2 levels were significantly higher in Micrococcus luteus-infected aphids than in uninfected aphids, and ApPrx1 expression was remarkably up-regulated when the aphids were infected with M. luteus or injected with H2O2. When ApPrx1 expression was reduced by dsRNA injection, the survival of the aphids decreased significantly after M. luteus infection. Knockdown of ApPrx1 decreased M. luteus loads inside the aphids 48h post-infection. While under infection conditions, the H2O2 levels were much higher in ApPrx1 knockdown aphids than in dsGFP-injected aphids, indicating that the decreased survival of the aphids was caused by increased oxidative stress. Taken together, our results reveal that ApPrx1 plays a protective role in oxidative stress caused by bacterial infection. Copyright © 2015 Elsevier Inc. All rights reserved.
Louis, Joe; Shah, Jyoti
2013-01-01
The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed. PMID:23847627
Ji, Rui; Wang, Yujun; Cheng, Yanbin; Zhang, Meiping; Zhang, Hong-Bin; Zhu, Li; Fang, Jichao; Zhu-Salzman, Keyan
2016-01-01
Green peach aphid (Myzus persicae) and pea aphid (Acyrthosiphon pisum) are two phylogenetically closely related agricultural pests. While pea aphid is restricted to Fabaceae, green peach aphid feeds on hundreds of plant species from more than 40 families. Transcriptome comparison could shed light on the genetic factors underlying the difference in host range between the two species. Furthermore, a large scale study contrasting gene expression between immature nymphs and fully developed adult aphids would fill a previous knowledge gap. Here, we obtained transcriptomic sequences of green peach aphid nymphs and adults, respectively, using Illumina sequencing technology. A total of 2244 genes were found to be differentially expressed between the two developmental stages, many of which were associated with detoxification, hormone production, cuticle formation, metabolism, food digestion, and absorption. When searched against publically available pea aphid mRNA sequences, 13,752 unigenes were found to have no homologous counterparts. Interestingly, many of these unigenes that could be annotated in other databases were involved in the “xenobiotics biodegradation and metabolism” pathway, suggesting the two aphids differ in their adaptation to secondary metabolites of host plants. Conversely, 3989 orthologous gene pairs between the two species were subjected to calculations of synonymous and nonsynonymous substitutions, and 148 of the genes potentially evolved in response to positive selection. Some of these genes were predicted to be associated with insect-plant interactions. Our study has revealed certain molecular events related to aphid development, and provided some insight into biological variations in two aphid species, possibly as a result of host plant adaptation. PMID:27812361
Kroes, Anneke; Broekgaarden, Colette; Castellanos Uribe, Marcos; May, Sean; van Loon, Joop J A; Dicke, Marcel
2017-01-01
Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density-dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory.
AphID (Lucid key) http://AphID.AphidNet.org
USDA-ARS?s Scientific Manuscript database
This peer-reviewed web site concentrates on the 66 adult alate and apterous aphids that are the world's most cosmopolitan and polyphagous species. The site includes fact sheets about the various aphids species, a glossary of terms helpful to the student, hundreds of photographs and illustrations, a...
Mapping soybean aphid resistance genes in PI 567598B
USDA-ARS?s Scientific Manuscript database
The soybean aphid (Aphis glycines Matsumura) has been a major pest of soybean [Glycine max (L.) Merr.] in North America since it was first discovered in 2000. Plant introduction PI 567598B possesses strong antibiosis resistance to soybean aphids. Our previous study revealed that the aphid resistan...
USDA-ARS?s Scientific Manuscript database
Potato virus Y (PVY) strains are transmitted by different aphid species in a non-persistent, non-circulative manner. Green peach aphid (GPA, Myzus persicae Sulzer; Aphididae, Macrosiphini) is the most efficient vector in laboratory studies, but potato aphid (PA, Macrosiphum euphorbiae Thomas; Aphidi...
National Plant Diagnostic Network, Taxonomic training videos: Introduction to AphID
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on the use of the expert system, AphID, for aphid examination and identification. The video demonstrates the use of different training modules that allow the user to gain familiarity wi...
USDA-ARS?s Scientific Manuscript database
Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a...
USDA-ARS?s Scientific Manuscript database
The entomopathogenic fungus PANDORA NEOAPHIDIS is a recognized pathogen of aphids, causing natural epizootics in aphid populations, and interacts favorably with aphid predators and parasitoids. Survival of entomophthoralean fungi in periods of unsuitable weather conditions or lack of appropriate hos...
Evaluation of aphid resistance among sugarcane cultivars in Louisiana
USDA-ARS?s Scientific Manuscript database
Sugarcane, interspecific hybrids of Saccharum spp., in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). Five sugarcane cultivars, LCP 85-384, HoCP 91-555, Ho 95-988, HoCP 96-540, and L 97-128, rep...
Evolutionary ecology of the interactions between aphids and their parasitoids.
Le Ralec, Anne; Anselme, Caroline; Outreman, Yannick; Poirié, Marylène; van Baaren, Joan; Le Lann, Cécile; van Alphen, Jacques J-M
2010-01-01
Many organisms, including entomopathogenous fungi, predators or parasites, use aphids as ressources. Parasites of aphids are mostly endoparasitoid insects, i.e. insects which lay eggs inside the body of an other insect which will die as a result of their development. In this article, we review the consequences of the numerous pecularities of aphid biology and ecology for their endoparasitoids, notably the Aphidiinae (Hymenoptera: Braconidae). We first examine the various mechanisms used by aphids for defence against these enemies. We then explore the strategies used by aphidiine parasitoids to exploit their aphid hosts. Finally, we consider the responses of both aphids and parasitoids to ecological constraints induced by seasonal cycles and to environmental variations linked to host plants and climate. The fundamental and applied interest of studying these organisms is discussed. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Soybean aphids making their summer appearance early
USDA-ARS?s Scientific Manuscript database
Two small, soft-bodied insects have begun showing up in South Dakota soybean. One is the soybean aphid, and the other is a mealybug. Soybean aphids are yellow to yellow/green and are usually found feeding on the underside of leaves. Incidence of soybean aphid has been a bit higher than typical fo...
USDA-ARS?s Scientific Manuscript database
The soybean aphid, an invasive species, has posed a significant threat to soybean production in North America since 2001. Use of resistant cultivars is an effective tactic to protect soybean yield. However, the variability and dynamics of aphid populations could limit the effectiveness of host-resis...
USDA-ARS?s Scientific Manuscript database
Heteroecious holocyclic aphids alternate between sexual and asexual reproduction on primary and secondary hosts, respectively. Most of these aphids are generalists, but the aphid specialist Aphis glycines survives only on the primary host buckthorn (Rhamnus spp.) and the secondary host soybean (Gly...
Plant-Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior.
Sun, Yucheng; Guo, Huijuan; Ge, Feng
2016-01-01
Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies.
Plant–Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior
Sun, Yucheng; Guo, Huijuan; Ge, Feng
2016-01-01
Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies. PMID:27148325
Effects of bacterial secondary symbionts on host plant use in pea aphids
McLean, A. H. C.; van Asch, M.; Ferrari, J.; Godfray, H. C. J.
2011-01-01
Aphids possess several facultative bacterial symbionts that have important effects on their hosts' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species. PMID:20843842
Validation of a hairy roots system to study soybean-soybean aphid interactions
Morriss, Stephanie C.; Studham, Matthew E.; Tylka, Gregory L.
2017-01-01
The soybean aphid (Aphis glycines) is one of the main insect pests of soybean (Glycine max) worldwide. Genomics approaches have provided important data on transcriptome changes, both in the insect and in the plant, in response to the plant-aphid interaction. However, the difficulties to transform soybean and to rear soybean aphid on artificial media have hindered our ability to systematically test the function of genes identified by those analyses as mediators of plant resistance to the insect. An efficient approach to produce transgenic soybean material is the production of transformed hairy roots using Agrobacterium rhizogenes; however, soybean aphids colonize leaves or stems and thus this approach has not been utilized. Here, we developed a hairy root system that allowed effective aphid feeding. We show that this system supports aphid performance similar to that observed in leaves. The use of hairy roots to study plant resistance is validated by experiments showing that roots generated from cotyledons of resistant lines carrying the Rag1 or Rag2 resistance genes are also resistant to aphid feeding, while related susceptible lines are not. Our results demonstrate that hairy roots are a good system to study soybean aphid-soybean interactions, providing a quick and effective method that could be used for functional analysis of the resistance response to this insect. PMID:28358854
Secondary bacterial symbiont community in aphids responds to plant diversity.
Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W
2016-03-01
Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.
Bacteria may contribute to distant species recognition in ant-aphid mutualistic relationships.
Fischer, Christophe Y; Detrain, Claire; Thonart, Philippe; Haubruge, Eric; Francis, Frédéric; Verheggen, François J; Lognay, Georges C
2017-04-01
Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.
Turley, Nash E; Johnson, Marc T J
2015-07-01
Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.
Kettles, Graeme J.; Kaloshian, Isgouhi
2016-01-01
Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant–aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues. PMID:27536306
Mulot, Michaël; Monsion, Baptiste; Boissinot, Sylvaine; Rastegar, Maryam; Meyer, Sophie; Bochet, Nicole; Brault, Véronique
2018-01-01
Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG) cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph) is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family) by Myzus persicae. The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta- or in vitro-synthesized dsRNA targeting Eph-mRNA (dsRNAEph) did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNAEph-treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNAEph acquisition was also observed for two other poleroviruses transmitted by M. persicae, suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNAEph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages. PMID:29593696
Mulot, Michaël; Monsion, Baptiste; Boissinot, Sylvaine; Rastegar, Maryam; Meyer, Sophie; Bochet, Nicole; Brault, Véronique
2018-01-01
Aphid-transmitted plant viruses are a threat for major crops causing massive economic loss worldwide. Members in the Luteoviridae family are transmitted by aphids in a circulative and non-replicative mode. Virions are acquired by aphids when ingesting sap from infected plants and are transported through the gut and the accessory salivary gland (ASG) cells by a transcytosis mechanism relying on virus-specific receptors largely unknown. Once released into the salivary canal, virions are inoculated to plants, together with saliva, during a subsequent feeding. In this paper, we bring in vivo evidence that the membrane-bound Ephrin receptor (Eph) is a novel aphid protein involved in the transmission of the Turnip yellows virus (TuYV, Polerovirus genus, Luteoviridae family) by Myzus persicae . The minor capsid protein of TuYV, essential for aphid transmission, was able to bind the external domain of Eph in yeast. Feeding M. persicae on in planta - or in vitro -synthesized dsRNA targeting Eph -mRNA (dsRNA Eph ) did not affect aphid feeding behavior but reduced accumulation of TuYV genomes in the aphid's body. Consequently, TuYV transmission efficiency by the dsRNA Eph -treated aphids was reproducibly inhibited and we brought evidence that Eph is likely involved in intestinal uptake of the virion. The inhibition of virus uptake after dsRNA Eph acquisition was also observed for two other poleroviruses transmitted by M. persicae , suggesting a broader role of Eph in polerovirus transmission. Finally, dsRNA Eph acquisition by aphids did not affect nymph production. These results pave the way toward an ecologically safe alternative of insecticide treatments that are used to lower aphid populations and reduce polerovirus damages.
Kettles, Graeme J; Kaloshian, Isgouhi
2016-01-01
Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.
Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A.
2014-01-01
The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these endophytes for the biological control of aphids and other herbivores under greenhouse and field conditions. PMID:25093505
Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A
2014-01-01
The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these endophytes for the biological control of aphids and other herbivores under greenhouse and field conditions.
Canedo-Júnior, Ernesto Oliveira; Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida
2017-01-01
Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.
Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida
2017-01-01
Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849
Cilia, M; Tamborindeguy, C; Fish, T; Howe, K; Thannhauser, T W; Gray, S
2011-03-01
Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid, while six proteins were predicted to be associated with the accessory salivary glands or hemolymph. Knowledge of the proteins that regulate virus transmission and their predicted locations will aid in understanding the biochemical mechanisms regulating circulative virus transmission in aphids, as well as in identifying new targets to block transmission.
Cilia, M.; Tamborindeguy, C.; Fish, T.; Howe, K.; Thannhauser, T. W.; Gray, S.
2011-01-01
Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid, while six proteins were predicted to be associated with the accessory salivary glands or hemolymph. Knowledge of the proteins that regulate virus transmission and their predicted locations will aid in understanding the biochemical mechanisms regulating circulative virus transmission in aphids, as well as in identifying new targets to block transmission. PMID:21159868
USDA-ARS?s Scientific Manuscript database
With the discovery of the soybean aphid (Aphis glycines Matsumura) as a devastating insect pest of soybean (Glycine max (L.) Merr.) in the United States, host resistance was recognized as an important management option. However, the identification of soybean aphid isolates exhibiting strong virulenc...
USDA-ARS?s Scientific Manuscript database
The transmission of viruses in the Luteoviridae, such as Cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus proteins, plant proteins, and aphid proteins. These viruses are retained in the phloem for aphid acquisition and are transmitted by aphids...
USDA-ARS?s Scientific Manuscript database
In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Her...
Nie, Xianzhou; Pelletier, Yvan; Mason, Nicola; Dilworth, Andrea; Giguère, Marie-Andrée
2011-08-01
The effectiveness of propylene glycol on the retention of RNA target of Potato virus Y (PVY), an aphid stylet-borne virus, in Myzus persicae was investigated in comparison to ethanol and liquid nitrogen/-80°C. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the PVY targets from the propylene glycol/ethanol/liquid nitrogen preserved single aphids after a 5min acquisition period from infected potato plants. In the liquid nitrogen/-80°C and 70% ethanol treatments, 55.6% and 38.8% aphids tested PVY-positive, respectively. In the 0-75% propylene glycol treatments, 12.2-44.7% aphids tested PVY-positive. The lowest detection rate was in the 0% (positive rate, 15.2%) and the 10% propylene glycol (positive rate, 12.2%). As the propylene glycol concentration increased to 25%, 29.8% aphids tested positive. A high PVY-positive rate was also found in 35-75% propylene glycol treatments at 44.7% (35% propylene glycol), 36.7% (50% propylene glycol) and 34.8% (75% propylene glycol), which is comparable to the rate shown in 70% ethanol. No significant difference in the positive detection rate was observed in aphids preserved in 50% propylene glycol at room temperature for 2, 4 and 10 days. These results demonstrate that propylene glycol at 25-75% can retain PVY targets effectively in aphids for an extended time period, and thus can be used in aphid traps to preserve viruliferous aphids for later RT-PCR detection of PVY. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Zhang, Yan; Li, Zhi-Xia; Yu, Xiu-Dao; Fan, Jia; Pickett, John A; Jones, Huw D; Zhou, Jing-Jiang; Birkett, Michael A; Caulfield, John; Napier, Johnathan A; Zhao, Guang-Yao; Cheng, Xian-Guo; Shi, Yi; Bruce, Toby J A; Xia, Lan-Qin
2015-05-01
Aphids are important pests of wheat (Triticum aestivum) that affect crop production globally. Herbivore-induced emission of sesquiterpenes can repel pests, and farnesyl pyrophosphate synthase (FPS) is a key enzyme involved in sesquiterpene biosynthesis. However, fps orthologues in wheat and their functional roles in sesquiterpene synthesis and defence against aphid infestation are unknown. Here, two fps isoforms, Tafps1 and Tafps2, were identified in wheat. Quantitative real-time polymerase chain reaction (qRT-PCR) and in vitro catalytic activity analyses were conducted to investigate expression patterns and activity. Heterologous expression of these isoforms in Arabidopsis thaliana, virus-induced gene silencing (VIGS) in wheat and aphid behavioural assays were performed to understand the functional roles of these two isoforms. We demonstrated that Tafps1 and Tafps2 played different roles in induced responses to aphid infestation and in sesquiterpene synthesis. Heterologous expression in A. thaliana resulted in repulsion of the peach aphid (Myzus persicae). Wheat plants with these two isoforms transiently silenced were significantly attractive to grain aphid (Sitobion avenae). Our results provide new insights into induced defence against aphid herbivory in wheat, in particular, the different roles of the two Tafps isoforms in both sesquiterpene biosynthesis and defence against aphid infestation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage
Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko
2016-01-01
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729
Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan
Dutcher, James D.; Karar, Haider; Abbas, Ghulam
2012-01-01
Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011) from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids. PMID:26466738
Aggressive mimicry coexists with mutualism in an aphid.
Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David
2015-01-27
Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant-aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism-antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid-ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation.
Fine mapping of the soybean aphid resistance genes Rag6 and Rag3c from glycine soja 85-32
USDA-ARS?s Scientific Manuscript database
The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2001. Host-plant resistance is known as an ideal management of aphids. Two novel aphid-resistant loci, Rag6 and Rag3c, from the Glycine soja accession 85-32, were previously detected in a 1...
USDA-ARS?s Scientific Manuscript database
The green peach aphid, Myzus persicae (Sulzer), is a major insect pest of many agronomic and horticultural crops and is distributed worldwide Aphid management is often based on application of insecticides. However, the aphid is now resistant to many of these and much interest has recently develope...
USDA-ARS?s Scientific Manuscript database
Field studies of the blackmargined aphid, Monellia caryella (Fitch), were conducted on three cultivars, “Cheyenne,” “Kiowa,” and “Pawnee,” of pecan, Carya illinoinisis (Wang) K. Koch. Aphid and natural enemy (lacewings, ladybird beetles, and spiders) densities were determined twice weekly by direct...
Release of Predators of the Balsam Woolly Aphid in North Carolina
Gene D. Amman; Charles F. Speers
1964-01-01
The balsam woolly aphid, Chermes piceae Ratz. (Homoptera: Chermidae), was accidentally introduced into North America from Europe about 1900 (Balch 1952). The aphid is now a serious pest of Fraser fir, Abies fraseri (Pursh)Poir., in the Southern Appalachians. Since its discovery in Northo-1957 (Speers 1958), the aphid has killed thousands of trees annually. Fraser fir...
Development of a DNA microarray for species identification of quarantine aphids.
Lee, Won Sun; Choi, Hwalran; Kang, Jinseok; Kim, Ji-Hoon; Lee, Si Hyeock; Lee, Seunghwan; Hwang, Seung Yong
2013-12-01
Aphid pests are being brought into Korea as a result of increased crop trading. Aphids exist on growth areas of plants, and thus plant growth is seriously affected by aphid pests. However, aphids are very small and have several sexual morphs and life stages, so it is difficult to identify species on the basis of morphological features. This problem was approached using DNA microarray technology. DNA targets of the cytochrome c oxidase subunit I gene were generated with a fluorescent dye-labelled primer and were hybridised onto a DNA microarray consisting of specific probes. After analysing the signal intensity of the specific probes, the unique patterns from the DNA microarray, consisting of 47 species-specific probes, were obtained to identify 23 aphid species. To confirm the accuracy of the developed DNA microarray, ten individual blind samples were used in blind trials, and the identifications were completely consistent with the sequencing data of all individual blind samples. A microarray has been developed to distinguish aphid species. DNA microarray technology provides a rapid, easy, cost-effective and accurate method for identifying aphid species for pest control management. © 2013 Society of Chemical Industry.
Betancourt, Mónica; Fraile, Aurora; Milgroom, Michael G; García-Arenal, Fernando
2016-06-01
The satellite RNAs of cucumber mosaic virus (CMV) that induce systemic necrosis in tomato plants (N-satRNA) multiply to high levels in the infected host while severely depressing CMV accumulation and, hence, its aphid transmission efficiency. As N-satRNAs are transmitted into CMV particles, the conditions for N-satRNA emergence are not obvious. Model analyses with realistic parameter values have predicted that N-satRNAs would invade CMV populations only when transmission rates are high. Here, we tested this hypothesis experimentally by passaging CMV or CMV+N-satRNAs at low or high aphid densities (2 or 8 aphids/plant). As predicted, high aphid densities were required for N-satRNA emergence. The results showed that at low aphid densities, random effects due to population bottlenecks during transmission dominate the epidemiological dynamics of CMV/CMV+N-satRNA. The results suggest that maintaining aphid populations at low density will prevent the emergence of highly virulent CMV+N-satRNA isolates.
Ebadollahi, Asgar; Davari, Mahdi; Razmjou, Jabrael; Naseri, Bahram
2017-06-01
In the present study, the toxicity of essential oils of Mentha piperata L. and Mentha pulegium L. and pathogenicity of Lecanicillium muscarium (Zare & Gams) were studied in the melon aphid, Aphis gossypii Glover. Analyses of the essential oils by GC-MS indicated limonene (27.28%), menthol (24.71%), menthone (14.01%), and carvol (8.46%) in the M. piperata essential oil and pulegone (73.44%), piperitenone (5.49%), decane (4.99%), and limonene (3.07%) in the essential oil of M. pulegium as the main components. Both essential oils and the pathogenic fungus had useful toxicity against A. gossypii. Probit analysis indicated LC50 values (lethal concentrations to kill 50% of population; 95% confidence limits in parentheses) of M. piperata and M. pulegium essential oils as 15.25 (12.25-19.56) and 23.13 (19.27-28.42) µl/liter air, respectively. Susceptibility to the pathogenic fungus increased with exposure time. Aphid mortality also increased when the essential oils were combined with L. muscarium, although the phenomena was additive rather than synergistic. Mycelial growth inhibition of L. muscarium exposed to the essential oils was also very low. Based on our results, M. piperata and M. pulegium essential oils and the pathogenic fungus L. muscarium have some potential for management of A. gossypii. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2012-01-01
Background Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. Results The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi) had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones co-occurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. Conclusions L. flavus “husbandry” is characterized by low aphid “livestock” diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and scramble competition with other aphids. We suggest that such culling of carbohydrate-providing symbionts for protein ingestion may maintain maximal host yield per aphid while also benefitting the domesticated aphids as long as their clone-mates reproduce successfully. The cost-benefit logic of this type of polyculture husbandry has striking analogies with human farming practices based on slaughtering young animals for meat to maximize milk-production by a carefully regulated adult livestock population. PMID:22747564
USDA-ARS?s Scientific Manuscript database
The soybean aphid, a plant sap sucking insect, has become an important soybean pest in the USA and infestation of soybean by this insect can lead to significant yield losses. The Rag2 gene of soybean, providing resistance to soybean aphid biotypes I (IL) and II (OH), was identified by researchers in...
A Trio of Viral Proteins Tunes Aphid-Plant Interactions in Arabidopsis thaliana
Du, Zhiyou; Murphy, Alex M.; Anggoro, Damar Tri; Tungadi, Trisna; Luang-In, Vijitra; Lewsey, Mathew G.; Rossiter, John T.; Powell, Glen; Smith, Alison G.; Carr, John P.
2013-01-01
Background Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV), on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: ‘peach-potato aphid’, ‘green peach aphid’). Methodology/Principal Findings Infection of Arabidopsis (ecotype Col-0) with CMV strain Fny (Fny-CMV) induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M). 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase), triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1), a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s) toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. Conclusions/Significance Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b) appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis) that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences between the effects of Fny-CMV on this plant and those seen previously in tobacco (inhibition of resistance to aphids) may have important epidemiological consequences. PMID:24349433
Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid.
Margaritopoulos, John T; Kasprowicz, Louise; Malloch, Gaynor L; Fenton, Brian
2009-05-11
Global commerce and human transportation are responsible for the range expansion of various insect pests such as the plant sucking aphids. High resolution DNA markers provide the opportunity to examine the genetic structure of aphid populations, identify aphid genotypes and infer their evolutionary history and routes of expansion which is of value in developing management strategies. One of the most widespread aphid species is the peach-potato aphid Myzus persicae, which is considered as a serious pest on various crops in many parts of the world. The present study examined the genetic variation of this aphid at a world scale and then related this to distribution patterns. In particular, 197 aphid parthenogenetic lineages from around the world were analysed with six microsatellite loci. Bayesian clustering and admixture analysis split the aphid genotypes into three genetic clusters: European M. persicae persicae, New Zealand M. persicae persicae and Global M. persicae nicotianae. This partition was supported by FST and genetic distance analyses. The results showed two further points, a possible connection between genotypes found in the UK and New Zealand and globalization of nicotianae associated with colonisation of regions where tobacco is not cultivated. In addition, we report the presence of geographically widespread clones and for the first time the presence of a nicotianae genotype in the Old and New World. Lastly, heterozygote deficiency was detected in some sexual and asexual populations. The study revealed important genetic variation among the aphid populations we examined and this was partitioned according to region and host-plant. Clonal selection and gene flow between sexual and asexual lineages are important factors shaping the genetic structure of the aphid populations. In addition, the results reflected the globalization of two subspecies of M. persicae with successful clones being spread at various scales throughout the world. A subspecies appears to result from direct selection on tobacco plants. This information highlights the ultimate ability of a polyphagous aphid species to generate and maintain ecologically successful gene combinations through clonal propagation and the role of human transportation and global commerce for expanding their range.
Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid
Margaritopoulos, John T; Kasprowicz, Louise; Malloch, Gaynor L; Fenton, Brian
2009-01-01
Background Global commerce and human transportation are responsible for the range expansion of various insect pests such as the plant sucking aphids. High resolution DNA markers provide the opportunity to examine the genetic structure of aphid populations, identify aphid genotypes and infer their evolutionary history and routes of expansion which is of value in developing management strategies. One of the most widespread aphid species is the peach-potato aphid Myzus persicae, which is considered as a serious pest on various crops in many parts of the world. The present study examined the genetic variation of this aphid at a world scale and then related this to distribution patterns. In particular, 197 aphid parthenogenetic lineages from around the world were analysed with six microsatellite loci. Results Bayesian clustering and admixture analysis split the aphid genotypes into three genetic clusters: European M. persicae persicae, New Zealand M. persicae persicae and Global M. persicae nicotianae. This partition was supported by FST and genetic distance analyses. The results showed two further points, a possible connection between genotypes found in the UK and New Zealand and globalization of nicotianae associated with colonisation of regions where tobacco is not cultivated. In addition, we report the presence of geographically widespread clones and for the first time the presence of a nicotianae genotype in the Old and New World. Lastly, heterozygote deficiency was detected in some sexual and asexual populations. Conclusion The study revealed important genetic variation among the aphid populations we examined and this was partitioned according to region and host-plant. Clonal selection and gene flow between sexual and asexual lineages are important factors shaping the genetic structure of the aphid populations. In addition, the results reflected the globalization of two subspecies of M. persicae with successful clones being spread at various scales throughout the world. A subspecies appears to result from direct selection on tobacco plants. This information highlights the ultimate ability of a polyphagous aphid species to generate and maintain ecologically successful gene combinations through clonal propagation and the role of human transportation and global commerce for expanding their range. PMID:19432979
Zhang, Min; Zhou, Yuwen; Wang, Hui; Jones, Huw; Gao, Qiang; Wang, Dahai; Ma, Youzhi; Xia, Lanqin
2013-08-16
The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy.
Brabec, Marek; Honěk, Alois; Pekár, Stano; Martinková, Zdenka
2014-01-01
Aphid populations show periodic fluctuations and many causes are attributed to their dynamic. We investigated the regulation by temperature of the aphid populations composed of Metopolophium dirhodum, Sitobion avenae, and Rhopalosiphum padi on winter wheat using a 24 years long time series data. We computed the sum of daily temperatures above 5°C, the threshold temperature for aphid development, and the sum of daily temperatures within the [0(threshold for wheat development),5] °C interval. Applying Generalised Additive Model framework we tested influences of temperature history expressed via degree days before the start of the aphid immigration on the length of their occurrence. We aimed to estimate the magnitude and direction of this influence, and how far to the past before the start of the aphid season the temperature effect goes and then identify processes responsible for the effect. We fitted four models that differed in the way of correcting for abundance in the previous year and in specification of temperature effects. Abundance in the previous year did not affect the length of period of aphid population growth on wheat. The temperature effect on the period length increased up to 123 days before the start of the current season, i.e. when wheat completed vernalization. Increased sum of daily temperatures above 5°C and the sum of daily temperatures within the [0,5] °C interval both shortened the length of period of aphid population growth. Stronger effect of the latter suggests that wheat can escape from aphid attacks if during winter temperatures range from 0 to 5°C. The temperature influence was not homogeneous in time. The strongest effect of past temperature was about 50 to 80 and 90 to 110 days before the beginning of the current aphid season indicating important role of termination of aphid egg dormancy and egg hatching. PMID:25184219
Overexpression of IRM1 Enhances Resistance to Aphids in Arabidopsis thaliana
Chen, Xi; Zhang, Zhao; Visser, Richard G. F.; Broekgaarden, Colette; Vosman, Ben
2013-01-01
Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth. PMID:23951039
Nebreda, M; Moreno, A; Pérez, N; Palacios, I; Seco-Fernández, V; Fereres, A
2004-03-01
This research sought to identify the aphid virus vector species associated with lettuce and broccoli crops in Spain, and to determine their population dynamics and ability to transmit Lettuce mosaic virus (LMV). Green tile traps and Moericke yellow water-pan traps were used to monitor aphid flights during the spring and autumn growing seasons of 2001. Aphid species feeding on lettuce were counted weekly. The transmission efficiencies of LMV were determined for the aphid species caught most frequently. The Moericke traps generally caught more aphid species than the tile trap, but the latter was the most suitable to estimate flight activity of species involved in virus spread. Spring aphid catches indicated that the main aphid species landing on lettuce in the regions of Madrid and Murcia was Hyperomyzus lactucae, but Brachycaudus helichrysi was also abundant in both regions. In broccoli in the Navarra region, the most abundant species in spring were Aphis fabae, B. helichrysi and H. lactucae. In autumn-sown crops, the main species landing on lettuce in the Madrid region were Hyadaphis coriandri and Aphis spiraecola. In Murcia, A. spiraecola and Myzus persicae were the most abundant, while in Navarra, Therioaphis trifolii, and various Aphis spp. were the most numerous landing on broccoli. The main aphid species colonising lettuce was Nasonovia ribisnigri, but other less abundant colonising species were Aulacorthum solani and Macrosiphum euphorbiae. The most efficient vectors of LMV were M. persicae, Aphis gossypii and M. euphorbiae, while A. fabae and H. lactucae transmitted with low efficiency, and Rhopalosiphum padi and N. ribisnigri did not transmit. Occurrence of LMV epidemics in central Spain in relation to aphid flights and the role of weeds as virus reservoirs is discussed.
Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer.
van Gils, Stijn; Tamburini, Giovanni; Marini, Lorenzo; Biere, Arjen; van Agtmaal, Maaike; Tyc, Olaf; Kos, Martine; Kleijn, David; van der Putten, Wim H
2017-01-01
There is increasing evidence showing that microbes can influence plant-insect interactions. In addition, various studies have shown that aboveground pathogens can alter the interactions between plants and insects. However, little is known about the role of soil-borne pathogens in plant-insect interactions. It is also not known how environmental conditions, that steer the performance of soil-borne pathogens, might influence these microbe-plant-insect interactions. Here, we studied effects of the soil-borne pathogen Rhizoctonia solani on aphids (Sitobion avenae) using wheat (Triticum aestivum) as a host. In a greenhouse experiment, we tested how different levels of soil organic matter (SOM) and fertilizer addition influence the interactions between plants and aphids. To examine the influence of the existing soil microbiome on the pathogen effects, we used both unsterilized field soil and sterilized field soil. In unsterilized soil with low SOM content, R. solani addition had a negative effect on aphid biomass, whereas it enhanced aphid biomass in soil with high SOM content. In sterilized soil, however, aphid biomass was enhanced by R. solani addition and by high SOM content. Plant biomass was enhanced by fertilizer addition, but only when SOM content was low, or in the absence of R. solani. We conclude that belowground pathogens influence aphid performance and that the effect of soil pathogens on aphids can be more positive in the absence of a soil microbiome. This implies that experiments studying the effect of pathogens under sterile conditions might not represent realistic interactions. Moreover, pathogen-plant-aphid interactions can be more positive for aphids under high SOM conditions. We recommend that soil conditions should be taken into account in the study of microbe-plant-insect interactions.
Social aggregation in pea aphids: experiment and random walk modeling.
Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J; Topaz, Chad M
2013-01-01
From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.
Differential Life History Trait Associations of Aphids with Nonpersistent Viruses in Cucurbits.
Angelella, G M; Egel, D S; Holland, J D; Nemacheck, J A; Williams, C E; Kaplan, I
2015-06-01
The diversity of vectors and fleeting nature of virus acquisition and transmission renders nonpersistent viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a 2-yr survey of aphids and nonpersistent viruses on commercial pumpkin farms. We quantified aphid alightment using pan traps, while testing leaf samples with multiplex RT-PCR targeting cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and papaya ringspot virus (PRSV). Overall, we identified 53 aphid species (3,899 individuals), from which the melon aphid, Aphis gossypii Glover, a pumpkin-colonizing species, predominated (76 and 37% of samples in 2010 and 2011, respectively). CMV and ZYMV were not detected, but WMV and PRSV were prevalent, both regionally (WMV: 28/29 fields, PRSV: 21/29 fields) and within fields (infection rates = 69 and 55% for WMV in 2010 and 2011; 28 and 25% for PRSV in 2010 and 2011). However, early-season samples showed extremely low infection levels, suggesting cucurbit viruses are not seed-transmitted and implicating aphid activity as a causal factor driving virus spread. Interestingly, neither noncolonizer and colonizer alightment nor total aphid alightment were good predictors of virus presence, but community analyses revealed species-specific relationships. For example, cowpea aphid (Aphis craccivora Koch) and spotted alfalfa aphid (Therioaphis trifolii Monell f. maculata) were associated with PRSV infection, whereas the oleander aphid (Aphis nerii Bover de Fonscolombe) was associated with WMV spread within fields. These outcomes highlight the need for tailored management plans targeting key vectors of nonpersistent viruses in agricultural systems. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P. T.; Linforth, Robert; Bruce, Toby J. A.
2015-01-01
We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. PMID:25769834
Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P T; Linforth, Robert; Bruce, Toby J A; Ray, Rumiana V
2015-05-15
We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A.; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R.; Meihls, Lisa N.; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A.; Jander, Georg
2015-01-01
As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100
Manfrino, Romina G; Gutierrez, Alejandra C; Rueda Páramo, Manuel E; Salto, César E; López Lastra, Claudia C
2016-08-01
Transmission of fungal pathogens of aphids may be affected by the host developmental stage. Brassica and Lactuca sativa L. crops were sampled in Santa Fe, Argentina, to determine the prevalence of fungal-diseased aphids and investigate the differences between developmental stages of aphids. The fungal pathogens identified were Zoophthora radicans (Bref.) A. Batko, Pandora neoaphidis (Remaud. & Hennebert) Humber and Entomophthora planchoniana Cornu. Their prevalence on each crop was calculated. The numbers of infected aphids were significantly different between the different developmental stages on all crops except B. oleracea var. botrytis L. The entomophthoralean fungi identified are important mortality factors of aphids on horticultural crops in Santa Fe. The numbers of infected nymphs and adults were significantly different, nymphs being the most affected developmental stage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
(E)-β-farnesene gene reduces Lipaphis erysimi colonization in transgenic Brassica juncea lines
Verma, Shiv Shankar; Sinha, Rakesh Kumar; Jajoo, Anajna
2015-01-01
Aphids are the major concern that significantly reduces the yield of crops. (E)-β-farnesene (Eβf) is the principal component of the alarm pheromone of many aphids. The results of current research support the direct defense response of (E)-β-farnesene (Eβf) against aphid Lipaphis erysimi (L.) Kaltenbach in Brassica juncea. Eβf gene was isolated from Mentha arvensis and transformed into B. juncea, showed direct repellent against aphid colonization. The seasonal mean population (SMP) recorded under field condition showed significantly higher aphid colonization in wild type in comparison to most of the transgenic lines, and shows positive correlation with the repellency of transgenic plant expressing (E)-β-farnesene. The current research investigation provides direct evidence for aphid control in B. juncea using Eβf, a non-toxic mode of action. PMID:26251882
Kozłowski, Jan; Strażyński, Przemysław; Jaskulska, Monika; Kozłowska, Maria
2016-01-01
Lupin plants are frequently damaged by various herbivorous invertebrates. Significant among these are slugs and aphids, which sometimes attack the same plants. Relationships between aphids, slugs and food plant are very interesting. Grazing by these pests on young plants can lead to significant yield losses. There is evidence that the alkaloids present in some lupin plants may reduce grazing by slugs, aphids and other invertebrates. In laboratory study was analyzed the relationships between aphid Aphis craccivora and slug Deroceras reticulatum pests of legumes Lupinus angustifolius. It was found that the presence of aphids significantly reduced slug grazing on the plants. The lupin cultivars with high alkaloid content were found to be less heavily damaged by D. reticulatum, and the development of A. craccivora was found to be inhibited on such plants. PMID:27324580
Voegtlin, David J.; Hamilton, Krista L.; Hogg, David B.
2017-01-01
Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L.) and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites. PMID:29206134
Fan, Jia; Xue, Wenxin; Duan, Hongxia; Jiang, Xin; Zhang, Yong; Yu, Wenjuan; Jiang, Shanshan; Sun, Jingrun; Chen, Julian
2017-08-01
(E)-β-farnesene (EBF) is the common active component of aphid alarm pheromone. Either or both of two orthologs of ordorant-binding proteins (OBPs), OBP3 and OBP7, recently reported in aphids, may be involved in EBF perception. The aim of this study was to investigate the respondence of the aphid Rhopalosiphum padi to its intraspecific alarm pheromone and which OBP is responsible for that response. We tested the olfactory response of the aphid R. padi to EBF and freshly crushed aphids. Then, we extracted the volatiles from crushed aphids using solid phase microextraction (SPME) for analysis with GC×GC-TOF/MS. We also cloned two OBPs cDNAs in R. padi (RpadOBP3 and RpadOBP7) and expressed them in competent Escherichia coli cells. Both recombinant proteins, RpadOBP3 and RpadOBP7, bound EBF well, with RpadOBP7 having specifically stronger affinity for EBF than for other volatiles. Based on the crystal structure of the OBPs with high identity, we performed homology modeling and analyzed the interactions between RpadOBPs and EBF. In conclusion, R. padi was repelled by both EBF and crushed aphids. EBF was identified as the only volatile that acted as the alarm pheromone. Our results indicated that OBP7 is a potential molecular target to control wheat aphids by disturbing their behaviors to the alarm pheromone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genome Sequence of the Pea Aphid Acyrthosiphon pisum
2010-01-01
Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266
Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean
Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.
2015-01-01
The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003
Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes.
Peccoud, Jean; Bonhomme, Joël; Mahéo, Frédérique; de la Huerta, Manon; Cosson, Olivier; Simon, Jean-Christophe
2014-06-01
Herbivorous insects frequently harbor bacterial symbionts that affect their ecology and evolution. Aphids host the obligatory endosymbiont Buchnera, which is required for reproduction, together with facultative symbionts whose frequencies vary across aphid populations. These maternally transmitted secondary symbionts have been particularly studied in the pea aphid, Acyrthosiphon pisum, which harbors at least 8 distinct bacterial species (not counting Buchnera) having environmentally dependent effects on host fitness. In particular, these symbiont species are associated with pea aphid populations feeding on specific plants. Although they are maternally inherited, these bacteria are occasionally transferred across insect lineages. One mechanism of such nonmaternal transfer is paternal transmission to the progeny during sexual reproduction. To date, transmission of secondary symbionts during sexual reproduction of aphids has been investigated in only a handful of aphid lineages and 3 symbiont species. To better characterize this process, we investigated inheritance patterns of 7 symbiont species during sexual reproduction of pea aphids through a crossing experiment involving 49 clones belonging to 9 host-specialized biotypes, and 117 crosses. Symbiont species in the progeny were detected with diagnostic qualitative PCR at the fundatrix stage hatching from eggs and in later parthenogenetic generations. We found no confirmed case of paternal transmission of symbionts to the progeny, and we observed that maternal transmission of a particular symbiont species (Serratia symbiotica) was quite inefficient. We discuss these observations in respect to the ecology of the pea aphid. © 2013 Institute of Zoology, Chinese Academy of Sciences.
Kim, Dohyup; Minhas, Bushra F; Li-Byarlay, Hongmei; Hansen, Allison K
2018-05-25
Microbes are known to influence insect-plant interactions; however, it is unclear if host-plant diet influences the regulation of nutritional insect symbioses. The pea aphid, Acyrthosiphon pisum , requires its nutritional endosymbiont, Buchnera , for the production of essential amino acids. We hypothesize that key aphid genes that regulate the nutritional symbioses respond to host-plant diet when aphids feed on a specialized (alfalfa) compared to a universal host-plant diet (fava), which vary in amino acid profiles. Using RNA-Seq and whole genome bisulfite sequencing, we measured gene expression and DNA methylation profiles for such genes when aphids fed on either their specialized or universal host-plant diets. Our results reveal that when aphids feed on their specialized host-plant they significantly up-regulate and/or hypo-methylate key aphid genes in bacteriocytes related to the amino acid metabolism, including glutamine synthetase in the GOGAT cycle that recycles ammonia into glutamine and the glutamine transporter ApGLNT1 Moreover, regardless of what host-plant aphids feed on we observed significant up-regulation and differential methylation of key genes involved in the amino acid metabolism and the glycine/serine metabolism, a metabolic program observed in proliferating cancer cells potentially to combat oxidative stress. Based on our results, we suggest that this regulatory response of key symbiosis genes in bacteriocytes allows aphids to feed on a suboptimal host-plant that they specialize on. Copyright © 2018, G3: Genes, Genomes, Genetics.
Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J
2012-12-01
Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.
Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.
Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C
2016-02-01
Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bricault, Christine A.; Perry, Keith L., E-mail: KLP3@cornell.edu
2013-06-05
In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majoritymore » of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.« less
Pyati, Prashant; Bandani, Ali R; Fitches, Elaine; Gatehouse, John A
2011-07-01
Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.
Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.
von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg
2012-01-01
In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).
Indirect Effect of a Transgenic Wheat on Aphids through Enhanced Powdery Mildew Resistance
von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg
2012-01-01
In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids). PMID:23056284
A cost of alarm pheromone production in cotton aphids, Aphis gossypii
NASA Astrophysics Data System (ADS)
Byers, John A.
2005-02-01
The sesquiterpene, (E)-β-farnesene, is used by many aphid species as an alarm pheromone to warn related individuals of predation. Disturbed cotton aphids, Aphis gossypii Glover, released (E)-β-farnesene into the air as detected by solid phase microextraction and gas chromatography mass spectrometry (GC MS). Solvent extracts of cotton aphids of various life stages and weights also were analyzed by GC MS for sums of ions 69 and 93, which discriminated (E)-β-farnesene from coeluting compounds. Aphids of all life stages and sizes reared on cotton plants in both an environmental chamber and glasshouse contained (E)-β-farnesene in amounts ranging from 0.1 to 1.5 ng per individual. The quantities of (E)-β-farnesene in aphids increased in relation to increasing body weight, and variation in individual weights explained about 82% of the variation in alarm pheromone. However, the concentrations (ng/mg fresh weight) declined exponentially with increasing body weight. These findings indicate that aphid nymphs try to compensate for their smaller size by producing relatively more pheromone per weight than adults but still cannot approach an evolutionary optimal load, as assumed in adults with the greatest total amounts. This suggests that young aphids need to balance costs of growth and maturation with costs of producing the alarm pheromone.
Rasool, Brwa; Marcus, Sue E.
2017-01-01
The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. PMID:28743764
Cao, He-He; Zhang, Zhan-Feng; Wang, Xiao-Feng
2018-01-01
Plant leaves of different ages differ in nutrients and toxic metabolites and thus exhibit various resistance levels against insect herbivores. However, little is known about the influence of leaf ontogeny on plant resistance to phloem-feeding insects. In this study, we found that the green peach aphid, Myzus persicae, preferred to settle on young cabbage leaves compared with mature or old leaves, although young leaves contained the highest concentration of glucosinolates. Furthermore, aphids feeding on young leaves had higher levels of glucosinolates in their body, but aphids performed better on young leaves in terms of body weight and population growth. Phloem sap of young leaves had higher amino acid:sugar molar ratio than mature leaves, and aphids feeding on young leaves showed two times longer phloem feeding time and five times more honeydew excretion than on other leaves. These results indicate that aphids acquired the highest amount of nutrients and defensive metabolites when feeding on young cabbage leaves that are strong natural plant sinks. Accordingly, we propose that aphids generally prefer to obtain more nutrition rather than avoiding host plant defense, and total amount of nutrition that aphids could obtain is significantly influenced by leaf ontogeny or source-sink status of feeding sites. PMID:29684073
Wide dispersal of aphid-pathogenic Entomophthorales among aphids relies upon migratory alates.
Feng, Ming-Guang; Chen, Chun; Chen, Bin
2004-05-01
Entomophthoralean mycoses are of general importance in the natural control of aphids, but mechanisms involved in their dissemination are poorly understood. Despite several possible means of fungal survival, the dispersal of the mycoses in aphids has never been related to the flight of their migratory alates that are able to locate suitable host plants. In this study, aphid-pathogenic fungi proved to be widely disseminated among various aphids by their alates through migratory flight based on the following findings. First, up to 36.6% of the 7139 migratory alates (including nine species of vegetable or cereal aphids) trapped from air > 30 m above the ground in three provinces of China were found bearing eight species of fungal pathogens. Of those, six were aphid-specific Entomophthorales dominated in individual cases by Pandora neoaphidis, which occurs globally but has no resting spores discovered to date. Secondly, infected alates were confirmed to be able to fly for hours, to initiate colonies on plants after flight and to transmit fungal infection to their offspring in a laboratory experiment, in which 238 Sitobion avenae alates were individually flown in a computer-monitoring flight mill system after exposure to a spore shower of P. neoaphidis and then allowed to colonize host plants.
Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Ruiz de Escudero, Iñigo; Caballero, Primitivo
2014-01-01
This study describes the insecticidal activity of a novel Bacillus thuringiensis Cry-related protein with a deduced 799 amino acid sequence (~89 kDa) and ~19% pairwise identity to the 95-kDa-aphidicidal protein (sequence number 204) from patent US 8318900 and ~40% pairwise identity to the cancer cell killing Cry proteins (parasporins Cry41Ab1 and Cry41Aa1), respectively. This novel Cry-related protein contained the five conserved amino acid blocks and the three conserved domains commonly found in 3-domain Cry proteins. The protein exhibited toxic activity against the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae) with the lowest mean lethal concentration (LC50 = 32.7 μg/mL) reported to date for a given Cry protein and this insect species, whereas it had no lethal toxicity against the Lepidoptera of the family Noctuidae Helicoverpa armigera (Hübner), Mamestra brassicae (L.), Spodoptera exigua (Hübner), S. frugiperda (J.E. Smith) and S. littoralis (Boisduval), at concentrations as high as ~3.5 μg/cm2. This novel Cry-related protein may become a promising environmentally friendly tool for the biological control of M. persicae and possibly also for other sap sucking insect pests. PMID:25384108
[An example of research on biological control: Entomophthora fungi pathogenic for aphids].
Latgé, J P; Remaudière, G; Papierok, B
1978-01-01
The results obtained in 15 years of research on the Entomophthorales pathogen of aphids showed the importance of the action of these fungi in the regulation of natural aphid populations and their possible use in agriculture as a biological control agent. Recent ecological studies on natural populations of aphids established the seasonal variation of the different fungal species and the diverse degrees of specificity between the species or groups of species of aphid and the various species of Entomophthora. The study of populations dynamics of an aphid species on a cultivated plant permitted the determination of the way a certain number of biotic and abiotic factors, such as temperature, humidity, thresholds of the insect population and of the infecting fungus lead to an epizootic development. If the air propagation of the disease by conidia is understood for a long time, the role of the soil as a reservoir for the infecting fungus has been demonstrated recently. Under favourable climatic conditions, the use of industrially produced resistant resting spores would allow the regulation of aphid populations in nature.
Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies
Leroy, Pascal D.; Sabri, Ahmed; Heuskin, Stéphanie; Thonart, Philippe; Lognay, Georges; Verheggen, François J.; Francis, Frédéric; Brostaux, Yves; Felton, Gary W.; Haubruge, Eric
2011-01-01
Aphids are one of the most serious pests of crops worldwide, causing major yield and economic losses. To control aphids, natural enemies could be an option but their efficacy is sometimes limited by their dispersal in natural environment. Here we report the first isolation of a bacterium from the pea aphid Acyrthosiphon pisum honeydew, Staphylococcus sciuri, which acts as a kairomone enhancing the efficiency of aphid natural enemies. Our findings represent the first case of a host-associated bacterium driving prey location and ovipositional preference for the natural enemy. We show that this bacterium has a key role in tritrophic interactions because it is the direct source of volatiles used to locate prey. Some specific semiochemicals produced by S. sciuri were also identified as significant attractants and ovipositional stimulants. The use of this host-associated bacterium could certainly provide a novel approach to control aphids in field and greenhouse systems. PMID:21673669
Kozłowski, Jan; Strażyński, Przemysław; Jaskulska, Monika; Kozłowska, Maria
2016-01-01
Lupin plants are frequently damaged by various herbivorous invertebrates. Significant among these are slugs and aphids, which sometimes attack the same plants. Relationships between aphids, slugs and food plant are very interesting. Grazing by these pests on young plants can lead to significant yield losses. There is evidence that the alkaloids present in some lupin plants may reduce grazing by slugs, aphids and other invertebrates. In laboratory study was analyzed the relationships between aphid Aphis craccivora and slug Deroceras reticulatum pests of legumes Lupinus angustifolius. It was found that the presence of aphids significantly reduced slug grazing on the plants. The lupin cultivars with high alkaloid content were found to be less heavily damaged by D. reticulatum, and the development of A. craccivora was found to be inhibited on such plants. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.
NASA Astrophysics Data System (ADS)
Alves, Tavvs Micael
Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).
Puterka, Gary J; Scott, J Nicholson; Brown, Michael J; Hammon, R W
2013-04-01
Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships. Leaf chlorosis, leaf roll, leaf number, plant height, and infestation levels were assessed 21 d after the plants were infested by aphids in a no-choice caged environment. D. mexicana was unable to survive on wheat by 21 d after infestation and effects on the plant damage variables were negligible. D. frequens survived at low levels on resistant and susceptible plant entries and had a low impact on plant damage and growth. Russian wheat aphid biotype 2 and D. tritici were damaged most wheat and barley lines except the Russian wheat aphid biotype 2-resistant wheat lines containing genes from Dn7, STARS 2414-11, and CI2401; and resistant barley containing genes from STARS 9577B and 9301B. Russian wheat aphid biotype 2 and D. tritici reduced the growth of resistant plants by 25-50% and susceptible entries by 65-75%. Reductions at this level are typical under no-choice studies but resistant cultivars do not have these reductions under field conditions. The Russian wheat aphid biotype 2 resistant wheat lines would be effective in managing both wheat pest species.
Jankielsohn, Astrid
2011-10-01
Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.
Evidence for compensatory photosynthetic and yield response of soybeans to aphid herbivory
Kucharik, Christopher J.; Mork, Amelia C.; Meehan, Timothy D.; ...
2016-04-13
The soybean aphid, Aphis glycines Matsumura, an exotic species in North America that has been detected in 21 U.S. states and Canada, is a major pest for soybean that can reduce maximum photosynthetic capacity and yields. Our existing knowledge is based on relatively few studies that do not span a wide variety of environmental conditions, and often focus on relatively high and damaging population pressure. We examined the effects of varied populations and duration of soybean aphids on soybean photosynthetic rates and yield in two experiments. In a 2011 field study, we found that plants with low cumulative aphid daysmore » (CAD, less than 2,300) had higher yields than plants not experiencing significant aphid pressure, suggesting a compensatory growth response to low aphid pressure. This response did not hold at higher CAD, and yields declined. In a 2013 controlled-environment greenhouse study, soybean plants were well-watered and fertilized with nitrogen (N), and aphid populations were manipulated to reach moderate to high levels (8,000–50,000 CAD). Plants tolerated these population levels when aphids were introduced during the vegetative or reproductive phenological stages of the plant, showing no significant reduction in yield. Leaf N concentration and CAD were positively and significantly correlated with increasing ambient photosynthetic rates. Our findings suggest that, given the right environmental conditions, modern soybean plants can withstand higher aphid pressure than previously assumed. Moreover, soybean plants also responded positively through a compensatory photosynthetic effect to moderate population pressure, contributing to stable or increased yield.« less
Leybourne, Daniel J; Bos, Jorunn I B; Valentine, Tracy A; Karley, Alison J
2018-05-24
Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type Symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harboured H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was five-fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgaris and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially-resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favour the fittest R. padi genotypes, but symbiont-infected individuals will be favoured when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.
2015-01-01
Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686
Mewis, Inga; Khan, Mohammed A. M.; Glawischnig, Erich; Schreiner, Monika; Ulrichs, Christian
2012-01-01
Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L.) plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer) and the crucifer specialist Brevicoryne brassicae (L.). Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid. PMID:23144921
Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J.; Thannhauser, Theodore W.; Gray, Stewart M.
2012-01-01
Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions. PMID:23118947
Cilia, Michelle; Peter, Kari A; Bereman, Michael S; Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J; Thannhauser, Theodore W; Gray, Stewart M
2012-01-01
Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.
Kroes, Anneke; Weldegergis, Berhane T; Cappai, Francesco; Dicke, Marcel; van Loon, Joop J A
2017-12-01
One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.
Legeai, Fabrice; Gonzalez-Gonzalez, Angelica; Lavandero, Blas; Simon, Jean-Christophe
2017-01-01
The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity. PMID:28852588
2013-01-01
Background The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. Results In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. Conclusions Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy. PMID:23957588
Barberà, M; Martínez-Torres, D
2017-10-01
Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormone) by the prothoracic glands in insect larvae thus playing a key role in the control of moulting and metamorphosis. Moreover, both PTTH release or blockade have been reported to act as a switch to terminate or initiate larval and pupal diapauses. In insects, diapause is a prevalent response often regulated by the photoperiod. It has been shown that PTTH participates as an output of the circadian clock and a role in photoperiodic processes is suggested in some insect species. Aphids (Hemiptera: Aphididae) reproduce by cyclical parthenogenesis with a sexual phase, induced by short photoperiods, that leads to the production of diapausing eggs. With the availability of the pea aphid (Acyrthosiphon pisum) genome, efforts to identify and characterize genes relevant to essential aspects of aphid biology have multiplied. In spite of its relevance, several genomic and transcriptomic studies on aphid neuropeptides failed to detect aphid PTTH amongst them. Here we report on the first identification of the aphid PTTH coding gene and the neuroanatomical localization of its expression in the aphid brain. © 2017 The Royal Entomological Society.
Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria
Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya
2013-01-01
Abstract Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530
Kerchev, Pavel I; Fenton, Brian; Foyer, Christine H; Hancock, Robert D
2012-02-01
The peach-potato aphid (Myzus persicae Sulzer) is a major pest of potato (Solanum tuberosum L.) but the molecular characterization of this interaction particularly with regard to oxidants and antioxidants remains to be undertaken. Aphid colonies reared on potato leaves containing high ascorbate were twice the size of those grown on leaves with low ascorbate. Infestation-dependent decreases in the abundance of key transcripts such as chloroplastic FeSOD, peroxisomal catalase 2, PR1 and JAZ1 preceded detectable leaf H(2)O(2) or polyphenol accumulation. The leaf glutathione pool was increased 48 h after infestation, but the amount of ascorbate was unchanged. The ascorbate/dehydroacorbate (DHA) ratio was lower at 48 h but the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unchanged. While DHA reductase and GSSG reductase activities were unaffected by aphid feeding, non-specific peroxidase activities were enhanced 48 h following aphid infestation. Brown ethanol-insoluble deposits were observed close to leaf veins following aphid infestation. Taken together, the results demonstrate that high ascorbate favours aphid colony expansion and that perturbations in the leaf antioxidant system are intrinsic to the potato leaf response to aphids. Moreover, these changes together with the induction of hormone-related transcripts precede the deposition of defence-associated oxidized polyphenols along the stylet track. © 2011 Blackwell Publishing Ltd.
Garcêz, Renata Maia; Chaves, Alexandre Levi Rodrigues; Eiras, Marcelo; Meletti, Laura Maria Molina; de Azevedo Filho, Joaquim Adelino; da Silva, Leonardo Assis; Colariccio, Addolorata
2015-01-01
Passion fruit woodiness may be caused by Cowpea aphid-borne mosaic virus (CABMV) and is currently the major passion fruit disease in Brazil. To assess the virus-vector-host interactions, a newly introduced golden passion fruit plantation located in eastern region of São Paulo State, Brazil, was monitored. Dissemination of CABMV was determined analyzing golden passion fruit plants monthly for 18 months by PTA-ELISA. Seasonality and aphid fauna diversity was determined by identification of the captured species using yellow sticky, yellow water-pan and green tile traps. Population composition of the aphid species was determined using the descriptive index of occurrence, dominance and general classification and overlap of species in the R program. Analyses of species grouping afforded to recognize 14 aphid species. The genus Aphis represented 55.42 % of the species captured. Aphid species formed two distinct clusters, one of which was characterized by the diversity of polyphagous species that presented high potential to spread CABMV. The low abundance and diversity of aphid species did not interfere negatively in the CABMV epidemiology. The genus Aphis, particularly Aphis fabae/solanella and A. gossypii, was crucial in the spread of CABMV in passion fruit orchards in the eastern State of São Paulo.
Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures.
McCornack, B P; Ragsdale, D W; Venette, R C
2004-06-01
Soybean aphid, Aphis glycines Matsumura, is now widely established in soybean, Glycine max L., production areas of the northern United States and southern Canada and is becoming an important economic pest. Temperature effect on soybean aphid fecundity and survivorship is not well understood. We determined the optimal temperature for soybean aphid growth and reproduction on soybean under controlled conditions. We constructed life tables for soybean aphid at 20, 25, 30, and 35 degrees C with a photoperiod of 16:8 (L:D) h. Population growth rates were greatest at 25 degrees C. As temperature increased, net fecundity, gross fecundity, generation time, and life expectancy decreased. The prereproductive period did not differ between 20 and 30 degrees C; however, at 30 degrees C aphids required more degree-days (base 8.6 degrees C) to develop. Nymphs exposed to 35 degrees C did not complete development, and all individuals died within 11 d. Reproductive periods were significantly different at all temperatures, with aphids reproducing longer and producing more progeny at 20 and 25 degrees C than at 30 or 35 degrees C. Using a modification of the nonlinear Logan model, we estimated upper and optimal developmental thresholds to be 34.9 and 27.8 degrees C, respectively. At 25 degrees C, aphid populations doubled in 1.5 d; at 20 and 30 degrees C, populations doubled in 1.9 d.
Zhang, Fangmei; Li, Xiangrui; Zhang, Yunhui; Coates, Brad; Zhou, Xuguo “Joe”; Cheng, Dengfa
2015-01-01
Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone) and abiotic factors (temperature, humidity, and photoperiod). The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat) worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass, and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (<24 h old) offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests. PMID:26042046
Klingler, John; Creasy, Robert; Gao, Lingling; Nair, Ramakrishnan M.; Calix, Alonso Suazo; Jacob, Helen Spafford; Edwards, Owain R.; Singh, Karam B.
2005-01-01
Aphids and related insects feed from a single cell type in plants: the phloem sieve element. Genetic resistance to Acyrthosiphon kondoi Shinji (bluegreen aphid or blue alfalfa aphid) has been identified in Medicago truncatula Gaert. (barrel medic) and backcrossed into susceptible cultivars. The status of M. truncatula as a model legume allows an in-depth study of defense against this aphid at physiological, biochemical, and molecular levels. In this study, two closely related resistant and susceptible genotypes were used to characterize the aphid-resistance phenotype. Resistance conditions antixenosis since migratory aphids were deterred from settling on resistant plants within 6 h of release, preferring to settle on susceptible plants. Analysis of feeding behavior revealed the trait affects A. kondoi at the level of the phloem sieve element. Aphid reproduction on excised shoots demonstrated that resistance requires an intact plant. Antibiosis against A. kondoi is enhanced by prior infestation, indicating induction of this phloem-specific defense. Resistance segregates as a single dominant gene, AKR (Acyrthosiphon kondoi resistance), in two mapping populations, which have been used to map the locus to a region flanked by resistance gene analogs predicted to encode the CC-NBS-LRR subfamily of resistance proteins. This work provides the basis for future molecular analysis of defense against phloem parasitism in a plant model system. PMID:15778464
AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling
Kloth, Karen J.; Wiegers, Gerrie L.; Busscher-Lange, Jacqueline; van Haarst, Jan C.; Kruijer, Willem; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.
2016-01-01
Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae. The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA–SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291
Facultative symbiont infections affect aphid reproduction.
Simon, Jean-Christophe; Boutin, Sébastien; Tsuchida, Tsutomu; Koga, Ryuichi; Le Gallic, Jean-François; Frantz, Adrien; Outreman, Yannick; Fukatsu, Takema
2011-01-01
Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.
Sytykiewicz, Hubert
2014-01-01
The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734
Sytykiewicz, Hubert
2014-01-01
The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.
A magical biological insecticide extracted from seeds of Millettia pachyarpa to kill cabbage aphids
NASA Astrophysics Data System (ADS)
Lin, Tianxing; Gong, Mingfu; Guan, Qinlan
2018-04-01
Millettia pachycarpa Benth is a perennial climbing shrub belonging to the genus Millettia, as it is widely used in traditional practices like agricultural pesticides, blood tonics, fish poison, and treatments for cancer and infertility. The crude extract of the seeds of M. pachycarpa had insecticidal activity on cabbage aphids. The conventional extract approach with three kinds of organic solvents: methanol, ethanol, and acetone was used for extracting of crude extract of seeds of M. pachycarpa. The leaf immersion method in a petri dish was used to measure contact activity on cabbage aphids. The field measurement method in a cabbage field was used to measure the control effect. The result indicated that the average mortality rate of cabbage aphids reached 91.3 percent under the action of crude extract of the seeds of M. pachycarpa, indicating that contacting activity against cabbage aphid was strong. After the crude extract was sprayed for 2 days, the proofread control effect of 1000 μg / mL ethanol crude extract against cabbage aphid was 85.0 percent. After 7 days of spraying, this number increased to 92.2 percent. The study concluded that crude extract of the seeds of M. pachyarpa extracted with methanol, ethanol, acetone had demonstrable contact activity against cabbage aphid and 1000 μg / mL ethanol crude extract had significant control effect against the larvae of cabbage aphid.
Nachappa, Punya; Culkin, Christopher T.; Saya, Peter M.; Han, Jinlong; Nalam, Vamsi J.
2016-01-01
Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid densities under drought and their decrease under saturation. Taken together, our findings suggests that plant responses to water stress is complex involving changes in phloem amino acid composition and signaling pathways, which can impact aphid populations and virus transmission. PMID:27200027
Boissot, Nathalie; Schoeny, Alexandra; Vanlerberghe-Masutti, Flavie
2016-01-01
We review half a century of research on Cucumis melo resistance to Aphis gossypii from molecular to field levels. The Vat gene is unique in conferring resistance to both A. gossypii and the viruses it transmits. This double phenotype is aphid clone-dependent and has been observed in 25 melon accessions, mostly from Asia. It is controlled by a cluster of genes including CC-NLR, which has been characterized in detail. Copy-number polymorphisms (for the whole gene and for a domain that stands out in the LLR region) and single-nucleotide polymorphisms have been identified in the Vat cluster. The role of these polymorphisms in plant/aphid interactions remains unclear. The Vat gene structure suggests a functioning with separate recognition and response phases. During the recognition phase, the VAT protein is thought to interact (likely indirectly) with an aphid effector introduced during cell puncture by the aphid. A few hours later, several miRNAs are upregulated in Vat plants. Peroxidase activity increases, and callose and lignin are deposited in the walls of the cells adjacent to the stylet path, disturbing aphid behavior. In aphids feeding on Vat plants, Piwi-interacting RNA-like sequences are abundant and the levels of other miRNAs are modified. At the plant level, resistance to aphids is quantitative (aphids escape the plant and display low rates of reproduction). Resistance to viruses is qualitative and local. Durability of NLR genes is highly variable. A. gossypii clones are adapted to Vat resistance, either by introducing a new effector that interferes with the deployment of plant defenses, or by adapting to the defenses it triggered. Viruses transmitted in a non-persistent manner cannot adapt to Vat resistance. At population level, Vat reduces aphid density and genetic diversity. The durability of Vat resistance to A. gossypii populations depends strongly on the agro-ecosystem, including, in particular, the presence of other cucurbit crops serving as alternative hosts for adapted clones in fall and winter. At the crop level, Vat resistance decreases the intensity of virus epidemics when A. gossypii is the main aphid vector in the crop environment. PMID:27725823
Chen, Chun; Ye, Sudan; Hu, Huajun; Xue, Chengmei; Yu, Xiaoping
2018-01-01
A real-time qPCR method was developed, validated, and used to quantity the fungal pathogen, P. neoaphidis, within aphids at different times during infection; colonization rate fitted the Gompertz model well (R 2 = 0.9356). Feeding behaviour of P. neoaphidis-infected and uninfected M. persicae were investigated, for the first time, using DC-electrical penetration graphs (DC-EPG) that characterized the waveforms made during different aphid stylet probing periods corresponding to epidermis penetration, salivation and ingestion. In the 6 h following the 12-h incubation period (to achieve infection), there were significant differences in the number of events of Np (non-probing) and C (stylet pathway) between infected and uninfected aphids. However, the difference between total duration of Np and C were not significantly different between infected and uninfected aphids. There were no significant differences in the number of events or total duration of E1 (phloem salivation) or E2 (phloem ingestion) between infected and uninfected aphids. There were significant differences in mean number of events and total duration of the pd waveform (intracellular punctures) in infected and uninfected aphids. In the 16 h prior to death, the same differences in behaviour were observed but they were even more obvious. Furthermore, the total duration time of E2 was significantly greater in uninfected aphids than infected aphids, a change that had not been observed in the first 6 h observation period. In conclusion, qPCR quantification demonstrated 'molecular' colonization levels throughout infection, and EPG data analysis during the two periods (during early infection and then during late infection just prior to death) demonstrated the actual physical effects of fungal infection on feeding behaviour of M. persicae; this has the potential to decrease the aphid's capacity of transmission and dispersal. These studies increase our understanding of the interaction between P. neoaphidis and its host aphid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aziz, Abdul; Sarwar Raju, Golam; Das, Abhijit; Ahmed, Jamiuddin; Moghal, Md Mizanur Rahman
2014-01-01
Crinum latifolium is a widely used plant in Asian folk and traditional medicine.In the present study, we have tried to find out the anthelmintic activity, total phenolic contents and cytotoxicity of the methanolic extract of the target plant. Anthelmintic activity was assessed applying five different concentrations of the plant extract and recording the time of paralysis and death. Total phenolic contents were determined using Folin-Ciocaltu method, using Gallic acid as standard; while brine shrimp lethality test (BSLT) method was used to evaluate the cytotoxicity of the plant extract, where vincristine sulphate and DMSO was used as positive and negative control respectively. The lowest time for paralysis and death of worms, for test sample at highest concentration (50mg/ml), were found 24±0.45 and 46.4±0.60 min respectively, which gradually increased with the decrease of concentration. On the other hand, albendazole, which was used as standard, caused paralysis and death of worms at 56.2±0.20 min and 77.4±0.24 min respectively; whereas no mortality of the worms was observed, when distilled water was used as control. The crude methanolic extract exhibited lower amount of total phenolic content (17.50±2.64 mg/ml). In case of cytotoxicity measurement, the crude methanolic extract showed positive result (with LC50 15.652 µg/ml) compared to standard Vincristine sulphate (0.839 µg/ml); which indicated that the leaves of Crinum latifolium possess mild cytotoxic principles. Therefore, further studies are suggested to evaluate the possible mechanism of action and the active compounds responsible for the biological activities of the plant extract.
Carlina acaulis Exhibits Antioxidant Activity and Counteracts Aβ Toxicity in Caenorhabditis elegans.
Link, Pille; Roth, Kevin; Sporer, Frank; Wink, Michael
2016-07-02
Carlina acaulis is a medicinal plant that has shown antioxidant activity in in vitro studies, but to date no corresponding in vivo data is available. Therefore, in the present study the antioxidant activity and its impact in counteracting Aβ toxicity were studied in the Caenorhabditis elegans model. A dichloromethane extract of the roots of C. acaulis was prepared and characterised via gas-liquid-chromatography/mass-spectrometry (GLC-MS). The in vitro antioxidant activity was confirmed via 2,2-diphenyl-1-picrylhydracyl assay. The extract was further separated by thin layer chromatography into two fractions, one of which was a fraction of the dichloromethane extract of C. acaulis containing mostly Carlina oxide (CarOx). Different strains of C. elegans were employed to study the expression of hsp-16.2p::GFP as a marker for oxidative stress, delocalisation of the transcription factor DAF-16 as a possible mechanism of antioxidant activity, the effect of the drug under lethal oxidative stress, and the effect against beta-amyloid (Aβ) toxicity in a paralysis assay. The C. acaulis extract and CarOx showed high antioxidant activity (stress reduction by 47% and 64%, respectively) in C. elegans and could activate the transcription factor DAF-16 which directs the expression of anti-stress genes. In paralysis assay, only the total extract was significantly active, delaying paralysis by 1.6 h. In conclusion, in vivo antioxidant activity was shown for C. acaulis for the first time in the C. elegans model. The active antioxidant compound is Carlina oxide. This activity, however, is not sufficient to counteract Aβ toxicity. Other mechanisms and possibly other active compounds are involved in this effect.
Puterka, G J; Giles, K L; Brown, M J; Nicholson, S J; Hammon, R W; Peairs, F B; Randolph, T L; Michaels, G J; Bynum, E D; Springer, T L; Armstrong, J S; Mornhinweg, D W
2015-04-01
A key component of Russian wheat aphid, Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing the Dn4 gene. Biotypic diversity in Russian wheat aphid populations has not been addressed since 2005 when RWA2 dominated the biotype complex. Our objectives were to determine the biotypic diversity in the Central Great Plains and Colorado Plateau at regional (2010, 2011, 2013) and local (2012) levels and detect the presence of new Russian wheat aphid biotypes. Regional and within-field aphid collections were screened against Russian wheat aphid-resistant wheat genotypes containing genes Dn3, Dn4, Dn6, Dn7, Dn9, CI2401; and resistant barley STARS 9301B. In 2010, all aphid collections from Texas were avirulent to the Dn4 resistance gene in wheat. Regional results revealed Dn4 avirulent RWA6 was widespread (55-84%) in populations infesting wheat in both regions. Biotypes RWA1, 2, and 3/7 were equally represented with percentages<20% each while RWA8 was rarely detected. Combining percentages of RWA1, 6, and 8 across regions to estimate avirulence to Dn4 gene revealed high percentages for both 2011 (64-80%) and 2013 (69-90%). In contrast, the biotype structure at the local level differed where biotype percentages varied up to ≥2-fold between fields. No new biotypes were detected; therefore, Dn7, CI2401, and STARS9301B remained resistant to all known Russian wheat aphid biotypes. This study documents a shift to Dn4 avirulent biotypes and serves as a valuable baseline for biotypic diversity in Russian wheat aphid populations prior to the deployment of new Russian wheat aphid-resistant wheat cultivars. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe
2015-01-01
Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was underestimated due to the possible loss of environmental or transient taxa. PMID:25807173
Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?
Cahon, Thomas; Caillon, Robin
2018-01-01
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342
Prochaska, T J; Pierson, L M; Baldin, E L L; Hunt, T E; Heng-Moss, T M; Reese, J C
2013-04-01
The soybean aphid, Aphis glycines Matsumura, has become the most significant soybean [Glycine max (L.) Merrill] insect pest in the north central soybean production region of North America. The objectives of this research were to measure selected genotypes for resistance to the soybean aphid in the later vegetative and reproductive stages under field conditions, and confirm the presence of tolerance in KS4202. The results from 2007 to 2011 indicate that KS4202 can support aphid populations with minimal yield loss at levels where significant yield loss would be expected in most other genotypes. The common Nebraska cultivar, 'Asgrow 2703', appears to show signs of tolerance as well. None of the yield parameters were significantly different between the aphid infested and noninfested treatments. Based on our results, genotypes may compensate for aphid feeding in different ways. Asgrow 2703 appears to produce a similar number of seeds as its noninfested counterpart, although the seeds produced are slightly smaller. Field evaluation of tolerance in KS4202 indicated a yield loss of only 13% at 34,585-53,508 cumulative aphid-days, when 24-36% yield loss would have been expected.
Chen, Rui; Jiang, Li-Yun; Chen, Jing; Qiao, Ge-Xia
2016-01-01
The mountains of southwest China are one of the hot spots of biodiversity in the world. However, the high-altitude fauna that inhabit these mountains remain a mystery. In this study, the species diversity of the aphids of the genus Cinara from the high-altitude coniferous forests was first assessed, and then the processes and the mechanisms of speciation were discussed. Three hundreds and four aphid samples that contained 3040 individuals were collected during fourteen field surveys. The molecular clusters derived from the DNA barcodes were used to explore the species diversity. Notably, the aphid alpha-diversity was high, with as many as 94 candidate species, and furthermore, 86.2% of the species collected had not been previously recorded. The centers of aphid species richness corresponded to the distributional pattern of the diversity of the host conifer plant species. The divergence time revealed that following the uplift of the Qinghai-Tibetan Plateau during the Pleistocene, the changes in the climate, ecology and host habitats were likely the most important factors that drove the rapid process of evolutionary radiation in the aphids. Our findings revealed the high species diversity of the aphids with DNA barcoding. PMID:26838797
Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian
2013-01-01
The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily predation (34.62 ± 3.45, 25.25 ± 3.18, and 13.34 ± 1.45, respectively). Further studies on A. bipunctata revealed that the larvae maintained their daily predation capacity (32.0 ± 6.3) on strawberry plants. About 60% of already ovipositing A. bipunctata refrained from laying any eggs on the first day after transfer to set-ups with combinations of shallot or peach-potato aphids, Myzus persicae (Sulzer) (Homoptera: Aphididae), and strawberry or sweet pepper leaves. The aphid species and the plant species did not, however, have a significant influence on the number of females laying eggs, the average number of eggs laid during the first day being 6.37±1.28 per female. Adult lady beetles had a significant preference for odor from controls without plants over odors from uninfested strawberry or pepper plants, but they showed no preference for either of the plant species, whether infested with aphids or not. The predation capacity of A. bipunctata on shallot aphids holds promise for its use in inundative biocontrol, and the results on egg laying cues suggests that inoculative biocontrol may be possible, although further studies will be needed for a complete evaluation. PMID:24224712
Preparing soft-bodied arthropods for microscope examination: Aphids (Insecta: Hemiptera: Aphididae)
USDA-ARS?s Scientific Manuscript database
Proper identification of aphids (Hemiptera: Aphididae) require preparation of the specimen on a microscope slide. This training video provides visual instruction on how to prepare aphid specimens on microscope slides for examination and indentification. Steps ranging from collection, specimen clear...
Puterka, G J; Nicholson, S J; Brown, M J; Cooper, W R; Peairs, F B; Randolph, T L
2014-06-01
Eight biotypes of the Russian wheat aphid, Diuraphis noxia (Kurdjumov), have been discovered in the United States since 2003. Biotypes are identified by the distinct feeding damage responses they produce on wheat carrying different Russian wheat aphid resistance genes, namely, from Dn1 to Dn9. Each Russian wheat aphid biotype has been named using plant damage criteria and virulence categories that have varied between studies. The study was initiated to compare the plant damage caused by all the eight known Russian wheat aphid biotypes, and analyze the results to determine how Russian wheat aphid virulence should be classified. Each Russian wheat aphid biotype was evaluated on 16 resistant or susceptible cereal genotypes. Plant damage criteria included leaf roll, leaf chlorosis, and plant height. The distribution of chlorosis ratings followed a bimodal pattern indicating two categories of plant responses, resistant or susceptible. Correlations were significant between chlorosis ratings and leaf roll (r(2) = 0.72) and between chlorosis ratings and plant height (r(2) = 0.48). The response of 16 cereal genotypes to feeding by eight Russian wheat aphid biotypes found RWA1, RWA2, RWA6, and RWA8 to differ in virulence, while Russian wheat aphid biotypes RWA3, RWA4, RWA5, and RWA7 produced similar virulence profiles. These biotypes have accordingly been consolidated to what is hereafter referred to as RWA3/7. Our results indicated that the five main biotypes RWA1, RWA2, RWA3/7, RWA6, and RWA8 can be identified using only four wheat genotypes containing Dn3, Dn4, Dn6, and Dn9.
Elhaddad, Abdesslam; ElAmrani, Amal; Fereres, Alberto; Moreno, Aranzazu
2016-12-01
First report of Citrus tristeza virus (CTV,Closterovirus) in Morocco datesback to 1961 in collections of citrus varieties. An exhaustive survey of citrus in the north of the country in 2009 revealed that CTV was spread all over the citrus production area. We attempted to evaluate the relative contribution of different aphid species in the spread of CTV disease in a Citrus reticulata orchard at the Loukkous region during 2 years (2012 and 2013). The overall CTV incidence estimated in the experimental site increased from 17.8% in 2012 to 31.15% in 2013. The most abundant aphid species colonising clementine trees was Aphis spiraecola and A. gossypii. Both aphid species reached their maximum peaks during the spring season. The rate of viruliferous aphids, estimated by real-time RT-PCR of single aphid, revealed that 35.4% of winged A. gossypii and 28.8% of winged A. spiraecola were viruliferous, confirming a high inoculum pressure in the area surrounding the experimental site. The aphid species Toxoptera citricida, which is able to transmit the aggressive isolates of CTV, was not found in the Loukkous region. The study of the spatial distribution of the CTV showed that in general, the disease was randomly distributed in the field. Overall, the results seem to indicate that A. spiraecola may be considered as the major aphid species contributing to CTV spread in our experimental conditions. The prevalence of mild strains in the region and the high level of aphid flight activity could explain the rapid evolution of CTV incidence in the experimental area. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Trophic transfer of soil arsenate and associated toxic effects in a plant-aphid-parasitoid system
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Wee, J.; Lee, M.; Hong, J.; Cho, K.
2017-12-01
Terrestrial toxic effects of soil arsenic were studied using a model system consisting of soil which artificially treated with arsenic, Capsicum annum,Myzus persicae and Aphidus colemani. We investigated the transfer of arsenic in a soil-plant-aphid system and toxic effect of elevated arsenic through a plant-aphid-parasitoid system. To remove the effect of poor plant growth on aphid performance, test concentrations which have a no effect on health plant growth were selected. Arsenic concentration of growth medium, plant tissues (root, stem, leaf) aphids were measured to observe the arsenic transfer. Correlation matrix was made with arsenic in growth medium which extracted with three extractants (aquaregia, 0.01 M CaCl2 and deionized water), arsenic in plant tissues and plant performance. Toxic effects of elevated arsenic concentrations on each species were investigated at population level. Studied plant performances were dry weight of each tissue, elongation of roots and stems, area of leaves, chlorophyll content of leaves, protein content of leaves and sugar content of leaves. Mean development time, fecundity and honeydew excretion of the aphids and host choice capacity and parasitism success of the parasitoids were examined. In addition, enzyme activities of the plants and the aphids against reactive oxygen species (ROS) induced by arsenic stress were also investigated. The results suggest that arsenic concentration in plant tissues and aphids were elevated with increased concentration of arsenic in soil. Decreased fecundity and honeydew excretion of aphids were observed and decreased eclosion rate of parasitoids were observed with increased arsenic treatment in growth medium. The results showed low concentration of arsenic in soil can transfer through food chain and can impact on higher trophic level species.
Rag Virulence Among Soybean Aphids (Hemiptera: Aphididae) in Wisconsin.
Crossley, Michael S; Hogg, David B
2015-02-01
Soybean aphid, Aphis glycines Matsumura, a pest of soybean, Glycine max (L.) Merr., and native of Asia, invaded North America sometime before 2000 and rapidly became the most significant insect pest of soybean in the upper Midwest. Plant resistance, a key component of integrated pest management, has received significant attention in the past decade, and several resistance (Rag) genes have been identified. However, the efficacy of Rag (Resistance to Aphis glycines) genes in suppressing aphid abundance has been challenged by the occurrence of soybean aphids capable of overcoming Rag gene-mediated resistance. Although the occurrence of these Rag virulent biotypes poses a serious threat to effective and sustainable management of soybean aphid, little is known about the current abundance of biotypes in North America. The objective of this research was to determine the distribution of Rag virulent soybean aphids in Wisconsin. Soybean aphids were collected from Wisconsin during the summers of 2012 and 2013, and assayed for Rag1, Rag2, and Rag1+2 virulence using no-choice tests in a greenhouse. One clone from Monroe County in 2012 reacted like biotype 4, three clones in different counties in 2013 responded like biotype 2, and eight others expressed varying degrees of Rag virulence. Rag virulence in 2013 was observed in aphids from 33% of the sampled sites and was accounted for by just 4.5% of sampled clones, although this is likely a conservative estimate. No-choice test results are discussed in light of current questions on the biology, ecology, and population genetics of soybean aphid. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sytykiewicz, Hubert
2016-07-22
Plant NADPH oxidases (NOXs) encompass a group of membrane-bound enzymes participating in formation of reactive oxygen species (ROS) under physiological conditions as well as in response to environmental stressors. The purpose of the survey was to unveil the role of NADPH oxidase in pro-oxidative responses of maize (Zea mays L.) seedling leaves exposed to cereal aphids' infestation. The impact of apteral females of bird cherry-oat aphid (Rhopalosiphum padi L.) and grain aphid (Sitobion avenae F.) feeding on expression levels of all four NADPH oxidase genes (rbohA, rbohB, rbohC, rbohD) and total activity of NOX enzyme in maize plants were investigated. In addition, inhibitory effect of diphenylene iodonium (DPI) pre-treatment on NOX activity and hydrogen peroxide content in aphid-stressed maize seedlings was studied. Leaf infestation biotests were accomplished on 14-day-old seedlings representing two aphid-resistant varieties (Ambrozja and Waza) and two aphid-susceptible ones (Tasty Sweet and Złota Karłowa). Insects' attack led to profound upregulation of rbohA and rbohD genes in tested host plants, lower elevations were noted in level of rbohB mRNA, whereas abundance of rbohC transcript was not significantly altered. It was uncovered aphid-induced enhancement of NOX activity in examined plants. Higher increases in expression of all investigated rboh genes and activity of NADPH oxidase occurred in tissues of more resistant maize cultivars than in susceptible ones. Furthermore, DPI treatment resulted in strong reduction of NOX activity and H2O2 accumulation in aphid-infested Z. mays plants, thus evidencing circumstantial role of the enzyme in insect-elicited ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.
Biological and genetic features of introduced aphid populations in agroecosystems.
Figueroa, Christian C; Fuentes-Contreras, Eduardo; Molina-Montenegro, Marco A; Ramírez, Claudio C
2018-04-01
In agroecosystems, introduced aphids that reproduce by obligate parthenogenesis (OP) show strong biased representation of a few genotypes (superclones), whereas species with cyclical parthenogenesis (CP) exhibit the opposite trend with many unique genotypes. We analyzed the biological and genetic features of 23 different aphid species introduced in different geographic areas and climates, finding putative superclones in about 60% of them. We have examined the proximal causes for aphid establishment and spread after their introduction, and found that OP, host availability, and phenotypic plasticity are among the main variables underpinning the ability of aphids to succeed in new geographic areas, which may explain the high potential for invasion in this group of pest insects. Copyright © 2018 Elsevier Inc. All rights reserved.
Agronomy of strip intercropping broccoli with alyssum for biological control of aphids
USDA-ARS?s Scientific Manuscript database
Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...
Abney, Mark R; Ruberson, John R; Herzog, Gary A; Kring, Timothy J; Steinkraus, Donald C; Roberts, Phillip M
2008-02-01
The impact of natural enemies on cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), populations in cotton, Gossypium hirsutum L., production systems in the southeastern United States was evaluated over 3 yr in irrigated commercial cotton fields. Fungal epizootics caused by the entomopathogen Neozygites fresenii (Nowakowski) Batko reduced aphid numbers to subthreshold levels in 1999, 2000, and 2001 and occurred consistently in early to mid-July in all 3 yr. Scymnus spp. were the most abundant aphidophagous predators, although other coccinellid species and generalist predators such as spiders, fire ants, heteropterans, and neuropterans also were present. Studies using arthropod exclusion cages demonstrated little impact of predators or parasitoids on aphid populations before fungal epizootics. Arthropod natural enemies were most abundant after epizootics and may have suppressed aphid populations late in the season. Seed cotton yield, and lint quality were not affected by aphicide applications in any year of the study. Implications of these findings for aphid management in the southeastern United States are discussed.
Sun, Yucheng; Guo, Huijuan; Yuan, Erliang; Ge, Feng
2018-03-01
Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO 2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO 2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO 2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO 2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO 2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO 2 , and negated the increased resistance against the aphid under elevated CO 2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO 2 . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A
2016-05-01
Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Dewhirst, Sarah Y; Birkett, Michael A; Loza-Reyes, Elisa; Martin, Janet L; Pye, Barry J; Smart, Lesley E; Hardie, Jim; Pickett, John A
2012-10-01
Two important pests of the sweet pepper, Capsicum annuum, are the peach potato aphid, Myzus persicae, and the glasshouse potato aphid, Aulacorthum solani. Current aphid control measures include the use of biological control agents, i.e., parasitic wasps, but with varying levels of success. One option to increase parasitoid efficiency is to activate plant defence. Therefore, sweet pepper plants were treated with the naturally occurring plant defence activator cis-jasmone, and its impact upon the behaviour and development of aphids and aphid parasitoids was investigated. Growth rate studies revealed that the intrinsic rate of population increase of A. solani and M. persicae on sweet pepper plants treated with cis-jasmone (cJSP) was not affected compared with untreated plants (UnSP), but the positive behavioural response of alate M. persicae towards the volatile organic compounds (VOCs) from UnSP was eliminated by cis-jasmone treatment 48 h previously (cJSP48). In addition, the aphid parasitoid Aphidius ervi preferred VOCs from cJSP48 compared with UnSP, and a significant increase in foraging time was also observed on cJSP. Analysis of VOCs collected from cJSP48 revealed differences compared with UnSP. There is evidence that treatment with cis-jasmone has the potential to improve protection of sweet pepper against insect pests. © Crown copyright 2012. Reproduced with permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.
Galantamine is a novel post-exposure therapeutic against lethal VX challenge.
Hilmas, Corey J; Poole, Melissa J; Finneran, Kathryn; Clark, Matthew G; Williams, Patrick T
2009-10-15
The ability of galantamine hydrobromide (GAL HBr) treatment to antagonize O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX)-induced lethality, impairment of muscle tension, and electroencephalographic (EEG) changes was assessed in guinea pigs. Guinea pigs were challenged with 16.8 microg/kg VX (2LD50). One min after challenge, animals were administered 0.5 mg/kg atropine sulfate (ATR) and 25 mg/kg pyridine-2-aldoxime methochloride (2-PAM). In addition, guinea pigs were given 0, 1, 2, 4, 8 or 10 mg/kg GAL as a post-exposure treatment immediately prior to ATR and 2-PAM. Animals were either monitored for 24-h survival, scheduled for electroencephalography (EEG) recording, or euthanized 60 min later for measurement of indirectly-elicited muscle tension in the hemidiaphragm. Post-exposure GAL therapy produced a dose-dependent increase in survival from lethal VX challenge. Optimal clinical benefits were observed in the presence of 10 mg/kg GAL, which led to 100% survival of VX-challenged guinea pigs. Based on muscle physiology studies, GAL post-exposure treatment protected the guinea pig diaphragm, the major effector muscle of respiration, from fatigue, tetanic fade, and muscular paralysis. Protection against the paralyzing effects of VX was dose-dependent. In EEG studies, GAL did not alter seizure onset for all doses tested. At the highest dose tested (10 mg/kg), GAL decreased seizure duration when administered as a post-exposure treatment 1 min after VX. GAL also reduced the high correlation associated between seizure activity and lethality after 2LD50 VX challenge. GAL may have additional benefits both centrally and peripherally that are unrelated to its established mechanism as a reversible acetylcholinesterase inhibitor (AChEI).
Galantamine is a novel post-exposure therapeutic against lethal VX challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilmas, Corey J.; Poole, Melissa J.; Finneran, Kathryn
2009-10-15
The ability of galantamine hydrobromide (GAL HBr) treatment to antagonize O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX)-induced lethality, impairment of muscle tension, and electroencephalographic (EEG) changes was assessed in guinea pigs. Guinea pigs were challenged with 16.8 {mu}g/kg VX (2LD50). One min after challenge, animals were administered 0.5 mg/kg atropine sulfate (ATR) and 25 mg/kg pyridine-2-aldoxime methochloride (2-PAM). In addition, guinea pigs were given 0, 1, 2, 4, 8 or 10 mg/kg GAL as a post-exposure treatment immediately prior to ATR and 2-PAM. Animals were either monitored for 24-h survival, scheduled for electroencephalography (EEG) recording, or euthanized 60 min later for measurement of indirectly-elicitedmore » muscle tension in the hemidiaphragm. Post-exposure GAL therapy produced a dose-dependent increase in survival from lethal VX challenge. Optimal clinical benefits were observed in the presence of 10 mg/kg GAL, which led to 100% survival of VX-challenged guinea pigs. Based on muscle physiology studies, GAL post-exposure treatment protected the guinea pig diaphragm, the major effector muscle of respiration, from fatigue, tetanic fade, and muscular paralysis. Protection against the paralyzing effects of VX was dose-dependent. In EEG studies, GAL did not alter seizure onset for all doses tested. At the highest dose tested (10 mg/kg), GAL decreased seizure duration when administered as a post-exposure treatment 1 min after VX. GAL also reduced the high correlation associated between seizure activity and lethality after 2LD50 VX challenge. GAL may have additional benefits both centrally and peripherally that are unrelated to its established mechanism as a reversible acetylcholinesterase inhibitor (AChEI)« less
Screening of sorghum lines for resistance against sugarcane aphid, Melanaphis sacchari (Zehnter)
USDA-ARS?s Scientific Manuscript database
The sugarcane aphid Melanaphis sacchari (Zehnter) has emerged as the most significant threat to sorghum (Sorghum bicolor (L.) Moench) production in the United States. Since 2013, discovery of aphid resistant germplasm has been a priority all stakeholders involved. We screened twenty three differen...
Towards efficient multi-scale methods for monitoring sugarcane aphid infestations in sorghum
USDA-ARS?s Scientific Manuscript database
We discuss approaches and issues involved with developing optimal monitoring methods for sugarcane aphid infestations (SCA) in grain sorghum. We discuss development of sequential sampling methods that allow for estimation of the number of aphids per sample unit, and statistical decision making rela...
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...
NDVI to detect sugarcane aphid injury to grain sorghum
USDA-ARS?s Scientific Manuscript database
Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. The purpose of this report is to describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants i...
Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Cai, Shuowei
2016-09-01
Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive-based systematic evolution of ligands by exponential enrichment (SELEX) process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nanomolar range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting that they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that the 2'-fluorine-pyrimidine-modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for SELEX, by using regular nucleotide during SELEX, and 2'-fluorine-pyrimidine-modified nucleotide for final application to enhance their RNase-resistance.
Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene; Singh, Bal Ram; Cai, Shuowei
2016-01-01
Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive based SELEX process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nM range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that 2′-fluorine-pyrimidines modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for Systematic Evolution of Ligands by EXponential enrichment (SELEX), by using regular nucleotide during SELEX, and 2′-fluorine-pyrimidines modified nucleotide for final application to enhance their RNase-resistance. PMID:27085355
2013-01-01
Background Cotton (Gossypium hirsutum L.) is a major fiber crop that is grown worldwide; it faces extensive damage from sap-sucking insects, including aphids and whiteflies. Genome-wide transcriptome analysis was performed to understand the molecular details of interaction between Gossypium hirsutum L. and sap-sucking pests, namely Aphis gossypii (Aphid) and Bemisia tabacci (Whiteflies). Roche’s GS-Titanium was used to sequence transcriptomes of cotton infested with aphids and whiteflies for 2 h and 24 h. Results A total of 100935 contigs were produced with an average length of 529 bp after an assembly in all five selected conditions. The Blastn of the non-redundant (nr) cotton EST database resulted in the identification of 580 novel contigs in the cotton plant. It should be noted that in spite of minimal physical damage caused by the sap-sucking insects, they can change the gene expression of plants in 2 h of infestation; further change in gene expression due to whiteflies is quicker than due to aphids. The impact of the whitefly 24 h after infestation was more or less similar to that of the aphid 2 h after infestation. Aphids and whiteflies affect many genes that are regulated by various phytohormones and in response to microbial infection, indicating the involvement of complex crosstalk between these pathways. The KOBAS analysis of differentially regulated transcripts in response to aphids and whiteflies indicated that both the insects induce the metabolism of amino acids biosynthesis specially in case of whiteflies infestation at later phase. Further we also observed that expression of transcript related to photosynthesis specially carbon fixation were significantly influenced by infestation of Aphids and Whiteflies. Conclusions A comparison of different transcriptomes leads to the identification of differentially and temporally regulated transcripts in response to infestation by aphids and whiteflies. Most of these differentially expressed contigs were related to genes involved in biotic, abiotic stresses and enzymatic activities related to hydrolases, transferases, and kinases. The expression of some marker genes such as the overexpressors of cationic peroxidase 3, lipoxygenase I, TGA2, and non-specific lipase, which are involved in phytohormonal-mediated plant resistance development, was suppressed after infestation by aphids and whiteflies, indicating that insects suppressed plant resistance in order to facilitate their infestation. We also concluded that cotton shares several pathways such as phagosomes, RNA transport, and amino acid metabolism with Arabidopsis in response to the infestation by aphids and whiteflies. PMID:23577705
Held, D W; Potter, D A; Gates, R S; Anderson, R G
2001-04-01
Incidental transport of arthropods on plant material can be a significant mode of pest entry into greenhouses. We evaluated the use of controlled atmosphere treatments as a potential way to eliminate arthropod pests on plant propagules (i.e., cuttings or small rooted plants). Lethal exposures to CO2 or N2 were determined for common greenhouse pests including fungus gnat larvae, Bradysia sp.; green peach aphid, Myzus persicae (Sulzer); sweetpotato whitefly, Bemisia sp.; twospotted spider mite, Tetranychus urticae Koch; and western flower thrips, Frankliniella occidentalis (Pergande). We also studied the effect of pest species, life stage, and presence or absence of plants on efficacy of modified atmosphere treatments. Finally, effects of modified atmospheres on plant quality were evaluated for several bedding plant species including begonia, Begonia semperflorens-cultorum Hort. 'Cocktail Series', chrysanthemum, Dendranthema grandiflora Tzvelev., geranium, Pelargonium X hortorum L.H. Bailey, and impatiens, Impatiens wallerana Hook f., and among cultivars of geranium and chrysanthemum. Exposure for 12-18 h to >99% N2 or CO2 caused complete mortality of aphids, mites, thrips, and whiteflies. Fungus gnat larvae were more tolerant of hypoxic conditions. Adult mites and eggs were equally susceptible. For most pests, there was no difference in response to atmospheres modified by CO2 or N2. However, there was variation in response among plant species and cultivars, with effects ranging from delayed flowering to mortality. Despite the possibility of adverse effects on some plants, this work indicates that use of modified atmospheres has potential to eliminate arthropod pests on plant propagules before they are introduced into greenhouses.
Newly identified resistance to soybean aphid (Aphis glycines) in soybean plant introduction lines
USDA-ARS?s Scientific Manuscript database
Host-plant resistance is potentially efficacious in managing the soybean aphid (SA, Aphis glycines Matsumura), a major invasive pest in northern soybean-production regions of North America. However, development of aphid-resistant soybean has been complicated by the presence of virulent SA biotypes,...
Mind your elders: wild soybean’s contribution to soybean aphid resistance
USDA-ARS?s Scientific Manuscript database
Currently, biotype 4 soybean aphid (Aphis glycines Matsamura, SBA) is the most virulent SBA biotype. Overcoming the most aphid resistant genes, SBA biotype 4 has become the greatest challenge in utilizing plant resistance in soybean [Glycine max (L.) Merr.]. Soybean’s wild ancestor Glycine soja (Sie...
Utilization of ladybird beetles to curb aphids in strawberry high tunnels: preliminary results
USDA-ARS?s Scientific Manuscript database
Native and exotic aphid species continue to pose a threat to the successful cultivation of small fruits in greenhouses, glasshouses, and high tunnels throughout the World. There is considerable interest in using biological controls (predators and parasitoids) to manage aphids in lieu of synthetic in...
USDA-ARS?s Scientific Manuscript database
Aphids in the genus Uroleucon Mordvilko (Hemiptera: Aphididae) are native herbivores that feed on goldenrod (Solidago spp.) and other Asteraceae in North America. The aphids are potential prey for a wide variety of natural enemies, including native and non-native species of lady beetles (Coleoptera...
Aphid population fluctuations and patterns of species dominance in Puerto Rico
USDA-ARS?s Scientific Manuscript database
Technical Abstract: Papaya ringspot virus (PRSV) is a non-persistently transmitted virus affecting papaya and cucurbit production worldwide. Papaya is not known to be colonized by any species of aphid, but multiple species can transmit the virus. That means that transmission depends on aphid populat...
Transparency Master: The Annual Aphid Cycle.
ERIC Educational Resources Information Center
Sessions, Mary Lynne
1983-01-01
Aphids, often referred to as plant lice, can be found in great numbers on stems, leaves, and flowers of many plants. In many cases these organisms are potentially harmful to their plant hosts. Provided is a description of the annual life cycle of the aphid and an accompanying transparency master. (Author/JN)
Preceding crop affects soybean aphid abundance and predator-prey dynamics in soybean
USDA-ARS?s Scientific Manuscript database
Crop rotations alter the soil environment and physiology of the subsequent crop in ways that may affect herbivore abundance. Soybean aphids are a consistent pest of soybean throughout North America, but little work has focused on how preceding crops may affect aphid populations. In a replicated expe...
USDA-ARS?s Scientific Manuscript database
Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant g...
Identification of conditions for successful aphid control by ladybirds in greenhouses
USDA-ARS?s Scientific Manuscript database
As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usual...
Prey foraging by Hippodamia convergens for cereal aphids on wheat
USDA-ARS?s Scientific Manuscript database
We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., plants in a laboratory arena, and developed a functional response model for the number of aphids eaten by an adult female con...
Detection of novel QTLs for foxglove aphid resistance in soybean
USDA-ARS?s Scientific Manuscript database
Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative QTL for foxglove aphid resistance in wild soybean, PI 366121, (Glycine soja Sieb...
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...
USDA-ARS?s Scientific Manuscript database
Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...
Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean
USDA-ARS?s Scientific Manuscript database
Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...
USDA-ARS?s Scientific Manuscript database
Cereal aphid complexes are responsible for reducing wheat production worldwide; however, management against these species is rare in North America. Generalist predators may contribute to reducing cereal aphid numbers and preventing significant damage to crops. A two-year survey identifying the arth...
Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)
Sabater-Muñoz, Beatriz; Legeai, Fabrice; Rispe, Claude; Bonhomme, Joël; Dearden, Peter; Dossat, Carole; Duclert, Aymeric; Gauthier, Jean-Pierre; Ducray, Danièle Giblot; Hunter, Wayne; Dang, Phat; Kambhampati, Srini; Martinez-Torres, David; Cortes, Teresa; Moya, Andrès; Nakabachi, Atsushi; Philippe, Cathy; Prunier-Leterme, Nathalie; Rahbé, Yvan; Simon, Jean-Christophe; Stern, David L; Wincker, Patrick; Tagu, Denis
2006-01-01
Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect. PMID:16542494
Retamal, Cristian Montalva; Barta, Marek; Pérez, Eladio Rojas; Flores, Eduardo Valenzuela
2013-01-01
An entomophthoralean fungus causing epizootics in populations of the cypress aphid, Cinara cupressi Buckton, in Chile is described as a new species, Neozygites osornensis Montalva et Barta. The aphid pathogen is described based on morphological characters. An exhaustive description, illustrations and a comparison with closely related species are provided. The fungus differs from similar Neozygites species by smaller hyphal bodies, nuclei, primary conidia, capilliconidia and capilliphores and by noticeably different shape of capilliconidia. A key to aphid-pathogenic species of Neozygites is also included.
Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis.
Poliakov, Anton; Russell, Calum W; Ponnala, Lalit; Hoops, Harold J; Sun, Qi; Douglas, Angela E; van Wijk, Klaas J
2011-06-01
Many insects are nutritionally dependent on symbiotic microorganisms that have tiny genomes and are housed in specialized host cells called bacteriocytes. The obligate symbiosis between the pea aphid Acyrthosiphon pisum and the γ-proteobacterium Buchnera aphidicola (only 584 predicted proteins) is particularly amenable for molecular analysis because the genomes of both partners have been sequenced. To better define the symbiotic relationship between this aphid and Buchnera, we used large-scale, high accuracy tandem mass spectrometry (nanoLC-LTQ-Orbtrap) to identify aphid and Buchnera proteins in the whole aphid body, purified bacteriocytes, isolated Buchnera cells and the residual bacteriocyte fraction. More than 1900 aphid and 400 Buchnera proteins were identified. All enzymes in amino acid metabolism annotated in the Buchnera genome were detected, reflecting the high (68%) coverage of the proteome and supporting the core function of Buchnera in the aphid symbiosis. Transporters mediating the transport of predicted metabolites were present in the bacteriocyte. Label-free spectral counting combined with hierarchical clustering, allowed to define the quantitative distribution of a subset of these proteins across both symbiotic partners, yielding no evidence for the selective transfer of protein among the partners in either direction. This is the first quantitative proteome analysis of bacteriocyte symbiosis, providing a wealth of information about molecular function of both the host cell and bacterial symbiont.
Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Garcia, Adriano G; Santos, Bárbara D B; Malaquias, José B
2018-01-01
Population dynamics of aphids have been studied in sole and intercropping systems. These studies have required the use of more precise analytical tools in order to better understand patterns in quantitative data. Mathematical models are among the most important tools to explain the dynamics of insect populations. This study investigated the population dynamics of aphids Aphis gossypii and Aphis craccivora over time, using mathematical models composed of a set of differential equations as a helpful analytical tool to understand the population dynamics of aphids in arrangements of cotton and cowpea. The treatments were sole cotton, sole cowpea, and three arrangements of cotton intercropped with cowpea (t1, t2 and t3). The plants were infested with two aphid species and were evaluated at 7, 14, 28, 35, 42, and 49 days after the infestations. Mathematical models were used to fit the population dynamics of two aphid species. There were good fits for aphid dynamics by mathematical model over time. The highest population peak of both species A. gossypii and A. craccivora was found in the sole crops, and the lowest population peak was found in crop system t2. These results are important for integrated management programs of aphids in cotton and cowpea.
Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao
2015-01-01
Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar ‘EP6392’ which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296
Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng
2016-06-01
Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Cao, He-He; Liu, Hui-Ru; Zhang, Zhan-Feng; Liu, Tong-Xian
2016-01-01
The green peach aphid, Myzus persicae Sulzer, is a notorious pest on vegetables, which often aggregates in high densities on crop leaves. In this study, we investigated whether M. persicae could suppress the resistance level of Chinese cabbage Brassica pekinensis. M. persicae performed better in terms of weight gain (~33% increase) and population growth (~110% increase) when feeding on previously infested (pre-infested) Chinese cabbage compared with those on non-infested plants. However, when given a choice, 64% of the aphids preferred to settle on non-infested leaves, while 29% of aphids chose pre-infested leaves that had a 2.9 times higher concentration of glucosinolates. Aphid feeding significantly enhanced the amino acid:sugar ratio of phloem sap and the absolute amino acid concentration in plant leaves. Aphid infestation significantly increased the expression levels of salicylic acid (SA) marker genes, while it had marginal effects on the expression of jasmonate marker genes. Exogenously applied SA or methyl jasmonate had no significant effects on M. persicae performance, although these chemicals increased glucosinolates concentration in plant leaves. M. persicae infestation increase amino acid:sugar ratio and activate plant defenses, but aphid performed better on pre-infested plants, suggesting that both nutrition and toxics should be considered in insect-plant interaction. PMID:26905564
The impacts of climate change and belowground herbivory on aphids via primary metabolites
NASA Astrophysics Data System (ADS)
Ryalls, James M. W.
Global climate and atmospheric change (summarised as climate change for brevity) may alter patterns of crop damage by insect herbivores, but little is known about how multiple climate change factors, acting in tandem, shape such interactions. Crucially, the specific plant-mediated mechanisms underpinning these effects remain largely unknown. Moreover, research into the effects of climate change on leguminous plant species, which have the ability to fix atmospheric nitrogen (N2) via their association with root nodule-dwelling rhizobial bacteria, and their associated insect herbivores, is surprisingly scarce considering their increasing importance in terrestrial ecosystems worldwide. Using a model legume, lucerne, otherwise known as alfalfa, Medicago sativa (Fabaceae), and a model pest species, the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae), this work addresses how predicted changes in carbon dioxide (CO2) concentrations, temperature and rainfall patterns as well as interactions with other organisms, including the root-feeding weevil Sitona discoideus (Coleoptera: Curculionidae), might shape legume-feeding aphid populations in the future. Recent literature on the impacts of climate change on aphids and the biology and trophic interactions of lucerne aphids specifically were synthesised in chapters one and two, respectively. These chapters highlighted the importance of the interactions between multiple abiotic and biotic variables in shaping aphid population dynamics. Empirical research chapters three to six, using up to five lucerne genotypes (i.e. cultivars) in glasshouse and field experiments, addressed how A. pisum responded to the isolated and combined effects of climate change and root herbivory. In particular, chapter three determined the effects of elevated temperatures (eT) and elevated atmospheric CO2 concentrations (eCO2) on root-feeding S. discoideus larvae and their interaction with A. pisum. Chapter four addressed whether the effects of eT, eCO2 and simulated root damage on aphids could be explained by changes in plant amino acid concentrations. Chapter five built on the mechanistic findings from chapter four to determine whether specific groups of amino acids were responsible for driving the effects of eT and eCO2 on aphid fecundity, longevity and intrinsic rate of increase (rm). Chapter six extended this research to the field to determine the plant-mediated effects of water stress and root herbivory on aphids in a mixed grass-legume system. Lucerne demonstrated an over compensatory growth response to root herbivory by S. discoideus larvae by increasing net root biomass and nodulation by 31% and 45%, respectively. eT negated the positive effects of eCO2 on weevil larval development, as well as on a number of lucerne characteristics (e.g. nodulation and amino acid concentrations) and aphid performance parameters (e.g. population growth, fecundity and rm). Root herbivory by S. discoideus negatively impacted aphids in general, although effects were dependent on feeding duration and herbivore arrival sequence (i.e. whether aphids fed on the plant before or after root herbivory). While drought negatively impacted aphid abundance, potentially via reduced phloem turgor and sap viscosity, the effects of eT, eCO2 and root herbivory on aphids were often driven by concentrations of specific amino acid groups. Nitrogen (N) leached from lacerated lucerne root nodules by S. discoideus led to increased concentrations of N in a neighbouring grass, Phalaris aquatica (Poaceae), with knock-on effects on plant competition and community dynamics. The opposing effects of eT and eCO2 on plant characteristics and both aboveground and belowground herbivores demonstrates the importance of combining trophic complexity with multiple climatic factors as a means of gaining realistic insights into how insect and plant communities will respond under future conditions. Identifying the specific amino acid changes underpinning aphid responses to climate change and root herbivory offers the potential for breeding aphid resistance traits into lucerne cultivars and informing adaptation strategies against future threats. Changes in precipitation patterns and plant-mediated indirect aboveground-belowground herbivore interactions can alter the outcome of competition between N-fixing legumes and non-N-fixing grasses, with important implications for plant community structure and productivity. Avenues for future research are explored and other causal agents of changes in aphid performance are discussed, which may further elucidate the mechanisms underpinning climate change and belowground herbivory impacts on aphid pests.
Krupke, Christian H; Alford, Adam M; Cullen, Eileen M; Hodgson, Erin W; Knodel, Janet J; McCornack, Brian; Potter, Bruce D; Spigler, Madeline I; Tilmon, Kelley; Welch, Kelton
2017-10-01
A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments. Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels. However, only the IPM treatment resulted in significant yield increases. Analysis of soybean foliage from thiamethoxam-treated seeds indicated that tissue concentrations of thiamethoxam were statistically similar to plants grown from untreated seeds beginning at the V2 growth stage, indicating that the period of pest suppression for soybean aphid is likely to be relatively short. These data demonstrate that an IPM approach, combining scouting and foliar-applied insecticide where necessary, remains the best option for treatment of soybean aphids, both in terms of protecting the yield potential of the crop and of break-even probability for producers. Furthermore, we found that thiamethoxam concentrations in foliage are unlikely to effectively manage soybean aphids for most of the pests' activity period across the region. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Aphid Transmission of the Ontario Isolate of Plum Pox Virus.
Lowery, D Thomas; Vickers, Patricia M; Bittner, Lori A; Stobbs, Lorne W; Foottit, Robert G
2015-10-01
Utilization of timed virus acquisition access probes in studies of plum pox virus (PPV) transmission by aphids demonstrated that endemic species transmitted the virus readily from plum, Prunus domestica (L.) Batsch; peach, P. persica (L.); or dwarf flowering almond, P. glandulosa Thunberg., to peach seedlings. The green peach aphid, Myzus persicae (Sulzer), was shown to be the most efficient vector. Acquisition of virus by green peach aphids from infected peach leaves resulted in 18-28% infected peach seedlings, while aphids previously fed on infected leaves of plum transferred virus to 36% of peach seedlings. Although the spirea aphid, Aphis spiraecola (Patch), was a less efficient vector than M. persicae it is perhaps more important for the spread of PPV due to its greater abundance and occurrence earlier in the season when peach trees are thought to be more susceptible to infection. Virus transmission rates varied depending on the virus source and healthy test plant species. In contrast to many previous studies, aphid inoculation of the experimental host Nicotiana benthamiana Domin occurred at a low rate, never exceeding 4%. Acquisition of PPV by M. persicae from infected peach fruit was greatly reduced compared with acquisition from leaves. The results of this research indicate that the Ontario isolate of PPV-D is readily transmissible by aphids to peach and natural spread of the virus needs to be considered in future management or eradication programs. © Her Majesty in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Published by Oxford University Press on behalf of Entomological Society of America.
MacKenzie, Tyler D B; Arju, Irin; Poirier, René; Singh, Mathuresh
2018-05-28
Aphids are viral vectors in potatoes, most importantly of Potato virus Y (PVY), and insecticides are frequently used to reduce viral spread during the crop season. Aphids collected from the potato belt of New Brunswick, Canada, in 2015 and 2016 were surveyed for known and novel mutations in the Na-channel (para) gene, coding for the target of synthetic pyrethroid insecticides. Specific genetic mutations known to confer resistance (kdr and skdr) were found in great abundance in Myzus persicae (Sulzer) (Hemiptera: Aphididae), which rose from 76% in 2015 to 96% in 2016. Aphids other than M. persicae showed lower frequency of resistance. In 2015, 3% of individuals contained the resistance mutation skdr, rising to 13% in 2016 (of 45 species). Several novel resistance mutations or mutations not before reported in aphids were identified in this gene target. One of these mutations, I936V, is known to confer pyrethroid resistance in another unrelated insect, and three others occur immediately adjacent and prompt similar chemical shifts in the primary protein structure, to previously characterized mutations associated with pyrethroid resistance. Most novel mutations were found in species other than M. persicae or others currently tracked individually by the provincial aphid monitoring program, which were determined by cytochrome C oxidase I (cox1) sequencing. Through our cox1 DNA barcoding survey, at least 45 species of aphids were discovered in NB potato fields in 2015 and 2016, many of which are known carriers of PVY.
USDA-ARS?s Scientific Manuscript database
The development and use of aphid-resistant soybean (Glycine max) cultivars has been complicated by the presence of multiple virulent biotypes of the soybean aphid (SA, Aphis glycines Matsumura). Ultimately, a variety of unique resistance sources may be needed to develop cultivars with a broad spectr...
Status of Imported and Native Predators of the Balsam Woolly Aphid on Mt. Mitchell, North Carolina
Gerhard F. Fedde
1972-01-01
On the Mt. Mitchell area during the summer of 1968, 20 stands of Fraser fir, Abies fraseri (Pursh) Poir., infested by the balsam woolly aphid, Adelges piceae (Ratzeburg), were examined for native and previously imported predators of the aphid. Laricobius erichsonii Bosenhauer (Coleoptera: Derodontidae) was...
S.L. Clement; D.G. Lester; A. Dan Wilson; R.C. Johnson; J.H. Bouton
1996-01-01
Experiments were conducted to compare the expression of Russian wheat aphid, Diurnphis noxia (Mordvilko), resistance in 2 genotypes of tall fescue grass, Festucn arundinacea Schreb., harboring different isolates of the endophytic fungus Acremonium coenophialum Morgan-Jones & cams. Aphids did not select...
USDA-ARS?s Scientific Manuscript database
Schizaphis graminum (green bug; GB) and Sipha flava yellow sugarcane aphid; YSA) are two cereal aphid species with broad host ranges capable of establishing on sorghum (Sorghum bicolor) and several switchgrass (Panicum virgatum) cultivars. Switchgrass and sorghum are staple renewable bioenergy crops...
Life history and morphological plasticity of three biotypes of soybean aphid (Aphis glycines)
USDA-ARS?s Scientific Manuscript database
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a pest of soybean, Glycine max (L.) Merr. (Fabaceae), from eastern Asia that was first reported in North America in 2000. The influence of temperature on plasticity of life history and morphological traits of the soybean aphid ha...
USDA-ARS?s Scientific Manuscript database
Yellow dwarf viruses in the family Luteoviridae, such as Cereal yellow dwarf virus-RPV (CYDV-RPV), are vectored by aphids and cause the most economically important virus disease of cereal crops worldwide. The identification of aphid proteins mediating virus transmission will better define transmiss...
Transcriptome profilng of defense responses to aphid feeding in wheat
USDA-ARS?s Scientific Manuscript database
Greenbug (Schizaphis graminum) is a serious aphid pest in small grain crops in the southern Great Plains of the US. We are trying to understand the molecular mechanisms of host resistance against aphid infestation in the grass genome using wheat-greenbug as a model system. In the present study, a mi...
USDA-ARS?s Scientific Manuscript database
Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in the five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance in...
USDA-ARS?s Scientific Manuscript database
Lettuce aphid, Nasonovia ribisnigri Mosley (Homoptera : Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce productions areas around the world. Resistance to lettuce aphid was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete,...
Management of Sugarcane Aphid in Sorghum
ERIC Educational Resources Information Center
Zerger, Sarah
2017-01-01
Sugarcane aphids are becoming a more prevalent pest in sorghum in the United States, especially in the south and are making their way north. There are many management practices that can be used on sugarcane aphids, the most important being scouting and maintaining populations. The most common mistake once a pest has been found is to immediately…
USDA-ARS?s Scientific Manuscript database
Cowpea aphid (CPA; Aphis craccivora) is a destructive insect pest of cowpea, as well as other legume crops including alfalfa, beans, chickpea, lentils, lupins and peanuts. The utilization of aphid resistance in cowpea breeding is one of the most efficient and environmental friendly methods to contro...
USDA-ARS?s Scientific Manuscript database
An outbreak of an invasive aphid was discovered damaging grain sorghum in Texas and neighboring states in 2013. It may be a new variant of sugarcane aphid, Melanaphis sacchari, that has a high preference for sorghum, or a very closely related species (M. sorghi). We designate it sorghum/sugarcane ...
Hagenbucher, Steffen; Wäckers, Felix L.; Romeis, Jörg
2014-01-01
Cotton produces insecticidal terpenoids that are induced by tissue-feeding herbivores. Damage by Heliothis virescens caterpillars increases the terpenoid content, which reduces the abundance of aphids. This effect is not evident in Bt-transgenic cotton, which is resistant to H. virescens. We determined whether induction of terpenoids by caterpillars influences the host quality of Aphis gossypii for the parasitoid Lysiphlebus testaceipes and whether this interaction is influenced by Bt cotton. The exposure of parasitoids to terpenoids was determined by quantifying terpenoids in the aphids. We detected several terpenoids in aphids and found a positive relationship between their concentrations in plants and aphids. When L. testaceipes was allowed to parasitize aphids on Bt and non-Bt cotton that was infested or uninfested with H. virescens, fewer parasitoid mummies were found on infested non-Bt than on Bt cotton. Important parasitoid life-table parameters, however, were not influenced by induced resistance following H. virescens infestation, or the Bt trait. Our study provides an example of a tritrophic indirect interaction web, where organisms are indirectly linked through changes in plant metabolites. PMID:24522627
Aphid Species and Population Dynamics Associated with Strawberry.
Bernardi, D; Araujo, E S; Zawadneak, M A C; Botton, M; Mogor, A F; Garcia, M S
2013-12-01
Aphids are among the major pests associated with strawberries in Southern Brasil. In this study, we identified the main species that occur in strawberry fields in the states of Paraná and Rio Grande do Sul, Brasil. We also compared the effectiveness of different sampling methods and studied the population dynamics of aphid species during two strawberry crop cycles in the municipality of Pinhais, state of Paraná, Brasil. Chaetosiphon fragaefolii (Cockerell) and Aphis forbesi Weed were the main species associated with strawberry. The method of hit plant and the Möericke trap showed equal effectiveness to capture wingless and winged insects. The peak population of aphids in the state of Paraná occurred from September to November. This information can help producers to implement strategies to monitor and control the major aphid species that occur in strawberry culture.
An invasive herbivore structures plant competitive dynamics.
Wong, Lydia; Grainger, Tess Nahanni; Start, Denon; Gilbert, Benjamin
2017-11-01
Species interactions are central to our understanding of ecological communities, but may change rapidly with the introduction of invasive species. Invasive species can alter species interactions and community dynamics directly by having larger detrimental effects on some species than others, or indirectly by changing the ways in which native species compete among themselves. We tested the direct and indirect effects of an invasive aphid herbivore on a native aphid species and two host milkweed species. The invasive aphid caused a 10-fold decrease in native aphid populations, and a 30% increase in plant mortality (direct effects). The invasive aphid also increased the strength of interspecific competition between the two native plant hosts (indirect effects). By investigating the role that indirect effects play in shaping species interactions in native communities, our study highlights an understudied component of species invasions. © 2017 The Author(s).
Brewer, Michael J; Gordy, John W; Kerns, David L; Woolley, James B; Rooney, William L; Bowling, Robert D
2017-10-01
In response to the 2013 outbreak of sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), on sorghum, Sorghum bicolor (L.), in North America, experiments were conducted at three southern U.S. grain sorghum production locations (Corpus Christi, TX; Winnsboro, LA; Rosenberg, TX). The objectives were to authenticate yield decline on susceptible hybrids (2014 and 2015) and to measure aphid population growth and natural enemy prevalence on susceptible and resistant hybrids with similar genetic background (2014). Yield decline on susceptible hybrids (Tx 2752/Tx430 and DKS53-67) was more substantial when aphid population growth accelerated quickly and peaked above 300 aphids per leaf (50 to nearly 100% yield decline). Location and year variation in maximum aphid density and cumulative aphid-days was high, with doubling time values on the susceptible hybrids ranging between 3.9 and 7.9 d. On resistant Tx2752/Tx2783, leaf injury and yield decline were not seen or less severe than on its paired susceptible Tx2752/Tx430. Aphids declined on Tx2752/Tx2783 after initial colony establishment (Corpus Christi) or took about 60% longer to double in population size when compared with Tx2572/Tx430 (Winnsboro). The predominant natural enemy taxa were aphelinid mummies (Hymenoptera: Aphelinidae), ladybird beetles (Coleoptera: Coccinellidae), and sryphid flies (Diptera: Syrphidae), and they were more prevalent during flowering than prior to flowering. They were generally responsive to changes in aphid density of both susceptible and resistant hybrids, but variability points to need for further study. In future research, full season observations should continue as well as more detailed study of potential compatibility of sorghum resistance and biological control. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mahdavi-Arab, Nafiseh; Meyer, Sebastian T.; Mehrparvar, Mohsen; Weisser, Wolfgang W.
2014-01-01
Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant’s growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both perspectives in plant herbivore interactions and characterize the effects of growth conditions on plant and herbivore performance and their respective feedbacks. PMID:25078980
Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng
2016-01-01
The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter aphid fecundity in water stresses plants. PMID:26546578
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosone, Alfredo; Scotto di Vettimo, Maria Rosaria; Malvindi, Maria Ada
It is generally accepted that silica (SiO{sub 2}) is not toxic. But the increasing use of silica nanoparticles (SiO{sub 2}NPs) in many different industrial fields has prompted the careful investigation of their toxicity in biological systems. In this report, we describe the effects elicited by SiO{sub 2}NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles, 25 nM in diameter, were administered to living Hydra vulgaris (Cnidaria). The dose-related effects were defined by morphological and behavioral assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35 nM NPs) and a LT50 of 38 h.more » At sub lethal doses, the morphophysiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells, and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq) revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO{sub 2}NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO{sub 2}NPs, and that the physiological modifications are transduced to gene expression modulation.« less
Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules.
Avila, L A; Chandrasekar, R; Wilkinson, K E; Balthazor, J; Heerman, M; Bechard, J; Brown, S; Park, Y; Dhar, S; Reeck, G R; Tomich, J M
2018-03-10
Development of new and specific insect pest management methods is critical for overcoming pesticide resistance and collateral off-target killings. Gene silencing by feeding dsRNA to insects shows promise in this area. Here we described the use of a peptide nano-material, branched amphiphilic peptide capsules (BAPCs), that facilitates cellular uptake of dsRNA by insects through feeding. The insect diets included dsRNA with and without complexation with BAPCs. The selected insect species come from two different orders with different feeding mechanisms: Tribolium castaneum and Acyrthosiphon pisum. The gene transcripts tested (BiP and Armet) are part of the unfolded protein response (UPR) and suppressing their translation resulted in lethality. For Acyrthosiphon pisum, ingestion of BiP-dsRNA associated with BAPCs led to the premature death of the aphids (t 1/2 =4-5days) compared to ingestion of the same amounts of free BiP-dsRNA (t 1/2 =11-12days). Tribolium castaneum was effectively killed using a combination of BiP-dsRNA and Armet-dsRNA complexed with BAPCs; most dying as larvae or during eclosion (~75%). Feeding dsRNA alone resulted in fewer deaths (~30%). The results show that complexation of dsRNA with BAPCs enhanced the oral delivery of dsRNA over dsRNA alone. Copyright © 2018 Elsevier B.V. All rights reserved.
Betsiashvili, Mariam; Ahern, Kevin R.; Jander, Georg
2015-01-01
Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this difference in maize aphid resistance identified quantitative trait loci (QTL) on chromosomes 4 and 6, with the Mo17 allele reducing aphid reproduction in each case. The chromosome 4 QTL mapping interval includes several genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a maize defensive metabolite that also is required for callose accumulation in response to aphid feeding. Consistent with the known association of callose with plant defence against aphids, R. maidis reproduction on B73×Mo17 recombinant inbred lines was negatively correlated with both DIMBOA content and callose formation. Further genetic mapping, as well as experiments with near-isogenic lines, confirmed that the Mo17 allele causes increased DIMBOA accumulation relative to the B73 allele. The chromosome 6 aphid resistance QTL functions independently of DIMBOA accumulation and has an effect that is additive to that of the chromosome 4 QTL. Thus, at least two separate defence mechanisms account for the higher level of R. maidis resistance in Mo17 compared with B73. PMID:25249072
Jiang, Feng; Guo, Wei; Zhou, Shu-Tang
2014-01-01
Aphids, the destructive insect pests in the agriculture, horticulture and forestry, are capable of reproducing asexually and sexually upon environmental change. However, the molecular basis of aphid reproductive mode switch remains an enigma. Here we report a comparative analysis of differential gene expression profiling among parthenogenetic females, gynoparae and sexual females of the cotton aphid Aphis gossypii, using the RNA-seq approach with next-generation sequencing platforms, followed by RT-qPCR. At the cutoff criteria of fold change ≥2 and P<0.01, we identified 741 up- and 879 down-regulated genes in gynoparae versus parthenogenetic females, 2,101 up- and 2,210 down-regulated genes in sexual females compared to gynoparae, and 1,614 up- and 2,238 down-regulated genes in sexual females relative to parthenogenetic females. Gene ontology category and KEGG pathway analysis suggest the involvement of differentially expressed genes in multiple cellular signaling pathways into the reproductive mode transition, including phototransduction, cuticle composition, progesterone-mediated oocyte maturation and endocrine regulation. This study forms a basis for deciphering the molecular mechanisms underlying the shift from asexual to sexual reproduction in the cotton aphid. It also provides valuable resources for future studies on this host-alternating aphid species, and the insight into the understanding of reproductive mode plasticity in different aphid species. PMID:24915491
Zhuang, Huifu; Li, Juan; Song, Juan; Hettenhausen, Christian; Schuman, Meredith C; Sun, Guiling; Zhang, Cuiping; Li, Jing; Song, Dunlun; Wu, Jianqiang
2018-06-01
Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Sinha, Deepak K.; Chandran, Predeesh; Timm, Alicia E.; Aguirre-Rojas, Lina; Smith, C. Michael
2016-01-01
The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857
Aggressive mimicry coexists with mutualism in an aphid
Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David
2015-01-01
Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant–aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism–antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid–ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474
Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary
2014-01-01
The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.
Plant resistance in sorghums to the sugarcane aphid Melanaphis sacchari (Hemiptera: Aphididae)
USDA-ARS?s Scientific Manuscript database
We evaluated ten sorghum lines that were near or in commercial release with the intent of identifying phenotypic expression of host-plant resistance to the sugarcane aphid. Two of the ten entries OL2042 and SP7715 expressed a high degree of resistance to the sugarcane aphid with damage ratings <3.0...
USDA-ARS?s Scientific Manuscript database
The Russian wheat aphid, Diuraphis noxia (Mordvilko), and greenbug, Schizaphis graminum (Rondani), are important aphid pests of wheat. Outbreaks of both pests in commercial wheat fields occur almost every year in the Great Plains of the United States. Infestations of both pests in wheat fields are...
USDA-ARS?s Scientific Manuscript database
The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of wheat and barley throughout the World. This aphid, although is not yet present in Australia, is extremely damaging with up to 70% yield loses in wheat and barley producing lands, causing significant financia...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...
USDA-ARS?s Scientific Manuscript database
The sugarcane aphid [Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae)] became virulent on sorghum in the United States in 2013. By 2015 the aphid was identified in 400 counties in 17 states accounting for 97% of hectares and 98% of production in the U.S. In 2014 and 2015, the estimated econom...
USDA-ARS?s Scientific Manuscript database
Aphids have important effects on the abundance and occurrence of tending ants, predators, and pests in agronomic systems, and DNA-based gut content analysis can aid in establishing predator-prey interactions. The purpose of this study was to determine how the presence of aphids, ants, and pest indiv...
Vorburger, C; Herzog, J; Rouchet, R
2017-04-01
Specialization on different host plants can promote evolutionary diversification of herbivorous insects. Work on pea aphids (Acyrthosiphon pisum) has contributed significantly to the understanding of this process, demonstrating that populations associated with different host plants exhibit performance trade-offs across hosts, show adaptive host choice and genetic differentiation and possess different communities of bacterial endosymbionts. Populations specialized on different secondary host plants during the parthenogenetic summer generations are also described for the black bean aphid (Aphis fabae complex) and are usually treated as different (morphologically cryptic) subspecies. In contrast to pea aphids, however, host choice and mate choice are decoupled in black bean aphids, because populations from different summer hosts return to the same primary host plant to mate and lay overwintering eggs. This could counteract evolutionary divergence, and it is currently unknown to what extent black bean aphids using different summer hosts are indeed differentiated. We addressed this question by microsatellite genotyping and endosymbiont screening of black bean aphids collected in summer from the goosefoot Chenopodium album (subspecies A. f. fabae) and from thistles of the genus Cirsium (subspecies A. f. cirsiiacanthoides) across numerous sites in Switzerland and France. Our results show clearly that aphids from Cirsium and Chenopodium exhibit strong and geographically consistent genetic differentiation and that they differ in their frequencies of infection with particular endosymbionts. The dependence on a joint winter host has thus not prevented the evolutionary divergence into summer host-adapted populations that appear to have evolved mechanisms of reproductive isolation within a common mating habitat. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Colinet, Dominique; Anselme, Caroline; Deleury, Emeline; Mancini, Donato; Poulain, Julie; Azéma-Dossat, Carole; Belghazi, Maya; Tares, Sophie; Pennacchio, Francesco; Poirié, Marylène; Gatti, Jean-Luc
2014-05-06
Endoparasitoid wasps are important natural enemies of the widely distributed aphid pests and are mainly used as biological control agents. However, despite the increased interest on aphid interaction networks, only sparse information is available on the factors used by parasitoids to modulate the aphid physiology. Our aim was here to identify the major protein components of the venom injected at oviposition by Aphidius ervi to ensure successful development in its aphid host, Acyrthosiphon pisum. A combined large-scale transcriptomic and proteomic approach allowed us to identify 16 putative venom proteins among which three γ-glutamyl transpeptidases (γ-GTs) were by far the most abundant. Two of the γ-GTs most likely correspond to alleles of the same gene, with one of these alleles previously described as involved in host castration. The third γ-GT was only distantly related to the others and may not be functional owing to the presence of mutations in the active site. Among the other abundant proteins in the venom, several were unique to A. ervi such as the molecular chaperone endoplasmin possibly involved in protecting proteins during their secretion and transport in the host. Abundant transcripts encoding three secreted cystein-rich toxin-like peptides whose function remains to be explored were also identified. Our data further support the role of γ-GTs as key players in A. ervi success on aphid hosts. However, they also evidence that this wasp venom is a complex fluid that contains diverse, more or less specific, protein components. Their characterization will undoubtedly help deciphering parasitoid-aphid and parasitoid-aphid-symbiont interactions. Finally, this study also shed light on the quick evolution of venom components through processes such as duplication and convergent recruitment of virulence factors between unrelated organisms.
Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh
2017-02-01
A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Turning in mid-air allows aphids that flee the plant to avoid reaching the risky ground.
Meresman, Yonatan; Ben-Ari, Matan; Inbar, Moshe
2017-09-01
When forced to drop from the plant, flightless arboreal insects can avoid reaching the risky ground by maneuvering their body through the air. When wingless pea aphids (Acyrthosiphon pisum) are threatened by natural enemies, they often drop off their host plant while assuming a stereotypic posture that rotates them in mid-air, aligning them with their feet pointing downwards. This position may increase their chances of re-clinging onto lower plant parts and avoid facing the dangers on the ground, although its effectiveness in realistic field conditions has not been tested. We performed both laboratory and outdoor experiments, in which we dropped aphids upon host plants to quantify clinging success in plants with different characteristics such as height and leaf size. Live aphids had twofold higher clinging rates than dead ones, indicating that clinging success is indeed affected by the active aerial-righting of dropping aphids. The ability to cling was positively dependent on the plants' foliage cover as viewed in vertical direction from above. Therefore, we released aphids in commercial alfalfa (Medicago sativa) fields with varying plant heights and foliage cover and induced them to drop. Most (up to 75%) of the aphids avoided reaching the ground in taller plants (65 cm), and 17% in shorter plants (21 cm), demonstrating the efficiency of the aphids' response in averting risks: both those of an approaching enemy on the plant and the plethora of new risks on the ground. Evidently, even in complex field environment, the aerial-righting mechanism can substantially reduce the possible risks following escape from a predator. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Klingler, John P.; Nair, Ramakrishnan M.; Edwards, Owain R.; Singh, Karam B.
2009-01-01
Biotic stress in plants frequently induces a hypersensitive response (HR). This distinctive reaction has been studied intensively in several pathosystems and has shed light on the biology of defence signalling. Compared with microbial pathogens, relatively little is known about the role of the HR in defence against insects. Reference genotype A17 of Medicago truncatula Gaertn., a model legume, responds to aphids of the genus Acyrthosiphon with necrotic lesions resembling a HR. In this study, the biochemical nature of this response, its mode of inheritance, and its relationship with defence against aphids were investigated. The necrotic lesion phenotype and resistance to the bluegreen aphid (BGA, Acyrthosiphon kondoi Shinji) and the pea aphid (PA, Acyrthosiphon pisum (Harris)) were analysed using reference genotypes A17 and A20, their F2 progeny and recombinant inbred lines. BGA-induced necrotic lesions co-localized with the production of H2O2, consistent with an oxidative burst widely associated with hypersensitivity. This HR correlated with stronger resistance to BGA in A17 than in A20; these phenotypes cosegregated as a semi-dominant gene, AIN (Acyrthosiphon-induced necrosis). In contrast to BGA, stronger resistance to PA in A17, compared with A20, did not cosegregate with a PA-induced HR. The AIN locus resides in a cluster of sequences predicted to encode the CC-NBS-LRR subfamily of resistance proteins. AIN-mediated resistance presents a novel opportunity to use a model plant and model aphid to study the role of the HR in defence responses to phloem-feeding insects. PMID:19690018
Srinivasan, Rajagopalbabu; Alvarez, Juan M; Bosque-Pérez, Nilsa A; Eigenbrode, Sanford D; Novy, Richard G
2008-04-01
Hairy nightshade, Solanum sarrachoides (Sendtner), is a ubiquitous weed in potato agro-ecosystems and nonagricultural lands of southeastern Idaho and the Pacific Northwest. This weed increases the complexity of the Potato leafroll virus (PLRV) (Luteoviridae: Polervirus)-potato pathosystem by serving as aphid and virus reservoir. Previous field studies showed higher densities of green peach aphid, Myzus persicae (Sulzer), and potato aphid, Macrosiphum euphorbiae (Thomas), the two most important vectors of PLRV, on S. sarrachoides compared with potato plants in the same fields. Some of the S. sarrachoides plants sampled in these surveys tested positive for PLRV. Viral infections can alter the physiology of plant hosts and aphid performance on such plants. To understand better the potential effects of S. sarrachoides on the PLRV-potato-aphid pathosystem, the life histories of M. persicae and M. euphorbiae were compared on virus-free and PLRV-infected S. sarrachoides and potato. Individual nymphs of each aphid species were held in clip cages on plants from each treatment to monitor their development, survival, and reproductive output. Nymphal survival for both aphids across plant species was higher on S. sarrachoides than on potato, and, within plant species, it was higher on PLRV-infected plants than on noninfected plants. With a few exceptions, similar patterns occurred for fecundity, reproductive periods, adult longevity, and intrinsic rate of increase. The enhanced performance of aphids on S. sarrachoides and on PLRV-infected plants could alter the vector population dynamics and thus the PLRV-disease epidemiology in fields infested with this weed.
Davis, T S; Wu, Y; Eigenbrode, S D
2017-02-01
Intraspecific specialization by insect herbivores on different host plant species contributes to the formation of genetically distinct "host races," but the effects of plant virus infection on interactions between specialized herbivores and their host plants have barely been investigated. Using three genetically and phenotypically divergent pea aphid clones (Acyrthosiphon pisum L.) adapted to either pea (Pisum sativum L.) or alfalfa (Medicago sativa L.), we tested how infection of these hosts by an insect-borne phytovirus (Bean leafroll virus; BLRV) affects aphid performance and preference. Four important findings emerged: 1) mean aphid survival rate and intrinsic rate of population growth (Rm) were increased by 15% and 14%, respectively, for aphids feeding on plants infected with BLRV; 2) 34% of variance in survival rate was attributable to clone × host plant interactions; 3) a three-way aphid clone × host plant species × virus treatment significantly affected intrinsic rates of population growth; and 4) each clone exhibited a preference for either pea or alfalfa when choosing between noninfected host plants, but for two of the three clones tested these preferences were modestly reduced when selecting among virus-infected host plants. Our studies show that colonizing BLRV-infected hosts increased A. pisum survival and rates of population growth, confirming that the virus benefits A. pisum. BLRV transmission affected aphid discrimination of host plant species in a genotype-specific fashion, and we detected three unique "virus-association phenotypes," with potential consequences for patterns of host plant use by aphid populations and crop virus epidemiology. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An, Chunju; Fei, Xiaodong; Chen, Wenfeng; Zhao, Zhangwu
2012-04-01
The wheat aphid Schizaphis graminum (Rondani) displays wing dimorphism with both winged and wingless adult morphs. The winged morph is an adaptive microevolutionary response to undesirable environmental conditions, including undesirable population density, photoperiod, temperature, and host plant. Here we studied the integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in S. graminum. The present results show that these four factors all play roles in inducing alate aphids in S. graminum but population density is the most important under almost all circumstances. In importance, population density is followed by photoperiod, host plant, and temperature, in that order. These results indicate that ambient environmental factors are highly important to stimulation of alate aphids in S. graminum, especially when population density reaches 64 individuals per leaf. © 2012 Wiley Periodicals, Inc.
Plant domestication slows pest evolution.
Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J
2015-09-01
Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics. © 2015 John Wiley & Sons Ltd/CNRS.
USDA-ARS?s Scientific Manuscript database
A small, fixed-wing UAS was used to survey a replicated small plot field experiment designed to estimate sorghum damage caused by an invasive aphid. Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a consumer-grade near-infrared camera, the UAS was flown on...
USDA-ARS?s Scientific Manuscript database
The soybean aphid, a plant sap sucking insect, is an important soybean pest in the USA causing significant yield losses. The Rag2 gene of soybean provides resistance to soybean aphid biotypes 1 and 2. Transcriptomic and proteomic analyses were performed on near isogenic lines (NILs) with the Rag2 al...
Geographic distribution of soybean aphid biotypes in USA and Canada during 2008 - 2010
USDA-ARS?s Scientific Manuscript database
The soybean aphid (Aphis glycines Matsumura) is a native pest of soybean in eastern Asia and was detected on soybeans in North America in 2000. In 2004, the soybean variety ‘“Dowling”’ was described to be resistant to soybean aphids with the Rag1 gene for resistance. In 2006, a virulent biotype of s...
S.L. Clement; K.S. Pike; W.J. Kaiser; A. Dan Wilson
1991-01-01
Fewer aphids of the Russian wheat aphid, (Mordvilko), were found on tall fescue and perennial ryegrass plants harboring systemic fungal endophytes than on endophyte-free plants in laboratory tests. These results indicate that enhanced resistance in some perennial grasses to D. noxia is associated with the presence of endophytic fungi.
Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae
Simon, Amma L.; Wellham, Peter A. D.; Aradottir, Gudbjorg I.; Gange, Alan C.
2017-01-01
Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two naturally susceptible varieties Triticum aestivum (L.) variety Solstice and T. monococcum MDR037, and two naturally resistant lines, T. monococcum MDR045 and MDR049. Mycorrhizal colonisation increased the attractiveness of T. aestivum var. Solstice to aphids, but there was no effect on aphid development on this variety. Using the Electrical Penetration Graph (EPG) technique, we found that mycorrhizal colonisation increased aphid phloem feeding on T. monococcum MDR037 and MDR045, colonisation also increased growth rate and reproductive success of S. avenae on these varieties. Mycorrhizas increased vascular bundle size, demonstrating that these fungi can influence plant anatomy. We discuss if and how this could be related to an enhanced success rate in phloem feeding in two varieties. Overall, we present and discuss how mycorrhizal fungi can affect the feeding behaviour of S. avenae in wheat, inducing susceptibility in a resistant variety. PMID:28406246
Companion Plants for Aphid Pest Management
Ben-Issa, Refka; Gomez, Laurent; Gautier, Hélène
2017-01-01
A potential strategy for controlling pests is through the use of “companion plants” within a crop system. This strategy has been used in several trials to fight against a major crop insect pest: the aphid. We reviewed the literature to highlight the major mechanisms by which a companion plant may act. Trials carried out under laboratory or field conditions revealed that companion plants operate through several mechanisms. A companion plant may be associated with a target crop for various reasons. Firstly, it can attract aphids and draw them away from their host plants. Secondly, it can alter the recognition of the host plant. This effect is mostly attributed to companion plant volatiles since they disturb the aphid host plant location, and additionally they may react chemically and physiologically with the host plant, making it an unsuitable host for aphids. Thirdly, it can attract natural enemies by providing shelter and food resources. In this review, the feasibility of using companion plants is discussed. We conclude that many factors need to be taken into account for a successful companion plant strategy. For the best long-term results, companion plant strategies have to be combined with other alternative approaches against aphids. PMID:29053585
Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae
NASA Astrophysics Data System (ADS)
Simon, Amma L.; Wellham, Peter A. D.; Aradottir, Gudbjorg I.; Gange, Alan C.
2017-04-01
Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two naturally susceptible varieties Triticum aestivum (L.) variety Solstice and T. monococcum MDR037, and two naturally resistant lines, T. monococcum MDR045 and MDR049. Mycorrhizal colonisation increased the attractiveness of T. aestivum var. Solstice to aphids, but there was no effect on aphid development on this variety. Using the Electrical Penetration Graph (EPG) technique, we found that mycorrhizal colonisation increased aphid phloem feeding on T. monococcum MDR037 and MDR045, colonisation also increased growth rate and reproductive success of S. avenae on these varieties. Mycorrhizas increased vascular bundle size, demonstrating that these fungi can influence plant anatomy. We discuss if and how this could be related to an enhanced success rate in phloem feeding in two varieties. Overall, we present and discuss how mycorrhizal fungi can affect the feeding behaviour of S. avenae in wheat, inducing susceptibility in a resistant variety.
Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan.
Cottrell, Ted E; Wood, Bruce W; Reilly, Charles C
2002-08-01
Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film.
Plant Species Loss Affects Life-History Traits of Aphids and Their Parasitoids
Petermann, Jana S.; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang W.; Schmid, Bernhard
2010-01-01
The consequences of plant species loss are rarely assessed in a multi-trophic context and especially effects on life-history traits of organisms at higher trophic levels have remained largely unstudied. We used a grassland biodiversity experiment and measured the effects of two components of plant diversity, plant species richness and the presence of nitrogen-fixing legumes, on several life-history traits of naturally colonizing aphids and their primary and secondary parasitoids in the field. We found that, irrespective of aphid species identity, the proportion of winged aphid morphs decreased with increasing plant species richness, which was correlated with decreasing host plant biomass. Similarly, emergence proportions of parasitoids decreased with increasing plant species richness. Both, emergence proportions and proportions of female parasitoids were lower in plots with legumes, where host plants had increased nitrogen concentrations. This effect of legume presence could indicate that aphids were better defended against parasitoids in high-nitrogen environments. Body mass of emerged individuals of the two most abundant primary parasitoid species was, however, higher in plots with legumes, suggesting that once parasitoids could overcome aphid defenses, they could profit from larger or more nutritious hosts. Our study demonstrates that cascading effects of plant species loss on higher trophic levels such as aphids, parasitoids and secondary parasitoids begin with changed life-history traits of these insects. Thus, life-history traits of organisms at higher trophic levels may be useful indicators of bottom-up effects of plant diversity on the biodiversity of consumers. PMID:20700511
Does aphid salivation affect phloem sieve element occlusion in vivo?
Medina-Ortega, Karla J; Walker, G P
2013-12-01
To protect against loss of photo-assimilate-rich phloem sap, plants have evolved several mechanisms to plug phloem sieve tubes in response to damage. In many Fabaceae, each sieve element contains a discrete proteinaceous body called a forisome, which, in response to damage, rapidly transforms from a condensed configuration that does not impede the flow of sap to a dispersed configuration that plugs the sieve element. Aphids and other specialized phloem sap feeders can ingest phloem sap from a single sieve element for hours or days, and to do this, they must be able to suppress or reverse phloem plugging. A recent study provided in vitro evidence that aphid saliva can reverse forisome plugs. The present study tested this hypothesis in vivo by inducing forisome plugs which triggered aphids to switch behaviour from phloem sap ingestion to salivation into the sieve element. After salivating into the sieve element for various periods of time, the aphids were instantaneously cryofixed (freeze fixed) in situ on their leaf. The state of the forisome was then determined in the penetrated sieve element and in nearby non-penetrated sieve elements which served as controls for sieve elements not subjected to direct aphid salivation. Forisomes were almost always in close contact with the stylet tips and thus came into direct contact with the saliva. Nonetheless, forisome plugs in the penetrated sieve element did not revert back to a non-plugging state any faster than those in neighbouring sieve elements that were not subjected to direct aphid salivation.
Koczor, Sándor; Szentkirályi, Ferenc; Birkett, Michael A; Pickett, John A; Voigt, Erzsébet; Tóth, Miklós
2010-12-01
The deployment of synthetic attractants for the manipulation of lacewing populations as aphid predators is currently used in integrated pest management. This study investigates a synthetic bait comprising floral compounds previously found to attract the Chrysoperla carnea complex, and, for the first time, the aphid sex pheromone components (1R,4aS,7S,7aR)-nepetalactol and (4aS,7S,7aR)-nepetalactone, in field experiments in Hungary, for their ability to manipulate lacewing populations. The synthetic floral bait attracted both sexes of the Chrysoperla carnea complex, and Chrysopa formosa Brauer showed minimal attraction. The aphid sex pheromone compounds alone attracted males of C. formosa and C. pallens (Rambur). When the two baits were combined, Chrysopa catches were similar to those with aphid sex pheromone baits alone, but carnea complex catches decreased significantly (by 85-88%). As the floral bait alone attracted both sexes of the carnea complex, it showed potential to manipulate the location of larval density via altering the site of oviposition. Aphid sex pheromone compounds alone attracted predatory males of Chrysopa spp. and can potentially be used to enhance biological control of aphids. For the carnea complex, however, a combination of both baits is not advantageous because of the decrease in adults attracted. Assumptions of intraguild avoidance underlying this phenomenon are discussed. Copyright © 2010 Society of Chemical Industry.
Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary
2014-01-01
The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2 •−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2 •− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2 •− generation in comparison with the Tasty Sweet genotype. PMID:25365518
Does aphid salivation affect phloem sieve element occlusion in vivo?
Medina-Ortega, Karla J.
2013-01-01
To protect against loss of photo-assimilate-rich phloem sap, plants have evolved several mechanisms to plug phloem sieve tubes in response to damage. In many Fabaceae, each sieve element contains a discrete proteinaceous body called a forisome, which, in response to damage, rapidly transforms from a condensed configuration that does not impede the flow of sap to a dispersed configuration that plugs the sieve element. Aphids and other specialized phloem sap feeders can ingest phloem sap from a single sieve element for hours or days, and to do this, they must be able to suppress or reverse phloem plugging. A recent study provided in vitro evidence that aphid saliva can reverse forisome plugs. The present study tested this hypothesis in vivo by inducing forisome plugs which triggered aphids to switch behaviour from phloem sap ingestion to salivation into the sieve element. After salivating into the sieve element for various periods of time, the aphids were instantaneously cryofixed (freeze fixed) in situ on their leaf. The state of the forisome was then determined in the penetrated sieve element and in nearby non-penetrated sieve elements which served as controls for sieve elements not subjected to direct aphid salivation. Forisomes were almost always in close contact with the stylet tips and thus came into direct contact with the saliva. Nonetheless, forisome plugs in the penetrated sieve element did not revert back to a non-plugging state any faster than those in neighbouring sieve elements that were not subjected to direct aphid salivation. PMID:24127515
Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng
2016-02-01
The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter aphid fecundity in water stresses plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Food Poisonings by Ingestion of Cyprinid Fish
Asakawa, Manabu; Noguchi, Tamao
2014-01-01
Raw or dried gallbladders of cyprinid fish have long been ingested as a traditional medicine in the Asian countries, particularly in China, for ameliorating visual acuity, rheumatism, and general health; however, sporadic poisoning incidences have occurred after their ingestion. The poisoning causes complex symptoms in patients, including acute renal failure, liver dysfunction, paralysis, and convulsions of limbs. The causative substance for the poisoning was isolated, and its basic properties were examined. The purified toxin revealed a minimum lethal dose of 2.6 mg/20 g in mouse, when injected intraperitoneally. The main symptoms were paralysis and convulsions of the hind legs, along with other neurological signs. Liver biopsy of the euthanized mice clearly exhibited hepatocytes necrosis and infiltration of neutrophils and lymphocytes, suggesting the acute dysfunction of the liver. Blood tests disclosed the characteristics of acute renal failure and liver injury. Infrared (IR) spectrometry, fast atom bombardment (FAB) mass spectrometry, and 1H- and 13C-nuclear magnetic resonance (NMR) analysis indicated, a molecular formula of C27H48O8S, containing a sulfate ester group for the toxin. Thus, we concluded that the structure of carp toxin to be 5α-cyprinol sulfate (5α-cholestane-3α, 7α, 12α, 26, 27-pentol 26-sulfate). This indicated that carp toxin is a nephro- and hepato- toxin, which could be the responsible toxin for carp bile poisoning in humans. PMID:24476713
Marcus, Nir; Hourvitz, Ariel
2002-05-01
Botulism is caused by a neurotoxin produced from the anaerobic, spore forming bacteria--clostridium botulinum. The disease is usually caused by toxins type A, B and E. Since the disease was first recognized in the beginning of the nineteenth century as food poisoning, different forms of intoxication were described. Infantile botulism, wound botulism, infectious botulism and inadvertent botulism are all clinical syndromes caused by the same toxin. The attempt to use the botulinum toxin as biological warfare agent is well known. Recently the potential terrorist use of botulinum toxin has become a real concern. Botulism is characterized by its classic triad: 1) symmetric descending flaccid paralysis with prominent bulbar palsies 2) afebrile patient 3) clear sensorium. The paralysis usually begins in the cranial nerves where blurred vision, dysarthia and dysphagia are the initial complaints. Diagnosis is based on clinical findings, history of suspicious exposure and supportive ancillary testing to rule out other causes of neurologic dysfunction that mimic botulism such as the Guillain-Barre syndrome, Myasthenia Gravis or cerebrovascular stroke. Laboratory confirmation of suspected cases is usually delayed and treatment should begin before confirmation is completed. The treatment includes supportive care, and the administration of antitoxin which reduces mortality if given early. Since community and emergency room physicians may be the first to treat patients with any type of botulinum intoxication, they must know how to diagnose and treat this rare but potentially lethal disease.
Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon?
Will, Torsten; Kornemann, Sarah R; Furch, Alexandra C U; Tjallingii, W Fred; van Bel, Aart J E
2009-10-01
Ca2+-binding proteins in the watery saliva of Megoura viciae counteract Ca2+-dependent occlusion of sieve plates in Vicia faba and so prevent the shut-down of food supply in response to stylet penetration. The question arises whether this interaction between aphid saliva and sieve-element proteins is a universal phenomenon as inferred by the coincidence between sieve-tube occlusion and salivation. For this purpose, leaf tips were burnt in a number of plant species from four different families to induce remote sieve-plate occlusion. Resultant sieve-plate occlusion in these plant species was counteracted by an abrupt switch of aphid behaviour. Each of the seven aphid species tested interrupted its feeding behaviour and started secreting watery saliva. The protein composition of watery saliva appeared strikingly different between aphid species with less than 50% overlap. Secretion of watery saliva seems to be a universal means to suppress sieve-plate occlusion, although the protein composition of watery saliva seems to diverge between species.
A guide to the winged aphids (Homoptera) of Costa Rica.
Voegtlin, David; Villalobos, William; Sánchez, Marco Vinicio; Saborio-R, Guido; Rivera, Carmen
2003-05-01
This guide is a compilation of limited morphological and biological information on the winged morphs of 60 species of aphids that have been collected in Costa Rica. It should not be viewed as a definitive taxonomic treatise on the aphids of Costa Rica, rather it is a tool that can be used to assist in research on the biology, host plant relationships, taxonomy, and virus transmission capabilities of aphids. Each species is covered in an identical manner. Morphological and biological information is provided in both Spanish and English as well as photographs of slide mounted specimens. Keys are provided to help the user in identifying the species. Most of the specimens examined were taken in traps associated with epidemiological studies. Limited field collecting has generated host records and these have been added to a list of the aphids of Central America that was compiled by Pamela Anderson and appended in the guide with her permission. The authors hope that this book will be useful to entomologists in Costa Rica and Central America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelogiannakis, George; Ibrahim, Khaled Z.; Shalf, John
The power and procurement cost of bandwidth in system-wide networks has forced a steady drop in the byte/flop ratio. This trend of computation becoming faster relative to the network is expected to hold. In this paper, we explore how cost-oriented task placement enables reducing the cost of system-wide networks by enabling high performance even on tapered topologies where more bandwidth is provisioned at lower levels. We describe APHiD, an efficient hierarchical placement algorithm that uses new techniques to improve the quality of heuristic solutions and reduces the demand on high-level, expensive bandwidth in hierarchical topologies. We apply APHiD to amore » tapered fat-tree, demonstrating that APHiD maintains application scalability even for severely tapered network configurations. Using simulation, we show that for tapered networks APHiD improves performance by more than 50% over random placement and even 15% in some cases over costlier, state-of-the-art placement algorithms.« less
Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique
2005-01-01
Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD. PMID:16014930
Ben Fekih, Ibtissem; Boukhris-Bouhachem, Sonia; Eilenberg, Jørgen; Allagui, Mohamed Bechir; Jensen, Annette Bruun
2013-01-01
The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan) and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR) on the internal transcribed spacer 1 region (ITS1) was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota), Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana) were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia.
Virus infection mediates the effects of elevated CO2 on plants and vectors.
Trębicki, Piotr; Vandegeer, Rebecca K; Bosque-Pérez, Nilsa A; Powell, Kevin S; Dader, Beatriz; Freeman, Angela J; Yen, Alan L; Fitzgerald, Glenn J; Luck, Jo E
2016-03-04
Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.
Charaabi, Kamel; Boukhris-Bouhachem, Sonia; Makni, Mohamed; Denholm, Ian
2018-06-01
The R81T mutation conferring target-site resistance to neonicotinoid insecticides in Myzus persicae was first detected in France and has since spread across much of southern Europe. In response to recent claims of control failure with neonicotinoids in Tunisia, we have used a molecular assay to investigate the presence and distribution of this target-site mutation in samples collected from six locations and six crops attacked by M. persicae. The resistance allele containing R81T was present at substantial frequencies (32-55%) in aphids collected between 2014 and 2016 from northern Tunisia but was much rarer further south. It occurred in aphids collected from the aphid's primary host (peach) and four secondary crop hosts (potato, pepper, tomato and melon). Its absence in aphids from tobacco highlights complexities in the systematics of M. persicae that require further investigation. This first report of R81T from North Africa reflects a continuing expansion of its range around the Mediterranean Basin, although it remains unrecorded elsewhere in the world. Loss of efficacy of neonicotinoids presents a serious threat to the sustainability of aphid control. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Salinity Improves Performance and Alters Distribution of Soybean Aphids.
Eichele-Nelson, Jaclyn; DeSutter, Thomas; Wick, Abbey F; Harmon, Erin L; Harmon, Jason P
2018-05-24
We know numerous abiotic factors strongly influence crop plants. Yet we often know much less about abiotic effects on closely interacting organisms including herbivorous insects. This lack of a whole-system perspective may lead to underestimating the threats from changing factors. High soil salinity is a specific example that we know threatens crop plants in many places, but we need to know much more about how other organisms are also affected. We investigated how salinity affects the soybean aphid (SBA; Aphis glycines Matsumura; Hemiptera: Aphididae) on soybean plants (Glycine max [L.] Merr.; Fabales: Fabaceae) grown across a range of saline conditions. We performed four complementary greenhouse experiments to understand different aspects of how salinity might affect SBA. We found that as salinity increased both population size and fecundity of SBA increased across electrical conductivity values ranging from 0.84 to 8.07 dS m-1. Tracking individual aphids we also found they lived longer and produced more offspring in high saline conditions compared to the control. Moreover, we found that salinity influenced aphid distribution such that when given the chance aphids accumulated more on high-salinity plants. These results suggest that SBA could become a larger problem in areas with higher salinity and that those aphids may exacerbate the negative effects of salinity for soybean production.
Lu, Hong; Yang, Pengcheng; Xu, Yongyu; Luo, Lan; Zhu, Junjie; Cui, Na; Kang, Le; Cui, Feng
2016-01-01
Insect populations feeding on different plant species are under selection pressure to adapt to these differences. A study integrating elements of the ecology, behavior, and gene expression of aphids on different host plants has not yet been well-explored. The present study explores the relationship between host fitness and survival, feeding behavior, and salivary gland gene expression of a pea (Pisum sativum) host race of Acyrthosiphon pisum feeding on a common host Vicia faba and on three genetically-related hosts (Vicia villosa, Medicago truncatula, and Medicago sativa). Life table data indicated that aphids on non-favored hosts exhibited small size, low reproduction rate, slow population increase and individual development, and long lifespan. Electrical penetration graph results showed that the aphids spent significantly less time in passive ingestion of phloem sap on all non-preferred host plants before acclimation. After a period of acclimation on M. truncatula and V. villosa, pea host race individuals showed improved feeding behavior. No individuals of the pea host race completed its life history on M. sativa. Interestingly, the number of host-specific differentially-expressed salivary gland genes was negatively correlated with the fitness of aphids on this host plant. This study provided important cues in host plant specialization in aphids. PMID:26758247
SIEVE ELEMENT-LINING CHAPERONE1 Restricts Aphid Feeding on Arabidopsis during Heat Stress.
Kloth, Karen J; Busscher-Lange, Jacqueline; Wiegers, Gerrie L; Kruijer, Willem; Buijs, Gonda; Meyer, Rhonda C; Albrectsen, Benedicte R; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A
2017-10-01
The role of phloem proteins in plant resistance to aphids is still largely elusive. By genome-wide association mapping of aphid behavior on 350 natural Arabidopsis thaliana accessions, we identified the small heat shock-like SIEVE ELEMENT-LINING CHAPERONE1 ( SLI1 ). Detailed behavioral studies on near-isogenic and knockout lines showed that SLI1 impairs phloem feeding. Depending on the haplotype, aphids displayed a different duration of salivation in the phloem. On sli1 mutants, aphids prolonged their feeding sessions and ingested phloem at a higher rate than on wild-type plants. The largest phenotypic effects were observed at 26°C, when SLI1 expression is upregulated. At this moderately high temperature, sli1 mutants suffered from retarded elongation of the inflorescence and impaired silique development. Fluorescent reporter fusions showed that SLI1 is confined to the margins of sieve elements where it lines the parietal layer and colocalizes in spherical bodies around mitochondria. This localization pattern is reminiscent of the clamp-like structures observed in previous ultrastructural studies of the phloem and shows that the parietal phloem layer plays an important role in plant resistance to aphids and heat stress. © 2017 American Society of Plant Biologists. All rights reserved.
Reduced metabolites of nitroaromatics are distributed in the environment via the food chain.
Nisar, Numrah; Cheema, Kausar J; Powell, Glen; Bennett, Mark; Chaudhary, Safee Ullah; Qadri, Rashad; Yang, Yaodong; Azam, Muhammad; Rossiter, John T
2018-05-15
Increased industrial processes have introduced emerging toxic pollutants into the environment. Phytoremediation is considered to be a very useful, economical and ecofriendly way of controlling these pollutants, however, certain pollutants can potentially travel through the food chain and accumulate at hazardous levels. Four isomers of dinitrotoluenes (DNT) were investigated and observed their potential toxicity towards A. thaliana. Two different aphid species (generalist and specialist) were allowed to feed on plants treated with DNTs and toxicity to aphids determined. Reduced metabolites of DNT (in both plant and aphids) were recovered and quantified through GC-MS analyses. 2,6-DNT was observed to be the toxic of the DNTs tested. Complete metabolism of DNTs to their reduced products was never achieved for higher concentrations. Regioselectivity was observed in the case of 2,4-DNT, with 4A2NT as the dominant isomer. Feeding aphids showed a similar toxicity pattern for DNT isomers as host plants. Metabolites were recovered from the body of aphids, demonstrating the potential transport of metabolites through the food chain. Plants show varied toxicity responses towards the DNT isomers. Aphids fed on A. thaliana plants treated with DNTs were shown to have ANTs present, which reflects the propagation of DNT metabolites through the food chain. Copyright © 2018 Elsevier B.V. All rights reserved.
Virus infection mediates the effects of elevated CO2 on plants and vectors
Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.
2016-01-01
Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production. PMID:26941044
von Dohlen, C D; Gill, D E
1989-02-01
Two divergent life cycles associated with different elevations and latitudes have been documented for the witch-hazel leaf gall aphid, Hormaphis hamamelidis. At low elevation in northern Virginia, the aphid had seven distinct generations alternating between the primary host, witchhazel (Hamamelis virginiana), and a secondary host, river birch (Betula nigra). These findings confirm the original published life cycle description for the same locality. A second, abbreviated life cycle consisting of only three generations restricted to witch-hazel was discovered at high elevation (1000 m) in north central and northwestern Virginia. Aphids of both life cycles were sympatric at a middle elevation site. The life cycles and morphology suggest that the two forms are separate species. Although monoecious life cycles on primary hosts in aphids generally are thought to be ancestral to complex host-alternating ones, it is certainly possible that monoecious cycles are sometimes secondarily derived from complex cycles. By constructing a preliminary phylogeny of the described species in the tribe Hormaphidini, we propose that the abbreviated life cycle is derived from the complex one in the case of these witchhazel gall aphids. Our findings are discussed in the context of current theory regarding the evolutionary stability of complex life cycles.
Muneer, Sowbiya; Jeong, Hai Kyoung; Park, Yoo Gyeong; Jeong, Byoung Ryong
2018-05-25
The rose is one the most commercially grown and costly ornamental plants because of its aesthetic beauty and aroma. A large number of pests attack its buds, flowers, leaves, and stem at every growing stage due to its high sugar content. The most common pest on roses are aphids which are considered to be the major cause for product loss. Aphid infestations lead to major changes in rose plants, such as large and irregular holes in petals, intact leaves and devouring tissues. It is hypothesized that different cut rose cultivars would have different levels of sensitivity or resistance to aphids, since different levels of infestation are observed in commercially cut rose production greenhouses. The present work compared four cut rose cultivars which were bred in Korea and were either resistant or sensitive to aphid infestation at different flower developmental stages. An integrative study was conducted using comprehensive proteome analyses. Proteins related to ubiquitin metabolism and the stress response were differentially expressed due to aphid infestation. The regulations and possible functions of identified proteins are presented in detail. The differential expressions of the identified proteins were validated by immunoblotting and blue native page. In addition, total sugar and carbohydrate content were also observed.
Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.
2015-01-01
Plant viruses can profoundly alter the phenotypes of their host plants, with potentially far-reaching implications for ecology. Yet few studies have explored the indirect, host-mediated, effects of plant viruses on non-vector insects. We examined how infection of Cucurbita pepo plants by Cucumber mosaic virus (CMV) impacted the susceptibility of aphids (Myzus persicae) to attack by the parasitoid wasp Aphidius colemani. In semi-natural foraging assays, we observed higher rates of aphid parasitism on infected plants compared to healthy plants. Subsequent experiments revealed that this difference is not explained by different attack rates on plants differing in infection status, but rather by the fact that parasitoid larvae successfully complete their development more often when aphid hosts feed on infected plants. This suggests that the reduced nutritional quality of infected plants as host for aphids—documented in previous studies—compromises their ability to mount effective defenses against parasitism. Furthermore, our current findings indicate that the aphid diet during parasitoid development (rather than prior to wasp oviposition) is a key factor influencing resistance. These findings complement our previous work showing that CMV-induced changes in host plant chemistry alter patterns of aphid recruitment and dispersal in ways conducive to virus transmission. PMID:26043237
Sadeghi, Amin; Van Damme, Els J.M.; Smagghe, Guy
2009-01-01
An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC50 of 20.4 μg/ml after 24 h, and of 0.24 µg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7–9 µg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum. PMID:20053120
Waddell, D; Ullman, B
1983-04-10
From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.
Zehnder, Caralyn B; Hunter, Mark D
2007-11-01
Induced plant responses to leaf-chewing insects have been well studied, but considerably less is known about the effects of phloem-feedings insects on induction. In a set of laboratory experiments, we examined density-dependent induction by the milkweed-oleander aphid, Aphis nerii, of putative defenses in four milkweed species (Asclepias incarnata, Asclepias syriaca, Asclepias tuberosa, and Asclepias viridis). We hypothesized that high aphid density would lead to increased cardenolide expression in species with low constitutive levels of cardenolides (e.g., A. tuberosa), but that there would be no induction in high constitutive cardenolide species (e.g., A. viridis). Based on previous studies, we did not expect cardenolide induction in A. incarnata. Contrary to our predictions, we observed feeding-induced declines of cardenolide concentrations in A. viridis. Cardenolide concentrations did not respond to aphid feeding in the other three milkweed species. Aphids also caused reductions in biomass accumulation by two of four Asclepias species, A. viridis and A. incarnata. High aphid density led to a decrease in A. viridis foliar nitrogen concentration. However, aphids had no effect on the defensive chemistry, growth, or nutritional quality of either A. syriaca or A. tuberosa. Our results highlight that congeneric plant species may respond differently to the same levels of herbivore damage.
Virus infection mediates the effects of elevated CO2 on plants and vectors
NASA Astrophysics Data System (ADS)
Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.
2016-03-01
Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.
Multitrophic interactions mediate the effects of climate change on herbivore abundance.
Robinson, Ayla; Inouye, David W; Ogilvie, Jane E; Mooney, Emily H
2017-10-01
Climate change can influence the abundance of insect herbivores through direct and indirect mechanisms. In this study, we evaluated multitrophic drivers of herbivore abundance for an aphid species (Aphis helianthi) in a subalpine food web consisting of a host plant (Ligusticum porteri), mutualist ants and predatory lygus bugs (Lygus spp.). We used a model-selection approach to determine which climate and host plant cues best predict year-to-year variation in insect phenology and abundance observed over 6 years. We complemented this observational study with experiments that determined how elevated temperature interacts with (1) host plant phenology and (2) the ant-aphid mutualism to determine aphid abundance. We found date of snowmelt to be the best predictor of yearly abundance of aphid and lygus bug abundance but the direction of this effect differed. Aphids achieved lower abundances in early snowmelt years likely due to increased abundance of lygus bug predators in these years. Elevating temperature of L. porteri flowering stalks reduced their quality as hosts for aphid populations. However, warming aphid colonies on host plants of similar quality increased population growth rates. Importantly, this effect was apparent even in the absence of ants. While we observed fewer ants tending colonies at elevated temperatures, these colonies also had reduced numbers of lygus bug predators. This suggests that mutualism with ants becomes less significant as temperature increases, which contrasts other ant-hemipteran systems. Our observational and experimental results show the importance of multitrophic species interactions for predicting the effect of climate change on the abundances of herbivores.
Barberà, Miquel; Collantes-Alegre, Jorge Mariano; Martínez-Torres, David
2017-04-01
Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins
Wilkinson, Tom L.
2013-01-01
The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852
Booth, L H; Wratten, S D; Kehrli, P
2007-02-01
By applying insecticides at lower rates of active ingredients per unit area, survival rates of the pests' natural enemies can be enhanced, whereas pest mortality can remain high. The effects of reduced application rates of the insecticides lambda-cyhalothrin and dimethoate on the mortality of bird cherry-oat aphid, Rhopalosiphon padi (L.), and lacewing Micromus tasmaniae Walker were determined in the laboratory and field. Cholinesterase (ChE) and glutathione S-transferase (GST) activities in survivors provided a measure of sublethal effects and general fitness. In the laboratory, lacewings were less sensitive than aphids to both insecticides, and dimethoate was more toxic than lambda-cyhalothrin. However, these results could not be recreated in the field, in part due to very low recapture rates. In summary, lambda-cyhalothrin seemed to have no effect on aphids, but it was toxic to lacewings. Dimethoate was far less toxic in the field, but aphids were still more sensitive than were lacewings. Cholinesterase activity was reduced by dimethoate exposure in the laboratory in both species, but there were species-specific differences. Dimethoate and lambda-cyhalothrin had no effects on GST activity in either species. The high mortality rate for lacewings and aphids exposed to dimethoate in the field suggests that the application rate could be reduced to as low as 10% of that recommended by manufacturers, and this should still be highly efficacious against aphids, while protecting the predatory lacewing. Measurement of enzyme activity could provide a useful indicator of "fitness" of survivors.
Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape
Soubeyrand, Samuel; Dallot, Sylvie; Labonne, Gérard; Chadœuf, Joël; Jacquot, Emmanuel
2018-01-01
Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare–10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne. PMID:29708968
Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.
Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G
2013-02-01
Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.
Mi, Xiaoxiao; Liu, Xue; Yan, Haolu; Liang, Lina; Zhou, Xiangyan; Yang, Jiangwei; Si, Huaijun; Zhang, Ning
2017-01-01
Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins.
Rao, Sohail A K; Carolan, James C; Wilkinson, Tom L
2013-01-01
The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.
Buysse, Ann M; Nugent, Benjamin M; Wang, Nick X; Benko, Zoltan; Breaux, Nneka; Rogers, Richard; Zhu, Yuanming
2017-04-01
The discovery of sulfoxaflor (Isoclast™ active) stemmed from a novel scaffold-based approach toward identifying bioactive molecules. It exhibits broad-spectrum control of many sap-feeding insect pests, including aphids, whiteflies, hoppers and Lygus. Systematic modifications of the substituents flanking each side of the sulfoximine moiety were carried out to determine whether these changes would improve potency. Structure-activity relationship (SAR) studies showed that, with respect to the methylene linker, both mono- and disubstitution with alkyl groups of varying sizes as well as cyclic analogs exhibited excellent control of cotton aphids. However, against green peach aphids a decrease in activity was observed with substituents larger than ethyl as well as larger cycloalkyl groups. At the terminal tail there appeared to be a narrow steric tolerance as well, with linear groups or small rings more active against green peach aphids than bulkier groups. A novel series of compounds exploring the substituents flanking the sulfoximine moiety of sulfoxaflor were prepared and tested for bioactivity against cotton aphids and green peach aphids. SAR studies indicated that a decrease in green peach aphid potency was observed at the methylene linker as well as at the terminal tail with bulkier substituents. A quantitative structure-activity relationship analysis of the compounds revealed significant correlation of activity with two molecular descriptors, vol (volume of a molecule) and GCUT_SMR_3 (molar refractivity). This predictive model helps to explain the observed activity with the various substituents. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
The Role of Natural Enemy Foraging Guilds in Controlling Cereal Aphids in Michigan Wheat
Safarzoda, Shahlo; Bahlai, Christine A.; Fox, Aaron F.; Landis, Douglas A.
2014-01-01
Insect natural enemies (predators and parasitoids) provide important ecosystem services by suppressing populations of insect pests in many agricultural crops. However, the role of natural enemies against cereal aphids in Michigan winter wheat (Triticum aestivum L.) is largely unknown. The objectives of this research were to characterize the natural enemy community in wheat fields and evaluate the role of different natural enemy foraging guilds (foliar-foraging versus ground-dwelling predators) in regulating cereal aphid population growth. We investigated these objectives during the spring and summer of 2012 and 2013 in four winter wheat fields on the Michigan State University campus farm in East Lansing, Michigan. We monitored and measured the impact of natural enemies by experimentally excluding or allowing their access to wheat plants infested with Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Hemiptera: Aphidae). Our results indicate that the natural enemy community in the wheat fields consisted mostly of foliar-foraging and ground-dwelling predators with relatively few parasitoids. In combination, these natural enemy groups were very effective at reducing cereal aphid populations. We also investigated the role of each natural enemy foraging guild (foliar-foraging versus ground-dwelling predators) independently. Overall, our results suggest that, in combination, natural enemies can almost completely halt early-season aphid population increase. Independently, ground-dwelling predators were more effective at suppressing cereal aphid populations than foliar-foraging predators under the conditions we studied. Our results differ from studies in Europe and the US Great Plains where foliar foraging predators and parasitoids are frequently more important cereal aphid natural enemies. PMID:25473951
Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry
2015-01-01
In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.
Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry
2015-01-01
In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid. PMID:25811863
Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola
2014-01-01
Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21–36°C and to 18–32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants. PMID:24714367
Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola
2014-01-01
Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.
Alhmedi, A; Haubruge, E; Bodson, B; Francis, F
2006-01-01
A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to integrated pest management approach.
Fu, Maoqiang; Xu, Manyu; Zhou, Ting; Wang, Defu; Tian, Shan; Han, Liping; Dong, Hansong; Zhang, Chunling
2014-04-01
The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens and insect pests. For these effects, the 10-40 residue fragment (Hpa1₁₀₋₄₂) isolated from the Hpa1 sequence is 1.3- to 7.5-fold more effective than the full-length protein. Here it is reported that the expression of Hpa1₁₀₋₄₂ under the direction of an insect-induced promoter induces the phloem-based defence to English grain aphid, a dominant species of wheat aphids. The expression of Hpa1₁₀₋₄₂ was found to compromise the colonization preference of aphids on the plant and further inhibit aphid reproduction in leaf colonies. In Hpa1₁₀₋₄₂-expressing wheat lines, moreover, aphid feeding from the phloem was repressed in correlation with the phloem-based defence. This defensive mechanism was shown as enhanced expression of wheat genes encoding phloem lectin proteins (PP2-A1 and PP2-A2) and β-1,3-glucan synthase-like enzymes (GSL2, GSL10, and GSL12). Both PP2-A and β-1,3-glucan formed high molecular mass polymers to block phloem sieve plate pores and therefore impede aphid feeding from the phloem. However, the phloem-based defence was impaired by treating plants with ethylene signalling inhibitors, suggesting the requirement for the ethylene signalling pathway. In addition, if Hpa1₁₀₋₄₂-expressing plants were subjected to attack by a small number of aphids, they newly acquired agriculturally beneficial characters, such as enhanced vegetative growth and increased tiller numbers and grain output values. These results suggest that the defensive and developmental roles of Hpa1₁₀₋₄₂ can be integrated into the germplasm of this agriculturally significant crop.
Shah, Farhan Mahmood; Razaq, Muhammad; Han, Peng; Chen, Julian
2017-01-01
Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15–81.89% for grains per spike, 5.33–37.62% for thousand grain weight and 27.59–61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013–14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field. PMID:28953894
Pest control of aphids depends on landscape complexity and natural enemy interactions
Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2015-01-01
Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control. PMID:26734497
Pest control of aphids depends on landscape complexity and natural enemy interactions.
Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2015-01-01
Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control.
Shah, Farhan Mahmood; Razaq, Muhammad; Ali, Abid; Han, Peng; Chen, Julian
2017-01-01
Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.
Fu, Maoqiang; Xu, Manyu; Zhang, Chunling
2014-01-01
The harpin protein Hpa1 has multiple beneficial effects in plants, promoting plant growth and development, increasing crop yield, and inducing resistance to pathogens and insect pests. For these effects, the 10–40 residue fragment (Hpa110–42) isolated from the Hpa1 sequence is 1.3- to 7.5-fold more effective than the full-length protein. Here it is reported that the expression of Hpa110–42 under the direction of an insect-induced promoter induces the phloem-based defence to English grain aphid, a dominant species of wheat aphids. The expression of Hpa110–42 was found to compromise the colonization preference of aphids on the plant and further inhibit aphid reproduction in leaf colonies. In Hpa110–42-expressing wheat lines, moreover, aphid feeding from the phloem was repressed in correlation with the phloem-based defence. This defensive mechanism was shown as enhanced expression of wheat genes encoding phloem lectin proteins (PP2-A1 and PP2-A2) and β-1,3-glucan synthase-like enzymes (GSL2, GSL10, and GSL12). Both PP2-A and β-1,3-glucan formed high molecular mass polymers to block phloem sieve plate pores and therefore impede aphid feeding from the phloem. However, the phloem-based defence was impaired by treating plants with ethylene signalling inhibitors, suggesting the requirement for the ethylene signalling pathway. In addition, if Hpa110–42-expressing plants were subjected to attack by a small number of aphids, they newly acquired agriculturally beneficial characters, such as enhanced vegetative growth and increased tiller numbers and grain output values. These results suggest that the defensive and developmental roles of Hpa110–42 can be integrated into the germplasm of this agriculturally significant crop. PMID:24676030
Structure of the Triatoma virus capsid.
Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S; Costabel, Marcelo D; Marti, Gerardo A; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M A; Rey, Felix A
2013-06-01
The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.
Oukkache, Naoual; Ahmad Rusmili, Muhamad Rusdi; Othman, Iekhsan; Ghalim, Noreddine; Chgoury, Fatima; Boussadda, Lofti; Elmdaghri, Naima; Sabatier, Jean-Marc
2015-03-01
Scorpion venoms contain complex mixtures of molecules, including peptides. These peptides specifically bind to various targets, in particular ion channels. Toxins modulating Na(+), K(+), Ca(2+) and Cl(-) currents were described from venoms. The Androctonus and Buthus geni of scorpions are widely distributed in Morocco. Their stings can cause pain, inflammation, necrosis, muscle paralysis and death. The myotoxicity is predominantly associated with neurotoxic effects and is a cause of mortality and morbidity. In this study, pharmacological effects of venoms were investigated in vitro on neuromuscular transmission. Effects of Androctonus mauretanicus (Am) and Buthus occitanus (Bo) venoms were investigated using the chick biventer cervicis nerve-muscle preparations. The protective activity of antivenom was also investigated. The antivenom was made from serum of horse that was hyperimmunized with Bo and Androctonus australis hector (Aah) venoms and one venom from Middle East species (Lq). The protective activity of the antivenom was assessed on the neuromuscular system by using stimulated chick nerve-muscle. The results were compared with lethal activity neutralization in mice. Am and Bo venoms contain myotoxins and postsynaptic neurotoxins. In agreement with lethal potencies of these venoms in mice, Am venom displays greater neurotoxicity and myotoxicity. The antivenom prevented lethality caused by Am, Bo and Aah venoms. The antivenom did not prevent toxic effects caused by Am venom whereas it neutralized Bo venom. Am and Bo venoms contain distinct toxins that are responsible for myotoxicity and neurotoxicity. It would be appropriate to add Am venom to produce more efficient antivenom. Copyright © 2015 Elsevier Inc. All rights reserved.
Jiang, Jiangong; Zhang, Zhengqun; Yu, Xin; Ma, Dicheng; Yu, Caihong; Liu, Feng; Mu, Wei
2018-06-06
The seven-spotted ladybird beetle, Coccinella septempunctata L., as a dominant predator of aphids, has played a crucial role in integrated pest management (IPM) strategies in agricultural ecosystems. To study the risk of insecticides to C. septempunctata, the neonicotinoid clothianidin was selected for evaluation of its influence on C. septempunctata at lethal and sublethal doses. The LR 50 (application rate causing 50% mortality) in the exposed larvae decreased from 19.94 to 5.91 g a.i. ha -1 , and the daily HQ (hazard quotient) values increased from 3.00 to 10.15, indicating potential intoxication risks. We also determined NOERs (No Observed Effect application Rates) of clothianidin on the total developmental time (10 g a.i. ha -1 ), survival (2.5 g a.i. ha -1 ) and pupation (5 g a.i. ha -1 ). Moreover, clothianidin at a NOER of 2.5 g a.i. ha -1 did not profoundly affect adult emergence, fecundity or egg hatchability. The total effect (E) assessment also showed that clothianidin at 2.5 g a.i. ha -1 was slightly harmful to C. septempunctata. These results suggested that clothianidin would impair C. septempunctata when applied at over 2.5 g a.i. ha -1 in the field. Conservation of this biological control agent in agricultural ecosystems thus requires further measures to decrease the applied dosages of clothianidin. Copyright © 2018 Elsevier Inc. All rights reserved.
Guan, Wenzhu; Ferry, Natalie; Edwards, Martin G; Bell, Howard A; Othman, Hamizah; Gatehouse, John A; Gatehouse, Angharad M R
2015-01-01
The grain aphid Sitobion avenae (F.) is a major pest of wheat, acting as a virus vector as well as causing direct plant damage. Commonly grown wheat varieties in the UK have only limited resistance to this pest. The present study was carried out to investigate the potential of a diploid wheat line (ACC20 PGR1755), reported as exhibiting resistance to S. avenae, to serve as a source of resistance genes. The diploid wheat line was confirmed as partially resistant, substantially reducing the fecundity, longevity and growth rate of the aphid. Proteomic analysis showed that approximately 200 protein spots were reproducibly detected in leaf extracts from both the resistant line and a comparable susceptible line (ACC5 PGR1735) using two-dimensional gel electrophoresis and image comparison software. Twenty-four spots were significantly up-regulated (>2-fold) in the resistant line after 24 h of aphid feeding (13 and 11 involved in local and systemic responses, respectively). Approximately 50 % of all differentially expressed protein spots were identified by a combination of database searching with MS and MS/MS data, revealing that the majority of proteins up-regulated by aphid infestation were involved in metabolic processes (including photosynthesis) and transcriptional regulation. However, in the resistant line only, several stress response proteins (including NBS-LRR-like proteins) and oxidative stress response proteins were identified as up-regulated in response to aphid feeding, as well as proteins involved in DNA synthesis/replication/repair. This study indicates that the resistant diploid line ACC20 PGR1755 may provide a valuable resource in breeding wheat for resistance to aphids.
Garzo, Elisa; Fernández-Pascual, Mercedes; Morcillo, Cesar; Fereres, Alberto; Gómez-Guillamón, M Luisa; Tjallingii, W Fred
2017-02-18
Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly followed by pathway activities (waveform C) or if followed by phloem ingestion (waveform E2), ingestion was not sustained for more than 10 min. Stylectomy with aphids on susceptible and resistant plants was performed during EPG recording while the stylet tips were phloem inserted. This was followed by dissection of the penetrated leaf section, plant tissue fixation, resin embedding, and ultrathin sectioning for transmission electron microscopic observation in order to study the resistance mechanism in the TGR. The most obvious aspect appeared to be the coagulation of phloem proteins inside the stylet canals and the punctured sieve elements. Stylets of 5 aphids per genotype were amputated during sieve element (SE) salivation (E1) and SE ingestion (E2). Cross-sections of stylet bundles in susceptible melon plants showed that the contents of the stylet canals were totally clear and also, no coagulated phloem proteins occurred in their punctured sieve elements. In contrast, electron-dense coagulations were found in both locations in the resistant plants. Due to calcium binding, aphid saliva has been hypothesized to play an essential role in preventing/suppressing such coagulations that cause occlusion of sieves plate and in the food canal of the aphid's stylets. Doubts about this role of E1 salivation are discussed on the basis of our results. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Biology and Fertility Life Table of the Green Aphid Chaetosiphon Fragaefolli on Strawberry Cultivars
Bernardi, Daniel; Garcia, Mauro Silveira; Botton, Marcos; Nava, Dori Edson
2012-01-01
Our objective was to study the biology and develop a fertility life table for the aphid Chaetosiphon fragaefolli (Cockerell) (Hemiptera: Aphididae) on leaves of strawberry, Fragaria × ananassa, Duchesne ex Rozier (Rosales: Rosaceae), of the cultivars Albion, Aromas, Camarosa, Camino Real, Diamante, Earlibrite, and Saborosa. This study was conducted under controlled conditions: 25 ± 1 °C, 70 ± 10% RH, and 12:12 L:D . Arenas were set up consisting of leaves inside Petri dishes containing 3% agar. Female aphids obtained after the last nymphal ecdysis were individually placed in arenas for 24 hours. The following biological parameters were evaluated: duration and survival of the nymph stage and of the life cycle (nymph-nymph), daily and total fecundity, and adult longevity. The aphids completed their biological cycle on all of the cultivars. The shortest durations (in days) of the nymphal stage were on the cultivars Camino Real and Camarosa (8.67 and 8.74 days, respectively), and the longest was on Aromas (11.12 days). The lowest survival was on cultivar Aromas (51%) and the highest on Saborosa (96%). When the time to development to the adult stage was compared, the aphids developed fastest (14.63 days) and survival was highest (96%) on cultivar Saborosa. Aphids reared on cultivar Aromas leaves had the longest pre—reproductive period (8.74 days), the greatest longevity (26.88 days), and the longest duration of the life cycle (19.76 days). Based on the fertility life table, cultivars Camarosa and Saborosa were the most favorable for development of C. fragaefolli, while Albion and Aromas were the most inadequate for aphid development. PMID:22958325
Guo, Jian-Ying; Wan, Fang-Hao; Dong, Liang; Lövei, Gábor L; Han, Zhao-Jun
2008-02-01
Tri-trophic impacts of transgenic Bacillus thuringiensis (Bt) cotton GK12 and NuCOTN 99B were studied using a predator, the great lacewing Chrysopa pallens (Rambur), and its prey, the cotton aphid Aphis gossypii Glover, in laboratory feeding experiments. The parental nontransgenic cotton cultivar of GK12 was used as control. The predator was fed with uniform (aphids from a single cultivar) or mixed prey (aphids from the three cotton cultivars provided on alternate days). Mortality and development of the immature stages, pupal body mass, adult sex ratio, fecundity, and egg viability of C. pallens were measured. When fed GK12-originated aphid prey, pupal body mass of C. pallens was significantly higher than that of the control, more females emerged, and these females laid significantly more eggs. Other parameters were not impacted. Females emerging from larvae maintained on NuCOTN 99B-originated prey laid fewer eggs than those maintained on GK12. Other measurements did not differ significantly between the two Bt cotton cultivars. Compared with the control, mixed feeding significantly prolonged pupal development time and increased pupal body mass and percentage of females but did not affect other parameters. These results indicate that C. pallens is sensitive to aphid prey from different cotton cultivars. Transgenic Bt cotton GK12-originated aphid prey has no adverse impact on survival, development, and fecundity of C. pallens. Between the two Bt cotton cultivars, NuCOTN 99B-originated aphid prey provided to C. pallens in the larval stage may lower female fecundity. Mixed feeding of C. pallens with the two Bt cotton-originated prey and non-Bt prey may have some adverse impacts on pupal development.
Prager, S M; Wallis, C M; Jones, M; Novy, R; Trumble, J T
2018-02-09
Long-term, sustainable management of zebra chip disease of potato, caused by 'Candidatus Liberibacter solanacearum' (Lso) and vectored by potato psyllids (Bactericera cockerelli Sulc [Hemiptera: Triozidae]), requires development of cultivars resistant or tolerant to infection or capable of reducing spread or both. We examined the influence that five experimental breeding clones of potato had on potato psyllids and their ability to vector Lso. The ability of these potato clones to resist aphids (green peach aphids, Myzus persicae Sulzer [Hemiptera: Aphididae]) also was examined. Due to the importance of host chemistry on plant-insect interactions, levels of primary metabolites of amino acids and sugars, as well as secondary metabolites including polyphenolics, terpenoids, and alkaloids were compared between breeding clones and a commercial cultivar. Findings for compound levels then were associated with observed changes in host susceptibility to psyllids or aphids. Psyllids oviposited less on three breeding clones than Atlantic, but no significant effects of breeding clones on psyllid feeding or choice were observed. Aphid reproduction was reduced on two clones relative to Atlantic. A05379-211 had greater sugar levels and postpsyllid amino acid levels than Atlantic. Total alkaloid and phenolic levels were greater in all breeding clones than Atlantic. Total terpenoid levels were greater in PALB03016-3 and PALB03016-6 than Atlantic, which might explain, in part, the observed resistance to psyllid oviposition and aphid reproduction. Overall, these results suggest that increased levels of certain metabolites in breeding clones could affect psyllid and aphid reproduction. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Yang, Fa-zhong; Yang, Bin; Li, Bei-bei; Xiao, Chun
2015-04-01
Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demonstrated that tenuazonic acid (TeA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 μg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated responses in rose plants to intensively enhance the plant's resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.
Moreira, Xoaquín; Nell, Colleen S; Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A
2016-09-06
It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant-plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant-plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant-plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops
Prado, Sara G.; Jandricic, Sarah E.; Frank, Steven D.
2015-01-01
Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels. PMID:26463203
Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel
2013-02-01
Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Stanton, Carly; Starek, Michael J.; Elliott, Norman; Brewer, Michael; Maeda, Murilo M.; Chu, Tianxing
2017-04-01
A small, fixed-wing unmanned aircraft system (UAS) was used to survey a replicated small plot field experiment designed to estimate sorghum damage caused by an invasive aphid. Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a consumer-grade near-infrared camera, the UAS was flown on a recurring basis over the growing season. The raw imagery was processed using structure-from-motion to generate normalized difference vegetation index (NDVI) maps of the fields and three-dimensional point clouds. NDVI and plant height metrics were averaged on a per plot basis and evaluated for their ability to identify aphid-induced plant stress. Experimental soil signal filtering was performed on both metrics, and a method filtering low near-infrared values before NDVI calculation was found to be the most effective. UAS NDVI was compared with NDVI from sensors onboard a manned aircraft and a tractor. The correlation results showed dependence on the growth stage. Plot averages of NDVI and canopy height values were compared with per-plot yield at 14% moisture and aphid density. The UAS measures of plant height and NDVI were correlated to plot averages of yield and insect density. Negative correlations between aphid density and NDVI were seen near the end of the season in the most damaged crops.
De Zutter, N; Audenaert, K; Arroyo-Manzanares, N; De Boevre, M; Van Poucke, C; De Saeger, S; Haesaert, G; Smagghe, G
2016-12-08
Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON.
Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium).
Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Ren, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei
2014-12-02
Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology. Three libraries were generated from pooled leaf tissues of Chrysanthemum morifolium 'nannongxunzhang' that were collected at different time points with (Y) or without (CK) aphid infestations and mock puncture treatment (Z), and sequenced using an Illumina HiSeqTM 2000 platform. A total of 7,363,292, 7,215,860 and 7,319,841 clean reads were obtained in library CK, Y and Z, respectively. The proportion of clean reads was >97.29% in each library. Approximately 76.35% of the clean reads were mapped to a reference gene database including all known chrysanthemum unigene sequences. 1,157, 527 and 340 differentially expressed genes (DEGs) were identified in the comparison of CK-VS-Y, CK-VS-Z and Z-VS-Y, respectively. These DEGs were involved in phytohormone signaling, cell wall biosynthesis, photosynthesis, reactive oxygen species (ROS) pathway and transcription factor regulatory networks, and so on. Changes in gene expression induced by aphid feeding are shown to be multifaceted. There are various forms of crosstalk between different pathways those genes belonging to, which would allow plants to fine-tune its defense responses.
De Zutter, N.; Audenaert, K.; Arroyo-Manzanares, N.; De Boevre, M.; Van Poucke, C.; De Saeger, S.; Haesaert, G.; Smagghe, G.
2016-01-01
Biotransformation of mycotoxins in animals comprises phase I and phase II metabolisation reactions. For the trichothecene deoxynivalenol (DON), several phase II biotransformation reactions have been described resulting in DON-glutathiones, DON-glucuronides and DON-sulfates made by glutathione-S-transferases, uridine-diphosphoglucuronyl transferases and sulfotransferases, respectively. These metabolites can be easily excreted and are less toxic than their free compounds. Here, we demonstrate for the first time in the animal kingdom the conversion of DON to DON-3-glucoside (DON-3G) via a model system with plant pathogenic aphids. This phase II biotransformation mechanism has only been reported in plants. As the DON-3G metabolite was less toxic for aphids than DON, this conversion is considered a detoxification reaction. Remarkably, English grain aphids (Sitobion avenae) which co-occur with the DON producer Fusarium graminearum on wheat during the development of fusarium symptoms, tolerate DON much better and convert DON to DON-3G more efficiently than pea aphids (Acyrthosiphon pisum), the latter being known to feed on legumes which are no host for F. graminearum. Using a non-targeted high resolution mass spectrometric approach, we detected DON-diglucosides in aphids probably as a result of sequential glucosylation reactions. Data are discussed in the light of an eventual co-evolutionary adaptation of S. avenae to DON. PMID:27929076
Lipids as Tumoricidal Components of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET)
Ho, James C. S.; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K. H.; Northen, Trent; Svanborg, Catharina
2013-01-01
Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance 13C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein. PMID:23629662
NASA Astrophysics Data System (ADS)
Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying
2017-12-01
Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species ( Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.
Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects.
Le Trionnaire, Gaël; Hardie, Jim; Jaubert-Possamai, Stéphanie; Simon, Jean-Christophe; Tagu, Denis
2008-08-01
Developmental biology is one of the fastest growing and fascinating research fields in life sciences. Among the wide range of embryonic development, a fundamental difference exists between organisms with sexual or asexual development. Aphids are unusual organisms which display alternative pathways of sexual and asexual development, the orientation of the pathway being determined by environmental conditions. These insects offer an adapted system in which to study developmental plasticity, because a side-by-side comparison of sexual and asexual development can be made in individuals with the same genotype. In this review, we describe the developmental mechanisms that have evolved in aphids for alternative sexual and asexual reproduction. In particular, we discuss how environmental cues orientate the reproductive mode of aphids from signal perception to endocrine regulation, and propose a comparative analysis of sexual and asexual gametogenesis and embryogenesis, which has been possible due to the development of molecular methods. As a result of the recent development of genomic resources in aphids, we expect these species will permit major advances in the study of the genomic basis underlying the choice of developmental fate and multiple reproduction strategies.
Cybertaxonomy to accomplish big things in aphid systematics.
Favret, Colin
2014-06-01
Biodiversity sciences have progressed at such a pace that the taxonomic community has been unable to grow concomitantly to keep up with the influx of biological data. This "taxonomic impediment" has led some to suggest that taxonomy is no longer pertinent and to the development of methodologies that circumvent the taxonomic process. This article does not seek to argue for the importance of taxonomy but rather is a call to the aphid taxonomy community to rise to the challenge by dramatically increasing the volume and comprehensiveness of its output without sacrificing quality. Recent informatics technology allows us to mobilize the 2 most important aphid taxonomy resources: experts and specimens, both distributed globally. "Cyberspecimens," museum specimens digitally rendered at a resolution sufficient for remote identification, and open "cybertaxonomic" tools will allow the international aphid taxonomic community to carry out large, ambitious, projects. The global aphid cybertaxonomy proposed here will serve not only the ends of research aphidologists, but also provide a model for other taxonomic communities to adapt and adopt as we confront both the taxonomic impediment and the taxonomic naysayers. © 2013 Institute of Zoology, Chinese Academy of Sciences.
Boissinot, Sylvaine; Pichon, Elodie; Sorin, Céline; Piccini, Céline; Scheidecker, Danièle; Ziegler-Graff, Véronique; Brault, Véronique
2017-01-01
A fluorescent viral clone of the polerovirus Turnip yellows virus (TuYV) was engineered by introducing the Enhanced Green Fluorescent Protein (EGFP) sequence into the non-structural domain sequence of the readthrough protein, a minor capsid protein. The resulting recombinant virus, referred to as TuYV-RTGFP, was infectious in several plant species when delivered by agroinoculation and invaded efficiently non-inoculated leaves. As expected for poleroviruses, which infect only phloem cells, the fluorescence emitted by TuYV-RTGFP was restricted to the vasculature of infected plants. In addition, TuYV-RTGFP was aphid transmissible and enabled the observation of the initial sites of infection in the phloem after aphid probing in epidermal cells. The aphid-transmitted virus moved efficiently to leaves distant from the inoculation sites and importantly retained the EGFP sequence in the viral genome. This work reports on the first engineered member in the Luteoviridae family that can be visualized by fluorescence emission in systemic leaves of different plant species after agroinoculation or aphid transmission. PMID:28661469
Boissinot, Sylvaine; Pichon, Elodie; Sorin, Céline; Piccini, Céline; Scheidecker, Danièle; Ziegler-Graff, Véronique; Brault, Véronique
2017-06-29
A fluorescent viral clone of the polerovirus Turnip yellows virus (TuYV) was engineered by introducing the Enhanced Green Fluorescent Protein (EGFP) sequence into the non-structural domain sequence of the readthrough protein, a minor capsid protein. The resulting recombinant virus, referred to as TuYV-RT GFP , was infectious in several plant species when delivered by agroinoculation and invaded efficiently non-inoculated leaves. As expected for poleroviruses, which infect only phloem cells, the fluorescence emitted by TuYV-RT GFP was restricted to the vasculature of infected plants. In addition, TuYV-RT GFP was aphid transmissible and enabled the observation of the initial sites of infection in the phloem after aphid probing in epidermal cells. The aphid-transmitted virus moved efficiently to leaves distant from the inoculation sites and importantly retained the EGFP sequence in the viral genome. This work reports on the first engineered member in the Luteoviridae family that can be visualized by fluorescence emission in systemic leaves of different plant species after agroinoculation or aphid transmission.
Herbivory by a Phloem-feeding insect inhibits floral volatile production.
Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert
2012-01-01
There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.
Wegierek, Piotr; Żyła, Dagmara; Homan, Agnieszka; Cai, Chenyang; Huang, Diying
2017-10-24
Recently, we are witnessing an increased appreciation for the importance of the fossil record in phylogenetics and testing various evolutionary hypotheses. However, this approach brings many challenges, especially for such a complex group as aphids and requires a thorough morphological analysis of the extinct groups. The extinct aphid family Szelegiewicziidae is supposed to be one of the oviparous lineages in aphid evolution. New material from the rock fossil deposits of Shar Teg (Upper Jurassic of Mongolia), Baissa (Lower Cretaceous of Siberia-Russia), and Burmese amber (Upper Cretaceous of Myanmar) allowed us to undertake a more detailed examination of the morphological features and carry out an analysis of the taxonomical composition and evolution of the family. This led us to the conclusion that evolution of the body plan and wing structure was similar in different, often not closely related groups, probably as a result of convergence. Additionally, we present a description of a new genus and two species (Tinaphis mongolica Żyła &Wegierek, sp. nov., and Feroorbis burmensis Wegierek & Huang, gen. et sp. nov.) that belong to this family.
Foster, S P; Young, S; Williamson, M S; Duce, I; Denholm, I; Devine, G J
2003-08-01
We show that single-point mutations conferring target-site resistance (kdr) to pyrethroids and DDT in aphids and houseflies, and gene amplification conferring metabolic resistance (carboxylesterase) to organophosphates and carbamates in aphids, can have deleterious pleiotropic effects on fitness. Behavioural studies on peach-potato aphids showed that a reduced response to alarm pheromone was associated with both gene amplification and the kdr target-site mutation. In this species, gene amplification was also associated with a decreased propensity to move from senescing leaves to fresh leaves at low temperature. Housefly genotypes possessing the identical kdr mutation were also shown to exhibit behavioural differences in comparison with susceptible insects. In this species, resistant individuals showed no positional preference along a temperature gradient while susceptible genotypes exhibited a strong preference for warmer temperatures.
Roy, Bishnupada; Dutta, B K
2003-11-01
Leaf extract of C. sativa causes paralysis leading to death in larvae of C. samoensis. The extract brought a drastic change in the morphology of sensilla trichoidea and the general body cuticle. The larvae exposed to the leaf extract also showed a significant reduction in the concentration of Mg and Fe, while Mn showed only slight average increase. Since the sensilla trichoidea has nerve connection, it is expected that the toxic principle of the leaf extract has affected the central nervous system. The significant reduction of the level of Fe indicates that the extract could cause the reduction in oxygen binding capacity of the haemolymph, thereby acting as a respiratory poison in addition to its known role as a neurotoxic substance.
Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard
2015-01-01
Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. All 55 species studied had earlier first flight trends at rate of β = -0·611 ± SE 0·015 days year(-1). Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = -0·010 ± SE 0·022 days year(-1)). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year(-1)), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year(-1)). The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non-host-alternating) were advancing their phenology faster than those that were not. Climate drives phenology and traits help explain how this takes place biologically. Phenology and trait ecology are critical to understanding the threat posed by emerging pests such as Myzus persicae nicotianae and Aphis fabae cirsiiacanthoidis, as revealed by the species accumulation analysis. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
2013-01-01
Background In most species of aphid, female nymphs develop into either sexual or asexual adults depending on the length of the photoperiod to which their mothers were exposed. The progeny of these sexual and asexual females, in turn, develop in dramatically different ways. The fertilized oocytes of sexual females begin embryogenesis after being deposited on leaves (oviparous development) while the oocytes of asexual females complete embryogenesis within the mother (viviparous development). Compared with oviparous development, viviparous development involves a smaller transient oocyte surrounded by fewer somatic epithelial cells and a smaller early embryo that comprises fewer cells. To investigate whether patterning mechanisms differ between the earliest stages of the oviparous and viviparous modes of pea aphid development, we examined the expression of pea aphid orthologs of genes known to specify embryonic termini in other insects. Results Here we show that pea aphid oviparous ovaries express torso-like in somatic posterior follicle cells and activate ERK MAP kinase at the posterior of the oocyte. In addition to suggesting that some posterior features of the terminal system are evolutionarily conserved, our detection of activated ERK in the oocyte, rather than in the embryo, suggests that pea aphids may transduce the terminal signal using a mechanism distinct from the one used in Drosophila. In contrast with oviparous development, the pea aphid version of the terminal system does not appear to be used during viviparous development, since we did not detect expression of torso-like in the somatic epithelial cells that surround either the oocyte or the blastoderm embryo and we did not observe restricted activated ERK in the oocyte. Conclusions We suggest that while oviparous oocytes and embryos may specify posterior fate through an aphid terminal system, viviparous oocytes and embryos employ a different mechanism, perhaps one that does not rely on an interaction between the oocyte and surrounding somatic cells. Together, these observations provide a striking example of a difference in the fundamental events of early development that is both environmentally induced and encoded by the same genome. PMID:23552511
Wang, Qi; Eneji, A. Egrinya; Kong, Xiangqiang; Wang, Kaiyun; Dong, Hezhong
2015-01-01
Many secondary metabolites have insecticidal efficacy against pests and may be affected by abiotic stress. However, little is known of how plants may respond to such stress as pertains the growth and development of pests. The objective of this study was to determine if and how salt stress on cotton plants affects the population dynamics of aphids. The NaCl treatment (50mM, 100mM, 150mM and 200mM) increased contents of gossypol in cotton by 26.8–51.4%, flavonoids by 22.5–37.6% and tannic by 15.1–24.3% at 7–28 d after salt stress. Compared with non-stressed plants, the population of aphids on 150 and 200 mM NaCl stressed plants was reduced by 46.4 and 65.4% at 7d and by 97.3 and 100% at 14 days after infestation. Reductions in aphid population were possibly attributed to the elevated secondary metabolism under salt stress. A total of 796 clones for aphids transcriptome, 412 clones in the positive- library (TEST) and 384 clones in the reverse-library (Ck), were obtained from subtracted cDNA libraries and sequenced. Gene ontology (GO) functional classification and KEGG pathway analysis showed more genes related to fatty acid and lipid biosynthesis, and fewer genes related to carbohydrate metabolism, amino acid metabolism, energy metabolism and cell motility pathways in TEST than in Ck library, which might be the reason of aphids population reduction. A comparative analysis with qRT-PCR indicated high expression of transcripts CYP6A14, CYP6A13, CYP303A1, NADH dehydrogenase and fatty acid synthase in the TEST group. However, CYP307A1 and two ecdysone-induced protein genes were down regulated. The results indicate that genes of aphids related to growth and development can express at a higher level in reaction to the enhanced secondary metabolism in cotton under salinity stress. The expression of CYP307A1 was positively correlated with the population dynamics of aphids since it was involved in ecdysone synthesis. PMID:26061875
Prevalence and Causes of Paralysis-United States, 2013.
Armour, Brian S; Courtney-Long, Elizabeth A; Fox, Michael H; Fredine, Heidi; Cahill, Anthony
2016-10-01
To estimate the prevalence and causes of functional paralysis in the United States. We used the 2013 US Paralysis Prevalence & Health Disparities Survey to estimate the prevalence of paralysis, its causes, associated sociodemographic characteristics, and health effects among this population. Nearly 5.4 million persons live with paralysis. Most persons with paralysis were younger than 65 years (72.1%), female (51.7%), White (71.4%), high school graduates (64.8%), married or living with a partner (47.4%), and unable to work (41.8%). Stroke is the leading cause of paralysis, affecting 33.7% of the population with paralysis, followed by spinal cord injury (27.3%), multiple sclerosis (18.6%), and cerebral palsy (8.3%). According to the functional definition, persons living with paralysis represent a large segment of the US population, and two thirds of them are between ages 18 and 64 years. Targeted health promotion that uses inclusion strategies to account for functional limitations related to paralysis can be undertaken in partnership with state and local health departments.
Ant tending influences soldier production in a social aphid.
Shingleton, A W; Foster, W A
2000-09-22
The aphid Pseudoregma sundanica (Van der Goot) (Homoptera: Aphididae) has two defence strategies. It is obligatorily tended by various species of ant and also produces sterile soldiers. We investigated how they allocate their investment in these two strategies. We measured the size, number of soldiers, number and species of tending ant, and number and species of predators in P. sundanica populations. We found that the level of ant tending correlated negatively with soldier investment in P. sundanica. The species of tending ant also influenced soldier investment. We excluded ants from aphid populations and recorded changes in population size and structure over four weeks. Ant exclusion led to population decline and extinction. At the same time, surviving populations showed a significant increase in soldier investment. The data demonstrate that social aphids can adjust their investment in soldiers in direct response to environmental change.
A repellent net as a new technology to protect cabbage crops.
Martin, T; Palix, R; Kamal, A; Delétré, E; Bonafos, R; Simon, S; Ngouajio, M
2013-08-01
Floating row covers or insect-proof nets with fine mesh are effective at protecting vegetable crops against aphids but negatively impact plant health, especially under warm conditions. Furthermore, in control of cabbage insect pests, aphid parasitoids cannot enter the fine-mesh nets, leading to frequent aphid outbreaks. To surmount these difficulties, a 40-mesh-size repellent net treated with alphacypermethrin was studied in laboratory and field tests. Results showed both irritant and repellent effects of the alphacypermethrin-treated net on Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its parasitoid Aphidius colemani (Haliday) (Hymenoptera: Braconidae). Under field conditions, there were no pests on cabbage protected with the repellent net. The repellent net allowed combining a visual and repellent barrier against aphids. Because of this additive effect, repellent nets allowed covering cabbage permanently with adequate protection against all pests.
Knierim, D; Tsai, W S; Maiss, E; Kenyon, L
2014-06-01
When 66 cucurbit samples with yellowing symptoms from fields in Mali, the Philippines, Thailand and Uzbekistan were screened by RT-PCR using universal polerovirus primers, 21 were identified as harboring polerovirus RNA. When these 21 samples were screened with specific primers for the known cucurbit-infecting poleroviruses, suakwa aphid-borne yellows virus and a recombinant strain of cucurbit aphid-borne yellows virus were detected for the first time in the Philippines and Thailand. However, seven polerovirus-positive samples did not react with any of the known species-specific primers. Sequencing of 1.4-kb universal polerovirus RT-PCR products revealed the presence of two poleroviruses that had not been described previously. These viruses, from Mali and Thailand, were provisionally named pepo aphid-borne yellows virus and luffa aphid-borne yellows virus, respectively.
Jandricic, S E; Filotas, M; Sanderson, J P; Wraight, S P
2014-05-01
Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against first-instar nymphs of Myzus persicae and Aphis gossypii. The assays identified a number of Beauveria and Metarhizium isolates with virulence equal to or greater than that of the commercial strains against the nymphal aphids, but none exhibited exceptionally high virulence. Virulence of Isaria isolates was unexpectedly low (<31% mortality at doses>1000conidia/mm(2)). In dose-response assays, Beauveria ARSEF 5493 proved most virulent against M. persicae and A. gossypii; however, LC50s of this isolate did not differ significantly from those of B. bassiana commercial strain JW-1. Dose-response assays were also conducted with Aulacorthum solani, the first reported evaluations of Beauveria and Metarhizium against this pest. The novel isolate Metarhizium 5471 showed virulence⩾that of Beauveria 5493 in terms of LC25 and LC50, but 5493 produced a steeper dose response (slope). Additional tests showed that adult aphids are more susceptible than nymphs to fungal infection but confirmed that infection has a limited pre-mortem effect on aphid reproduction. Effects of assay techniques and the potential of fungal pathogens as aphid-control agents are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Massonnet, Blandine; Simon, Jean-Christophe; Weisser, Wolfgang W
2002-12-01
We investigated population dynamics, genetic diversity and spatial structure in the aphid species Macrosiphoniella tanacetaria, a specialist herbivore feeding on tansy, Tanacetum vulgare. Tansy plants (genets) consist of many shoots (ramets), and genets are grouped in sites. Thus, aphids feeding on tansy can cluster at the level of ramets, genets and sites. We studied aphid population dynamics in 1997 and 2001 and found that within sites: (i). at any time, aphids used only a fraction of the available ramets and genets; (ii). at the level of ramets, most aphid colonies survived only one week; (iii). at the level of genets, mean survival time was less than 4 weeks; and (iv). colonization and extinction events occurred throughout the season. We sampled aphids in seven sites in the Alsace region, France (4-45 km apart) and two sites in Germany in 1999 to study genetic structure within and between populations. Genetic analyses using nine microsatellite loci showed that: (i). genotypic variability was high, (ii). none of the populations was in Hardy-Weinberg equilibrium, (iii). heterozygote deficits and linkage disequilibria were frequent, and (iv). all populations were genetically differentiated, even at a small geographical scale. Renewed sampling of the Alsace sites in 2001 showed that three populations had become extinct and significant genetic changes had occurred in the remaining four populations. The frequencies of extinction and colonization events at several spatial scales suggest a hierarchical metapopulation structure for M. tanacetaria. Frequent population turnover and drift are likely causes for the genetic differentiation of M. tanacetaria populations.
Bi, Rui; Pan, Yiou; Shang, Qingli; Peng, Tianfei; Yang, Shuang; Wang, Shang; Xin, Xuecheng; Liu, Yan; Xi, Jinghui
2016-09-01
Lambda-cyhalothrin is now widely used in China to control the soybean aphid Aphis glycines. To dissect the resistance mechanism, a laboratory-selected resistant soybean aphid strain (CRR) was established with a 43.42-fold resistance ratio to λ-cyhalothrin than the susceptible strain (CSS) in adult aphids. In this study, a comparative proteomic analysis between the CRR and CSS strains revealed important differences between the susceptible and resistant strains of soybean aphids for λ-cyhalothrin. Approximately 493 protein spots were detected in two-dimensional polyacrylamide gel electrophoresis (2-DE). Thirty-six protein spots displayed differential expression of >2-fold in the CRR strain compared to the CSS strain. Out of these 36 protein spots, 21 had elevated and 15 had decreased expression. Twenty-four differentially expressed proteins were identified by MALDI TOF MS/MS and categorized into the functional groups cytoskeleton-related protein, carbohydrate and energy metabolism, protein folding, antioxidant system, and nucleotide and amino acid metabolism. Function analysis showed that cytoskeleton-related proteins and energy metabolism proteins have been associated with the λ-cyhalothrin resistance of A. glycines. The differential expression of λ-cyhalothrin responsive proteins reflected the overall change in cellular structure and metabolism after insecticide treatment in aphids. In summary, our studies improve understanding of the molecular mechanism resistance of soybean aphid to lambda-cyhalothrin, which will facilitate the development of rational approaches to improve the management of this pest and to improve the yield of soybean. Copyright © 2016. Published by Elsevier Inc.
Kutyniok, Magdalene; Persicke, Marcus; Müller, Caroline
2014-02-01
The performance and behavior of herbivores is strongly affected by the quality of their host plants, which is determined by various environmental conditions. We investigated the performance and preference of the polyphagous shoot-infesting aphid Myzus persicae on the host-plant Arabidopsis thaliana in a two-factorial design in which nitrate fertilization was varied by 33 %, and the root-infesting cyst-nematode Heterodera schachtii was present or absent. Aphid performance was influenced by these abiotic and biotic factors in an interactive way. Nematode presence decreased aphid performance when nitrate levels were low, whereas nematode infestation did not influence aphid performance under higher nitrate fertilization. Aphids followed the "mother knows best" principle when given a choice, settling preferentially on those plants on which they performed best. Hence, they preferred nematode-free over nematode-infested plants in the low fertilization treatment but host choice was not affected by nematodes under higher nitrate fertilization. The amino acid composition of the phloem exudates was significantly influenced by fertilization but also by the interaction of the two treatments. Various glucosinolates in the leaves, which provide an estimate of phloem glucosinolates, were not affected by the individual treatments but by the combination of fertilization and herbivory. These changes in primary and secondary metabolites may be decisive for the herbivore responses. Our data demonstrate that abiotic and biotic factors can interactively affect herbivores, adding a layer of complexity to plant-mediated herbivore interactions.
Boulain, Hélène; Legeai, Fabrice; Guy, Endrick; Morlière, Stéphanie; Douglas, Nadine E; Oh, Jonghee; Murugan, Marimuthu; Smith, Michael; Jaquiéry, Julie; Peccoud, Jean; White, Frank F; Carolan, James C; Simon, Jean-Christophe; Sugio, Akiko
2018-05-18
Effector proteins play crucial roles in plant-parasite interactions by suppressing plant defenses and hijacking plant physiological responses to facilitate parasite invasion and propagation. Although effector proteins have been characterized in many microbial plant pathogens, their nature and role in adaptation to host plants are largely unknown in insect herbivores. Aphids rely on salivary effector proteins injected into the host plants to promote phloem sap uptake. Therefore, gaining insight into the repertoire and evolution of aphid effectors is key to unveiling the mechanisms responsible for aphid virulence and host plant specialization. With this aim in mind, we assembled catalogues of putative effectors in the legume specialist aphid, Acyrthosiphon pisum, using transcriptomics and proteomics approaches. We identified 3603 candidate effector genes predicted to be expressed in A. pisum salivary glands (SGs), and 740 of which displayed up-regulated expression in SGs in comparison to the alimentary tract. A search for orthologs in 17 arthropod genomes revealed that SG-up-regulated effector candidates of A. pisum are enriched in aphid-specific genes and tend to evolve faster compared to the whole gene set. We also found that a large fraction of proteins detected in the A. pisum saliva belonged to three gene families, of which certain members show evidence consistent with positive selection. Overall, this comprehensive analysis suggests that the large repertoire of effector candidates in A. pisum constitutes a source of novelties promoting plant adaptation to legumes.
Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid
Le Trionnaire, G; Francis, F; Jaubert-Possamai, S; Bonhomme, J; De Pauw, E; Gauthier, J-P; Haubruge, E; Legeai, F; Prunier-Leterme, N; Simon, J-C; Tanguy, S; Tagu, D
2009-01-01
Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids. PMID:19788735
Grettenberger, Ian M; Tooker, John F
2016-09-01
Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.
Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young
2017-01-01
The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection. PMID:29138624
Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.
2008-01-01
Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668
Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M
2008-01-01
Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.
Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum.
Nakabachi, Atsushi; Ishikawa, Hajime; Kudo, Toshiaki
2003-03-01
Aposymbiotic pea aphids, which were deprived of their intracellular symbiotic bacterium, Buchnera, exhibit growth retardation and no fecundity. High performance liquid chromatographic (HPLC) analysis revealed that these aposymbiotic aphids, when reared on broad bean plants, accumulated a large amount of histamine. To assess the possibility of extraordinary proliferation of microorganisms other than Buchnera, we enumerated eubacteria and fungi in aphids using the real-time quantitative PCR method that targets genes encoding small-subunit rRNAs. The result showed that these microorganisms were extremely abundant in the aposymbiotic aphids reared on plants. Microbial communities in aposymbiotic aphids were further profiled by phylogenetic analysis of small-subunit rDNAs. Of 172 nonchimeric sequences of fungal 18S rDNAs, 138 (80.2%) belonged to the phylum Ascomycota. Among them, 21 clustered within a monophyletic group consisting of insect-pathogenic fungi and yeast-like symbionts of homopteran insects. Thirty-one (18.0%), two (1.2%), and one (0.6%) clones were clustered within the Basidiomycota, Zygomycota, and Oomycota, respectively. Of 167 nonchimeric sequences of eubacterial 16S rDNAs, 84 (50.3%) belonged to the gamma-subdivision of Proteobacteria to which most primary endosymbionts of insects and prolific histamine producers belong. Forty (24.0%), 25 (15.0%), 10 (6.0%), and five (3.0%) clones were clustered within alpha-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Actinobacteria, and beta-Proteobacteria, respectively. Three had no phylogenetic association with known taxonomic divisions. None of the sequences studied in this study coincided exactly with those deposited in GenBank.
Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young; Woo, Soo-Dong
2017-09-01
The green peach aphid ( Myzus persicae ), a plant pest, and gray mold disease, caused by Botrytis cinerea , affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae . Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persad, A.B.; Hoy, M.A.; Ru Nguyen
The parasitoid Lipolexis oregmae Gahan (introduced as L. scutellaris Mackauer) was imported from Guam, evaluated in quarantine, mass reared, and released into citrus groves in Florida in a classical biological control program directed against the brown citrus aphid, Toxoptera citricida Kirkaldy. Releases of 20,200, 12,100, and 1,260 adults of L. oregmae were made throughout Florida during 2000, 2001, and 2002, respectively. To determine if L. oregmae had successfully established, surveys were conducted throughout the state beginning in the summer of 2001 and continuing through the summer of 2003. Parasitism during 2001 and 2002 was evaluated by holding brown citrus aphidsmore » in the laboratory until parasitoid adults emerged. Lipolexis oregmae was found in 10 sites in 7 counties and 4 sites in 3 counties with parasitism rates ranging from 0.7 to 3.3% in 2001 and 2002, respectively. Laboratory tests indicated that high rates of mortality occurred if field-collected parasitized aphids were held in plastic bags, so a molecular assay was used that allowed immature L. oregmae to be detected within aphid hosts immediately after collection. The molecular assay was used in 2003 with the brown citrus aphids and with other aphid species collected from citrus, weeds, and vegetables near former release sites; immatures of L. oregmae were detected in black citrus aphids, cowpea aphids, spirea aphids, and melon aphids, as well as in the brown citrus aphid, in 4 of 8 counties sampled, with parasitism ranging from 2.0 to 12.9%, indicating that L. oregmae is established and widely distributed. Samples taken in Polk County during Oct 2005 indicated that L. oregmae has persisted. The ability of L. oregmae to parasitize other aphid species on citrus, and aphids on other host plants, enhances the ability of L. oregmae to persist when brown citrus aphid populations are low. (author) [Spanish] El parasitoide Lipolexis oregmae Gahan (introducido como L. scutellaris Mackauer) fue importado de Guam, evaluado en cuarentena, criado en masa y liberado en huertos de citricos en un programa de control biologico clasico dirigido contra el afido pardo de citricos, Toxoptera citricida Kirkaldy. Se hicieron liberaciones de 20,200, 12,100, y 1,260 adultos de L. oregmae a traves de la Florida durante los anos de 2000, 2001, y 2002, respectivamente. Para determinar si L. oregmae ha logrado en establecer, se realizaron sondeos a traves del estado empezando en el verano del 2001 y continuando hasta el final del verano del 2003. El parasitismo durante 2001 y 2002 fue evaluado con el mantenimiento de individuos del afido pardo de los citricos en el laboratorio hasta que los adultos emergieron. Lipolexis oregmae fue encontrado en 10 sitios en 7 condados y con tasas de parasitismo en 4 sitios en 3 condados entre 0.7 a 3.3% en el 2001 y 2002, respectivamente. Las pruebas del laboratorio indicaron que las tasas altas de mortalidad fueron posibles si los afidos con parasitos recolectados en el campo fueron mantenidos en bolsas plasticas, entonces un ensayo molecular fue usado con lo que permitio la deteccion de inmaduros de L. oregmae dentro de los hospederos de afidos inmediatamente despues de la recoleccion. El ensayo molecular fue usado en el 2003 con individuos del afido pardo de los citricos y con otras especies de afidos recolectados sobre citricos, malezas y hortalizas cerca de los sitios donde los parasitoides fueron liberados anteriormente; inmaduros de L. oregmae fueron detectados en individuos del afido negro de los citricos, el afido del caupi, el afido spirea y el afido del melon, ademas del afido pardo de los citricos en 4 de los 8 condados muestreados, con la tasa del parasitismo entre 2.0 a12.9%, indicando que L. oregmae estaba estabecido y ampliamente distribuido. Las muestras tomadas en el Condado de Polk durante octobre del 2005 indicaron que L. oregmae ha persistido. La capacidad de L. oregmae para parasitar otras especies de afidos sobre citricos y otros afidos sobre otras plantas hospederas, incrementa la capacidad de L. oregmae para persistir cuando las poblaciones del afido pardo de los citricos estan bajas. (author)« less
Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.
Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen
2016-11-18
Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.
Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector
Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C.; Miller, W. Allen
2016-01-01
Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits. PMID:27869713
Elevated Carbon Dioxide Concentration Reduces Alarm Signaling in Aphids.
Boullis, Antoine; Fassotte, Bérénice; Sarles, Landry; Lognay, Georges; Heuskin, Stéphanie; Vanderplanck, Maryse; Bartram, Stefan; Haubruge, Eric; Francis, Frédéric; Verheggen, François J
2017-02-01
Insects often rely on olfaction to communicate with conspecifics. While the chemical language of insects has been deciphered in recent decades, few studies have assessed how changes in atmospheric greenhouse gas concentrations might impact pheromonal communication in insects. Here, we hypothesize that changes in the concentration of atmospheric carbon dioxide affect the whole dynamics of alarm signaling in aphids, including: (1) the production of the active compound (E)-β-farnesene (Eβf), (2) emission behavior when under attack, (3) perception by the olfactory apparatus, and (4) the escape response. We reared two strains of the pea aphid, Acyrthosiphon pisum, under ambient and elevated CO 2 concentrations over several generations. We found that an increase in CO 2 concentration reduced the production (i.e., individual content) and emission (released under predation events) of Eβf. While no difference in Eβf neuronal perception was observed, we found that an increase in CO 2 strongly reduced the escape behavior expressed by an aphid colony following exposure to natural doses of alarm pheromone. In conclusion, our results confirm that changes to greenhouse gases impact chemical communication in the pea aphid, and could potentially have a cascade effect on interactions with higher trophic levels.
Soybean defense responses to the soybean aphid.
Li, Yan; Zou, Jijun; Li, Min; Bilgin, Damla D; Vodkin, Lila O; Hartman, Glen L; Clough, Steven J
2008-01-01
Transcript profiles in aphid (Aphis glycines)-resistant (cv. Dowling) and -susceptible (cv. Williams 82) soybean (Glycine max) cultivars using soybean cDNA microarrays were investigated. Large-scale soybean cDNA microarrays representing approx. 18 000 genes or c. 30% of the soybean genome were compared at 6 and 12 h post-application of aphids. In a separate experiment utilizing clip cages, expression of three defense-related genes were examined at 6, 12, 24, 48, and 72 h in both cultivars by quantitative real-time PCR. One hundred and forty genes showed specific responses for resistance; these included genes related to cell wall, defense, DNA/RNA, secondary metabolism, signaling and other processes. When an extended time period of sampling was investigated, earlier and greater induction of three defense-related genes was observed in the resistant cultivar; however, the induction declined after 24 or 48 h in the resistant cultivar but continued to increase in the susceptible cultivar after 24 h. Aphid-challenged resistant plants showed rapid differential gene expression patterns similar to the incompatible response induced by avirulent Pseudomonas syringae. Five genes were identified as differentially expressed between the two genotypes in the absence of aphids.
Trichoderma harzianum enhances tomato indirect defense against aphids.
Coppola, Mariangela; Cascone, Pasquale; Chiusano, Maria Luisa; Colantuono, Chiara; Lorito, Matteo; Pennacchio, Francesco; Rao, Rosa; Woo, Sheridan Lois; Guerrieri, Emilio; Digilio, Maria Cristina
2017-12-01
Many fungal root symbionts of the genus Trichoderma are well-known for their beneficial effects on agronomic performance and protection against plant pathogens; moreover, they may enhance protection from insect pests, by triggering plant resistance mechanisms. Defense barriers against insects are induced by the activation of metabolic pathways involved in the production of defense-related plant compounds, either directly active against herbivore insects, or exerting an indirect effect, by increasing the attraction of herbivore natural enemies. In a model system composed of the tomato plant, the aphid Macrosiphum euphorbiae and the parasitoid Aphidius ervi, plant metabolic changes induced by Trichoderma harzianum and their effects on higher trophic levels have been assessed. T. harzianum T22 treatments induce a primed state that upon aphid attacks leads to an increased attraction of aphid parasitoids, mediated by the enhanced production of volatile organic compounds (VOCs) that are known to induce Aphidius ervi flight. Transcriptome sequencing of T22-treated plants infested by aphids showed a remarkable upregulation of genes involved in terpenoids biosynthesis and salicylic acid pathway, which are consistent with the observed flight response of A. ervi and the VOC bouquet profile underlying this behavioral response. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Macrosiphoniella remaudierei, a new species of aphid on Helichrysum in Iran (Hemiptera, Aphididae).
Barbagallo, Sebastiano; Nieto Nafría, Juan M
2016-01-01
A new species of aphid, belonging to the genus Macrosiphoniella Del Guercio, 1911, is described using three samples collected in Iran on Helichrysum armenium (Asteraceae, Inuleae) by the late Prof. G. Remaudière. Both apterous and alate viviparous females of the new taxon, Macrosiphoniella remaudierei sp. n. , are described and compared to corresponding morphs of the closely allied Macrosiphoniella aetnensis and to other congeneric aphid species on Helichrysum in the Palaearctic region. Type specimens are now stored in the Muséum national d'Histoire naturelle in Paris.
Nicolás, Pérez Hidalgo; Ángel, Umaran; M. Pilar, Mier Durante
2011-01-01
Abstract The oriental aphid Schizaphis piricola (Matsumura) is recorded for the first time in Europe, on the ornamental pear tree Pyrus calleryana in landscaped areas in Madrid (Spain). Data on the morphology of the forms on primary host (apterous and alate fundatrigeniae and fundatrices), and their biology and distribution are given. The keys for identifying species of Schizaphis (Schizaphis) in the Iberian Peninsula are updated. Two species of aphids are also recorded for the first time on Pyrus calleryana: Schizaphis piricola and Aphis pomi. PMID:21594084
Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.
2013-01-01
Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273
Jandricic, Sarah E; Wraight, Stephen P; Gillespie, Dave R; Sanderson, John P
2016-12-14
The aphidophagous midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae) is used in biological control programs against aphids in many crops. Short-term trials with this natural enemy demonstrated that that females prefer to oviposit among aphids colonizing the new growth of plants, leading to differential attack rates for aphid species that differ in their within-plant distributions. Thus, we hypothesized that biological control efficacy could be compromised when more than one aphid species is present. We further hypothesized that control outcomes may be different at different crop stages if aphid species shift their preferred feeding locations. Here, we used greenhouse trials to determine biological control outcomes using A. aphidimyza under multi-prey conditions and at different crop stages. At all plant stages, aphid species had a significant effect on the number of predator eggs laid. More eggs were found on M. persicae versus A. solani -infested plants, since M. persicae consistently colonized plant meristems across plant growth stages. This translated to higher numbers of predatory larvae on M. periscae -infested plants in two out of our three experiments, and more consistent control of this pest (78%-95% control across all stages of plant growth). In contrast, control of A. solani was inconsistent in the presence of M. persicae , with 36%-80% control achieved. An additional experiment demonstrated control of A. solani by A. aphidimyza was significantly greater in the absence of M. persicae than in its presence. Our study illustrates that suitability of a natural enemy for pest control may change over a crop cycle as the position of prey on the plant changes, and that prey preference based on within-plant prey location can negatively influence biological control programs in systems with pest complexes. Careful monitoring of the less-preferred pest and its relative position on the plant is suggested.
Elliott, Norman C; Brewer, Michael J; Giles, Kristopher L
2018-04-12
Winter wheat is Oklahoma's most widely grown crop, and is planted during September and October, grows from fall through spring, and is harvested in June. Winter wheat fields are typically interspersed in a mosaic of habitats in other uses, and we hypothesized that the spatial and temporal composition and configuration of landscape elements, which contribute to agroecosystem diversity also influence biological control of common aphid pests. The parasitoid Lysiphlebus testaceipes (Cresson; Hymenoptera: Aphidiinae) is highly effective at reducing aphid populations in wheat in Oklahoma, and though a great deal is known about the biology and ecology of L. testaceipes, there are gaps in knowledge that limit predicting when and where it will be effective at controlling aphid infestations in wheat. Our objective was to determine the influence of landscape structure on parasitism of cereal aphids by L. testaceipes in wheat fields early in the growing season when aphid and parasitoid colonization occurs and later in the growing season when aphid and parasitoid populations are established in wheat fields. Seventy fields were studied during the three growing seasons. Significant correlations between parasitism by L. testaceipes and landscape variables existed for patch density, fractal dimension, Shannon's patch diversity index, percent wheat, percent summer crops, and percent wooded land. Correlations between parasitism and landscape variables were generally greatest at a 3.2 km radius surrounding the wheat field. Correlations between parasitism and landscape variables that would be expected to increase with increasing landscape diversity were usually positive. Subsequent regression models for L. testaceipes parasitism in wheat fields in autumn and spring showed that landscape variables influenced parasitism and indicated that parasitism increased with increasing landscape diversity. Overall, results indicate that L. testaceipes utilizes multiple habitats throughout the year depending on their availability and acceptability, and frequently disperses among habitats. Colonization of wheat fields by L. testaceipes in autumn appears to be enhanced by proximity to fields of summer crops and semi-natural habitats other than grasslands.
NASA Astrophysics Data System (ADS)
Singh, A.; Serbin, S.; Kucharik, C. J.; Townsend, P. A.
2014-12-01
Ecosystem models such AgroIBIS require detailed parameterizations of numerous vegetation traits related to leaf structure, biochemistry and photosynthetic capacity to properly assess plant carbon assimilation and yield response to environmental variability. In general, these traits are estimated from a limited number of field measurements or sourced from the literature, but rarely is the full observed range of variability in these traits utilized in modeling activities. In addition, pathogens and pests, such as the exotic soybean aphid (Aphis glycines), which affects photosynthetic pathways in soybean plants by feeding on phloem and sap, can potentially impact plant productivity and yields. Capturing plant responses to pest pressure in conjunction with environmental variability is of considerable interest to managers and the scientific community alike. In this research, we employed full-range (400-2500 nm) field and laboratory spectroscopy to rapidly characterize the leaf biochemical and physiological traits, namely foliar nitrogen, specific leaf area (SLA) and the maximum rate of RuBP carboxylation by the enzyme RuBisCo (Vcmax) in soybean plants, which experienced a broad range of environmental conditions and soybean aphid pressures. We utilized near-surface spectroscopic remote sensing measurements as a means to capture the spatial and temporal patterns of aphid impacts across broad aphid pressure levels. In addition, we used the spectroscopic data to generate a much larger dataset of key model parameters required by AgroIBIS than would be possible through traditional measurements of biochemistry and leaf-level gas exchange. The use of spectroscopic retrievals of soybean traits allowed us to better characterize the variability of plant responses associated with aphid pressure to more accurately model the likely impacts of soybean aphid on soybeans. Our next steps include the coupling of the information derived from our spectral measurements with the AgroIBIS model to project the impacts of increasing aphid pressures on yields expected with continued global change and altered environmental conditions.
Żyła, Dagmara; Homan, Agnieszka; Wegierek, Piotr
2017-01-01
Aphidoidea, the so-called "true aphids" are one of the most challenging groups in terms of solving the phylogenetic relationships. Morphology-based analyses were strongly affected by widespread homoplasy, while the molecular-based attempts struggled with the lack of sufficient phylogenetic signal. Despite significant improvements, the higher classification still remains unresolved and rather controversial. However, the use of the fossil record, one of the most valuable sources of information, was mainly limited to calibration of a phylogenetic tree, without a direct inclusion into the analysis. The extinct family Oviparosiphidae has long been considered as the common ancestor of all recent Aphidoidea and it was used as a calibration point in several analyses, but it has been never analyzed in a phylogenetic context. The family has been treated as a monophyletic group purely based on the simultaneous presence of two abdominal structures, ovipositor and siphunculi. However, it has been shown recently that at least one more extinct lineage, present at the same time, was characterized by the same features. For these reasons, we performed a maximum parsimony analysis using morphological data for extinct aphid taxa to prove the monophyly of Oviparosiphidae. Our analysis shows that the presumed ancestor lineage of recent aphids is a polyphyletic group. Our results support the hypothesis of an early Mesozoic rapid radiation of aphids, which led to several different lineages characterized by both ovipositor and siphunculi. The results indicate the necessity of examining the other extinct families, and shows that the diversity of aphids before the Cretaceous Terrestrial Revolution (KTR) was higher than expected. Even though there is not enough data to perform a formal analysis, fossils seem to suggest a significant impact of the KTR on aphid diversification. Additionally, we have made a redescription of two genera and description of a new species, Vitimaphis subridens sp. nov. PMID:28445493
Heimpel, George E; Yang, Yi; Hill, Jason D; Ragsdale, David W
2013-01-01
Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.
Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design
Ramsey, John S; Wilson, Alex CC; de Vos, Martin; Sun, Qi; Tamborindeguy, Cecilia; Winfield, Agnese; Malloch, Gaynor; Smith, Dawn M; Fenton, Brian; Gray, Stewart M; Jander, Georg
2007-01-01
Background The green peach aphid, Myzus persicae (Sulzer), is a world-wide insect pest capable of infesting more than 40 plant families, including many crop species. However, despite the significant damage inflicted by M. persicae in agricultural systems through direct feeding damage and by its ability to transmit plant viruses, limited genomic information is available for this species. Results Sequencing of 16 M. persicae cDNA libraries generated 26,669 expressed sequence tags (ESTs). Aphids for library construction were raised on Arabidopsis thaliana, Nicotiana benthamiana, Brassica oleracea, B. napus, and Physalis floridana (with and without Potato leafroll virus infection). The M. persicae cDNA libraries include ones made from sexual and asexual whole aphids, guts, heads, and salivary glands. In silico comparison of cDNA libraries identified aphid genes with tissue-specific expression patterns, and gene expression that is induced by feeding on Nicotiana benthamiana. Furthermore, 2423 genes that are novel to science and potentially aphid-specific were identified. Comparison of cDNA data from three aphid lineages identified single nucleotide polymorphisms that can be used as genetic markers and, in some cases, may represent functional differences in the protein products. In particular, non-conservative amino acid substitutions in a highly expressed gut protease may be of adaptive significance for M. persicae feeding on different host plants. The Agilent eArray platform was used to design an M. persicae oligonucleotide microarray representing over 10,000 unique genes. Conclusion New genomic resources have been developed for M. persicae, an agriculturally important insect pest. These include previously unknown sequence data, a collection of expressed genes, molecular markers, and a DNA microarray that can be used to study aphid gene expression. These resources will help elucidate the adaptations that allow M. persicae to develop compatible interactions with its host plants, complementing ongoing work illuminating plant molecular responses to phloem-feeding insects. PMID:18021414
Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.
Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R
2018-06-01
Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host specialization; rather they exhibit plasticity in utilizing several hosts. In this scenario, it is unlikely that host-associated A. gossypii populations would evolve into host-specific biotypes.
Chen, Yigen; Ni, Xinzhi; Cottrell, Ted E; Wood, Bruce W; Buntin, G David
2009-06-01
The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), is a foliar feeder of pecan, Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae). The pest causes chlorosis of leaflet lamina, physiological damage to foliage and trees, and commonly limits the profitability of commercial pecan orchard enterprises. However, key aspects of this host-pest interaction are poorly understood. We report here the effects of M. caryaefoliae feeding on the foliar activity of oxidative (i.e., catalase, lipoxygenase [LOX]-1 and 3, and peroxidase) and hydrolytic (i.e., esterase) enzymes in relation to the degree of aphid resistance among pecan varieties. The 2-yr study showed that M. caryaefoliae-infested foliage exhibited elevated peroxidase activity only in susceptible ('Desirable', 'Sumner', and 'Schley'), but not in resistant ('Cape Fear', 'Gloria Grande', and 'Money Maker') genotypes. Susceptible genotypes also exhibited more severe leaf chlorosis in response to M. caryaefoliae feeding than the resistant genotypes; however, the aphid feeding did not influence catalase or esterase activity in all varieties, except the increase of esterase activity in Desirable and Gloria Grande. Melanocallis caryaefoliae feeding also influences activity of two lipoxygenase isozymes, with LOX3 being more frequently induced than LOX1. Foliar LOX3 activity was more frequently induced by M. caryaefoliae feeding in the moderately resistant 'Oconee' and highly resistant Money Maker and Cape Fear than in the susceptible genotypes. Therefore, the elevation of peroxidase is likely to be associated with aphid susceptibility and contributed to the severe leaf chlorosis, whereas the increase of LOX3 activity might be associated with aphid resistance in pecan. These findings contribute to our understanding of the etiology of M. caryaefoliae-elicited leaf chlorosis on pecan foliage. Such information may also be used to develop enzyme markers for identifying black pecan aphid resistance and/or susceptibility in pecan germplasm.
Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf
2011-01-01
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached. PMID:21611171
Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf
2011-01-01
Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached.
Rasool, Brwa; Karpinska, Barbara; Konert, Grzegorz; Durian, Guido; Denessiouk, Konstantin; Kangasjärvi, Saijaliisa; Foyer, Christine H.
2014-01-01
The interactions between biotic and abiotic stress signaling pathways are complex and poorly understood but protein kinase/phosphatase cascades are potentially important components. Aphid fecundity and susceptibility to Pseudomonas syringae infection were determined in the low light-grown Arabidopsis thaliana wild type and in mutant lines defective in either the protein phosphatase (PP)2A regulatory subunit B'γ (gamma; pp2a-b'γ) or B'ζ (zeta; pp2a-b'ζ1-1 and pp2a-b'ζ 1-2) and in gamma zeta double mutants (pp2a-b'γζ) lacking both subunits. All the mutants except for pp2a-b'ζ 1-1 had significantly lower leaf areas than the wild type. Susceptibility to P. syringae was similar in all genotypes. In contrast, aphid fecundity was significantly decreased in the pp2a-b'γ mutant relative to the wild type but not in the pp2a-b'γζ double mutant. A high light pre-treatment, which led to a significant increase in rosette growth in all mutant lines but not in the wild type, led to a significant decrease in aphid fecundity in all genotypes. The high light pre-treatment abolished the differences in aphid resistance observed in the pp2a-b'γ mutant relative to the wild type. The light and CO2 response curves for photosynthesis were changed in response to the high light pre-treatment, but the high light effects were similar in all genotypes. These data demonstrate that a pre-exposure to high light and the composition of B-subunits on the trimeric PP2A holoenzymes are important in regulating plant resistance to aphids. The functional specificity for the individual regulatory B-subunits may therefore limit aphid colonization, depending on the prevailing abiotic stress environment. PMID:25191331
Dispersal of Beauveria bassiana by the activity of nettle insects.
Meyling, Nicolai V; Pell, Judith K; Eilenberg, Jørgen
2006-10-01
Recent studies have shown that the entomopathogenic fungus Beauveria bassiana occurs naturally on the phylloplanes of several plants, including nettles. Insects could, by their activity, be contributing to this inoculum by dispersing it from other sites. The potential of nettle aphids Microlophium carnosum and their predator Anthocoris nemorum to disperse conidia of B. bassiana from soil to nettles and from sporulating cadavers in the nettle canopy was investigated in laboratory experiments. In petri dish assays, aphids showed potential to distribute B. bassiana from soil to nettle leaves. Predators dispersed inoculum from both soil and cadavers to nettle leaves in petri dishes. In microcosms, aphids did not disperse B. bassiana from the soil or from cadavers confined in the canopy, but A. nemorum were able to transfer inoculum from soil into the nettle canopy and to distribute conidia from cryptic cadavers. In some instances, infections were initiated in aphids and predators as a consequence of dispersal.
Transmission of Pandora neoaphidis in the presence of co-occurring arthropods.
Baverstock, J; Baverstock, K E; Clark, S J; Pell, J K
2008-07-01
Transmission of the entomopathogenic fungus Pandora neoaphidis to the nettle aphid Microlophium carnosum was assessed in the presence of arthropods that co-exist with the fungus within the habitat but do not compete for aphid hosts. The presence of a parasitoid significantly enhanced transmission, and transmission rates were similar for both enemy and non-enemy parasitoids. Although herbivory of nettle leaves by Peacock butterfly (Inchis io) caterpillars indirectly reduced the number of M. carnosum by >30% due to a reduction in leaf area for feeding, the addition of I. io significantly increased transmission of P. neoaphidis in the remaining aphids. It is likely that enhanced transmission in the presence of A. rhopalosiphii and I. io is due to disturbance and subsequent movement of the aphid, resulting in contact with conidia deposited on the leaf surface. The presence and impact of co-occurring arthropods should be taken into consideration when assessing the transmission of fungal entomopathogens.
Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids.
Yao, Jianhong; Pang, Yongzhen; Qi, Huaxiong; Wan, Bingliang; Zhao, Xiuyun; Kong, Weiwen; Sun, Xiaofen; Tang, Kexuan
2003-12-01
Tobacco leaf discs were transformed with a plasmid, pBIPTA, containing the selectable marker neomycin phosphotransferase gene (nptII) and Pinellia ternata agglutinin gene (pta) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that the pta gene had integrated into the plant genome and northern blot analysis revealed transgene expression at various levels in transgenic plants. Genetic analysis confirmed Mendelian segregation of the transgene in T1 progeny. Insect bioassays showed that transgenic plants expressing PTA inhibited significantly the growth of peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic plants expressing pta confer enhanced resistance to aphids. Our study indicates that the pta gene can be used as a supplement to the snowdrop (Galanthus nivalis) lectin gene (gna) in the control of aphids, a sap-sucking insect pest causing significant yield losses of crops.
Erwinia iniecta sp. nov., isolated from Russian wheat aphid (Diuraphis noxia).
Campillo, Tony; Luna, Emily; Portier, Perrine; Fischer-Le Saux, Marion; Lapitan, Nora; Tisserat, Ned A; Leach, Jan E
2015-10-01
Short, Gram-negative-staining, rod-shaped bacteria were isolated from crushed bodies of Russian wheat aphid [Diuraphis noxia (Kurdjumov)] and artificial diets after Russian wheat aphid feeding. Based on multilocus sequence analysis involving the 16S rRNA, atpD, infB, gyrB and rpoB genes, these bacterial isolates constitute a novel clade in the genus Erwinia, and were most closely related to Erwinia toletana. Representative distinct strains within this clade were used for comparisons with related species of Erwinia. Phenotypic comparisons using four distinct strains and average nucleotide identity (ANI) measurements using two distinct draft genomes revealed that these strains form a novel species within the genus Erwinia. The name Erwinia iniecta sp. nov. is proposed, and strain B120T ( = CFBP 8182T = NCCB 100485T) was designated the type strain. Erwinia iniecta sp. nov. was not pathogenic to plants. However, virulence to the Russian wheat aphid was observed.
Unrelated facultative endosymbionts protect aphids against a fungal pathogen.
Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J
2013-02-01
The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.
Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect
NASA Astrophysics Data System (ADS)
Valmalette, Jean Christophe; Dombrovsky, Aviv; Brat, Pierre; Mertz, Christian; Capovilla, Maria; Robichon, Alain
2012-08-01
A singular adaptive phenotype of a parthenogenetic insect species (Acyrthosiphon pisum) was selected in cold conditions and is characterized by a remarkable apparition of a greenish colour. The aphid pigments involve carotenoid genes well defined in chloroplasts and cyanobacteria and amazingly present in the aphid genome, likely by lateral transfer during evolution. The abundant carotenoid synthesis in aphids suggests strongly that a major and unknown physiological role is related to these compounds beyond their canonical anti-oxidant properties. We report here that the capture of light energy in living aphids results in the photo induced electron transfer from excited chromophores to acceptor molecules. The redox potentials of molecules involved in this process would be compatible with the reduction of the NAD+ coenzyme. This appears as an archaic photosynthetic system consisting of photo-emitted electrons that are in fine funnelled into the mitochondrial reducing power in order to synthesize ATP molecules.
Hypokalemic Periodic Paralysis: a case report and review of the literature
Soule, Benjamin R; Simone, Nicole L
2008-01-01
Hypokalemic Periodic Paralysis is one form of Periodic Paralysis, a rare group of disorders that can cause of sudden onset weakness. A case of a 29 year old male is presented here. The patient presented with sudden onset paralysis of his extremities. Laboratory evaluation revealed a markedly low potassium level. The patient's paralysis resolved upon repletion of his low potassium and he was discharged with no neurologic deficits. An association with thyroid disease is well established and further workup revealed Grave's disease in this patient. Although rare, Periodic Paralysis must differentiated from other causes of weakness and paralysis so that the proper treatment can be initiated quickly. PMID:18939979
Machado-Assefh, Cristina Renata; Alvarez, Adriana Elisabet
2018-02-01
The green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae) is one of the potato important pests; it is the most efficient vector of potato viruses. Myzus persicae harbors the endosymbiotic bacteria Buchnera aphidicola which supplements their diet. There is increasing evidence that B. aphidicola is involved in plant-aphid interactions and we previously demonstrated that B. aphidicola disruption (aposymbiosis) affected the probing behavior of M. persicae on radish plants, delaying host plant acceptance. In this work, we evaluated the effect of aposymbiosis on the probing behavior of M. persicae on 2 Solanum species with different compatibility with M. persicae, Solanum tuberosum (susceptible) and Solanum stoloniferum (resistant) with the electrical penetration graph technique (EPG). To disrupt B. aphidicola, rifampicin was administered to aphids through artificial diets. Aposymbiotic aphids, on both plant species, showed increased pathway activities, mechanical problems with the stylets, and delayed salivation in the phloem. The extended time in derailed stylet mechanics affected the occurrence of most other probing activities; it delayed the time to the first phloem phase and prevented ingestion from the phloem. The effect of aposymbiosis was more evident in the compatible interaction of M. persicae-S. tuberosum, than in the incompatible interaction with S. stoloniferum, which generated the M. persicae-S. tuberosum interaction to become incompatible. These results confirm that B. aphidicola is involved in the plant-aphid interaction in relation to plant acceptance, presumably through a role in stylets penetration in the plant. © 2016 Institute of Zoology, Chinese Academy of Sciences.
The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect.
Alford, Lucy; Tougeron, Kévin; Pierre, Jean-Sébastien; Burel, Françoise; van Baaren, Joan
2017-03-21
Landscape changes are known to exacerbate the impacts of climate change. As such, understanding the combined effect of climate and landscape on agroecosystems is vital if we are to maintain the function of agroecosystems. This study aimed to elucidate the effects of agricultural landscape complexity on the microclimate and thermal tolerance of an aphid pest to better understand how landscape and climate may interact to affect the thermal tolerance of pest species within the context of global climate change. Meteorological data were measured at the landscape level, and cereal aphids (Sitobion avenae, Metopolophium dirhodum and Rhopalosiphum padi) sampled, from contrasting landscapes (simple and complex) in winter 2013/2014 and spring 2014 in cereal fields of Brittany, France. Aphids were returned to the laboratory and the effect of landscape of origin on aphid cold tolerance (as determined by CT min ) was investigated. Results revealed that local landscape complexity significantly affected microclimate, with simple homogenous landscapes being on average warmer, but with greater temperature variation. Landscape complexity was shown to impact aphid cold tolerance, with aphids from complex landscapes being more cold tolerant than those from simple landscapes in both winter and spring, but with differences among species. This study highlights that future changes to land use could have implications for the thermal tolerance and adaptability of insects. Furthermore, not all insect species respond in a similar way to microhabitat and microclimate, which could disrupt important predator-prey relationships and the ecosystem service they provide. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Aphid salivary proteases are capable of degrading sieve-tube proteins.
Furch, Alexandra C U; van Bel, Aart J E; Will, Torsten
2015-02-01
Sieve tubes serve as transport conduits for photo-assimilates and other resources in angiosperms and are profitable targets for piercing-sucking insects such as aphids. Sieve-tube sap also contains significant amounts of proteins with diverse functions, for example in signalling, metabolism, and defence. The identification of salivary proteases in Acyrthosiphon pisum led to the hypothesis that aphids might be able to digest these proteins and by doing so suppress plant defence and access additional nitrogen sources. Here, the scarce knowledge of proteases in aphid saliva is briefly reviewed. In order to provide a better platform for discussion, we conducted a few tests on in vitro protease activity and degradation of sieve-tube sap proteins of Cucurbita maxima by watery saliva. Inhibition of protein degradation by EDTA indicates the presence of different types of proteases (e.g. metalloproteses) in saliva of A. pisum. Proteases in the watery saliva from Macrosiphum euphorbiae and A. pisum were able to degrade the most abundant phloem protein, which is phloem protein 1. Our results provide support for the breakdown of sieve-element proteins by aphid saliva in order to suppress/neutralize the defence responses of the plant and to make proteins of sieve-tube sap accessible as a nitrogen source, as is discussed in detail. Finally, we discuss whether glycosylation of sieve-element proteins and the presence of protease inhibitors may confer partial protection against the proteolytic activity of aphid saliva. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Cilia, M.; Fish, T.; Yang, X.; Mclaughlin, M.; Thannhauser, T. W.
2009-01-01
Protein extraction methods can vary widely in reproducibility and in representation of the total proteome, yet there are limited data comparing protein isolation methods. The methodical comparison of protein isolation methods is the first critical step for proteomic studies. To address this, we compared three methods for isolation, purification, and solubilization of insect proteins. The aphid Schizaphis graminum, an agricultural pest, was the source of insect tissue. Proteins were extracted using TCA in acetone (TCA-acetone), phenol, or multi-detergents in a chaotrope solution. Extracted proteins were solubilized in a multiple chaotrope solution and examined using 1-D and 2-D electrophoresis and compared directly using 2-D Difference Gel Electrophoresis (2-D DIGE). Mass spectrometry was used to identify proteins from each extraction type. We were unable to ascribe the differences in the proteins extracted to particular physical characteristics, cell location, or biological function. The TCA-acetone extraction yielded the greatest amount of protein from aphid tissues. Each extraction method isolated a unique subset of the aphid proteome. The TCA-acetone method was explored further for its quantitative reliability using 2-D DIGE. Principal component analysis showed that little of the variation in the data was a result of technical issues, thus demonstrating that the TCA-acetone extraction is a reliable method for preparing aphid proteins for a quantitative proteomics experiment. These data suggest that although the TCA-acetone method is a suitable method for quantitative aphid proteomics, a combination of extraction approaches is recommended for increasing proteome coverage when using gel-based separation techniques. PMID:19721822
Management intensity and vegetation complexity affect web-building spiders and their prey.
Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus
2013-10-01
Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.
Effects of urbanization on direct and indirect interactions in a tri-trophic system.
Tabea, Turrini; Dirk, Sanders; Eva, Knop
2016-04-01
While effects of urbanization on species assemblages are receiving increasing attention, effects on ecological interactions remain largely unexplored. We investigated how urbanization influences the strength of direct and indirect trophic interactions in a tri- trophic system. In a field experiment including five cities and nearby farmed areas, we used potted Vicia faba plants and manipulated the presence of Megoura viciae aphids and that of naturally occurring aphid predators. When predators could access aphids, they reduced their abundance less in the urban than in the agricultural ecosystem. Compared to aphid abundance on plants without predator access, abundance on plants with predator access was 2.58 times lower in urban and 5.27 times lower in agricultural areas. This indicates that urbanization limited top-down control of aphids by predators. In both ecosystems, plant biomass was negatively affected by herbivores and positively affected by predators, but the positive indirect predator effect was weaker in cities. Compared to aphid-infested plants without predator access, plants with predator access were 1.89 times heavier in urban and 2.12 times heavier in agricultural areas. Surprisingly, differences between ecosystems regarding the indirect predator effect on plants were not explained by the differentially strong herbivore suppression. Instead, the urban environment limited plant biomass per se, thereby mitigating the scope of a positive predator effect. Our results show that urbanization can influence direct and indirect trophic interactions through effects on biotic top-down forces and on plant growth. In order to understand how urbanization affects biodiversity and ecosystem functioning, it is fundamental to not only consider species assemblages, but also species interactions.
Ohta, Noriyuki; Mori, Takahiko
2007-11-01
Vocal cord paralysis is one of the frequently encountered complications after aortic surgery. However, reports of vocal cord paralysis after aortic surgery have been limited. In a retrospective cohort study of vocal cord paralysis after aortic surgery at a general hospital, we sought factors related to its development after aortic surgery to the descending thoracic aorta via left posterolateral thoracotomy. We reviewed data for a total of 69 patients who, between 1989 and 1995, underwent aortic surgery to the descending thoracic aorta. We assessed factors associated with the development of vocal cord paralysis and postoperative complications. Postoperative vocal cord paralysis appeared in 19 patients. Multiple logistic regression analysis revealed two risk factors for vocal cord paralysis: chronic dilatation of the aorta at the left subclavian artery (odds ratio = 8.67) and anastomosis proximal to the left subclavian artery (odds ratio = 17.7). The duration of mechanical ventilation was significantly prolonged for patients with vocal cord paralysis. Certain surgical factors associated with left subclavian artery increase the risk of vocal cord paralysis after surgery on the descending thoracic aorta. Vocal cord paralysis after aortic surgery did not increase aspiration pneumonia but was associated with pulmonary complications.
Carmo-Sousa, Michele; Moreno, Aranzazu; Garzo, Elisa; Fereres, Alberto
2014-06-24
Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly, generally adapting to each type of virus-vector relationship in a way that enhances transmission efficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant, cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypii Glover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferous aphids changed their alighting, settling and probing behaviour activities over time when exposed to CMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate from CMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), but showed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min after release. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected over mock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage and aphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph (EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of short superficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (second hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much less time spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour including an early increase in the number of short superficial probes and intracellular punctures followed by a phloem feeding deterrence is known to enhance the transmission efficiency of viruses transmitted in a NP manner. We conclude that CMV induces specific changes in a plant host that modify the alighting, settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spread of the virus. Our findings should be considered when modelling the spread of viruses transmitted in a NP manner. Copyright © 2013 Elsevier B.V. All rights reserved.
Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View
Sicard, Anne; Zeddam, Jean-Louis; Yvon, Michel; Michalakis, Yannis; Gutiérrez, Serafin
2015-01-01
ABSTRACT Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that the corresponding viruses are thought to cross the vector cellular barriers, from the gut lumen to the hemolymph and to the salivary glands, without expressing any of their genes and without replicating. By monitoring the genetic composition of viral populations during the life cycle of Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus), we demonstrate reproducible genetic changes during the transit of the virus within the body of the aphid vector. These changes do not fit the view that viruses simply traverse the bodies of their arthropod vectors and suggest more intimate interactions, calling into question the current understanding of circulative nonpropagative transmission. PMID:26178991
Sánchez-Rodríguez, Judith; Zugasti, Alejandro; Santamaría, Abel; Galván-Arzate, Sonia; Segura-Puertas, Lourdes
2006-08-01
In the sea anemone Bartholomea annulata, four different types of cnidocysts, basitrichous isorhizas, microbasic p-mastigophores, microbasic amastigophores and spirocysts were identified. In relation to the efficacy of different substances to induce discharge of nematocysts we observe that distilled water induced more than 70% of microbasic p-mastigophores to discharge, whereas spirocysts were discharged in a lesser extent (approximately 20%). The median lethal dose (LD50) in mice was found after injection of 700.7 mg protein per kg of body weight from the crude extract. The protein with neurotoxic effect was isolated using low-pressure liquid chromatography. The neurotoxic activity was determined using sea crabs (Ocypode quadrata), injecting 15 microg of crude extract or isolated fraction into the third walking leg, and violent motor activity followed by progressive loss of sensibility to external stimuli, further leading to full paralysis were observed. The active fraction (called V) eluted at 43.9 min.
Fang, Weiguo; Leng, Bo; Xiao, Yuehua; Jin, Kai; Ma, Jincheng; Fan, Yanhua; Feng, Jing; Yang, Xingyong; Zhang, Yongjun; Pei, Yan
2005-01-01
Entomopathogenic fungi can produce a series of chitinases, some of which act synergistically with proteases to degrade insect cuticle. However, chitinase involvement in insect fungus pathogenesis has not been fully characterized. In this paper, an endochitinase, Bbchit1, was purified to homogeneity from liquid cultures of Beauveria bassiana grown in a medium containing colloidal chitin. Bbchit1 had a molecular mass of about 33 kDa and pI of 5.4. Based on the N-terminal amino acid sequence, the chitinase gene, Bbchit1, and its upstream regulatory sequence were cloned. Bbchit1 was intronless, and there was a single copy in B. bassiana. Its regulatory sequence contained putative CreA/Crel carbon catabolic repressor binding domains, which was consistent with glucose suppression of Bbchit1. At the amino acid level, Bbchit1 showed significant similarity to a Streptomyces avermitilis putative endochitinase, a Streptomyces coelicolor putative chitinase, and Trichoderma harzianum endochitinase Chit36Y. However, Bbchit1 had very low levels of identity to other chitinase genes previously isolated from entomopathogenic fungi, indicating that Bbchit1 was a novel chitinase gene from an insect-pathogenic fungus. A gpd-Bbchit1 construct, in which Bbchit1 was driven by the Aspergiullus nidulans constitutive promoter, was transformed into the genome of B. bassiana, and three transformants that overproduced Bbchit1 were obtained. Insect bioassays revealed that overproduction of Bbchit1 enhanced the virulence of B. bassiana for aphids, as indicated by significantly lower 50% lethal concentrations and 50% lethal times of the transformants compared to the values for the wild-type strain.
Fang, Weiguo; Leng, Bo; Xiao, Yuehua; Jin, Kai; Ma, Jincheng; Fan, Yanhua; Feng, Jing; Yang, Xingyong; Zhang, Yongjun; Pei, Yan
2005-01-01
Entomopathogenic fungi can produce a series of chitinases, some of which act synergistically with proteases to degrade insect cuticle. However, chitinase involvement in insect fungus pathogenesis has not been fully characterized. In this paper, an endochitinase, Bbchit1, was purified to homogeneity from liquid cultures of Beauveria bassiana grown in a medium containing colloidal chitin. Bbchit1 had a molecular mass of about 33 kDa and pI of 5.4. Based on the N-terminal amino acid sequence, the chitinase gene, Bbchit1, and its upstream regulatory sequence were cloned. Bbchit1 was intronless, and there was a single copy in B. bassiana. Its regulatory sequence contained putative CreA/Crel carbon catabolic repressor binding domains, which was consistent with glucose suppression of Bbchit1. At the amino acid level, Bbchit1 showed significant similarity to a Streptomyces avermitilis putative endochitinase, a Streptomyces coelicolor putative chitinase, and Trichoderma harzianum endochitinase Chit36Y. However, Bbchit1 had very low levels of identity to other chitinase genes previously isolated from entomopathogenic fungi, indicating that Bbchit1 was a novel chitinase gene from an insect-pathogenic fungus. A gpd-Bbchit1 construct, in which Bbchit1 was driven by the Aspergiullus nidulans constitutive promoter, was transformed into the genome of B. bassiana, and three transformants that overproduced Bbchit1 were obtained. Insect bioassays revealed that overproduction of Bbchit1 enhanced the virulence of B. bassiana for aphids, as indicated by significantly lower 50% lethal concentrations and 50% lethal times of the transformants compared to the values for the wild-type strain. PMID:15640210
USDA-ARS?s Scientific Manuscript database
Infestations by soybean aphid (SA) can reduce soybean yield. Thus, SA-resistant soybean may be useful in reducing infestations and limiting yield loss. Expression of resistance was characterized among 746 soybean accessions in 56 growth chamber tests at the North Central Agricultural Research Labo...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... lambda-cyhalothrin on asparagus to control aphids; July 12, 2011 to October 31, 2011. Contact: Libby... authorized the use of lambda-cyhalothrin on asparagus to control aphids; July 12, 2011 to September 30, 2011...
Variable effects of fungal endophyte-infected grasses on the performance of pestiferous aphids
USDA-ARS?s Scientific Manuscript database
The extent of fungal endophyte (Neotyphodium) based antibiosis resistance in temperate grasses (Lolium spp., Hordeum spp.) to five pestiferous aphid species (Rhopalosiphum padi (L.), Diuraphis noxia (Kurdjumov), Schizaphis graminum (Rondani), Metopolophium dirhodum (Walker), Aploneura lentisci (Pass...
Macrosiphoniella remaudierei, a new species of aphid on Helichrysum in Iran (Hemiptera, Aphididae)
Barbagallo, Sebastiano; Nieto Nafría, Juan M.
2016-01-01
Abstract A new species of aphid, belonging to the genus Macrosiphoniella Del Guercio, 1911, is described using three samples collected in Iran on Helichrysum armenium (Asteraceae, Inuleae) by the late Prof. G. Remaudière. Both apterous and alate viviparous females of the new taxon, Macrosiphoniella remaudierei sp. n., are described and compared to corresponding morphs of the closely allied Macrosiphoniella aetnensis and to other congeneric aphid species on Helichrysum in the Palaearctic region. Type specimens are now stored in the Muséum national d’Histoire naturelle in Paris. PMID:28138287
Pringle, Elizabeth G; Ableson, Ian; Kerber, Jennifer; Vannette, Rachel L; Tao, Leiling
2017-12-01
Predictable effects of resource availability on plant growth-defense strategies provide a unifying theme in theories of direct anti-herbivore defense, but it is less clear how resource availability modulates plant indirect defense. Ant-plant-hemipteran interactions produce mutualistic trophic cascades when hemipteran-tending ants reduce total herbivory, and these interactions are a key component of plant indirect defense in most terrestrial ecosystems. Here we conducted an experiment to test how ant-plant-hemipteran interactions depend on nitrogen (N) availability by manipulating the presence of ants and aphids under different N fertilization treatments. Ants increased plant flowering success by decreasing the densities of herbivores, and the effects of ants on folivores were positively related to the density of aphids. Unexpectedly, N fertilization produced no changes in plant N concentrations. Plants grown in higher N grew and flowered more, but aphid honeydew chemistry stayed the same, and neither the density of aphids nor the rate of ant attraction per aphid changed with N addition. The positive effects of ants and N addition on plant fitness were thus independent of one another. We conclude that N was the plant's limiting nutrient and propose that addition of the limiting nutrient is unlikely to alter the strength of mutualistic trophic cascades. © 2017 by the Ecological Society of America.
Malaquias, José B; Ramalho, Francisco S; Dos S Dias, Carlos T; Brugger, Bruno P; S Lira, Aline Cristina; Wilcken, Carlos F; Pachú, Jéssica K S; Zanuncio, José C
2017-02-09
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.
Malaquias, José B.; Ramalho, Francisco S.; dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.
2017-01-01
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied. PMID:28181503
Presence of the Aphid, Chaetosiphon fragaefolii, on Strawberry in Argentina
Cédola, Claudia; Grecob, Nancy
2010-01-01
Seasonal abundance of the strawberry aphid complex under different agronomic practices in the outskirts of La Plata, Argentina was studied on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae). Aphid densities were low in strawberry fields in which insecticides and fungicides were used. In addition to Aphis gossypii, Aphis fabae, Mysus persicae and Macrosiphum euphorbiae, the aphid, Chaetosiphon fragaefolii (Cockerell) (Homoptera: Aphididae), was recorded for the first time in this horticultural area. Life history and some demographic parameters were calculated for C. fragaefolii. The mean duration of nymphal stages was 10.44 days, the oviposition period was 11.8 days, and the mean number of nymph/female/day was 2.4 ± 0.3. Demographic parameters analyzed included the net reproductive rate Ro = 14.55 ± 0.096 nymph/female, generation time T=16.91 ± 0.035 days, and the intrinsic rate of increase rm = 0.158 ± (0.004). No parasites were found associated with C. fragaefolli. The pathogenic fungus, Entomophthora planchoniana Cornu (Zygomycetes: Entomophthorales) was the main mortality factor. Although aphids are not the main pests in strawberry fields, C. fragaefolii can be a serious problem because it can transmit several virus diseases of strawberry. Greater knowledge of life history traits and mortality factors of this species is needed in order to design appropriate control strategies. PMID:20569141
NASA Astrophysics Data System (ADS)
Malaquias, José B.; Ramalho, Francisco S.; Dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.
2017-02-01
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.
Foster, Stephen P; Paul, Verity L; Slater, Russell; Warren, Anne; Denholm, Ian; Field, Linda M; Williamson, Martin S
2014-08-01
The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35-40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species. © 2013 Society of Chemical Industry.
Presence of the aphid, Chaetosiphon fragaefolii, on strawberry in Argentina.
Cédola, Claudia; Grecob, Nancy
2010-01-01
Seasonal abundance of the strawberry aphid complex under different agronomic practices in the outskirts of La Plata, Argentina was studied on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae). Aphid densities were low in strawberry fields in which insecticides and fungicides were used. In addition to Aphis gossypii, Aphis fabae, Mysus persicae and Macrosiphum euphorbiae, the aphid, Chaetosiphon fragaefolii (Cockerell) (Homoptera: Aphididae), was recorded for the first time in this horticultural area. Life history and some demographic parameters were calculated for C. fragaefolii. The mean duration of nymphal stages was 10.44 days, the oviposition period was 11.8 days, and the mean number of nymph/female/day was 2.4 +/- 0.3. Demographic parameters analyzed included the net reproductive rate R(o) = 14.55 +/- 0.096 nymph/female, generation time T=16.91 +/- 0.035 days, and the intrinsic rate of increase r(m) = 0.158 +/- (0.004). No parasites were found associated with C. fragaefolli. The pathogenic fungus, Entomophthora planchoniana Cornu (Zygomycetes: Entomophthorales) was the main mortality factor. Although aphids are not the main pests in strawberry fields, C. fragaefolii can be a serious problem because it can transmit several virus diseases of strawberry. Greater knowledge of life history traits and mortality factors of this species is needed in order to design appropriate control strategies.
Horizontal transfer of facultative endosymbionts is limited by host relatedness.
Łukasik, Piotr; Guo, Huifang; van Asch, Margriet; Henry, Lee M; Godfray, H Charles J; Ferrari, Julia
2015-10-01
Heritable microbial symbionts can have important effects on many aspects of their hosts' biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S. avenae. We found the symbiont Hamiltonella defensa establishes infections more easily following a transfer from the same host species and that such infections are more stable. Infection success was also higher when the introduced symbiont strain was more closely related to the strain that was originally present in the host (but which had previously been removed). There were no differences among successfully established symbiont strains in their effect on aphid fecundity. Hamiltonella defensa did not confer protection against parasitoids in our S. avenae clones, although it often does in other aphid hosts. However, strains of the symbiont Regiella insecticola originating from two host species protected grain aphids against the pathogenic fungus Pandora neoaphidis. This study helps describe the extent to which facultative symbionts can act as a pool of adaptations that can be sampled by their eukaryote hosts. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Conditional Reduction of Predation Risk Associated with a Facultative Symbiont in an Insect
Polin, Sarah; Le Gallic, Jean-François; Simon, Jean-Christophe; Tsuchida, Tsutomu; Outreman, Yannick
2015-01-01
Symbionts are widespread among eukaryotes and their impacts on the ecology and evolution of their hosts are meaningful. Most insects harbour obligate and facultative symbiotic bacteria that can influence their phenotype. In the pea aphid Acyrthosiphon pisum, an astounding symbiotic-mediated phenotype has been recently observed: when infected with the symbiotic bacteria Rickettsiella viridis, young red aphid larvae become greener at adulthood and even darker green when co-infected with Rickettsiella viridis and Hamiltonella defensa. As body colour affects the susceptibility towards natural enemies in aphids, the influence of the colour change due to these facultative symbionts on the host survival in presence of predators was tested. Our results suggested that the Rickettsiella viridis infection may impact positively host survival by reducing predation risk. Due to results from uninfected aphids (i.e., more green ones attacked), the main assumption is that this symbiotic infection would deter the predatory ladybird feeding by reducing the profitability of their hosts rather than decreasing host detection through body colour change. Aphids co-infected with Rickettsiella viridis and Hamiltonella defensa were, however, more exposed to predation suggesting an ecological cost associated with multiple infections. The underlying mechanisms and ecological consequences of these symbiotic effects are discussed. PMID:26618776
Cascone, Pasquale; Iodice, Luigi; Maffei, Massimo E; Bossi, Simone; Arimura, Gen-Ichiro; Guerrieri, Emilio
2015-01-15
In the last decade plant-to-plant communication has received an increasing attention, particularly for the role of Volatile Organic Compounds as possible elicitors of plant defense. The role of β-ocimene as an interspecific elicitor of plant defense has been recently assessed in multitrophic systems including different plant species (Solanaceae, Poaceae, legumes) and different pest species including chewer insects and phytophagous mites. Both chewer insects and phytophagous mites are known to elicit specific plant defensive pathways which are different (at least in part) from those elicited by sap feeders. The aim of this research was to fill this gap of knowledge and to assess the role of β-ocimene as an elicitor of plant defense against aphid pests, which are sap feeders. For this purpose we used as transgenic tobacco plant releasing an odour plume enriched in this compound as emitter and a tomato plant as receiver. We selected the aphid Macrosiphum euphorbiae and its natural enemy, the parasitoid Aphidius ervi, as the targets of plant induced defense. Tomato plant defense induced by β-ocimene was assessed by characterizing the aphid performance in terms of fixing behaviour, development and reproduction (direct plant defense) and the parasitoid performance in terms of attraction towards tomato plants (indirect plant defense). The characterization of tomato response to β-ocimene was completed by the identification of Volatile Organic Compounds as released by conditioned tomato plants. Tomato plants that were exposed to the volatiles of transgenic tobacco enriched in β-ocimene resulted in less suitable for the aphids in respect to control ones (direct defense). On tomato plants "elicited" by β-ocimene we recorded: a significant lower number of aphids settled; a significant lower number newborn nymphs; a significant lower weight of aphids feeding. In addition, tomato plants "elicited" by β-ocimene resulted became more attractive towards the parasitoid A. ervi than control ones. These results could be explained at least in part by examining the composition of the Volatile Organic Compounds released by tomato plants "elicited" by β-ocimene. Indeed, we found a significantly higher release of several compounds including methyl salicylate and cis-3-hexen-1-ol. These two compounds have been demonstrated to impair aphid development and reproduction and to be involved in the attraction of the aphid parasitoid A. ervi. By considering the ubiquity of β-ocimene and its ability to regulate the communication of plants belonging 30 to different species (if not families), we concluded that this compound is an ideal candidate for new 31 strategies of sustainable control of agricultural pests. Copyright © 2014 Elsevier GmbH. All rights reserved.
Prevalence and Causes of Paralysis—United States, 2013
Armour, Brian S.; Courtney-Long, Elizabeth A.; Fox, Michael H.; Fredine, Heidi; Cahill, Anthony
2017-01-01
Objectives To estimate the prevalence and causes of functional paralysis in the United States. Methods We used the 2013 US Paralysis Prevalence & Health Disparities Survey to estimate the prevalence of paralysis, its causes, associated sociodemographic characteristics, and health effects among this population. Results Nearly 5.4 million persons live with paralysis. Most persons with paralysis were younger than 65 years (72.1%), female (51.7%), White (71.4%), high school graduates (64.8%), married or living with a partner (47.4%), and unable to work (41.8%). Stroke is the leading cause of paralysis, affecting 33.7% of the population with paralysis, followed by spinal cord injury (27.3%), multiple sclerosis (18.6%), and cerebral palsy (8.3%). Conclusions According to the functional definition, persons living with paralysis represent a large segment of the US population, and two thirds of them are between ages 18 and 64 years. Targeted health promotion that uses inclusion strategies to account for functional limitations related to paralysis can be undertaken in partnership with state and local health departments. PMID:27552260
Amblyopia Associated with Congenital Facial Nerve Paralysis.
Iwamura, Hitoshi; Kondo, Kenji; Sawamura, Hiromasa; Baba, Shintaro; Yasuhara, Kazuo; Yamasoba, Tatsuya
2016-01-01
The association between congenital facial paralysis and visual development has not been thoroughly studied. Of 27 pediatric cases of congenital facial paralysis, we identified 3 patients who developed amblyopia, a visual acuity decrease caused by abnormal visual development, as comorbidity. These 3 patients had facial paralysis in the periocular region and developed amblyopia on the paralyzed side. They started treatment by wearing an eye patch immediately after diagnosis and before the critical visual developmental period; all patients responded to the treatment. Our findings suggest that the incidence of amblyopia in the cases of congenital facial paralysis, particularly the paralysis in the periocular region, is higher than that in the general pediatric population. Interestingly, 2 of the 3 patients developed anisometropic amblyopia due to the hyperopia of the affected eye, implying that the periocular facial paralysis may have affected the refraction of the eye through yet unspecified mechanisms. Therefore, the physicians who manage facial paralysis should keep this pathology in mind, and when they see pediatric patients with congenital facial paralysis involving the periocular region, they should consult an ophthalmologist as soon as possible. © 2016 S. Karger AG, Basel.
Nellis, Jason C.; Ishii, Masaru; Byrne, Patrick J.; Boahene, Kofi D. O.; Dey, Jacob K.; Ishii, Lisa E.
2017-01-01
IMPORTANCE Though anecdotally linked, few studies have investigated the impact of facial paralysis on depression and quality of life (QOL). OBJECTIVE To measure the association between depression, QOL, and facial paralysis in patients seeking treatment at a facial plastic surgery clinic. DESIGN, SETTING, PARTICIPANTS Data were prospectively collected for patients with all-cause facial paralysis and control patients initially presenting to a facial plastic surgery clinic from 2013 to 2015. The control group included a heterogeneous patient population presenting to facial plastic surgery clinic for evaluation. Patients who had prior facial reanimation surgery or missing demographic and psychometric data were excluded from analysis. MAIN OUTCOMES AND MEASURES Demographics, facial paralysis etiology, facial paralysis severity (graded on the House-Brackmann scale), Beck depression inventory, and QOL scores in both groups were examined. Potential confounders, including self-reported attractiveness and mood, were collected and analyzed. Self-reported scores were measured using a 0 to 100 visual analog scale. RESULTS There was a total of 263 patients (mean age, 48.8 years; 66.9% were female) were analyzed. There were 175 control patients and 88 patients with facial paralysis. Sex distributions were not significantly different between the facial paralysis and control groups. Patients with facial paralysis had significantly higher depression, lower self-reported attractiveness, lower mood, and lower QOL scores. Overall, 37 patients with facial paralysis (42.1%) screened positive for depression, with the greatest likelihood in patients with House-Brackmann grade 3 or greater (odds ratio, 10.8; 95% CI, 5.13–22.75) compared with 13 control patients (8.1%) (P < .001). In multivariate regression, facial paralysis and female sex were significantly associated with higher depression scores (constant, 2.08 [95% CI, 0.77–3.39]; facial paralysis effect, 5.98 [95% CI, 4.38–7.58]; female effect, 1.95 [95% CI, 0.65–3.25]). Facial paralysis was associated with lower QOL scores (constant, 81.62 [95% CI, 78.98–84.25]; facial paralysis effect, −16.06 [95% CI, −20.50 to −11.62]). CONCLUSIONS AND RELEVANCE For treatment-seeking patients, facial paralysis was significantly associated with increased depression and worse QOL scores. In addition, female sex was significantly associated with increased depression scores. Moreover, patients with a greater severity of facial paralysis were more likely to screen positive for depression. Clinicians initially evaluating patients should consider the psychological impact of facial paralysis to optimize care. LEVEL OF EVIDENCE 2. PMID:27930763
Acute toxicity of ibogaine and noribogaine.
Kubiliene, Asta; Marksiene, Rūta; Kazlauskas, Saulius; Sadauskiene, Ilona; Razukas, Almantas; Ivanov, Leonid
2008-01-01
To evaluate acute toxic effect of ibogaine and noribogaine on the survival of mice and determine median lethal doses of the substances mentioned. White laboratory mice were used for the experiments. Ibogaine and noribogaine were administered intragastrically to mice via a stomach tube. Control animals received the same volume of saline. The median lethal dose was calculated with the help of a standard formula. To determine the median lethal dose of ibogaine, the doses of 100, 300, 400, and 500 mg/kg were administered intragastrically to mice. The survival time of mice after the drug administration was recorded, as well as the number of survived mice in each group. Upon administration of ibogaine at a dose of 500 mg/kg, all mice in this dose group died. Three out of four mice died in the group, which received 300 mg/kg of ibogaine. No mouse deaths were observed in the group, which received 100 mg/kg of ibogaine. The determined LD(50) value of ibogaine equals to 263 mg/kg of body mass. In order to determine the median lethal dose of noribogaine, the doses of 300, 500, 700, and 900 mg/kg were administered to mice intragastrically. Noribogaine given at a dose of 500 mg/kg had no impact on the mouse survival. The increase of noribogaine dose to 700 mg/kg of mouse body mass led to the death of three out of four mice in the group. Upon administration of noribogaine at a dose of 900 mg/kg, all mice in this group died. The LD(50) value of noribogaine in mice determined on the basis of the number of dead mice and the size of the doses used equals to 630 mg/kg of mouse body mass. The behavior of mice was observed upon administration of ibogaine or noribogaine. Low doses of ibogaine and noribogaine had no impact on the mouse behavior. External effects (convulsions, nervous behaviour, limb paralysis) were observed only when substances were administrated at higher doses. It has been determined that the median lethal dose of ibogaine and noribogaine equals to 263 mg and 630 mg/kg of mouse body mass, respectively. The toxicity of ibogaine is 2.4 times higher than that of noribogaine.
Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo
2015-05-01
Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.
Ho, James C S; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K H; Northen, Trent; Svanborg, Catharina
2013-06-14
Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance (13)C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein.
A patient with bilateral facial palsy associated with hypertension and chickenpox: learning points.
Al-Abadi, Eslam; Milford, David V; Smith, Martin
2010-11-26
Bilateral facial nerve paralysis is an uncommon presentation and even more so in children. There are reports of different causes of bilateral facial nerve palsy. It is well-established that hypertension and chickenpox causes unilateral facial paralysis and the importance of checking the blood pressure in children with facial nerve paralysis cannot be stressed enough. The authors report a boy with bilateral facial nerve paralysis in association with hypertension and having recently recovered from chickenpox. The authors review aspects of bilateral facial nerve paralysis as well as hypertension and chickenpox causing facial nerve paralysis.
Schott, G. D.; McArdle, B.
1974-01-01
An in vivo study of skeletal muscle paralysis induced by intravenous barium chloride has been made in curarized and non-curarized rats. The influence of potassium and calcium chlorides, propranolol, ouabain, and prior adrenalectomy on the paralysis has also been studied. Paralysis is found to be due to a direct effect on skeletal muscle, and to correlate well with the development of hypokalaemia. Possible mechanisms of action of barium are discussed, and attention is drawn to the similarity between barium poisoning and hypokalaemic familial periodic paralysis. PMID:4813426
Effects of Age and Exposure on the Health Status of U.S. Navy Divers.
1984-01-01
Neuritis/Neuralgia/ Sciatica - 1.3 6.9 7.0 0 Facial Paralysis/Cerebral Paralysis 0 - - 0 - Diseases of the Circulatory System 15.6 18.3 24.9 38.3* 120.8...10.3 Otitts Externa/Other Ear Disorders 8.9 6.8 5.8 Deafness 3.5 3.4 2.6 Neuritis/Neuralgia/ Sciatica 2.6 2.6 - racial Paralysis/Cerebral Paralysis...20 18 10 9 Deafness 10 11 9 9 5 4 Neuritis/Neuralqia/ Sciatica 5 8 7 7 5 2 Facial Paralysis/Cerebral Paralysis 2 2 2 2 1 1 Diseases of the Circulatory
A patient with bilateral facial palsy associated with hypertension and chickenpox: learning points
Al-Abadi, Eslam; Milford, David V; Smith, Martin
2010-01-01
Bilateral facial nerve paralysis is an uncommon presentation and even more so in children. There are reports of different causes of bilateral facial nerve palsy. It is well-established that hypertension and chickenpox causes unilateral facial paralysis and the importance of checking the blood pressure in children with facial nerve paralysis cannot be stressed enough. The authors report a boy with bilateral facial nerve paralysis in association with hypertension and having recently recovered from chickenpox. The authors review aspects of bilateral facial nerve paralysis as well as hypertension and chickenpox causing facial nerve paralysis. PMID:22797481
ERIC Educational Resources Information Center
Evers, Logan
2018-01-01
This article is intended for readers in the production agriculture industry who deal with grain sorghum throughout the growing season. This publication will discuss the impacts of the sugarcane aphid in various crops and the ways to manage and identify them as they continue to advance north.
Field keys to predators of the balsam woolly aphid in North Carolina
Gene D. Amman
1970-01-01
These keys will be useful for field identification of immature insect, adult mite, and slug predators of the balsam woolly aphid. The keys include, in addition to native predators, the larvae of three species introduced to North Carolina.
USDA-ARS?s Scientific Manuscript database
Many insects are associated with heritable facultative symbionts that mediate important ecological interactions, including host protection against natural enemies. Despite such benefits, facultative symbionts are commonly found at intermediate frequencies in surveyed populations. The cowpea aphid,...
USDA-ARS?s Scientific Manuscript database
Expression of soybean aphid (SA) resistance was characterized among 496 soybean lines in a twice-replicated field-plot test at the Eastern South Dakota Soil and Water Research Farm near Brookings, SD, in 2009. Natural infestations of SA occurred but were supplemented by placing individual stems of ...
Bushakra, Jill M; Bryant, Douglas W; Dossett, Michael; Vining, Kelly J; VanBuren, Robert; Gilmore, Barbara S; Lee, Jungmin; Mockler, Todd C; Finn, Chad E; Bassil, Nahla V
2015-08-01
We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance. Black raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3-4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.
Sieve element occlusion provides resistance against Aphis gossypii in TGR-1551 melons.
Peng, Hsuan-Chieh; Walker, Gregory P
2018-05-30
Feeding behavior and plant response to feeding were studied for the aphid Aphis gossypii (Glover) on susceptible and resistant melons (cv. Iroquois and TGR-1551, respectively). Average phloem phase bout duration on TGR-1551 was <7% of the duration on Iroquois. Sixty-seven percent of aphids on TGR-1551 never produced a phloem phase that attained ingestion (EPG waveform E2) in contrast to only 7% of aphids on Iroquois. Average bout duration of waveform E2 (scored as zero if phloem phase did not attain E2) on TGR-1551 was <3% of the duration on Iroquois. Conversely, average bout duration of EPG waveform E1 (sieve element salivation) was 2.8 times greater on TGR-1551 than on Iroquois. In a second experiment, liquid nitrogen was used to rapidly cryofix leaves and aphids within a few minutes after the aphids penetrated a sieve element. Phloem near the penetration site was then examined by confocal laser scanning microscopy. Ninety-six percent of penetrated sieve elements were occluded by protein in TGR-1551 in contrast to only 28% in Iroquois. Usually in TGR-1551, occlusion was also observed in nearby non-penetrated sieve elements. Next, a calcium channel blocker, trivalent lanthanum, was used to prevent phloem occlusion in TGR-1551, and A. gossypii feeding behavior and the plant's phloem response were compared between lanthanum-treated and control TGR-1551. Lanthanum treatment eliminated the sieve element protein occlusion response and the aphids readily ingested phloem sap from treated plants. This study provides strong evidence that phloem occlusion is a mechanism for resistance against A. gossypii in TGR-1551. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline
2017-07-01
Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Down, Rachel E; Fitches, Elaine C; Wiles, Duncan P; Corti, Paola; Bell, Howard A; Gatehouse, John A; Edwards, John P
2006-01-01
The SFI1/GNA fusion protein, comprising of snowdrop lectin (Galanthus nivalis agglutinin, GNA) fused to an insecticidal spider venom neurotoxin (Segestria florentina toxin 1, SFI1) was tested for toxicity against the rice brown planthopper Nilaparvata lugens (Stål) and the peach-potato aphid Myzus persicae (Sulzer) by incorporation into artificial diets. Significant effects on the mortality of N. lugens were observed, with 100% of the insects fed on the SFI1/GNA fusion protein diet dead by day 7. The survival of the aphid M. persicae was also reduced when fed on the SFI1/GNA fusion protein. After 14 days, only 49% of the aphids that were fed on the fusion protein were still alive compared with approximately 90% of the aphids fed on the control diet or on diet containing GNA only. The SFI1/GNA fusion protein also slowed the development of M. persicae, and the reproductive capacity of the aphids fed on the SFI1/GNA fusion protein was severely reduced. The ability of GNA to act as a carrier protein, and deliver the SFI1 neurotoxin to the haemolymph of N. lugens, following oral ingestion, was investigated. The successful delivery of intact SFI1/GNA fusion protein to the haemolymph of these insects was shown by western blotting. Haemolymph taken from the insects that were fed on the fusion protein contained two GNA-immunoreactive proteins of molecular weights corresponding to GNA and to the SFI1/GNA fusion protein. Copyright 2005 British Crown Copyright. Published for SCI by John Wiley & Sons, Ltd.
Rusin, Milena; Gospodarek, Janina; Nadgórska-Socha, Aleksandra; Barczyk, Gabriela
2017-04-01
The aim of the study was to determine the effects of various petroleum-derived substances, namely petrol, diesel fuel and spent engine oil, on life history traits and population dynamics of the black bean aphid Aphis fabae Scop. and on growth and chemical composition of its host plant Vicia faba L. Each substance was tested separately, using two concentrations (9 g kg -1 and 18 g kg -1 ). The experiment was conducted in four replications (four pots with five plants in each pot per treatment). Plants were cultivated in both control and contaminated soils. After six weeks from soil contamination and five weeks from sowing the seeds, observations of the effect of petroleum-derived substances on traits of three successive generations of aphids were conducted. Aphids were inoculated separately on leaves using cylindrical cages hermetically closed on both sides. Contamination of aphid occurred through its host plant. Results showed that all tested substances adversely affected A. fabae life history traits and population dynamics: extension of the prereproductive period, reduction of fecundity and life span, reduction of the population intrinsic growth rate. In broad bean, leaf, roots, and shoot growth was also impaired in most conditions, whereas nutrient and heavy metal content varied according to substances, their concentration, as well as plant part analysed. Results indicate that soil contamination with petroleum-derived substances entails far-reaching changes not only in organisms directly exposed to these pollutants (plants), but also indirectly in herbivores (aphids) and consequently provides information about potential negative effects on further links of the food chain, i.e., for predators and parasitoids.
Shufran, K A; Mornhinweg, D W; Baker, C A; Porter, D R
2007-10-01
Biotypes are infraspecific classifications based on biological rather than morphological characteristics. Cereal aphids are managed primarily by host plant resistance, and they often develop biotypes that injure or kill previously resistant plants. Although molecular genetic variation within aphid biotypes has been well documented, little is known about phenotypic variation, especially virulence or the biotype's ability to cause injury to cultivars with specific resistance genes. Five clones (single maternal lineages) of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), determined to be injurious to wheat, Triticum aestivum L., with the Dn4 gene, were evaluated on resistant and susceptible wheat and barley, Hordeum vulgare L., for their ability to cause chlorosis, reduction in plant height, and reduction in shoot dry weight. Variation to cause injury on resistant 'Halt' wheat, susceptible 'Jagger' wheat, and resistant 'STARS-9301B' barley was found among the Dn4 virulent clones. One clone caused up to 30.0 and 59.5% more reduction in plant height and shoot dry weight, respectively, on resistant Halt than other clones. It also caused up to 29.9 and 55.5% more reduction in plant height and shoot dry weight, respectively, on susceptible Jagger wheat. Although STARS-9301B barley exhibited an equal resistant response to feeding by all five clones based on chlorosis, two clones caused approximately 20% more reduction in plant height and shoot dry weight than three other clones. The most injurious clones on wheat were not the most injurious clones on barley. This is the first report of variation to cause varying degrees of plant damage within an aphid biotype virulent to a single host resistance gene. A single aphid clone may not accurately represent the true virulent nature of a biotype population in the field.
Golizadeh, A; Jafari-Behi, V; Razmjou, J; Naseri, B; Hassanpour, M
2017-02-01
The rose aphid, Macrosiphum rosae (L.), is one of the most important pests on rose plants (Rosa spp.) with a worldwide distribution. As resistance indices, the development, survivorship, and reproduction of this aphid were evaluated on 10 rose cultivars, including Bella Vita, Cool Water, Dolce Vita, Maroussia, Orange Juice, Pinkpromise, Roulette, Tea, Valentine, and Persian Yellow in laboratory at 25 ± 1°C, 65 ± 5% relative humidity, and photoperiod of 16:8 (L/D) h. Rose aphid successfully survived on all 10 rose cultivars, although mortality rate was higher on Tea and Bella Vita. The number of offspring per female differed significantly among the tested rose cultivars, and ranged from 9.2 on Tea to 38.7 nymphs on Orange Juice. Population growth parameters were significantly affected by rose cultivars. The longest mean generation time (T) was observed on Bella Vita (14.8 days) and Tea (14.7 days) and the shortest on Orange Juice (10.0 days). The net reproductive rate (R 0 ) ranged from 6.9 on Tea to 33.2 nymphs on Orange Juice cultivar. Correspondingly, the highest value of intrinsic rate of increase (r m ) was observed on Orange Juice (0.348 day -1 ) and lower values on Tea (0.131 day -1 ) followed by Bella Vita (0.154 day -1 ). Cluster analysis of all the measured parameters of rose aphid on different rose cultivars revealed that Tea and Bella Vita were relatively resistant to M. rosae. These findings could be useful in developing an integrated pest management (IPM) program for this aphid in urbanized areas and commercial rose potting.
Peng, Hsuan-Chieh; Hicks, Glenn R.; Kaloshian, Isgouhi
2016-01-01
Somatic embryogenesis receptor kinases (SERKs) are transmembrane receptors involved in plant immunity. Tomato (Solanum lycopersicum) carries three SERK members. One of these, SlSERK1, is required for Mi-1.2-mediated resistance to potato aphids (Macrosiphum euphorbiae). Mi-1.2 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that in addition to potato aphids confers resistance to two additional phloem-feeding insects and to root-knot nematodes (Meloidogyne spp.). How SlSERK1 participates in Mi-1.2-mediated resistance is unknown, and no Mi-1.2 cognate pest effectors have been identified. Here, we study the mechanistic involvement of SlSERK1 in Mi-1.2-mediated resistance. We show that potato aphid saliva and protein extracts induce the Mi-1.2 defense marker gene SlWRKY72b, indicating that both saliva and extracts contain a Mi-1.2 recognized effector. Resistant tomato cultivar Motelle (Mi-1.2/Mi-1.2) plants overexpressing SlSERK1 were found to display enhanced resistance to potato aphids. Confocal microscopy revealed that Mi-1.2 localizes at three distinct subcellular compartments: the plasma membrane, cytoplasm, and nucleus. Coimmunoprecipitation experiments in these tomato plants and in Nicotiana benthamiana transiently expressing Mi-1.2 and SlSERK1 showed that Mi-1.2 and SlSERK1 colocalize only in a microsomal complex. Interestingly, bimolecular fluorescence complementation analysis showed that the interaction of Mi-1.2 and SlSERK1 at the plasma membrane distinctively changes in the presence of potato aphid saliva, suggesting a model in which a constitutive complex at the plasma membrane participates in defense signaling upon effector binding. PMID:27208261
Condemine, Guy; Rahbé, Yvan
2012-01-01
Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 108 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria. PMID:22292023