Sample records for apicomplexan glideosome-associated proteins

  1. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumpula, Esa-Pekka; Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg; German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg

    In this review, current structural understanding of the apicomplexan glideosome and actin regulation is described. Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared withmore » all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.« less

  2. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion.

    PubMed

    Jacot, Damien; Tosetti, Nicolò; Pires, Isa; Stock, Jessica; Graindorge, Arnault; Hung, Yu-Fu; Han, Huijong; Tewari, Rita; Kursula, Inari; Soldati-Favre, Dominique

    2016-12-14

    Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    PubMed

    Kumpula, Esa Pekka; Kursula, Inari

    2015-05-01

    Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world's population. These parasites share a common form of gliding motility which relies on an actin-myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin-myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.

  4. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    PubMed Central

    Kumpula, Esa-Pekka; Kursula, Inari

    2015-01-01

    Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective. PMID:25945702

  5. Roles of Apicomplexan protein kinases at each life cycle stage.

    PubMed

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility

    PubMed Central

    Green, Judith L.; Wall, Richard J.; Vahokoski, Juha; Yusuf, Noor A.; Ridzuan, Mohd A. Mohd; Stanway, Rebecca R.; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R.; Howell, Steven A.; Pires, Isa P.; Moon, Robert W.; Molloy, Justin E.; Kursula, Inari; Tewari, Rita

    2017-01-01

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain–interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. PMID:28893907

  7. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    PubMed Central

    Gordon, Jennifer L; Sibley, L David

    2005-01-01

    Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex), and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery). In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs) are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility. PMID:16343347

  8. Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum.

    PubMed

    Yeoman, Jeffrey A; Hanssen, Eric; Maier, Alexander G; Klonis, Nectarios; Maco, Bohumil; Baum, Jake; Turnbull, Lynne; Whitchurch, Cynthia B; Dixon, Matthew W A; Tilley, Leann

    2011-04-01

    The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.

  9. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility.

    PubMed

    Green, Judith L; Wall, Richard J; Vahokoski, Juha; Yusuf, Noor A; Ridzuan, Mohd A Mohd; Stanway, Rebecca R; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R; Howell, Steven A; Pires, Isa P; Moon, Robert W; Molloy, Justin E; Kursula, Inari; Tewari, Rita; Holder, Anthony A

    2017-10-27

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Autophagy-Related Protein ATG18 Regulates Apicoplast Biogenesis in Apicomplexan Parasites

    PubMed Central

    Bansal, Priyanka; Tripathi, Anuj; Thakur, Vandana; Mohmmed, Asif

    2017-01-01

    ABSTRACT Mechanisms by which 3′-phosphorylated phosphoinositides (3′-PIPs) regulate the development of apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are poorly understood. The catabolic process of autophagy, which is dependent on autophagy-related proteins (ATGs), is one of the major targets of 3′-PIPs in yeast and mammals. In the present study, we identified autophagy-related protein ATG18 as an effector of 3′-PIPs in these parasites. P. falciparum ATG18 (PfATG18) and T. gondii ATG18 (TgATG18) interact with 3′-PIPs but exhibited differences in their specificity of interaction with the ligand PIP. The conditional knockdown of T. gondii or P. falciparum ATG18 (Tg/PfATG18) impaired replication of parasites and resulted in their delayed death. Intriguingly, ATG18 depletion resulted in the loss of the apicomplexan parasite-specific nonphotosynthetic plastid-like organelle apicoplast, which harbors the machinery for biosynthesis of key metabolites, and the interaction of ATG18 to phosphatidylinositol 3-phosphate (PI3P) was critical for apicoplast inheritance. Furthermore, ATG18 regulates membrane association and apicoplast localization of ATG8. These findings provide insights into a novel noncanonical role of ATG18 in apicoplast inheritance. This function of ATG18 in organelle biogenesis is unprecedented in any organism and may be conserved across most apicomplexan parasites. PMID:29089429

  11. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    PubMed

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.

  12. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium bindingmore » triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.« less

  13. Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence.

    PubMed

    Ponts, Nadia; Yang, Jianfeng; Chung, Duk-Won Doug; Prudhomme, Jacques; Girke, Thomas; Horrocks, Paul; Le Roch, Karine G

    2008-06-11

    Reversible modification of proteins through the attachment of ubiquitin or ubiquitin-like modifiers is an essential post-translational regulatory mechanism in eukaryotes. The conjugation of ubiquitin or ubiquitin-like proteins has been demonstrated to play roles in growth, adaptation and homeostasis in all eukaryotes, with perturbation of ubiquitin-mediated systems associated with the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. Here we describe the use of an HMM search of functional Pfam domains found in the key components of the ubiquitin-mediated pathway necessary to activate and reversibly modify target proteins in eight apicomplexan parasitic protozoa for which complete or late-stage genome projects exist. In parallel, the same search was conducted on five model organisms, single-celled and metazoans, to generate data to validate both the search parameters employed and aid paralog classification in Apicomplexa. For each of the 13 species investigated, a set of proteins predicted to be involved in the ubiquitylation pathway has been identified and demonstrates increasing component members of the ubiquitylation pathway correlating with organism and genome complexity. Sequence homology and domain architecture analyses facilitated prediction of apicomplexan-specific protein function, particularly those involved in regulating cell division during these parasite's complex life cycles. This study provides a comprehensive analysis of proteins predicted to be involved in the apicomplexan ubiquitin-mediated pathway. Given the importance of such pathway in a wide variety of cellular processes, our data is a key step in elucidating the biological networks that, in part, direct the pathogenicity of these parasites resulting in a massive impact on global health. Moreover, apicomplexan-specific adaptations of the ubiquitylation pathway may represent new therapeutic targets for much needed drugs against apicomplexan parasites.

  14. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

    PubMed

    Sidik, Saima M; Huet, Diego; Ganesan, Suresh M; Huynh, My-Hang; Wang, Tim; Nasamu, Armiyaw S; Thiru, Prathapan; Saeij, Jeroen P J; Carruthers, Vern B; Niles, Jacquin C; Lourido, Sebastian

    2016-09-08

    Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The identification of a sequence related to apicomplexan enolase from Sarcocystis neurona.

    PubMed

    Wilson, A P; Thelen, J J; Lakritz, J; Brown, C R; Marsh, A E

    2004-11-01

    Equine protozoal myeloencephalitis (EPM) is a neurological disease caused by Sarcocystis neurona, an apicomplexan parasite. S. neurona is also associated with EPM-like diseases in marine and small mammals. The mechanisms of transmission and ability to infect a wide host range remain obscure; therefore, characterization of essential proteins may provide evolutionary information allowing the development of novel chemotherapeutics that target non-mammalian biochemical pathways. In the current study, two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectrometry were combined to characterize and identify an enolase protein from S. neurona based on peptide homology to the Toxoplasma gondii protein. Enolase is thought to be a vestigial, non-photosynthetic protein resulting from an evolutionary endosymbiosis event of an apicomplexan ancestor with green algae. Enolase has also been suggested to play a role in parasite stage conversion for T. gondii. Characterization of this protein in S. neurona and comparison to other protozoans indicate a biochemical similarity of S. neurona enolase to other tissue-cyst forming coccidians that cause encephalitis.

  16. Apicomplexan profilins in vaccine development applied to bovine neosporosis.

    PubMed

    Mansilla, Florencia C; Capozzo, Alejandra V

    2017-12-01

    Neospora caninum, an intracellular protozoan parasite from the phylum Apicomplexa, is the etiologic agent of neosporosis, a disease considered as a major cause of reproductive loss in cattle and neuromuscular disease in dogs. Bovine neosporosis has a great economic impact in both meat and dairy industries, related to abortion, premature culling and reduced milk yields. Although many efforts have been made to restrain bovine neosporosis, there are still no efficacious control methods. Many vaccine-development studies focused in the apicomplexan proteins involved in the adhesion and invasion of the host cell. Among these proteins, profilins have recently emerged as potential vaccine antigens or even adjuvant candidates for several diseases caused by apicomplexan parasites. Profilins bind Toll-like receptors 11 and 12 initiating MyD88 signaling, that triggers IL-12 and IFN-γ production, which may promote protection against infection. Here we summarized the state-of-the-art of novel vaccine development based on apicomplexan profilins applied as antigens or adjuvants, and delved into recent advances on N. caninum vaccines using profilin in the mouse model and in cattle. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Tracking Transmission of Apicomplexan Symbionts in Diverse Caribbean Corals

    PubMed Central

    Kirk, Nathan L.; Ritson-Williams, Raphael; Coffroth, Mary Alice; Miller, Margaret W.; Fogarty, Nicole D.; Santos, Scott R.

    2013-01-01

    Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring), horizontally (from exogenous sources), or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently widespread, coral-associated apicomplexans (Protista: Alveolata) to determine if symbiont transmission depends on host reproductive mode. Specifically, a PCR-based assay was utilized towards identifying whether planula larvae and reproductive adults from brooding and broadcast spawning scleractinian coral species in Florida and Belize harbored apicomplexan DNA. Nearly all (85.5%; n = 85/89) examined planulae of five brooding species (Porites astreoides, Agaricia tenuifolia, Agaricia agaricites, Favia fragum, Mycetophyllia ferox) and adults of P. astreoides were positive for apicomplexan DNA. In contrast, no (n = 0/10) apicomplexan DNA was detected from planulae of four broadcast spawning species (Acropora cervicornis, Acropora palmata, Pseudodiploria strigosa, and Orbicella faveolata) and rarely in gametes (8.9%; n = 5/56) of these species sampled from the same geographical range as the brooding species. In contrast, tissue samples from nearly all (92.0%; n = 81/88) adults of the broadcast spawning species A. cervicornis, A. palmata and O. faveolata harbored apicomplexan DNA, including colonies whose gametes and planulae tested negative for these symbionts. Taken together, these data suggest apicomplexans are transmitted vertically in these brooding scleractinian coral species while the broadcast spawning scleractinian species examined here acquire these symbionts horizontally. Notably, these transmission patterns are

  18. mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway.

    PubMed

    Ávila, Andréa Rodrigues; Cabezas-Cruz, Alexjandro; Gissot, Mathieu

    2018-01-25

    Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.

  19. Genomics of apicomplexan parasites.

    PubMed

    Swapna, Lakshmipuram Seshadri; Parkinson, John

    2017-06-01

    The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.

  20. Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles.

    PubMed

    Pellé, Karell G; Jiang, Rays H Y; Mantel, Pierre-Yves; Xiao, Yu-Ping; Hjelmqvist, Daisy; Gallego-Lopez, Gina M; O T Lau, Audrey; Kang, Byung-Ho; Allred, David R; Marti, Matthias

    2015-11-01

    Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal-mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host-targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal-mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal-mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM. © 2015 John Wiley & Sons Ltd.

  1. Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion

    PubMed Central

    Frénal, Karine; Tay, Chwen L; Mueller, Christina; Bushell, Ellen S; Jia, Yonggen; Graindorge, Arnault; Billker, Oliver; Rayner, Julian C; Soldati-Favre, Dominique

    2013-01-01

    The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite’s ability to egress. PMID:23638681

  2. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.

    PubMed

    Janouskovec, Jan; Horák, Ales; Oborník, Miroslav; Lukes, Julius; Keeling, Patrick J

    2010-06-15

    The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).

  3. Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite

    PubMed Central

    Blake, Damer P.; Billington, Karen J.; Copestake, Susan L.; Oakes, Richard D.; Quail, Michael A.; Wan, Kiew-Lian; Shirley, Martin W.; Smith, Adrian L.

    2011-01-01

    Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective

  4. SAS6-like protein in Plasmodium indicates that conoid-associated apical complex proteins persist in invasive stages within the mosquito vector.

    PubMed

    Wall, Richard J; Roques, Magali; Katris, Nicholas J; Koreny, Ludek; Stanway, Rebecca R; Brady, Declan; Waller, Ross F; Tewari, Rita

    2016-06-24

    The SAS6-like (SAS6L) protein, a truncated paralogue of the ubiquitous basal body/centriole protein SAS6, has been characterised recently as a flagellum protein in trypanosomatids, but associated with the conoid in apicomplexan Toxoplasma. The conoid has been suggested to derive from flagella parts, but is thought to have been lost from some apicomplexans including the malaria-causing genus Plasmodium. Presence of SAS6L in Plasmodium, therefore, suggested a possible role in flagella assembly in male gametes, the only flagellated stage. Here, we have studied the expression and role of SAS6L throughout the Plasmodium life cycle using the rodent malaria model P. berghei. Contrary to a hypothesised role in flagella, SAS6L was absent during gamete flagellum formation. Instead, SAS6L was restricted to the apical complex in ookinetes and sporozoites, the extracellular invasive stages that develop within the mosquito vector. In these stages SAS6L forms an apical ring, as we show is also the case in Toxoplasma tachyzoites. The SAS6L ring was not apparent in blood-stage invasive merozoites, indicating that the apical complex is differentiated between the different invasive forms. Overall this study indicates that a conoid-associated apical complex protein and ring structure is persistent in Plasmodium in a stage-specific manner.

  5. The Inner Membrane Complex Sub-compartment Proteins Critical for Replication of the Apicomplexan Parasite Toxoplasma gondii Adopt a Pleckstrin Homology Fold*

    PubMed Central

    Tonkin, Michelle L.; Beck, Josh R.; Bradley, Peter J.; Boulanger, Martin J.

    2014-01-01

    Toxoplasma gondii, an apicomplexan parasite prevalent in developed nations, infects up to one-third of the human population. The success of this parasite depends on several unique structures including an inner membrane complex (IMC) that lines the interior of the plasma membrane and contains proteins important for gliding motility and replication. Of these proteins, the IMC sub-compartment proteins (ISPs) have recently been shown to play a role in asexual T. gondii daughter cell formation, yet the mechanism is unknown. Complicating mechanistic characterization of the ISPs is a lack of sequence identity with proteins of known structure or function. In support of elucidating the function of ISPs, we first determined the crystal structures of representative members TgISP1 and TgISP3 to a resolution of 2.10 and 2.32 Å, respectively. Structural analysis revealed that both ISPs adopt a pleckstrin homology fold often associated with phospholipid binding or protein-protein interactions. Substitution of basic for hydrophobic residues in the region that overlays with phospholipid binding in related pleckstrin homology domains, however, suggests that ISPs do not retain phospholipid binding activity. Consistent with this observation, biochemical assays revealed no phospholipid binding activity. Interestingly, mapping of conserved surface residues combined with crystal packing analysis indicates that TgISPs have functionally repurposed the phospholipid-binding site likely to coordinate protein partners. Recruitment of larger protein complexes may also be aided through avidity-enhanced interactions resulting from multimerization of the ISPs. Overall, we propose a model where TgISPs recruit protein partners to the IMC to ensure correct progression of daughter cell formation. PMID:24675080

  6. Advances in the application of genetic manipulation methods to apicomplexan parasites.

    PubMed

    Suarez, C E; Bishop, R P; Alzan, H F; Poole, W A; Cooke, B M

    2017-10-01

    Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of

  7. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites.

    PubMed

    Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian

    2017-06-05

    Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.

  8. Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium.

    PubMed

    Francia, Maria E; Dubremetz, Jean-Francois; Morrissette, Naomi S

    2015-01-01

    The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, including the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9+2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the relationship between asexual stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian apicomplexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure. Moreover, the UNIMOD components (SAS6, SAS4/CPAP, and BLD10/CEP135) are conserved in these organisms. However, other widely conserved basal body and flagellar biogenesis elements are missing from apicomplexan genomes. These differences may indicate variations in flagellar biogenesis pathways and in basal body arrangement within the phylum. As apicomplexan basal bodies are distinct from their metazoan counterparts, it may be possible to

  9. Vitamin and co-factor biosynthesis pathways in Plasmodium and other apicomplexan parasites

    PubMed Central

    Müller, Sylke; Kappes, Barbara

    2007-01-01

    Vitamins are essential components of the human diet. By contrast, the malaria parasite Plasmodium falciparum and related apicomplexan parasites synthesise certain vitamins, de novo, either completely or in parts. The occurrence of the various biosynthesis pathways is specific to different apicomplexan parasites, emphasising their distinct requirements for nutrients and growth factors. The absence of vitamin biosynthesis from the human host implies that inhibition of the parasite pathways may be a way to interfere specifically with parasite development. However, the precise role of biosynthesis and potential uptake of vitamins for the overall regulation of vitamin homeostasis in the parasites needs to be established first. In this review Sylke Müller and Barbara Kappes focus mainly on the procurement of vitamin B1, B5 and B6 by Plasmodium and other apicomplexan parasites. PMID:17276140

  10. Developing an Apicomplexan DNA Barcoding System to Detect Blood Parasites of Small Coral Reef Fishes.

    PubMed

    Renoux, Lance P; Dolan, Maureen C; Cook, Courtney A; Smit, Nico J; Sikkel, Paul C

    2017-08-01

    Apicomplexan parasites are obligate parasites of many species of vertebrates. To date, there is very limited understanding of these parasites in the most-diverse group of vertebrates, actinopterygian fishes. While DNA barcoding targeting the eukaryotic 18S small subunit rRNA gene sequence has been useful in identifying apicomplexans in tetrapods, identification of apicomplexans infecting fishes has relied solely on morphological identification by microscopy. In this study, a DNA barcoding method was developed that targets the 18S rRNA gene primers for identifying apicomplexans parasitizing certain actinopterygian fishes. A lead primer set was selected showing no cross-reactivity to the overwhelming abundant host DNA and successfully confirmed 37 of the 41 (90.2%) microscopically verified parasitized fish blood samples analyzed in this study. Furthermore, this DNA barcoding method identified 4 additional samples that screened negative for parasitemia, suggesting this molecular method may provide improved sensitivity over morphological characterization by microscopy. In addition, this PCR screening method for fish apicomplexans, using Whatman FTA preserved DNA, was tested in efforts leading to a more simplified field collection, transport, and sample storage method as well as a streamlining sample processing important for DNA barcoding of large sample sets.

  11. Genomic and Proteomic Evidence for the Presence of a Peroxisome in the Apicomplexan Parasite Toxoplasma gondii and Other Coccidia

    PubMed Central

    Przyborski, Jude M; Maier, Uwe G

    2017-01-01

    Abstract Apicomplexans are successful parasites responsible for severe human diseases including malaria, toxoplasmosis, and cryptosporidiosis. For many years, it has been discussed whether these parasites are in possession of peroxisomes, highly variable eukaryotic organelles usually involved in fatty acid degradation and cellular detoxification. Conflicting experimental data has been published. With the age of genomics, ever more high quality apicomplexan genomes have become available, that now allow a new assessment of the dispute. Here, we provide bioinformatic evidence for the presence of peroxisomes in Toxoplasma gondii and other coccidians. For these organisms, we have identified a complete set of peroxins, probably responsible for peroxisome biogenesis, division, and protein import. Moreover, via a global screening for peroxisomal targeting signals, we were able to show that a complete set of fatty acid β-oxidation enzymes is equipped with either PTS1 or PTS2 sequences, most likely mediating transport of these factors to putative peroxisomes in all investigated Coccidia. Our results further imply a life cycle stage-specific presence of peroxisomes in T. gondii and suggest several independent losses of peroxisomes during the evolution of apicomplexan parasites. PMID:29126146

  12. Inhibition by stabilization: targeting the Plasmodium falciparum aldolase-TRAP complex.

    PubMed

    Nemetski, Sondra Maureen; Cardozo, Timothy J; Bosch, Gundula; Weltzer, Ryan; O'Malley, Kevin; Ejigiri, Ijeoma; Kumar, Kota Arun; Buscaglia, Carlos A; Nussenzweig, Victor; Sinnis, Photini; Levitskaya, Jelena; Bosch, Jürgen

    2015-08-20

    Emerging resistance of the malaria parasite Plasmodium to current therapies underscores the critical importance of exploring novel strategies for disease eradication. Plasmodium species are obligate intracellular protozoan parasites. They rely on an unusual form of substrate-dependent motility for their migration on and across host-cell membranes and for host cell invasion. This peculiar motility mechanism is driven by the 'glideosome', an actin-myosin associated, macromolecular complex anchored to the inner membrane complex of the parasite. Myosin A, actin, aldolase, and thrombospondin-related anonymous protein (TRAP) constitute the molecular core of the glideosome in the sporozoite, the mosquito stage that brings the infection into mammals. Virtual library screening of a large compound library against the PfAldolase-TRAP complex was used to identify candidate compounds that stabilize and prevent the disassembly of the glideosome. The mechanism of these compounds was confirmed by biochemical, biophysical and parasitological methods. A novel inhibitory effect on the parasite was achieved by stabilizing a protein-protein interaction within the glideosome components. Compound 24 disrupts the gliding and invasive capabilities of Plasmodium parasites in in vitro parasite assays. A high-resolution, ternary X-ray crystal structure of PfAldolase-TRAP in complex with compound 24 confirms the mode of interaction and serves as a platform for future ligand optimization. This proof-of-concept study presents a novel approach to anti-malarial drug discovery and design. By strengthening a protein-protein interaction within the parasite, an avenue towards inhibiting a previously "undruggable" target is revealed and the motility motor responsible for successful invasion of host cells is rendered inactive. This study provides new insights into the malaria parasite cell invasion machinery and convincingly demonstrates that liver cell invasion is dramatically reduced by 95 % in the

  13. Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans.

    PubMed

    Danne, Jillian C; Gornik, Sebastian G; Macrae, James I; McConville, Malcolm J; Waller, Ross F

    2013-01-01

    Mitochondrial metabolism is central to the supply of ATP and numerous essential metabolites in most eukaryotic cells. Across eukaryotic diversity, however, there is evidence of much adaptation of the function of this organelle according to specific metabolic requirements and/or demands imposed by different environmental niches. This includes substantial loss or retailoring of mitochondrial function in many parasitic groups that occupy potentially nutrient-rich environments in their metazoan hosts. Infrakingdom Alveolata comprises a well-supported alliance of three disparate eukaryotic phyla-dinoflagellates, apicomplexans, and ciliates. These major taxa represent diverse lifestyles of free-living phototrophs, parasites, and predators and offer fertile territory for exploring character evolution in mitochondria. The mitochondria of apicomplexan parasites provide much evidence of loss or change of function from analysis of mitochondrial protein genes. Much less, however, is known of mitochondrial function in their closest relatives, the dinoflagellate algae. In this study, we have developed new models of mitochondrial metabolism in dinoflagellates based on gene predictions and stable isotope labeling experiments. These data show that many changes in mitochondrial gene content previously only known from apicomplexans are found in dinoflagellates also. For example, loss of the pyruvate dehydrogenase complex and changes in tricarboxylic acid (TCA) cycle enzyme complement are shared by both groups and, therefore, represent ancestral character states. Significantly, we show that these changes do not result in loss of typical TCA cycle activity fueled by pyruvate. Thus, dinoflagellate data show that many changes in alveolate mitochondrial metabolism are independent of the major lifestyle changes seen in these lineages and provide a revised view of mitochondria character evolution during evolution of parasitism in apicomplexans.

  14. Sterol Composition and Biosynthetic Genes of Vitrella brassicaformis, a Recently Discovered Chromerid: Comparison to Chromera velia and Phylogenetic Relationship with Apicomplexan Parasites.

    PubMed

    Khadka, Manoj; Salem, Mohamed; Leblond, Jeffrey D

    2015-01-01

    Vitrella brassicaformis is the second discovered species in the Chromerida, and first in the family Vitrellaceae. Chromera velia, the first discovered species, forms an independent photosynthetic lineage with V. brassicaformis, and both are closely related to peridinin-containing dinoflagellates and nonphotosynthetic apicomplexans; both also show phylogenetic closeness with red algal plastids. We have utilized gas chromatography/mass spectrometry to identify two free sterols, 24-ethylcholest-5-en-3β-ol, and a minor unknown sterol which appeared to be a C(28:4) compound. We have also used RNA Seq analysis to identify seven genes found in the nonmevalonate/methylerythritol pathway (MEP) for sterol biosynthesis. Subsequent genome analysis of V. brassicaformis showed the presence of two mevalonate (MVA) pathway genes, though the genes were not observed in the transcriptome analysis. Transcripts from four genes (dxr, ispf, ispd, and idi) were selected and translated into proteins to study the phylogenetic relationship of sterol biosynthesis in V. brassicaformis and C. velia to other groups of algae and apicomplexans. On the basis of our genomic and transcriptomic analyses, we hypothesize that the MEP pathway was the primary pathway that apicomplexans used for sterol biosynthesis before they lost their sterol biosynthesis ability, although contribution of the MVA pathway cannot be discounted. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  15. Advances in the application of genetic manipulation methods to apicomplexan parasites

    USDA-ARS?s Scientific Manuscript database

    Apicomplexan parasites such as Babesia, Theileria, Cryptosporidium, and Toxoplasma have a high negative impact on animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular...

  16. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases.

    PubMed

    Murungi, Edwin K; Kariithi, Henry M

    2017-03-21

    The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host.

  17. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases

    PubMed Central

    Murungi, Edwin K.; Kariithi, Henry M.

    2017-01-01

    The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host. PMID:28335576

  18. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans

    PubMed Central

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-01-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  19. Re-Emergence of the Apicomplexan Theileria equi in the United States: Elimination of Persistent Infection and Transmission Risk

    PubMed Central

    Ueti, Massaro W.; Mealey, Robert H.; Kappmeyer, Lowell S.; White, Stephen N.; Kumpula-McWhirter, Nancy; Pelzel, Angela M.; Grause, Juanita F.; Bunn, Thomas O.; Schwartz, Andy; Traub-Dargatz, Josie L.; Hendrickson, Amy; Espy, Benjamin; Guthrie, Alan J.; Fowler, W. Kent; Knowles, Donald P.

    2012-01-01

    Arthropod-borne apicomplexan pathogens that cause asymptomatic persistent infections present a significant challenge due to their life-long transmission potential. Although anti-microbials have been used to ameliorate acute disease in animals and humans, chemotherapeutic efficacy for apicomplexan pathogen elimination from a persistently infected host and removal of transmission risk is largely unconfirmed. The recent re-emergence of the apicomplexan Theileria equi in U.S. horses prompted testing whether imidocarb dipropionate was able to eliminate T. equi from naturally infected horses and remove transmission risk. Following imidocarb treatment, levels of T. equi declined from a mean of 104.9 organisms/ml of blood to undetectable by nested PCR in 24 of 25 naturally infected horses. Further, blood transfer from treated horses that became nested PCR negative failed to transmit to naïve splenectomized horses. Although these results were consistent with elimination of infection in 24 of 25 horses, T. equi-specific antibodies persisted in the majority of imidocarb treated horses. Imidocarb treatment was unsuccessful in one horse which remained infected as measured by nested PCR and retained the ability to infect a naïve recipient via intravenous blood transfer. However, a second round of treatment eliminated T. equi infection. These results support the utility of imidocarb chemotherapy for assistance in the control and eradication of this tick-borne pathogen. Successful imidocarb dipropionate treatment of persistently infected horses provides a tool to aid the global equine industry by removing transmission risk associated with infection and facilitating international movement of equids between endemic and non-endemic regions. PMID:22970295

  20. Previously unknown apicomplexan species infecting Iceland scallop, Chlamys islandica (Müller, 1776), queen scallop, Aequipecten opercularis L., and king scallop, Pecten maximus L.

    PubMed

    Kristmundsson, Árni; Helgason, Sigurður; Bambir, Slavko Helgi; Eydal, Matthías; Freeman, Mark A

    2011-11-01

    Examination of three scallop species from three separate locations: Iceland scallop from Icelandic waters, king scallop from Scottish waters and queen scallop from Faroese and Scottish waters, revealed infections of a previously unknown apicomplexan parasite in all three scallop species. Developmental forms observed in the shells appeared to include both sexual and asexual stages of the parasite, i.e. merogony, gametogony and sporogony, which suggests a monoxenous life cycle. Meronts, gamonts, zygotes and mature oocysts were solely found in the muscular tissue. Zoites, which could be sporozoites and/or merozoites, were observed in great numbers, most frequently in muscles, both intracellular and free in the extracellular space. Zoites were also common inside haemocytes. Examination of the ultrastructure showed that the zoites contained all the major structures characterizing apicomplexans. This apicomplexan parasite is morphologically different from other apicomplexan species previously described from bivalves. Presently, its systematic position within the phylum Apicomplexa cannot be ascertained. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits

    PubMed Central

    Chakraborty, Shalini; Roy, Sonti; Mistry, Hiral Uday; Murthy, Shweta; George, Neena; Bhandari, Vasundhra; Sharma, Paresh

    2017-01-01

    Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress. PMID:29081773

  2. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-07-20

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites.

    PubMed

    Andrabi, Syed Bilal Ahmad; Tahara, Michiru; Matsubara, Ryuma; Toyama, Tomoko; Aonuma, Hiroka; Sakakibara, Hitoshi; Suematsu, Makoto; Tanabe, Kazuyuki; Nozaki, Tomoyoshi; Nagamune, Kisaburo

    2018-02-01

    Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence

    PubMed Central

    Morlon-Guyot, Juliette; Bordat, Yann; Lebrun, Maryse; Gubbels, Marc-Jan; Doerig, Christian; Daher, Wassim

    2016-01-01

    Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function, and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora-related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In T. gondii, we show that TgArk2 and TgArk3 concentrate at specific sub-cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein (GFP) in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock-down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3-depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites, and highlights Aurora kinase 3 as potential drug target. PMID:26833682

  5. Small molecule inhibition of apicomplexan FtsH1 disrupts plastid biogenesis in human pathogens.

    PubMed

    Amberg-Johnson, Katherine; Hari, Sanjay B; Ganesan, Suresh M; Lorenzi, Hernan A; Sauer, Robert T; Niles, Jacquin C; Yeh, Ellen

    2017-08-18

    The malaria parasite Plasmodium falciparum and related apicomplexan pathogens contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic target. Derived from secondary endosymbiosis, the apicoplast depends on novel, but largely cryptic, mechanisms for protein/lipid import and organelle inheritance during parasite replication. These critical biogenesis pathways present untapped opportunities to discover new parasite-specific drug targets. We used an innovative screen to identify actinonin as having a novel mechanism-of-action inhibiting apicoplast biogenesis. Resistant mutation, chemical-genetic interaction, and biochemical inhibition demonstrate that the unexpected target of actinonin in P. falciparum and Toxoplasma gondii is FtsH1, a homolog of a bacterial membrane AAA+ metalloprotease. Pf FtsH1 is the first novel factor required for apicoplast biogenesis identified in a phenotypic screen. Our findings demonstrate that FtsH1 is a novel and, importantly, druggable antimalarial target. Development of FtsH1 inhibitors will have significant advantages with improved drug kinetics and multistage efficacy against multiple human parasites.

  6. piggyBac Transposon-Mediated Transgenesis in the Apicomplexan Parasite Eimeria tenella

    PubMed Central

    Su, Huali; Liu, Xianyong; Yan, Wenchao; Shi, Tuanyuan; Zhao, Xinxin; Blake, Damer P.; Tomley, Fiona M.; Suo, Xun

    2012-01-01

    piggyBac, a type II transposon that is useful for efficient transgenesis and insertional mutagenesis, has been used for effective and stable transfection in a wide variety of organisms. In this study we investigate the potential use of the piggyBac transposon system for forward genetics studies in the apicomplexan parasite Eimeria tenella. Using the restriction enzyme-mediated integration (REMI) method, E. tenella sporozoites were electroporated with a donor plasmid containing the enhanced yellow fluorescent protein (EYFP) gene flanked by piggyBac inverted terminal repeats (ITRs), an Asc I-linearized helper plasmid containing the transposase gene and the restriction enzyme Asc I. Subsequently, electroporated sporozoites were inoculated into chickens via the cloacal route and transfected progeny oocysts expressing EYFP were sorted by flow cytometry. A transgenic E. tenella population was selected by successive in vivo passage. Southern-blotting analysis showed that exogenous DNA containing the EYFP gene was integrated into the parasite genome at a limited number of integration sites and that the inserted part of the donor plasmid was the fragment located between the 5′ and 3′ ITRs as indicated by primer-specific PCR screening. Genome walking revealed that the insertion sites were TTAA-specific, which is consistent with the transposition characteristics of piggyBac. PMID:22768223

  7. The genome of Eimeria falciformis--reduction and specialization in a single host apicomplexan parasite.

    PubMed

    Heitlinger, Emanuel; Spork, Simone; Lucius, Richard; Dieterich, Christoph

    2014-08-20

    The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host. The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria. Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.

  8. Hepatozoon ellisgreineri n. sp. (Hepatozoidae): description of the first avian apicomplexan blood parasite inhabiting granulocytes.

    PubMed

    Valkiūnas, Gediminas; Mobley, Kristin; Iezhova, Tatjana A

    2016-02-01

    Blood parasites of the genus Hepatozoon (Apicomplexa, Hepatozoidae) infect all groups of terrestrial vertebrates, and particularly high prevalence and species diversity have been reported in reptiles and mammals. A few morphologically similar species, in which gamonts inhabit mononuclear leukocytes and red blood cells, have been described in birds. Here, we report a new Hepatozoon species, which was found in wild-caught secretary birds Sagittarius serpentarius, from Tanzania. Hepatozoon ellisgreineri n. sp. can be readily distinguished from all described species of avian Hepatozoon because its gamonts develop only in granulocytes, predominantly in heterophils, a unique characteristic among bird parasites of this genus. Additionally, this is the first reported avian apicomplexan blood parasite, which inhabits and matures in granulocytes. We describe H. ellisgreineri based on morphological characteristics of blood stages and their host cells. This finding broadens knowledge about host cells of avian Hepatozoon spp. and other avian apicomplexan blood parasites, contributing to the better understanding of the diversity of haematozoa. This is the first report of hepatozoonosis in endangered African birds of the Sagittariidae.

  9. Sterol composition and biosynthetic genes of the recently discovered photosynthetic alveolate, Chromera velia (chromerida), a close relative of apicomplexans.

    PubMed

    Leblond, Jeffrey D; Dodson, Joshua; Khadka, Manoj; Holder, Sabrina; Seipelt, Rebecca L

    2012-01-01

    Chromera velia is a recently discovered, photosynthetic, marine alveolate closely related to apicomplexan parasites, and more distantly to perkinsids and dinoflagellates. To date, there are no published studies on the sterols of C. velia. Because apicomplexans and perkinsids are not known to synthesize sterols de novo, but rather obtain them from their host organisms, our objective was to examine the composition of the sterols of C. velia to assess whether or not there is any commonality with dinoflagellates as the closest taxonomic group capable of synthesizing sterols de novo. Furthermore, knowledge of the sterols of C. velia may provide insight into the sterol biosynthetic capabilities of apicomplexans prior to loss of sterol biosynthesis. We have found that C. velia possesses two primary sterols, 24-ethylcholesta-5,22E-dien-3β-ol, and 24-ethylcholest-5-en-3β-ol, not common to dinoflagellates, but rather commonly found in other classes of algae and plants. In addition, we have identified computationally three genes, SMT1 (sterol-24C-methyltransferase), FDFT1 (farnesyl diphosphate farnesyl transferase, squalene synthase), and IDI1 (isopentenyl diphosphate Δ-isomerase), predicted to be involved in sterol biosynthesis by their similarity to analogous genes in other sterol-producing eukaryotes, including a number of algae. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.

  10. Phylogenetic analysis of apicomplexan parasites infecting commercially valuable species from the North-East Atlantic reveals high levels of diversity and insights into the evolution of the group.

    PubMed

    Xavier, Raquel; Severino, Ricardo; Pérez-Losada, Marcos; Gestal, Camino; Freitas, Rita; Harris, D James; Veríssimo, Ana; Rosado, Daniela; Cable, Joanne

    2018-01-25

    The Apicomplexa from aquatic environments are understudied relative to their terrestrial counterparts, and the seminal work assessing the phylogenetic relations of fish-infecting lineages is mostly based on freshwater hosts. The taxonomic uncertainty of some apicomplexan groups, such as the coccidia, is high and many genera were recently shown to be paraphyletic, questioning the value of strict morphological and ecological traits for parasite classification. Here, we surveyed the genetic diversity of the Apicomplexa in several commercially valuable vertebrates from the North-East Atlantic, including farmed fish. Most of the sequences retrieved were closely related to common fish coccidia of Eimeria, Goussia and Calyptospora. However, some lineages from the shark Scyliorhinus canicula were placed as sister taxa to the Isospora, Caryospora and Schellakia group. Additionally, others from Pagrus caeruleostictus and Solea senegalensis belonged to an unknown apicomplexan group previously found in the Caribbean Sea, where it was sequenced from the water column, corals, and fish. Four distinct parasite lineages were found infecting farmed Dicentrarchus labrax or Sparus aurata. One of the lineages from farmed D. labrax was also found infecting wild counterparts, and another was also recovered from farmed S. aurata and farm-associated Diplodus sargus. Our results show that marine fish apicomplexans are diverse, and we highlight the need for a more extensive assessment of parasite diversity in this phylum. Additionally, parasites recovered from S. canicula were recovered as basal to their piscine counterparts reflecting hosts phylogeny.

  11. Assessing the diversity, host-specificity and infection patterns of apicomplexan parasites in reptiles from Oman, Arabia.

    PubMed

    Maia, João P; Harris, D James; Carranza, Salvador; Goméz-Díaz, Elena

    2016-11-01

    Understanding the processes that shape parasite diversification, their distribution and abundance provides valuable information on the dynamics and evolution of disease. In this study, we assessed the diversity, distribution, host-specificity and infection patterns of apicomplexan parasites in amphibians and reptiles from Oman, Arabia. Using a quantitative PCR approach we detected three apicomplexan parasites (haemogregarines, lankesterellids and sarcocystids). A total of 13 haemogregarine haplotypes were identified, which fell into four main clades in a phylogenetic framework. Phylogenetic analysis of six new lankesterellid haplotypes revealed that these parasites were distinct from, but phylogenetically related to, known Lankesterella species and might represent new taxa. The percentage of infected hosts (prevalence) and the number of haemogregarines in the blood (parasitaemia) varied significantly between gecko species. We also found significant differences in parasitaemia between haemogregarine parasite lineages (defined by phylogenetic clustering of haplotypes), suggesting differences in host-parasite compatibility between these lineages. For Pristurus rupestris, we found significant differences in haemogregarine prevalence between geographical areas. Our results suggest that host ecology and host relatedness may influence haemogregarine distributions and, more generally, highlight the importance of screening wild hosts from remote regions to provide new insights into parasite diversity.

  12. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    PubMed

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Purine salvage in the apicomplexan Sarcocystis neurona, and generation of hypoxanthine-xanthine-guanine phosphoribosyltransferase-deficient clones for positive-negative selection of transgenic parasites.

    PubMed

    Dangoudoubiyam, Sriveny; Zhang, Zijing; Howe, Daniel K

    2014-09-01

    Sarcocystis neurona is an apicomplexan parasite that causes severe neurological disease in horses and marine mammals. The Apicomplexa are all obligate intracellular parasites that lack purine biosynthesis pathways and rely on the host cell for their purine requirements. Hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK) are key enzymes that function in two complementary purine salvage pathways in apicomplexans. Bioinformatic searches of the S. neurona genome revealed genes encoding HXGPRT, AK and all of the major purine salvage enzymes except purine nucleoside phosphorylase. Wild-type S. neurona were able to grow in the presence of mycophenolic acid (MPA) but were inhibited by 6-thioxanthine (6-TX), suggesting that the pathways involving either HXGPRT or AK are functional in this parasite. Prior work with Toxoplasma gondii demonstrated the utility of HXGPRT as a positive-negative selection marker. To enable the use of HXGPRT in S. neurona, the SnHXGPRT gene sequence was determined and a gene-targeting plasmid was transfected into S. neurona. SnHXGPRT-deficient mutants were selected with 6-TX, and single-cell clones were obtained. These Sn∆HXG parasites were susceptible to MPA and could be complemented using the heterologous T. gondii HXGPRT gene. In summary, S. neurona possesses both purine salvage pathways described in apicomplexans, thus allowing the use of HXGPRT as a positive-negative drug selection marker in this parasite.

  14. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane.

    PubMed

    Felsner, Gregor; Sommer, Maik S; Gruenheit, Nicole; Hempel, Franziska; Moog, Daniel; Zauner, Stefan; Martin, William; Maier, Uwe G

    2011-01-01

    The plastids of cryptophytes, haptophytes, and heterokontophytes (stramenopiles) (together once known as chromists) are surrounded by four membranes, reflecting the origin of these plastids through secondary endosymbiosis. They share this trait with apicomplexans, which are alveolates, the plastids of which have been suggested to stem from the same secondary symbiotic event and therefore form a phylogenetic clade, the chromalveolates. The chromists are quantitatively the most important eukaryotic contributors to primary production in marine ecosystems. The mechanisms of protein import across their four plastid membranes are still poorly understood. Components of an endoplasmic reticulum-associated degradation (ERAD) machinery in cryptophytes, partially encoded by the reduced genome of the secondary symbiont (the nucleomorph), are implicated in protein transport across the second outermost plastid membrane. Here, we show that the haptophyte Emiliania huxleyi, like cryptophytes, stramenopiles, and apicomplexans, possesses a nuclear-encoded symbiont-specific ERAD machinery (SELMA, symbiont-specific ERAD-like machinery) in addition to the host ERAD system, with targeting signals that are able to direct green fluorescent protein or yellow fluorescent protein to the predicted cellular localization in transformed cells of the stramenopile Phaeodactylum tricornutum. Phylogenies of the duplicated ERAD factors reveal that all SELMA components trace back to a red algal origin. In contrast, the host copies of cryptophytes and haptophytes associate with the green lineage to the exclusion of stramenopiles and alveolates. Although all chromalveolates with four membrane-bound plastids possess the SELMA system, this has apparently not arisen in a single endosymbiotic event. Thus, our data do not support the chromalveolate hypothesis.

  15. Dissecting the interface between apicomplexan parasite and host cell: Insights from a divergent AMA–RON2 pair

    PubMed Central

    Parker, Michelle L.; Penarete-Vargas, Diana M.; Hamilton, Phineas T.; Guérin, Amandine; Dubey, Jitender P.; Perlman, Steve J.; Spano, Furio; Lebrun, Maryse; Boulanger, Martin J.

    2016-01-01

    Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the host cell, where parasite-derived rhoptry neck protein 2 (RON2) family members localize to the host outer membrane and serve as ligands for apical membrane antigen (AMA) family surface proteins displayed on the parasite. Recently, we showed that T. gondii harbors a novel AMA designated as TgAMA4 that shows extreme sequence divergence from all characterized AMA family members. Here we show that sporozoite-expressed TgAMA4 clusters in a distinct phylogenetic clade with Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) proteins and forms a high-affinity, functional complex with its coevolved partner, TgRON2L1. High-resolution crystal structures of TgAMA4 in the apo and TgRON2L1-bound forms complemented with alanine scanning mutagenesis data reveal an unexpected architecture and assembly mechanism relative to previously characterized AMA–RON2 complexes. Principally, TgAMA4 lacks both a deep surface groove and a key surface loop that have been established to govern RON2 ligand binding selectivity in other AMAs. Our study reveals a previously underappreciated level of molecular diversity at the parasite–host-cell interface and offers intriguing insight into the adaptation strategies underlying sporozoite invasion. Moreover, our data offer the potential for improved design of neutralizing therapeutics targeting a broad range of AMA–RON2 pairs and apicomplexan invasive stages. PMID:26712012

  16. Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii*

    PubMed Central

    Ramakrishnan, Srinivasan; Docampo, Melissa D.; MacRae, James I.; Pujol, François M.; Brooks, Carrie F.; van Dooren, Giel G.; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.; McConville, Malcolm J.; Striepen, Boris

    2012-01-01

    Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [13C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0–26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host. PMID:22179608

  17. Evidence of tRNA cleavage in apicomplexan parasites: half-tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei

    USDA-ARS?s Scientific Manuscript database

    Several lines of evidence demonstrated that organisms ranging from bacteria to higher animals possess a regulated endonucleolytic cleavage pathway producing half-tRNA fragments. In the present study, we investigated the occurrence of this phenomenon in two distantly related apicomplexan parasites, T...

  18. Protococcidian Eleutheroschizon duboscqi, an Unusual Apicomplexan Interconnecting Gregarines and Cryptosporidia

    PubMed Central

    Valigurová, Andrea; Paskerova, Gita G.; Diakin, Andrei; Kováčiková, Magdaléna; Simdyanov, Timur G.

    2015-01-01

    This study focused on the attachment strategy, cell structure and the host-parasite interactions of the protococcidian Eleutheroschizon duboscqi, parasitising the polychaete Scoloplos armiger. The attached trophozoites and gamonts of E. duboscqi were detected at different development stages. The parasite develops epicellularly, covered by a host cell-derived, two-membrane parasitophorous sac forming a caudal tipped appendage. Staining with Evans blue suggests that this tail is protein-rich, supported by the presence of a fibrous substance in this area. Despite the ultrastructural evidence for long filaments in the tail, it stained only weakly for F-actin, while spectrin seemed to accumulate in this area. The attachment apparatus consists of lobes arranged in one (trophozoites) or two (gamonts) circles, crowned by a ring of filamentous fascicles. During trophozoite maturation, the internal space between the parasitophorous sac and parasite turns translucent, the parasite trilaminar pellicle seems to reorganise and is covered by a dense fibrous glycocalyx. The parasite surface is organised in broad folds with grooves in between. Micropores are situated at the bottom of the grooves. A layer of filaments organised in bands, underlying the folds and ending above the attachment fascicles, was detected just beneath the pellicle. Confocal microscopy, along with the application of cytoskeletal drugs (jasplakinolide, cytochalasin D, oryzalin) confirmed the presence of actin and tubulin polymerised forms in both the parasitophorous sac and the parasite, while myosin labelling was restricted to the sac. Despite positive tubulin labelling, no microtubules were detected in mature stages. The attachment strategy of E. duboscqi shares features with that of cryptosporidia and gregarines, i.e. the parasite itself conspicuously resembles an epicellularly located gregarine, while the parasitophorous sac develops in a similar manner to that in cryptosporidia. This study provides a re

  19. Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muench, Stephen P.; Prigge, Sean T.; McLeod, Rima

    2007-03-01

    The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have beenmore » solved to 2.6, 2.2 and 2.8 Å, respectively. The structures of T. gondii ENR have revealed that, as in its bacterial and plant homologues, a loop region which flanks the active site becomes ordered upon inhibitor binding, resulting in the slow tight binding of triclosan. In addition, the T. gondii ENR–triclosan complex reveals the folding of a hydrophilic insert common to the apicomplexan family that flanks the substrate-binding domain and is disordered in all other reported apicomplexan ENR structures. Structural comparison of the apicomplexan ENR structures with their bacterial and plant counterparts has revealed that although the active sites of the parasite enzymes are broadly similar to those of their bacterial counterparts, there are a number of important differences within the drug-binding pocket that reduce the packing interactions formed with several inhibitors in the apicomplexan ENR enzymes. Together with other significant structural differences, this provides a possible explanation of the lower affinity of the parasite ENR enzyme family for aminopyridine-based inhibitors, suggesting that an effective antiparasitic agent may well be distinct from equivalent antimicrobials.« less

  20. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    PubMed

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  1. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Guangwen; Qin, Mei; Liu, Xianyong

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (amore » truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.« less

  2. Dinoflagellate phylogeny revisited: Using ribosomal proteins to resolve deep branching dinoflagellate clades

    PubMed Central

    Bachvaroff, Tsvetan R.; Gornik, Sebastian G.; Concepcion, Gregory T.; Waller, Ross F.; Mendez, Gregory S.; Lippmeier, J. Casey; Delwiche, Charles F.

    2014-01-01

    The alveolates are composed of three major lineages, the ciliates, dinoflagellates, and apicomplexans. Together these ‘protist’ taxa play key roles in primary production and ecology, as well as in illness of humans and other animals. The interface between the dinoflagellate and apicomplexan clades has been an area of recent discovery, blurring the distinction between these two clades. Moreover, phylogenetic analysis has yet to determine the position of basal dinoflagellate clades hence the deepest branches of the dinoflagellate tree currently remain unresolved. Large-scale mRNA sequencing was applied to 11 species of dinoflagellates, including strains of the syndinean genera Hematodinium and Amoebophrya, parasites of crustaceans and dinoflagellates, respectively, to optimize and update the dinoflagellate tree. From the transcriptome-scale data a total of 73 ribosomal protein-coding genes were selected for phylogeny. After individual gene orthology assessment, the genes were concatenated into a >15,000 amino acid alignment with 76 taxa from dinoflagellates, apicomplexans, ciliates, and the outgroup heterokonts. Overall the tree was well resolved and supported, when the data was subsampled with gblocks or constraint trees were tested with the approximately unbiased test. The deepest branches of the dinoflagellate tree can now be resolved with strong support, and provides a clearer view of the evolution of the distinctive traits of dinoflagellates. PMID:24135237

  3. Allosteric activation of apicomplexan calcium-dependent protein kinases

    DOE PAGES

    Ingram, Jessica R.; Knockenhauer, Kevin E.; Markus, Benedikt M.; ...

    2015-08-24

    Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca 2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca 2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, throughmore » molecular dynamics, the effects of 1B7–kinase interactions. In contrast to other Ca 2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca 2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.« less

  4. Discovery of a novel species Theileria haneyi n. sp. infective to equids highlights exceptional genomic diversity within the genus Theileria: implications for apicomplexan parasite surveillance

    USDA-ARS?s Scientific Manuscript database

    A novel apicomplexan parasite was serendipitously discovered in horses at the United States – Mexico border. Phylogenetic analysis based on 18S rDNA showed the erythrocyte-infective parasite to be related to, but distinct from, Theileria species in Africa, the most similar taxa being Theileria spp. ...

  5. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors.

    PubMed

    Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B

    2017-06-13

    Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.

  6. Evolution of Chloroplast Transcript Processing in Plasmodium and Its Chromerid Algal Relatives

    PubMed Central

    Dorrell, Richard G.; Drew, James; Nisbet, R. Ellen R.; Howe, Christopher J.

    2014-01-01

    It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3′ poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans. PMID:24453981

  7. Energy Landscape and Transition State of Protein-Protein Association

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2006-11-01

    Formation of a stereospecific protein complex is favored by specific interactions between two proteins but disfavored by the loss of translational and rotational freedom. Echoing the protein folding process, we have previously proposed a transition state for protein-protein association. Here we clarify the specification of the transition state by working with two toy models for protein association. The models demonstrate that a sharp transition between the bound state with numerous short-range interactions but restricted translation and rotational freedom and the unbound state with at most a small number of interactions but expanded configurational freedom. This transition sets the outer boundary of the bound state as well as the transition state for association. The energy landscape is funnel-like, with the deep well of the bound state surrounded by a broad shallow basin. This formalism of protein-protein association is applied to four protein-protein complexes, and is found to give accurate predictions for the effects of charge mutations and ionic strength on the association rates.

  8. Lipid Synthesis in Protozoan Parasites: a Comparison Between Kinetoplastids and Apicomplexans

    PubMed Central

    Ramakrishnan, Srinivasan; Serricchio, Mauro; Striepen, Boris; Bütikofer, Peter

    2013-01-01

    Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment. PMID:23827884

  9. Functional characterizations of malonyl-CoA:acyl carrier protein transacylase (MCAT) in Eimeria tenella.

    PubMed

    Sun, Mingfei; Zhu, Guan; Qin, Zonghua; Wu, Caiyan; Lv, Minna; Liao, Shenquan; Qi, Nanshan; Xie, Mingquan; Cai, Jianping

    2012-07-01

    Eimeria tenella, an apicomplexan parasite in chickens, possesses an apicoplast and its associated metabolic pathways including the Type II fatty acid synthesis (FAS II). Malonyl-CoA:acyl-carry protein transacylase (MCAT) encoded by the fabD gene is one of the essential enzymes in the FAS II system. In the present study, the entire E. tenella MCAT gene (EtfabD) was cloned and sequenced. Immunolabeling located this protein in the apicoplast organelle in coccidial sporozoites. Functional replacement of the fabD gene with amber mutation of E. coli temperature-sensitive LA2-89 strain by E. tenella EtMCAT demonstrated that EcFabD and EtMCAT perform the same biochemical function. The recombinant EtMCAT protein was expressed and its general biochemical features were also determined. An alkaloid natural product corytuberine (CAS: 517-56-6) could specifically inhibit the EtMCAT activity (IC(50)=16.47μM), but the inhibition of parasite growth in vitro by corytuberine was very weak (the predicted MIC(50)=0.65mM). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations.

    PubMed

    Suratanee, Apichat; Plaimas, Kitiporn

    2017-01-01

    The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k -nearest neighbor (R k NN) search. The R k NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R k NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.

  11. Encounter complexes and dimensionality reduction in protein-protein association.

    PubMed

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-04-08

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein-protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001.

  12. Electrostatic design of protein-protein association rates.

    PubMed

    Schreiber, Gideon; Shaul, Yossi; Gottschalk, Kay E

    2006-01-01

    De novo design and redesign of proteins and protein complexes have made promising progress in recent years. Here, we give an overview of how to use available computer-based tools to design proteins to bind faster and tighter to their protein-complex partner by electrostatic optimization between the two proteins. Electrostatic optimization is possible because of the simple relation between the Debye-Huckel energy of interaction between a pair of proteins and their rate of association. This can be used for rapid, structure-based calculations of the electrostatic attraction between the two proteins in the complex. Using these principles, we developed two computer programs that predict the change in k(on), and as such the affinity, on introducing charged mutations. The two programs have a web interface that is available at www.weizmann.ac.il/home/bcges/PARE.html and http://bip.weizmann.ac.il/hypare. When mutations leading to charge optimization are introduced outside the physical binding site, the rate of dissociation is unchanged and therefore the change in k(on) parallels that of the affinity. This design method was evaluated on a number of different protein complexes resulting in binding rates and affinities of hundreds of fold faster and tighter compared to wild type. In this chapter, we demonstrate the procedure and go step by step over the methodology of using these programs for protein-association design. Finally, the way to easily implement the principle of electrostatic design for any protein complex of choice is shown.

  13. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites.

    PubMed

    Woo, Yong H; Ansari, Hifzur; Otto, Thomas D; Klinger, Christen M; Kolisko, Martin; Michálek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; del Campo, Javier; Cihlář, Jaromír; Flegontov, Pavel; Gornik, Sebastian G; Hajdušková, Eva; Horák, Aleš; Janouškovec, Jan; Katris, Nicholas J; Mast, Fred D; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini K; Rawlings, Neil D; Padron-Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel E; Doerig, Christian; Bowler, Chris; Keeling, Patrick J; Roos, David S; Dacks, Joel B; Templeton, Thomas J; Waller, Ross F; Lukeš, Julius; Oborník, Miroslav; Pain, Arnab

    2015-07-15

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga.

  14. Coarse-Grained Simulations of Protein-Protein Association: An Energy Landscape Perspective

    PubMed Central

    Ravikumar, Krishnakumar M.; Huang, Wei; Yang, Sichun

    2012-01-01

    Understanding protein-protein association is crucial in revealing the molecular basis of many biological processes. Here, we describe a theoretical simulation pipeline to study protein-protein association from an energy landscape perspective. First, a coarse-grained model is implemented and its applications are demonstrated via molecular dynamics simulations for several protein complexes. Second, an enhanced search method is used to efficiently sample a broad range of protein conformations. Third, multiple conformations are identified and clustered from simulation data and further projected on a three-dimensional globe specifying protein orientations and interacting energies. Results from several complexes indicate that the crystal-like conformation is favorable on the energy landscape even if the landscape is relatively rugged with metastable conformations. A closer examination on molecular forces shows that the formation of associated protein complexes can be primarily electrostatics-driven, hydrophobics-driven, or a combination of both in stabilizing specific binding interfaces. Taken together, these results suggest that the coarse-grained simulations and analyses provide an alternative toolset to study protein-protein association occurring in functional biomolecular complexes. PMID:22947945

  15. Coarse-grained simulations of protein-protein association: an energy landscape perspective.

    PubMed

    Ravikumar, Krishnakumar M; Huang, Wei; Yang, Sichun

    2012-08-22

    Understanding protein-protein association is crucial in revealing the molecular basis of many biological processes. Here, we describe a theoretical simulation pipeline to study protein-protein association from an energy landscape perspective. First, a coarse-grained model is implemented and its applications are demonstrated via molecular dynamics simulations for several protein complexes. Second, an enhanced search method is used to efficiently sample a broad range of protein conformations. Third, multiple conformations are identified and clustered from simulation data and further projected on a three-dimensional globe specifying protein orientations and interacting energies. Results from several complexes indicate that the crystal-like conformation is favorable on the energy landscape even if the landscape is relatively rugged with metastable conformations. A closer examination on molecular forces shows that the formation of associated protein complexes can be primarily electrostatics-driven, hydrophobics-driven, or a combination of both in stabilizing specific binding interfaces. Taken together, these results suggest that the coarse-grained simulations and analyses provide an alternative toolset to study protein-protein association occurring in functional biomolecular complexes. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Identification of a novel trafficking pathway exporting a replication protein, Orc2 to nucleus via classical secretory pathway in Plasmodium falciparum.

    PubMed

    Sharma, Rahul; Sharma, Bhumika; Gupta, Ashish; Dhar, Suman Kumar

    2018-05-01

    Malaria parasites use an extensive secretory pathway to traffic a number of proteins within itself and beyond. In higher eukaryotes, Endoplasmic Reticulum (ER) membrane bound transcription factors such as SREBP are reported to get processed en route and migrate to nucleus under the influence of specific cues. However, a protein constitutively trafficked to the nucleus via classical secretory pathway has not been reported. Herein, we report the presence of a novel trafficking pathway in an apicomplexan, Plasmodium falciparum where a homologue of an Origin Recognition Complex 2 (Orc2) goes to the nucleus following its association with the ER. Our work highlights the unconventional role of ER in protein trafficking and reports for the first time an ORC homologue getting trafficked through such a pathway to the nucleus where it may be involved in DNA replication and other ancillary functions. Such trafficking pathways may have a profound impact on the cell biology of a malaria parasite and have significant implications in strategizing new antimalarials. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Deep-sequencing to resolve complex diversity of apicomplexan parasites in platypuses and echidnas: Proof of principle for wildlife disease investigation.

    PubMed

    Šlapeta, Jan; Saverimuttu, Stefan; Vogelnest, Larry; Sangster, Cheryl; Hulst, Frances; Rose, Karrie; Thompson, Paul; Whittington, Richard

    2017-11-01

    The short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus) are iconic egg-laying monotremes (Mammalia: Monotremata) from Australasia. The aim of this study was to demonstrate the utility of diversity profiles in disease investigations of monotremes. Using small subunit (18S) rDNA amplicon deep-sequencing we demonstrated the presence of apicomplexan parasites and confirmed by direct and cloned amplicon gene sequencing Theileria ornithorhynchi, Theileria tachyglossi, Eimeria echidnae and Cryptosporidium fayeri. Using a combination of samples from healthy and diseased animals, we show a close evolutionary relationship between species of coccidia (Eimeria) and piroplasms (Theileria) from the echidna and platypus. The presence of E. echidnae was demonstrated in faeces and tissues affected by disseminated coccidiosis. Moreover, the presence of E. echidnae DNA in the blood of echidnas was associated with atoxoplasma-like stages in white blood cells, suggesting Hepatozoon tachyglossi blood stages are disseminated E. echidnae stages. These next-generation DNA sequencing technologies are suited to material and organisms that have not been previously characterised and for which the material is scarce. The deep sequencing approach supports traditional diagnostic methods, including microscopy, clinical pathology and histopathology, to better define the status quo. This approach is particularly suitable for wildlife disease investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning

    NASA Astrophysics Data System (ADS)

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2017-04-01

    Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate.

  19. Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning.

    PubMed

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2017-04-18

    Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate.

  20. PNAC: a protein nucleolar association classifier

    PubMed Central

    2011-01-01

    Background Although primarily known as the site of ribosome subunit production, the nucleolus is involved in numerous and diverse cellular processes. Recent large-scale proteomics projects have identified thousands of human proteins that associate with the nucleolus. However, in most cases, we know neither the fraction of each protein pool that is nucleolus-associated nor whether their association is permanent or conditional. Results To describe the dynamic localisation of proteins in the nucleolus, we investigated the extent of nucleolar association of proteins by first collating an extensively curated literature-derived dataset. This dataset then served to train a probabilistic predictor which integrates gene and protein characteristics. Unlike most previous experimental and computational studies of the nucleolar proteome that produce large static lists of nucleolar proteins regardless of their extent of nucleolar association, our predictor models the fluidity of the nucleolus by considering different classes of nucleolar-associated proteins. The new method predicts all human proteins as either nucleolar-enriched, nucleolar-nucleoplasmic, nucleolar-cytoplasmic or non-nucleolar. Leave-one-out cross validation tests reveal sensitivity values for these four classes ranging from 0.72 to 0.90 and positive predictive values ranging from 0.63 to 0.94. The overall accuracy of the classifier was measured to be 0.85 on an independent literature-based test set and 0.74 using a large independent quantitative proteomics dataset. While the three nucleolar-association groups display vastly different Gene Ontology biological process signatures and evolutionary characteristics, they collectively represent the most well characterised nucleolar functions. Conclusions Our proteome-wide classification of nucleolar association provides a novel representation of the dynamic content of the nucleolus. This model of nucleolar localisation thus increases the coverage while providing

  1. A new protein-protein interaction sensor based on tripartite split-GFP association.

    PubMed

    Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-10-04

    Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.

  2. A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association

    PubMed Central

    Cabantous, Stéphanie; Nguyen, Hau B.; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A.; Favre, Gilles; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2013-01-01

    Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence. PMID:24092409

  3. The Microtubule-Stabilizing Protein CLASP1 Associates with the Theileria annulata Schizont Surface via Its Kinetochore-Binding Domain

    PubMed Central

    Huber, Sandra; Theiler, Romina; de Quervain, Daniel; Wiens, Olga; Karangenc, Tulin; Heussler, Volker; Dobbelaere, Dirk

    2017-01-01

    ABSTRACT Theileria is an apicomplexan parasite whose presence within the cytoplasm of a leukocyte induces cellular transformation and causes uncontrolled proliferation and clonal expansion of the infected cell. The intracellular schizont utilizes the host cell’s own mitotic machinery to ensure its distribution to both daughter cells by associating closely with microtubules (MTs) and incorporating itself within the central spindle. We show that CLASP1, an MT-stabilizing protein that plays important roles in regulating kinetochore-MT attachment and central spindle positioning, is sequestered at the Theileria annulata schizont surface. We used live-cell imaging and immunofluorescence in combination with MT depolymerization assays to demonstrate that CLASP1 binds to the schizont surface in an MT-independent manner throughout the cell cycle and that the recruitment of the related CLASP2 protein to the schizont is MT dependent. By transfecting Theileria-infected cells with a panel of truncation mutants, we found that the kinetochore-binding domain of CLASP1 is necessary and sufficient for parasite localization, revealing that CLASP1 interaction with the parasite occurs independently of EB1. We overexpressed the MT-binding domain of CLASP1 in parasitized cells. This exhibited a dominant negative effect on host MT stability and led to altered parasite size and morphology, emphasizing the importance of proper MT dynamics for Theileria partitioning during host cell division. Using coimmunoprecipitation, we demonstrate that CLASP1 interacts, directly or indirectly, with the schizont membrane protein p104, and we describe for the first time TA03615, a Theileria protein which localizes to the parasite surface, where it has the potential to participate in parasite-host interactions. IMPORTANCE T. annulata, the only eukaryote known to be capable of transforming another eukaryote, is a widespread parasite of veterinary importance that puts 250 million cattle at risk worldwide

  4. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    PubMed Central

    Woo, Yong H; Ansari, Hifzur; Otto, Thomas D; Klinger, Christen M; Kolisko, Martin; Michálek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; del Campo, Javier; Cihlář, Jaromír; Flegontov, Pavel; Gornik, Sebastian G; Hajdušková, Eva; Horák, Aleš; Janouškovec, Jan; Katris, Nicholas J; Mast, Fred D; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini K; Rawlings, Neil D; Padron-Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel E; Doerig, Christian; Bowler, Chris; Keeling, Patrick J; Roos, David S; Dacks, Joel B; Templeton, Thomas J; Waller, Ross F; Lukeš, Julius; Oborník, Miroslav; Pain, Arnab

    2015-01-01

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI: http://dx.doi.org/10.7554/eLife.06974.001 PMID:26175406

  5. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  6. Proteins related to green algal striated fiber assemblin are present in stramenopiles and alveolates.

    PubMed

    Harper, John D I; Thuet, Jacques; Lechtreck, Karl F; Hardham, Adrienne R

    2009-07-01

    In green algae, striated fiber assemblin (SFA) is the major protein of the striated microtubule-associated fibers that are structural elements in the flagellar basal apparatus. Using Basic Local Alignment Search Tool (BLAST) searches of recently established databases, SFA-like sequences were detected in the genomes not only of green algal species but also of a range of other protists. These included species in two alveolate subgroups, the ciliates (Tetrahymena thermophila, Paramecium tetraurelia) and the dinoflagellates (Perkinsus marinus), and two stramenopile subgroups, the oomycetes (Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans) and the diatoms (Thalassiosira pseudonana, Phaeodactylum tricornutum). Together with earlier identification of SFA-like sequences in the apicomplexans, these results indicate that homologs of SFA are present across the alveolates and stramenopiles. Antibodies raised against SFA from the green alga, Spermatozopsis similis, react in immunofluorescence assays with the two basal bodies and an anteriorly directed striated fiber in the flagellar apparatus of biflagellate Phytophthora zoospores.

  7. DAPD: A Knowledgebase for Diabetes Associated Proteins.

    PubMed

    Gopinath, Krishnasamy; Jayakumararaj, Ramaraj; Karthikeyan, Muthusamy

    2015-01-01

    Recent advancements in genomics and proteomics provide a solid foundation for understanding the pathogenesis of diabetes. Proteomics of diabetes associated pathways help to identify the most potent target for the management of diabetes. The relevant datasets are scattered in various prominent sources which takes much time to select the therapeutic target for the clinical management of diabetes. However, additional information about target proteins is needed for validation. This lacuna may be resolved by linking diabetes associated genes, pathways and proteins and it will provide a strong base for the treatment and planning management strategies of diabetes. Thus, a web source "Diabetes Associated Proteins Database (DAPD)" has been developed to link the diabetes associated genes, pathways and proteins using PHP, MySQL. The current version of DAPD has been built with proteins associated with different types of diabetes. In addition, DAPD has been linked to external sources to gain the access to more participatory proteins and their pathway network. DAPD will reduce the time and it is expected to pave the way for the discovery of novel anti-diabetic leads using computational drug designing for diabetes management. DAPD is open accessed via following url www.mkarthikeyan.bioinfoau.org/dapd.

  8. Large-scale De Novo Prediction of Physical Protein-Protein Association*

    PubMed Central

    Elefsinioti, Antigoni; Saraç, Ömer Sinan; Hegele, Anna; Plake, Conrad; Hubner, Nina C.; Poser, Ina; Sarov, Mihail; Hyman, Anthony; Mann, Matthias; Schroeder, Michael; Stelzl, Ulrich; Beyer, Andreas

    2011-01-01

    Information about the physical association of proteins is extensively used for studying cellular processes and disease mechanisms. However, complete experimental mapping of the human interactome will remain prohibitively difficult in the near future. Here we present a map of predicted human protein interactions that distinguishes functional association from physical binding. Our network classifies more than 5 million protein pairs predicting 94,009 new interactions with high confidence. We experimentally tested a subset of these predictions using yeast two-hybrid analysis and affinity purification followed by quantitative mass spectrometry. Thus we identified 462 new protein-protein interactions and confirmed the predictive power of the network. These independent experiments address potential issues of circular reasoning and are a distinctive feature of this work. Analysis of the physical interactome unravels subnetworks mediating between different functional and physical subunits of the cell. Finally, we demonstrate the utility of the network for the analysis of molecular mechanisms of complex diseases by applying it to genome-wide association studies of neurodegenerative diseases. This analysis provides new evidence implying TOMM40 as a factor involved in Alzheimer's disease. The network provides a high-quality resource for the analysis of genomic data sets and genetic association studies in particular. Our interactome is available via the hPRINT web server at: www.print-db.org. PMID:21836163

  9. MAMP (microbe-associated molecular pattern)-induced changes in plasma membrane-associated proteins.

    PubMed

    Uhlíková, Hana; Solanský, Martin; Hrdinová, Vendula; Šedo, Ondrej; Kašparovský, Tomáš; Hejátko, Jan; Lochman, Jan

    2017-03-01

    Plant plasma membrane associated proteins play significant roles in Microbe-Associated Molecular Pattern (MAMP) mediated defence responses including signal transduction, membrane transport or energetic metabolism. To elucidate the dynamics of proteins associated with plasma membrane in response to cryptogein, a well-known MAMP of defence reaction secreted by the oomycete Phytophthora cryptogea, 2D-Blue Native/SDS gel electrophoresis of plasma membrane fractions was employed. This approach revealed 21 up- or down-regulated protein spots of which 15 were successfully identified as proteins related to transport through plasma membrane, vesicle trafficking, and metabolic enzymes including cytosolic NADP-malic enzyme and glutamine synthetase. Observed changes in proteins were also confirmed on transcriptional level by qRT-PCR analysis. In addition, a significantly decreased accumulation of transcripts observed after employment of a mutant variant of cryptogein Leu41Phe, exhibiting a conspicuous defect in induction of resistance, sustains the contribution of identified proteins in cryptogein-triggered cellular responses. Our data provide further evidence for dynamic MAMP-induced changes in plasma membrane associated proteins. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Electrostatic rate enhancement and transient complex of protein-protein association.

    PubMed

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2008-04-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to approximately 10(5)-10(6) M(-1) s(-1). Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441-2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by $k_{\\bf D}$ = $k_{D}0\\ {exp} ( - \\langle U_{el} \\rangle;{\\star}/k_{B} T),$ where k(D) and k(D0) are the rates in the presence and absence of electrostatic interactions, respectively, U(el) is the average electrostatic interaction energy in a "transient-complex" ensemble, and k(B)T is the thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215-224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. (c) 2007 Wiley-Liss, Inc.

  11. Electrostatic Rate Enhancement and Transient Complex of Protein-Protein Association

    PubMed Central

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2012-01-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ~105 – 106 M−1s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys. J. 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by kD = kD0 exp(−*/ kBT), where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, * is the average electrostatic interaction energy in a “transient-complex” ensemble, and kBT is thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007, 15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. PMID:17932929

  12. Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera.

    PubMed

    Hornok, Sándor; Estók, Péter; Kováts, Dávid; Flaisz, Barbara; Takács, Nóra; Szőke, Krisztina; Krawczyk, Aleksandra; Kontschán, Jenő; Gyuranecz, Miklós; Fedák, András; Farkas, Róbert; Haarsma, Anne-Jifke; Sprong, Hein

    2015-08-28

    Bats are among the most eco-epidemiologically important mammals, owing to their presence in human settlements and animal keeping facilities. Roosting of bats in buildings may bring pathogens of veterinary-medical importance into the environment of domestic animals and humans. In this context bats have long been studied as carriers of various pathogen groups. However, despite their close association with arthropods (both in their food and as their ectoparasites), only a few molecular surveys have been published on their role as carriers of vector-borne protozoa. The aim of the present study was to compensate for this scarcity of information. Altogether 221 (mostly individual) bat faecal samples were collected in Hungary and the Netherlands. The DNA was extracted, and analysed with PCR and sequencing for the presence of arthropod-borne apicomplexan protozoa. Babesia canis canis (with 99-100% homology) was identified in five samples, all from Hungary. Because it was excluded with an Ixodidae-specific PCR that the relevant bats consumed ticks, these sequences derive either from insect carriers of Ba. canis, or from the infection of bats. In one bat faecal sample from the Netherlands a sequence having the highest (99%) homology to Besnoitia besnoiti was amplified. These findings suggest that some aspects of the epidemiology of canine babesiosis are underestimated or unknown, i.e. the potential role of insect-borne mechanical transmission and/or the susceptibility of bats to Ba. canis. In addition, bats need to be added to future studies in the quest for the final host of Be. besnoiti.

  13. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria

    PubMed Central

    Jackson, Christopher J; Norman, John E; Schnare, Murray N; Gray, Michael W; Keeling, Patrick J; Waller, Ross F

    2007-01-01

    Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA

  14. Cdk1-cyclin B1-mediated phosphorylation of tumor-associated microtubule-associated protein/cytoskeleton-associated protein 2 in mitosis.

    PubMed

    Hong, Kyung Uk; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-06-12

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis.

  15. Cdk1-Cyclin B1-mediated Phosphorylation of Tumor-associated Microtubule-associated Protein/Cytoskeleton-associated Protein 2 in Mitosis*

    PubMed Central

    Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis. PMID:19369249

  16. Protein profiles associated with survival in lung adenocarcinoma

    PubMed Central

    Chen, Guoan; Gharib, Tarek G; Wang, Hong; Huang, Chiang-Ching; Kuick, Rork; Thomas, Dafydd G.; Shedden, Kerby A.; Misek, David E.; Taylor, Jeremy M. G.; Giordano, Thomas J.; Kardia, Sharon L. R.; Iannettoni, Mark D.; Yee, John; Hogg, Philip J.; Orringer, Mark B.; Hanash, Samir M.; Beer, David G.

    2003-01-01

    Morphologic assessment of lung tumors is informative but insufficient to adequately predict patient outcome. We previously identified transcriptional profiles that predict patient survival, and here we identify proteins associated with patient survival in lung adenocarcinoma. A total of 682 individual protein spots were quantified in 90 lung adenocarcinomas by using quantitative two-dimensional polyacrylamide gel electrophoresis analysis. A leave-one-out cross-validation procedure using the top 20 survival-associated proteins identified by Cox modeling indicated that protein profiles as a whole can predict survival in stage I tumor patients (P = 0.01). Thirty-three of 46 survival-associated proteins were identified by using mass spectrometry. Expression of 12 candidate proteins was confirmed as tumor-derived with immunohistochemical analysis and tissue microarrays. Oligonucleotide microarray results from both the same tumors and from an independent study showed mRNAs associated with survival for 11 of 27 encoded genes. Combined analysis of protein and mRNA data revealed 11 components of the glycolysis pathway as associated with poor survival. Among these candidates, phosphoglycerate kinase 1 was associated with survival in the protein study, in both mRNA studies and in an independent validation set of 117 adenocarcinomas and squamous lung tumors using tissue microarrays. Elevated levels of phosphoglycerate kinase 1 in the serum were also significantly correlated with poor outcome in a validation set of 107 patients with lung adenocarcinomas using ELISA analysis. These studies identify new prognostic biomarkers and indicate that protein expression profiles can predict the outcome of patients with early-stage lung cancer. PMID:14573703

  17. BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei

    PubMed Central

    Oppenheim, Rebecca D.; Limenitakis, Julien; Polonais, Valerie; Seeber, Frank; Barrett, Michael P.; Billker, Oliver; McConville, Malcolm J.; Soldati-Favre, Dominique

    2014-01-01

    While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens. PMID:25032958

  18. Computing Protein-Protein Association Affinity with Hybrid Steered Molecular Dynamics.

    PubMed

    Rodriguez, Roberto A; Yu, Lili; Chen, Liao Y

    2015-09-08

    Computing protein-protein association affinities is one of the fundamental challenges in computational biophysics/biochemistry. The overwhelming amount of statistics in the phase space of very high dimensions cannot be sufficiently sampled even with today's high-performance computing power. In this article, we extend a potential of mean force (PMF)-based approach, the hybrid steered molecular dynamics (hSMD) approach we developed for ligand-protein binding, to protein-protein association problems. For a protein complex consisting of two protomers, P1 and P2, we choose m (≥3) segments of P1 whose m centers of mass are to be steered in a chosen direction and n (≥3) segments of P2 whose n centers of mass are to be steered in the opposite direction. The coordinates of these m + n centers constitute a phase space of 3(m + n) dimensions (3(m + n)D). All other degrees of freedom of the proteins, ligands, solvents, and solutes are freely subject to the stochastic dynamics of the all-atom model system. Conducting SMD along a line in this phase space, we obtain the 3(m + n)D PMF difference between two chosen states: one single state in the associated state ensemble and one single state in the dissociated state ensemble. This PMF difference is the first of four contributors to the protein-protein association energy. The second contributor is the 3(m + n - 1)D partial partition in the associated state accounting for the rotations and fluctuations of the (m + n - 1) centers while fixing one of the m + n centers of the P1-P2 complex. The two other contributors are the 3(m - 1)D partial partition of P1 and the 3(n - 1)D partial partition of P2 accounting for the rotations and fluctuations of their m - 1 or n - 1 centers while fixing one of the m/n centers of P1/P2 in the dissociated state. Each of these three partial partitions can be factored exactly into a 6D partial partition in multiplication with a remaining factor accounting for the small fluctuations while fixing three

  19. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology.

    PubMed

    Tudor, E L; Galtrey, C M; Perkinton, M S; Lau, K-F; De Vos, K J; Mitchell, J C; Ackerley, S; Hortobágyi, T; Vámos, E; Leigh, P N; Klasen, C; McLoughlin, D M; Shaw, C E; Miller, C C J

    2010-05-19

    Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Protein associations and analytical ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Laue, Tom

    2010-03-01

    Analytical ultracentrifugation (AUC) is a first principle method for characterizing the thermodynamics of macromolecules in solution. Since AUC directly assesses mass, it is particularly useful for characterizing both reversible and irreversible binding interactions between macromolecules. The principle measurement in AUC is the concentration as a function of radial position, which may be provided by either absorbance, interference or fluorescence detection. Each of these three different detectors may be used to characterize protein associations using either sedimentation equilibrium or sedimentation velocity analysis. Examples will be shown for characterizing irreversible (aggregate) formation, high-accuracy reversible association analysis, and the detection of protein interactions in complex and concentrated fluids (e.g. serum, cell cytosol).

  1. Plasmodium cysteine repeat modular proteins 1-4: complex proteins with roles throughout the malaria parasite life cycle.

    PubMed

    Thompson, Joanne; Fernandez-Reyes, Delmiro; Sharling, Lisa; Moore, Sally G; Eling, Wijnand M; Kyes, Sue A; Newbold, Christopher I; Kafatos, Fotis C; Janse, Chris J; Waters, Andrew P

    2007-06-01

    The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.

  2. Discovering disease-associated genes in weighted protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  3. Nanoparticles-cell association predicted by protein corona fingerprints

    NASA Astrophysics Data System (ADS)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  4. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development

    PubMed Central

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K.; Samuelson, John; Ferguson, David J. P.

    2017-01-01

    ABSTRACT The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother’s cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis, IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma. IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative

  5. Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development.

    PubMed

    Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny; Bandini, Giulia; Cheng, Katherine; Kosber, Aziz; Agop-Nersesian, Carolina; Howe, Daniel K; Samuelson, John; Ferguson, David J P; Gubbels, Marc-Jan

    2017-01-01

    The inner membrane complex (IMC) of apicomplexan parasites contains a network of intermediate filament-like proteins. The 14 alveolin domain-containing IMC proteins in Toxoplasma gondii fall into different groups defined by their distinct spatiotemporal dynamics during the internal budding process of tachyzoites. Here, we analyzed representatives of different IMC protein groups across all stages of the Toxoplasma life cycle and during Sarcocystis neurona asexual development. We found that across asexually dividing Toxoplasma stages, IMC7 is present exclusively in the mother's cytoskeleton, whereas IMC1 and IMC3 are both present in mother and daughter cytoskeletons (IMC3 is strongly enriched in daughter buds). In developing macro- and microgametocytes, IMC1 and -3 are absent, whereas IMC7 is lost in early microgametocytes but retained in macrogametocytes until late in their development. We found no roles for IMC proteins during meiosis and sporoblast formation. However, we observed that IMC1 and IMC3, but not IMC7, are present in sporozoites. Although the spatiotemporal pattern of IMC15 and IMC3 suggests orthologous functions in Sarcocystis , IMC7 may have functionally diverged in Sarcocystis merozoites. To functionally characterize IMC proteins, we knocked out IMC7, -12, -14, and -15 in Toxoplasma . IMC14 and -15 appear to be involved in switching between endodyogeny and endopolygeny. In addition, IMC7, -12, and -14, which are all recruited to the cytoskeleton outside cytokinesis, are critical for the structural integrity of extracellular tachyzoites. Altogether, stage- and development-specific roles for IMC proteins can be discerned, suggesting different niches for each IMC protein across the entire life cycle. IMPORTANCE The inner membrane complex (IMC) is a defining feature of apicomplexan parasites key to both their motility and unique cell division. To provide further insights into the IMC, we analyzed the dynamics and functions of representative alveolin

  6. RAIN: RNA–protein Association and Interaction Networks

    PubMed Central

    Junge, Alexander; Refsgaard, Jan C.; Garde, Christian; Pan, Xiaoyong; Santos, Alberto; Alkan, Ferhat; Anthon, Christian; von Mering, Christian; Workman, Christopher T.; Jensen, Lars Juhl; Gorodkin, Jan

    2017-01-01

    Protein association networks can be inferred from a range of resources including experimental data, literature mining and computational predictions. These types of evidence are emerging for non-coding RNAs (ncRNAs) as well. However, integration of ncRNAs into protein association networks is challenging due to data heterogeneity. Here, we present a database of ncRNA–RNA and ncRNA–protein interactions and its integration with the STRING database of protein–protein interactions. These ncRNA associations cover four organisms and have been established from curated examples, experimental data, interaction predictions and automatic literature mining. RAIN uses an integrative scoring scheme to assign a confidence score to each interaction. We demonstrate that RAIN outperforms the underlying microRNA-target predictions in inferring ncRNA interactions. RAIN can be operated through an easily accessible web interface and all interaction data can be downloaded. Database URL: http://rth.dk/resources/rain PMID:28077569

  7. The online Tabloid Proteome: an annotated database of protein associations

    PubMed Central

    Turan, Demet; Tavernier, Jan

    2018-01-01

    Abstract A complete knowledge of the proteome can only be attained by determining the associations between proteins, along with the nature of these associations (e.g. physical contact in protein–protein interactions, participation in complex formation or different roles in the same pathway). Despite extensive efforts in elucidating direct protein interactions, our knowledge on the complete spectrum of protein associations remains limited. We therefore developed a new approach that detects protein associations from identifications obtained after re-processing of large-scale, public mass spectrometry-based proteomics data. Our approach infers protein association based on the co-occurrence of proteins across many different proteomics experiments, and provides information that is almost completely complementary to traditional direct protein interaction studies. We here present a web interface to query and explore the associations derived from this method, called the online Tabloid Proteome. The online Tabloid Proteome also integrates biological knowledge from several existing resources to annotate our derived protein associations. The online Tabloid Proteome is freely available through a user-friendly web interface, which provides intuitive navigation and data exploration options for the user at http://iomics.ugent.be/tabloidproteome. PMID:29040688

  8. A Luciferase-fragment Complementation Assay to Detect Lipid Droplet-associated Protein-Protein Interactions*

    PubMed Central

    Kolkhof, Petra; Werthebach, Michael; van de Venn, Anna; Poschmann, Gereon; Chen, Lili; Welte, Michael; Stühler, Kai; Beller, Mathias

    2017-01-01

    A critical challenge for all organisms is to carefully control the amount of lipids they store. An important node for this regulation is the protein coat present at the surface of lipid droplets (LDs), the intracellular organelles dedicated to lipid storage. Only limited aspects of this regulation are understood so far. For the probably best characterized case, the regulation of lipolysis in mammals, some of the major protein players have been identified, and it has been established that this process crucially depends on an orchestrated set of protein-protein interactions. Proteomic analysis has revealed that LDs are associated with dozens, if not hundreds, of different proteins, most of them poorly characterized, with even fewer data regarding which of them might physically interact. To comprehensively understand the mechanism of lipid storage regulation, it will likely be essential to define the interactome of LD-associated proteins. Previous studies of such interactions were hampered by technical limitations. Therefore, we have developed a split-luciferase based protein-protein interaction assay and test for interactions among 47 proteins from Drosophila and from mouse. We confirmed previously described interactions and identified many new ones. In 1561 complementation tests, we assayed for interactions among 487 protein pairs of which 92 (19%) resulted in a successful luciferase complementation. These results suggest that a prominent fraction of the LD-associated proteome participates in protein-protein interactions. In targeted experiments, we analyzed the two proteins Jabba and CG9186 in greater detail. Jabba mediates the sequestration of histones to LDs. We successfully applied our split luciferase complementation assay to learn more about this function as we were e.g. able to map the interaction between Jabba and histones. For CG9186, expression levels affect the positioning of LDs. Here, we reveal the ubiquitination of CG9186, and link this

  9. Inference of domain-disease associations from domain-protein, protein-disease and disease-disease relationships.

    PubMed

    Zhang, Wangshu; Coba, Marcelo P; Sun, Fengzhu

    2016-01-11

    Protein domains can be viewed as portable units of biological function that defines the functional properties of proteins. Therefore, if a protein is associated with a disease, protein domains might also be associated and define disease endophenotypes. However, knowledge about such domain-disease relationships is rarely available. Thus, identification of domains associated with human diseases would greatly improve our understanding of the mechanism of human complex diseases and further improve the prevention, diagnosis and treatment of these diseases. Based on phenotypic similarities among diseases, we first group diseases into overlapping modules. We then develop a framework to infer associations between domains and diseases through known relationships between diseases and modules, domains and proteins, as well as proteins and disease modules. Different methods including Association, Maximum likelihood estimation (MLE), Domain-disease pair exclusion analysis (DPEA), Bayesian, and Parsimonious explanation (PE) approaches are developed to predict domain-disease associations. We demonstrate the effectiveness of all the five approaches via a series of validation experiments, and show the robustness of the MLE, Bayesian and PE approaches to the involved parameters. We also study the effects of disease modularization in inferring novel domain-disease associations. Through validation, the AUC (Area Under the operating characteristic Curve) scores for Bayesian, MLE, DPEA, PE, and Association approaches are 0.86, 0.84, 0.83, 0.83 and 0.79, respectively, indicating the usefulness of these approaches for predicting domain-disease relationships. Finally, we choose the Bayesian approach to infer domains associated with two common diseases, Crohn's disease and type 2 diabetes. The Bayesian approach has the best performance for the inference of domain-disease relationships. The predicted landscape between domains and diseases provides a more detailed view about the disease

  10. Absolute protein-protein association rate constants from flexible, coarse-grained Brownian dynamics simulations: the role of intermolecular hydrodynamic interactions in barnase-barstar association.

    PubMed

    Frembgen-Kesner, Tamara; Elcock, Adrian H

    2010-11-03

    Theory and computation have long been used to rationalize the experimental association rate constants of protein-protein complexes, and Brownian dynamics (BD) simulations, in particular, have been successful in reproducing the relative rate constants of wild-type and mutant protein pairs. Missing from previous BD studies of association kinetics, however, has been the description of hydrodynamic interactions (HIs) between, and within, the diffusing proteins. Here we address this issue by rigorously including HIs in BD simulations of the barnase-barstar association reaction. We first show that even very simplified representations of the proteins--involving approximately one pseudoatom for every three residues in the protein--can provide excellent reproduction of the absolute association rate constants of wild-type and mutant protein pairs. We then show that simulations that include intermolecular HIs also produce excellent estimates of association rate constants, but, for a given reaction criterion, yield values that are decreased by ∼35-80% relative to those obtained in the absence of intermolecular HIs. The neglect of intermolecular HIs in previous BD simulation studies, therefore, is likely to have contributed to the somewhat overestimated absolute rate constants previously obtained. Consequently, intermolecular HIs could be an important component to include in accurate modeling of the kinetics of macromolecular association events. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Protein-Based Three-Dimensional Memories and Associative Processors

    NASA Astrophysics Data System (ADS)

    Birge, Robert

    2008-03-01

    The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial

  12. Protein Traffic to the Plasmodium falciparum apicoplast: evidence for a sorting branch point at the Golgi.

    PubMed

    Heiny, Sabrina R; Pautz, Sabine; Recker, Mario; Przyborski, Jude M

    2014-12-01

    Plasmodium falciparum, similar to many other apicomplexan parasites, contains an apicoplast, a plastid organelle of secondary endosymbiotic origin. Nuclear-encoded proteins are targeted to the apicoplast by a bipartite topogenic signal consisting of (i) an endoplasmic reticulum (ER)-type N-terminal secretory signal peptide, followed by (ii) a plant-like transit peptide. Although the signals responsible for transport of most proteins to the apicoplast are well described, the route of trafficking from the ER to the outermost apicoplast membrane is still a matter of debate. Current models of trafficking to the apicoplast suggest that proteins destined for this organelle are, on entry into the lumen of the ER, diverted from the default secretory pathway to a specialized vesicular system which carries proteins directly from the ER to the outer apicoplast membrane. Here, we have re-examined this trafficking pathway. By titrating wild-type and mutant apicoplast transit peptides against different ER retrieval sequences and studying protein transport in a brefeldin A-resistant parasite line, we generated data which suggest a direct involvement of the Golgi in traffic of soluble proteins to the P. falciparum apicoplast. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Characterizing protein domain associations by Small-molecule ligand binding

    PubMed Central

    Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2012-01-01

    Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168

  14. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    PubMed

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression. © 2013 John Wiley & Sons Ltd.

  15. Characterization of membrane association of Rinderpest virus matrix protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhashri, R.; Shaila, M.S.

    2007-04-20

    Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M proteinmore » gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein.« less

  16. Community of protein complexes impacts disease association

    PubMed Central

    Wang, Qianghu; Liu, Weisha; Ning, Shangwei; Ye, Jingrun; Huang, Teng; Li, Yan; Wang, Peng; Shi, Hongbo; Li, Xia

    2012-01-01

    One important challenge in the post-genomic era is uncovering the relationships among distinct pathophenotypes by using molecular signatures. Given the complex functional interdependencies between cellular components, a disease is seldom the consequence of a defect in a single gene product, instead reflecting the perturbations of a group of closely related gene products that carry out specific functions together. Therefore, it is meaningful to explore how the community of protein complexes impacts disease associations. Here, by integrating a large amount of information from protein complexes and the cellular basis of diseases, we built a human disease network in which two diseases are linked if they share common disease-related protein complex. A systemic analysis revealed that linked disease pairs exhibit higher comorbidity than those that have no links, and that the stronger association two diseases have based on protein complexes, the higher comorbidity they are prone to display. Moreover, more connected diseases tend to be malignant, which have high prevalence. We provide novel disease associations that cannot be identified through previous analysis. These findings will potentially provide biologists and clinicians new insights into the etiology, classification and treatment of diseases. PMID:22549411

  17. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research

    PubMed Central

    2016-01-01

    SUMMARY The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle. PMID:27357278

  18. Molecular characterization and analysis of a novel protein disulfide isomerase-like protein of Eimeria tenella.

    PubMed

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC). BLAST analysis showed that the EtPDIL protein was 55-59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells. These results

  19. Molecular Characterization and Analysis of a Novel Protein Disulfide Isomerase-Like Protein of Eimeria tenella

    PubMed Central

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC). BLAST analysis showed that the EtPDIL protein was 55–59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells. These results

  20. Transient phosphorylation of tumor associated microtubule associated protein (TMAP)/cytoskeleton associated protein 2 (CKAP2) at Thr-596 during early phases of mitosis.

    PubMed

    Hong, Kyung Uk; Choi, Yong-Bock; Lee, Jung-Hwa; Kim, Hyun-Jun; Kwon, Hye-Rim; Seong, Yeon-Sun; Kim, Heung Tae; Park, Joobae; Bae, Chang-Dae; Hong, Kyeong-Man

    2008-08-31

    Tumor associated microtubule associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2) is a mitotic spindle-associated protein whose expression is cell cycle-regulated and also frequently deregulated in cancer cells. Two monoclonal antibodies (mAbs) against TMAP/CKAP2 were produced: B-1-13 and D-12-3. Interestingly, the reactivity of mAb D-12-3 to TMAP/CKAP2 was markedly decreased specifically in mitotic cell lysate. The epitope mapping study showed that mAb D-12-3 recognizes the amino acid sequence between 569 and 625 and that phosphorylation at T596 completely abolishes the reactivity of the antibody, suggesting that the differential reactivity originates from the phosphorylation status at T596. Immunofluorescence staining showed that mAb D-12-3 fails to detect TMAP/CKAP2 in mitotic cells between prophase and metaphase, but the staining becomes evident again in anaphase, suggesting that phosphorylation at T596 occurs transiently during early phases of mitosis. These results suggest that the cellular functions of TMAP/CKAP2 might be regulated by timely phosphorylation and dephosphorylation during the course of mitosis.

  1. Transient phosphorylation of tumor associated microtubule associated protein (TMAP)/cytoskeleton associated protein 2 (CKAP2) at Thr-596 during early phases of mitosis

    PubMed Central

    Hong, Kyung Uk; Choi, Yong-Bock; Lee, Jung-Hwa; Kim, Hyun-Jun; Kwon, Hye-Rim; Seong, Yeon-Sun; Kim, Heung Tae; Park, Joobae

    2008-01-01

    Tumor associated microtubule associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2) is a mitotic spindle-associated protein whose expression is cell cycle-regulated and also frequently deregulated in cancer cells. Two monoclonal antibodies (mAbs) against TMAP/CKAP2 were produced: B-1-13 and D-12-3. Interestingly, the reactivity of mAb D-12-3 to TMAP/CKAP2 was markedly decreased specifically in mitotic cell lysate. The epitope mapping study showed that mAb D-12-3 recognizes the amino acid sequence between 569 and 625 and that phosphorylation at T596 completely abolishes the reactivity of the antibody, suggesting that the differential reactivity originates from the phosphorylation status at T596. Immunofluorescence staining showed that mAb D-12-3 fails to detect TMAP/CKAP2 in mitotic cells between prophase and metaphase, but the staining becomes evident again in anaphase, suggesting that phosphorylation at T596 occurs transiently during early phases of mitosis. These results suggest that the cellular functions of TMAP/CKAP2 might be regulated by timely phosphorylation and dephosphorylation during the course of mitosis. PMID:18779650

  2. Interaction Network of Proteins Associated with Human Cytomegalovirus IE2-p86 Protein during Infection: A Proteomic Analysis

    PubMed Central

    Du, Guixin; Stinski, Mark F.

    2013-01-01

    Human cytomegalovirus protein IE2-p86 exerts its functions through interaction with other viral and cellular proteins. To further delineate its protein interaction network, we generated a recombinant virus expressing SG-tagged IE2-p86 and used tandem affinity purification coupled with mass spectrometry. A total of 9 viral proteins and 75 cellular proteins were found to associate with IE2-p86 protein during the first 48 hours of infection. The protein profile at 8, 24, and 48 h post infection revealed that UL84 tightly associated with IE2-p86, and more viral and cellular proteins came into association with IE2-p86 with the progression of virus infection. A computational analysis of the protein-protein interaction network indicated that all of the 9 viral proteins and most of the cellular proteins identified in the study are interconnected to varying degrees. Of the cellular proteins that were confirmed to associate with IE2-p86 by immunoprecipitation, C1QBP was further shown to be upregulated by HCMV infection and colocalized with IE2-p86, UL84 and UL44 in the virus replication compartment of the nucleus. The IE2-p86 interactome network demonstrated the temporal development of stable and abundant protein complexes that associate with IE2-p86 and provided a framework to benefit future studies of various protein complexes during HCMV infection. PMID:24358118

  3. Protein-driven inference of miRNA–disease associations

    PubMed Central

    Mørk, Søren; Pletscher-Frankild, Sune; Palleja Caro, Albert; Gorodkin, Jan; Jensen, Lars Juhl

    2014-01-01

    Motivation: MicroRNAs (miRNAs) are a highly abundant class of non-coding RNA genes involved in cellular regulation and thus also diseases. Despite miRNAs being important disease factors, miRNA–disease associations remain low in number and of variable reliability. Furthermore, existing databases and prediction methods do not explicitly facilitate forming hypotheses about the possible molecular causes of the association, thereby making the path to experimental follow-up longer. Results: Here we present miRPD in which miRNA–Protein–Disease associations are explicitly inferred. Besides linking miRNAs to diseases, it directly suggests the underlying proteins involved, which can be used to form hypotheses that can be experimentally tested. The inference of miRNAs and diseases is made by coupling known and predicted miRNA–protein associations with protein–disease associations text mined from the literature. We present scoring schemes that allow us to rank miRNA–disease associations inferred from both curated and predicted miRNA targets by reliability and thereby to create high- and medium-confidence sets of associations. Analyzing these, we find statistically significant enrichment for proteins involved in pathways related to cancer and type I diabetes mellitus, suggesting either a literature bias or a genuine biological trend. We show by example how the associations can be used to extract proteins for disease hypothesis. Availability and implementation: All datasets, software and a searchable Web site are available at http://mirpd.jensenlab.org. Contact: lars.juhl.jensen@cpr.ku.dk or gorodkin@rth.dk PMID:24273243

  4. ProtPhylo: identification of protein-phenotype and protein-protein functional associations via phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-07-01

    ProtPhylo is a web-based tool to identify proteins that are functionally linked to either a phenotype or a protein of interest based on co-evolution. ProtPhylo infers functional associations by comparing protein phylogenetic profiles (co-occurrence patterns of orthology relationships) for more than 9.7 million non-redundant protein sequences from all three domains of life. Users can query any of 2048 fully sequenced organisms, including 1678 bacteria, 255 eukaryotes and 115 archaea. In addition, they can tailor ProtPhylo to a particular kind of biological question by choosing among four main orthology inference methods based either on pair-wise sequence comparisons (One-way Best Hits and Best Reciprocal Hits) or clustering of orthologous proteins across multiple species (OrthoMCL and eggNOG). Next, ProtPhylo ranks phylogenetic neighbors of query proteins or phenotypic properties using the Hamming distance as a measure of similarity between pairs of phylogenetic profiles. Candidate hits can be easily and flexibly prioritized by complementary clues on subcellular localization, known protein-protein interactions, membrane spanning regions and protein domains. The resulting protein list can be quickly exported into a csv text file for further analyses. ProtPhylo is freely available at http://www.protphylo.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation.

    PubMed

    Kauwe, John S K; Bailey, Matthew H; Ridge, Perry G; Perry, Rachel; Wadsworth, Mark E; Hoyt, Kaitlyn L; Staley, Lyndsay A; Karch, Celeste M; Harari, Oscar; Cruchaga, Carlos; Ainscough, Benjamin J; Bales, Kelly; Pickering, Eve H; Bertelsen, Sarah; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2014-10-01

    Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10-10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal

  6. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling

    NASA Astrophysics Data System (ADS)

    Plattner, Nuria; Doerr, Stefan; de Fabritiis, Gianni; Noé, Frank

    2017-10-01

    Protein-protein association is fundamental to many life processes. However, a microscopic model describing the structures and kinetics during association and dissociation is lacking on account of the long lifetimes of associated states, which have prevented efficient sampling by direct molecular dynamics (MD) simulations. Here we demonstrate protein-protein association and dissociation in atomistic resolution for the ribonuclease barnase and its inhibitor barstar by combining adaptive high-throughput MD simulations and hidden Markov modelling. The model reveals experimentally consistent intermediate structures, energetics and kinetics on timescales from microseconds to hours. A variety of flexibly attached intermediates and misbound states funnel down to a transition state and a native basin consisting of the loosely bound near-native state and the tightly bound crystallographic state. These results offer a deeper level of insight into macromolecular recognition and our approach opens the door for understanding and manipulating a wide range of macromolecular association processes.

  7. Identification of an interaction between calcium-dependent protein kinase 4 (EtCDPK4) and serine protease inhibitor (EtSerpin) in Eimeria tenella.

    PubMed

    Lv, Ling; Huang, Bing; Zhao, Qiping; Zhao, Zongping; Dong, Hui; Zhu, Shunhai; Chen, Ting; Yan, Ming; Han, Hongyu

    2018-04-23

    Eimeria tenella is an obligate intracellular apicomplexan protozoan parasite that has a complex life-cycle. Calcium ions, through various calcium-dependent protein kinases (CDPKs), regulate key events in parasite growth and development, including protein secretion, movement, differentiation, and invasion of and escape from host cells. In this study, we identified proteins that interact with EtCDPK4 to lay a foundation for clarifying the role of CDPKs in calcium channels. Eimeria tenella merozoites were collected to construct a yeast two-hybrid (Y2H) cDNA library. The Y2H system was used to identify proteins that interact with EtCDPK4. One of interacting proteins was confirmed using bimolecular fluorescence complementation and co-immunoprecipitation in vivo. Co-localization of proteins was performed using immunofluorescence assays. Eight proteins that interact with EtCDPK4 were identified using the Y2H system. One of the proteins, E. tenella serine protease inhibitor 1 (EtSerpin), was further confirmed. In this study, we screened for proteins that interact with EtCDPK4. An interaction between EtSerpin and EtCDPK4 was identified that may contribute to the invasion and development of E. tenella in host cells.

  8. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with

  9. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    PubMed

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  10. Spliced Leader RNAs, Mitochondrial Gene Frameshifts and Multi-Protein Phylogeny Expand Support for the Genus Perkinsus as a Unique Group of Alveolates

    PubMed Central

    Zhang, Huan; Campbell, David A.; Sturm, Nancy R.; Dungan, Christopher F.; Lin, Senjie

    2011-01-01

    The genus Perkinsus occupies a precarious phylogenetic position. To gain a better understanding of the relationship between perkinsids, dinoflagellates and other alveolates, we analyzed the nuclear-encoded spliced-leader (SL) RNA and mitochondrial genes, intron prevalence, and multi-protein phylogenies. In contrast to the canonical 22-nt SL found in dinoflagellates (DinoSL), P. marinus has a shorter (21-nt) and a longer (22-nt) SL with slightly different sequences than DinoSL. The major SL RNA transcripts range in size between 80–83 nt in P. marinus, and ∼83 nt in P. chesapeaki, significantly larger than the typical ≤56-nt dinoflagellate SL RNA. In most of the phylogenetic trees based on 41 predicted protein sequences, P. marinus branched at the base of the dinoflagellate clade that included the ancient taxa Oxyrrhis and Amoebophrya, sister to the clade of apicomplexans, and in some cases clustered with apicomplexans as a sister to the dinoflagellate clade. Of 104 Perkinsus spp. genes examined 69.2% had introns, a higher intron prevalence than in dinoflagellates. Examination of Perkinsus spp. mitochondrial cytochrome B and cytochrome C oxidase subunit I genes and their cDNAs revealed no mRNA editing, but these transcripts can only be translated when frameshifts are introduced at every AGG and CCC codon as if AGGY codes for glycine and CCCCU for proline. These results, along with the presence of the numerous uncharacterized ‘marine alveolate group I' and Perkinsus-like lineages separating perkinsids from core dinoflagellates, expand support for the affiliation of the genus Perkinsus with an independent lineage (Perkinsozoa) positioned between the phyla of Apicomplexa and Dinoflagellata. PMID:21629701

  11. Encounter complexes and dimensionality reduction in protein–protein association

    PubMed Central

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-01-01

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001 PMID:24714491

  12. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  13. Repeat-containing protein effectors of plant-associated organisms.

    PubMed

    Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  14. Aminopeptidase N1 (EtAPN1), an M1 Metalloprotease of the Apicomplexan Parasite Eimeria tenella, Participates in Parasite Development

    PubMed Central

    Gras, Simon; Byzia, Anna; Gilbert, Florence B.; McGowan, Sheena; Drag, Marcin; Niepceron, Alisson; Lecaille, Fabien; Lalmanach, Gilles; Brossier, Fabien

    2014-01-01

    Aminopeptidases N are metalloproteases of the M1 family that have been reported in numerous apicomplexan parasites, including Plasmodium, Toxoplasma, Cryptosporidium, and Eimeria. While investigating the potency of aminopeptidases as therapeutic targets against coccidiosis, one of the most important avian diseases caused by the genus Eimeria, we identified and characterized Eimeria tenella aminopeptidase N1 (EtAPN1). Its inhibition by bestatin and amastatin, as well as its reactivation by divalent ions, is typical of zinc-dependent metalloproteases. EtAPN1 shared a similar sequence, three-dimensional structure, and substrate specificity and similar kinetic parameters with A-M1 from Plasmodium falciparum (PfA-M1), a validated target in the treatment of malaria. EtAPN1 is synthesized as a 120-kDa precursor and cleaved into 96-, 68-, and 38-kDa forms during sporulation. Further, immunolocalization assays revealed that, similar to PfA-M1, EtAPN1 is present during the intracellular life cycle stages in both the parasite cytoplasm and the parasite nucleus. The present results support the hypothesis of a conserved role between the two aminopeptidases, and we suggest that EtAPN1 might be a valuable target for anticoccidiosis drugs. PMID:24839124

  15. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A.

    PubMed

    Tommasino, M; Adamczewski, J P; Carlotti, F; Barth, C F; Manetti, R; Contorni, M; Cavalieri, F; Hunt, T; Crawford, L

    1993-01-01

    E7 is the major transforming protein of human papillomavirus type 16 (HPV16). It has been found to associate with the retinoblastoma protein Rb1. We investigated whether HPV16 E7 protein was associated with other cellular proteins, in particular with those involved in cell cycle control. Immunoprecipitates from CaSki cell extracts with an anti E7 monoclonal antibody contained a histone H1 kinase. Recombinant E7, synthesized in yeast, when mixed with protein extracts from epithelial cells bound histone H1 kinase activity in vitro. The in vivo and the in vitro-formed E7-kinase complex had the same periodicity of activity during the cell cycle, being most active in S and G2/M. Immunoblotting of E7 immunoprecipitates with an antibody raised against the p33CDK2, revealed a 33 kDa protein band not detected by an anti-p34cdc2 antibody, suggesting that the E7-associated kinase activity is due to the p33CDK2. The interaction appears to be via cyclin A, since probing of similar immunoblots showed a 50 kDa band corresponding to cyclin A. The association of E7 with cyclin A appeared to be direct, not involving Rb 1 or other proteins.

  16. Analysis of the Sarcocystis neurona microneme protein SnMIC10: protein characteristics and expression during intracellular development.

    PubMed

    Hoane, Jessica S; Carruthers, Vernon B; Striepen, Boris; Morrison, David P; Entzeroth, Rolf; Howe, Daniel K

    2003-07-01

    Sarcocystis neurona, an apicomplexan parasite, is the primary causative agent of equine protozoal myeloencephalitis. Like other members of the Apicomplexa, S. neurona zoites possess secretory organelles that contain proteins necessary for host cell invasion and intracellular survival. From a collection of S. neurona expressed sequence tags, we identified a sequence encoding a putative microneme protein based on similarity to Toxoplasma gondii MIC10 (TgMIC10). Pairwise sequence alignments of SnMIC10 to TgMIC10 and NcMIC10 from Neospora caninum revealed approximately 33% identity to both orthologues. The open reading frame of the S. neurona gene encodes a 255 amino acid protein with a predicted 39-residue signal peptide. Like TgMIC10 and NcMIC10, SnMIC10 is predicted to be hydrophilic, highly alpha-helical in structure, and devoid of identifiable adhesive domains. Antibodies raised against recombinant SnMIC10 recognised a protein band with an apparent molecular weight of 24 kDa in Western blots of S. neurona merozoites, consistent with the size predicted for SnMIC10. In vitro secretion assays demonstrated that this protein is secreted by extracellular merozoites in a temperature-dependent manner. Indirect immunofluorescence analysis of SnMIC10 showed a polar labelling pattern, which is consistent with the apical position of the micronemes, and immunoelectron microscopy provided definitive localisation of the protein to these secretory organelles. Further analysis of SnMIC10 in intracellular parasites revealed that expression of this protein is temporally regulated during endopolygeny, supporting the view that micronemes are only needed during host cell invasion. Collectively, the data indicate that SnMIC10 is a microneme protein that is part of the excreted/secreted antigen fraction of S. neurona. Identification and characterisation of additional S. neurona microneme antigens and comparisons to orthologues in other Apicomplexa could provide further insight into the

  17. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins

    PubMed Central

    Mezzina, Mariela P.

    2016-01-01

    Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. PMID:27287326

  18. HDAPD: a web tool for searching the disease-associated protein structures

    PubMed Central

    2010-01-01

    Background The protein structures of the disease-associated proteins are important for proceeding with the structure-based drug design to against a particular disease. Up until now, proteins structures are usually searched through a PDB id or some sequence information. However, in the HDAPD database presented here the protein structure of a disease-associated protein can be directly searched through the associated disease name keyed in. Description The search in HDAPD can be easily initiated by keying some key words of a disease, protein name, protein type, or PDB id. The protein sequence can be presented in FASTA format and directly copied for a BLAST search. HDAPD is also interfaced with Jmol so that users can observe and operate a protein structure with Jmol. The gene ontological data such as cellular components, molecular functions, and biological processes are provided once a hyperlink to Gene Ontology (GO) is clicked. Further, HDAPD provides a link to the KEGG map such that where the protein is placed and its relationship with other proteins in a metabolic pathway can be found from the map. The latest literatures namely titles, journals, authors, and abstracts searched from PubMed for the protein are also presented as a length controllable list. Conclusions Since the HDAPD data content can be routinely updated through a PHP-MySQL web page built, the new database presented is useful for searching the structures for some disease-associated proteins that may play important roles in the disease developing process for performing the structure-based drug design to against the diseases. PMID:20158919

  19. Locating overlapping dense subgraphs in gene (protein) association networks and predicting novel protein functional groups among these subgraphs

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas

    2006-03-01

    Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.

  20. Associations of Dietary Protein and Energy Intakes With Protein-Energy Wasting Syndrome in Hemodialysis Patients.

    PubMed

    Beddhu, Srinivasan; Wei, Guo; Chen, Xiaorui; Boucher, Robert; Kiani, Rabia; Raj, Dominic; Chonchol, Michel; Greene, Tom; Murtaugh, Maureen A

    2017-09-01

    The associations of dietary protein and/or energy intakes with protein or energy wasting in patients on maintenance hemodialysis are controversial. We examined these in the Hemodialysis (HEMO) Study. In 1487 participants in the HEMO Study, baseline dietary protein intake (grams per kilogram per day) and dietary energy intake (kilocalories per kilograms per day) were related to the presence of the protein-energy wasting (PEW) syndrome at month 12 (defined as the presence of at least 1 criteria in 2 of the 3 categories of low serum chemistry, low body mass, and low muscle mass) in logistic regression models. In additional separate models, protein intake estimated from equilibrated normalized protein catabolic rate (enPCR) was also related to the PEW syndrome. Compared with the lowest quartile, the highest quartile of baseline dietary protein intake was paradoxically associated with increased risk of the PEW syndrome at month 12 (odds ratio [OR]: 4.11; 95% confidence interval [CI]: 2.79-6.05). This relationship was completely attenuated (OR: 1.35; 95% CI: 0.88-2.06) with adjustment for baseline body weight, which suggested mathematical coupling. Results were similar for dietary energy intake. Compared with the lowest quartile of baseline enPCR, the highest quartile was not associated with the PEW syndrome at 12 months (OR: 0.78; 95% CI: 0.54-1.12). These data do not support the use of dietary protein intake or dietary energy intake criteria in the definition of the PEW syndrome in patients on maintenance hemodialysis.

  1. Calcium-dependent microneme protein discharge and in vitro egress of Eimeria tenella sporozoites.

    PubMed

    Yan, Xinlei; Tao, Geru; Liu, Xianyong; Ji, Yongsheng; Suo, Xun

    2016-11-01

    Egress is a vital step in the endogenous development of apicomplexan parasites, as it assures the parasites exit from consumed host cells and entry into fresh ones. However, little information has previously been reported on this step of Eimeria spp. In this study, we investigated in vitro egress of Eimeria tenella sporozoites triggered by acetaldehyde. We found that addition of exogenous acetaldehyde induces egress of sporozoites from primary chicken kidney cells (PCKs) and stimulate secretion of E. tenella microneme 2 protein (EtMic 2). Moreover, by using cellular calcium inhibitors, we further proved that these processes were dependent on the intracellular calcium of the parasites. Our findings provide clues to the study of interaction between eimerian parasites and their hosts. Copyright © 2016. Published by Elsevier Inc.

  2. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    PubMed

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  3. Function of plasma membrane microdomain-associated proteins during legume nodulation.

    PubMed

    Qiao, Zhenzhen; Libault, Marc

    2017-10-03

    Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.

  4. Highly Efficient Computation of the Basal kon using Direct Simulation of Protein-Protein Association with Flexible Molecular Models.

    PubMed

    Saglam, Ali S; Chong, Lillian T

    2016-01-14

    An essential baseline for determining the extent to which electrostatic interactions enhance the kinetics of protein-protein association is the "basal" kon, which is the rate constant for association in the absence of electrostatic interactions. However, since such association events are beyond the milliseconds time scale, it has not been practical to compute the basal kon by directly simulating the association with flexible models. Here, we computed the basal kon for barnase and barstar, two of the most rapidly associating proteins, using highly efficient, flexible molecular simulations. These simulations involved (a) pseudoatomic protein models that reproduce the molecular shapes, electrostatic, and diffusion properties of all-atom models, and (b) application of the weighted ensemble path sampling strategy, which enhanced the efficiency of generating association events by >130-fold. We also examined the extent to which the computed basal kon is affected by inclusion of intermolecular hydrodynamic interactions in the simulations.

  5. Selecting for Fast Protein-Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP.

    PubMed

    Cohen-Khait, Ruth; Schreiber, Gideon

    2018-04-27

    Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.

  6. Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation

    PubMed Central

    Lau, Alan F.

    2009-01-01

    The ubiquitin–proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL–UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins. PMID:19468686

  7. Predicting Protein–protein Association Rates using Coarse-grained Simulation and Machine Learning

    PubMed Central

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2017-01-01

    Protein–protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate. PMID:28418043

  8. Nanoforms: a new type of protein-associated mineralization

    NASA Astrophysics Data System (ADS)

    Vali, Hojatollah; McKee, Marc D.; Çiftçioglu, Neva; Sears, S. Kelly; Plows, Fiona L.; Chevet, Eric; Ghiabi, Pegah; Plavsic, Marc; Kajander, E. Olavi; Zare, Richard N.

    2001-01-01

    Controversy surrounds the interpretation of various nano-phenomena as being living organisms. Incubation of fetal bovine serum under standard cell culture conditions results in the formation of free entities in solution, here referred to as nanoforms. These nanoforms, when examined by transmission electron microscopy, have a distinct ovoid morphology ranging in size from tens to hundreds of nanometers. They are composed of hydroxyapatite and proteins and constitute a novel form of protein-associated mineralization. No detectable cell structure resembling bacteria is apparent. However, immunodetection of the proteins associated with the nanoforms, by two specific monoclonal antibodies, suggests a possible biogenic origin. The significance of nanoforms for the recognition of biological activity in ancient geological systems is discussed. The mode of mineralization in nanoforms is also compared to matrix-mediated calcification in vertebrates.

  9. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins.

    PubMed

    Mezzina, Mariela P; Pettinari, M Julia

    2016-09-01

    Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Characterization of the Chloroquine Resistance Transporter Homologue in Toxoplasma gondii

    PubMed Central

    Warring, Sally D.; Dou, Zhicheng; Carruthers, Vern B.; McFadden, Geoffrey I.

    2014-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein confer resistance to the antimalarial drug chloroquine. PfCRT localizes to the parasite digestive vacuole, the site of chloroquine action, where it mediates resistance by transporting chloroquine out of the digestive vacuole. PfCRT belongs to a family of transporter proteins called the chloroquine resistance transporter family. CRT family proteins are found throughout the Apicomplexa, in some protists, and in plants. Despite the importance of PfCRT in drug resistance, little is known about the evolution or native function of CRT proteins. The apicomplexan parasite Toxoplasma gondii contains one CRT family protein. We demonstrate that T. gondii CRT (TgCRT) colocalizes with markers for the vacuolar (VAC) compartment in these parasites. The TgCRT-containing VAC is a highly dynamic organelle, changing its morphology and protein composition between intracellular and extracellular forms of the parasite. Regulated knockdown of TgCRT expression resulted in modest reduction in parasite fitness and swelling of the VAC, indicating that TgCRT contributes to parasite growth and VAC physiology. Together, our findings provide new information on the role of CRT family proteins in apicomplexan parasites. PMID:24859994

  11. Systematically Ranking the Tightness of Membrane Association for Peripheral Membrane Proteins (PMPs)*

    PubMed Central

    Gao, Liyan; Ge, Haitao; Huang, Xiahe; Liu, Kehui; Zhang, Yuanya; Xu, Wu; Wang, Yingchun

    2015-01-01

    Large-scale quantitative evaluation of the tightness of membrane association for nontransmembrane proteins is important for identifying true peripheral membrane proteins with functional significance. Herein, we simultaneously ranked more than 1000 proteins of the photosynthetic model organism Synechocystis sp. PCC 6803 for their relative tightness of membrane association using a proteomic approach. Using multiple precisely ranked and experimentally verified peripheral subunits of photosynthetic protein complexes as the landmarks, we found that proteins involved in two-component signal transduction systems and transporters are overall tightly associated with the membranes, whereas the associations of ribosomal proteins are much weaker. Moreover, we found that hypothetical proteins containing the same domains generally have similar tightness. This work provided a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli. PMID:25505158

  12. Automatic extraction of protein point mutations using a graph bigram association.

    PubMed

    Lee, Lawrence C; Horn, Florence; Cohen, Fred E

    2007-02-02

    Protein point mutations are an essential component of the evolutionary and experimental analysis of protein structure and function. While many manually curated databases attempt to index point mutations, most experimentally generated point mutations and the biological impacts of the changes are described in the peer-reviewed published literature. We describe an application, Mutation GraB (Graph Bigram), that identifies, extracts, and verifies point mutations from biomedical literature. The principal problem of point mutation extraction is to link the point mutation with its associated protein and organism of origin. Our algorithm uses a graph-based bigram traversal to identify these relevant associations and exploits the Swiss-Prot protein database to verify this information. The graph bigram method is different from other models for point mutation extraction in that it incorporates frequency and positional data of all terms in an article to drive the point mutation-protein association. Our method was tested on 589 articles describing point mutations from the G protein-coupled receptor (GPCR), tyrosine kinase, and ion channel protein families. We evaluated our graph bigram metric against a word-proximity metric for term association on datasets of full-text literature in these three different protein families. Our testing shows that the graph bigram metric achieves a higher F-measure for the GPCRs (0.79 versus 0.76), protein tyrosine kinases (0.72 versus 0.69), and ion channel transporters (0.76 versus 0.74). Importantly, in situations where more than one protein can be assigned to a point mutation and disambiguation is required, the graph bigram metric achieves a precision of 0.84 compared with the word distance metric precision of 0.73. We believe the graph bigram search metric to be a significant improvement over previous search metrics for point mutation extraction and to be applicable to text-mining application requiring the association of words.

  13. Differential Expression of Three Members of the Multidomain Adhesion CCp Family in Babesia bigemina, Babesia bovis and Theileria equi

    PubMed Central

    Bastos, Reginaldo G.; Suarez, Carlos E.; Laughery, Jacob M.; Johnson, Wendell C.; Ueti, Massaro W.; Knowles, Donald P.

    2013-01-01

    Members of the CCp protein family have been previously described to be expressed on gametocytes of apicomplexan Plasmodium parasites. Knocking out Plasmodium CCp genes blocks the development of the parasite in the mosquito vector, making the CCp proteins potential targets for the development of a transmission-blocking vaccine. Apicomplexans Babesia bovis and Babesia bigemina are the causative agents of bovine babesiosis, and apicomplexan Theileria equi causes equine piroplasmosis. Bovine babesiosis and equine piroplasmosis are the most economically important parasite diseases that affect worldwide cattle and equine industries, respectively. The recent sequencing of the B. bovis and T. equi genomes has provided the opportunity to identify novel genes involved in parasite biology. Here we characterize three members of the CCp family, named CCp1, CCp2 and CCp3, in B. bigemina, B. bovis and T. equi. Using B. bigemina as an in vitro model, expression of all three CCp genes and proteins was demonstrated in temperature-induced sexual stages. Transcripts for all three CCp genes were found in vivo in blood stages of T. equi, and transcripts for CCp3 were detected in vivo in blood stages of B. bovis. However, no protein expression was detected in T. equi blood stages or B. bovis blood stages or B. bovis tick stages. Collectively, the data demonstrated a differential pattern of expression of three orthologous genes of the multidomain adhesion CCp family by B. bigemina, B. bovis and T. equi. The novel CCp members represent potential targets for innovative approaches to control bovine babesiosis and equine piroplasmosis. PMID:23844089

  14. Serum Albumin Stimulates Protein Kinase G-dependent Microneme Secretion in Toxoplasma gondii.

    PubMed

    Brown, Kevin M; Lourido, Sebastian; Sibley, L David

    2016-04-29

    Microneme secretion is essential for motility, invasion, and egress in apicomplexan parasites. Although previous studies indicate that Ca(2+) and cGMP control microneme secretion, little is known about how these pathways are naturally activated. Here we have developed genetically encoded indicators for Ca(2+) and microneme secretion to better define the signaling pathways that regulate these processes in Toxoplasma gondii We found that microneme secretion was triggered in vitro by exposure to a single host protein, serum albumin. The natural agonist serum albumin induced microneme secretion in a protein kinase G-dependent manner that correlated with increased cGMP levels. Surprisingly, serum albumin acted independently of elevated Ca(2+) and yet it was augmented by artificial agonists that raise Ca(2+), such as ethanol. Furthermore, although ethanol elevated intracellular Ca(2+), it alone was unable to trigger secretion without the presence of serum or serum albumin. This dichotomy was recapitulated by zaprinast, a phosphodiesterase inhibitor that elevated cGMP and separately increased Ca(2+) in a protein kinase G-independent manner leading to microneme secretion. Taken together, these findings reveal that microneme secretion is centrally controlled by protein kinase G and that this pathway is further augmented by elevation of intracellular Ca(2.) © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Detergent-associated Solution Conformations of Helical and Beta-barrel Membrane Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John Francis

    2008-01-01

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), themore » Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the ?-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.« less

  16. Detergent-associated solution conformations of helical and beta-barrel membrane proteins.

    PubMed

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John F; Becker, Jeffrey M; Heller, William T

    2008-10-23

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.

  17. Unbiased Protein Association Study on the Public Human Proteome Reveals Biological Connections between Co-Occurring Protein Pairs

    PubMed Central

    2017-01-01

    Mass-spectrometry-based, high-throughput proteomics experiments produce large amounts of data. While typically acquired to answer specific biological questions, these data can also be reused in orthogonal ways to reveal new biological knowledge. We here present a novel method for such orthogonal data reuse of public proteomics data. Our method elucidates biological relationships between proteins based on the co-occurrence of these proteins across human experiments in the PRIDE database. The majority of the significantly co-occurring protein pairs that were detected by our method have been successfully mapped to existing biological knowledge. The validity of our novel method is substantiated by the extremely few pairs that can be mapped to existing knowledge based on random associations between the same set of proteins. Moreover, using literature searches and the STRING database, we were able to derive meaningful biological associations for unannotated protein pairs that were detected using our method, further illustrating that as-yet unknown associations present highly interesting targets for follow-up analysis. PMID:28480704

  18. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins

    PubMed Central

    Nadeau, Scott; An, Wei; Palermo, Nick; Feng, Dan; Ahmad, Gulzar; Dong, Lin; Borgstahl, Gloria E. O.; Natarajan, Amarnath; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2013-01-01

    Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers. PMID:23997989

  19. Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion.

    PubMed

    Whitelaw, Jamie A; Latorre-Barragan, Fernanda; Gras, Simon; Pall, Gurman S; Leung, Jacqueline M; Heaslip, Aoife; Egarter, Saskia; Andenmatten, Nicole; Nelson, Shane R; Warshaw, David M; Ward, Gary E; Meissner, Markus

    2017-01-18

    Apicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite's actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from force production during parasite movement. In this study, we compared the phenotypes of different mutants for core components of the actomyosin system in Toxoplasma gondii to decipher their exact role during gliding motility and invasion. We found that, while some phenotypes (apicoplast segregation, host cell egress, dense granule motility) appeared early after induction of the act1 knockout and went to completion, a small percentage of the parasites remained capable of motility and invasion well past the point at which actin levels were undetectable. Those act1 conditional knockout (cKO) and mlc1 cKO that continue to move in 3D do so at speeds similar to wildtype parasites. However, these mutants are virtually unable to attach to a collagen-coated substrate under flow conditions, indicating an important role for the actomyosin system of T. gondii in the formation of attachment sites. We demonstrate that parasite actin is essential during the lytic cycle and cannot be compensated by other molecules. Our data suggest a conventional polymerisation mechanism in vivo that depends on a critical concentration of G-actin. Importantly, we demonstrate that the actomyosin system of the parasite functions in attachment to the surface substrate, and not necessarily as force generator.

  20. Cryopreservation of bull semen is associated with carbonylation of sperm proteins.

    PubMed

    Mostek, Agnieszka; Dietrich, Mariola Aleksandra; Słowińska, Mariola; Ciereszko, Andrzej

    2017-04-01

    Artificial insemination with cryopreserved semen enables affordable, large-scale dissemination of gametes with superior genetics. However, cryopreservation can cause functional and structural damage to spermatozoa that is associated with reactive oxygen species (ROS) production, impairment of sperm motility and decreased fertilizing potential, but little attention has been paid to protein changes. The goal of this study was to investigate the oxidative modifications (measured as carbonylation level changes) of bull spermatozoa proteins triggered by the cryopreservation process. Flow cytometry and computer-assisted sperm analysis were used to evaluate changes in viability, ROS level and motility of spermatozoa. Western blotting, in conjunction with two-dimensional electrophoresis (2D-oxyblot) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight spectrometry, was employed to identify and quantify the specifically carbonylated spermatozoa proteins. Cryopreservation decreased motility and viability but increased the number of ROS-positive cells. We identified 11 proteins (ropporin-1, outer dense fiber protein 2, glutathione S-transferase, triosephosphate isomerase, capping protein beta 3 isoform, actin-related protein M1, actin-related protein T2, NADH dehydrogenase, isocitrate dehydrogenase, cilia- and flagella-associated protein 161, phosphatidylethanolamine-binding protein 4) showing differences in protein carbonylation in response to cryopreservation. The identified proteins are associated with cytoskeleton and flagella organization, detoxification and energy metabolism. Moreover, almost all of the identified carbonylated proteins are involved in capacitation. Our results indicate for the first time that cryopreservation induces oxidation of selected sperm proteins via carbonylation. We suggest that carbonylation of sperm proteins could be a direct result of oxidative stress and potentially lead to disturbances of capacitation

  1. F-box proteins involved in cancer-associated drug resistance.

    PubMed

    Gong, Jian; Zhou, Yuqian; Liu, Deliang; Huo, Jirong

    2018-06-01

    The ubiquitin proteasome system (UPS) regulated human biological processes through the appropriate and efficient proteolysis of cellular proteins. F-box proteins are the vital components of SKP1-CUL1-FBP (SCF)-type E3 ubiquitin ligases that determine substrate specificity. As F-box proteins have the ability to control the degradation of several crucial protein targets associated with drug resistance, the dysregulation of these proteins may lead to induction of chemoresistance in cancer cells. Chemotherapy is one of the most conventional therapeutic approaches of treatment of patients with cancer. However, its exclusive application in clinical settings is restricted due to the development of chemoresistance, which typically results treatment failure. Therefore, overcoming drug resistance is considered as one of the most critical issues that researchers and clinician associated with oncology face. The present review serves to provide a comprehensive overview of F-box proteins and their possible targets as well as their correlation with the chemoresistance and chemosensitization of cancer cells. The article also presents an integrated representation of the complex regulatory mechanisms responsible for chemoresistance, which may lay the foundation to explore sensible candidate drugs for therapeutic intervention.

  2. Complex of Fas-associated Factor 1 (FAF1) with Valosin-containing Protein (VCP)-Npl4-Ufd1 and Polyubiquitinated Proteins Promotes Endoplasmic Reticulum-associated Degradation (ERAD)*

    PubMed Central

    Lee, Jae-Jin; Park, Joon Kyu; Jeong, Jaeho; Jeon, Hyesung; Yoon, Jong-Bok; Kim, Eunice EunKyeong; Lee, Kong-Joo

    2013-01-01

    Fas-associated factor 1 (FAF1) is a ubiquitin receptor containing multiple ubiquitin-related domains including ubiquitin-associated (UBA), ubiquitin-like (UBL) 1, UBL2, and ubiquitin regulatory X (UBX). We previously showed that N-terminal UBA domain recognizes Lys48-ubiquitin linkage to recruit polyubiquitinated proteins and that a C-terminal UBX domain interacts with valosin-containing protein (VCP). This study shows that FAF1 interacts only with VCP complexed with Npl4-Ufd1 heterodimer, a requirement for the recruitment of polyubiquitinated proteins to UBA domain. Intriguingly, VCP association to C-terminal UBX domain regulates ubiquitin binding to N-terminal UBA domain without direct interaction between UBA and UBX domains. These interactions are well characterized by structural and biochemical analysis. VCP-Npl4-Ufd1 complex is known as the machinery required for endoplasmic reticulum-associated degradation. We demonstrate here that FAF1 binds to VCP-Npl4-Ufd1 complex via UBX domain and polyubiquitinated proteins via UBA domain to promote endoplasmic reticulum-associated degradation. PMID:23293021

  3. Association between pregnancy-associated plasma protein-A levels in the first trimester and gestational diabetes mellitus in Chinese women.

    PubMed

    Cheuk, Q Ky; Lo, T K; Wong, S F; Lee, C P

    2016-02-01

    Several studies have shown that women with pre-existing diabetes mellitus have significantly lower pregnancy-associated plasma protein-A levels than those without. This study aimed to evaluate whether first-trimester pregnancy-associated plasma protein-A multiple of median is associated with gestational diabetes mellitus in Chinese pregnant women. This prospectively collected case series was conducted in a regional hospital in Hong Kong. All consecutive Chinese women with a singleton pregnancy who attended the hospital for their first antenatal visit (before 14 weeks' gestation) from April to July 2014 were included. Pregnancy-associated plasma protein-A multiple of median was compared between the gestational diabetic (especially for early-onset gestational diabetes) and non-diabetic groups. The correlation between pregnancy-associated plasma protein-A level and glycosylated haemoglobin level in women with gestational diabetes was also examined. Of the 520 women recruited, gestational diabetes was diagnosed in 169 (32.5%). Among them, 43 (25.4%) had an early diagnosis, and 167 (98.8%) with the disease were managed by diet alone. The gestational diabetic group did not differ significantly to the non-diabetic group in pregnancy-associated plasma protein-A (0.97 vs 0.99, P=0.40) or free β-human chorionic gonadotrophin multiple of median (1.05 vs 1.02, P=0.29). Compared with the non-gestational diabetic group, women with early diagnosis of gestational diabetes had a non-significant reduction in pregnancy-associated plasma protein-A multiple of median (median, interquartile range: 0.86, 0.57-1.23 vs 0.99, 0.67-1.44; P=0.11). Pregnancy-associated plasma protein-A and glycosylated haemoglobin levels were not correlated in women with gestational diabetes (r=0.027; P=0.74). Chinese women with non-insulin-dependent gestational diabetes did not exhibit significant changes to pregnancy-associated plasma protein-A multiple of median nor a correlation between pregnancy-associated

  4. Decoding the disease-associated proteins encoded in the human chromosome 4.

    PubMed

    Chen, Lien-Chin; Liu, Mei-Ying; Hsiao, Yung-Chin; Choong, Wai-Kok; Wu, Hsin-Yi; Hsu, Wen-Lian; Liao, Pao-Chi; Sung, Ting-Yi; Tsai, Shih-Feng; Yu, Jau-Song; Chen, Yu-Ju

    2013-01-04

    Chromosome 4 is the fourth largest chromosome, containing approximately 191 megabases (~6.4% of the human genome) with 757 protein-coding genes. A number of marker genes for many diseases have been found in this chromosome, including genetic diseases (e.g., hepatocellular carcinoma) and biomedical research (cardiac system, aging, metabolic disorders, immune system, cancer and stem cell) related genes (e.g., oncogenes, growth factors). As a pilot study for the chromosome 4-centric human proteome project (Chr 4-HPP), we present here a systematic analysis of the disease association, protein isoforms, coding single nucleotide polymorphisms of these 757 protein-coding genes and their experimental evidence at the protein level. We also describe how the findings from the chromosome 4 project might be used to drive the biomarker discovery and validation study in disease-oriented projects, using the examples of secretomic and membrane proteomic approaches in cancer research. By integrating with cancer cell secretomes and several other existing databases in the public domain, we identified 141 chromosome 4-encoded proteins as cancer cell-secretable/shedable proteins. Additionally, we also identified 54 chromosome 4-encoded proteins that have been classified as cancer-associated proteins with successful selected or multiple reaction monitoring (SRM/MRM) assays developed. From literature annotation and topology analysis, 271 proteins were recognized as membrane proteins while 27.9% of the 757 proteins do not have any experimental evidence at the protein-level. In summary, the analysis revealed that the chromosome 4 is a rich resource for cancer-associated proteins for biomarker verification projects and for drug target discovery projects.

  5. Static Light Scattering from Concentrated Protein Solutions, I: General Theory for Protein Mixtures and Application to Self-Associating Proteins

    PubMed Central

    Minton, Allen P.

    2007-01-01

    Exact expressions for the static light scattering of a solution containing up to three species of point-scattering solutes in highly nonideal solutions at arbitrary concentration are obtained from multicomponent scattering theory. Explicit expressions for thermodynamic interaction between solute molecules, required to evaluate the scattering relations, are obtained using an equivalent hard particle approximation similar to that employed earlier to interpret scattering of a single protein species at high concentration. The dependence of scattering intensity upon total protein concentration is calculated for mixtures of nonassociating proteins and for a single self-associating protein over a range of concentrations up to 200 g/l. An approximate semiempirical analysis of the concentration dependence of scattering intensity is proposed, according to which the contribution of thermodynamic interaction to scattering intensity is modeled as that of a single average hard spherical species. Simulated data containing pseudo-noise comparable in magnitude to actual experimental uncertainty are modeled using relations obtained from the proposed semiempirical analysis. It is shown that by using these relations one can extract from the data reasonably reliable information about underlying weak associations that are manifested only at very high total protein concentration. PMID:17526566

  6. Tula hantavirus L protein is a 250 kDa perinuclear membrane-associated protein.

    PubMed

    Kukkonen, Sami K J; Vaheri, Antti; Plyusnin, Alexander

    2004-05-01

    The complete open reading frame of Tula hantavirus (TULV) L RNA was cloned in three parts. The middle third (nt 2191-4344) could be expressed in E. coli and was used to immunize rabbits. The resultant antiserum was then used to immunoblot concentrated TULV and infected Vero E6 cells. The L protein of a hantavirus was detected, for the first time, in infected cells and was found to be expressed as a single protein with an apparent molecular mass of 250 kDa in both virions and infected cells. Using the antiserum, the expression level of the L protein was followed and image analysis of immunoblots indicated that there were 10(4) copies per cell at the peak level of expression. The antiserum was also used to detect the L protein in cell fractionation studies. In cells infected with TULV and cells expressing recombinant L, the protein pelleted with the microsomal membrane fraction. The membrane association was confirmed with membrane flotation assays. To visualize L protein localization in cells, a fusion protein of L and enhanced green fluorescent protein, L-EGFP, was expressed in Vero E6 cells with a plasmid-driven T7 expression system. L-EGFP localized in the perinuclear region where it had partial co-localization with the Golgi matrix protein GM130 and the TULV nucleocapsid protein.

  7. RAID: a comprehensive resource for human RNA-associated (RNA–RNA/RNA–protein) interaction

    PubMed Central

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-01-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA–RNA/RNA–protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA–RNA interactions and 1619 RNA–protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA–RNA/RNA–protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA–RNA/RNA–protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  8. Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis.

    PubMed

    Piñol-Roma, S

    1999-01-01

    rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin-a major nucleolar RNA-binding protein-contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.

  9. A Protein Domain and Family Based Approach to Rare Variant Association Analysis.

    PubMed

    Richardson, Tom G; Shihab, Hashem A; Rivas, Manuel A; McCarthy, Mark I; Campbell, Colin; Timpson, Nicholas J; Gaunt, Tom R

    2016-01-01

    It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals.

  10. Enhanced vulnerability of human proteins towards disease-associated inactivation through divergent evolution.

    PubMed

    Medina-Carmona, Encarnación; Fuchs, Julian E; Gavira, Jose A; Mesa-Torres, Noel; Neira, Jose L; Salido, Eduardo; Palomino-Morales, Rogelio; Burgos, Miguel; Timson, David J; Pey, Angel L

    2017-09-15

    Human proteins are vulnerable towards disease-associated single amino acid replacements affecting protein stability and function. Interestingly, a few studies have shown that consensus amino acids from mammals or vertebrates can enhance protein stability when incorporated into human proteins. Here, we investigate yet unexplored relationships between the high vulnerability of human proteins towards disease-associated inactivation and recent evolutionary site-specific divergence of stabilizing amino acids. Using phylogenetic, structural and experimental analyses, we show that divergence from the consensus amino acids at several sites during mammalian evolution has caused local protein destabilization in two human proteins linked to disease: cancer-associated NQO1 and alanine:glyoxylate aminotransferase, mutated in primary hyperoxaluria type I. We demonstrate that a single consensus mutation (H80R) acts as a disease suppressor on the most common cancer-associated polymorphism in NQO1 (P187S). The H80R mutation reactivates P187S by enhancing FAD binding affinity through local and dynamic stabilization of its binding site. Furthermore, we show how a second suppressor mutation (E247Q) cooperates with H80R in protecting the P187S polymorphism towards inactivation through long-range allosteric communication within the structural ensemble of the protein. Our results support that recent divergence of consensus amino acids may have occurred with neutral effects on many functional and regulatory traits of wild-type human proteins. However, divergence at certain sites may have increased the propensity of some human proteins towards inactivation due to disease-associated mutations and polymorphisms. Consensus mutations also emerge as a potential strategy to identify structural hot-spots in proteins as targets for pharmacological rescue in loss-of-function genetic diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please

  11. Sequential protein association with nascent 60S ribosomal particles.

    PubMed

    Saveanu, Cosmin; Namane, Abdelkader; Gleizes, Pierre-Emmanuel; Lebreton, Alice; Rousselle, Jean-Claude; Noaillac-Depeyre, Jacqueline; Gas, Nicole; Jacquier, Alain; Fromont-Racine, Micheline

    2003-07-01

    Ribosome biogenesis in eukaryotes depends on the coordinated action of ribosomal and nonribosomal proteins that guide the assembly of preribosomal particles. These intermediate particles follow a maturation pathway in which important changes in their protein composition occur. The mechanisms involved in the coordinated assembly of the ribosomal particles are poorly understood. We show here that the association of preribosomal factors with pre-60S complexes depends on the presence of earlier factors, a phenomenon essential for ribosome biogenesis. The analysis of the composition of purified preribosomal complexes blocked in maturation at specific steps allowed us to propose a model of sequential protein association with, and dissociation from, early pre-60S complexes for several preribosomal factors such as Mak11, Ssf1, Rlp24, Nog1, and Nog2. The presence of either Ssf1 or Nog2 in complexes that contain the 27SB pre-rRNA defines novel, distinct pre-60S particles that contain the same pre-rRNA intermediates and that differ only by the presence or absence of specific proteins. Physical and functional interactions between Rlp24 and Nog1 revealed that the assembly steps are, at least in part, mediated by direct protein-protein interactions.

  12. GCK-MODY diabetes associated with protein misfolding, cellular self-association and degradation.

    PubMed

    Negahdar, Maria; Aukrust, Ingvild; Johansson, Bente B; Molnes, Janne; Molven, Anders; Matschinsky, Franz M; Søvik, Oddmund; Kulkarni, Rohit N; Flatmark, Torgeir; Njølstad, Pål Rasmus; Bjørkhaug, Lise

    2012-11-01

    GCK-MODY, dominantly inherited mild fasting hyperglycemia, has been associated with >600 different mutations in the glucokinase (GK)-encoding gene (GCK). When expressed as recombinant pancreatic proteins, some mutations result in enzymes with normal/near-normal catalytic properties. The molecular mechanism(s) of GCK-MODY due to these mutations has remained elusive. Here, we aimed to explore the molecular mechanisms for two such catalytically 'normal' GCK mutations (S263P and G264S) in the F260-L270 loop of GK. When stably overexpressed in HEK293 cells and MIN6 β-cells, the S263P- and G264S-encoded mutations generated misfolded proteins with an increased rate of degradation (S263P>G264S) by the protein quality control machinery, and a propensity to self-associate (G264S>S263P) and form dimers (SDS resistant) and aggregates (partly Triton X-100 insoluble), as determined by pulse-chase experiments and subcellular fractionation. Thus, the GCK-MODY mutations S263P and G264S lead to protein misfolding causing destabilization, cellular dimerization/aggregation and enhanced rate of degradation. In silico predicted conformational changes of the F260-L270 loop structure are considered to mediate the dimerization of both mutant proteins by a domain swapping mechanism. Thus, similar properties may represent the molecular mechanisms for additional unexplained GCK-MODY mutations, and may also contribute to the disease mechanism in other previously characterized GCK-MODY inactivating mutations. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Analysis of stage-specific protein expression during babesia bovis development within female rhipicephalus microplus

    USDA-ARS?s Scientific Manuscript database

    Arthropod borne pathogens have a complex life cycle that includes asexual reproduction of haploid stages in mammalian erythrocytes and development of diploid stages in the vector. Transition of Apicomplexan pathogens between the mammalian host and the arthropod vector is critical for ongoing transmi...

  14. M-Finder: Uncovering functionally associated proteins from interactome data integrated with GO annotations

    PubMed Central

    2013-01-01

    Background Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular processes. The availability of interactome data has catalyzed the development of computational approaches to elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been adopted as a benchmark for protein function prediction on the genomic scale. Results We propose a computational approach, called M-Finder, for functional association pattern mining. This method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an interactive web application tool that visualizes a functional association network linked to a protein specified by a user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess two advanced semantic similarity metrics which quantify the functional association level of each interacting protein pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs. Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network of the query protein. The output network size can be flexibly determined by parameters. Conclusions M-Finder provides a useful framework to investigate functional association patterns with any protein. This software will also allow users to perform further systematic analysis of a set of proteins for any specific function. It is available online at http

  15. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia

    PubMed Central

    Irani, Sarosh R.; Alexander, Sian; Waters, Patrick; Kleopa, Kleopas A.; Pettingill, Philippa; Zuliani, Luigi; Peles, Elior; Buckley, Camilla; Lang, Bethan

    2010-01-01

    Antibodies that immunoprecipitate 125I-α-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan’s syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with 125I-α-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan’s syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein

  16. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    PubMed

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Protein kinase Cβ activates fat mass and obesity-associated protein by influencing its ubiquitin/proteasome degradation.

    PubMed

    Tai, Haoran; Wang, Xiaobo; Zhou, Jiao; Han, Xiaojuan; Fang, Tingting; Gong, Hui; Huang, Ning; Chen, Honghan; Qin, Jianqiong; Yang, Ming; Wei, Xiawei; Yang, Li; Xiao, Hengyi

    2017-10-01

    Protein kinase Cβ (PKCβ) is a serine-threonine kinase associated with obesity and diabetic complications; its activation contributes to weight gain, and deletion of its gene results in resistance to genetic- and diet-induced obesity. Fat mass and obesity-associated (FTO) protein is a recently identified RNA demethylase, and its overexpression in mice leads to increased body weight as well as fat mass. Although sharing some features in anabolism regulation, PKCβ and FTO have not been investigated together; therefore, their relationship has not been established. We report that PKCβ positively regulates FTO on the posttranslation level, evidenced by the facts that PKCβ activation contributes to high-glucose-induced FTO up-regulation, and overexpression of PKCβ suppresses ubiquitin-proteasome degradation of FTO, whereas PKCβ inactivation acts in the opposite manner. It was also found that PKCβ can phosphorylate FTO on threonine, and this phosphorylation requires both catalytic and regulatory domains of PKCβ. Moreover, PKCβ inhibition can suppress 3T3-L1 cell differentiation in normal and FTO-overexpressing cells but not in FTO-silenced or -inhibited cells. We propose that PKCβ acts to suppress the degradation of FTO protein and reveals the associated role of PKCβ and FTO in adipogenesis, suggesting a new pathway that affects the development of obesity and metabolic diseases.-Tai, H., Wang, X., Zhou, J., Han, X., Fang, T., Gong, H., Huang, N., Chen, H., Qin, J., Yang, M., Wei, X., Yang, L., Xiao, H. Protein kinase Cβ activates fat mass and obesity-associated protein by influencing its ubiquitin/proteasome degradation. © FASEB.

  18. Membrane-associated stress proteins: more than simply chaperones.

    PubMed

    Horváth, Ibolya; Multhoff, Gabriele; Sonnleitner, Alois; Vígh, László

    2008-01-01

    The protein- and/or lipid-mediated association of chaperone proteins to membranes is a widespread phenomenon and implicated in a number of physiological and pathological events that were earlier partially or completely overlooked. A temporary association of certain HSPs with membranes can re-establish the fluidity and bilayer stability and thereby restore the membrane functionality during stress conditions. The fluidity and microdomain organization of membranes are decisive factors in the perception and transduction of stresses into signals that trigger the activation of specific HS genes. Conversely, the membrane association of HSPs may result in the inactivation of membrane-perturbing signals, thereby switch off the heat shock response. Interactions between certain HSPs and specific lipid microdomains ("rafts") might be a previously unrecognized means for the compartmentalization of HSPs to specific signaling platforms, where key signaling proteins are known to be concentrated. Any modulations of the membranes, especially the raft-lipid composition of the cells can alter the extracellular release and thus the immuno-stimulatory activity of certain HSPs. Reliable techniques, allowing mapping of the composition and dynamics of lipid microdomains and simultaneously the spatio-temporal localization of HSPs in and near the plasma membrane can provide suitable means with which to address fundamental questions, such as how HSPs are transported to and translocated through the plasma membrane. The possession of such information is critical if we are to target the membrane association principles of HSPs for successful drug development in most various diseases.

  19. Analysis of close associations of uropod-associated proteins in human T-cells using the proximity ligation assay

    PubMed Central

    Baumann, Tommy; Affentranger, Sarah

    2013-01-01

    We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation. PMID:24167781

  20. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development.

    PubMed

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm.

  1. Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density.

    PubMed

    Byström, Sanna; Eklund, Martin; Hong, Mun-Gwan; Fredolini, Claudia; Eriksson, Mikael; Czene, Kamila; Hall, Per; Schwenk, Jochen M; Gabrielson, Marike

    2018-02-14

    Mammographic breast density is one of the strongest risk factors for breast cancer, but molecular understanding of how breast density relates to cancer risk is less complete. Studies of proteins in blood plasma, possibly associated with mammographic density, are well-suited as these allow large-scale analyses and might shed light on the association between breast cancer and breast density. Plasma samples from 1329 women in the Swedish KARMA project, without prior history of breast cancer, were profiled with antibody suspension bead array (SBA) assays. Two sample sets comprising 729 and 600 women were screened by two different SBAs targeting a total number of 357 proteins. Protein targets were selected through searching the literature, for either being related to breast cancer or for being linked to the extracellular matrix. Association between proteins and absolute area-based breast density (AD) was assessed by quantile regression, adjusting for age and body mass index (BMI). Plasma profiling revealed linear association between 20 proteins and AD, concordant in the two sets of samples (p < 0.05). Plasma levels of seven proteins were positively associated and 13 proteins negatively associated with AD. For eleven of these proteins evidence for gene expression in breast tissue existed. Among these, ABCC11, TNFRSF10D, F11R and ERRF were positively associated with AD, and SHC1, CFLAR, ACOX2, ITGB6, RASSF1, FANCD2 and IRX5 were negatively associated with AD. Screening proteins in plasma indicates associations between breast density and processes of tissue homeostasis, DNA repair, cancer development and/or progression in breast cancer. Further validation and follow-up studies of the shortlisted protein candidates in independent cohorts will be needed to infer their role in breast density and its progression in premenopausal and postmenopausal women.

  2. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    PubMed

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  3. Colorimetric protein determination in microalgae (Chlorophyta): association of milling and SDS treatment for total protein extraction.

    PubMed

    Mota, Maria Fernanda S; Souza, Marcella F; Bon, Elba P S; Rodrigues, Marcoaurelio A; Freitas, Suely Pereira

    2018-05-24

    The use of colorimetric methods for protein quantification in microalgae is hindered by their elevated amounts of membrane-embedded intracellular proteins. In this work, the protein content of three species of microalgae was determined by the Lowry method after the cells were dried, ball-milled, and treated with the detergent sodium dodecyl sulfate (SDS). Results demonstrated that the association of milling and SDS treatment resulted in a 3- to 7-fold increase in protein quantification. Milling promoted microalgal disaggregation and cell wall disruption enabling access of the SDS detergent to the microalgal intracellular membrane proteins and their efficient solubilization and quantification. © 2018 Phycological Society of America.

  4. Downregulated expression of the cyclase-associated protein 1 (CAP1) reduces migration in esophageal squamous cell carcinoma.

    PubMed

    Li, Mei; Yang, Xiaojing; Shi, Hui; Ren, Hanru; Chen, Xueyu; Zhang, Shu; Zhu, Junya; Zhang, Jianguo

    2013-09-01

    Overexpression of cyclase-associated proteins has been associated with poor prognosis in several human cancers. Cyclase-associated protein 1 is a member of the cyclase-associated proteins which contributes to tumor progression. The aim of the present study was to examine the expression of cyclase-associated protein 1 and to elucidate its clinicopathologic significance in a larger series of esophageal squamous cell carcinoma. Immunohistochemical and western blot analyses were performed in esophageal squamous cell carcinoma tissues. Survival analyses were performed by using the Kaplan-Meier method. The role of cyclase-associated protein 1 in migration was studied in esophageal squamous cell carcinoma cell lines of TE1 through knocking down cyclase-associated protein 1 with siRNA and overexpression of cyclase-associated protein 1. The regulation of cyclase-associated protein 1 on migration was determined by transwell and wound-healing assays. Immunohistochemical analysis showed that cyclase-associated protein 1 expression was negatively associated with E-cadherin and significantly associated with lymph node metastases. Survival analysis revealed that cyclase-associated protein 1 overexpression was significantly associated with overall survival (P = 0.011). Knock down of cyclase-associated protein 1 in TE1 cells resulted in decreased vimentin and F-actin levels and the capability for migration. In addition, overexpression of cyclase-associated protein 1 promoted the migration of TE1 cells. These findings suggest that cyclase-associated protein 1 is involved in the metastasis of esophageal squamous cell carcinoma, and that elevated levels of cyclase-associated protein 1 expression may indicate a poor prognosis for patients with esophageal squamous cell carcinoma.

  5. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  6. Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins

    PubMed Central

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-01-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  7. Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites.

    PubMed

    Heinz, Eva; Lithgow, Trevor

    2013-02-01

    Mitochondria are present in all eukaryotes, but remodeling of their metabolic contribution has in some cases left them almost unrecognizable and they are referred to as mitochondria-like organelles, hydrogenosomes or, in the case where evolution has led to a great deal of simplification, as mitosomes. Mitochondria rely on the import of proteins encoded in the nucleus and the protein import machinery has been investigated in detail in yeast: several sophisticated molecular machines act in concert to import substrate proteins across the outer mitochondrial membrane and deliver them to a precise sub-mitochondrial compartment. Because these machines are so sophisticated, it has been a major challenge to conceptualize the first phase of their evolution. Here we review recent studies on the protein import pathway in parasitic species that have mitosomes: in the course of their evolution for highly specialized niches these parasites, particularly Cryptosporidia and Microsporidia, have secondarily lost numerous protein functions, in accordance with the evolution of their genomes towards a minimal size. Microsporidia are related to fungi, Cryptosporidia are apicomplexans and kin to the malaria parasite Plasmodium; and this great phylogenetic distance makes it remarkable that Microsporidia and Cryptosporidia have independently evolved skeletal protein import pathways that are almost identical. We suggest that the skeletal pathway reflects the protein import machinery of the first eukaryotes, and defines the essential roles of the core elements of the mitochondrial protein import machinery. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Comparative genomic analysis and phylogenetic position of Theileria equi

    PubMed Central

    2012-01-01

    Background Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites. Results The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp. Conclusions The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the

  9. Toxoplasmosis

    DTIC Science & Technology

    2011-06-01

    Sarcocystis sp, which also can mimic T. gondii, form sarcocysts that contain various stages of the parasite (Figs 12.90 &12.91), including mature, banana ... Flowers SA. Global protein expression analysis in apicomplexan parasites: current status. Proteomics. 2005;5:918-924. Acknowledgements The authors

  10. Effect of urea on protein-ligand association.

    PubMed

    Stepanian, Lora; Son, Ikbae; Chalikian, Tigran V

    2017-12-01

    We combine experimental and theoretical approaches to investigate the influence of a cosolvent on a ligand-protein association event. We apply fluorescence measurements to determining the affinity of the inhibitor tri-N-acetylglucosamine [(GlcNAc) 3 ] for lysozyme at urea concentrations ranging from 0 to 8M. Notwithstanding that, at room temperature and neutral pH, lysozyme retains its native conformation up to the solubility limit of urea, the affinity of (GlcNAc) 3 for the protein steadily decreases as the concentration of urea increases. We analyze the urea dependence of the binding free energy within the framework of a simplified statistical thermodynamics-based model that accounts for the excluded volume effect and direct solute-solvent interactions. The analysis reveals that the detrimental action of urea on the inhibitor-lysozyme binding originates from competition between the free energy contributions of the excluded volume effect and direct solute-solvent interactions. The free energy contribution of direct urea-solute interactions narrowly overcomes the excluded volume contribution thereby resulting in urea weakening the protein-ligand association. More broadly, the successful application of the simple model employed in this work points to the possibility of its use in quantifying the stabilizing/destabilizing action of individual cosolvents on biochemical folding and binding reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    PubMed

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Simulations of HIV Capsid Protein Dimerization Reveal the Effect of Chemistry and Topography on the Mechanism of Hydrophobic Protein Association

    PubMed Central

    Yu, Naiyin; Hagan, Michael F.

    2012-01-01

    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self-assembly of macromolecular complexes. In this article, we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus capsid protein. By combining all-atom simulations with specialized sampling techniques, we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. Although the wild-type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting before association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nanometer length scales, indicating long-range cooperativity and a sensitivity to surface topography. These observations identify important details that are missing from descriptions of protein association based on buried hydrophobic surface area. PMID:22995509

  13. Optimizing Associative Experimental Design for Protein Crystallization Screening

    PubMed Central

    Dinç, Imren; Pusey, Marc L.; Aygün, Ramazan S.

    2016-01-01

    The goal of protein crystallization screening is the determination of the main factors of importance to crystallizing the protein under investigation. One of the major issues about determining these factors is that screening is often expanded to many hundreds or thousands of conditions to maximize combinatorial chemical space coverage for maximizing the chances of a successful (crystalline) outcome. In this paper, we propose an experimental design method called “Associative Experimental Design (AED)” and an optimization method includes eliminating prohibited combinations and prioritizing reagents based on AED analysis of results from protein crystallization experiments. AED generates candidate cocktails based on these initial screening results. These results are analyzed to determine those screening factors in chemical space that are most likely to lead to higher scoring outcomes, crystals. We have tested AED on three proteins derived from the hyperthermophile Thermococcus thioreducens, and we applied an optimization method to these proteins. Our AED method generated novel cocktails (count provided in parentheses) leading to crystals for three proteins as follows: Nucleoside diphosphate kinase (4), HAD superfamily hydrolase (2), Nucleoside kinase (1). After getting promising results, we have tested our optimization method on four different proteins. The AED method with optimization yielded 4, 3, and 20 crystalline conditions for holo Human Transferrin, archaeal exosome protein, and Nucleoside diphosphate kinase, respectively. PMID:26955046

  14. The heat shock protein 90 of Toxoplasma gondii is essential for invasion of host cells and tachyzoite growth

    PubMed Central

    Sun, Hongchao; Zhuo, Xunhui; Zhao, Xianfeng; Yang, Yi; Chen, Xueqiu; Yao, Chaoqun; Du, Aifang

    2017-01-01

    Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects almost all warm-blooded vertebrates. Heat shock proteins (HSP) regulate key signal transduction events in many organisms, and heat shock protein 90 (Hsp90) plays an important role in growth, development, and virulence in several parasitic protozoa. Here, we discovered increased transcription of the Hsp90 gene under conditions for bradyzoite differentiation, i.e. alkaline and heat shock conditions in vitro, suggesting that Hsp90 may be connected with bradyzoite development in T. gondii. A knockout of the TgHsp90 strain (ΔHsp90) and a complementation strain were constructed. The TgHsp90 knockout cells were found to be defective in host-cell invasion, were not able to proliferate in vitro in Vero cells, and did not show long-time survival in mice in vivo. These inabilities of the knockout parasites were restored upon complementation of TgHsp90. These data unequivocally show that TgHsp90 contributes to bradyzoite development, and to invasion and replication of T. gondii in host cells. PMID:28627357

  15. Hippocampal synapsin I, growth-associated protein-43, and microtubule-associated protein-2 immunoreactivity in learned helplessness rats and antidepressant-treated rats.

    PubMed

    Iwata, M; Shirayama, Y; Ishida, H; Kawahara, R

    2006-09-01

    Learned helplessness rats are thought to be an animal model of depression. To study the role of synapse plasticity in depression, we examined the effects of learned helplessness and antidepressant treatments on synapsin I (a marker of presynaptic terminals), growth-associated protein-43 (GAP-43; a marker of growth cones), and microtubule-associated protein-2 (MAP-2; a marker of dendrites) in the hippocampus by immunolabeling. (1) Learned helplessness rats showed significant increases in the expression of synapsin I two days after the attainment of learned helplessness, and significant decreases in the protein expression eight days after the achievement of learned helplessness. Subchronic treatment of naïve rats with imipramine or fluvoxamine significantly decreased the expression of synapsin I. (2) Learned helplessness increased the expression of GAP-43 two days and eight days after learned helplessness training. Subchronic treatment of naïve rats with fluvoxamine but not imipramine showed a tendency to decrease the expression of synapsin I. (3) Learned helplessness rats showed increased expression of MAP-2 eight days after the attainment of learned helplessness. Naïve rats subchronically treated with imipramine showed a tendency toward increased expression of MAP-2, but those treated with fluvoxamine did not. These results indicate that the neuroplasticity-related proteins synapsin I, GAP-43, and MAP-2 may play a role in the pathophysiology of depression and the mechanisms of antidepressants.

  16. A role for AT1 receptor-associated proteins in blood pressure regulation.

    PubMed

    Castrop, Hayo

    2015-04-01

    The renin angiotensin-system is one of the most important humoral regulators of blood pressure. The recently discovered angiotensin receptor-associated proteins serve as local modulators of the renin angiotensin-system. These proteins interact with the AT1 receptor in a tissue-specific manner and regulate the sensitivity of the target cell for angiotensin II. The predominant effect of the AT1 receptor-associated proteins on angiotensin II-induced signaling is the modulation of the surface expression of the AT1 receptor. This review provides an overview of our current knowledge with respect to the relevance of AT1 receptor-associated proteins for blood pressure regulation. Two aspects of blood pressure regulation will be discussed in detail: angiotensin II-dependent volume homoeostasis and vascular resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Serum lipids modify periodontal infection - C-reactive protein association.

    PubMed

    Haro, Anniina; Saxlin, Tuomas; Suominen, Anna-Liisa; Ylöstalo, Pekka; Leiviskä, Jaana; Tervonen, Tellervo; Knuuttila, Matti

    2012-09-01

    To investigate whether low-grade inflammation-related factors such as serum low-density (LDL-C) and high-density lipoprotein cholesterol (HDL-C) modify the association between periodontal infection and C-reactive protein. This study was based on a subpopulation of the Health 2000 Survey, which consisted of dentate, non-diabetic, non-rheumatic subjects who were 30-49 years old (n = 2710). The extent of periodontal infection was measured by means of the number of teeth with periodontal pocket ≥4 mm and teeth with periodontal pocket ≥6 mm and systemic inflammation using high sensitive C-reactive protein. The extent of periodontal infection was associated with elevated levels of C-reactive protein among those subjects whose HDL-C value was below the median value of 1.3 mmol/l or LDL-C above the median value of 3.4 mmol/l. Among those with HDL-C ≥ 1.3 mmol/l or LDL-C ≤ 3.4 mmol/l, the association between periodontal infection and serum concentrations of C-reactive protein was practically non-existent. This study suggests that the relation of periodontal infection to the systemic inflammatory condition is more complicated than previously presumed. The findings of this study suggest that the possible systemic effect of periodontal infection is dependent on serum lipid composition. © 2012 John Wiley & Sons A/S.

  18. Identification of O-GlcNAcylated proteins in Plasmodium falciparum.

    PubMed

    Kupferschmid, Mattis; Aquino-Gil, Moyira Osny; Shams-Eldin, Hosam; Schmidt, Jörg; Yamakawa, Nao; Krzewinski, Frédéric; Schwarz, Ralph T; Lefebvre, Tony

    2017-11-29

    Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans. The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS). While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins. This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.

  19. Protein Mediated Oxidative Stress in Patients with Diabetes and its Associated Neuropathy: Correlation with Protein Carbonylation and Disease Activity Markers

    PubMed Central

    Almogbel, Ebtehal

    2017-01-01

    Introduction Free radicals have been implicated as Diabetes Mellitus (DM) contributors in type 2 DM and its associated Diabetes Mellitus Neuropathy (DMN). However, the potential for protein mediated oxidative stress to contribute disease pathogenesis remains largely unexplored. Aim To investigate the status and contribution of protein mediated oxidative stress in patients with DM or DMN and to explore whether oxidative protein modification has a role in DM progression to DM associated neuropathy. Materials and Methods Sera from 42 DM and 37 DMN patients with varying levels of disease activities biomarkers (HbA1C, patients’ age or disease duration) and 21 age- and sex-matched healthy controls were evaluated for serum levels of protein mediated oxidative stress. Results Serum analysis showed significantly higher levels of protein carbonyl contents in both DM and DMN patients compared with healthy controls. Importantly, not only was there an increased number of subjects positive for protein carbonylation, but also the levels of protein carbonyl contents were significantly higher among DM and DMN patients, whose HbA1C were ≥8.8 as compared with patients with lower HbA1C (HbA1C<8.8). Similar pattern of protein carbonyls formation was also observed with patients’ ages or with patient’s disease durations, suggesting a possible relationship between protein oxidation and disease progression. Furthermore, sera from DMN patients had higher levels of protein carbonylation compared with non-neuropathic DM patients’ sera, suggesting an involvement of protein oxidation in the progression of diabetes to diabetes neuropathy. Conclusion These findings support an association between protein oxidation and DM or DMN progression. The stronger response observed in patients with higher HbA1C or patients’ ages or disease durations suggests, that protein mediated oxidative stress may be useful in evaluating the progression of DM and its associated DMN and in elucidating the

  20. Quantitative proteome analysis reveals the correlation between endocytosis-associated proteins and hepatocellular carcinoma dedifferentiation.

    PubMed

    Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Reis, Henning; Ahrens, Maike; Turewicz, Michael; Eisenacher, Martin; Tautges, Stephanie; Canbay, Ali E; Meyer, Helmut E; Weber, Frank; Baba, Hideo A; Sitek, Barbara

    2016-11-01

    The majority of poorly differentiated hepatocellular carcinomas (HCCs) develop from well-differentiated tumors. Endocytosis is a cellular function which is likely to take part in this development due to its important role in regulating the abundances of vital signaling receptors. Here, we aimed to investigate the abundance of endocytosis-associated proteins in HCCs with various differentiation grades. Therefore, we analyzed 36 tissue specimens from HCC patients via LC-MS/MS-based label-free quantitative proteomics including 19 HCC tissue samples with different degrees of histological grades and corresponding non-tumorous tissue controls. As a result, 277 proteins were differentially regulated between well-differentiated tumors and controls. In moderately and poorly differentiated tumors, 278 and 1181 proteins, respectively, were significantly differentially regulated compared to non-tumorous tissue. We explored the regulated proteins based on their functions and identified thirty endocytosis-associated proteins, mostly overexpressed in poorly differentiated tumors. These included proteins that have been shown to be up-regulated in HCC like clathrin heavy chain-1 (CLTC) as well as unknown proteins, such as secretory carrier-associated membrane protein 3 (SCAMP3). The abundances of SCAMP3 and CLTC were immunohistochemically examined in tissue sections of 84 HCC patients. We demonstrate the novel association of several endocytosis-associated proteins, in particular, SCAMP3 with HCC progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality.

    PubMed

    Song, Mingyang; Fung, Teresa T; Hu, Frank B; Willett, Walter C; Longo, Valter D; Chan, Andrew T; Giovannucci, Edward L

    2016-10-01

    Defining what represents a macronutritionally balanced diet remains an open question and a high priority in nutrition research. Although the amount of protein may have specific effects, from a broader dietary perspective, the choice of protein sources will inevitably influence other components of diet and may be a critical determinant for the health outcome. To examine the associations of animal and plant protein intake with the risk for mortality. This prospective cohort study of US health care professionals included 131 342 participants from the Nurses' Health Study (1980 to end of follow-up on June 1, 2012) and Health Professionals Follow-up Study (1986 to end of follow-up on January 31, 2012). Animal and plant protein intake was assessed by regularly updated validated food frequency questionnaires. Data were analyzed from June 20, 2014, to January 18, 2016. Hazard ratios (HRs) for all-cause and cause-specific mortality. Of the 131 342 participants, 85 013 were women (64.7%) and 46 329 were men (35.3%) (mean [SD] age, 49 [9] years). The median protein intake, as assessed by percentage of energy, was 14% for animal protein (5th-95th percentile, 9%-22%) and 4% for plant protein (5th-95th percentile, 2%-6%). After adjusting for major lifestyle and dietary risk factors, animal protein intake was not associated with all-cause mortality (HR, 1.02 per 10% energy increment; 95% CI, 0.98-1.05; P for trend = .33) but was associated with higher cardiovascular mortality (HR, 1.08 per 10% energy increment; 95% CI, 1.01-1.16; P for trend = .04). Plant protein was associated with lower all-cause mortality (HR, 0.90 per 3% energy increment; 95% CI, 0.86-0.95; P for trend < .001) and cardiovascular mortality (HR, 0.88 per 3% energy increment; 95% CI, 0.80-0.97; P for trend = .007). These associations were confined to participants with at least 1 unhealthy lifestyle factor based on smoking, heavy alcohol intake, overweight or obesity, and physical

  2. The association of trajectories of protein intake and age-specific protein intakes from 2 to 22 years with BMI in early adulthood.

    PubMed

    Wright, Melecia; Sotres-Alvarez, Daniela; Mendez, Michelle A; Adair, Linda

    2017-03-01

    No study has analysed how protein intake from early childhood to young adulthood relate to adult BMI in a single cohort. To estimate the association of protein intake at 2, 11, 15, 19 and 22 years with age- and sex-standardised BMI at 22 years (early adulthood), we used linear regression models with dietary and anthropometric data from a Filipino birth cohort (1985-2005, n 2586). We used latent growth curve analysis to identify trajectories of protein intake relative to age-specific recommended daily allowance (intake in g/kg body weight) from 2 to 22 years, then related trajectory membership to early adulthood BMI using linear regression models. Lean mass and fat mass were secondary outcomes. Regression models included socioeconomic, dietary and anthropometric confounders from early life and adulthood. Protein intake relative to needs at age 2 years was positively associated with BMI and lean mass at age 22 years, but intakes at ages 11, 15 and 22 years were inversely associated with early adulthood BMI. Individuals were classified into four mutually exclusive trajectories: (i) normal consumers (referent trajectory, 58 % of cohort), (ii) high protein consumers in infancy (20 %), (iii) usually high consumers (18 %) and (iv) always high consumers (5 %). Compared with the normal consumers, 'usually high' consumption was inversely associated with BMI, lean mass and fat mass at age 22 years whereas 'always high' consumption was inversely associated with male lean mass in males. Proximal protein intakes were more important contributors to early adult BMI relative to early-childhood protein intake; protein intake history was differentially associated with adulthood body size.

  3. Multiplexed targeted mass spectrometry assays for prostate cancer-associated urinary proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Quek, Sue-Ing; Gao, Yuqian

    Biomarkers for effective early diagnosis and prognosis of prostate cancer are still lacking. Multiplexed assays for cancer-associated proteins could be useful for identifying biomarkers for cancer detection and stratification. Herein, we report the development of sensitive targeted mass spectrometry assays for simultaneous quantification of 10 prostate cancer-associated proteins in urine. The diagnostic utility of these markers was evaluated with an initial cohort of 20 clinical urine samples. Individual marker concentration was normalized against the measured urinary prostate-specific antigen level as a reference of prostate-specific secretion. The areas under the receiver-operating characteristic curves for the 10 proteins ranged from 0.75 formore » CXCL14 to 0.87 for CEACAM5. Furthermore, MMP9 level was found to be significantly higher in patients with high Gleason scores, suggesting a potential of MMP9 as a marker for risk level assessment. Taken together, our work illustrated the feasibility of accurate multiplexed measurements of low-abundance cancer-associated proteins in urine and provided a viable path forward for preclinical verification of candidate biomarkers for prostate cancer.« less

  4. Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion.

    PubMed

    Shen, Bang; Sibley, L David

    2014-03-04

    Gliding motility and host-cell invasion by apicomplexan parasites depend on cell-surface adhesins that are translocated via an actin-myosin motor beneath the membrane. The current model posits that fructose-1,6-bisphosphate aldolase (ALD) provides a critical link between the cytoplasmic tails of transmembrane adhesins and the actin-myosin motor. Here we tested this model using the Toxoplasma gondii apical membrane protein 1 (TgAMA1), which binds to aldolase in vitro. TgAMA1 cytoplasmic tail mutations that disrupt ALD binding in vitro showed no correlation with host-cell invasion, indicating this interaction is not essential. Furthermore, ALD-depleted parasites were impaired when grown in glucose, yet they showed normal gliding and invasion in glucose-free medium. Depletion of ALD in the presence of glucose led to accumulation of fructose-1,6-bisphosphate, which has been associated with toxicity in other systems. Finally, TgALD knockout parasites and an ALD mutant that specifically disrupts adhesin binding in vitro also supported normal invasion when cultured in glucose-free medium. Taken together, these results suggest that ALD is primarily important for energy metabolism rather than interacting with microneme adhesins, challenging the current model for apicomplexan motility and invasion.

  5. Identification of Autophagosome-associated Proteins and Regulators by Quantitative Proteomic Analysis and Genetic Screens*

    PubMed Central

    Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria O.; Eisenberg, Tobias; Harder, Lea M.; Schandorff, Søren; Farkas, Thomas; Kirkegaard, Thomas; Becker, Andrea C.; Schroeder, Sabrina; Vanselow, Katja; Lundberg, Emma; Nielsen, Mogens M.; Kristensen, Anders R.; Akimov, Vyacheslav; Bunkenborg, Jakob; Madeo, Frank; Jäättelä, Marja; Andersen, Jens S.

    2012-01-01

    Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection. PMID:22311637

  6. Protein-like fully reversible tetramerisation and super-association of an aminocellulose

    NASA Astrophysics Data System (ADS)

    Nikolajski, Melanie; Adams, Gary G.; Gillis, Richard B.; Besong, David Tabot; Rowe, Arthur J.; Heinze, Thomas; Harding, Stephen E.

    2014-01-01

    Unusual protein-like, partially reversible associative behaviour has recently been observed in solutions of the water soluble carbohydrates known as 6-deoxy-6-(ω-aminoalkyl)aminocelluloses, which produce controllable self-assembling films for enzyme immobilisation and other biotechnological applications. Now, for the first time, we have found a fully reversible self-association (tetramerisation) within this family of polysaccharides. Remarkably these carbohydrate tetramers are then seen to associate further in a regular way into supra-molecular complexes. Fully reversible oligomerisation has been hitherto completely unknown for carbohydrates and instead resembles in some respects the assembly of polypeptides and proteins like haemoglobin and its sickle cell mutation. Our traditional perceptions as to what might be considered ``protein-like'' and what might be considered as ``carbohydrate-like'' behaviour may need to be rendered more flexible, at least as far as interaction phenomena are concerned.

  7. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    PubMed

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  8. Identification of proteins in the aqueous humor associated with cataract development using iTRAQ methodology.

    PubMed

    Xiang, Minhong; Zhang, Xingru; Li, Qingsong; Wang, Hanmin; Zhang, Zhenyong; Han, Zhumei; Ke, Meiqing; Chen, Xingxing

    2017-05-01

    Proteins in the aqueous humor (AH) are important in the induction of cataract development. The identification of cataract-associated proteins assists in identifying patients and predisposed to the condition and improve treatment efficacy. Proteomics analysis has previously been used for identifying protein markers associated with eye diseases; however, few studies have examined the proteomic alterations in cataract development due to high myopia, glaucoma and diabetes. The present study, using the isobaric tagging for relative and absolute protein quantification methodology, aimed to examine cataract-associated proteins in the AH from patients with high myopia, glaucoma or diabetes, and controls. The results revealed that 445 proteins were identified in the AH groups, compared with the control groups, and 146, 264 and 130 proteins were differentially expressed in the three groups of patients, respectively. In addition, 44 of these proteins were determined to be cataract‑associated, and the alterations of five randomly selected proteins were confirmed using enzyme-linked immunosorbent assays. The biological functions of these 44 cataract-associated proteins were analyzed using Gen Ontology/pathways annotation, in addition to protein‑protein interaction network analysis. The results aimed to expand current knowledge of the pathophysiologic characteristics of cataract development and provided a panel of candidates for biomarkers of the disease, which may assist in further diagnosis and the monitoring of cataract development.

  9. Computational Framework for Prediction of Peptide Sequences That May Mediate Multiple Protein Interactions in Cancer-Associated Hub Proteins.

    PubMed

    Sarkar, Debasree; Patra, Piya; Ghosh, Abhirupa; Saha, Sudipto

    2016-01-01

    A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators.

  10. Molecular Simulations of Sequence-Specific Association of Transmembrane Proteins in Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Doxastakis, Manolis; Prakash, Anupam; Janosi, Lorant

    2011-03-01

    Association of membrane proteins is central in material and information flow across the cellular membranes. Amino-acid sequence and the membrane environment are two critical factors controlling association, however, quantitative knowledge on such contributions is limited. In this work, we study the dimerization of helices in lipid bilayers using extensive parallel Monte Carlo simulations with recently developed algorithms. The dimerization of Glycophorin A is examined employing a coarse-grain model that retains a level of amino-acid specificity, in three different phospholipid bilayers. Association is driven by a balance of protein-protein and lipid-induced interactions with the latter playing a major role at short separations. Following a different approach, the effect of amino-acid sequence is studied using the four transmembrane domains of the epidermal growth factor receptor family in identical lipid environments. Detailed characterization of dimer formation and estimates of the free energy of association reveal that these helices present significant affinity to self-associate with certain dimers forming non-specific interfaces.

  11. Thermal fluctuations enable rapid protein-protein associations in aqueous solution by lowering the reaction barrier

    NASA Astrophysics Data System (ADS)

    Sakaizawa, Honami; Watanabe, Hiroshi C.; Furuta, Tadaomi; Sakurai, Minoru

    2016-01-01

    In hydrophilic protein-protein associations, the dehydration penalty, which can cause the formation of a reaction barrier, must be canceled out; however, its mechanism has not been clarified. Here, we explored the possible mechanism through investigation of the dimerization of nucleotide binding domains (NBDs). We assessed the different dimerization processes by molecular dynamics simulations with and without thermal fluctuations in each NBD. Consequently, the reaction barriers of the former and latter were estimated to be ∼100 and ∼15 kcal/mol, respectively, suggesting that thermal fluctuations in the proteins facilitate the exclusion of water molecules from the interfacial region, thereby lowering the barrier.

  12. Staphylococcus saprophyticus surface-associated protein (Ssp) is associated with lifespan reduction in Caenorhabditis elegans.

    PubMed

    Szabados, Florian; Mohner, Amelie; Kleine, Britta; Gatermann, Sören G

    2013-10-01

    Staphylococcal lipases have been proposed as pathogenicity factors. In Staphylococcus saprophyticus the surface-associated protein (Ssp) has been previously characterized as a cell wall-associated true lipase. A S. saprophyticus Δssp::ermB mutant has been described as less virulent in an in vivo model of urinary tract infection compared with its wild-type. This is the first report showing that S. saprophyticus induced a lifespan reduction in Caenorhabditis elegans similar to that of S. aureus RN4220. In two S. saprophyticus Δssp::ermB mutants lifespan reduction in C. elegans was partly abolished. In order to attribute virulence to the lipase activity itself and distinguish this phenomenon from the presence of the Ssp-protein, the conserved active site of the lipase was modified by site-directed ligase-independent mutagenesis and lipase activity-deficient mutants were constructed. These results indicate that the Ssp is associated with pathogenicity in C. elegans and one could speculate that the lipase activity itself is responsible for this virulence.

  13. Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization.

    PubMed

    Diaz, Suraya A; Martin, Stephen R; Grainger, Munira; Howell, Steven A; Green, Judith L; Holder, Anthony A

    2014-10-01

    The current model of Apicomplexan motility and host cell invasion is that both processes are driven by an actomyosin motor located beneath the plasma membrane, with the force transduced to the outside of the cell via coupling through aldolase and the cytoplasmic tail domains (CTDs) of certain type 1 membrane proteins. In Plasmodium falciparum (Pf), aldolase is thought to bind to the CTD of members of the thrombospondin-related anonymous protein (TRAP) family, which are micronemal proteins and represented by MTRAP in merozoites. Other type 1 membrane proteins including members of the erythrocyte binding antigen (EBA) and reticulocyte binding protein homologue (RH) protein families, which are also apical organellar proteins, have also been implicated in host cell binding in erythrocyte invasion. However, recent studies with Toxoplasma gondii have questioned the importance of aldolase in these processes. Using biolayer interferometry we show that Pf aldolase binds with high affinity to both rabbit and Pf actin, with a similar affinity for filamentous (F-) actin and globular (G-) actin. The interaction between Pf aldolase and merozoite actin was confirmed by co-sedimentation assays. Aldolase binding was shown to promote rabbit actin polymerization indicating that the interaction is more complicated than binding alone. The CTDs of some but not all type 1 membrane proteins also promoted actin polymerization in the absence of aldolase; MTRAP and RH1 CTDs promoted actin polymerization but EBA175 CTD did not. Direct actin polymerization mediated by membrane protein CTDs may contribute to actin recruitment, filament formation and stability during motor assembly, and actin-mediated movement, independent of aldolase. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Identification of genetic loci associated with crude protein and mineral concentrations in alfalfa (Medicago sativa) using association mapping.

    PubMed

    Jia, Congjun; Wu, Xinming; Chen, Min; Wang, Yunqi; Liu, Xiqiang; Gong, Pan; Xu, Qingfang; Wang, Xuemin; Gao, Hongwen; Wang, Zan

    2017-06-06

    Alfalfa (Medicago sativa) is one of the most important legume forage species in China and many other countries of the world. It provides a quality source of proteins and minerals to animals. Genetic underpinnings for these important traits, however, are elusive. An alfalfa (M. sativa) association mapping study for six traits, namely crude protein (CP), rumen undegraded protein (RUP), and four mineral elements (Ca, K, Mg and P), was conducted in three consecutive years using a large collection encompassing 336 genotypes genotyped with 85 simple sequence repeat (SSR) markers. All the traits were significantly influenced by genotype, environment, and genotype × environment interaction. Eight-five significant associations (P < 0.005) were identified. Among these, five associations with Ca were repeatedly observed and six co-localized associations were identified. The identified marker alleles significantly associated with the traits provided important information for understanding genetic controls of alfalfa quality. The markers could be used in assisting selection for the individual traits in breeding populations for developing new alfalfa cultivars.

  15. Purification of infectious human herpesvirus 6A virions and association of host cell proteins

    PubMed Central

    Hammarstedt, Maria; Ahlqvist, Jenny; Jacobson, Steven; Garoff, Henrik; Fogdell-Hahn, Anna

    2007-01-01

    Background Viruses that are incorporating host cell proteins might trigger autoimmune diseases. It is therefore of interest to identify possible host proteins associated with viruses, especially for enveloped viruses that have been suggested to play a role in autoimmune diseases, like human herpesvirus 6A (HHV-6A) in multiple sclerosis (MS). Results We have established a method for rapid and morphology preserving purification of HHV-6A virions, which in combination with parallel analyses with background control material released from mock-infected cells facilitates qualitative and quantitative investigations of the protein content of HHV-6A virions. In our iodixanol gradient purified preparation, we detected high levels of viral DNA by real-time PCR and viral proteins by metabolic labelling, silver staining and western blots. In contrast, the background level of cellular contamination was low in the purified samples as demonstrated by the silver staining and metabolic labelling analyses. Western blot analyses showed that the cellular complement protein CD46, the receptor for HHV-6A, is associated with the purified and infectious virions. Also, the cellular proteins clathrin, ezrin and Tsg101 are associated with intact HHV-6A virions. Conclusion Cellular proteins are associated with HHV-6A virions. The relevance of the association in disease and especially in autoimmunity will be further investigated. PMID:17949490

  16. Topographical analysis of the plasma membrane-associated sucrose binding protein from soybean.

    PubMed

    Overvoorde, P J; Grimes, H D

    1994-05-27

    Plasma membranes of soybean cells actively engaged in sucrose transport have a sucrose binding protein (SBP) that does not appear to be an integral membrane protein. Experiments were undertaken to analyze the topographical association of this protein with the membrane. Treatment of purified plasma membrane vesicles with either 1 M KCl or KI released less than 35% of the sucrose binding protein from the membrane whereas treatment with either 4 M urea or 0.1 M Na2CO3, pH 11.5, disassociated between 50 and 70%, respectively, of this protein from the membrane. SDS, at either 0.5x, 1x, or 10x of its critical micelle concentration, effectively solubilized the sucrose binding protein. The nonionic detergents Triton X-100 and CHAPS, at either 0.5x, 1x, or 10x of their critical micelle concentration, solubilized between 65 and 75% of this protein. When either native plasma membrane-associated or in vitro-transcribed and -translated SBP were subjected to Triton X-114 phase separation, 80% partitioned into the detergent-poor aqueous phase. These results indicate that the SBP is a peripheral membrane protein but also suggest that there is a population of this protein that is tethered to the membrane.

  17. Thick Filament Protein Network, Functions, and Disease Association.

    PubMed

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  18. A PII-Like Protein Regulated by Bicarbonate: Structural and Biochemical Studies of the Carboxysome-Associated CPII Protein.

    PubMed

    Wheatley, Nicole M; Eden, Kevin D; Ngo, Joanna; Rosinski, Justin S; Sawaya, Michael R; Cascio, Duilio; Collazo, Michael; Hoveida, Hamidreza; Hubbell, Wayne L; Yeates, Todd O

    2016-10-09

    Autotrophic bacteria rely on various mechanisms to increase intracellular concentrations of inorganic forms of carbon (i.e., bicarbonate and CO 2 ) in order to improve the efficiency with which they can be converted to organic forms. Transmembrane bicarbonate transporters and carboxysomes play key roles in accumulating bicarbonate and CO 2 , but other regulatory elements of carbon concentration mechanisms in bacteria are less understood. In this study, after analyzing the genomic regions around α-type carboxysome operons, we characterize a protein that is conserved across these operons but has not been previously studied. On the basis of a series of apo- and ligand-bound crystal structures and supporting biochemical data, we show that this protein, which we refer to as the carboxysome-associated PII protein (CPII), represents a new and distinct subfamily within the broad superfamily of previously studied PII regulatory proteins, which are generally involved in regulating nitrogen metabolism in bacteria. CPII undergoes dramatic conformational changes in response to ADP binding, and the affinity for nucleotide binding is strongly enhanced by the presence of bicarbonate. CPII therefore appears to be a unique type of PII protein that senses bicarbonate availability, consistent with its apparent genomic association with the carboxysome and its constituents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum.

    PubMed

    Raynal, José Tadeu; Bastos, Bruno Lopes; Vilas-Boas, Priscilla Carolinne Bagano; Sousa, Thiago de Jesus; Costa-Silva, Marcos; de Sá, Maria da Conceição Aquino; Portela, Ricardo Wagner; Moura-Costa, Lília Ferreira; Azevedo, Vasco; Meyer, Roberto

    2018-01-25

    Previous works defining antigens that might be used as vaccine targets against Corynebacterium pseudotuberculosis, which is the causative agent of sheep and goat caseous lymphadenitis, have focused on secreted proteins produced in a chemically defined culture media. Considering that such antigens might not reflect the repertoire of proteins expressed during infection conditions, this experiment aimed to investigate the membrane-associated proteins with pathogenic potential expressed by C. pseudotuberculosis grown directly in animal serum. Its membrane-associated proteins have been extracted using an organic solvent enrichment methodology, followed by LC-MS/MS and bioinformatics analysis for protein identification and classification. The results revealed 22 membrane-associated proteins characterized as potentially pathogenic. An interaction network analysis indicated that the four potentially pathogenic proteins ciuA, fagA, OppA4 and OppCD were biologically connected within two distinct network pathways, which were both associated with the ABC Transporters KEGG pathway. These results suggest that C. pseudotuberculosis pathogenesis might be associated with the transport and uptake of nutrients; other seven identified potentially pathogenic membrane proteins also suggest that pathogenesis might involve events of bacterial resistance and adhesion. The proteins herein reported potentially reflect part of the protein repertoire expressed during real infection conditions and might be tested as vaccine antigens.

  20. Protein S100-A8: A potential metastasis-associated protein for breast cancer determined via iTRAQ quantitative proteomic and clinicopathological analysis.

    PubMed

    Zhong, Jing-Min; Li, Jing; Kang, An-Ding; Huang, San-Qian; Liu, Wen-Bin; Zhang, Yun; Liu, Zhi-Hong; Zeng, Liang

    2018-04-01

    Breast cancer is the most common malignancy in females, with metastasis of this type of cancer frequently proving lethal. However, there are still no effective biomarkers to predict breast cancer metastasis. The aim of the present study was, therefore, to analyze breast cancer metastasis-associated proteins and evaluate the association between protein S100-A8 and the prognosis of breast cancer. The isobaric tags for relative and absolute quantitation (iTRAQ) proteomic technique was used to analyze the differential expression of proteins between fresh primary breast tumor (PBT) tissue and fresh paired metastatic lymph nodes (PMLN) tissue. Subsequently, immunohistochemical staining was used to locate and assess the expression of protein S100-A8 in benign breast disease (n=15), primary breast cancer with (n=109) or without (n=83) metastasis, and in paired metastatic lymph nodes (n=109) formalin fixed paraffin embedded (FFPE) tissue. Staining scores were evaluated and the association between protein S100-A8 expression levels and the clinicopathological characteristics of 192 patients with breast cancer were evaluated using the χ 2 test. Kaplan-Meier and Cox hazards regression analyses were utilized to investigate the association between the expression of protein S100-A8 and the prognosis of patients with breast cancer. A total of 4,837 proteins were identified using the iTRAQ proteomic technique. Among these proteins, 643 differentially expressed proteins were revealed. Protein S100-A8 expression levels were identified to differ between PBT and PMLN tissues. Immunohistochemical staining suggested a significant difference between NMBT and PMLN (P=0.002), and also between PBT and PMLN (P<0.001). Cox hazards regression model analyses suggested that histological grade (P=0.031) and nodal status (P=0.001) were risk factors for lymph nodes metastasis of breast cancer. Kaplan-Meier analyses revealed no significant relationship between protein S100-A8 expression level and

  1. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein.

    PubMed

    Hong, Kyung Uk; Kim, Hyun-Jun; Bae, Chang-Dae; Park, Joobae

    2009-11-30

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one of the mitosis-specific phosphorylation residues (i.e., Thr-622). However, the phosphorylation events at the remaining mitotic phosphorylation sites of TMAP have not been fully characterized in detail. Here, we report on generation and characterization of phosphorylated Thr-578- and phosphorylated Thr-596-specific antibodies. Using the antibodies, we show that phosphorylation of TMAP at Thr-578 and Thr-596 indeed occurs specifically during mitosis. Immunofluorescent staining using the antibodies shows that these residues become phosphorylated starting at prophase and then become rapidly dephosphorylated soon after initiation of anaphase. Subtle differences in the kinetics of phosphorylation between Thr-578 and Thr-596 imply that they may be under different mechanisms of phosphorylation during mitosis. Unlike the phosphorylation-deficient mutant form for Thr-622, the mutant in which both Thr-578 and Thr-596 had been mutated to alanines did not induce significant delay in progression of mitosis. These results show that the majority of mitosis-specific phosphorylation of TMAP is limited to pre-anaphase stages and suggest that the multiple phosphorylation may not act in concert but serve diverse functions.

  2. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein

    PubMed Central

    Hong, Kyung Uk; Kim, Hyun-Jun

    2009-01-01

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one of the mitosis-specific phosphorylation residues (i.e., Thr-622). However, the phosphorylation events at the remaining mitotic phosphorylation sites of TMAP have not been fully characterized in detail. Here, we report on generation and characterization of phosphorylated Thr-578- and phosphorylated Thr-596-specific antibodies. Using the antibodies, we show that phosphorylation of TMAP at Thr-578 and Thr-596 indeed occurs specifically during mitosis. Immunofluorescent staining using the antibodies shows that these residues become phosphorylated starting at prophase and then become rapidly dephosphorylated soon after initiation of anaphase. Subtle differences in the kinetics of phosphorylation between Thr-578 and Thr-596 imply that they may be under different mechanisms of phosphorylation during mitosis. Unlike the phosphorylation-deficient mutant form for Thr-622, the mutant in which both Thr-578 and Thr-596 had been mutated to alanines did not induce significant delay in progression of mitosis. These results show that the majority of mitosis-specific phosphorylation of TMAP is limited to pre-anaphase stages and suggest that the multiple phosphorylation may not act in concert but serve diverse functions. PMID:19641375

  3. Staphylococcus saprophyticus surface-associated protein (Ssp) is associated with lifespan reduction in Caenorhabditis elegans

    PubMed Central

    Szabados, Florian; Mohner, Amelie; Kleine, Britta; Gatermann, Sören G

    2013-01-01

    Staphylococcal lipases have been proposed as pathogenicity factors. In Staphylococcus saprophyticus the surface-associated protein (Ssp) has been previously characterized as a cell wall-associated true lipase. A S. saprophyticus Δssp::ermB mutant has been described as less virulent in an in vivo model of urinary tract infection compared with its wild-type. This is the first report showing that S. saprophyticus induced a lifespan reduction in Caenorhabditis elegans similar to that of S. aureus RN4220. In two S. saprophyticus Δssp::ermB mutants lifespan reduction in C. elegans was partly abolished. In order to attribute virulence to the lipase activity itself and distinguish this phenomenon from the presence of the Ssp-protein, the conserved active site of the lipase was modified by site-directed ligase-independent mutagenesis and lipase activity-deficient mutants were constructed. These results indicate that the Ssp is associated with pathogenicity in C. elegans and one could speculate that the lipase activity itself is responsible for this virulence. PMID:23959029

  4. On the self-association potential of transmembrane tight junction proteins.

    PubMed

    Blasig, I E; Winkler, L; Lassowski, B; Mueller, S L; Zuleger, N; Krause, E; Krause, G; Gast, K; Kolbe, M; Piontek, J

    2006-02-01

    Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported.

  5. Genetic variation in heat shock protein 70 is associated with septic shock: narrowing the association to a specific haplotype.

    PubMed

    Kee, C; Cheong, K Y; Pham, K; Waterer, G W; Temple, S E L

    2008-12-01

    Heat shock protein 70 (HSP70) plays a major role in immune responses. Polymorphisms within the gene have been associated with development of septic shock. This study refines the region of the HSP70 gene associated with development of septic shock and confirms its functionality. Subjects (n = 31) were grouped into one of three haplotypes based on their HSPA1B-179C>T and HSPA1B1267A>G genotypes. Mononuclear cells from these subjects were stimulated with heat-killed bacteria (10(7 )colony-forming units/mL Escherichia coli or Streptococcus pneumoniae) for 8 and 21 h. HSP70 and tumour necrosis factor (TNF) mRNA and protein levels were measured by reverse transcriptase-polymerase chain reaction and ELISA, respectively. The HSPA1B-179*C:1267*A haplotype was associated with significantly lower levels of HSPA1B mRNA and protein and higher production of TNF mRNA and protein compared to the other haplotypes. Induction of HSP70 was TNF independent. These results suggest that the HSPA1B-179C>T:1267A>G haplotype is functional and may explain the association of the HSP70 gene with development of septic shock.

  6. p130Cas-associated Protein (p140Cap) as a New Tyrosine-phosphorylated Protein Involved in Cell Spreading

    PubMed Central

    Di Stefano, Paola; Cabodi, Sara; Erba, Elisabetta Boeri; Margaria, Valentina; Bergatto, Elena; Giuffrida, Maria Gabriella; Silengo, Lorenzo; Tarone, Guido; Turco, Emilia; Defilippi, Paola

    2004-01-01

    Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its

  7. Water dynamics during the association of hiv capsid proteins studied by all-atom simulations

    NASA Astrophysics Data System (ADS)

    Yu, Naiyin; Hagan, Michael

    2012-02-01

    The C-terminal domain of the HIV-1 capsid protein (CA-C) plays an important role in the assembly of the mature capsid. We have used molecular dynamics simulations combined with enhanced sampling methods to study the association of two CA-C proteins in atomistic detail. In this talk we will discuss the dynamics of water during the association process. In particular, we will show that that water in the interfacial region does not undergo a liquid-vapor transition (de-wetting) during association of wild type CA-C. However, mutation of some hydrophilic residues does lead to a dewetting transition. We discuss the relationship between the arrangement of hydrophilic and hydrophobic residues and dewetting during protein association. For the HIV capsid protein, the arrangement of hydrophilic residues contributes to maintaining weak interactions, which are crucial for successful assembly.

  8. Elevated Levels of Adhesion Proteins Are Associated With Low Ankle-Brachial Index.

    PubMed

    Berardi, Cecilia; Wassel, Christine L; Decker, Paul A; Larson, Nicholas B; Kirsch, Phillip S; Andrade, Mariza de; Tsai, Michael Y; Pankow, James S; Sale, Michele M; Sicotte, Hugues; Tang, Weihong; Hanson, Naomi Q; McDermott, Mary M; Criqui, Michael H; Allison, Michael A; Bielinski, Suzette J

    2017-04-01

    Inflammation plays a pivotal role in peripheral artery disease (PAD). Cellular adhesion proteins mediate the interaction of leukocytes with endothelial cells during inflammation. To determine the association of cellular adhesion molecules with ankle-brachial index (ABI) and ABI category (≤1.0 vs >1.0) in a diverse population, 15 adhesion proteins were measured in the Multi-Ethnic Study of Atherosclerosis (MESA). To assess multivariable associations of each protein with ABI and ABI category, linear and logistic regression was used, respectively. Among 2364 participants, 23 presented with poorly compressible arteries (ABI > 1.4) and were excluded and 261 had ABI ≤ 1.0. Adjusting for traditional risk factors, elevated levels of soluble P-selectin, hepatocyte growth factor, and secretory leukocyte protease inhibitor were associated with lower ABI ( P = .0004, .001, and .002, respectively). Per each standard deviation of protein, we found 26%, 20%, and 19% greater odds of lower ABI category ( P = .001, .01, and .02, respectively). Further investigation into the adhesion pathway may shed new light on biological mechanisms implicated in PAD.

  9. Expression of membrane-associated proteins within single emulsion cell facsimiles.

    PubMed

    Chanasakulniyom, Mayuree; Martino, Chiara; Paterson, David; Horsfall, Louise; Rosser, Susan; Cooper, Jonathan M

    2012-07-07

    MreB is a structural membrane-associated protein which is one of the key components of the bacterial cytoskeleton. Although it plays an important role in shape maintenance of rod-like bacteria, the understanding of its mechanism of action is still not fully understood. This study shows how segmented flow and microdroplet technology can be used as a new tool for biological in vitro investigation of this protein. In this paper, we demonstrate cell-free expression in a single emulsion system to express red fluorescence protein (RFP) and MreB linked RFP (MreB-RFP). We follow the aggregation and localisation of the fusion protein MreB-RFP in this artificial cell-like environment. The expression of MreB-RFP in single emulsion droplets leads to the formation of micrometer-scale protein patches distributed at the water/oil interface.

  10. DNA methyltransferase homologue TRDMT1 in Plasmodium falciparum specifically methylates endogenous aspartic acid tRNA.

    PubMed

    Govindaraju, Gayathri; Jabeena, C A; Sethumadhavan, Devadathan Valiyamangalath; Rajaram, Nivethika; Rajavelu, Arumugam

    2017-10-01

    In eukaryotes, cytosine methylation regulates diverse biological processes such as gene expression, development and maintenance of genomic integrity. However, cytosine methylation and its functions in pathogenic apicomplexan protozoans remain enigmatic. To address this, here we investigated the presence of cytosine methylation in the nucleic acids of the protozoan Plasmodium falciparum. Interestingly, P. falciparum has TRDMT1, a conserved homologue of DNA methyltransferase DNMT2. However, we found that TRDMT1 did not methylate DNA, in vitro. We demonstrate that TRDMT1 methylates cytosine in the endogenous aspartic acid tRNA of P. falciparum. Through RNA bisulfite sequencing, we mapped the position of 5-methyl cytosine in aspartic acid tRNA and found methylation only at C38 position. P. falciparum proteome has significantly higher aspartic acid content and a higher proportion of proteins with poly aspartic acid repeats than other apicomplexan pathogenic protozoans. Proteins with such repeats are functionally important, with significant roles in host-pathogen interactions. Therefore, TRDMT1 mediated C38 methylation of aspartic acid tRNA might play a critical role by translational regulation of important proteins and modulate the pathogenicity of the malarial parasite. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Analysis of disease-associated protein expression using quantitative proteomics—fibulin-5 is expressed in association with hepatic fibrosis.

    PubMed

    Bracht, Thilo; Schweinsberg, Vincent; Trippler, Martin; Kohl, Michael; Ahrens, Maike; Padden, Juliet; Naboulsi, Wael; Barkovits, Katalin; Megger, Dominik A; Eisenacher, Martin; Borchers, Christoph H; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2015-05-01

    Hepatic fibrosis and cirrhosis are major health problems worldwide. Until now, highly invasive biopsy remains the diagnostic gold standard despite many disadvantages. To develop noninvasive diagnostic assays for the assessment of liver fibrosis, it is urgently necessary to identify molecules that are robustly expressed in association with the disease. We analyzed biopsied tissue samples from 95 patients with HBV/HCV-associated hepatic fibrosis using three different quantification methods. We performed a label-free proteomics discovery study to identify novel disease-associated proteins using a subset of the cohort (n = 27). Subsequently, gene expression data from all available clinical samples were analyzed (n = 77). Finally, we performed a targeted proteomics approach, multiple reaction monitoring (MRM), to verify the disease-associated expression in samples independent from the discovery approach (n = 68). We identified fibulin-5 (FBLN5) as a novel protein expressed in relation to hepatic fibrosis. Furthermore, we confirmed the altered expression of microfibril-associated glycoprotein 4 (MFAP4), lumican (LUM), and collagen alpha-1(XIV) chain (COL14A1) in association to hepatic fibrosis. To our knowledge, no tissue-based quantitative proteomics study for hepatic fibrosis has been performed using a cohort of comparable size. By this means, we add substantial evidence for the disease-related expression of the proteins examined in this study.

  12. A genome-wide association study of seed protein and oil content in soybean

    PubMed Central

    2014-01-01

    Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome

  13. A genome-wide association study of seed protein and oil content in soybean.

    PubMed

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise

  14. Expression of Tocopherol-Associated Protein in Mast Cells

    PubMed Central

    Ikeda, Teruo; Murakami, Masaru; Funaba, Masayuki

    2004-01-01

    Tocopherol-associated protein (TAP) was expressed in mouse mast cells. TAP was predominantly localized in the cytoplasm, and the subcellular localization was not changed by α-tocopherol. The results suggest that the physiological role of TAP in mast cells is not regulation of tocopherol function but an as-yet-unidentified activity. PMID:15539527

  15. Vaccination with Eimeria tenella Elongation Factor-1alpha Recombinant Protein Induces protective Immunity against E. tenella and E. maxima infections

    USDA-ARS?s Scientific Manuscript database

    Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens a...

  16. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    PubMed

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  17. Inferring drug-disease associations based on known protein complexes.

    PubMed

    Yu, Liang; Huang, Jianbin; Ma, Zhixin; Zhang, Jing; Zou, Yapeng; Gao, Lin

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html.

  18. A Protein Diet Score, Including Plant and Animal Protein, Investigating the Association with HbA1c and eGFR—The PREVIEW Project

    PubMed Central

    Mikkilä, Vera; Raitakari, Olli T.; Hutri-Kähönen, Nina; Dragsted, Lars O.; Poppitt, Sally D.; Silvestre, Marta P.; Feskens, Edith J.M.

    2017-01-01

    Higher-protein diets have been advocated for body-weight regulation for the past few decades. However, the potential health risks of these diets are still uncertain. We aimed to develop a protein score based on the quantity and source of protein, and to examine the association of the score with glycated haemoglobin (HbA1c) and estimated glomerular filtration rate (eGFR). Analyses were based on three population studies included in the PREVIEW project (PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World): NQplus, Lifelines, and the Young Finns Study. Cross-sectional data from food-frequency questionnaires (n = 76,777 subjects) were used to develop a protein score consisting of two components: 1) percentage of energy from total protein, and 2) plant to animal protein ratio. An inverse association between protein score and HbA1c (slope −0.02 ± 0.01 mmol/mol, p < 0.001) was seen in Lifelines. We found a positive association between the protein score and eGFR in Lifelines (slope 0.17 ± 0.02 mL/min/1.73 m2, p < 0.0001). Protein scoring might be a useful tool to assess both the effect of quantity and source of protein on health parameters. Further studies are needed to validate this newly developed protein score. PMID:28714926

  19. A Protein Diet Score, Including Plant and Animal Protein, Investigating the Association with HbA1c and eGFR-The PREVIEW Project.

    PubMed

    Møller, Grith; Sluik, Diewertje; Ritz, Christian; Mikkilä, Vera; Raitakari, Olli T; Hutri-Kähönen, Nina; Dragsted, Lars O; Larsen, Thomas M; Poppitt, Sally D; Silvestre, Marta P; Feskens, Edith J M; Brand-Miller, Jennie; Raben, Anne

    2017-07-17

    Higher-protein diets have been advocated for body-weight regulation for the past few decades. However, the potential health risks of these diets are still uncertain. We aimed to develop a protein score based on the quantity and source of protein, and to examine the association of the score with glycated haemoglobin (HbA1c) and estimated glomerular filtration rate (eGFR). Analyses were based on three population studies included in the PREVIEW project (PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World): NQplus, Lifelines, and the Young Finns Study. Cross-sectional data from food-frequency questionnaires ( n = 76,777 subjects) were used to develop a protein score consisting of two components: 1) percentage of energy from total protein, and 2) plant to animal protein ratio. An inverse association between protein score and HbA1c (slope -0.02 ± 0.01 mmol/mol, p < 0.001) was seen in Lifelines. We found a positive association between the protein score and eGFR in Lifelines (slope 0.17 ± 0.02 mL/min/1.73 m², p < 0.0001). Protein scoring might be a useful tool to assess both the effect of quantity and source of protein on health parameters. Further studies are needed to validate this newly developed protein score.

  20. Dietary protein intake is associated with lean body mass in community-dwelling older adults.

    PubMed

    Geirsdottir, Olof G; Arnarson, Atli; Ramel, Alfons; Jonsson, Palmi V; Thorsdottir, Inga

    2013-08-01

    Lean body mass (LBM) is important to maintain physical function during aging. We hypothesized that dietary protein intake and leisure-time physical activity are associated with LBM in community-dwelling older adults. To test the hypothesis, participants (n = 237; age, 65-92 years) did 3-day weighed food records and reported physical activity. Body composition was assessed using dual-energy x-ray absorptiometry. Protein intake was 0.98 ± 0.28 and 0.95 ± 0.29 g/kg body weight in male and female participants, respectively. Protein intake (in grams per kilogram of body weight) was associated with LBM (in kilograms); that is, the differences in LBM were 2.3 kg (P < .05) and 2.0 kg (P = .054) between the fourth vs the first and the fourth vs the second quartiles of protein intake, respectively. Only a minor part of this association was explained by increased energy intake, which follows an increased protein intake. Our study shows that dietary protein intake was positively associated with LBM in older adults with a mean protein intake higher than the current recommended daily allowance of 0.8 g/kg per day. Leisure-time physical activity, predominantly consisting of endurance type exercises, was not related to LBM in this group. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. High dietary protein intake is associated with an increased body weight and total death risk.

    PubMed

    Hernández-Alonso, Pablo; Salas-Salvadó, Jordi; Ruiz-Canela, Miguel; Corella, Dolores; Estruch, Ramón; Fitó, Montserrat; Arós, Fernando; Gómez-Gracia, Enrique; Fiol, Miquel; Lapetra, José; Basora, Josep; Serra-Majem, Lluis; Muñoz, Miguel Ángel; Buil-Cosiales, Pilar; Saiz, Carmen; Bulló, Mònica

    2016-04-01

    High dietary protein diets are widely used to manage overweight and obesity. However, there is a lack of consensus about their long-term efficacy and safety. Therefore, the aim of this study was to assess the effect of long-term high-protein consumption on body weight changes and death outcomes in subjects at high cardiovascular risk. A secondary analysis of the PREDIMED trial was conducted. Dietary protein was assessed using a food-frequency questionnaire during the follow-up. Cox proportional hazard models were used to estimate the multivariate-adjusted hazard ratio (HR) and 95% confidence intervals (95%CI) for protein intake in relation to the risk of body weight and waist circumference changes, cardiovascular disease, cardiovascular death, cancer death and total death. Higher total protein intake, expressed as percentage of energy, was significantly associated with a greater risk of weight gain when protein replaced carbohydrates (HR: 1.90; 95%CI: 1.05, 3.46) but not when replaced fat (HR: 1.69; 95%CI: 0.94, 3.03). However, no association was found between protein intake and waist circumference. Contrary, higher total protein intake was associated with a greater risk of all-cause death in both carbohydrate and fat substitution models (HR: 1.59; 95%CI: 1.08, 2.35; and HR: 1.66; 95%CI: 1.13, 2.43, respectively). A higher consumption of animal protein was associated with an increased risk of fatal and non-fatal outcomes when protein substituted carbohydrates or fat. Higher dietary protein intake is associated with long-term increased risk of body weight gain and overall death in a Mediterranean population at high cardiovascular risk. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Progesterone-associated proteins PP12 and PP14 in the human endometrium.

    PubMed

    Rutanen, E M; Koistinen, R; Seppälä, M; Julkunen, M; Suikkari, A M; Huhtala, M L

    1987-01-01

    Two proteins, designated as PP12 and PP14 were originally isolated from soluble extracts of the human placenta and its adjacent membranes. We have shown that they are synthesized by decidualized/secretory endometrium and not by placenta. Both proteins occur at high concentrations in human amniotic fluid, which is therefore an excellent source for purification. PP12 is a 34-kDa glycoprotein, which has an N-terminal amino acid sequence of Ala-Pro-Trp-Gln-Cys-Ala-Pro-Cys-Ser-Ala. This is identical with that of somatomedin-binding protein purified from the amniotic fluid. PP12 too binds somatomedin-C, or IGF-I (insulin-like growth factor-I). Human secretory endometrium synthesizes and secretes PP12, and progesterone stimulates its secretion. PP14 is a 28-kDa glycoprotein. Its N-terminal sequence shows homology to that of beta-lactoglobulins from various species. We have found PP14 in the human endometrium, serum and milk. Immunologically, PP14 is related to progestagen-associated endometrial protein (PEP), alpha-2 pregnancy-associated endometrial protein (alpha-2, PEG), endometrial protein 15 (EP15), alpha-uterine protein (AUP) and chorionic alpha-2 microglobulin (CAG-2). In ovulatory menstrual cycles, the concentration of PP14 increases in endometrial tissue as the secretory changes advance. In serum, the PP14 concentration begins to rise later than the progesterone levels, and high serum PP14 levels are maintained for the first days of the next cycle. By contrast, no elevation of serum PP14 level is seen in anovulatory cycles. Our results show that progesterone-associated proteins are synthesized by the human endometrium and appear in the peripheral circulation, where they can be quantitatively measured using immunochemical techniques.

  3. Prioritisation of associations between protein domains and complex diseases using domain-domain interaction networks.

    PubMed

    Wang, W; Zhang, W; Jiang, R; Luan, Y

    2010-05-01

    It is of vital importance to find genetic variants that underlie human complex diseases and locate genes that are responsible for these diseases. Since proteins are typically composed of several structural domains, it is reasonable to assume that harmful genetic variants may alter structures of protein domains, affect functions of proteins and eventually cause disorders. With this understanding, the authors explore the possibility of recovering associations between protein domains and complex diseases. The authors define associations between protein domains and disease families on the basis of associations between non-synonymous single nucleotide polymorphisms (nsSNPs) and complex diseases, similarities between diseases, and relations between proteins and domains. Based on a domain-domain interaction network, the authors propose a 'guilt-by-proximity' principle to rank candidate domains according to their average distance to a set of seed domains in the domain-domain interaction network. The authors validate the method through large-scale cross-validation experiments on simulated linkage intervals, random controls and the whole genome. Results show that areas under receiver operating characteristic curves (AUC scores) can be as high as 77.90%, and the mean rank ratios can be as low as 21.82%. The authors further offer a freely accessible web interface for a genome-wide landscape of associations between domains and disease families.

  4. Binding host proteins to the M protein contributes to the mortality associated with influenza-Streptococcus pyogenes superinfections.

    PubMed

    Herrera, Andrea L; Suso, Kuta; Allison, Stephanie; Simon, Abby; Schlenker, Evelyn; Huber, Victor C; Chaussee, Michael S

    2017-09-25

    The mortality associated with influenza A virus (IAV) is often due to the development of secondary bacterial infections known as superinfections. The group A streptococcus (GAS) is a relatively uncommon cause of IAV superinfections, but the mortality of these infections is high. We used a murine model to determine whether the surface-localized GAS M protein contributes to the outcome of IAV-GAS superinfections. A comparison between wild-type GAS and an M protein mutant strain (emm3) showed that the M3 protein was essential to virulence. To determine whether the binding, or recruitment, of host proteins to the bacterial surface contributed to virulence, GAS was suspended with BALF collected from mice that had recovered from a sub-lethal infection with IAV. Following intranasal inoculation of naïve mice, the mortality associated with the wild-type strain, but not the emm3 mutant strain, was greater compared to mice inoculated with GAS suspended with either BALF from uninfected mice or PBS. Further analyses showed that both albumin and fibrinogen (Fg) were more abundant in the respiratory tract 8 days after IAV infection, that M3 bound both proteins to the bacterial surface, and that suspension of GAS with either protein increased GAS virulence in the absence of antecedent IAV infection. Overall, the results showed that M3 is essential to the virulence of GAS in an IAV superinfection and suggested that increased abundance of albumin and Fg in the respiratory tract following IAV infection enhanced host susceptibility to secondary GAS infection.

  5. Promyelocytic leukemia protein enhances apoptosis of gastric cancer cells through Yes-associated protein.

    PubMed

    Xu, Zhipeng; Chen, Jiamin; Shao, Liming; Ma, Wangqian; Xu, Dingting

    2015-09-01

    It has been shown that Yes-associated protein (YAP) acts as a transcriptional co-activator to regulate p73-dependent apoptosis in response to DNA damage in some cell types, and promyelocytic leukemia (PML) protein is involved in the regulation loop through stabilization of YAP through sumoylation. Although YAP has been shown to be significantly upregulated in gastric cancer, whether the YAP/PML/p73 regulation loop also functions in gastric cancer is unknown. Here, we show significantly higher levels of YAP and significantly lower levels of PML in the gastric cancer specimen. Overexpression of YAP in gastric cancer cells significantly increased cell growth, but did not affect apoptosis. However, overexpression of PML in gastric cancer cells significantly increased cell apoptosis, resulting in decreases in cell growth, which seemed to require the presence of YAP. The effect of PML on apoptosis appeared to be conducted through p73-mediated modulation of apoptosis-associated genes, Bcl-2, Bak, and caspase9. Thus, our study suggests the presence of a YAP/PML/p73 regulatory loop in gastric cancer, and highlights PML as a promising tumor suppressor in gastric cancer through YAP-coordinated cancer cell apoptosis.

  6. Differentially abundant proteins associated with heterosis in the primary roots of popcorn.

    PubMed

    Rockenbach, Mathias F; Corrêa, Caio C G; Heringer, Angelo S; Freitas, Ismael L J; Santa-Catarina, Claudete; do Amaral-Júnior, Antônio T; Silveira, Vanildo

    2018-01-01

    Although heterosis has significantly contributed to increases in worldwide crop production, the molecular mechanisms regulating this phenomenon are still unknown. In the present study, we used a comparative proteomic approach to explore hybrid vigor via the proteome of both the popcorn L54 ♀ and P8 ♂ genotypes and the resultant UENF/UEM01 hybrid cross. To analyze the differentially abundant proteins involved in heterosis, we used the primary roots of these genotypes to analyze growth parameters and extract proteins. The results of the growth parameter analysis showed that the mid- and best-parent heterosis were positive for root length and root dry matter but negative for root fresh matter, seedling fresh matter, and protein content. The comparative proteomic analysis identified 1343 proteins in the primary roots of hybrid UENF/UEM01 and its parental lines; 220 proteins were differentially regulated in terms of protein abundance. The mass spectrometry proteomic data are available via ProteomeXchange with identifier "PXD009436". A total of 62 regulated proteins were classified as nonadditive, of which 53.2% were classified as high parent abundance (+), 17.8% as above-high parent abundance (+ +), 16.1% as below-low parent abundance (- -), and 12.9% as low parent abundance (-). A total of 22 biological processes were associated with nonadditive proteins; processes involving translation, ribosome biogenesis, and energy-related metabolism represented 45.2% of the nonadditive proteins. Our results suggest that heterosis in the popcorn hybrid UENF/UEM01 at an early stage of plant development is associated with an up-regulation of proteins related to synthesis and energy metabolism.

  7. Physical activity modifies the association between dietary protein and lean mass of postmenopausal women

    PubMed Central

    Martinez, Jessica A.; Wertheim, Betsy C.; Thomson, Cynthia A.; Bea, Jennifer W.; Wallace, Robert; Allison, Matthew; Snetselaa, Linda; Chen, Zhao; Nassir, Rami; Thompson, Patricia A.

    2016-01-01

    Background Maintenance of lean muscle mass and related strength is associated with lower risk for numerous chronic diseases of aging in women. Objective To evaluate whether the association between dietary protein and lean mass differs by physical activity level, amino acid composition, and body mass index categories. Design Cross-sectional analysis of a prospective cohort. Participants/setting Postmenopausal women from the Women’s Health Initiative with body composition measurements by dual-energy X-ray absorptiometry (n=8,298). Main outcome measures Percent lean mass, percent fat mass and lean body mass index. Statistical analyses performed Linear regression models adjusted for scanner serial number, age, calibrated energy intake, race/ethnicity, neighborhood socioeconomic status, and recreational physical activity were used to determine the relationship between protein intake and body composition measures. Likelihood ratio tests and stratified analysis were used to investigate physical activity and body mass index as potential effect modifiers. Results Biomarker-calibrated protein intake was positively associated with percent lean mass; women in the highest protein quintile had 6.3 percentage points higher lean mass than the lowest quintile (P < 0.001). This difference rose to 8.5 percentage points for physically active women in the highest protein quintile (Pinteraction = 0.023). Percent fat mass and lean body mass index were both inversely related to protein intake (both P < 0.001). Physical activity further reduced percent fat mass (Pinteraction = 0.022) and lean body mass index (Pinteraction = 0.011). Leucine intake was associated with lean mass, as were branched chain amino acids combined (both P < 0.001), but not independent of total protein. All associations were observed for normal-weight, overweight, and obese women. Conclusions Protein consumption up to 2.02 g/kg body weight daily is positively associated with lean mass in postmenopausal women

  8. Physical Activity Modifies the Association between Dietary Protein and Lean Mass of Postmenopausal Women.

    PubMed

    Martinez, Jessica A; Wertheim, Betsy C; Thomson, Cynthia A; Bea, Jennifer W; Wallace, Robert; Allison, Matthew; Snetselaar, Linda; Chen, Zhao; Nassir, Rami; Thompson, Patricia A

    2017-02-01

    Maintenance of lean muscle mass and related strength is associated with lower risk for numerous chronic diseases of aging in women. Our aim was to evaluate whether the association between dietary protein and lean mass differs by physical activity level, amino acid composition, and body mass index categories. We performed a cross-sectional analysis of a prospective cohort. Participants were postmenopausal women from the Women's Health Initiative with body composition measurements by dual-energy x-ray absorptiometry (n=8,298). Our study measured percent lean mass, percent fat mass, and lean body mass index. Linear regression models adjusted for scanner serial number, age, calibrated energy intake, race/ethnicity, neighborhood socioeconomic status, and recreational physical activity were used to determine the relationship between protein intake and body composition measures. Likelihood ratio tests and stratified analysis were used to investigate physical activity and body mass index as potential effect modifiers. Biomarker-calibrated protein intake was positively associated with percent lean mass; women in the highest protein quintile had 6.3 percentage points higher lean mass than the lowest quintile (P<0.001). This difference rose to 8.5 percentage points for physically active women in the highest protein quintile (P interaction =0.023). Percent fat mass and lean body mass index were both inversely related to protein intake (both P<0.001). Physical activity further reduced percent fat mass (P interaction =0.022) and lean body mass index (P interaction =0.011). Leucine intake was associated with lean mass, as were branched chain amino acids combined (both P<0.001), but not independent of total protein. All associations were observed for normal-weight, overweight, and obese women. Protein consumption up to 2.02 g/kg body weight daily is positively associated with lean mass in postmenopausal women. Importantly, those that also engage in physical activity have the

  9. Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach.

    PubMed

    Koch, Heike B; Zhang, Ru; Verdoodt, Berlinda; Bailey, Aaron; Zhang, Chang-Dong; Yates, John R; Menssen, Antje; Hermeking, Heiko

    2007-01-15

    The c-MYC oncogene encodes a transcription factor, which is sufficient and necessary for the induction of cellular proliferation. However, the c-MYC protein is a relatively weak transactivator suggesting that it may have other functions. To identify protein interactors which may reveal new functions or represent regulators of c-MYC we systematically identified proteins associated with c-MYC in vivo using a proteomic approach. We combined tandem affinity purification (TAP) with the mass spectral multidimensional protein identification technology (MudPIT). Thereby, 221 c-MYC-associated proteins were identified. Among them were 17 previously known c-MYC-interactors. Selected new c-MYC-associated proteins (DBC-1, FBX29, KU70, MCM7, Mi2-beta/CHD4, RNA Pol II, RFC2, RFC3, SV40 Large T Antigen, TCP1alpha, U5-116kD, ZNF281) were confirmed independently. For association with MCM7, SV40 Large T Antigen and DBC-1 the functionally important MYC-box II region was required, whereas FBX29 and Mi2-beta interacted via MYC-box II and the BR-HLH-LZ motif. In addition, regulators of c-MYC activity were identified: ectopic expression of FBX29, an E3 ubiquitin ligase, decreased c-MYC protein levels and inhibited c-MYC transactivation, whereas knock-down of FBX29 elevated the concentration of c-MYC. Furthermore, sucrose gradient analysis demonstrated that c-MYC is present in numerous complexes with varying size and composition, which may accommodate the large number of new c-MYC-associated proteins identified here and mediate the diverse functions of c-MYC. Our results suggest that c-MYC, besides acting as a mitogenic transcription factor, regulates cellular proliferation by direct association with protein complexes involved in multiple synthetic processes required for cell division, as for example DNA-replication/repair and RNA-processing. Furthermore, this first comprehensive description of the c-MYC-associated sub-proteome will facilitate further studies aimed to elucidate the biology

  10. New Method for Measuring the Anchoring Energy of Strongly-Bound Membrane-Associated Proteins [Method for measuring the anchoring energy of strongly-bound membrane-associated proteins].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.

    Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipidmore » bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  11. New Method for Measuring the Anchoring Energy of Strongly-Bound Membrane-Associated Proteins [Method for measuring the anchoring energy of strongly-bound membrane-associated proteins].

    DOE PAGES

    Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.; ...

    2016-02-01

    Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipidmore » bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  12. Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites.

    PubMed

    Zhang, Deqing; Howe, Daniel K

    2008-04-15

    An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.

  13. Genomic analysis of the causative agents of coccidiosis in domestic chickens

    PubMed Central

    Reid, Adam J.; Blake, Damer P.; Ansari, Hifzur R.; Billington, Karen; Browne, Hilary P.; Bryant, Josephine; Dunn, Matt; Hung, Stacy S.; Kawahara, Fumiya; Miranda-Saavedra, Diego; Malas, Tareq B.; Mourier, Tobias; Naghra, Hardeep; Nair, Mridul; Otto, Thomas D.; Rawlings, Neil D.; Rivailler, Pierre; Sanchez-Flores, Alejandro; Sanders, Mandy; Subramaniam, Chandra; Tay, Yea-Ling; Woo, Yong; Wu, Xikun; Barrell, Bart; Dear, Paul H.; Doerig, Christian; Gruber, Arthur; Ivens, Alasdair C.; Parkinson, John; Rajandream, Marie-Adèle; Shirley, Martin W.; Wan, Kiew-Lian; Berriman, Matthew

    2014-01-01

    Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding. PMID:25015382

  14. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    PubMed Central

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  15. Inferring drug-disease associations based on known protein complexes

    PubMed Central

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html. PMID:26044949

  16. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  17. GTP regeneration influences interactions of microtubules, neurofilaments, and microtubule-associated proteins in vitro.

    PubMed

    Flynn, G; Purich, D L

    1987-11-15

    Interactions of microtubules, neurofilaments, and microtubule-associated proteins were investigated by turbidity and falling-ball viscometry measurements. We found evidence of endogenous GTPase activity in neurofilaments and microtubule-associated proteins (MAPs) in preparations that do not include urea or heat treatment, respectively. The absence or presence of either adenyl-5'-yl imidodiphosphonic acid or a GTP-regenerating system markedly influenced observed polymerization and gelation characteristics. Most significantly, the apparent viscosity of neurofilament and microtubule samples did not display a biphasic optimal MAP concentration profile when a GTP-regenerating system was operant. Likewise, GTP regeneration promoted the recovery of gelation following mechanical disruption of neurofilament/MAP/microtubule mixtures. These and other observations require some reassessment of proposed roles for microtubule-associated proteins in modulating neurofilament-microtubule interactions in vitro.

  18. East coast fever caused by Theileria parva is characterized by macrophage activation associated with vasculitis and respiratory failure

    USDA-ARS?s Scientific Manuscript database

    Respiratory failure and death in East Coast Fever (ECF), a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infect...

  19. Differentially abundant proteins associated with heterosis in the primary roots of popcorn

    PubMed Central

    Heringer, Angelo S.; Freitas, Ismael L. J.; Santa-Catarina, Claudete; do Amaral-Júnior, Antônio T.

    2018-01-01

    Although heterosis has significantly contributed to increases in worldwide crop production, the molecular mechanisms regulating this phenomenon are still unknown. In the present study, we used a comparative proteomic approach to explore hybrid vigor via the proteome of both the popcorn L54 ♀ and P8 ♂ genotypes and the resultant UENF/UEM01 hybrid cross. To analyze the differentially abundant proteins involved in heterosis, we used the primary roots of these genotypes to analyze growth parameters and extract proteins. The results of the growth parameter analysis showed that the mid- and best-parent heterosis were positive for root length and root dry matter but negative for root fresh matter, seedling fresh matter, and protein content. The comparative proteomic analysis identified 1343 proteins in the primary roots of hybrid UENF/UEM01 and its parental lines; 220 proteins were differentially regulated in terms of protein abundance. The mass spectrometry proteomic data are available via ProteomeXchange with identifier “PXD009436”. A total of 62 regulated proteins were classified as nonadditive, of which 53.2% were classified as high parent abundance (+), 17.8% as above-high parent abundance (+ +), 16.1% as below-low parent abundance (− −), and 12.9% as low parent abundance (-). A total of 22 biological processes were associated with nonadditive proteins; processes involving translation, ribosome biogenesis, and energy-related metabolism represented 45.2% of the nonadditive proteins. Our results suggest that heterosis in the popcorn hybrid UENF/UEM01 at an early stage of plant development is associated with an up-regulation of proteins related to synthesis and energy metabolism. PMID:29758068

  20. The moving junction of apicomplexan parasites: a key structure for invasion.

    PubMed

    Besteiro, Sébastien; Dubremetz, Jean-François; Lebrun, Maryse

    2011-06-01

    Most Apicomplexa are obligate intracellular parasites and many are important pathogens of human and domestic animals. For a successful cell invasion, they rely on their own motility and on a firm anchorage to their host cell, depending on the secretion of proteins and the establishment of a structure called the moving junction (MJ). The MJ moves from the apical to the posterior end of the parasite, leading to the internalization of the parasite into a parasitophorous vacuole. Based on recent data obtained in Plasmodium and Toxoplasma, an emerging model emphasizes a cooperative role of secreted parasitic proteins in building the MJ and driving this crucial invasive process. More precisely, the parasite exports the microneme protein AMA1 to its own surface and the rhoptry neck RON2 protein as a receptor inserted into the host cell together with other RON partners. Ongoing and future research will certainly help refining the model by characterizing the molecular organization within the MJ and its interactions with both host and parasite cytoskeleton for anchoring of the complex. © 2011 Blackwell Publishing Ltd.

  1. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders.

    PubMed

    Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong

    2018-06-01

    Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.

  2. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission

    PubMed Central

    Ohashi, Akihiro; Ohori, Momoko; Iwai, Kenichi

    2016-01-01

    Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659–2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission. PMID:27835888

  3. Unfolded protein response activation compensates endoplasmic reticulum-associated degradation deficiency in Arabidopsis.

    PubMed

    Li, Qingliang; Wei, Hai; Liu, Lijing; Yang, Xiaoyuan; Zhang, Xiansheng; Xie, Qi

    2017-07-01

    Abiotic stresses often disrupt protein folding and induce endoplasmic reticulum (ER) stress. There is a sophisticated ER quality control (ERQC) system to mitigate the effects of malfunctioning proteins and maintain ER homeostasis. The accumulation of misfolded proteins in the ER activates the unfolded protein response (UPR) to enhance ER protein folding and the degradation of misfolded proteins mediate by ER-associated degradation (ERAD). That ERQC reduces abiotic stress damage has been well studied in mammals and yeast. However, in plants, both ERAD and UPR have been studied separately and found to be critical for plant abiotic stress tolerance. In this study, we discovered that UPR-associated transcription factors AtbZIP17, AtbZIP28 and AtbZIP60 responded to tunicamycin (TM) and NaCl induced ER stress and subsequently enhanced Arabidopsis thaliana abiotic stress tolerance. They regulated the expression level of ER chaperones and the HRD1-complex components. Moreover, overexpression of AtbZIP17, AtbZIP28 and AtbZIP60 could restore stress tolerance via ERAD in the HRD1-complex mutant hrd3a-2, which suggested that UPR and ERAD have an interactive mechanism in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  4. Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14.

    PubMed

    Lee, Sung-Eun; Seo, Jong-Su; Keum, Young-Soo; Lee, Kwang-Jun; Li, Qing X

    2007-06-01

    Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) commonly present in PAH-contaminated soils. We studied fluoranthene catabolism and associated proteins in Mycobacterium sp. JS14, a bacterium isolated from a PAH-contaminated soil in Hilo (HI, USA). Fluoranthene degrades in at least three separated pathways via 1-indanone, 2',3'-dihydroxybiphenyl-2,3,-dicarboxylic acid, and naphthalene-1,8-dicarboxylic acid. Part of the diverse catabolism is converged into phthalate catabolism. An increased expression of 25 proteins related to fluoranthene catabolism is found with 1-D PAGE or 2-DE and nano-LC-MS/MS. Detection of fluoranthene catabolism associated proteins coincides well with its multiple degradation pathways that are mapped via metabolites identified. Among the up-regulated proteins, PAH ring-hydroxylating dioxygenase alpha-subunit and beta-subunit and 2,3-dihydroxybiphenyl 1,2-dioxygenase are notably induced. The up-regulation of trans-2-carboxybenzalpyruvate hydratase suggests that some of fluoranthene metabolites may be further degraded through aromatic dicarboxylic acid pathways. Catalase and superoxide dismutase were up-regulated to control unexpected oxidative stress during the fluoranthene catabolism. The up-regulation of chorismate synthase and nicotine-nucleotide phosphorylase may be necessary for sustaining shikimate pathway and pyrimidine biosynthesis, respectively. A fluoranthene degradation pathway for Mycobacterium sp. JS14 was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of fluoranthene degradation.

  5. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  6. Concomitant canine distemper, infectious canine hepatitis, canine parvoviral enteritis, canine infectious tracheobronchitis, and toxoplasmosis in a puppy.

    PubMed

    Headley, Selwyn Arlington; Alfieri, Amauri Alcindo; Fritzen, Juliana Torres Tomazi; Garcia, João Luis; Weissenböck, Herbert; da Silva, Ana Paula; Bodnar, Livia; Okano, Werner; Alfieri, Alice Fernandes

    2013-01-01

    The concomitant infections of Canine distemper virus (CDV), Canine adenovirus A types 1 (CAdV-1) and 2 (CAdV-2), Canine parvovirus type 2 (CPV-2), and Toxoplasma gondii are described in a 43-day-old mixed-breed puppy. Clinically, there were convulsions and blindness with spontaneous death; 14 siblings of this puppy, born to a 10-month-old dam, which was seropositive (titer: 1,024) for T. gondii, also died. Necropsy revealed unilateral corneal edema (blue eye), depletion of intestinal lymphoid tissue, non-collapsible lungs, congestion of meningeal vessels, and a pale area in the myocardium. Histopathology demonstrated necrotizing myocarditis associated with intralesional apicomplexan protozoa; necrotizing and chronic hepatitis associated with rare intranuclear inclusion bodies within hepatocytes; necrotizing bronchitis and bronchiolitis; interstitial pneumonia associated with eosinophilic intracytoplasmic inclusion bodies within epithelial cells; atrophy and fusion of intestinal villi with cryptal necrosis; and white matter demyelination of the cerebrum and cerebellum associated with intranuclear inclusion bodies within astrocytes. Polymerase chain reaction (PCR) amplified the partial fragments (bp) of the CDV N gene (290 bp), CPV-2c VP2 capsid protein gene (583 bp), and CAdV-1 (508 bp) and CAdV-2 (1,030 bp) E gene from urine and tissue samples. The PCR assays demonstrated that the apicomplexan protozoa observed within several organs contained DNA specific for T. gondii; genotyping revealed T. gondii type III. The findings support the characterization of concomitant infections of CDV, CAdV-1, CAdV-2, CPV-2, and T. gondii in this puppy. Further, seroreactivity to T. gondii of the dam in association with the systemic disease observed in the puppy described herein is suggestive of congenital toxoplasmosis.

  7. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria.

    PubMed

    Dorman, Charles J

    2014-09-01

    Horizontal gene transfer plays an important role in the evolution of bacterial species, conferring new genetic traits on the recipient bacterium that extend its range of phenotypes and plasmids make important contributions to this process. However, the inappropriate expression of newly acquired genes may lead to a loss of competitive fitness, resulting in the elimination of the new gene-bacterium combination. It is thought that transcriptional silencing of horizontally acquired genes offers a route out of this dilemma and that nucleoid-associated proteins, especially those related to the H-NS protein, play a particularly important role in the silencing process. The discovery that many plasmids express orthologues of nucleoid-associated proteins adds an interesting dimension to current models of regulatory integration following lateral transfer of DNA. Other horizontally acquired genetic elements, such as genomic islands, also express nucleoid-associated proteins of their own. Here the interactions of H-NS-like nucleoid-associated proteins encoded by the core genome, genomic islands and plasmids are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network.

    PubMed

    Michelin, Adeline; Bittame, Amina; Bordat, Yann; Travier, Laetitia; Mercier, Corinne; Dubremetz, Jean-François; Lebrun, Maryse

    2009-02-01

    The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.

  9. The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex.

    PubMed

    Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert

    2017-01-01

    Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.

  10. Disease-associated protein seeding suggests a dissociation between misfolded protein accumulation and neurodegeneration in prion disease

    PubMed Central

    Alibhai, James; Diack, Abigail; Manson, Jean

    2017-01-01

    ABSTRACT Chronic neurodegenerative diseases, such as prion diseases or Alzheimer's disease, are associated with progressive accumulation of host proteins which misfold and aggregate. Neurodegeneration is restricted to specific neuronal populations which show clear accumulation of misfolded proteins, whilst neighbouring neurons remain unaffected. Such data raise interesting questions about the vulnerability of specific neuronal populations to neurodegeneration and much research has concentrated only on the mechanisms of neurodegeneration in afflicted neuronal populations. An alternative, undervalued and almost completely unstudied question however is how and why neuronal populations are resilient to neurodegeneration. One potential answer is unaffected regions do not accumulate misfolded proteins, thus mechanisms of neurodegeneration do not become activated. In this perspectives, we discuss novel data from our laboratories which demonstrate that misfolded proteins do accumulate in regions of the brain which do not show evidence of neurodegeneration and further evidence that microglial responses may define the severity of neurodegeneration. PMID:29023184

  11. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    PubMed

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  12. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage

    PubMed Central

    Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576

  13. Association between serum pregnancy-associated plasma protein-A and bicarbonate in hemodialysis patients.

    PubMed

    Bicik, Zerrin; Coskun, Abdurrahman; Serteser, Mustafa; Bulur, Atilla; Mese, Meral; Unsal, Ibrahim

    2014-03-01

    Acidosis is associated with protein-energy malnutrition, inflammation, and bone disease, and low bicarbonate levels have been implicated in higher mortality rates in chronic kidney disease. Recently, the concentration of serum pregnancy-associated plasma protein-A (PAPP-A) has become accepted as a prognostic marker in hemodialysis patients. This study determined the relationship between PAPP-A and bicarbonate levels in these patients. The study enrolled 65 hemodialysis patients (41 males, 24 females) and 26 control subjects (11 males, 15 females). Serum PAPP-A, intact parathormone (iPTH), calcium, phosphorus (P), and bicarbonate levels were measured. Correlations between PAPP-A and bicarbonate, iPTH, calcium, and phosphorus were evaluated. Median PAPP-A levels were significantly higher in hemodialysis patients [15.1 (<0.03-158.8) ng/ml] than in control subjects [6.6 (<0.03-16.4) ng/ml] (P < 0.05). There were statistically significant correlations between serum PAPP-A and bicarbonate, iPTH, and P in hemodialysis patients but not in control subjects. Elevation of serum PAPP-A has been found in hemodialysis patients and its significant correlation with bicarbonate suggests that it may be a prognostic factor. © 2014 Wiley Periodicals, Inc.

  14. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domainmore » of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.« less

  15. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittingham, Jean L.; Blagova, Elena V.; Finn, Ciaran E.

    2014-08-01

    VapD is one of a set of highly homologous virulence-associated proteins from the multi-host pathogen Rhodococcus equi. The crystal structure reveals an eight-stranded β-barrel with a novel fold and a glycine rich ‘bald’ surface. Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vapmore » proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-d-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins.« less

  16. Phthalocyanines as Molecular Scaffolds to Block Disease-Associated Protein Aggregation.

    PubMed

    Valiente-Gabioud, Ariel A; Miotto, Marco C; Chesta, María E; Lombardo, Verónica; Binolfi, Andres; Fernández, Claudio O

    2016-05-17

    The aggregation of proteins into toxic conformations plays a critical role in the development of different neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Creutzfled-Jakob's disease (CJD). These disorders share a common pathological mechanism that involves the formation of aggregated protein species including toxic oligomers and amyloid fibrils. The aggregation of alpha-synuclein (αS) in PD and the amyloid beta peptide (Aβ) and tau protein in AD results in neuronal death and disease onset. In the case of CJD, the misfolding of the physiological prion protein (PrP) induces a chain reaction that results in accumulation of particles that elicit brain damage. Currently, there is no preventive therapy for these diseases and the available therapeutic approaches are based on the treatment of the symptoms rather than the underlying causes of the disease. Accordingly, the aggregation pathway of these proteins represents a useful target for therapeutic intervention. Therefore, understanding the mechanism of amyloid formation and its inhibition is of high clinical importance. The design of small molecules that efficiently inhibit the aggregation process and/or neutralize its associated toxicity constitutes a promising tool for the development of therapeutic strategies against these disorders. In this accounts, we discuss current knowledge on the anti-amyloid activity of phthalocyanines and their potential use as drug candidates in neurodegeneration. These tetrapyrrolic compounds modulate the amyloid assembly of αS, tau, Aβ, and the PrP in vitro, and protect cells from the toxic effects of amyloid aggregates. In addition, in scrapie-infected mice, these compounds showed important prophylactic antiscrapie properties. The structural basis for the inhibitory effect of phthalocyanines on amyloid filament assembly relies on specific π-π interactions between the aromatic ring system of these molecules and aromatic residues in the

  17. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling.

    PubMed

    Parag-Sharma, Kshitij; Leyme, Anthony; DiGiacomo, Vincent; Marivin, Arthur; Broselid, Stefan; Garcia-Marcos, Mikel

    2016-12-30

    GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gα i3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Theoretical studies of protein-protein and protein-DNA binding rates

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  19. Toxoplasma Actin Is Required for Efficient Host Cell Invasion.

    PubMed

    Drewry, Lisa L; Sibley, L David

    2015-06-16

    Apicomplexan parasites actively invade host cells using a mechanism predicted to be powered by a parasite actin-dependent myosin motor. In the model apicomplexan Toxoplasma gondii, inducible knockout of the actin gene, ACT1, was recently demonstrated to limit but not completely abolish invasion. This observation has led to the provocative suggestion that T. gondii possesses alternative, ACT1-independent invasion pathways. Here, we dissected the residual invasive ability of Δact1 parasites. Surprisingly, we were able to detect residual ACT1 protein in inducible Δact1 parasites as long as 5 days after ACT1 deletion. We further found that the longer Δact1 parasites were propagated after ACT1 deletion, the more severe an invasion defect was observed. Both findings are consistent with the quantity of residual ACT1 retained in Δact1 parasites being responsible for their invasive ability. Furthermore, invasion by the Δact1 parasites was also sensitive to the actin polymerization inhibitor cytochalasin D. Finally, there was no clear defect in attachment to host cells or moving junction formation by Δact1 parasites. However, Δact1 parasites often exhibited delayed entry into host cells, suggesting a defect specific to the penetration stage of invasion. Overall, our results support a model where residual ACT1 protein retained in inducible Δact1 parasites facilitates their limited invasive ability and confirm that parasite actin is essential for efficient penetration into host cells during invasion. The prevailing model for apicomplexan invasion has recently been suggested to require major revision, based on studies where core components of the invasion machinery were genetically disrupted using a Cre-Lox-based inducible knockout system. For the myosin component of the motor thought to power invasion, an alternative parasite myosin was recently demonstrated to functionally compensate for loss of the primary myosin involved in invasion. Here, we highlight a second

  20. Adeno-associated virus rep protein synthesis during productive infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-02-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with (/sup 35/S)methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing tomore » a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.« less

  1. EB1 protein alteration characterizes sporadic but not ulcerative colitis associated colorectal cancer.

    PubMed

    Gemoll, Timo; Kollbeck, Sophie L; Karstens, Karl F; Hò, Gia G; Hartwig, Sonja; Strohkamp, Sarah; Schillo, Katharina; Thorns, Christoph; Oberländer, Martina; Kalies, Kathrin; Lehr, Stefan; Habermann, Jens K

    2017-08-15

    While carcinogenesis in Sporadic Colorectal Cancer (SCC) has been thoroughly studied, less is known about Ulcerative Colitis associated Colorectal Cancer (UCC). This study aimed to identify and validate differentially expressed proteins between clinical samples of SCC and UCC to elucidate new insights of UCC/SCC carcinogenesis and progression. Multiplex-fluorescence two-dimensional gel electrophoresis (2-D DIGE) and mass spectrometry identified 67 proteoforms representing 43 distinct proteins. After analysis by Ingenuity Pathway Analysis ® (IPA), subsequent Western blot validation proofed the differential expression of Heat shock 27 kDA protein 1 (HSPB1) and Microtubule-associated protein R/EB family, member 1 (EB1) while the latter one showed also expression differences by immunohistochemistry. Fresh frozen tissue of UCC ( n = 10) matched with SCC ( n = 10) was investigated. Proteins of cancerous intestinal mucosal cells were obtained by Laser Capture Microdissection (LCM) and compared by 2-D DIGE. Significant spots were identified by mass spectrometry. After IPA, three proteins [EB1, HSPB1, and Annexin 5 (ANXA5)] were chosen for further validation by Western blotting and tissue microarray-based immunohistochemistry. This study identified significant differences in protein expression of colorectal carcinoma cells from UCC patients compared to patients with SCC. Particularly, EB1 was validated in an independent clinical cohort.

  2. Structural proteomics: Topology and relative accessibility of plant lipid droplet associated proteins.

    PubMed

    Jolivet, Pascale; Aymé, Laure; Giuliani, Alexandre; Wien, Frank; Chardot, Thierry; Gohon, Yann

    2017-10-03

    Lipid droplets are the major stock of lipids in oleaginous plant seeds. Despite their economic importance for oil production and biotechnological issues (biofuels, lubricants and plasticizers), numerous questions about their formation, structure and regulation are still unresolved. To determine water accessible domains of protein coating at lipid droplets surface, a structural proteomic approach has been performed. This technique relies on the millisecond timescale production of hydroxyl radicals by the radiolysis of water using Synchrotron X-ray white beam. Thanks to the evolution of mass spectrometry analysis techniques this approach allows the creation of a map of the solvent accessibility for proteins difficult to study by other means. Using these results, a S3 oleosin water accessibility map is proposed. This is the first time that such a map on an oleosin co-purified with plant lipid droplets and other associated protein is presented. Lipid droplet associated proteins function is linked to stability, structure and probably formation and lipid mobilization of droplets. Structure of these proteins in their native environment, at the interface between bulk water and the lipidic core of these organelles is only based on hydrophobicity plot. Using hydroxyl radical footprinting and proteomics approaches we studied water accessibility of one major protein in these droplets: S3 oleosin of Arabidopsis thaliana seeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.

    PubMed

    Nanjo, Yohei; Nakamura, Takuji; Komatsu, Setsuko

    2013-11-01

    Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.

  4. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome.

    PubMed

    Harper, Holly L; McKenney, Jesse K; Heald, Brandie; Stephenson, Andrew; Campbell, Steven C; Plesec, Thomas; Magi-Galluzzi, Cristina

    2017-01-01

    Increased risk for upper tract urothelial carcinoma is described in patients with Lynch syndrome, caused by germline mutations in mismatch repair genes. We aimed to identify the frequency of mismatch repair protein loss in upper tract urothelial carcinoma and its potential for identifying an association with Lynch syndrome. We queried our database to identify upper tract urothelial carcinomas. Patients were cross-referenced for history of colorectal carcinoma or other common Lynch syndrome-associated neoplasms to enrich for potential Lynch syndrome cases. Tumor histopathologic characteristics were reviewed and each case was analyzed for loss of mismatch repair proteins, MLH1, MSH2, MSH6, and PMS2, by immunohistochemistry. Of 444 patients with upper tract urothelial carcinoma, a subset of 215 (encompassing 30 with upper tract urothelial carcinoma and another common Lynch syndrome-associated neoplasm) was analyzed for loss of mismatch repair protein expression. Of 30 patients with Lynch syndrome-associated neoplasms, six had documented Lynch syndrome, including two with Muir-Torre syndrome. Mismatch repair protein loss was identified in 7% of total upper tract urothelial carcinomas and 30% of patients with Lynch syndrome-associated neoplasms (including all patients with Lynch syndrome/Muir-Torre syndrome). Of patients without history of Lynch syndrome-associated neoplasms, 5 of 184 (2.7%) had loss of mismatch repair protein expression. Twelve cases with mismatch repair protein loss demonstrated loss of MSH2 and MSH6, and 2 had isolated loss of MSH6. MLH1 and PMS2 expression were consistently retained. Although increased intratumoral lymphocytes, inverted growth, pushing tumor-stromal interface, and lack of nuclear pleomorphism were more commonly seen in cases with mismatch repair protein loss, only intratumoral lymphocytes and presence of pushing borders were statistically significant. MLH1 and PMS2 testing appear to have little utility in upper tract urothelial

  5. Neuroacanthocytosis associated with a defect of the 4.1R membrane protein

    PubMed Central

    Orlacchio, Antonio; Calabresi, Paolo; Rum, Adriana; Tarzia, Anna; Salvati, Anna Maria; Kawarai, Toshitaka; Stefani, Alessandro; Pisani, Antonio; Bernardi, Giorgio; Cianciulli, Paolo; Caprari, Patrizia

    2007-01-01

    Background Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface at the postsynaptic density. We report clinical, biochemical, and genetic features in four patients from four unrelated families with NA in order to explain the cause of morphological abnormalities and the relationship with neurodegenerative processes. Case presentation All patients were characterised by atypical NA with a novel alteration of the erythrocyte membrane: a 4.1R protein deficiency. The 4.1R protein content was significantly lower in patients (3.40 ± 0.42) than in controls (4.41 ± 0.40, P < 0.0001), reflecting weakened interactions of the cytoskeleton with the membrane. In patients IV:1 (RM23), IV:3 (RM15), and IV:6 (RM16) the 4.1 deficiency seemed to affect the horizontal interactions of spectrin and an impairment of the dimer self-association into tetramers was detected. In patient IV:1 (RM16) the 4.1 deficiency seemed to affect the skeletal attachment to membrane and the protein band 3 was partially reduced. Conclusion A decreased expression pattern of the 4.1R protein was observed in the erythrocytes from patients with atypical NA, which might reflect the expression pattern in the central nervous system, especially basal ganglia, and might lead to dysfunction of AMPA-mediated glutamate transmission. PMID:17298666

  6. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1 ×, DE3 ×, ME3 ×, NEL3 ×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P = 0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P = 0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P = 0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P = 0.09), RD of PB2 (29 vs. 62 g/kg CP, P = 0.02), RD of CB2 (251 vs. 198 g/kg DM, P = 0.06), RD of CB3 (236 vs. 261 g/kg CHO, P = 0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P = 0.06), and metabolic bioenergy (P = 0.095). As to protein molecular structure, there were differences in protein structure 1st

  7. Dexamethasone Regulates Cochlear Expression of Deafness-associated Proteins Myelin Protein Zero and Heat Shock Protein 70, as Revealed by iTRAQ Proteomics.

    PubMed

    Maeda, Yukihide; Fukushima, Kunihiro; Kariya, Shin; Orita, Yorihisa; Nishizaki, Kazunori

    2015-08-01

    Using proteomics, we aimed to identify the proteins differentially regulated by dexamethasone in the mouse cochlea based on mass-spectrometry data. Glucocorticoid therapy is widely used for many forms of sensorineural hearing loss; however, the molecular mechanism of its action in the cochlea remains poorly understood. Dexamethasone or control saline was intratympanically applied to the cochleae of mice. Twelve hours after application, proteins differentially regulated by dexamethasone in the cochlea were analyzed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-mass spectrometry. Next, dexamethasone-dependent regulation of these proteins was verified in the cochleae of mice with noise-induced hearing loss (NIHL) and systemic administration of dexamethasone by western blotting. Immunolocalizations of these proteins were examined in cochleae with NIHL. A total of 247 proteins with a greater than 95% confidence interval of protein identification were found, and 11 differentially expressed proteins by dexamethasone were identified by the iTRAQ-mass spectrometry. One protein, myelin protein zero (Mpz), was upregulated (1.870 ± 0.201-fold change, p < 0.01) at 6 hours post-systemic dexamethasone and noise exposure in a mouse model of NIHL. Heat shock protein 70 (Hsp70) was downregulated (0.511 ± 0.274-fold change, p < 0.05) at 12 hours post-systemic dexamethasone. Immunohistochemistry confirmed Mpz localization to the efferent and afferent processes of the spiral neurons, whereas Hsp70 showed a more ubiquitous expression pattern in the cochlea. Both Mpz and Hsp70 have been reported to be closely associated with sensorineural hearing loss in humans. Dexamethasone significantly modulated the expression levels of these proteins in the cochleae of mice.

  8. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins.

    PubMed

    Atabekova, Anastasia K; Pankratenko, Anna V; Makarova, Svetlana S; Lazareva, Ekaterina A; Owens, Robert A; Solovyev, Andrey G; Morozov, Sergey Y

    2017-01-01

    Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Membrane-Bound Tomato Mosaic Virus Replication Proteins Participate in RNA Synthesis and Are Associated with Host Proteins in a Pattern Distinct from Those That Are Not Membrane Bound

    PubMed Central

    Nishikiori, Masaki; Dohi, Koji; Mori, Masashi; Meshi, Tetsuo; Naito, Satoshi; Ishikawa, Masayuki

    2006-01-01

    Extracts of vacuole-depleted, tomato mosaic virus (ToMV)-infected plant protoplasts contained an RNA-dependent RNA polymerase (RdRp) that utilized an endogenous template to synthesize ToMV-related positive-strand RNAs in a pattern similar to that observed in vivo. Despite the fact that only minor fractions of the ToMV 130- and 180-kDa replication proteins were associated with membranes, the RdRp activity was exclusively associated with membranes. A genome-sized, negative-strand RNA template was associated with membranes and was resistant to micrococcal nuclease unless treated with detergents. Non-membrane-bound replication proteins did not exhibit RdRp activity, even in the presence of ToMV RNA. While the non-membrane-bound replication proteins remained soluble after treatment with Triton X-100, the same treatment made the membrane-bound replication proteins in a form that precipitated upon low-speed centrifugation. On the other hand, the detergent lysophosphatidylcholine (LPC) efficiently solubilized the membrane-bound replication proteins. Upon LPC treatment, the endogenous template-dependent RdRp activity was reduced and exogenous ToMV RNA template-dependent RdRp activity appeared instead. This activity, as well as the viral 130-kDa protein and the host proteins Hsp70, eukaryotic translation elongation factor 1A (eEF1A), TOM1, and TOM2A copurified with FLAG-tagged viral 180-kDa protein from LPC-solubilized membranes. In contrast, Hsp70 and only small amounts of the 130-kDa protein and eEF1A copurified with FLAG-tagged non-membrane-bound 180-kDa protein. These results suggest that the viral replication proteins are associated with the intracellular membranes harboring TOM1 and TOM2A and that this association is important for RdRp activity. Self-association of the viral replication proteins and their association with other host proteins may also be important for RdRp activity. PMID:16912296

  10. Bombyx mori nucleopolyhedrovirus ORF101 encodes a budded virus envelope associated protein.

    PubMed

    Chen, Huiqing; Li, Mei; Huang, Guoping; Mai, Weijun; Chen, Keping; Zhou, Yajing

    2014-08-01

    Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, Bm101 was characterized. Transcripts of Bm101 were detected from 24 through 96 h post infection (h p.i.) by RT-PCR. The corresponding protein was also detected from 24 to 96 h p.i. in BmNPV-infected BmN cells by Western blot analysis using a polyclonal antibody against Bm101. Western blot assay of occlusion-derived virus and budded virus (BV) preparations revealed that Bm101 encodes a 28-kDa structural protein that is associated with BV and is located in the envelope fraction of budded virions. In addition, confocal analysis showed that the protein was localized in the cytosol and cytoplasmic membrane in virus-infected cells. In conclusion, the available data suggest that Bm101 is a functional ORF of BmNPV and encodes a protein expressed in the late stage of the infection cycle that is associated with the BV envelope.

  11. Identification of Biofilm Matrix-Associated Proteins from an Acid Mine Drainage Microbial Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yongqin; D'Haeseleer, Patrik M; Dill, Brian

    2011-01-01

    In microbial communities, extracellular polymeric substances (EPS), also called the extracellular matrix, provide the spatial organization and structural stability during biofilm development. One of the major components of EPS is protein, but it is not clear what specific functions these proteins contribute to the extracellular matrix or to microbial physiology. To investigate this in biofilms from an extremely acidic environment, we used shotgun proteomics analyses to identify proteins associated with EPS in biofilms at two developmental stages, designated DS1 and DS2. The proteome composition of the EPS was significantly different from that of the cell fraction, with more than 80%more » of the cellular proteins underrepresented or undetectable in EPS. In contrast, predicted periplasmic, outer membrane, and extracellular proteins were overrepresented by 3- to 7-fold in EPS. Also, EPS proteins were more basic by 2 pH units on average and about half the length. When categorized by predicted function, proteins involved in motility, defense, cell envelope, and unknown functions were enriched in EPS. Chaperones, such as histone-like DNA binding protein and cold shock protein, were overrepresented in EPS. Enzymes, such as protein peptidases, disulfide-isomerases, and those associated with cell wall and polysaccharide metabolism, were also detected. Two of these enzymes, identified as -N-acetylhexosaminidase and cellulase, were confirmed in the EPS fraction by enzymatic activity assays. Compared to the differences between EPS and cellular fractions, the relative differences in the EPS proteomes between DS1 and DS2 were smaller and consistent with expected physiological changes during biofilm development.« less

  12. Use of RNA Immunoprecipitation Method for Determining Sinorhizobium meliloti RNA-Hfq Protein Associations In Vivo.

    PubMed

    Gao, Mengsheng; Benge, Anne; Mesa, Julia M; Javier, Regina; Liu, Feng-Xia

    2018-01-01

    Soil bacterium Sinorhizobium meliloti ( S. meliloti ) forms an endosymbiotic partnership with Medicago truncatula ( M. truncatula ) roots which results in root nodules. The bacteria live within root nodules where they function to fix atmospheric N 2 and supply the host plant with reduced nitrogen. The bacterial RNA-binding protein Hfq (Hfq) is an important regulator for the effectiveness of the nitrogen fixation. RNA immunoprecipitation (RIP) method is a powerful method for detecting the association of Hfq protein with specific RNA in cultured bacteria, yet a RIP method for bacteria living in root nodules remains to be described. A modified S. meliloti gene encoding a His-tagged Hfq protein (Hfq His ) was placed under the regulation of the native Hfq gene promoter (P hfq sm ). The trans produced Hfq His protein was accumulated at its nature levels during all stages of the symbiosis, allowing RNAs that associated with the given protein to be immunoprecipitated with the anti-His antibody against the protein from root nodule lysates. RNAs that associated with the protein were selectively enriched in the immunoprecipitated sample. The RNAs were recovered by a simple method using heat and subsequently analyzed by RT-PCR. The nature of PCR products was determined by DNA sequencing. Hfq association with specific RNAs can be analyzed at different conditions (e. g. young or older root nodules) and/or in wild-type versus mutant strains. This article describes the RIP method for determining Sinorhizobium meliloti RNA - Hfq associations in vivo . It is also applicable to other rhizobia living in planta, although some tissue-specific modification related to sample disruption and homogenization may be needed.

  13. RNG1 is a Late Marker of the Apical Polar Ring in Toxoplasma gondii

    PubMed Central

    Tran, Johnson Q.; de Leon, Jessica C.; Li, Catherine; Huynh, My-Hang; Beatty, Wandy; Morrissette, Naomi S.

    2010-01-01

    The asexually proliferating stages of apicomplexan parasites cause acute symptoms of diseases such as malaria, cryptosporidiosis and toxoplasmosis. These stages are characterized by the presence of two independent microtubule organizing centers (MTOCs). Centrioles are found at the poles of the intranuclear spindle. The apical polar ring (APR), a MTOC unique to apicomplexans, organizes subpellicular microtubules which impose cell shape and apical polarity on these protozoa. Here we describe the characteristics of a novel protein that localizes to the APR of Toxoplasma gondii which we have named ring-1 (RNG1). There are related RNG1 proteins in Neospora caninum and Sarcocystis neurona but no obvious homologs in Plasmodium spp., Cryptosporidium spp. or Babesia spp. RNG1 is a small, low-complexity, detergent-insoluble protein that assembles at the APR very late in the process of daughter parasite replication. We were unable to knock-out the RNG1 gene, suggesting that its gene product is essential. Tagged RNG1 lines have also allowed us to visualize the APR during growth of Toxoplasma in the microtubule-disrupting drug oryzalin. Oryzalin inhibits nuclear division and cytokinesis although Toxoplasma growth continues, and similar to earlier observations of unchecked centriole duplication in oryzalin-treated parasites, the APR continues to duplicate during aberrant parasite growth. PMID:20658557

  14. Chromera velia: The Missing Link in the Evolution of Parasitism.

    PubMed

    Weatherby, Kate; Carter, Dee

    2013-01-01

    Since the pivotal publication announcing the discovery of Chromera velia in 2008, there has been a flurry of interest and research into this novel alga. Found by chance while studying the symbionts of corals in Australian reefs, C. velia has turned out to be a very important organism. It holds a unique position as the evolutionary intermediate between photosynthetic dinoflagellate algae and parasitic apicomplexans. Biological characterization has revealed similarities to both dinoflagellates and apicomplexans. Of particular interest is the photosynthetic plastid that is closely related to the apicomplexan apicoplast. This plastid in C. velia has a highly effective photosynthetic system with photoprotective properties such as nonphotochemical quenching. The apicoplast is essential for cell health and is therefore a potential drug target for the apicomplexans that cause malaria and other diseases. The tetrapyrrole, sterol, and galactolipid pathways have been explored in C. velia to find parallels with apicomplexans that could lead to new insights to fight these parasites. Ecologically, C. velia is very similar to dinoflagellates, reflecting their common ancestry and revealing how the ancestors of apicomplexans may have lived before they evolved to become parasitic. © 2013 Elsevier Inc. All rights reserved.

  15. Modulation of NF-kappaB activation in Theileria annulata-infected cloned cell lines is associated with detection of parasite-dependent IKK signalosomes and disruption of the actin cytoskeleton.

    PubMed

    Schmuckli-Maurer, Jacqueline; Kinnaird, Jane; Pillai, Sreerekha; Hermann, Pascal; McKellar, Sue; Weir, William; Dobbelaere, Dirk; Shiels, Brian

    2010-02-01

    Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.

  16. Plasma dickkopf-related protein 1, an antagonist of the Wnt pathway, is associated with HIV-associated neurocognitive impairment.

    PubMed

    Yu, Chunjiang; Seaton, Melanie; Letendre, Scott; Heaton, Robert; Al-Harthi, Lena

    2017-06-19

    Dickkopf-related protein 1 (DKK1) is a soluble antagonist of the Wningless (Wnt) pathway. It binds to and sequesters low-density lipoprotein receptor-related proteins 5/6 away from Wnts. Because the Wnt pathway regulates synaptic transmission and plasticity, we hypothesized that increased DKK1 would increase the risk for neurocognitive impairment (NCI) in HIV-positive (HIV) individuals. We evaluated, here, the relationship between plasma DKK1 and global NCI. Plasma samples and data from 41 HIV to 42 HIV adults were obtained from the University of California, San Diego, California, USA. Concentrations of DKK1 and a comparator protein, monocyte chemoattractant protein-1 (MCP-1), were quantified in plasma by immunoassay. All study participants completed a standardized comprehensive neuropsychological test battery and their performance was summarized using the global deficit score method. A higher DKK1 level was associated with NCI among HIV participants (d = 0.63, P = 0.05), particularly among the 26 participants whose plasma HIV RNA level was suppressed (d = 0.74, P = 0.08). DKK1 level was not associated with NCI among HIV participants (P = 0.98). was not associated with NCI in either group. In HIV adults with suppressed plasma HIV RNA, a receiver operator characteristic curve identified that a DKK1 level of at least 735 pg/ml had a positive predictive value of 83.3% for a diagnosis of NCI. This association did not weaken after accounting for the effect of AIDS, nadir CD4 T-cell count, addictive drug use, or demographic characteristics. DKK1 is a specific biomarker for NCI in HIV adults, implicating the Wnt pathway in HIV neuropathogenesis.

  17. Polyhydroxyalkanoate-associated phasins as phylogenetically heterogeneous, multipurpose proteins.

    PubMed

    Maestro, Beatriz; Sanz, Jesús M

    2017-11-01

    Polyhydroxyalkanoates (PHAs) are natural polyesters of increasing biotechnological importance that are synthesized by many prokaryotic organisms as carbon and energy storage compounds in limiting growth conditions. PHAs accumulate intracellularly in form of inclusion bodies that are covered with a proteinaceous surface layer (granule-associated proteins or GAPs) conforming a network-like surface of structural, metabolic and regulatory polypeptides, and configuring the PHA granules as complex and well-organized subcellular structures that have been designated as 'carbonosomes'. GAPs include several enzymes related to PHA metabolism (synthases, depolymerases and hydroxylases) together with the so-called phasins, an heterogeneous group of small-size proteins that cover most of the PHA granule and that are devoid of catalytic functions but nevertheless play an essential role in granule structure and PHA metabolism. Structurally, phasins are amphiphilic proteins that shield the hydrophobic polymer from the cytoplasm. Here, we summarize the characteristics of the different phasins identified so far from PHA producer organisms and highlight the diverse opportunities that they offer in the Biotechnology field. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein.

    PubMed

    Daniel, Katrin; Tränkner, Daniel; Wojtasz, Lukasz; Shibuya, Hiroki; Watanabe, Yoshinori; Alsheimer, Manfred; Tóth, Attila

    2014-05-22

    Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. CCDC79 is a meiosis-specific telomere

  19. Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein

    PubMed Central

    2014-01-01

    Background Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. Results We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. Conclusion CCDC79

  20. [Molecular cloning and expression of the severe acute respiratory syndrome-associated coronavirus nucleocapsid protein and its clinical application].

    PubMed

    Lu, Jian; Zhou, Bai-ping; Zhou, Yu-sen; Jiang, Xiao-ling; Wen, Li-xia; Le, Xiao-hua; Li, Bing; Xu, Liu-mei; Li, Li-xiong

    2005-03-01

    To clone and express nucleocapsid (N) protein of the severe acute respiratory syndrome (SARS)-associated coronavirus, and to evaluate its antigenicity and application value in the development of serological diagnostic test for SARS. SARS-associated coronavirus N protein gene was amplified from its genomic RNA by reverse transcript nested polymerase chain reaction (RT-nested-PCR) and cloned into pBAD/Thio-TOPO prokaryotic expression vector. The recombinant N fusion protein was expressed and purified, and its antigenicity and specificity was analyzed by Western Blot, to establish the recombinant N protein-based ELISA for detection of IgG antibodies to SARS-associated coronavirus, and SARS-associated coronavirus lysates-based ELISA was compared parallelly. The recombinant expression vector produced high level of the N fusion protein after induction, and that protein was purified successfully by affinity chromatography and displayed higher antigenicity and specificity as compared with whole virus lysates. The recombinant SARS-associated coronavirus N protein possessed better antigenicity and specificity and could be employed to establish a new, sensitive, and specific ELISA for SARS diagnosis.

  1. The Armadillo Repeat Protein PF16 Is Essential for Flagellar Structure and Function in Plasmodium Male Gametes

    PubMed Central

    Ferguson, David J. P.; Bunting, Karen A.; Xu, Zhengyao; Bailes, Elizabeth; Sinden, Robert E.; Holder, Anthony A.; Smith, Elizabeth F.; Coates, Juliet C.; Rita Tewari

    2010-01-01

    Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world's population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasite's flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel intervention strategies to control the malaria parasite. PMID:20886115

  2. A BEN-domain-containing protein associates with heterochromatin and represses transcription.

    PubMed

    Sathyan, Kizhakke M; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2011-09-15

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression.

  3. A BEN-domain-containing protein associates with heterochromatin and represses transcription

    PubMed Central

    Sathyan, Kizhakke M.; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2011-01-01

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression. PMID:21914818

  4. Literature mining of protein-residue associations with graph rules learned through distant supervision.

    PubMed

    Ravikumar, Ke; Liu, Haibin; Cohn, Judith D; Wall, Michael E; Verspoor, Karin

    2012-10-05

    We propose a method for automatic extraction of protein-specific residue mentions from the biomedical literature. The method searches text for mentions of amino acids at specific sequence positions and attempts to correctly associate each mention with a protein also named in the text. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic patterns corresponding to protein-residue pairs mentioned in the text. We finally present an approach to automated construction of relevant training and test data using the distant supervision model. The performance of the method was assessed by extracting protein-residue relations from a new automatically generated test set of sentences containing high confidence examples found using distant supervision. It achieved a F-measure of 0.84 on automatically created silver corpus and 0.79 on a manually annotated gold data set for this task, outperforming previous methods. The primary contributions of this work are to (1) demonstrate the effectiveness of distant supervision for automatic creation of training data for protein-residue relation extraction, substantially reducing the effort and time involved in manual annotation of a data set and (2) show that the graph-based relation extraction approach we used generalizes well to the problem of protein-residue association extraction. This work paves the way towards effective extraction of protein functional residues from the literature.

  5. Associations of protein, fat, and carbohydrate intakes with insomnia symptoms among middle-aged Japanese workers.

    PubMed

    Tanaka, Eizaburo; Yatsuya, Hiroshi; Uemura, Mayu; Murata, Chiyoe; Otsuka, Rei; Toyoshima, Hideaki; Tamakoshi, Koji; Sasaki, Satoshi; Kawaguchi, Leo; Aoyama, Atsuko

    2013-01-01

    Diet is a modifiable factor that may affect sleep, but the associations of macronutrient intakes with insomnia are inconsistent. We investigated the associations of protein, fat, and carbohydrate intakes with insomnia symptoms. In this cross-sectional analysis of 4435 non-shift workers, macronutrient intakes were assessed by the brief-type self-administered diet history questionnaire, which requires the recall of usual intakes of 58 foods during the preceding month. Presence of insomnia symptoms, including difficulty initiating sleep (DIS), difficulty maintaining sleep (DMS), and poor quality of sleep (PQS) were self-reported. Logistic regression analysis was used to estimate odds ratios (ORs) and 95% CIs adjusted for demographic, psychological, and behavioral factors, as well as medical histories. Low protein intake (<16% vs ≥16% of total energy) was associated with DIS (OR 1.24, 95% CI 0.99-1.56) and PQS (OR 1.24, 95% CI 1.04-1.48), while high protein intake (≥19% vs <19% of total energy) was associated with DMS (OR 1.40, 95% CI 1.12-1.76). Low carbohydrate intake (<50% vs ≥50% of total energy) was associated with DMS (OR 1.19, 95% CI 0.97-1.45). Protein and carbohydrate intakes in the daily diet were associated with insomnia symptoms. The causality of these associations remains to be explained.

  6. Inferring protein domains associated with drug side effects based on drug-target interaction network.

    PubMed

    Iwata, Hiroaki; Mizutani, Sayaka; Tabei, Yasuo; Kotera, Masaaki; Goto, Susumu; Yamanishi, Yoshihiro

    2013-01-01

    Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains.

  7. Association between protein C levels and mortality in patients with advanced prostate, lung and pancreatic cancer.

    PubMed

    Wilts, I T; Hutten, B A; Meijers, J C M; Spek, C A; Büller, H R; Kamphuisen, P W

    2017-06-01

    Procoagulant factors promote cancer progression and metastasis. Protein C is involved in hemostasis, inflammation and signal transduction, and has a protective effect on the endothelial barrier. In mice, administration of activated protein C reduced experimental metastasis. We assessed the association between protein C and mortality in patients with three types of cancer. The study population consisted of patients with advanced prostate, non-small cell lung or pancreatic cancer, who participated in the INPACT trial (NCT00312013). The trial evaluated the addition of nadroparin to chemotherapy in patients with advanced malignancy. Patients were divided into tertiles based on protein C at baseline. The association between protein C levels and mortality was evaluated with Cox proportional hazard models. We analysed 477 patients (protein C tertiles: <97, 97-121 and ≥121%). Mean age was 65±9years; 390 (82%) were male; 191 patients (40%) had prostate cancer, 161 (34%) had lung cancer, and 125 (26%) pancreatic cancer. During a median follow-up of 10.4months, 291 patients (61%) died. Median protein C level was 107% (IQR 92-129). In the lowest tertile, 75 patients per 100 patient-years died, as compared to 60 and 54 in the middle and high tertile, respectively. Lower levels of protein C were associated with increased mortality (in tertiles: HR for trend 1.18, 95%CI 1.02-1.36, adjusted for age, sex and nadroparin use; as a continuous variable: HR 1.004, 95%CI 1.00-1.008, p=0.07). Protein C seems inversely associated with mortality in patients with advanced prostate, lung and pancreatic cancer. Further research should validate protein C as a biomarker for mortality, and explore the effects of protein C on progression of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  9. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  10. Host association influences variation at salivary protein genes in the bat ectoparasite Cimex adjunctus.

    PubMed

    Talbot, Benoit; Vonhof, Maarten J; Broders, Hugh G; Fenton, Brock; Keyghobadi, Nusha

    2018-05-01

    Parasite-host relationships create strong selection pressures that can lead to adaptation and increasing specialization of parasites to their hosts. Even in relatively loose host-parasite relationships, such as between generalist ectoparasites and their hosts, we may observe some degree of specialization of parasite populations to one of the multiple potential hosts. Salivary proteins are used by blood-feeding ectoparasites to prevent hemostasis in the host and maximize energy intake. We investigated the influence of association with specific host species on allele frequencies of salivary protein genes in Cimex adjunctus, a generalist blood-feeding ectoparasite of bats in North America. We analysed two salivary protein genes: an apyrase, which hydrolyses ATP at the feeding site and thus inhibits platelet aggregation, and a nitrophorin, which brings nitrous oxide to the feeding site, inhibiting platelet aggregation and vasoconstriction. We observed more variation at both salivary protein genes among parasite populations associated with different host species than among populations from different spatial locations associated with the same host species. The variation in salivary protein genes among populations on different host species was also greater than expected under a neutral scenario of genetic drift and gene flow. Finally, host species was an important predictor of allelic divergence in genotypes of individual C. adjunctus at both salivary protein genes. Our results suggest differing selection pressures on these two salivary protein genes in C. adjunctus depending on the host species. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  11. Identification of a putative protein profile associated with tamoxifen therapy resistance in breast cancer.

    PubMed

    Umar, Arzu; Kang, Hyuk; Timmermans, Annemieke M; Look, Maxime P; Meijer-van Gelder, Marion E; den Bakker, Michael A; Jaitly, Navdeep; Martens, John W M; Luider, Theo M; Foekens, John A; Pasa-Tolić, Ljiljana

    2009-06-01

    Tamoxifen resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that are associated with tamoxifen resistance is a first step toward better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy resistance in breast cancer using nano-LC coupled with FTICR MS. Comparative proteome analysis was performed on approximately 5,500 pooled tumor cells (corresponding to approximately 550 ng of protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n = 24 and n = 27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag reference databases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with > or = 2 peptides. 1,713 overlapping proteins between the two data sets were used for further analysis. Comparative proteome analysis revealed 100 putatively differentially abundant proteins between tamoxifen-sensitive and tamoxifen-resistant tumors. The presence and relative abundance for 47 differentially abundant proteins were verified by targeted nano-LC-MS/MS in a selection of unpooled, non-microdissected discovery set tumor tissue extracts. ENPP1, EIF3E, and GNB4 were significantly associated with progression-free survival upon tamoxifen treatment for recurrent disease. Differential abundance of our top discriminating protein, extracellular matrix metalloproteinase inducer, was validated by tissue microarray in an independent patient cohort (n = 156). Extracellular matrix metalloproteinase inducer levels were

  12. Dysregulation of autism-associated synaptic proteins by psychoactive pharmaceuticals at environmental concentrations.

    PubMed

    Kaushik, Gaurav; Xia, Yu; Pfau, Jean C; Thomas, Michael A

    2017-11-20

    Autism Spectrum Disorders (ASD) are complex neurological disorders for which the prevalence in the U.S. is currently estimated to be 1 in 50 children. A majority of cases of idiopathic autism in children likely result from unknown environmental triggers in genetically susceptible individuals. These triggers may include maternal exposure of a developing embryo to environmentally relevant minute concentrations of psychoactive pharmaceuticals through ineffectively purified drinking water. Previous studies in our lab examined the extent to which gene sets associated with neuronal development were up- and down-regulated (enriched) in the brains of fathead minnows treated with psychoactive pharmaceuticals at environmental concentrations. The aim of this study was to determine whether similar treatments would alter in vitro expression of ASD-associated synaptic proteins on differentiated human neuronal cells. Human SK-N-SH neuroblastoma cells were differentiated for two weeks with 10μM retinoic acid (RA) and treated with environmentally relevant concentrations of fluoxetine, carbamazepine or venlafaxine, and flow cytometry technique was used to analyze expression of ASD-associated synaptic proteins. Data showed that carbamazepine individually, venlafaxine individually and mixture treatment at environmental concentrations significantly altered the expression of key synaptic proteins (NMDAR1, PSD95, SV2A, HTR1B, HTR2C and OXTR). Data indicated that psychoactive pharmaceuticals at extremely low concentrations altered the in vitro expression of key synaptic proteins that may potentially contribute to neurological disorders like ASD by disrupting neuronal development. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states.

    PubMed

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S

    2001-12-15

    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  14. Arabidopsis WPP-Domain Proteins Are Developmentally Associated with the Nuclear Envelope and Promote Cell DivisionW⃞

    PubMed Central

    Patel, Shalaka; Rose, Annkatrin; Meulia, Tea; Dixit, Ram; Cyr, Richard J.; Meier, Iris

    2004-01-01

    The nuclear envelope (NE) acts as a selective barrier to macromolecule trafficking between the nucleus and the cytoplasm and undergoes a complex reorganization during mitosis. Different eukaryotic kingdoms show specializations in NE function and composition. In contrast with vertebrates, the protein composition of the NE and the function of NE proteins are barely understood in plants. MFP1 attachment factor 1 (MAF1) is a plant-specific NE-associated protein first identified in tomato (Lycopersicon esculentum). Here, we demonstrate that two Arabidopsis thaliana MAF1 homologs, WPP1 and WPP2, are associated with the NE specifically in undifferentiated cells of the root tip. Reentry into cell cycle after callus induction from differentiated root segments reprograms their NE association. Based on green fluorescent protein fusions and immunogold labeling data, the proteins are associated with the outer NE and the nuclear pores in interphase cells and with the immature cell plate during cytokinesis. RNA interference–based suppression of the Arabidopsis WPP family causes shorter primary roots, a reduced number of lateral roots, and reduced mitotic activity of the root meristem. Together, these data demonstrate the existence of regulated NE targeting in plants and identify a class of plant-specific NE proteins involved in mitotic activity. PMID:15548735

  15. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins.

    PubMed

    Bang, Marie-Louise

    2017-01-01

    The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Matrix Gla Protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritis

    USDA-ARS?s Scientific Manuscript database

    Objective. Factors associated with mineralization and osteophyte formation in osteoarthritis (OA) are incompletely understood. Genetic polymorphisms of matrix Gla protein (MGP), a mineralization inhibitor, have been associated clinically with conditions of abnormal calcification. We therefore evalua...

  17. A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal; Bandyopadhyay, Sanghamitra

    2012-01-01

    Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed. PMID:22539940

  18. Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles.

    PubMed

    Ayyadevara, Srinivas; Mercanti, Federico; Wang, Xianwei; Mackintosh, Samuel G; Tackett, Alan J; Prayaga, Sastry V S; Romeo, Francesco; Shmookler Reis, Robert J; Mehta, Jawahar L

    2016-05-01

    Neurodegenerative diseases are largely defined by protein aggregates in affected tissues. Aggregates contain some shared components as well as proteins thought to be specific for each disease. Aggregation has not previously been reported in the normal, aging heart or the hypertensive heart. Detergent-insoluble protein aggregates were isolated from mouse heart and characterized on 2-dimensional gels. Their levels increased markedly and significantly with aging and after sustained angiotensin II-induced hypertension. Of the aggregate components identified by high-resolution proteomics, half changed in abundance with age (392/787) or with sustained hypertension (459/824), whereas 30% (273/901) changed concordantly in both, each P<0.05. One fifth of these proteins were previously associated with age-progressive neurodegenerative or cardiovascular diseases, or both (eg, ApoE, ApoJ, ApoAIV, clusterin, complement C3, and others involved in stress-response and protein-homeostasis pathways). Because fibrosis is a characteristic of both aged and hypertensive hearts, we posited that aging of fibroblasts may contribute to the aggregates observed in cardiac tissue. Indeed, as cardiac myofibroblasts "senesced" (approached their replicative limit) in vitro, they accrued aggregates with many of the same constituent proteins observed in vivo during natural aging or sustained hypertension. In summary, we have shown for the first time that compact (detergent-insoluble) protein aggregates accumulate during natural aging, chronic hypertension, and in vitro myofibroblast senescence, sharing many common proteins. Thus, aggregates that arise from disparate causes (aging, hypertension, and replicative senescence) may have common underlying mechanisms of accrual. © 2016 American Heart Association, Inc.

  19. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    PubMed

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  20. Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association.

    PubMed

    Domański, Jan; Hedger, George; Best, Robert B; Stansfeld, Phillip J; Sansom, Mark S P

    2017-04-20

    Potential of mean force (PMF) calculations are used to characterize the free energy landscape of protein-lipid and protein-protein association within membranes. Coarse-grained simulations allow binding free energies to be determined with reasonable statistical error. This accuracy relies on defining a good collective variable to describe the binding and unbinding transitions, and upon criteria for assessing the convergence of the simulation toward representative equilibrium sampling. As examples, we calculate protein-lipid binding PMFs for ANT/cardiolipin and Kir2.2/PIP 2 , using umbrella sampling on a distance coordinate. These highlight the importance of replica exchange between windows for convergence. The use of two independent sets of simulations, initiated from bound and unbound states, provide strong evidence for simulation convergence. For a model protein-protein interaction within a membrane, center-of-mass distance is shown to be a poor collective variable for describing transmembrane helix-helix dimerization. Instead, we employ an alternative intermolecular distance matrix RMS (D RMS ) coordinate to obtain converged PMFs for the association of the glycophorin transmembrane domain. While the coarse-grained force field gives a reasonable K d for dimerization, the majority of the bound population is revealed to be in a near-native conformation. Thus, the combination of a refined reaction coordinate with improved sampling reveals previously unnoticed complexities of the dimerization free energy landscape. We propose the use of replica-exchange umbrella sampling starting from different initial conditions as a robust approach for calculation of the binding energies in membrane simulations.

  1. Disease-Associated Mutant Ubiquitin Causes Proteasomal Impairment and Enhances the Toxicity of Protein Aggregates

    PubMed Central

    Tank, Elizabeth M. H.; True, Heather L.

    2009-01-01

    Protein homeostasis is critical for cellular survival and its dysregulation has been implicated in Alzheimer's disease (AD) and other neurodegenerative disorders. Despite the growing appreciation of the pathogenic mechanisms involved in familial forms of AD, much less is known about the sporadic cases. Aggregates found in both familial and sporadic AD often include proteins other than those typically associated with the disease. One such protein is a mutant form of ubiquitin, UBB+1, a frameshift product generated by molecular misreading of a wild-type ubiquitin gene. UBB+1 has been associated with multiple disorders. UBB+1 cannot function as a ubiquitin molecule, and it is itself a substrate for degradation by the ubiquitin/proteasome system (UPS). Accumulation of UBB+1 impairs the proteasome system and enhances toxic protein aggregation, ultimately resulting in cell death. Here, we describe a novel model system to investigate how UBB+1 impairs UPS function and whether it plays a causal role in protein aggregation. We expressed a protein analogous to UBB+1 in yeast (Ubext) and demonstrated that it caused UPS impairment. Blocking ubiquitination of Ubext or weakening its interactions with other ubiquitin-processing proteins reduced the UPS impairment. Expression of Ubext altered the conjugation of wild-type ubiquitin to a UPS substrate. The expression of Ubext markedly enhanced cellular susceptibility to toxic protein aggregates but, surprisingly, did not induce or alter nontoxic protein aggregates in yeast. Taken together, these results suggest that Ubext interacts with more than one protein to elicit impairment of the UPS and affect protein aggregate toxicity. Furthermore, we suggest a model whereby chronic UPS impairment could inflict deleterious consequences on proper protein aggregate sequestration. PMID:19214209

  2. The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway.

    PubMed

    Zhou, Tao; Dang, Ying; Zheng, Yong-Hui

    2014-03-01

    The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4(+) T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral therapies. Env proteins

  3. Inferring protein domains associated with drug side effects based on drug-target interaction network

    PubMed Central

    2013-01-01

    Background Most phenotypic effects of drugs are involved in the interactions between drugs and their target proteins, however, our knowledge about the molecular mechanism of the drug-target interactions is very limited. One of challenging issues in recent pharmaceutical science is to identify the underlying molecular features which govern drug-target interactions. Results In this paper, we make a systematic analysis of the correlation between drug side effects and protein domains, which we call "pharmacogenomic features," based on the drug-target interaction network. We detect drug side effects and protein domains that appear jointly in known drug-target interactions, which is made possible by using classifiers with sparse models. It is shown that the inferred pharmacogenomic features can be used for predicting potential drug-target interactions. We also discuss advantages and limitations of the pharmacogenomic features, compared with the chemogenomic features that are the associations between drug chemical substructures and protein domains. Conclusion The inferred side effect-domain association network is expected to be useful for estimating common drug side effects for different protein families and characteristic drug side effects for specific protein domains. PMID:24565527

  4. Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling.

    PubMed

    Lim, Y P; Low, B C; Lim, J; Wong, E S; Guy, G R

    1999-07-02

    FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.

  5. Heat Shock Proteins in Association with Heat Tolerance in Grasses

    PubMed Central

    Xu, Yan; Zhan, Chenyang; Huang, Bingru

    2011-01-01

    The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding. PMID:22084689

  6. Ca2+/S100 Proteins Act as Upstream Regulators of the Chaperone-associated Ubiquitin Ligase CHIP (C Terminus of Hsc70-interacting Protein)*

    PubMed Central

    Shimamoto, Seiko; Kubota, Yasuo; Yamaguchi, Fuminori; Tokumitsu, Hiroshi; Kobayashi, Ryoji

    2013-01-01

    The U-box E3 ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein) binds Hsp90 and/or Hsp70 via its tetratricopeptide repeat (TPR), facilitating ubiquitination of the chaperone-bound client proteins. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. We previously reported that Ca2+/S100 proteins directly associate with the TPR proteins, such as Hsp70/Hsp90-organizing protein (Hop), kinesin light chain, Tom70, FKBP52, CyP40, and protein phosphatase 5 (PP5), leading to the dissociation of the interactions of the TPR proteins with their target proteins. Therefore, we have hypothesized that Ca2+/S100 proteins can interact with CHIP and regulate its function. GST pulldown assays indicated that Ca2+/S100A2 and S100P bind to the TPR domain and lead to interference with the interactions of CHIP with Hsp70, Hsp90, HSF1, and Smad1. In vitro ubiquitination assays indicated that Ca2+/S100A2 and S100P are efficient and specific inhibitors of CHIP-mediated ubiquitination of Hsp70, Hsp90, HSF1, and Smad1. Overexpression of S100A2 and S100P suppressed CHIP-chaperone complex-dependent mutant p53 ubiquitination and degradation in Hep3B cells. The association of the S100 proteins with CHIP provides a Ca2+-dependent regulatory mechanism for the ubiquitination and degradation of intracellular proteins by the CHIP-proteasome pathway. PMID:23344957

  7. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the humanmore » protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.« less

  8. AIRE is a critical spindle-associated protein in embryonic stem cells

    PubMed Central

    Gu, Bin; Lambert, Jean-Philippe; Cockburn, Katie; Gingras, Anne-Claude; Rossant, Janet

    2017-01-01

    Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE’s mitotic function. Combined maternal and zygotic knockout further revealed Aire’s critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations. DOI: http://dx.doi.org/10.7554/eLife.28131.001 PMID:28742026

  9. Taste receptors and gustatory associated G proteins in channel catfish, Ictalurus punctatus.

    PubMed

    Gao, Sen; Liu, Shikai; Yao, Jun; Zhou, Tao; Li, Ning; Li, Qi; Dunham, Rex; Liu, Zhanjiang

    2017-03-01

    Taste sensation plays a pivotal role in nutrient identification and acquisition. This is particularly true for channel catfish (Ictalurus punctatus) that live in turbid waters with limited visibility. This biological process is mainly mediated by taste receptors expressed in taste buds that are distributed in several organs and tissues, including the barbels and skin. In the present study, we identified a complete repertoire of taste receptor and gustatory associated G protein genes in the channel catfish genome. A total of eight taste receptor genes were identified, including five type I and three type II taste receptor genes. Their genomic locations, phylogenetic relations, orthologies and expression were determined. Phylogenetic and collinear analyses provided understanding of the evolution dynamics of this gene family. Furthermore, the motif and dN/dS analyses indicated that selection pressures of different degrees were imposed on these receptors. Additionally, four genes of gustatory associated G proteins were also identified. It was indicated that expression patterns of catfish taste receptors and gustatory associated G proteins across organs mirror the distribution of taste buds across organs. Finally, the expression comparison between catfish and zebrafish organs provided evidence of potential roles of catfish skin and gill involved in taste sensation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer.

    PubMed

    Norris, Alixanna M; Woodruff, R D; D'Agostino, Ralph B; Clodfelter, Jill E; Scarpinato, Karin Drotschmann

    2007-02-01

    Defects in mismatch repair (MMR) proteins have been identified in various types of cancer. However, an association with prostate cancer has been controversial. Defective MMR results in genome instability with detrimental consequences that significantly contribute to tumorigenesis. This study determined alterations in key MMR protein levels in prostate cancer with the goal to identify prognostic markers. Prostatectomy samples were immunohistochemically stained and the relative presence or absence of key proteins MSH2, MLH1, and PMS2 determined. Cancer tissue of distinct grades was compared with the normal surrounding tissue. Microsatellite instability (MSI) in altered tissues was determined according to NCI guidelines. In contrast to reports that associate a lack of individual MMR proteins with tumorigenesis, a significant increase in PMS2 levels was identified in PIN lesions and prostate cancer tissue. This elevation in PMS2 was independent of changes in levels in its heterodimeric partner, MLH1. Prostate tumors with elevated levels of PMS2 were genetically unstable, which was corrected by MLH1 co-elevation. This is the first documentation of detrimental consequences associated with the increase in a MMR protein in human cancer. This study recognizes PMS2 elevation as a prognostic marker in pre-neoplastic and prostate cancer lesions. This result has significant implications for future diagnostic and treatment measures. (c) 2006 Wiley-Liss, Inc.

  11. NMR Characterization of Self-Association Domains Promoted by Interactions with LC8 Hub Protein

    PubMed Central

    Barbar, Elisar; Nyarko, Afua

    2014-01-01

    Most proteins in interaction networks have a small number of partners, while a few, called hubs, participate in a large number of interactions and play a central role in cell homeostasis. One highly conserved hub is a protein called LC8 that was originally identified as an essential component of the multi-subunit complex dynein but later shown to be also critical in multiple protein complexes in diverse systems. What is intriguing about this hub protein is that it does not passively bind its various partners but emerging evidence suggests that LC8 acts as a dimerization engine that promotes self-association and/or higher order organization of its primarily disordered monomeric partners. This structural organization process does not require ATP but is triggered by long-range allosteric regulation initiated by LC8 binding a pair of disordered chains forming a bivalent or polybivalent scaffold. This review focuses on the role of LC8 in promoting self-association of two of its binding partners, a dynein intermediate chain and a non dynein protein called Swallow. PMID:24757501

  12. Differential association of protein subunits with the human RNase MRP and RNase P complexes.

    PubMed

    Welting, Tim J M; Kikkert, Bastiaan J; van Venrooij, Walther J; Pruijn, Ger J M

    2006-07-01

    RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.

  13. The association of 83 plasma proteins with CHD mortality, BMI, HDL-, and total-cholesterol in men: applying multivariate statistics to identify proteins with prognostic value and biological relevance.

    PubMed

    Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M

    2009-06-01

    In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.

  14. Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro

    PubMed Central

    Webb, Stacy R.; Smith, Stacy E.; Fried, Michael G.

    2018-01-01

    ABSTRACT Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families. IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens—Ebola virus, influenza virus, SARS CoV, and rabies virus—self-associate. This observation across various viral

  15. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor.

    PubMed

    Satijn, D P; Gunster, M J; van der Vlag, J; Hamer, K M; Schul, W; Alkema, M J; Saurin, A J; Freemont, P S; van Driel, R; Otte, A P

    1997-07-01

    The Polycomb (Pc) protein is a component of a multimeric, chromatin-associated Polycomb group (PcG) protein complex, which is involved in stable repression of gene activity. The identities of components of the PcG protein complex are largely unknown. In a two-hybrid screen with a vertebrate Pc homolog as a target, we identify the human RING1 protein as interacting with Pc. RING1 is a protein that contains the RING finger motif, a specific zinc-binding domain, which is found in many regulatory proteins. So far, the function of the RING1 protein has remained enigmatic. Here, we show that RING1 coimmunoprecipitates with a human Pc homolog, the vertebrate PcG protein BMI1, and HPH1, a human homolog of the PcG protein Polyhomeotic (Ph). Also, RING1 colocalizes with these vertebrate PcG proteins in nuclear domains of SW480 human colorectal adenocarcinoma and Saos-2 human osteosarcoma cells. Finally, we show that RING1, like Pc, is able to repress gene activity when targeted to a reporter gene. Our findings indicate that RING1 is associated with the human PcG protein complex and that RING1, like PcG proteins, can act as a transcriptional repressor.

  16. Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis.

    PubMed

    Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A

    2015-07-31

    Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular

  17. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  18. Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer.

    PubMed

    Michie, Alison M; McCaig, Alison M; Nakagawa, Rinako; Vukovic, Milica

    2010-01-01

    Death-associated protein kinase (DAPK) is a pro-apoptotic serine/threonine protein kinase that is dysregulated in a wide variety of cancers. The mechanism by which this occurs has largely been attributed to promoter hypermethylation, which results in gene silencing. However, recent studies indicate that DAPK expression can be detected in some cancers, but its function is still repressed, suggesting that DAPK activity can be subverted at a post-translational level in cancer cells. This review will focus on recent data describing potential mechanisms that may alter the expression, regulation or function of DAPK.

  19. Bladder Cancer-associated Protein, a Potential Prognostic Biomarker in Human Bladder Cancer*

    PubMed Central

    Moreira, José M. A.; Ohlsson, Gita; Gromov, Pavel; Simon, Ronald; Sauter, Guido; Celis, Julio E.; Gromova, Irina

    2010-01-01

    It is becoming increasingly clear that no single marker will have the sensitivity and specificity necessary to be used on its own for diagnosis/prognosis of tumors. Interpatient and intratumor heterogeneity provides overwhelming odds against the existence of such an ideal marker. With this in mind, our laboratory has been applying a long term systematic approach to identify multiple biomarkers that can be used for clinical purposes. As a result of these studies, we have identified and reported several candidate biomarker proteins that are deregulated in bladder cancer. Following the conceptual biomarker development phases proposed by the Early Detection Research Network, we have taken some of the most promising candidate proteins into postdiscovery validation studies, and here we report on the characterization of one such biomarker, the bladder cancer-associated protein (BLCAP), formerly termed Bc10. To characterize BLCAP protein expression and cellular localization patterns in benign bladder urothelium and urothelial carcinomas (UCs), we used two independent sets of samples from different patient cohorts: a reference set consisting of 120 bladder specimens (formalin-fixed as well as frozen biopsies) and a validation set consisting of 2,108 retrospectively collected UCs with long term clinical follow-up. We could categorize the UCs examined into four groups based on levels of expression and subcellular localization of BLCAP protein and showed that loss of BLCAP expression is associated with tumor progression. The results indicated that increased expression of this protein confers an adverse patient outcome, suggesting that categorization of staining patterns for this protein may have prognostic value. Finally, we applied a combinatorial two-marker discriminator using BLCAP and adipocyte-type fatty acid-binding protein, another UC biomarker previously reported by us, and found that the combination of the two markers correlated more closely with grade and/or stage of

  20. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  1. Non-Cationic Proteins Are Associated with HIV Neutralizing Activity in Genital Secretions of Female Sex Workers.

    PubMed

    Birse, Kenzie D M; Cole, Amy L; Hirbod, Taha; McKinnon, Lyle; Ball, Terry B; Westmacott, Garrett R; Kimani, Joshua; Plummer, Frank; Cole, Alexander M; Burgener, Adam; Broliden, Kristina

    2015-01-01

    Cationic proteins found in cervicovaginal secretions (CVS) are known to contribute to the early antiviral immune response against HIV-infection in vitro. We here aimed to define additional antiviral factors that are over-expressed in CVS from female sex workers at high risk of infection. CVS were collected from Kenyan HIV-seronegative (n = 34) and HIV-seropositive (n = 12) female sex workers, and were compared with those from HIV-seronegative low-risk women (n = 12). The highly exposed seronegative (HESN) sex workers were further divided into those with less (n = 22) or more (n = 12) than three years of documented sex work. Cationic protein-depleted CVS were assessed for HIV-neutralizing activity by a PBMC-based HIV-neutralizing assay, and then characterized by proteomics. HIV neutralizing activity was detected in all unprocessed CVS, however only CVS from the female sex worker groups maintained its HIV neutralizing activity after cationic protein-depletion. Differentially abundant proteins were identified in the cationic protein-depleted secretions including 26, 42, and 11 in the HESN>3 yr, HESN<3 yr, and HIV-positive groups, respectively. Gene ontology placed these proteins into functional categories including proteolysis, oxidation-reduction, and epidermal development. The proteins identified in this study include proteins previously associated with the HESN phenotype in other cohorts as well as novel proteins not yet associated with anti-HIV activities. While cationic proteins appear to contribute to the majority of the intrinsic HIV neutralizing activity in the CVS of low-risk women, a broader range of non-cationic proteins were associated with HIV neutralizing activity in HESN and HIV-positive female sex workers. These results indicate that novel protein factors found in CVS of women with high-risk sexual practices may have inherent antiviral activity, or are involved in other aspects of anti-HIV host defense, and warrant further exploration into their mode

  2. Identification of ZASP, a novel protein associated to Zona occludens-2.

    PubMed

    Lechuga, Susana; Alarcón, Lourdes; Solano, Jesús; Huerta, Miriam; Lopez-Bayghen, Esther; González-Mariscal, Lorenza

    2010-11-15

    With the aim of discovering new molecular interactions of the tight junction protein ZO-2, a two-hybrid screen was performed on a human kidney cDNA library using as bait the middle segment of ZO-2. Through this assay we identified a 24-kDa novel protein herein named ZASP for ZO-2 associated speckle protein. ZO-2/ZASP interaction further confirmed by pull down and immunoprecipitation experiments, requires the presence of the intact PDZ binding motif SQV of ZASP and the third PDZ domain of ZO-2. ZASP mRNA and protein are present in the kidney and in several epithelial cell lines. Endogenous ZASP is expressed primarily in nuclear speckles in co-localization with splicing factor SC-35. Nocodazole treatment and wash out reveals that ZASP disappears from the nucleus during mitosis in accordance with speckle disassembly during metaphase. ZASP amino acid sequence exhibits a canonical nuclear exportation signal and in agreement the protein exits the nucleus through a process mediated by exportin/CRM1. ZASP over-expression blocks the inhibitory activity of ZO-2 on cyclin D1 gene transcription and protein expression. The identification of ZASP helps to unfold the complex nuclear molecular arrays that form on ZO-2 scaffolds. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean.

    PubMed

    Kulkarni, Krishnanand P; Patil, Gunvant; Valliyodan, Babu; Vuong, Tri D; Shannon, J Grover; Nguyen, Henry T; Lee, Jeong-Dong

    2018-03-01

    The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.

  4. Functional characterisation of ganglioside-induced differentiation-associated protein 1 as a glutathione transferase.

    PubMed

    Shield, Alison J; Murray, Tracy P; Board, Philip G

    2006-09-08

    Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene have been linked with Charcot-Marie-Tooth (CMT) disease. This protein, and its paralogue GDAP1L1, appear to be structurally related to the cytosolic glutathione S-transferases (GST) including an N-terminal thioredoxin fold domain with conserved active site residues. The specific function, of GDAP1 remains unknown. To further characterise their structure and function we purified recombinant human GDAP1 and GDAP1L1 proteins using bacterial expression and immobilised metal affinity chromatography. Like other cytosolic GSTs, GDAP1 protein has a dimeric structure. Although the full-length proteins were largely insoluble, the deletion of a proposed C-terminal transmembrane domain allowed the preparation of soluble protein. The purified proteins were assayed for glutathione-dependent activity against a library of 'prototypic' GST substrates. No evidence of glutathione-dependent activity or an ability to bind glutathione immobilised on agarose was found.

  5. Human milk galectin-3 binding protein and breast-feeding-associated HIV transmission.

    PubMed

    Chan, Christina S; Kim, Hae-Young; Autran, Chloe; Kim, Jae H; Sinkala, Moses; Kankasa, Chipepo; Mwiya, Mwiya; Thea, Donald M; Aldrovandi, Grace M; Kuhn, Louise; Bode, Lars

    2013-12-01

    Analysis of milk from 247 HIV-infected Zambian mothers showed that galectin-3 binding protein concentrations were significantly higher among HIV-infected mothers who transmitted HIV through breast-feeding (6.51 ± 2.12 μg/mL) than among nontransmitters but were also correlated with higher milk and plasma HIV RNA copies/mL and lower CD4+ cell counts. The association between galectin-3 binding protein and postnatal transmission was attenuated after adjustment for milk and plasma HIV load and CD4+ cell counts. This suggests that although milk galectin-3 binding protein is a marker of advanced maternal disease, it does not independently modify transmission risk.

  6. Obtaining Highly Purified Toxoplasma gondii Oocysts by a Discontinuous Cesium Chloride Gradient

    EPA Science Inventory

    Toxoplasma gondii is an obligate intracellular protozoan pathogen that commonly infects humans. It is a well characterized apicomplexan associated with causing food- and water-borne disease outbreaks. The definitive host is the feline species where sexual replication occurs res...

  7. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    PubMed

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies. © 2016 Elsevier Inc. All rights reserved.

  8. Phage-Induced Expression of CRISPR-Associated Proteins is Revealed by Shotgun Proteomics in Streptococcus thermophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Jacque C; Dill, Brian; Pan, Chongle

    The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic repeats along with their associated (Cas) proteins, protects bacteria and archaea from viral predation and invading nucleic acids. While the mechanism of action for this acquired immunity is currently under investigation, the response of Cas protein expression to phage infection has yet to be elucidated. In this study, we employed shotgun proteomics to measure the global proteome expression in a model system for studying the CRISPR/Cas response: infection of S. thermophilus DGCC7710 with phage 2972. Host and viral proteins were simultaneously measured following inoculation at two different multiplicities of infectionmore » and across various time points using two-dimensional liquid chromatography tandem mass spectroscopy. Thirty-seven out of forty predicted viral proteins were detected, including all proteins of the structural virome and viral effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were detected, facilitating the monitoring of host protein synthesis changes in response to virus infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus DGCC7710 genome were detected, including loci previously thought to be inactive. Many Cas proteins were found to be constitutively expressed, but several demonstrated increased abundance during peak infection, including the Cas9 proteins from the CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 infection.« less

  9. Motility and Segregation of Hsp104-Associated Protein Aggregates in Budding Yeast

    PubMed Central

    Zhou, Chuankai; Slaughter, Brian D.; Unruh, Jay R.; Eldakak, Amr; Rubinstein, Boris; Li, Rong

    2011-01-01

    SUMMARY During yeast cell division, aggregates of damaged proteins are segregated asymmetrically between the bud and the mother. It is thought that protein aggregates are cleared from the bud via actin cable-based retrograde transport toward the mother, and that Bni1p formin regulates this transport. Here we examined the dynamics of Hsp104-associated protein aggregates by video microscopy, particle tracking and image correlation analysis. We show that protein aggregates undergo random walk without directional bias. Clearance of heat-induced aggregates from the bud does not depend on formin proteins but occurs mostly through dissolution via Hsp104p chaperon. Aggregates formed naturally in aged cells also exhibit random walk but do not dissolve during observation. Although our data does not disagree with a role for actin or cell polarity in aggregate segregation, modeling suggests that their asymmetric inheritance can be a predictable outcome of aggregates' slow diffusion and the geometry of yeast cells. PMID:22118470

  10. Selective Targeting of Proteins within Secretory Pathway for Endoplasmic Reticulum-associated Degradation

    PubMed Central

    Vecchi, Lara; Petris, Gianluca; Bestagno, Marco; Burrone, Oscar R.

    2012-01-01

    The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity. PMID:22523070

  11. Isocaloric substitution of carbohydrates with protein: the association with weight change and mortality among patients with type 2 diabetes.

    PubMed

    Campmans-Kuijpers, Marjo Je; Sluijs, Ivonne; Nöthlings, Ute; Freisling, Heinz; Overvad, Kim; Weiderpass, Elisabete; Fagherazzi, Guy; Kühn, Tilman; Katzke, Verena A; Mattiello, Amalia; Sonestedt, Emily; Masala, Giovanna; Agnoli, Claudia; Tumino, Rosario; Spijkerman, Annemieke M W; Barricarte, Aurelio; Ricceri, Fulvio; Chamosa, Saioa; Johansson, Ingegerd; Winkvist, Anna; Tjønneland, Anne; Sluik, Diewertje; Boeing, Heiner; Beulens, Joline W J

    2015-04-18

    The health impact of dietary replacement of carbohydrates with protein for patients with type 2 diabetes is still debated. This study aimed to investigate the association between dietary substitution of carbohydrates with (animal and plant) protein and 5-year weight change, and all-cause and cardiovascular (CVD) mortality risk in patients with type 2 diabetes. The study included 6,107 diabetes patients from 15 European cohorts. Patients with type 1 diabetes were excluded. At recruitment, validated country-specific food-frequency questionnaires were used to estimate dietary intake. Multivariable adjusted linear regression was used to examine the associations between dietary carbohydrate substitution with protein and 5-year weight change, and Cox regression to estimate hazard ratios (HRs) for (CVD) mortality. Annual weight loss of patients with type 2 diabetes was 0.17 (SD 1.24) kg. After a mean follow-up of 9.2 (SD 2.3)y, 787 (13%) participants had died, of which 266 (4%) deaths were due to CVD. Substitution of 10 gram dietary carbohydrate with total (ß = 187 [75;299]g) and animal (ß = 196 [137;254]g) protein was associated with mean 5-year weight gain. Substitution for plant protein was not significantly associated with weight change (β = 82 [-421;584]g). Substitution with plant protein was associated with lower all-cause mortality risk (HR = 0.79 [0.64;0.97]), whereas substitution with total or animal protein was not associated with (CVD) mortality risk. In diabetes patients, substitution with plant protein was beneficial with respect to weight change and all-cause mortality as opposed to substitution with animal protein. Therefore, future research is needed whether dietary guidelines should not actively promote substitution of carbohydrates by total protein, but rather focus on substitution of carbohydrates with plant protein.

  12. The HSV-1 tegument protein pUL46 associates with cellular membranes and viral capsids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Michael A.; Bucks, Michelle A.; O'Regan, Kevin J.

    2008-07-05

    The molecular mechanisms responsible for the addition of tegument proteins into nascent herpesvirus particles are poorly understood. To better understand the tegumentation process of herpes simplex virus type 1 (HSV-1) virions, we initiated studies that showed the tegument protein pUL46 (VP11/12) has a similar cellular localization to the membrane-associated tegument protein VP22. Using membrane flotation analysis we found that pUL46 associates with membranes in both the presence and absence of other HSV-1 proteins. However, when purified virions were stripped of their envelope, the majority of pUL46 was found to associate with the capsid fraction. This strong affinity of pUL46 formore » capsids was confirmed by an in vitro capsid pull-down assay in which purified pUL46-GST was able to interact specifically with capsids purified from the nuclear fraction of HSV-1 infected cells. These results suggest that pUL46 displays a dynamic interaction between cellular membranes and capsids.« less

  13. Association between Twist and multidrug resistance gene-associated proteins in Taxol®-resistant MCF-7 cells and a 293 cell model of Twist overexpression.

    PubMed

    Wang, Li; Tan, Rui-Zhi; Zhang, Zhi-Xia; Yin, Rui; Zhang, Yong-Liang; Cui, Wei-Jia; He, Tao

    2018-01-01

    Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol ® resistance in cells, a Taxol ® -resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol ® ) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol ® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol ® -resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol ® , Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.

  14. Identification of a New Class of Lipid Droplet-Associated Proteins in Plants1[C][W][OPEN

    PubMed Central

    Horn, Patrick J.; James, Christopher N.; Gidda, Satinder K.; Kilaru, Aruna; Dyer, John M.; Mullen, Robert T.; Ohlrogge, John B.; Chapman, Kent D.

    2013-01-01

    Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues. PMID:23821652

  15. Microgravity Induces Changes in Microsome-Associated Proteins of Arabidopsis Seedlings Grown on Board the International Space Station

    PubMed Central

    Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    The “GENARA A” experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected. PMID:24618597

  16. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station.

    PubMed

    Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.

  17. Characterization of associated proteins and phospholipids in natural rubber latex.

    PubMed

    Sansatsadeekul, Jitlada; Sakdapipanich, Jitladda; Rojruthai, Porntip

    2011-06-01

    Non-rubber components present in natural rubber (NR) latex, such as proteins and phospholipids, are presumed to be distributed in the serum fraction as well as surrounding the rubber particle surface. The phospholipid-protein layers covering the rubber particle surface are especially interesting due to their ability to enhance the colloidal stability of NR latex. In this study, we have characterized the components surrounding the NR particle surface and investigated their role in the colloidal stability of NR particles. Proteins from the cream fraction were proteolytically removed from the NR latex and compare to those from the serum fractions using SDS-polyacrylamide gel electrophoresis revealing that both fractions contained similar proteins in certain molecular weights such as 14.5, 25 and 27 kDa. Phospholipids removed from latex by treatment with NaOH were analyzed using (1)H-NMR spectroscopy and several major signals were assignable to -(CH(2))(n)-, -CH(2)OP, -CH(2)OC═O and -OCH(2)CH(2)NH-. These signals are important evidence that indicates phospholipids associate with the rubber chain. The colloidal behavior of rubber lattices before and after removal of protein-lipid membrane was evaluated by zeta potential analysis and scanning electron microscope (SEM). The lowest zeta potential value of NR particles was observed at pH 10, consequently leading to the highest stability of rubber particles. Additionally, SEM micrographs clearly displayed a gray ring near the particle surface corresponding to the protein-lipid membrane layer. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Dietary Intake of Protein in Early Childhood Is Associated with Growth Trajectories between 1 and 9 Years of Age.

    PubMed

    Braun, Kim Ve; Erler, Nicole S; Kiefte-de Jong, Jessica C; Jaddoe, Vincent Wv; van den Hooven, Edith H; Franco, Oscar H; Voortman, Trudy

    2016-11-01

    High protein intake in infancy might lead to a higher body mass index (BMI) in childhood. However, whether these associations differ between different sources of protein is unclear. We investigated associations between the intake of total protein, protein from different sources, and individual amino acids in early childhood and repeatedly measured height, weight, and BMI up to the age of 9 y. This study was performed in 3564 children participating in the Generation R Study, a population-based prospective cohort study in Rotterdam, Netherlands. Intakes of total protein, animal protein, vegetable protein, and individual amino acids (including methionine, arginine, lysine, threonine, valine, leucine, isoleucine, phenylalanine, tryptophan, histidine, cysteine, tyrosine, alanine, asparagine, glutamine, glycine, proline, and serine) at 1 y were assessed by using a food-frequency questionnaire. Height and weight were measured at the approximate ages of 14, 18, 24, 30, 36, and 45 mo and at 6 and 9 y, and BMI was calculated. After adjustment for confounders, linear mixed models showed that a 10-g higher total protein intake/d at 1 y was significantly associated with a 0.03-SD greater height (95% CI: 0.00, 0.06), a 0.06-SD higher weight (95% CI: 0.03, 0.09), and a 0.05-SD higher BMI (95% CI: 0.03, 0.08) up to the age of 9 y. Associations were stronger for animal than for vegetable protein intake but did not differ between dairy and nondairy animal protein or between specific amino acids. A higher intake of protein, especially animal protein, at 1 y of age was associated with a greater height, weight, and BMI in childhood up to 9 y of age. Future studies should explore the role of growth hormones and investigate whether protein intake in early childhood affects health later in life. © 2016 American Society for Nutrition.

  19. A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh1[OPEN

    PubMed Central

    Wang, Lun; Deng, Xiuxin

    2015-01-01

    Globular and crystalloid chromoplasts were observed to be region specifically formed in sweet orange (Citrus sinensis) flesh and converted from amyloplasts during fruit maturation, which was associated with the composition of specific carotenoids and the expression of carotenogenic genes. Subsequent isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analyses of purified plastids from the flesh during chromoplast differentiation and senescence identified 1,386 putative plastid-localized proteins, 1,016 of which were quantified by spectral counting. The iTRAQ values reflecting the expression abundance of three identified proteins were validated by immunoblotting. Based on iTRAQ data, chromoplastogenesis appeared to be associated with three major protein expression patterns: (1) marked decrease in abundance of the proteins participating in the translation machinery through ribosome assembly; (2) increase in abundance of the proteins involved in terpenoid biosynthesis (including carotenoids), stress responses (redox, ascorbate, and glutathione), and development; and (3) maintenance of the proteins for signaling and DNA and RNA. Interestingly, a strong increase in abundance of several plastoglobule-localized proteins coincided with the formation of plastoglobules in the chromoplast. The proteomic data also showed that stable functioning of protein import, suppression of ribosome assembly, and accumulation of chromoplast proteases are correlated with the amyloplast-to-chromoplast transition; thus, these processes may play a collective role in chromoplast biogenesis and differentiation. By contrast, the chromoplast senescence process was inferred to be associated with significant increases in stress response and energy supply. In conclusion, this comprehensive proteomic study identified many potentially new plastid-localized proteins and provides insights into the potential developmental and molecular mechanisms underlying chromoplast

  20. Role for ribosome-associated complex and stress-seventy subfamily B (RAC-Ssb) in integral membrane protein translation.

    PubMed

    Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D

    2017-12-01

    Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Association between hypertriglyceridemia and protein oxidation and proinflammatory markers in normocholesterolemic and hypercholesterolemic individuals.

    PubMed

    Klafke, Jonatas Zeni; Porto, Fernando Garcez; Batista, Roselaine; Bochi, Guilherme Vargas; Moresco, Rafael Noal; da Luz, Protásio Lemos; Viecili, Paulo Ricardo Nazário

    2015-08-25

    Although hypercholesterolemia is a well-established risk factor for coronary heart disease, evidence suggests that increased triglyceride (TG) concentrations are also an independent risk factor. TG concentrations >150mg/dl are observed nearly twice as often in subjects with atherosclerosis. We assessed the association between hypertriglyceridemia and protein oxidation and proinflammatory markers in normocholesterolemic and hypercholesterolemic individuals. We included 127 volunteers enrolled in Cruz Alta, RS, Brazil. The patients were stratified based on total cholesterol and TG concentrations for analysis of associations with inflammation (high-sensitivity C-reactive protein - hs-CRP), endothelial dysfunction (nitric oxide - NOx) and oxidative stress (advanced oxidation protein products - AOPPs; ischemia-modified albumin - IMA). Correlations between variables were determined and multiple regression analysis was employed to investigate whether some variables correlate with TG concentrations. Hypertriglyceridemia was related to oxidative stress and proinflammatory markers in individuals independent of total cholesterol concentrations. Moreover, the results indicate a stronger association of tested biomarkers with TG concentrations than with total cholesterol. The results indicate a positive correlation between oxidative stress and TG concentrations in the sera of hypercholesterolemia subjects. AOPPs and IMA concentrations were associated with the presence of hypertriglyceridemia in a manner that was independent of age, gender, hypertension and diabetes mellitus disease, smoking habits, sedentary lifestyle, BMI, waist circumference, LDL, HDL and total cholesterol concentrations. We speculate that TG concentrations can reflect the enhancement of protein oxidation and proinflammation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.

    PubMed

    Beyer, Sasha J; Zhang, Xiaoli; Jimenez, Rafael E; Lee, Mei-Ling T; Richardson, Andrea L; Huang, Kun; Jhiang, Sissy M

    2011-10-11

    Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.

  3. Regulation of diacylglycerol acyltransferase 2 protein stability by gp78-associated endoplasmic-reticulum-associated degradation.

    PubMed

    Choi, Kwangman; Kim, Hyeongki; Kang, Hyunju; Lee, So-Young; Lee, Sang Jun; Back, Sung Hoon; Lee, Seo Hyun; Kim, M Sun; Lee, Jeong Eun; Park, Ju Young; Kim, Jiye; Kim, Sunhong; Song, Jae-Hyung; Choi, Yura; Lee, Suui; Lee, Hyun-Jun; Kim, Jong Heon; Cho, Sungchan

    2014-07-01

    Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by diacylglycerol acyltransferase (DGAT) in the endoplasmic reticulum (ER). DGAT2, one of the two DGAT enzymes, is barely detectable in cells, even though its mRNA transcripts are maintained at considerable levels. However, little is known about how DGAT2 expression is altered by protein stability. DGAT2 was highly unstable in cells and was rapidly degraded by proteasomes in an ubiquitin-dependent manner. Deletion mutation analysis identified transmembrane domain 1 (TMD1) as a protein degradation signal. TMD1 is also important for ER localization of DGAT2. Moreover, DGAT2 interacted with p97/VCP, a crucial component of the ER-associated degradation (ERAD) pathway, and polyubiquitinated DGAT2 accumulated following treatment with an ERAD inhibitor. Furthermore, gp78, an E3 ligase involved in ERAD, regulates the degradation of DGAT2 through direct interactions and ubiquitination. Consequently, the stabilization of DGAT2 increased the number of lipid droplets in hepatic cells. Therefore, DGAT2 is regulated by gp78-associated ERAD at the post-translational level. © 2014 FEBS.

  4. In-vitro Cell Culture and Real-time Reverse Transcriptase PCR-based Assays to Detect Infective Toxoplas gondii Oocysts

    EPA Science Inventory

    Toxoplasma gondii is an obligate intracellular, apicomplexan parasite that infects humans. It is ubiquitous in nature and seroprevalence in the United States and in Europe ranges from 25->70%. Although typically associated with causing foodborne outbreaks, recent studies in Canad...

  5. Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease.

    PubMed

    Wang, Xianli; Dong, Chuanming; Sun, Lixin; Zhu, Liang; Sun, Chenxi; Ma, Rongjie; Ning, Ke; Lu, Bing; Zhang, Jinfu; Xu, Jun

    2016-11-18

    Aging is characterized by a progressive decline in the function of adult tissues which can lead to neurodegenerative disorders. However, little is known about the correlation between protein changes in the subventricular zone (SVZ) and neurodegenerative diseases with age. In the present study, neural stem cells (NSCs) were derived from the SVZ on postnatal 7 d, 1 m, and 12 m-old mice. With age, NSCs exhibited increased SA-β-gal activity and decreased proliferation and pool size in the SVZ zone, and were associated with elevated inflammatory chemokines and cytokines. Furthermore, quantitative proteomics and ingenuity pathway analysis were used to evaluate the significant age-related alterations in proteins and their functions. Some downregulated proteins such as DPYSL2, TPI1, ALDH, and UCHL1 were found to play critical roles in the neurological disease and PSMA1, PSMA3, PSMC2, PSMD11, and UCHL1 in protein homeostasis. Taken together, we have provided valuable insight into the cellular and molecular processes that underlie aging-associated declines in SVZ neurogenesis for the early detection of differences in gene expression and the potential risk of neurological disease, which is beneficial in the prevention of the diseases.

  6. The genetic association study between polymorphisms in uncoupling protein 2 and uncoupling protein 3 and metabolic data in dogs.

    PubMed

    Udagawa, Chihiro; Tada, Naomi; Asano, Junzo; Ishioka, Katsumi; Ochiai, Kazuhiko; Bonkobara, Makoto; Tsuchida, Shuichi; Omi, Toshinori

    2014-12-11

    The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs. We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n=119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n=50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n=30), compared with the control breed (Shiba, n=30). The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results.

  7. Analysis of associations between the prion protein genotypes and production traits in East Friesian milk sheep.

    PubMed

    De Vries, F; Hamann, H; Drögemüller, C; Ganter, M; Distl, O

    2005-01-01

    The objective of this study was to analyze associations between ovine prion protein genotypes and production traits in East Friesian milk sheep. Production traits included the type traits scores for muscle mass, wool quality, and type; the reproduction traits age at first lambing, first lambing interval, second lambing interval, and total number of lambs born; the milk performance traits; milk, fat, and protein yields; fat and protein contents; and somatic cell scores. Prion protein genotypes were available for 658 East Friesian milk sheep. Linear animal models were used for the analysis of the prion protein genotype effects. The scores of the genotyped sheep for muscle mass, type, wool quality, and fat yield were significantly superior to those of the nongenotyped animals. An explanation for this might be that breeders seek to minimize genotyping costs by preselecting animals that do not meet the top breeding requirements. No significant associations were found between the prion protein genotypes and milk performance, type, or reproduction traits.

  8. In silico prediction of a disease-associated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ).

    PubMed

    Kumar, Ambuj; Rajendran, Vidya; Sethumadhavan, Rao; Purohit, Rituraj

    2012-01-01

    Human STIL (SCL/TAL1 interrupting locus) protein maintains centriole stability and spindle pole localisation. It helps in recruitment of CENPJ (Centromere protein J)/CPAP (centrosomal P4.1-associated protein) and other centrosomal proteins. Mutations in STIL protein are reported in several disorders, especially in deregulation of cell cycle cascades. In this work, we examined the non-synonymous single nucleotide polymorphisms (nsSNPs) reported in STIL protein for their disease association. Different SNP prediction tools were used to predict disease-associated nsSNPs. Our evaluation technique predicted rs147744459 (R242C) as a highly deleterious disease-associated nsSNP and its interaction behaviour with CENPJ protein. Molecular modelling, docking and molecular dynamics simulation were conducted to examine the structural consequences of the predicted disease-associated mutation. By molecular dynamic simulation we observed structural consequences of R242C mutation which affects interaction of STIL and CENPJ functional domains. The result obtained in this study will provide a biophysical insight into future investigations of pathological nsSNPs using a computational platform.

  9. Parkinsonism-associated Protein DJ-1/Park7 Is a Major Protein Deglycase That Repairs Methylglyoxal- and Glyoxal-glycated Cysteine, Arginine, and Lysine Residues

    PubMed Central

    Richarme, Gilbert; Mihoub, Mouadh; Dairou, Julien; Bui, Linh Chi; Leger, Thibaut; Lamouri, Aazdine

    2015-01-01

    Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein. PMID:25416785

  10. Translocation of botulinum neurotoxin serotype a and associated proteins across the intestinal epithelia

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins and considered to be a major venue of bioterrorist threat. BoNTs associate with neurotoxin associated proteins (NAPs), forming large complexes. NAPs have been shown to shield the BoNT holotoxin from the harsh environment of ...

  11. Phosphatidic Acid-Mediated Signaling Regulates Microneme Secretion in Toxoplasma.

    PubMed

    Bullen, Hayley E; Jia, Yonggen; Yamaryo-Botté, Yoshiki; Bisio, Hugo; Zhang, Ou; Jemelin, Natacha Klages; Marq, Jean-Baptiste; Carruthers, Vern; Botté, Cyrille Y; Soldati-Favre, Dominique

    2016-03-09

    The obligate intracellular lifestyle of apicomplexan parasites necessitates an invasive phase underpinned by timely and spatially controlled secretion of apical organelles termed micronemes. In Toxoplasma gondii, extracellular potassium levels and other stimuli trigger a signaling cascade culminating in phosphoinositide-phospholipase C (PLC) activation, which generates the second messengers diacylglycerol (DAG) and IP3 and ultimately results in microneme secretion. Here we show that a delicate balance between DAG and its downstream product, phosphatidic acid (PA), is essential for controlling microneme release. Governing this balance is the apicomplexan-specific DAG-kinase-1, which interconverts PA and DAG, and whose depletion impairs egress and causes parasite death. Additionally, we identify an acylated pleckstrin-homology (PH) domain-containing protein (APH) on the microneme surface that senses PA during microneme secretion and is necessary for microneme exocytosis. As APH is conserved in Apicomplexa, these findings highlight a potentially widely used mechanism in which key lipid mediators regulate microneme exocytosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities.

    PubMed

    Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric

    2005-03-10

    Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.

  13. Data on the association of the nuclear envelope protein Sun1 with nucleoli.

    PubMed

    Moujaber, Ossama; Omran, Nawal; Kodiha, Mohamed; Pié, Brigitte; Cooper, Ellis; Presley, John F; Stochaj, Ursula

    2017-08-01

    SUN proteins participate in diverse cellular activities, many of which are connected to the nuclear envelope. Recently, the family member SUN1 has been linked to novel biological activities. These include the regulation of nucleoli, intranuclear compartments that assemble ribosomal subunits. We show that SUN1 associates with nucleoli in several mammalian epithelial cell lines. This nucleolar localization is not shared by all cell types, as SUN1 concentrates at the nuclear envelope in ganglionic neurons and non-neuronal satellite cells. Database analyses and Western blotting emphasize the complexity of SUN1 protein profiles in different mammalian cells. We constructed a STRING network which identifies SUN1-related proteins as part of a larger network that includes several nucleolar proteins. Taken together, the current data highlight the diversity of SUN1 proteins and emphasize the possible links between SUN1 and nucleoli.

  14. Myocilin, a Component of a Membrane-Associated Protein Complex Driven by a Homologous Q-SNARE Domain

    PubMed Central

    Dismuke, W. Michael; McKay, Brian S.; Stamer, W. Daniel

    2012-01-01

    Myocilin is a widely expressed protein with no known function, however, mutations in myocilin appear to manifest uniquely as ocular hypertension and the blinding disease glaucoma. Using the protein homology/analogy recognition engine (PHYRE) we find that the olfactomedin domain of myocilin is similar in sequence motif and structure to a six-bladed, kelch repeat motif based on the known crystal structures of such proteins. Additionally, using sequence analysis we identify a coiled-coil segment of myocilin with homology to human Q-SNARE proteins. Using COS-7 cells expressing full length human myocilin and a version lacking the C-terminal olfactomedin domain, we identified a membrane-associated protein complex containing myocilin by hydrodynamic analysis. The myocilin construct that included the coiled-coil but lacked the olfactomedin domain formed complexes similar to the full-length protein, indicating that the coiled-coil domain of myocilin is sufficient for myocilin to bind to the large detergent resistant complex. In human retina and retinal pigment epithelium, which express myocilin, we detected the protein in a large, SDS-resistant, membrane-associated complex. We characterized the hydrodynamic properties of myocilin in human tissues as either a 15s complex with an Mr=405,000–440,000 yielding a slightly elongated globular shape similar to known SNARE complexes or a dimer of 6.4s and Mr=108,000. By identifying the Q-SNARE homology within the second coil of myocilin and documenting its participation in a SNARE-like complex, we provide evidence of a SNARE domain containing protein associated with a human disease. PMID:22463803

  15. Arenavirus budding resulting from viral-protein-associated cell membrane curvature

    PubMed Central

    Schley, David; Whittaker, Robert J.; Neuman, Benjamin W.

    2013-01-01

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations. PMID:23864502

  16. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane.

    PubMed

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-29

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

  17. The MCM-associated protein MCM-BP is important for human nuclear morphology.

    PubMed

    Jagannathan, Madhav; Sakwe, Amos M; Nguyen, Tin; Frappier, Lori

    2012-01-01

    Mini-chromosome maintenance complex-binding protein (MCM-BP) was discovered as a protein that is strongly associated with human MCM proteins, known to be crucial for DNA replication in providing DNA helicase activity. The Xenopus MCM-BP homologue appears to play a role in unloading MCM complexes from chromatin after DNA synthesis; however, the importance of MCM-BP and its functional contribution to human cells has been unclear. Here we show that depletion of MCM-BP by sustained expression of short hairpin RNA (shRNA) results in highly abnormal nuclear morphology and centrosome amplification. The abnormal nuclear morphology was not seen with depletion of other MCM proteins and was rescued with shRNA-resistant MCM-BP. MCM-BP depletion was also found to result in transient activation of the G2 checkpoint, slowed progression through G2 and increased replication protein A foci, indicative of replication stress. In addition, MCM-BP depletion led to increased cellular levels of MCM proteins throughout the cell cycle including soluble MCM pools. The results suggest that MCM-BP makes multiple contributions to human cells that are not limited to unloading of the MCM complex.

  18. Patterns of Protein Food Intake Are Associated with Nutrient Adequacy in the General French Adult Population.

    PubMed

    Gavelle, Erwan de; Huneau, Jean-François; Mariotti, François

    2018-02-17

    Protein food intake appears to partially structure dietary patterns, as most current emergent diets (e.g., vegetarian and flexitarian) can be described according to their levels of specific protein sources. However, few data are available on dietary protein patterns in the general population and their association with nutrient adequacy. Based on protein food intake data concerning 1678 adults from a representative French national dietary survey, and non-negative-matrix factorization followed by cluster analysis, we were able to identify distinctive dietary protein patterns and compare their nutrient adequacy (using PANDiet probabilistic scoring). The findings revealed eight patterns that clearly discriminate protein intakes and were characterized by the intakes of one or more specific protein foods: 'Processed meat', 'Poultry', 'Pork', 'Traditional', 'Milk', 'Take-away', 'Beef' and 'Fish'. 'Fish eaters' and 'Milk drinkers' had the highest overall nutrient adequacy, whereas that of 'Pork' and 'Take-away eaters' was the lowest. Nutrient adequacy could often be accounted for by the characteristics of the food contributing to protein intake: 'Meat eaters' had high probability of adequacy for iron and zinc, for example. We concluded that protein patterns constitute strong elements in the background structure of the dietary intake and are associated with the nutrient profile that they convey.

  19. Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect

    PubMed Central

    Domínguez Rubio, A. Paula; Martínez, Jimena H.; Martínez Casillas, Diana C.; Coluccio Leskow, Federico; Piuri, Mariana; Pérez, Oscar E.

    2017-01-01

    Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30–50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus’ probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies. PMID:28979244

  20. Two genetic variants in telomerase-associated protein 1 are associated with stomach cancer risk.

    PubMed

    Jin, Dong-Hao; Kim, Sung; Kim, Duk-Hwan; Park, Joobae

    2016-10-01

    This study examined the impact of two single-nucleotide polymorphisms (SNPs) in the telomerase-associated protein 1 (TEP1) gene on the risk of breast, colorectal, hepatocellular, lung and stomach cancer. A significantly increased stomach cancer risk associated with the GG genotype at rs1760893 (odds ratio (OR)=1.64, 95% confidence interval (CI)=1.23-2.20, P=0.004) or CC genotype at rs1713423 (OR=2.40, 95% CI=1.88-3.07, P<0.0001) was observed, compared with their wild-type counterpart. The GG genotype at rs1760893 was also associated with enhanced hepatocellular cancer susceptibility (OR=1.46, 95% CI=1.05-2.03, P=0.02). In classification and regression tree analysis, individuals carrying the CC genotype at rs1713423 had 2.69-fold increased risk of stomach cancer (95% CI=2.18-3.32, P<0.0001) compared with the TT and TC genotypes. The current results suggested that genetic variants at TEP1 SNPs rs1760893 and rs1713423 may be associated significantly with increased risk of stomach cancer.

  1. Differential expression in Phanerochaete chrysosporium of membrane- associated proteins relevant to lignin degradation

    Treesearch

    Semarjit Shary; Alexander N. Kapich; Ellen A. Panisko; Jon K. Magnuson; Daniel Cullen; Kenneth E. Hammel

    2008-01-01

    Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew...

  2. Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins).

    PubMed

    Tumlirsch, Tony; Jendrossek, Dieter

    2017-04-01

    On the basis of bioinformatic evidence, we suspected that proteins with a CYTH ( Cy aB th iamine triphosphatase) domain and/or a CHAD ( c onserved h istidine α -helical d omain) motif might represent polyphosphate (polyP) granule-associated proteins. We found no evidence of polyP targeting by proteins with CYTH domains. In contrast, two CHAD motif-containing proteins from Ralstonia eutropha H16 (A0104 and B1017) that were expressed as fusions with enhanced yellow fluorescent protein (eYFP) colocalized with polyP granules. While the expression of B1017 was not detectable, the A0104 protein was specifically identified in an isolated polyP granule fraction by proteome analysis. Moreover, eYFP fusions with the CHAD motif-containing proteins MGMSRV2-1987 from Magnetospirillum gryphiswaldense and PP2307 from Pseudomonas putida also colocalized with polyP granules in a transspecies-specific manner. These data indicated that CHAD-containing proteins are generally attached to polyP granules. Together with the findings from four previously polyP-attached proteins (polyP kinases), the results of this study raised the number of polyP-associated proteins in R. eutropha to six. We suggest designating polyP granule-bound proteins with CHAD motifs as phosins ( pho sphate), analogous to pha sins and oleo sins that are specifically bound to the surface of polyhydroxyalkanoate (PHA) granules in PHA-accumulating bacteria and to oil droplets in oil seed plants, respectively. IMPORTANCE The importance of polyphosphate (polyP) for life is evident from the ubiquitous presence of polyP in all species on earth. In unicellular eukaryotic microorganisms, polyP is located in specific membrane-enclosed organelles, called acidocalcisomes. However, in most prokaryotes, polyP is present as insoluble granules that have been designated previously as volutin granules. Almost nothing is known regarding the macromolecular composition of polyP granules. Particularly, the absence or presence of cellular

  3. Immunoglobulin subunits of murine B lymphocytes: structure and associations with other membrane proteins.

    PubMed Central

    Vogel, L; Haustein, D

    1989-01-01

    The Ig subunit structure of murine B lymphocytes was studied by employing different radiolabelling techniques in combination with chemical cross-linking. The main membrane structure of IgM was a half molecule that was disulphide-linked to proteins with MW 30,000, 45,000 and 55,000, respectively. Small amounts of mu 2L2, microL disulphide-linked to a protein with MW 50,000, and free microL were also detected. The main IgD structures were half molecules disulphide-linked to two proteins with MW 14,000 and two proteins with MW 16,000. Furthermore, IgD half molecules disulphide-linked to a protein with MW 16,000 and free half molecules could be demonstrated. Labelling with hydrophobic reagents showed that all Ig molecules and the protein with MW 50,000, linked to microL, penetrated the lipid bilayer, whereas the other IgM- and IgD-linked proteins probably did not. Additional proteins which were associated exclusively with IgM were detected by chemical cross-linking. These findings offer new possibilities for the investigation of the function(s) of antigen receptors on B cells. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:2787780

  4. Emerging perspectives in the research of bovine Babesiosis and Anaplasmosis

    USDA-ARS?s Scientific Manuscript database

    The Babesia bovis and B. bigemina apicomplexan protozoa in conjunction with the rickettsia Anaplasma marginale are intraerythrocytic pathogens that are responsible for the most prevalent and costly tick borne diseases (TBD’s) of cattle worldwide. These organisms are historically associated as they c...

  5. The microtubule-associated protein EB1 maintains cell polarity through activation of protein kinase C.

    PubMed

    Schober, Joseph M; Kwon, Guim; Jayne, Debbie; Cain, Jeanine M

    2012-01-06

    The plus-ends of microtubules target the cell cortex to modulate actin protrusion dynamics and polarity, but little is known of the molecular mechanism that couples the interaction. EB1 protein associates with the plus-ends of microtubules, placing EB1 in an ideal spatial position to mediate microtubule-actin cross talk. The objective of the current study was to further understand intracellular signaling involved in EB1-dependent cell polarity and motility. B16F10 mouse melanoma cells were depleted of EB1 protein using short hair-pin RNA interference. Correlative live cell-immunofluorescence microscopy was performed to determine localization of WAVE2 and IQGAP1 to protruding versus retracting edges. EB1 knock down caused poor subcellular separation of WAVE2 and IQGAP1, and overall decreased localization. Activation of PKC corrected defects in WAVE2 and IQGAP1 localization, cell spreading and cell shape to levels observed in control cells, but did not correct defects in cell migration. Consistent with these findings, decreased PKC phosphorylation was observed in EB1 knock down cells. These findings support a model where EB1 protein links microtubules to actin protrusion and cell polarity through signaling pathways involving PKC. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Associations between dairy protein intake and body weight and risk markers of diabetes and CVD during weight maintenance.

    PubMed

    Bendtsen, Line Q; Lorenzen, Janne K; Larsen, Thomas M; van Baak, Marleen; Papadaki, Angeliki; Martinez, J Alfredo; Handjieva-Darlenska, Teodora; Jebb, Susan A; Kunešová, Marie; Pfeiffer, Andreas F H; Saris, Wim H M; Astrup, Arne; Raben, Anne

    2014-03-14

    Dairy products have previously been reported to be associated with beneficial effects on body weight and metabolic risk markers. Moreover, primary data from the Diet, Obesity and Genes (DiOGenes) study indicate a weight-maintaining effect of a high-protein-low-glycaemic index diet. The objective of the present study was to examine putative associations between consumption of dairy proteins and changes in body weight and metabolic risk markers after weight loss in obese and overweight adults. Results were based on secondary analyses of data obtained from overweight and obese adults who completed the DiOGenes study. The study consisted of an 8-week weight-loss phase and a 6-month weight-maintenance (WM) phase, where the subjects were given five different diets varying in protein content and glycaemic index. In the present study, data obtained from all the subjects were pooled. Dairy protein intake was estimated from 3 d dietary records at two time points (week 4 and week 26) during the WM phase. Body weight and metabolic risk markers were determined at baseline (week -9 to -11) and before and at the end of the WM phase (week 0 and week 26). Overall, no significant associations were found between consumption of dairy proteins and changes in body weight and metabolic risk markers. However, dairy protein intake tended to be negatively associated with body weight gain (P=0·08; β=-0·17), but this was not persistent when controlled for total protein intake, which indicates that dairy protein adds no additional effect to the effect of total protein. Therefore, the present study does not report that dairy proteins are more favourable than other proteins for body weight regulation.

  7. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  8. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins.

    PubMed

    Bauve, Elisa La; Vernon, Briana C; Ye, Dongmei; Rogers, David M; Siegrist, Cathryn M; Carson, Bryan D; Rempe, Susan B; Zheng, Aihua; Kielian, Margaret; Shreve, Andrew P; Kent, Michael S

    2016-11-01

    We describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u ) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH* u and ΔG* u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH5.5. ΔH* u is determined from the Arrhenius equation whereas ΔG* u is determined by fitting the data to a model based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20±3kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8±0.3kcal/mol for 30% PG, or est. 7.0kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH5.5, but assembles into trimers after associating with membranes. This new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Bauve, Elisa; Vernon, Briana C.; Ye, Dongmei

    Here, we describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH*u and ΔG*u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. ΔH*u is determined from the Arrhenius equation whereas ΔG*u is determined by fitting the data to a modelmore » based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20 ± 3 kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8 ± 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. Furthermore, this new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  10. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins

    DOE PAGES

    La Bauve, Elisa; Vernon, Briana C.; Ye, Dongmei; ...

    2016-07-15

    Here, we describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH*u and ΔG*u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. ΔH*u is determined from the Arrhenius equation whereas ΔG*u is determined by fitting the data to a modelmore » based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20 ± 3 kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8 ± 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. Furthermore, this new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  11. Exercise-induced changes in blood minerals, associated proteins and hormones in women athletes.

    PubMed

    Deuster, P A; Kyle, S B; Singh, A; Moser, P B; Bernier, L L; Yu-Yahiro, J A; Schoomaker, E B

    1991-12-01

    The acute effects of prolonged exercise on the body's distribution of trace minerals in women athletes has not been examined. To this end, plasma concentrations of zinc, copper, and iron; erythrocyte zinc (EZn) and copper (ECu); and the associated proteins, ceruloplasmin and transferrin were measured in 38 highly trained women runners under resting conditions and again after running a competitive 26.2 mile marathon. The hormones, cortisol (C), estradiol (E2), prolactin (Prl), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were also measured because of reported effects of hormones on trace mineral distribution. Menstrual status was assessed by questionnaire: 8 women were in the follicular phase, 13 in mid-cycle, 8 in the luteal phase and 9 were amenorrheic (AM). Significant post-race increases were noted for all plasma minerals, associated proteins, and the hormones C and Prl, whereas EZn decreased. No significant changes in ECu, E2, FSH or LH were noted. Menstrual status in terms of cycle phase or amenorrhea did not appear to modify the response. Exercise-induced changes in minerals may reflect release from other tissues and/or changes in the concentration of associated proteins. Whether these changes serve adaptive and/or specific functions during exercise is unknown.

  12. Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis.

    PubMed

    Sands, Scott A; Williams, Rachel; Marshall, Sylvester; LeVine, Steven M

    2014-10-17

    Nitration of proteins, which is thought to be mediated by peroxynitrite, is a mechanism of tissue damage in multiple sclerosis (MS). However, protein nitration can also be catalyzed by iron, heme or heme-associated molecules independent of peroxynitrite. Since microhemorrhages and perivascular iron deposits are present in the CNS of MS patients, we sought to determine if iron is associated with protein nitration. A cerebral model of experimental autoimmune encephalomyelitis (cEAE) was utilized since this model has been shown to have perivascular iron deposits similar to those present in MS. Histochemical staining for iron was used together with immunohistochemistry for nitrotyrosine, eNOS, or iNOS on cerebral sections. Leakage of the blood-brain barrier (BBB) was studied by albumin immunohistochemistry. Iron deposits were colocalized with nitrotyrosine staining around vessels in cEAE mice while control animals revealed minimal staining. This finding supports the likelihood that nitrotyrosine formation was catalyzed by iron or iron containing molecules. Examples of iron deposits were also observed in association with eNOS and iNOS, which could be one source of substrates for this reaction. Extravasation of albumin was present in cEAE mice, but not in control animals. Extravasated albumin may act to limit tissue injury by binding iron and/or heme as well as being a target of nitration, but the protection is incomplete. In summary, iron-catalyzed nitration of proteins is a likely mechanism of tissue damage in MS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Higher Maternal Dietary Protein Intake Is Associated with a Higher Risk of Gestational Diabetes Mellitus in a Multiethnic Asian Cohort.

    PubMed

    Pang, Wei Wei; Colega, Marjorelee; Cai, Shirong; Chan, Yiong Huak; Padmapriya, Natarajan; Chen, Ling-Wei; Soh, Shu-E; Han, Wee Meng; Tan, Kok Hian; Lee, Yung Seng; Saw, Seang-Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; van Dam, Rob M; Chong, Mary Ff

    2017-04-01

    Background: Dietary protein may affect glucose metabolism through several mechanisms, but results from studies on dietary protein intake and risk of gestational diabetes mellitus (GDM) have been inconsistent. Objective: We examined the cross-sectional associations of dietary protein intake from different food sources during pregnancy with the risk of GDM in a multiethnic Asian population. Methods: We included 980 participants with singleton pregnancies from the Growing Up in Singapore Toward healthy Outcomes (GUSTO) cohort. Protein intake was ascertained from 24-h dietary recall and 3-d food diaries at 26-28 wk gestation. GDM was defined as fasting glucose ≥7.0 mmol/L and/or 2-h postload glucose ≥7.8 mmol/L at 26-28 wk gestation. We evaluated the association of dietary protein intake with GDM risk by substituting carbohydrate with protein in an isocaloric model with the use of multivariable logistic regression analysis. Results: The prevalence of GDM was 17.9% among our participants. After adjustment for potential confounders, a higher total dietary protein intake was associated with a higher risk of GDM; the OR comparing the highest with the lowest quartile of intake was 2.15 (95% CI: 1.27, 3.62; P -trend = 0.016). Higher intake levels of both animal protein (OR: 2.87; 95% CI: 1.58, 5.20; P -trend = 0.001) and vegetable protein (OR: 1.78; 95% CI: 0.99, 3.20; P -trend = 0.009) were associated with a higher risk of GDM. Among the animal protein sources, higher intake levels of seafood protein (OR: 2.17; 95% CI: 1.26, 3.72; P -trend = 0.023) and dairy protein (OR: 1.87; 95% CI: 1.11, 3.15; P -trend = 0.017) were significantly associated with a higher GDM risk. Conclusion: Higher intake levels of both animal and vegetable protein were associated with a higher risk of GDM in Asian women. This trial was registered at clinicaltrials.gov as NCT01174875. © 2017 American Society for Nutrition.

  14. The Ezrin Metastatic Phenotype Is Associated with the Initiation of Protein Translation1

    PubMed Central

    Briggs, Joseph W; Ren, Ling; Nguyen, Rachel; Chakrabarti, Kristi; Cassavaugh, Jessica; Rahim, Said; Bulut, Gulay; Zhou, Ming; Veenstra, Timothy D; Chen, Qingrong; Wei, Jun S; Khan, Javed; Uren, Aykut; Khanna, Chand

    2012-01-01

    We previously associated the cytoskeleton linker protein, Ezrin, with the metastatic phenotype of pediatric sarcomas, including osteosarcoma and rhabdomyosarcoma. These studies have suggested that Ezrin contributes to the survival of cancer cells after their arrival at secondary metastatic locations. To better understand this role in metastasis, we undertook two noncandidate analyses of Ezrin function including a microarray subtraction of high-and low-Ezrin-expressing cells and a proteomic approach to identify proteins that bound the N-terminus of Ezrin in tumor lysates. Functional analyses of these data led to a novel and unifying hypothesis that Ezrin contributes to the efficiency of metastasis through regulation of protein translation. In support of this hypothesis, we found Ezrin to be part of the ribonucleoprotein complex to facilitate the expression of complex messenger RNA in cells and to bind with poly A binding protein 1 (PABP1; PABPC1). The relevance of these findings was supported by our identification of Ezrin and components of the translational machinery in pseudopodia of highly metastatic cells during the process of cell invasion. Finally, two small molecule inhibitors recently shown to inhibit the Ezrin metastatic phenotype disrupted the Ezrin/PABP1 association. Taken together, these results provide a novel mechanistic basis by which Ezrin may contribute to metastasis. PMID:22577345

  15. High protein intake is associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study

    PubMed Central

    2013-01-01

    Background Protein intake has been inversely associated with frailty. However, no study has examined the effect of the difference of protein sources (animal or plant) or the amino acid composing the protein on frailty. Therefore, we examined the association of protein and amino acid intakes with frailty among elderly Japanese women. Methods A total of 2108 grandmothers or acquaintances of dietetic students aged 65 years and older participated in this cross-sectional multicenter study, which was conducted in 85 dietetic schools in 35 prefectures of Japan. Intakes of total, animal, and plant protein and eight selected amino acids were estimated from a validated brief-type self-administered diet history questionnaire and amino acid composition database. Frailty was defined as the presence of three or more of the following four components: slowness and weakness (two points), exhaustion, low physical activity, and unintentional weight loss. Results The number of subjects with frailty was 481 (23%). Adjusted ORs (95% CI) for frailty in the first, second, third, fourth, and fifth quintiles of total protein intake were 1.00 (reference), 1.02 (0.72, 1.45), 0.64 (0.45, 0.93), 0.62 (0.43, 0.90), and 0.66 (0.46, 0.96), respectively (P for trend = 0.001). Subjects categorized to the third, fourth, and fifth quintiles of total protein intake (>69.8 g/d) showed significantly lower ORs than those to the first quintile (all P <0.03). The intakes of animal and plant protein and all selected amino acids were also inversely associated with frailty (P for trend <0.04), with the multivariate adjusted OR in the highest compared to the lowest quintile of 0.73 for animal protein and 0.66 for plant protein, and 0.67-0.74 for amino acids, albeit that the ORs for these dietary variables were less marked than those for total protein. Conclusions Total protein intake was significantly inversely associated with frailty in elderly Japanese women. The association of total protein with

  16. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  17. Ultrastructural localization of hair keratins, high sulfur keratin-associated proteins and sulfhydryl oxidase in the human hair.

    PubMed

    Alibardi, Lorenzo

    2017-03-01

    Hardening of the human hair shaft during cornification results from the bonding of keratins and keratin-associated proteins. In situ hybridization and light immunocytochemical studies have shown the general distribution of different keratins and some associated proteins but not determined their ultrastructural localization. I report here the localization of hair keratins, two high-sulfur keratin-associated proteins and sulfhydryl oxidase has been studied under the transmission electron microscope in the cornification zone of the human hair. The ultrastructural study on keratin distribution in general confirms previous light microscopic studies. Sulfur-rich KAP1 is mainly cortical but the labeling disappears in fully cornified cortical cells while a diffuse labeling is also present in differentiating cuticle cells. Sulfur-rich K26 immunolocalization is only detected in the exocuticle and endocuticle. Sparse labeling for sulfhydryl oxidase occurs in differentiating cortical cells but is weak and uneven in cuticle cells and absent in medulla and inner root sheath. Labeling disappears in the upper fully cornified cortex and cuticle. The observations indicate that sulfhydryl oxidase and keratin associated proteins are initially produced in the cytoplasm among keratin bundles accumulating in cortical and cuticle cells but these proteins undergo changes during the following cornification that alter the epitopes tagged by the antibodies.

  18. Cross-sectional population associations between detailed adiposity measures and C-reactive protein levels at age 6 years: the Generation R Study.

    PubMed

    Toemen, L; Gishti, O; Vogelezang, S; Gaillard, R; Hofman, A; Franco, O H; Felix, J F; Jaddoe, V W V

    2015-07-01

    High body mass index is associated with increased C-reactive protein levels in childhood and adulthood. Little is known about the associations of detailed adiposity measures with C-reactive protein levels in childhood. We examined the associations of general and abdominal adiposity measures with C-reactive protein levels at school age. To gain insight into the direction of causality, we used genetic risk scores based on known genetic variants in adults as proxies for child adiposity measures and C-reactive protein levels. Within a population-based cohort study among 4338 children at the median age of 6.2 years, we measured body mass index, fat mass percentage, android/gynoid fat mass ratio and preperitoneal abdominal fat mass. We also measured C-reactive protein blood levels and defined increased levels as ⩾3.0 mg l(-1). Single-nucleotide polymorphisms (SNPs) for the weighted genetic risk scores were extracted from large genome-wide association studies on adult body mass index, waist-hip ratio and C-reactive protein levels. All fat mass measures were associated with increased C-reactive protein levels, even after adjusting for multiple confounders. Fat mass percentage was most strongly associated with increased C-reactive protein levels (odds ratio 1.46 (95% confidence interval 1.30-1.65) per increase standard deviation scores in fat mass percentage). The association was independent of body mass index. The genetic risk score based on adult body mass index SNPs, but not adult waist-hip ratio SNPs, tended to be associated with increased C-reactive protein levels at school age. The genetic risk score based on adult C-reactive protein level SNPs was not associated with adiposity measures at school age. Our results suggest that higher general and abdominal fat mass may lead to increased C-reactive protein levels at school age. Further studies are needed to replicate these results and explore the causality and long-term consequences.

  19. G-protein control of the ribosome-associated stress response protein SpoT.

    PubMed

    Jiang, Mengxi; Sullivan, Susan M; Wout, Patrice K; Maddock, Janine R

    2007-09-01

    The bacterial response to stress is controlled by two proteins, RelA and SpoT. RelA generates the alarmone (p)ppGpp under amino acid starvation, whereas SpoT is responsible for (p)ppGpp hydrolysis and for synthesis of (p)ppGpp under a variety of cellular stress conditions. It is widely accepted that RelA is associated with translating ribosomes. The cellular location of SpoT, however, has been controversial. SpoT physically interacts with the ribosome-associated GTPase CgtA, and we show here that, under an optimized salt condition, SpoT is also associated with a pre-50S particle. Analysis of spoT and cgtA mutants and strains overexpressing CgtA suggests that the ribosome associations of SpoT and CgtA are mutually independent. The steady-state level of (p)ppGpp is increased in a cgtA mutant, but the accumulation of (p)ppGpp during amino acid starvation is not affected, providing strong evidence that CgtA regulates the (p)ppGpp level during exponential growth but not during the stringent response. We show that CgtA is not associated with pre-50S particles during amino acid starvation, indicating that under these conditions in which (p)ppGpp accumulates, CgtA is not bound either to the pre-50S particle or to SpoT. We propose that, in addition to its role as a 50S assembly factor, CgtA promotes SpoT (p)ppGpp degradation activity on the ribosome and that the loss of CgtA from the ribosome is necessary for maximal (p)ppGpp accumulation under stress conditions. Intriguingly, we found that in the absence of spoT and relA, cgtA is still an essential gene in Escherichia coli.

  20. Immunohistochemical detection of tumor suppressor gene p53 protein in feline injection site-associated sarcomas.

    PubMed

    Nambiar, P R; Jackson, M L; Ellis, J A; Chelack, B J; Kidney, B A; Haines, D M

    2001-03-01

    Sarcomas associated with injection sites are a rare but important problem in cats. Immunohistochemical detection of p53 protein may correlate to mutation of the p53 tumor suppressor gene, a gene known to be important in oncogenesis. The expression of nuclear p53 protein in 40 feline injection site-assocated sarcomas was examined by immunohistochemical staining. In 42.5% (17/40), tumor cell nuclei were stained darkly; in 20% (8/40), tumor cell nuclei were stained palely; and in 37.5% (15/40), tumor cell nuclei were unstained. Immunohistochemical detection of p53 protein in a proportion of injection site-associated sarcomas suggests that mutation of the p53 gene may play a role in the pathogenesis of these tumors.

  1. Elevated tumor and serum levels of the hypoxia-associated protein osteopontin are associated with prognosis for soft tissue sarcoma patients.

    PubMed

    Bache, Matthias; Kappler, Matthias; Wichmann, Henri; Rot, Swetlana; Hahnel, Antje; Greither, Thomas; Said, Harun M; Kotzsch, Matthias; Würl, Peter; Taubert, Helge; Vordermark, Dirk

    2010-04-08

    Osteopontin (OPN) overexpression is correlated with a poor prognosis for tumor patients. However, only a few studies investigated the prognostic impact of expression of OPN in soft tissue sarcomas (STS) yet. This study is based on tumor and serum samples from 93 adult STS patients. We investigated OPN protein levels in serum (n = 86) and tumor tissue (n = 80) by ELISA and OPN mRNA levels in tumor tissue (n = 68) by quantitative real-time PCR. No correlation was found between OPN levels in serum and tumor tissue. Moreover, an elevated OPN protein level in the serum was significantly associated with clinical parameters such as higher stage (p = 0.004), higher grade (p = 0.003), subtype (p = 0.002) and larger tumor size (p = 0.03). OPN protein levels in the tumor tissue were associated with higher stage (p = 0.06), higher grade (p = 0.003), subtype (p = 0.07) and an increased rate of relapse (p = 0.02). In addition, using a Cox's proportional hazards regression model, we found that an elevated OPN protein level in the serum and tumor tissue extracts is a significant negative prognostic factor for patients with STS. The relative risks of tumor-related death were 2.2 (p < 0.05) and 3.7 (p = 0.01), respectively. Our data suggest OPN protein in serum as well as in tumor tissue extracts is an important prognostic factor for soft tissue sarcoma patients.

  2. Higher Maternal Protein Intake during Pregnancy Is Associated with Lower Cord Blood Concentrations of Insulin-like Growth Factor (IGF)-II, IGF Binding Protein 3, and Insulin, but Not IGF-I, in a Cohort of Women with High Protein Intake.

    PubMed

    Switkowski, Karen M; Jacques, Paul F; Must, Aviva; Hivert, Marie-France; Fleisch, Abby; Gillman, Matthew W; Rifas-Shiman, Sheryl; Oken, Emily

    2017-07-01

    Background: Prenatal exposure to dietary protein may program growth-regulating hormones, consequently influencing early-life growth patterns and later risk of associated chronic diseases. The insulin-like growth factor (IGF) axis is of particular interest in this context given its influence on pre- and postnatal growth and its sensitivity to the early nutritional environment. Objective: Our objective was to examine associations of maternal protein intake during pregnancy with cord blood concentrations of IGF-I, IGF-II, IGF binding protein-3 (IGFBP-3), and insulin. Methods: We studied 938 mother-child pairs from early pregnancy through delivery in the Project Viva cohort. Using multivariable linear regression models adjusted for maternal race/ethnicity, education, income, smoking, parity, height, and gestational weight gain and for child sex, we examined associations of second-trimester maternal protein intake [grams per kilogram (weight before pregnancy) per day], as reported on a food frequency questionnaire, with IGF-I, IGF-II, IGFBP-3, and insulin concentrations in cord blood. We also examined how these associations may differ by child sex and parity. Results: Mothers were predominantly white (71%), college-educated (64%), and nonsmokers (67%). Mean ± SD protein intake was 1.35 ± 0.35 g ⋅ kg -1 ⋅ d -1 Each 1-SD increment in second-trimester protein intake corresponded to a change of -0.50 ng/mL (95% CI: -2.26, 1.26 ng/mL) in IGF-I and -0.91 μU/mL (95% CI: -1.45, -0.37 μU/mL) in insulin. Child sex and parity modified associations of maternal protein intake with IGF-II and IGFBP-3: protein intake was inversely associated with IGF-II in girls ( P -interaction = 0.04) and multiparous mothers ( P -interaction = 0.05), and with IGFBP-3 in multiparous mothers ( P -interaction = 0.04). Conclusions: In a cohort of pregnant women with relatively high mean protein intakes, higher intake was associated with lower concentrations of growth-promoting hormones in cord

  3. The ubiquitin-related protein PLIC-1 regulates heterotrimeric G protein function through association with Gβγ

    PubMed Central

    N'Diaye, Elsa-Noah; Brown, Eric J.

    2003-01-01

    PLIC-1, a newly described ubiquitin-related protein, inhibited both Jurkat migration toward SDF-1α and A431 wound healing, but the closely related PLIC-2 did not. PLIC-1 prevented the SDF-1α–induced activation of phospholipase C, decreased ligand-induced internalization of SDF-1α receptor CXCR4 and inhibited chemotaxis signaled by a transfected Gi-coupled receptor. However, PLIC-1 had no effect on Gs-mediated adenylyl cyclase activation, and inhibited only the Gβγ-dependent component of Gq-initiated increase in [Ca2+]i, which is consistent with selective inhibition of Gβγ function. PLIC-1 colocalized with G proteins in lamellae and pseudopods, and precipitated Gβγ in pull downs. Interaction with Gβγ did not require PLIC-1's ubiquitin-like or ubiquitin-associated domains, and proteasome inhibition had no effect on SDF-1α activation of phospholipase C, indicating that PLIC-1's inhibition of Gβγ did not result from effects on proteasome function. Thus, PLIC-1 inhibits Gi signaling by direct association with Gβγ; because it also interacts with CD47, a modulator of integrin function, it likely has a role integrating adhesion and signaling components of cell migration. PMID:14662753

  4. Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis.

    PubMed

    Vinay Kumar, Chundi; Kumar, K M; Swetha, Rayapadi; Ramaiah, Sudha; Anbarasu, Anand

    2014-08-07

    Mutations in the gene encoding vesicle-associated membrane protein (VAPB) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The VAPB gene is mapped to chromosome number 20 and can be found at cytogenetic location 20q13.33 of the chromosome. VAPB is seen to play a significant role in the unfolded protein response (UPR), which is a process that suppresses the accumulation of unfolded proteins in the endoplasmic reticulum. Earlier studies have reported two points; which we have analyzed in our study. Firstly, the mutation P56S in the VAPB is seen to increase the stability of the protein and secondly, the mutation P56S in VAPB is seen to interrupt the functioning of the gene and loses its ability to be involved in the activation of the IRE1/XBP1 pathway which leads to ALS. With correlation on the previous research studies on the stability of this protein, we carried out Molecular dynamics (MD) simulation. We analyzed the SNP results of 17 nsSNPs obtained from dbSNP using SIFT, polyphen, I-Mutant, SNP&GO, PhDSNP and Mutpred to predict the role of nsSNPs in VAPB. MD simulation is carried out and plots for RMSD, RMSF, Rg, SASA, H-bond and PCA are obtained to check and prove the stability of the wild type and the mutant protein structure. The protein is checked for its aggregation and the results obtained show changes in the protein structure that might result in the loss of function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Unique Four-Hub Protein Cluster Associates to Glioblastoma Progression

    PubMed Central

    Simeone, Pasquale; Trerotola, Marco; Urbanella, Andrea; Lattanzio, Rossano; Ciavardelli, Domenico; Di Giuseppe, Fabrizio; Eleuterio, Enrica; Sulpizio, Marilisa; Eusebi, Vincenzo; Pession, Annalisa; Piantelli, Mauro; Alberti, Saverio

    2014-01-01

    Gliomas are the most frequent brain tumors. Among them, glioblastomas are malignant and largely resistant to available treatments. Histopathology is the gold standard for classification and grading of brain tumors. However, brain tumor heterogeneity is remarkable and histopathology procedures for glioma classification remain unsatisfactory for predicting disease course as well as response to treatment. Proteins that tightly associate with cancer differentiation and progression, can bear important prognostic information. Here, we describe the identification of protein clusters differentially expressed in high-grade versus low-grade gliomas. Tissue samples from 25 high-grade tumors, 10 low-grade tumors and 5 normal brain cortices were analyzed by 2D-PAGE and proteomic profiling by mass spectrometry. This led to identify 48 differentially expressed protein markers between tumors and normal samples. Protein clustering by multivariate analyses (PCA and PLS-DA) provided discrimination between pathological samples to an unprecedented extent, and revealed a unique network of deranged proteins. We discovered a novel glioblastoma control module centered on four major network hubs: Huntingtin, HNF4α, c-Myc and 14-3-3ζ. Immunohistochemistry, western blotting and unbiased proteome-wide meta-analysis revealed altered expression of this glioblastoma control module in human glioma samples as compared with normal controls. Moreover, the four-hub network was found to cross-talk with both p53 and EGFR pathways. In summary, the findings of this study indicate the existence of a unifying signaling module controlling glioblastoma pathogenesis and malignant progression, and suggest novel targets for development of diagnostic and therapeutic procedures. PMID:25050814

  6. Molecular cloning and expression of a chloride channel-associated protein pICln in human young red blood cells: association with actin.

    PubMed

    Schwartz, R S; Rybicki, A C; Nagel, R L

    1997-10-15

    We report the cloning and sequencing from human reticulocytes of cDNA coding for the Cl- channel-associated protein, pICln. Human reticulocyte pICln (HRpICln) cDNA encodes a protein (predicted molecular mass 26293Da) identical with human non-pigmented ciliary epithelial cell pICln. By using full-length HRpICln cDNA (approx. 1.2 kb) to probe human lymphocyte metaphase-chromosome spreads, the location of the human ICln gene was mapped to 11q13 by fluorescence in situ hybridization analysis. Polyclonal antibodies to recombinant HRpICln detected bands at approx. 43 kDa and approx. 37 kDa in both normal (AA) and sickle (SS) red blood cell (RBC) ghost membranes. In SS ghosts, and in ghosts from a patient with autoimmune haemolytic anaemia with 9.8% reticulocytes, the amount of HRpICln was increased compared with AA ghosts, suggesting that the expression or membrane assembly of HRpICln is cell age-dependent. Laser scanning confocal fluorescent microscopy immunolocalized HRpICln largely to the RBC membrane. The increased staining intensity of HRpICln in a reticulocyte-enriched AA RBC density-separated fraction is consistent with a dependence of HRpICln membrane content on cell age. HRpICln and beta-actin form stable complexes in vivo, demonstrated with the yeast two-hybrid system. Low-ionic-strength extraction of ghost membranes, which results in the extraction of the spectrin-actin cytoskeleton, also results in the extraction of HRpICln, consistent with the possibility for the association of these proteins in RBCs in vivo. The results presented here establish the presence of the Cl- channel-associated protein, pICln, in human RBCs, and raises the possibility that this protein has a role in RBC Cl- transport and volume regulation in young RBCs. Moreover the association of RBC pICln with actin offers a model in which to test interactions between RBC ion channels and the cytoskeleton.

  7. Long-term low-calorie low-protein vegan diet and endurance exercise are associated with low cardiometabolic risk.

    PubMed

    Fontana, Luigi; Meyer, Timothy E; Klein, Samuel; Holloszy, John O

    2007-06-01

    Western diets, which typically contain large amounts of energy-dense processed foods, together with a sedentary lifestyle are associated with increased cardiometabolic risk. We evaluated the long-term effects of consuming a low-calorie low-protein vegan diet or performing regular endurance exercise on cardiometabolic risk factors. In this cross-sectional study, cardiometabolic risk factors were evaluated in 21 sedentary subjects, who had been on a low-calorie low-protein raw vegan diet for 4.4 +/- 2.8 years, (mean age, 53.1 +/- 11 yrs), 21 body mass index (BMI)-matched endurance runners consuming Western diets, and 21 age- and gender-matched sedentary subjects, consuming Western diets. BMI was lower in the low-calorie low-protein vegan diet (21.3 +/- 3.1 kg/m(2)) and endurance runner (21.1 +/- 1.6 kg/m(2)) groups than in the sedentary Western diet group (26.5 +/- 2.7 kg/m(2)) (p < 0.005). Plasma concentrations of lipids, lipoproteins, glucose, insulin, C-reactive protein, blood pressure (BP), and carotid artery intima-media thickness were lower in the low-calorie low-protein vegan diet and runner groups than in the Western diet group (all p < 0.05). Both systolic and diastolic BP were lower in the low-calorie low-protein vegan diet group (104 +/- 15 and 62 +/- 11 mm Hg) than in BMI-matched endurance runners (122 +/- 13 and 72 +/- 9 mmHg) and Western diet group (132 +/- 14 and 79 +/- 8 mm Hg) (p < 0.001); BP values were directly associated with sodium intake and inversely associated with potassium and fiber intake. Long-term consumption of a low-calorie low-protein vegan diet or regular endurance exercise training is associated with low cardiometabolic risk. Moreover, our data suggest that specific components of a low-calorie low-protein vegan diet provide additional beneficial effects on blood pressure.

  8. Ligand binding induces a sharp decrease in hydrophobicity of folate binding protein assessed by 1-anilinonaphthalene-8-sulphonate which suppresses self-association of the hydrophobic apo-protein.

    PubMed

    Holm, Jan; Lawaetz, Anders J; Hansen, Steen I

    2012-08-17

    High affinity folate binding protein (FBP) regulates as a soluble protein and as a cellular receptor intracellular trafficking of folic acid, a vitamin of great importance to cell growth and division. We addressed two issues of potential importance to the biological function of FBP, a possible decrease of the surface hydrophobicity associated with the ligand-induced conformation change of FBP, and protein-inter-protein interactions involved in self-association of hydrophobic apo-FBP. The extrinsic fluorescent apolar dye 1-anilinonaphthalene-8-sulphonate (ANS) exhibited enhanced fluorescence intensity and a blueshift of emission maximum from 510-520 nm to 460-470 nm upon addition of apo-FBP indicating binding to a strongly hydrophobic environment. Neither enhancement of fluorescence nor blueshift of ANS emission maximum occurred when folate-ligated holo-FBP replaced apo-FBP. The drastic decrease in surface hydrophobicity of holo-FBP could have bearings on the biological function of FBP since changes in surface hydrophobicity have critical effects on the biological function of receptors and transport proteins. ANS interacts with exposed hydrophobic surfaces on proteins and may thereby block and prevent aggregation of proteins (chaperone-like effect). Hence, hydrophobic interactions seemed to participate in the concentration-dependent self-association of apo-FBP which was suppressed by high ANS concentrations in light scatter measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Stability, chromatin association and functional activity of mammalian pre-replication complex proteins during the cell cycle

    PubMed Central

    Okuno, Yukiko; McNairn, Adrian J.; den Elzen, Nicole; Pines, Jonathon; Gilbert, David M.

    2001-01-01

    We have examined the behavior of pre-replication complex (pre-RC) proteins in relation to key cell cycle transitions in Chinese Hamster Ovary (CHO) cells. ORC1, ORC4 and Cdc6 were stable (T1/2 >2 h) and associated with a chromatin-containing fraction throughout the cell cycle. Green fluorescent protein-tagged ORC1 associated with chromatin throughout mitosis in living cells and co-localized with ORC4 in metaphase spreads. Association of Mcm proteins with chromatin took place during telophase, ∼30 min after the destruction of geminin and cyclins A and B, and was coincident with the licensing of chromatin to replicate in geminin-supplemented Xenopus egg extracts. Neither Mcm recruitment nor licensing required protein synthesis throughout mitosis. Moreover, licensing could be uncoupled from origin specification in geminin-supplemented extracts; site-specific initiation within the dihydrofolate reductase locus required nuclei from cells that had passed through the origin decision point (ODP). These results demonstrate that mammalian pre-RC assembly takes place during telophase, mediated by post-translational modifications of pre-existing proteins, and is not sufficient to select specific origin sites. A subsequent, as yet undefined, step selects which pre-RCs will function as replication origins. PMID:11483529

  10. Identification of Eimeria acervulina conoid antigen using chicken monoclonal antibody.

    PubMed

    Matsubayashi, Makoto; Minoura, Chisa; Kimura, Shintaro; Tani, Hiroyuki; Furuya, Masaru; Lillehoj, Hyun S; Matsuda, Haruo; Takenaka, Shigeo; Hatta, Takeshi; Tsuji, Naotoshi; Sasai, Kazumi

    2016-11-01

    In the poultry industry, Eimeria spp. is one of the important pathogens which cause significant economic losses. We have previously generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina and with cross-reactive among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium spp. Furthermore, the protein of Cryptosporidium parvum recognized by the 6D-12-G10 has been identified as elongation factor-1α (EF-1α). In the present study, to identify the target molecule of E. acervulina by the mAb, we performed two-dimensional Western blotting analysis. Finally, we found two positive molecules which are identified as EF-1α and a related protein. Our previous finding using C. parvum and the results in this study suggest that EF-1α could be associated with the invasion facilitated by the cytoskeleton at the apical region of zoites.

  11. Longitudinal changes in C-reactive protein, proform of eosinophil major basic protein, and pregnancy-associated plasma protein-A during weight changes in obese children.

    PubMed

    Lausten-Thomsen, Ulrik; Gamborg, Michael; Bøjsøe, Christine; Hedley, Paula L; Hagen, Christian Munch; Christiansen, Michael; Holm, Jens-Christian

    2015-03-01

    Childhood obesity is associated with several complications, including cardiovascular comorbidity. Several biomarkers, such as high-sensitive C-reactive protein (hs-CRP), proform of eosinophil major basic protein (Pro-MBP) and pregnancy associated plasma protein-A (PAPP-A), have equally been linked to increased cardiovascular susceptibility. This study investigates these biomarkers during weight loss and regain in obese children. A longitudinal study during a 12-week weight loss program with a 28 months follow-up was conducted. Anthropometrics and plasma concentrations of hs-CRP, Pro-MBP, and PAPP-A were measured at baseline; at days 14, 33 and 82 during weight loss; and at months 10, 16, and 28 during follow-up. Fifty-three boys and 62 girls aged 8-15 years with a median body mass index (BMI) standard deviation score (SDS) at baseline of 2.78 (boys), and 2.70 (girls) were included. Ninety children completed the weight loss program and 68 children entered the follow-up program. Pro-MBP and PAPP-A, but not hs-CRP, exhibited individual-specific levels (tracking) during weight loss and regain. The PAPP-A/Pro-MBP correlation was strong, whereas the hs-CRP/PAPP-A correlation was weak during weight fluctuations. Hs-CRP changes reflect weight changes. PAPP-A and Pro-MBP exhibited tracking during weight perturbations and may contribute as early risk markers of cardiovascular susceptibility.

  12. Nance-Horan syndrome protein, NHS, associates with epithelial cell junctions.

    PubMed

    Sharma, Shiwani; Ang, Sharyn L; Shaw, Marie; Mackey, David A; Gécz, Jozef; McAvoy, John W; Craig, Jamie E

    2006-06-15

    Nance-Horan syndrome, characterized by congenital cataracts, craniofacial, dental abnormalities and mental disturbances, is an X-linked disorder with significant phenotypic heterogeneity. Affected individuals have mutations in the NHS (Nance-Horan syndrome) gene typically resulting in premature truncation of the protein. This report underlines the complexity of the regulation of the NHS gene that transcribes several isoforms. We demonstrate the differential expression of the two NHS isoforms, NHS-A and NHS-1A, and differences in the subcellular localization of the proteins encoded by these isoforms. This may in part explain the pleiotropic features of the syndrome. We show that the endogenous and exogenous NHS-A isoform localizes to the cell membrane of mammalian cells in a cell-type-dependent manner and that it co-localizes with the tight junction (TJ) protein ZO-1 in the apical aspect of cell membrane in epithelial cells. We also show that the NHS-1A isoform is a cytoplasmic protein. In the developing mammalian lens, we found continuous expression of NHS that became restricted to the lens epithelium in pre- and postnatal lens. Consistent with the in vitro findings, the NHS-A isoform associates with the apical cell membrane in the lens epithelium. This study suggests that disturbances in intercellular contacts underlie cataractogenesis in the Nance-Horan syndrome. NHS is the first gene localized at TJs that has been implicated in congenital cataracts.

  13. Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association.

    PubMed

    Liu, Tzu-Yin; Chou, Wen-Chun; Chen, Wei-Yuan; Chu, Ching-Yi; Dai, Chen-Yi; Wu, Pei-Yu

    2018-05-01

    Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the β-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  14. Association of REL Polymorphism with Cow's Milk Proteins Allergy in Pediatric Algerian Population.

    PubMed

    Rahmoun, Nesrine; El Mecherfi, Kamel Eddine; Bouchetara, Assia; Lardjem Hetraf, Sara; Dahmani Amira, Chahinez; Adda Neggaz, Leila; Boudjema, Abdallah; Zemani-Fodil, Faouzia; Kheroua, Omar

    2018-02-01

    Cow's milk proteins allergy (CMPA) pathogenesis involves complex immunological mechanisms with the participation of several cells and molecules involved in food allergy. The association of polymorphisms in the interleukin 4, Forkhead box P3 and the avian reticuloendotheliosis genes was investigated in an infant population with CMPA of Western Algeria. We obtained DNA and clinical data from milk allergic subjects during active phase and from a group of non-atopic control subjects. Our findings showed that the allele G of the cRel gene intronic polymorphism at +7883 positions was significantly higher among cow's milk proteins allergic patients compared to control subjects. The results of this study suggest a possible association of CMPA with cRel G+7883T polymorphism.

  15. Identification of a protein associated with the activity of cytokine-induced killer cells

    PubMed Central

    Cao, Jingsong; Chen, Cong; Gao, Yongqiang; Hu, Li; Liang, Yu; Xiao, Jianhua

    2017-01-01

    Cytokine-induced killer cells (CIKs) adoptive immunotherapy for efficient antitumor ability is used clinically, but details regarding the proteins associated with CIK activity remain unclear. In the current study, the cytotoxicity of CIKs on hepatoma was identified to be significantly downregulated by 1.61-fold following gentamincin treatment. Further research revealed that a differentially expressed protein (P43) was significantly downregulated by 1.22-fold using one-dimensional gel electrophoresis analysis. Of these, the P43 was identified as human haptoglobin using liquid chromatography-mass spectrometry. Western blotting demonstrated that the haptoglobin specifically reacted with rabbit anti-human-haptoglobin. Furthermore, western blotting results verified that the haptoglobin was significantly downregulated by 1.17-fold compared with the control group. In addition, the expression of haptoglobin mRNA was significantly downregulated by 1.73-fold following gentamincin treatment. Taken together, the results of the present study demonstrated that the expression of haptoglobin protein was associated with the activity of CIKs, and the results will be beneficial to the further investigation of CIK activity-enhancement mechanism. PMID:29163711

  16. A stationary-phase protein of Escherichia coli that affects the mode of association between the trp repressor protein and operator-bearing DNA.

    PubMed

    Yang, W; Ni, L; Somerville, R L

    1993-06-15

    Highly purified preparations of trp repressor (TrpR) protein derived from Escherichia coli strains that were engineered to overexpress this material were found to contain another protein, of 21 kDa. The second protein, designated WrbA [for tryptophan (W) repressor-binding protein] remained associated with its namesake through several sequential protein fractionation steps. The N-terminal amino acid sequence of the WrbA protein guided the design of two degenerate oligonucleotides that were used as probes in the cloning of the wrbA gene (198 codons). The WrbA protein, in purified form, was found by several criteria to enhance the formation and/or stability of noncovalent complexes between TrpR holorepressor and its primary operator targets. The formation of an operator-holorepressor-WrbA ternary complex was demonstrated by gel mobility-shift analysis. The WrbA protein alone does not interact with the trp operator. During the stationary phase, cells deficient in the WrbA protein were less efficient than wild type in their ability to repress the trp promoter. It is proposed that the WrbA protein functions as an accessory element in blocking TrpR-specific transcriptional processes that might be physiologically disadvantageous in the stationary phase of the bacterial life cycle.

  17. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.

    PubMed

    Su, Min-Gang; Weng, Julia Tzu-Ya; Hsu, Justin Bo-Kai; Huang, Kai-Yao; Chi, Yu-Hsiang; Lee, Tzong-Yi

    2017-12-21

    Protein post-translational modification (PTM) plays an essential role in various cellular processes that modulates the physical and chemical properties, folding, conformation, stability and activity of proteins, thereby modifying the functions of proteins. The improved throughput of mass spectrometry (MS) or MS/MS technology has not only brought about a surge in proteome-scale studies, but also contributed to a fruitful list of identified PTMs. However, with the increase in the number of identified PTMs, perhaps the more crucial question is what kind of biological mechanisms these PTMs are involved in. This is particularly important in light of the fact that most protein-based pharmaceuticals deliver their therapeutic effects through some form of PTM. Yet, our understanding is still limited with respect to the local effects and frequency of PTM sites near pharmaceutical binding sites and the interfaces of protein-protein interaction (PPI). Understanding PTM's function is critical to our ability to manipulate the biological mechanisms of protein. In this study, to understand the regulation of protein functions by PTMs, we mapped 25,835 PTM sites to proteins with available three-dimensional (3D) structural information in the Protein Data Bank (PDB), including 1785 modified PTM sites on the 3D structure. Based on the acquired structural PTM sites, we proposed to use five properties for the structural characterization of PTM substrate sites: the spatial composition of amino acids, residues and side-chain orientations surrounding the PTM substrate sites, as well as the secondary structure, division of acidity and alkaline residues, and solvent-accessible surface area. We further mapped the structural PTM sites to the structures of drug binding and PPI sites, identifying a total of 1917 PTM sites that may affect PPI and 3951 PTM sites associated with drug-target binding. An integrated analytical platform (CruxPTM), with a variety of methods and online molecular docking

  18. Systematic Identification and Characterization of Novel Human Skin-Associated Genes Encoding Membrane and Secreted Proteins

    PubMed Central

    Buhren, Bettina Alexandra; Martinez, Cynthia; Schrumpf, Holger; Gasis, Marcia; Grether-Beck, Susanne; Krutmann, Jean

    2013-01-01

    Through bioinformatics analyses of a human gene expression database representing 105 different tissues and cell types, we identified 687 skin-associated genes that are selectively and highly expressed in human skin. Over 50 of these represent uncharacterized genes not previously associated with skin and include a subset that encode novel secreted and plasma membrane proteins. The high levels of skin-associated expression for eight of these novel therapeutic target genes were confirmed by semi-quantitative real time PCR, western blot and immunohistochemical analyses of normal skin and skin-derived cell lines. Four of these are expressed specifically by epidermal keratinocytes; two that encode G-protein-coupled receptors (GPR87 and GPR115), and two that encode secreted proteins (WFDC5 and SERPINB7). Further analyses using cytokine-activated and terminally differentiated human primary keratinocytes or a panel of common inflammatory, autoimmune or malignant skin diseases revealed distinct patterns of regulation as well as disease associations that point to important roles in cutaneous homeostasis and disease. Some of these novel uncharacterized skin genes may represent potential biomarkers or drug targets for the development of future diagnostics or therapeutics. PMID:23840300

  19. PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity.

    PubMed

    Feng, Baomin; Ma, Shisong; Chen, Sixue; Zhu, Ning; Zhang, Shuxin; Yu, Bin; Yu, Yu; Le, Brandon; Chen, Xuemei; Dinesh-Kumar, Savithramma P; Shan, Libo; He, Ping

    2016-12-01

    Protein poly(ADP-ribosyl)ation (PARylation) primarily catalyzed by poly(ADP-ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead-associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non-adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively. © 2016 The Authors.

  20. Cloning, expression, and purification of the virulence-associated protein D from Xylella fastidiosa.

    PubMed

    Catani, Cleide Ferreira; Azzoni, Adriano Rodrigues; Paula, Débora Pires; Tada, Susely Ferraz Siqueira; Rosselli, Luciana Kauer; de Souza, Anete Pereira; Yano, Tomomasa

    2004-10-01

    In this study, an efficient expression system, based on the pET32Xa/LIC vector, for producing a Xylella fastidiosa virulence-associated protein D, found to have a strong similarity to Riemerella anatipestifer and Actinobacillus actinomycetencomitans VapD protein, is presented. The protein has a molecular mass of 17.637 Da and a calculated pI of 5.49. The selected XFa0052 gene was cloned in the pET32Xa/LIC vector and the plasmid was transformed into Escherichia coli BL21 (DE3) strain at 37 degrees C, with an induction time of 2 h and 1 mM IPTG concentration. The protein present in the soluble fraction was purified by immobilized metal affinity chromatography (IMAC), and had its identity determined by mass spectrometry (MALDI-TOF) and N-terminal sequencing. The purified protein was found as a single band on SDS-PAGE and its correct folding was verified by circular dichroism spectroscopy.

  1. Facilitated Protein Association via Engineered Target Search Pathways Visualized by Paramagnetic NMR Spectroscopy.

    PubMed

    An, So Young; Kim, Eun-Hee; Suh, Jeong-Yong

    2018-06-05

    Proteins assemble to form functional complexes via the progressive evolution of nonspecific complexes formed by transient encounters. This target search process generally involves multiple routes that lead the initial encounters to the final complex. In this study, we have employed NMR paramagnetic relaxation enhancement to visualize the encounter complexes between histidine-containing phosphocarrier protein and the N-terminal domain of enzyme I and demonstrate that protein association can be significantly enhanced by engineering on-pathways. Specifically, mutations in surface charges away from the binding interface can elicit new on-pathway encounter complexes, increasing their binding affinity by an order of magnitude. The structure of these encounter complexes indicates that such on-pathways extend the built-in target search process of the native protein complex. Furthermore, blocking on-pathways by countering mutations reverts their binding affinity. Our study thus illustrates that protein interactions can be engineered by rewiring the target search process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A constraint logic programming approach to associate 1D and 3D structural components for large protein complexes.

    PubMed

    Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang

    2007-01-01

    The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.

  3. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  4. Sex Difference in the Association Between Protein Intake and Frailty: Assessed Using the Kihon Checklist Indexes Among Older Adults.

    PubMed

    Nanri, Hinako; Yamada, Yosuke; Yoshida, Tsukasa; Okabe, Yuki; Nozawa, Yoshizu; Itoi, Aya; Yoshimura, Eiichi; Watanabe, Yuya; Yamaguchi, Miwa; Yokoyama, Keiichi; Ishikawa-Takata, Kazuko; Kobayashi, Hisamine; Kimura, Misaka

    2018-05-31

    Dietary protein intake is inversely associated with physical frailty risk. However, it is unknown whether an association exists between dietary protein intake and comprehensive frailty. To evaluate the association between protein intake and comprehensive frailty in older Japanese adults. This cross-sectional study included 5638 Japanese participants (2707 men and 2931 women) aged ≥65 years from Kameoka City, Kyoto, Japan. Dietary intake was estimated using a validated self-administered food frequency questionnaire. Comprehensive frailty was assessed using a 25-item Kihon Checklist (KCL), which comprised instrumental activities of daily living, mobility disability, malnutrition, oral or eating function, socialization and housebound, cognitive function, and depression domains. A KCL score of 4 to 6 was defined as prefrailty, and ≥7 as frailty. In women, but not in men, protein intake showed a lower prevalence for prefrailty (Q1-Q4, 40.2%, 34.3%, 34.3%, and 36.0%). Higher protein intake was associated with lower prevalence of frailty both in men (32.5%, 28.4%, 28.3%, and 27.3%) and women (35.7%, 31.4%, 27.6%, and 28.2%). Moreover, higher dietary protein intake decreased the odds ratio (OR) for frailty after adjustment for potential confounding factors in both men (OR for highest vs lowest quartile, 0.62; 95% CI, 0.43-0.89; P for trend = 0.016) and women (OR 0.64; 95% CI, 0.45-0.91; P for trend = 0.017). The higher dietary protein intake may be inversely associated with the prevalence of comprehensive frailty in Japanese men and women. Future studies are needed to examine associations of dietary protein intake within KCL domains. Copyright © 2018 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  5. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    PubMed Central

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in

  6. A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells.

    PubMed

    Yang, H Y; Lieska, N; Goldman, A E; Goldman, R D

    1985-02-01

    Native intermediate filament (IF) preparations from the baby hamster kidney fibroblastic cell line (BHK-21) contain a number of minor polypeptides in addition to the IF structural subunit proteins desmin, a 54,000-mol-wt protein, and vimentin, a 55,000-mol-wt protein. A monoclonal antibody was produced that reached exclusively with a high molecular weight (300,000) protein representative of these minor proteins. Immunological methods and comparative peptide mapping techniques demonstrated that the 300,000-mol-wt species was biochemically distinct from the 54,000- and 55,000-mol-wt proteins. Double-label immunofluorescence observations on spread BHK cells using this monoclonal antibody and a rabbit polyclonal antibody directed against the 54,000- and 55,000-mol-wt proteins showed that the 300,000-mol-wt species co-distributed with IF in a fibrous pattern. In cells treated with colchicine or those in the early stages of spreading, double-labeling with these antibodies revealed the co-existence of the respective antigens in the juxtanuclear cap of IF that is characteristic of cells in these physiological states. After colchicine removal, or in the late stages of cell spreading, the 300,00-mol-wt species and the IF subunits redistributed to their normal, highly coincident cytoplasmic patterns. Ultrastructural localization by the immunogold technique using the monoclonal antibody supported the light microscopic findings in that the 300,000-mol-wt species was associated with IF in the several physiological and morphological cell states investigated. The gold particle pattern was less intimately associated with IF than that defined by anti-54/55 and was one of non-uniform distribution along IF, being clustered primarily at points of proximity between IF, where an amorphous, proteinaceous material was often the labeled element. Occasionally, "bridges" of label were seen extending outward from such clusters on IF. Gold particles were infrequently bound to microtubules

  7. Acquired activated protein C resistance is associated with lupus anticoagulants and thrombotic events in pediatric patients with systemic lupus erythematosus.

    PubMed

    Male, C; Mitchell, L; Julian, J; Vegh, P; Joshua, P; Adams, M; David, M; Andrew, M E

    2001-02-15

    Acquired activated protein C resistance (APCR) has been hypothesized as a possible mechanism by which antiphospholipid antibodies (APLAs) cause thrombotic events (TEs). However, available evidence for an association of acquired APCR with APLAs is limited. More importantly, an association of acquired APCR with TEs has not been demonstrated. The objective of the study was to determine, in pediatric patients with systemic lupus erythematosus (SLE), whether (1) acquired APCR is associated with the presence of APLAs, (2) APCR is associated with TEs, and (3) there is an interaction between APCR and APLAs in association with TEs. A cross-sectional cohort study of 59 consecutive, nonselected children with SLE was conducted. Primary clinical outcomes were symptomatic TEs, confirmed by objective radiographic tests. Laboratory testing included lupus anticoagulants (LAs), anticardiolipin antibodies (ACLAs), APC ratio, protein S, protein C, and factor V Leiden. The results revealed that TEs occurred in 10 (17%) of 59 patients. Acquired APCR was present in 18 (31%) of 58 patients. Acquired APCR was significantly associated with the presence of LAs but not ACLAs. Acquired APCR was also significantly associated with TEs. There was significant interaction between APCR and LAs in the association with TEs. Presence of both APCR and LAs was associated with the highest risk of a TE. Protein S and protein C concentrations were not associated with the presence of APLAs, APCR, or TEs. Presence of acquired APCR is a marker identifying LA-positive patients at high risk of TEs. Acquired APCR may reflect interference of LAs with the protein C pathway that may represent a mechanism of LA-associated TEs. (Blood. 2001;97:844-849)

  8. Immunoprecipitation of PDE2 phosphorylated and inactivated by an associated protein kinase.

    PubMed

    Bentley, J Kelley

    2005-01-01

    A PDE2A2-associated protein kinase phosphorylates PDE2A2 in vivo and in vitro to inhibit its catalytic activity. Rat brain PDE2A2 may be solubilized using nona (ethylene glycol) mono dodecyl ether (Lubrol 12A9). PDE2A2 exists in a complex with a protein kinase regulating its activity in an adenosine triphosphate-dependent manner. When native or recombinant PDE2 is immunoprecipitated from PC12 cells using an antibody to the amino terminus in a buffer containing Lubrol 12A9, protease inhibitors, and phosphatase inhibitors, a coimmunoprecipitating nerve growth factor-stimulated protein kinase acts to phosphorylate it. PDE2A2 phosphoryla-tion occurs optimally at pH 6.5 in a sodium 2-(4-morpholino)-ethane sulfonate buffer with 5 mM MgCl2 and 1 mM Na3VO4. I describe protocols for producing an antibody to an amino-terminal bacterial fusion protein encoding amino acids 1-251 of PDE2A2 as well as the use of this antibody in immunoprecipitating a PDE2: tyrosine protein-kinase complex from rat brain or PC12 cells.

  9. Revealing proteins associated with symbiotic germination of Gastrodia elata by proteomic analysis.

    PubMed

    Zeng, Xu; Li, Yuanyuan; Ling, Hong; Chen, Juan; Guo, Shunxing

    2018-03-06

    Gastrodia elata, a mycoheterotrophic orchid, is a well-known medicinal herb. In nature, the seed germination of G. elata requires proper fungal association, because of the absence of endosperm. To germinate successfully, G. elata obtains nutrition from mycorrhizal fungi such as Mycena. However, Mycena is not able to supply nutrition for the further development and enlargement of protocorms into tubers, flowering and fruit setting of G. elata. To date, current genomic studies on this topic are limited. Here we used the proteomic approach to explore changes in G. elata at different stages of symbiotic germination. Using mass spectrometry, 3787 unique proteins were identified, of which 599 were classified as differentially accumulated proteins. Most of these differentially accumulated proteins were putatively involved in energy metabolism, plant defense, molecular signaling, and secondary metabolism. Among them, the defense genes (e.g., pathogenesis-/wound-related proteins, peroxidases, and serine/threonine-protein kinase) were highly expressed in late-stage protocorms, suggesting that fungal colonization triggered the significant defense responses of G. elata. The present study indicated the metabolic change and defensive reaction could disrupt the balance between Mycena and G. elata during mycorrhizal symbiotic germination.

  10. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    PubMed

    Iturria-Medina, Yasser; Sotero, Roberto C; Toussaint, Paule J; Evans, Alan C

    2014-11-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  11. Epidemic Spreading Model to Characterize Misfolded Proteins Propagation in Aging and Associated Neurodegenerative Disorders

    PubMed Central

    Iturria-Medina, Yasser; Sotero, Roberto C.; Toussaint, Paule J.; Evans, Alan C.

    2014-01-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders. PMID:25412207

  12. The Alveolate Perkinsus marinus: Biological Insights from EST Gene Discovery

    PubMed Central

    2010-01-01

    Background Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica, has devastated natural and farmed oyster populations along the Atlantic and Gulf coasts of the United States. It is classified as a member of the Perkinsozoa, a recently established phylum considered close to the ancestor of ciliates, dinoflagellates, and apicomplexans, and a key taxon for understanding unique adaptations (e.g. parasitism) within the Alveolata. Despite intense parasite pressure, no disease-resistant oysters have been identified and no effective therapies have been developed to date. Results To gain insight into the biological basis of the parasite's virulence and pathogenesis mechanisms, and to identify genes encoding potential targets for intervention, we generated >31,000 5' expressed sequence tags (ESTs) derived from four trophozoite libraries generated from two P. marinus strains. Trimming and clustering of the sequence tags yielded 7,863 unique sequences, some of which carry a spliced leader. Similarity searches revealed that 55% of these had hits in protein sequence databases, of which 1,729 had their best hit with proteins from the chromalveolates (E-value ≤ 1e-5). Some sequences are similar to those proven to be targets for effective intervention in other protozoan parasites, and include not only proteases, antioxidant enzymes, and heat shock proteins, but also those associated with relict plastids, such as acetyl-CoA carboxylase and methyl erythrithol phosphate pathway components, and those involved in glycan assembly, protein folding/secretion, and parasite-host interactions. Conclusions Our transcriptome analysis of P. marinus, the first for any member of the Perkinsozoa, contributes new insight into its biology and taxonomic position. It provides a very informative, albeit preliminary, glimpse into the expression of genes encoding functionally relevant proteins as potential targets for chemotherapy, and evidence for the presence of a relict

  13. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members.

    PubMed

    Deneka, Alexander; Korobeynikov, Vladislav; Golemis, Erica A

    2015-10-01

    The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.

    PubMed

    Stanislas, Thomas; Bouyssie, David; Rossignol, Michel; Vesa, Simona; Fromentin, Jérôme; Morel, Johanne; Pichereaux, Carole; Monsarrat, Bernard; Simon-Plas, Françoise

    2009-09-01

    A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in

  15. Quantitative Proteomics Reveals a Dynamic Association of Proteins to Detergent-resistant Membranes upon Elicitor Signaling in Tobacco*

    PubMed Central

    Stanislas, Thomas; Bouyssie, David; Rossignol, Michel; Vesa, Simona; Fromentin, Jérôme; Morel, Johanne; Pichereaux, Carole; Monsarrat, Bernard; Simon-Plas, Françoise

    2009-01-01

    A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used 14N/15N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the

  16. Protein determination by microchip capillary electrophoresis using an asymmetric squarylium dye: noncovalent labeling and nonequilibrium measurement of association constants.

    PubMed

    Sloat, Amy L; Roper, Michael G; Lin, Xiuli; Ferrance, Jerome P; Landers, James P; Colyer, Christa L

    2008-08-01

    In response to a growing interest in the use of smaller, faster microchip (mu-chip) methods for the separation of proteins, advancements are proposed that employ the asymmetric squarylium dye Red-1c as a noncovalent label in mu-chip CE separations. This work compares on-column and precolumn labeling methods for the proteins BSA, beta-lactoglobulin B (beta-LB), and alpha-lactalbumin (alpha-LA). Nonequilibrium CE of equilibrium mixtures (NECEEM) represents an efficient method to determine equilibrium parameters associated with the formation of intermolecular complexes, such as those formed between the dye and proteins in this work, and it allows for the use of weak affinity probes in protein quantitation. In particular, nonequilibrium methods employing both mu-chip and conventional CE systems were implemented to determine association constants governing the formation of noncovalent complexes of the red luminescent squarylium dye Red-1c with BSA and beta-LB. By our mu-chip NECEEM method, the association constants K(assoc) for beta-LB and BSA complexes with Red-1c were found to be 3.53 x 10(3) and 1.65 x 10(5) M(-1), respectively, whereas association constants found by our conventional CE-LIF NECEEM method for these same protein-dye systems were some ten times higher. Despite discrepancies between the two methods, both confirmed the preferential interaction of Red-1c with BSA. In addition, the effect of protein concentration on measured association constant was assessed by conventional CE methods. Although a small decrease in K(assoc) was observed with the increase in protein concentration, our studies indicate that absolute protein concentration may affect the equilibrium determination less than the relative concentration of protein-to-dye.

  17. Intracellular localization of adeno-associated viral proteins expressed in insect cells.

    PubMed

    Gallo-Ramírez, Lilí E; Ramírez, Octavio T; Palomares, Laura A

    2011-01-01

    Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  18. Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances1[OPEN

    PubMed Central

    2018-01-01

    Cytoplasmic lipid droplets (LDs) of neutral lipids (triacylglycerols [TAGs], sterylesters, etc.) are reserves of high-energy metabolites and other constituents for future needs. They are present in diverse cells of eukaryotes and prokaryotes. An LD has a core of neutral lipids enclosed with a monolayer of phospholipids and proteins, which play structural and/or metabolic roles. During the past 3 decades, studies of LDs in diverse organisms have blossomed after they were found to be involved in prevalent human diseases and industrial uses. LDs in plant seeds were studied before those in mammals and microbes, and the latter studies have since moved forward. Plant LDs carry a hallmark protein called oleosin, which has a long hydrophobic hairpin penetrating the TAG core and stabilizing the LD. The oleosin gene first appeared in green algae and has evolved in enhancing promoter strength, tandem repeats, and/or expression specificity, leading to the appearance of new LD organelles, such as tapetosomes in Brassicaceae. The synthesis of LDs occurs with TAG-synthesizing enzymes on the endoplasmic reticulum (ER), and nascent TAGs are sequestered in the acyl moiety region between the bilayers of phospholipids, which results in ER-LD swelling. Oleosin is synthesized on the cytosol side of the ER and extracts the LD from the ER-LD to cytosol. This extraction of LD to the cytosol is controlled solely by the innate properties of oleosin, and modified oleosin can redirect the LD to the ER lumen and then vacuoles. The breakdown of LDs requires lipase associating with core retromer and binding to peroxisomes, which then send the enzyme to LDs via tubular extensions. Two groups of LD-associated proteins, caleosin/dioxygenase/steroleosin and LD/oil body-associated proteins, participate in cellular stress defenses via enzymic activities and binding, respectively. The surface of LDs in all plant cells may be an inert refuge for these and other proteins, which exert functions on diverse

  19. Association of Protein Intake with Bone Mineral Density and Bone Mineral Content among Elderly Women: The OSTPRE Fracture Prevention Study.

    PubMed

    Isanejad, M; Sirola, J; Mursu, J; Kröger, H; Tuppurainen, M; Erkkilä, A T

    2017-01-01

    It has been hypothesized that high protein intakes are associated with lower bone mineral content (BMC). Previous studies yield conflicting results and thus far no studies have undertaken the interaction of body mass index (BMI) and physical activity with protein intakes in relation to BMC and bone mineral density (BMD). To evaluate the associations of dietary total protein (TP), animal protein (AP) and plant protein (PP) intakes with BMC and BMD and their changes. We tested also the interactions of protein intake with, obesity (BMI ≤30 vs. >30 kg/m2) and physical activity level (passive vs. active). Design/ Setting: Prospective cohort study (Osteoporosis Risk-Factor and Fracture-Prevention Study). Participants/measures: At the baseline, 554 women aged 65-72 years filled out a 3-day food record and a questionnaire covering data on lifestyle, physical activity, diseases, and medications. Intervention group received calcium 1000 mg/d and cholecalciferol 800 IU for 3 years. Control group received neither supplementation nor placebo. Bone density was measured at baseline and year 3, using dual energy x-ray absorptiometry. Multivariable regression analyses were conducted to examine the associations between protein intake and BMD and BMC. In cross-sectional analyses energy-adjusted TP (P≤0·029) and AP (P≤0·045) but not PP (g/d) were negatively associated with femoral neck (FN) BMD and BMC. Women with TP≥1·2 g/kg/body weight (BW) (Ptrend≤0·009) had lower FN, lumbar spine (LS) and total BMD and BMC. In follow-up analysis, TP (g/kg/BW) was inversely associated with LS BMD and LS BMC. The detrimental associations were stronger in women with BMI<30 kg/m2. In active women, TP (g/kg/BW) was positively associated with LS BMD and FN BMC changes. This study suggests detrimental associations between protein intake and bone health. However, these negative associations maybe counteracted by BMI>30 kg/m2 and physical activity.

  20. Identification of a new class of lipid droplet-associated proteins in plants

    USDA-ARS?s Scientific Manuscript database

    Lipid droplets in plants (also known as oil bodies, lipid bodies or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets ...

  1. Identification of proteins that interact with TANK binding kinase 1 and testing for mutations associated with glaucoma.

    PubMed

    Seo, Seongjin; Solivan-Timpe, Frances; Roos, Ben R; Robin, Alan L; Stone, Edwin M; Kwon, Young H; Alward, Wallace L M; Fingert, John H

    2013-02-01

    Copy number variations (duplications) of TANK binding kinase 1 (TBK1) have been associated with normal tension glaucoma (NTG), a common cause of blindness worldwide. Mutations in other genes involved in autophagy (TLR4 and OPTN) have been associated with NTG. Here we report searching for additional proteins involved in autophagy that may also have roles in NTG. HEK-293T cells were transfected to produce synthetic TBK1 protein with FLAG and S tags. Proteins that associate with TBK1 were isolated from HEK-293T lysates using tandem affinity purification (TAP) and polyacrylamide gel electrophoresis (PAGE). Isolated proteins were identified with mass spectrometry. A cohort of 148 NTG patients and 77 controls from Iowa were tested for glaucoma-causing mutations in genes that encode identified proteins that interact with TBK1 using high resolution melt (HRM) analysis and DNA sequencing. TAP studies show that three proteins expressed in HEK-293T cells (NAP1, TANK and TBKBP1) interact with TBK1. Testing cohorts of NTG and normal controls for disease-causing mutations in TANK, identified a total of nine unique variants including three non-synonymous changes, one synonymous changes and five intronic changes. When analyzed alone or as a group, the non-synonymous TBK1 coding sequence changes were not associated with either NTG or primary open angle glaucoma. TAP showed that NAP1, TANK and TBKBP1 interact with TBK1 and are good candidates for contributing to NTG. A mutation screen of TANK detected three non-synonymous variants. Although, it remains possible that one or more of these TANK mutations may have a role in NTG, the data in this report do not provide statistical support for an association between TANK variants and NTG.

  2. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S.K.; Woda, B.

    1986-03-01

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin ((Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA). Immunoprecipitation of SIg from the detergent soluble fraction of /sup 35/S-methionine labeled non ligand treated rat B-cells results in the co-isolation of anmore » 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal.« less

  3. Plasmalemma vesicle-associated protein: A crucial component of vascular homeostasis

    PubMed Central

    Guo, Ling; Zhang, Hongyan; Hou, Yinglong; Wei, Tianshu; Liu, Ju

    2016-01-01

    Endothelial subcellular structures, including caveolae, fenestrae and transendothelial channels, are crucial for regulating microvascular function. Plasmalemma vesicle-associated protein (PLVAP) is an endothelial cell-specific protein that forms the stomatal and fenestral diaphragms of blood vessels and regulates basal permeability, leukocyte migration and angiogenesis. Loss of PLVAP in mice leads to premature mortality due to disrupted homeostasis. Evidence from previous studies suggested that PLVAP is involved in cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Specifically, PLVAP expression has been demonstrated to be upregulated in these diseases, accompanied by pro-angiogenic or pro-inflammatory responses. Therefore, PLVAP is considered a novel therapeutic target, in addition to an endothelial cell marker. The present review summarizes the structure and functions of PLVAP, and its roles in pathophysiological processes. PMID:27602081

  4. Isolation and Analysis of Keratins and Keratin-Associated Proteins from Hair and Wool.

    PubMed

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Harland, Duane P

    2016-01-01

    The presence of highly cross-linked protein networks in hair and wool makes them very difficult substrates for protein extraction, a prerequisite for further protein analysis and characterization. It is therefore imperative that these cross-links formed by disulfide bridges are first disrupted for the efficient extraction of proteins. Chaotropes such as urea are commonly used as efficient extractants. However, a combination of urea and thiourea not only improves recovery of proteins but also results in improved resolution of the keratins in 2DE gels. Reductants also play an important role in protein dissolution. Dithiothreitol effectively removes keratinous material from the cortex, whereas phosphines, like Tris(2-carboxyethyl)phosphine, remove material from the exocuticle. The relative extractability of the keratins and keratin-associated proteins is also dependent on the concentration of chaotropes, reductants, and pH, thus providing a means to preferentially extract these proteins. Ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIM(+)[Cl](-)) are known to solubilize wool by disrupting noncovalent interactions, specifically intermolecular hydrogen bonds. BMIM(+)[Cl](-) proved to be an effective extractant of wool proteins and complementary in nature to chaotropes such as urea and thiourea for identifying unique peptides of wool proteins using mass spectrometry (MS). Successful identification of proteins resolved by one- or two-dimensional electrophoresis and MS is highly dependent on the optimal recovery of its protease-digested peptides with an efficient removal of interfering substances. The detergent sodium deoxycholate used in conjunction with Empore™ disks improved identification of proteins by mass spectrometry leading to higher percentage sequence coverage, identification of unique peptides and higher score. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    PubMed

    Morohashi, Kengo; Sahara, Hiroeki; Watashi, Koichi; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-04-29

    Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  6. Cyclosporin A Associated Helicase-Like Protein Facilitates the Association of Hepatitis C Virus RNA Polymerase with Its Cellular Cyclophilin B

    PubMed Central

    Sahara, Hiroeki; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-01-01

    Background Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Principal Findings Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. Conclusions We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology. PMID:21559518

  7. Molecular Cloning and Function of FAS/APO1 Associated Protein in Breast Cancer.

    DTIC Science & Technology

    1996-06-01

    Ariyama T, Abe T, Druck T, Ohta M, Huebner K, Yanagisawa J, Reed JC, Sato T: PTPN13, a Fas-associated protein tyrosine phosphatase, is located on...20. Yang, Q., and Tonks, N. K. (1991). Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology 7. Huebner, K., Druck , T...Acad. Sci. U.S.A. 91, 7477 (1994). Res. 53, 1945 (1993).(Fig. 3D ). In contrast to Jurkat cells which 13. The original description of PTP-BAS (12

  8. A stationary-phase protein of Escherichia coli that affects the mode of association between the trp repressor protein and operator-bearing DNA.

    PubMed Central

    Yang, W; Ni, L; Somerville, R L

    1993-01-01

    Highly purified preparations of trp repressor (TrpR) protein derived from Escherichia coli strains that were engineered to overexpress this material were found to contain another protein, of 21 kDa. The second protein, designated WrbA [for tryptophan (W) repressor-binding protein] remained associated with its namesake through several sequential protein fractionation steps. The N-terminal amino acid sequence of the WrbA protein guided the design of two degenerate oligonucleotides that were used as probes in the cloning of the wrbA gene (198 codons). The WrbA protein, in purified form, was found by several criteria to enhance the formation and/or stability of noncovalent complexes between TrpR holorepressor and its primary operator targets. The formation of an operator-holorepressor-WrbA ternary complex was demonstrated by gel mobility-shift analysis. The WrbA protein alone does not interact with the trp operator. During the stationary phase, cells deficient in the WrbA protein were less efficient than wild type in their ability to repress the trp promoter. It is proposed that the WrbA protein functions as an accessory element in blocking TrpR-specific transcriptional processes that might be physiologically disadvantageous in the stationary phase of the bacterial life cycle. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8516330

  9. Cytotoxic Effect Associated with Overexpression of QNR Proteins in Escherichia coli.

    PubMed

    Machuca, Jesús; Diaz de Alba, Paula; Recacha, Esther; Pascual, Álvaro; Rodriguez-Martinez, José Manuel

    2017-10-01

    The objective was to evaluate the cytotoxic effect associated with overexpression of multiple Qnr-like plasmid-mediated quinolone resistance (PMQR) mechanisms in Escherichia coli. Coding regions of different PMQR genes (qnrA1, qnrB1, qnrC, qnrD1, qnrS1, and qepA2) and efsqnr were cloned into pET29a(+) vector and overexpressed in E. coli BL21. E. coli BL21 with and without an empty pET29a(+) vector were used as controls. The cytotoxic effect associated with PMQR mechanism overexpression was determined by transmission electron microscopy and viability assays. Overexpressed qnr genes produced loss of bacterial viability in the range of 77-97% compared with the controls, comparable with loss of viability associated with EfsQnr overexpression (97%). No loss of viability was observed in E. coli overexpressing QepA2. In transmission electron microscopy assays, signs of cytotoxicity were observed in E. coli cells overexpressing EfsQnr and Qnr proteins (30-45% of the bacterial population showed morphological changes). Morphological changes were observed in less than 5% of bacterial populations from the control strains and E. coli overexpressing QepA2. Overexpression of qnr genes produces a cytotoxic cellular and structural effect in E. coli, the magnitude of which varies depending on the family of Qnr proteins.

  10. Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival.

    PubMed

    Rozengurt, Enrique; Sinnett-Smith, James; Eibl, Guido

    2018-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is generally a fatal disease with no efficacious treatment modalities. Elucidation of signaling mechanisms that will lead to the identification of novel targets for therapy and chemoprevention is urgently needed. Here, we review the role of Yes-associated protein (YAP) and WW-domain-containing Transcriptional co-Activator with a PDZ-binding motif (TAZ) in the development of PDAC. These oncogenic proteins are at the center of a signaling network that involves multiple upstream signals and downstream YAP-regulated genes. We also discuss the clinical significance of the YAP signaling network in PDAC using a recently published interactive open-access database (www.proteinatlas.org/pathology) that allows genome-wide exploration of the impact of individual proteins on survival outcomes. Multiple YAP/TEAD-regulated genes, including AJUBA , ANLN , AREG , ARHGAP29 , AURKA , BUB1 , CCND1 , CDK6, CXCL5 , EDN2 , DKK1 , FOSL1,FOXM1 , HBEGF , IGFBP2 , JAG1 , NOTCH2 , RHAMM , RRM2 , SERP1 , and ZWILCH , are associated with unfavorable survival of PDAC patients. Similarly, components of AP-1 that synergize with YAP ( FOSL1 ), growth factors (TGFα, EPEG, and HBEGF), a specific integrin ( ITGA2 ), heptahelical receptors ( P2Y 2 R , GPR87 ) and an inhibitor of the Hippo pathway ( MUC1 ), all of which stimulate YAP activity, are associated with unfavorable survival of PDAC patients. By contrast, YAP inhibitory pathways (STRAD/LKB-1/AMPK, PKA/LATS, and TSC/mTORC1) indicate a favorable prognosis. These associations emphasize that the YAP signaling network correlates with poor survival of pancreatic cancer patients. We conclude that the YAP pathway is a major determinant of clinical aggressiveness in PDAC patients and a target for therapeutic and preventive strategies in this disease.

  11. [Expression of SLP-2 protein in esophageal squamous cell carcinoma is associated with cancer invasion].

    PubMed

    Cao, Wen-feng; Zhang, Li-yong; Zhang, Bin; Wang, Yue-qi; Liu, Zhi-hua; Sun, Bao-cun

    2010-11-01

    To study the expression of stomatin-like protein-2 (SLP-2) in esophageal squamous cell carcinoma (ESCC), and analyze the correlation between SLP-2 expression and clinicopathological features. The expression of SLP-2 protein in ESCC tissues (18 and 220 cases respectively) was detected by Western blot and IHC. The association between SLP-2 expression and clinicopathological features was analyzed. Compared with normal epithelium, 13 cases of ESCC tissues showed a higher expression of SLP-2 on the protein level (72.2%, 13/18). IHC analysis on tissue microarray revealed that the expression rate of SLP-2 protein in ESCC was 54.1% and in normal esophageal mucosa was 3.6%, showing a significant difference (P < 0.001). SLP-2 high-level expression correlates with the extent of ESCC invasion (P = 0.033), but not with other clinicopathologic characteristics (P > 0.05). SLP-2 as a novel cancer-related gene may play an important role in tumorigenesis of ESCC. The overexpression of SLP-2 may be closely associated with the invasion of esophageal cancer.

  12. Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells.

    PubMed

    Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C

    2002-02-22

    Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.

  13. RStrucFam: a web server to associate structure and cognate RNA for RNA-binding proteins from sequence information.

    PubMed

    Ghosh, Pritha; Mathew, Oommen K; Sowdhamini, Ramanathan

    2016-10-07

    RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential

  14. Association of Guide RNA Binding Protein gBP21 with Active RNA Editing Complexes in Trypanosoma brucei

    PubMed Central

    Allen, Thomas E.; Heidmann, Stefan; Reed, RoseMary; Myler, Peter J.; Göringer, H. Ulrich; Stuart, Kenneth D.

    1998-01-01

    RNA editing in Trypanosoma brucei mitochondria produces mature mRNAs by a series of enzyme-catalyzed reactions that specifically insert or delete uridylates in association with a macromolecular complex. Using a mitochondrial fraction enriched for in vitro RNA editing activity, we produced several monoclonal antibodies that are specific for a 21-kDa guide RNA (gRNA) binding protein initially identified by UV cross-linking. Immunofluorescence studies localize the protein to the mitochondrion, with a preference for the kinetoplast. The antibodies cause a supershift of previously identified gRNA-specific ribonucleoprotein complexes and immunoprecipitate in vitro RNA editing activities that insert and delete uridylates. The immunoprecipitated material also contains gRNA-specific endoribonuclease, terminal uridylyltransferase, and RNA ligase activities as well as gRNA and both edited and unedited mRNA. The immunoprecipitate contains numerous proteins, of which the 21-kDa protein, a 90-kDa protein, and novel 55- and 16-kDa proteins can be UV cross-linked to gRNA. These studies indicate that the 21-kDa protein associates with the ribonucleoprotein complex (or complexes) that catalyze RNA editing. PMID:9742118

  15. Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains.

    PubMed

    Muthu Krishnan, S

    2018-05-14

    The receptor-associated protein (RAP) is an inhibitor of endocytic receptors that belong to the lipoprotein receptor gene family. In this study, a computational approach was tried to find the evolutionarily related fold of the RAP proteins. Through the structural and sequence-based analysis, found various protein folds that are very close to the RAP folds. Remote homolog datasets were used potentially to develop a different support vector machine (SVM) methods to recognize the homologous RAP fold. This study helps in understanding the relationship of RAP homologs folds based on the structure, function and evolutionary history. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    PubMed

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  17. Poliovirus-associated protein kinase: Destabilization of the virus capsid and stimulation of the phosphorylation reaction by Zn sup 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratka, M.; Lackmann, M.; Ueckermann, C.

    1989-09-01

    The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg{sup 2+}. In this paper, the effect of Zn{sup 2+} on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg{sup 2+}. In the presence of Zn{sup 2+}, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. The results indicate the activation of more than one virus-associated protein kinase by Zn{sup 2+}. The ion-dependentmore » behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn{sup 2+}. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. The authors suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.« less

  18. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion off bpB lost the ability to adhere to mucin and fibronectin in vitro Homologues off bpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilus homology group. Copyright © 2016 Hymes et al.

  19. Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity

    PubMed Central

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Shin, Misun; Nam, Yeon-Ju; Choi, Dong-Hwa; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2015-01-01

    The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH. PMID:26057890

  20. Altered cell-matrix associated ADAM proteins in Alzheimer disease.

    PubMed

    Gerst, J L; Raina, A K; Pirim, I; McShea, A; Harris, P L; Siedlak, S L; Takeda, A; Petersen, R B; Smith, M A

    2000-03-01

    Alterations in cell-matrix 'contact' are often related to a disruption of cell cycle regulation and, as such, occur variously in neoplasia. Given the recent findings showing cell cycle alterations in Alzheimer disease, we undertook a study of ADAM-1 and 2 (A Disintegrin And Metalloprotease), developmentally-regulated, integrin-binding, membrane-bound metalloproteases. Our results show that whereas ADAM-1 and 2 are found in susceptible hippocampal neurons in Alzheimer disease, these proteins were not generally increased in similar neuronal populations in younger or age-matched controls except in association with age-related neurofibrillary alterations. This increase in both ADAM-1 and 2 in cases of Alzheimer disease was verified by immunoblot analysis (P < 0.05). An ADAM-induced loss of matrix integration would effectively "reset" the mitotic clock and thereby stimulate re-entry into the cell cycle in neurons in Alzheimer disease. Furthermore, given the importance of integrins in maintaining short-term memory, alterations in ADAM proteins or their proteolytic activity could also play a proximal role in the clinico-pathological manifestations of Alzheimer disease. Copyright 2000 Wiley-Liss, Inc.

  1. Prion protein is essential for diabetic retinopathy-associated neovascularization.

    PubMed

    Zhu, Lingyan; Xu, Jixiong; Liu, Ying; Gong, Tian; Liu, Jianying; Huang, Qiong; Fischbach, Shane; Zou, Wenquan; Xiao, Xiangwei

    2018-05-30

    Diabetic retinopathy (DR), a major complication of diabetes caused by vascular damage and pathological proliferation of retinal vessels, often progresses to vision loss. Vascular endothelial growth factor (VEGF) signaling plays a pivotal role in the development of DR, but the exact underlying molecular mechanisms remain ill-defined. Cellular prion protein (PrP c ) is a surface protein expressed by vascular endothelial cells, and the increased expression of PrP c is associated with physiological and pathological vascularization. Nevertheless, a role for PrP c in the development of DR has not been appreciated. Here, we addressed this question. We found that the development of streptozocin (STZ)-induced DR, but not the STZ-induced hyperglycemia/diabetes itself, was significantly attenuated in PrP c -KO mice, compared to control wildtype (WT) mice, evident by measurement of retinal vascular leakage, retinal neovascularization, a retinopathy score and visual acuity assessment. Moreover, the attenuation of DR severity seemingly resulted from attenuation of retinal neovascularization via VEGF/ras/rac signaling. Together, our study suggests a previously unappreciated role for PrP c in the development of DR.

  2. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size.

    PubMed

    Anema, Skelte G; Li, Yuming

    2003-02-01

    When skim milk at pH 6.55 was heated (75 to 100 degrees C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30-35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of beta-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller

  3. Lean Mass Loss Is Associated with Low Protein Intake during Dietary-Induced Weight Loss in Postmenopausal Women

    PubMed Central

    BOPP, MELANIE J.; HOUSTON, DENISE K.; LENCHIK, LEON; EASTER, LINDA; KRITCHEVSKY, STEPHEN B.; NICKLAS, BARBARA J.

    2013-01-01

    The health and quality-of-life implications of overweight and obesity span all ages in the United States. We investigated the association between dietary protein intake and loss of lean mass during weight loss in postmenopausal women through a retrospective analysis of a 20-week randomized, controlled diet and exercise intervention in women aged 50 to 70 years. Weight loss was achieved by differing levels of caloric restriction and exercise. The diet-only group reduced caloric intake by 2,800 kcal/week, and the exercise groups reduced caloric intake by 2,400 kcal/week and expended ~400 kcal/week through aerobic exercise. Total and appendicular lean mass was measured using dual energy x-ray absorptiometry. Linear regression analysis was used to examine the association between changes in lean mass and appendicular lean mass and dietary protein intake. Average weight loss was 10.8±4.0 kg, with an average of 32% of total weight lost as lean mass. Protein intake averaged 0.62 g/kg body weight/day (range=0.47 to 0.8 g/kg body weight/day). Participants who consumed higher amounts of dietary protein lost less lean mass and appendicular lean mass r(=0.3, P=0.01 and r=0.41, P<0.001, respectively). These associations remained significant after adjusting for intervention group and body size. Therefore, inadequate protein intake during caloric restriction may be associated with adverse body-composition changes in postmenopausal women. PMID:18589032

  4. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauwe, Benedicte; Martens, Erik; Van den Steen, Philippe E.

    2008-09-10

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1more » was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.« less

  5. Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1) from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference

    PubMed Central

    Kumar, Rajinder; Adams, Brian; Oldenburg, Anja; Musiyenko, Alla; Barik, Sailen

    2002-01-01

    Background Reversible protein phosphorylation is relatively unexplored in the intracellular protozoa of the Apicomplexa family that includes the genus Plasmodium, to which belong the causative agents of malaria. Members of the PP1 family represent the most highly conserved protein phosphatase sequences in phylogeny and play essential regulatory roles in various cellular pathways. Previous evidence suggested a PP1-like activity in Plasmodium falciparum, not yet identified at the molecular level. Results We have identified a PP1 catalytic subunit from P. falciparum and named it PfPP1. The predicted primary structure of the 304-amino acid long protein was highly similar to PP1 sequences of other species, and showed conservation of all the signature motifs. The purified recombinant protein exhibited potent phosphatase activity in vitro. Its sensitivity to specific phosphatase inhibitors was characteristic of the PP1 class. The authenticity of the PfPP1 cDNA was further confirmed by mutational analysis of strategic amino acid residues important in catalysis. The protein was expressed in all erythrocytic stages of the parasite. Abrogation of PP1 expression by synthetic short interfering RNA (siRNA) led to inhibition of parasite DNA synthesis. Conclusions The high sequence similarity of PfPP1 with other PP1 members suggests conservation of function. Phenotypic gene knockdown studies using siRNA confirmed its essential role in the parasite. Detailed studies of PfPP1 and its regulation may unravel the role of reversible protein phosphorylation in the signalling pathways of the parasite, including glucose metabolism and parasitic cell division. The use of siRNA could be an important tool in the functional analysis of Apicomplexan genes. PMID:12057017

  6. Proteomic analysis of ubiquitination-associated proteins in a cisplatin-resistant human lung adenocarcinoma cell line.

    PubMed

    Qin, Xia; Chen, Shizhi; Qiu, Zongyin; Zhang, Yuan; Qiu, Feng

    2012-05-01

    The objective of this study was to screen for ubiquitination-associated proteins involved in cisplatin resistance in a human lung adenocarcinoma cell strain using a comparative proteomic strategy. We employed 1D SDS-PAGE to separate ubiquitinated proteins isolated and enriched from A549 and A549/CDDP lysates via affinity chromatography. The differentially expressed bands between 45-85 kDa were subsequently hydrolyzed by trypsin and subjected to HPLC-CHIP-MS/MS analysis. Of the 11 proteins identified, 7 proteins were monoubiquitinated or polyubiquitinated substrates and 4 proteins were E3 ubiquitin ligase-associated proteins. The results of western blotting and confocal laser scanning microscopy indicated that the expression levels of the E3 ubiquitin ligases RNF6, LRSAM1 and TRIM25 in A549 cells were significantly lower than those in the A549/CDDP cell line. The expression levels of the above three ubiquitin ligases in both cell lines were significantly decreased upon treatment with cis-diamminedichloroplatinum (CDDP), and the expression in the A549/CDDP cell after the treatment with CDDP decreased to a lesser extent. The expression of the substrate PKM2 in the A549 cell was higher than that in the A549/CDDP cells. Moreover, the expression of PKM2 increased in the A549 cell line and decreased in the A549/CDDP cell line upon CDDP treatment. This study suggests that drug resistance is closely correlated with changes in the ubiquitination process at the protein level in a human lung adenocarcinoma cell line.

  7. RNA-binding Protein Immunoprecipitation (RIP) to Examine AUF1 Binding to Senescence-Associated Secretory Phenotype (SASP) Factor mRNA

    PubMed Central

    Alspach, Elise; Stewart, Sheila A.

    2016-01-01

    Immunoprecipitation and subsequent isolation of nucleic acids allows for the investigation of protein:nucleic acid interactions. RNA-binding protein immunoprecipitation (RIP) is used for the analysis of protein interactions with mRNA. Combining RIP with quantitative real-time PCR (qRT-PCR) further enhances the RIP technique by allowing for the quantitative assessment of RNA-binding protein interactions with their target mRNAs, and how these interactions change in different cellular settings. Here, we describe the immunoprecipitation of the RNA-binding protein AUF1 with several different factors associated with the senescence-associated secretory phenotype (SASP) (Alspach and Stewart, 2013), specifically IL6 and IL8. This protocol was originally published in Alspach et al. (2014). PMID:27453911

  8. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Jinmei; Wang Xuefeng; Xi Zhiqin

    2006-10-06

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in themore » temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures.« less

  9. Proteomic Analysis of Mitotic RNA Polymerase II Reveals Novel Interactors and Association With Proteins Dysfunctional in Disease*

    PubMed Central

    Möller, André; Xie, Sheila Q.; Hosp, Fabian; Lang, Benjamin; Phatnani, Hemali P.; James, Sonya; Ramirez, Francisco; Collin, Gayle B.; Naggert, Jürgen K.; Babu, M. Madan; Greenleaf, Arno L.; Selbach, Matthias; Pombo, Ana

    2012-01-01

    RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology. PMID:22199231

  10. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum.

    PubMed

    Benedicto, Ignacio; Molina-Jiménez, Francisca; Barreiro, Olga; Maldonado-Rodríguez, Alejandra; Prieto, Jesús; Moreno-Otero, Ricardo; Aldabe, Rafael; López-Cabrera, Manuel; Majano, Pedro L

    2008-10-01

    Hepatocyte tight junctions (TJ) play key roles in characteristic liver functions, including bile formation and secretion. Infection by hepatitis C virus (HCV) may cause alterations of the liver architecture and disruption of the bile duct, which ultimately can lead to cholestasis. Herein, we employed the HCV replicon system to analyze the effect of HCV on TJ organization. TJ-associated proteins occludin, claudin-1, and Zonula Occludens protein-1 (ZO-1) disappeared from their normal localization at the border of adjacent cells in Huh7 clones harboring genomic but not subgenomic replicons expressing only the nonstructural proteins. Furthermore, cells containing genomic replicons showed a cytoplasmic accumulation of occludin in the endoplasmic reticulum (ER). TJ-associated function, measured as FITC-dextran paracellular permeability, of genomic replicon-containing cells, was also altered. Interestingly, clearance of the HCV replicon by interferon-alpha (IFN-alpha) treatment and by short hairpin RNA (shRNA) significantly restored the localization of TJ-associated proteins. Transient expression of all HCV structural proteins, but not core protein alone, altered the localization of TJ-associated proteins in Huh7 cells and in clones with subgenomic replicons. Confocal analysis showed that accumulation of occludin in the ER partially co-localized with HCV envelope glycoprotein E2. E2/occludin association was further confirmed by co-immunoprecipitation and pull-down assays. Additionally, using a cell culture model of HCV infection, we observed the cytoplasmic dot-like accumulation of occludin in infected Huh7 cells. We propose that HCV structural proteins, most likely those of the viral envelope, promote alterations of TJ-associated proteins, which may provide new insights for HCV-related pathogenesis.

  11. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  12. The p14 fusion-associated small transmembrane (FAST) protein effects membrane fusion from a subset of membrane microdomains.

    PubMed

    Corcoran, Jennifer A; Salsman, Jayme; de Antueno, Roberto; Touhami, Ahmed; Jericho, Manfred H; Clancy, Eileen K; Duncan, Roy

    2006-10-20

    The reovirus fusion-associated small transmembrane (FAST) proteins are a unique family of viral membrane fusion proteins. These nonstructural viral proteins induce efficient cell-cell rather than virus-cell membrane fusion. We analyzed the lipid environment in which the reptilian reovirus p14 FAST protein resides to determine the influence of the cell membrane on the fusion activity of the FAST proteins. Topographical mapping of the surface of fusogenic p14-containing liposomes by atomic force microscopy under aqueous conditions revealed that p14 resides almost exclusively in thickened membrane microdomains. In transfected cells, p14 was found in both Lubrol WX- and Triton X-100-resistant membrane complexes. Cholesterol depletion of donor cell membranes led to preferential disruption of p14 association with Lubrol WX (but not Triton X-100)-resistant membranes and decreased cell-cell fusion activity, both of which were reversed upon subsequent cholesterol repletion. Furthermore, co-patching analysis by fluorescence microscopy indicated that p14 did not co-localize with classical lipid-anchored raft markers. These data suggest that the p14 FAST protein associates with heterogeneous membrane microdomains, a distinct subset of which is defined by cholesterol-dependent Lubrol WX resistance and which may be more relevant to the membrane fusion process.

  13. Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins).

    PubMed

    Alves-Silva, Juliana; Sánchez-Soriano, Natalia; Beaven, Robin; Klein, Melanie; Parkin, Jill; Millard, Thomas H; Bellen, Hugo J; Venken, Koen J T; Ballestrem, Christoph; Kammerer, Richard A; Prokop, Andreas

    2012-07-04

    The correct outgrowth of axons is essential for the development and regeneration of nervous systems. Axon growth is primarily driven by microtubules. Key regulators of microtubules in this context are the spectraplakins, a family of evolutionarily conserved actin-microtubule linkers. Loss of function of the mouse spectraplakin ACF7 or of its close Drosophila homolog Short stop/Shot similarly cause severe axon shortening and microtubule disorganization. How spectraplakins perform these functions is not known. Here we show that axonal growth-promoting roles of Shot require interaction with EB1 (End binding protein) at polymerizing plus ends of microtubules. We show that binding of Shot to EB1 requires SxIP motifs in Shot's C-terminal tail (Ctail), mutations of these motifs abolish Shot functions in axonal growth, loss of EB1 function phenocopies Shot loss, and genetic interaction studies reveal strong functional links between Shot and EB1 in axonal growth and microtubule organization. In addition, we report that Shot localizes along microtubule shafts and stabilizes them against pharmacologically induced depolymerization. This function is EB1-independent but requires net positive charges within Ctail which essentially contribute to the microtubule shaft association of Shot. Therefore, spectraplakins are true members of two important classes of neuronal microtubule regulating proteins: +TIPs (tip interacting proteins; plus end regulators) and structural MAPs (microtubule-associated proteins). From our data we deduce a model that relates the different features of the spectraplakin C terminus to the two functions of Shot during axonal growth.

  14. Extended-spectrum antiprotozoal bumped kinase inhibitors: A review.

    PubMed

    Van Voorhis, Wesley C; Doggett, J Stone; Parsons, Marilyn; Hulverson, Matthew A; Choi, Ryan; Arnold, Samuel L M; Riggs, Michael W; Hemphill, Andrew; Howe, Daniel K; Mealey, Robert H; Lau, Audrey O T; Merritt, Ethan A; Maly, Dustin J; Fan, Erkang; Ojo, Kayode K

    2017-09-01

    Many life-cycle processes in parasites are regulated by protein phosphorylation. Hence, disruption of essential protein kinase function has been explored for therapy of parasitic diseases. However, the difficulty of inhibiting parasite protein kinases to the exclusion of host orthologues poses a practical challenge. A possible path around this difficulty is the use of bumped kinase inhibitors for targeting calcium-dependent protein kinases that contain atypically small gatekeeper residues and are crucial for pathogenic apicomplexan parasites' survival and proliferation. In this article, we review efficacy against the kinase target, parasite growth in vitro, and in animal infection models, as well as the relevant pharmacokinetic and safety parameters of bumped kinase inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expression of psoriasis-associated fatty acid-binding protein in senescent human dermal microvascular endothelial cells.

    PubMed

    Ha, Moon Kyung; Chung, Kee Yang; Lee, Ju Hee; Bang, Dongsik; Park, Yoon Kee; Lee, Kwang Hoon

    2004-09-01

    Aging is associated with the progressive pathophysiologic modification of endothelial cells. In vitro endothelial cell senescence is accompanied by proliferative activity failure and by perturbations in gene and protein expressions. Moreover, this cellular senescence in culture has been proposed to reflect processes that occur in aging organisms. In order to observe the changing patterns of protein expression in senescent human dermal microvascular endothelial cells (HDMECs), proteins obtained from both early- and late-passaged HDMECs were separated by two-dimensional electrophoresis, visualized by silver staining, and quantified by image processing. Proteins of interest were extracted by in-gel digestion with trypsin and quantified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), by searching the National Center for Biotechnology Information protein-sequence database. More than 2000 spots were detected by 2D electrophoresis within a linear pH range of 3-10. Twenty-two major differentially expressed spots were observed in serially passaged HDMECs and identified with high confidence by MALDI-TOF-MS. One of these spots was found to be a 14-15 kDa psoriasis-associated fatty acid-binding protein (PA-FABP) with high affinity for long-chain fatty acids. The expression of PA-FABP was confirmed to be elevated in senescent HDMECs (passage 20) by fluorescence-activated cell sorting (FACS), confocal laser microscopy, and by immunohistochemistry in aged human skin tissue. Our results suggest that the overexpression of FABP in cultured senescent HDMECs is closely related to skin aging.

  16. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    PubMed

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  17. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins

    PubMed Central

    Hyun, Seong-In; Weisberg, Andrea

    2017-01-01

    ABSTRACT The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights

  18. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering.

    PubMed

    Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G

    2017-07-01

    Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are

  19. Association of Takayasu arteritis with HLA-B 67:01 and two amino acids in HLA-B protein.

    PubMed

    Terao, Chikashi; Yoshifuji, Hajime; Ohmura, Koichiro; Murakami, Kosaku; Kawabata, Daisuke; Yurugi, Kimiko; Tazaki, Junichi; Kinoshita, Hideyuki; Kimura, Akinori; Akizuki, Masashi; Kawaguchi, Yasushi; Yamanaka, Hisashi; Miura, Yasuo; Maekawa, Taira; Saji, Hiroo; Mimori, Tsuneyo; Matsuda, Fumihiko

    2013-10-01

    Takayasu arteritis (TAK) is a rare autoimmune arteritis that affects large arteries. Although the association between TAK and HLA-B 52:01 is established, the other susceptibility HLA-B alleles are not fully known. We performed genetic association studies to determine independent HLA-B susceptibility alleles other than HLA-B 52:01 and to identify important amino acids of HLA-B protein in TAK susceptibility. One hundred patients with TAK and 1000 unrelated healthy controls were genotyped for HLA-B alleles in the first set, followed by a replication set containing 73 patients with TAK and 1000 controls to compare the frequencies of HLA-B alleles. Step-up logistic regression analysis was performed to identify susceptibility amino acids of HLA-B protein. Strong associations of susceptibility to TAK with HLA-B 52:01 and HLA-B 67:01 were observed (P = 1.0 × 10(-16) and 9.5 × 10(-6), respectively). An independent susceptibility effect of HLA-B 67:01 from HLA-B 52:01 was also detected (P = 1.8 × 10(-7)). Amino acid residues of histidine at position 171 and phenylalanine at position 67, both of which are located in antigen binding grooves of the HLA-B protein, were associated with TAK susceptibility (P ≤ 3.8 × 10(-5)) with a significant difference from other amino acid variations (ΔAIC ≥ 9.65). HLA-B 67:01 is associated with TAK independently from HLA-B 52:01. Two amino acids in HLA-B protein are strongly associated with TAK susceptibility.

  20. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    PubMed

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  1. Acquired activated protein C resistance associated with anti-protein S antibody as a strong risk factor for DVT in non-SLE patients.

    PubMed

    Nojima, Junzo; Kuratsune, Hirohiko; Suehisa, Etsuji; Kawasaki, Tomio; Machii, Takashi; Kitani, Teruo; Iwatani, Yoshinori; Kanakura, Yuzuru

    2002-11-01

    Anti-phospholipid (aPL) antibodies (Abs) are well known to be associated with thromboembolic events in patients with systemic lupus erythematosus (SLE). However, the clinical relevance of a PL Abs in patients without SLE (non-SLE) who have venous thromboembolism remains unclear. We evaluated 143 non-SLE patients with a first episode of clinically suspected deep vein thrombosis (DVT) by using objective tests for diagnosing DVT and laboratory tests including the activated protein C resistance (APC-R) test, the factor V Leiden test, and various aPL Abs. The prevalence of acquired APC-R, in which case there was no factor V Leiden mutation, was significantly higher in patients with DVT (15/58 cases, 25.9%, p < 0.0001) than in those without DVT (3/80 cases, 3.7%), and confirmed that acquired APC-R was a strong risk factor for DVT (odds ratio [OR], 8.95; 95% confidence intervals [CI], 2.45-32.7; p < 0.001). Multivariate logistic analysis revealed that the presence of LA, aCL, anti-beta2-glycoprotein I, anti-prothrombin and anti-protein C Abs was not reliable as a risk factor for DVT in non-SLE patients, and that the presence of anti-protein S Abs was the most significant risk factor for DVT (OR, 5.88; 95% CI, 1.96-17.7; p < 0.002). Furthermore, the presence of anti-protein S Abs was strongly associated with acquired APC-R (OR, 57.8; 95% CI, 8.53-391; p < 0.0001). These results suggest that acquired APC-R may reflect functional interference by anti-protein S Abs of the protein C pathway, which action may represent an important mechanism for the development DVT in non-SLE patients.

  2. A phylogenomic profile of hemerythrins, the nonheme diiron binding respiratory proteins

    PubMed Central

    2008-01-01

    Background Hemerythrins, are the non-heme, diiron binding respiratory proteins of brachiopods, priapulids and sipunculans; they are also found in annelids and bacteria, where their functions have not been fully elucidated. Results A search for putative Hrs in the genomes of 43 archaea, 444 bacteria and 135 eukaryotes, revealed their presence in 3 archaea, 118 bacteria, several fungi, one apicomplexan, a heterolobosan, a cnidarian and several annelids. About a fourth of the Hr sequences were identified as N- or C-terminal domains of chimeric, chemotactic gene regulators. The function of the remaining single domain bacterial Hrs remains to be determined. In addition to oxygen transport, the possible functions in annelids have been proposed to include cadmium-binding, antibacterial action and immunoprotection. A Bayesian phylogenetic tree revealed a split into two clades, one encompassing archaea, bacteria and fungi, and the other comprising the remaining eukaryotes. The annelid and sipunculan Hrs share the same intron-exon structure, different from that of the cnidarian Hr. Conclusion The phylogenomic profile of Hrs demonstrated a limited occurrence in bacteria and archaea and a marked absence in the vast majority of multicellular organisms. Among the metazoa, Hrs have survived in a cnidarian and in a few protostome groups; hence, it appears that in metazoans the Hr gene was lost in deuterostome ancestor(s) after the radiata/bilateria split. Signal peptide sequences in several Hirudinea Hrs suggest for the first time, the possibility of extracellular localization. Since the α-helical bundle is likely to have been among the earliest protein folds, Hrs represent an ancient family of iron-binding proteins, whose primary function in bacteria may have been that of an oxygen sensor, enabling aerophilic or aerophobic responses. Although Hrs evolved to function as O2 transporters in brachiopods, priapulids and sipunculans, their function in annelids remains to be elucidated

  3. Association of MITF and other melanosome-related proteins with chemoresistance in melanoma tumors and cell lines.

    PubMed

    Hertzman Johansson, Carolina; Azimi, Alireza; Frostvik Stolt, Marianne; Shojaee, Seyedmehdi; Wiberg, Henning; Grafström, Eva; Hansson, Johan; Egyházi Brage, Suzanne

    2013-10-01

    Previous studies in cell lines have suggested a role for melanosomes and related protein trafficking pathways in melanoma drug response. We have investigated the expression of six proteins related to melanosomes and melanogenesis (MITF, GPR143, gp100/PMEL, MLANA, TYRP1, and RAB27A) in pretreatment metastases from melanoma patients (n = 52) with different response to dacarbazine/temozolomide. Microphthalmia-associated transcription factor (MITF) and G-protein coupled receptor 143 (GPR143) showed significantly higher expression in nonresponders compared with responders. The premelanosome protein (gp100/PMEL) has been indicated previously in resistance to cisplatin in melanoma cells, but the expression levels of gp100/PMEL showed no association with response to dacarbazine/temozolomide in our clinical material. We also investigated the effects on chemosensitivity of siRNA inhibition of gp100/PMEL in the MNT-1 melanoma cell line. As expected from the study of the tumor material, no effect was detected with respect to response to temozolomide. However, knockdown of gp100/PMEL sensitized the cells to both paclitaxel and cisplatin. Overall, our results suggest that MITF, and several MITF-regulated factors, are associated with resistance to chemotherapy in melanoma and that different MITF targets can be of importance for different drugs.

  4. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans.

    PubMed

    Sadeghinejad, Lida; Cvitkovitch, Dennis G; Siqueira, Walter L; Santerre, J Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG's effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected

  5. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans

    PubMed Central

    Sadeghinejad, Lida; Cvitkovitch, Dennis G.; Siqueira, Walter L.; Santerre, J. Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the

  6. Functional Diversity of Human Mitochondrial J-proteins Is Independent of Their Association with the Inner Membrane Presequence Translocase.

    PubMed

    Sinha, Devanjan; Srivastava, Shubhi; D'Silva, Patrick

    2016-08-12

    Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells

    PubMed Central

    Gidda, Satinder K; Watt, Samantha C; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-01-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed. PMID:24305619

  8. MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure

    PubMed Central

    Jeong, Sun Yong; Rose, Annkatrin; Meier, Iris

    2003-01-01

    Plastid DNA, like bacterial and mitochondrial DNA, is organized into protein–DNA complexes called nucleoids. Plastid nucleoids are believed to be associated with the inner envelope in developing plastids and the thylakoid membranes in mature chloroplasts, but the mechanism for this re-localization is unknown. Here, we present the further characterization of the coiled-coil DNA-binding protein MFP1 as a protein associated with nucleoids and with the thylakoid membranes in mature chloroplasts. MFP1 is located in plastids in both suspension culture cells and leaves and is attached to the thylakoid membranes with its C-terminal DNA-binding domain oriented towards the stroma. It has a major DNA-binding activity in mature Arabidopsis chloroplasts and binds to all tested chloroplast DNA fragments without detectable sequence specificity. Its expression is tightly correlated with the accumulation of thylakoid membranes. Importantly, it is associated in vivo with nucleoids, suggesting a function for MFP1 at the interface between chloroplast nucleoids and the developing thylakoid membrane system. PMID:12930969

  9. Processing of Cholinesterase-like α/β-Hydrolase Fold Proteins: Alterations Associated with Congenital Disorders

    PubMed Central

    De Jaco, Antonella; Comoletti, Davide; Dubi, Noga; Camp, Shelley; Taylor, Palmer

    2016-01-01

    The α/β hydrolase fold family is perhaps the largest group of proteins presenting significant structural homology with divergent functions, ranging from catalytic hydrolysis to heterophilic cell adhesive interactions to chaperones in hormone production. All the proteins of the family share a common three-dimensional core structure containing the α/β-hydrolase fold domain that is crucial for proper protein function. Several mutations associated with congenital diseases or disorders have been reported in conserved residues within the α/β-hydrolase fold domain of cholinesterase-like proteins, neuroligins, butyrylcholinesterase and thyroglobulin. These mutations are known to disrupt the architecture of the common structural domain either globally or locally. Characterization of the natural mutations affecting the α/β-hydrolase fold domain in these proteins has shown that they mainly impair processing and trafficking along the secretory pathway causing retention of the mutant protein in the endoplasmic reticulum. Studying the processing of α/β-hydrolase fold mutant proteins should uncover new functions for this domain, that in some cases require structural integrity for both export of the protein from the ER and for facilitating subunit dimerization. A comparative study of homologous mutations in proteins that are closely related family members, along with the definition of new three-dimensional crystal structures, will identify critical residues for the assembly of the α/β-hydrolase fold. PMID:21933121

  10. Magnolol affects expression of IGF-1 and associated binding proteins in human prostate cancer cells in vitro.

    PubMed

    McKeown, Brendan T; Hurta, Robert A R

    2014-11-01

    This study investigated the effects of magnolol, a compound from Magnolia officinalis, on the behavior of LNCaP and PC3 human prostate cancer cells in vitro. In vitro cell culture approach with biochemical tests and Western blot analyses was used. Magnolol, (80 μM, 6 hour exposure) was found to affect the expression of insulin-like growth factor-1 (IGF-1) and associated proteins. In both cell lines, protein expression of IGF-1 and insulin-like growth factor binding protein-5 (IGFBP-5) were significantly decreased, while protein expression of IGFBP-3 was significantly increased. Additionally, protein expression of insulin-like growth factor-1 receptor (IGF-1R) was significantly increased and the phosphorylated form of IGF-1 (p-IGF-1R) was significantly decreased in PC3 cells, while IGFBP-4 protein expression was significantly increased in LNCaP cells. This study has demonstrated for the first time that magnolol can alter the expression of IGF-1 and associated proteins in human prostate cancer cells in vitro and suggests that magnolol may have a potential role as a novel anti-prostate cancer agent. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Comparative Proteome Analysis Reveals Four Novel Polyhydroxybutyrate (PHB) Granule-Associated Proteins in Ralstonia eutropha H16

    PubMed Central

    Sznajder, Anna; Pfeiffer, Daniel

    2014-01-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. PMID:25548058

  12. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  13. Computational Study of Pseudo-phosphorylation of the Microtubule associated Protein Tau

    NASA Astrophysics Data System (ADS)

    Prokopovich, Dmitriy; Larini, Luca

    This computational study focuses on the effect of pseudo-phosphorylation on the aggregation of the microtubule associated protein tau. In the axon of the neuron, tau regulates the assembly of microtubules in the cytoskeleton. This is important for both stabilization of and transport across the microtubules. One of the hallmarks of the Alzheimer's disease is that tau is hyper-phosphorylated and aggregates into neurofibrillary tangles that lay waste to the neurons. It is not known if hyper-phosphorylation directly causes the aggregation of tau into tangles. Experimentally, pseudo-phosphorylation mimics the effects of phosphorylation by mutating certain residues of the protein chain into charged residues. In this study, we will consider the fragment called PHF43 that belongs to the microtubule binding region and has been shown to readily aggregate.

  14. Macavirus latency-associated protein evades immune detection through regulation of protein synthesis in cis depending upon its glycin/glutamate-rich domain

    PubMed Central

    Chen, Ting; Myster, Françoise; Javaux, Justine; Vanderplasschen, Alain

    2017-01-01

    Alcelaphine herpesvirus 1 (AlHV-1) is a γ-herpesvirus (γ-HV) belonging to the macavirus genus that persistently infects its natural host, the wildebeest, without inducing any clinical sign. However, cross-transmission to other ruminant species causes a deadly lymphoproliferative disease named malignant catarrhal fever (MCF). AlHV-1 ORF73 encodes the latency-associated nuclear antigen (LANA)-homolog protein (aLANA). Recently, aLANA has been shown to be essential for viral persistence in vivo and induction of MCF, suggesting that aLANA shares key properties of other γ-HV genome maintenance proteins. Here we have investigated the evasion of the immune response by aLANA. We found that a glycin/glutamate (GE)-rich repeat domain was sufficient to inhibit in cis the presentation of an epitope linked to aLANA. Although antigen presentation in absence of GE was dependent upon proteasomal degradation of aLANA, a lack of GE did not affect protein turnover. However, protein self-synthesis de novo was downregulated by aLANA GE, a mechanism directly associated with reduced antigen presentation in vitro. Importantly, codon-modification of aLANA GE resulted in increased antigen presentation in vitro and enhanced induction of antigen-specific CD8+ T cell responses in vivo, indicating that mRNA constraints in GE rather than peptidic sequence are responsible for cis-limitation of antigen presentation. Nonetheless, GE-mediated limitation of antigen presentation in cis of aLANA was dispensable during MCF as rabbits developed the disease after virus infection irrespective of the expression of full-length or GE-deficient aLANA. Altogether, we provide evidence that inhibition in cis of protein synthesis through GE is likely involved in long-term immune evasion of AlHV-1 latent persistence in the wildebeest natural host, but dispensable in MCF pathogenesis. PMID:29059246

  15. Microtubule plus-end tracking of end-binding protein 1 (EB1) is regulated by CDK5 regulatory subunit-associated protein 2

    PubMed Central

    Fong, Ka-Wing; Au, Franco K. C.; Jia, Yue; Yang, Shaozhong; Zhou, Liying; Qi, Robert Z.

    2017-01-01

    Microtubules are polar cytoskeleton filaments that extend via growth at their plus ends. Microtubule plus-end-tracking proteins (+TIPs) accumulate at these growing plus ends to control microtubule dynamics and attachment. The +TIP end-binding protein 1 (EB1) and its homologs possess an autonomous plus-end-tracking mechanism and interact with other known +TIPs, which then recruit those +TIPs to the growing plus ends. A major +TIP class contains the SXIP (Ser-X-Ile-Pro, with X denoting any amino acid residue) motif, known to interact with EB1 and its homologs for plus-end tracking, but the role of SXIP in regulating EB1 activities is unclear. We show here that an interaction of EB1 with the SXIP-containing +TIP CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) regulates several EB1 activities, including microtubule plus-end tracking, dynamics at microtubule plus ends, microtubule and α/β-tubulin binding, and microtubule polymerization. The SXIP motif fused with a dimerization domain from CDK5RAP2 significantly enhanced EB1 plus-end-tracking and microtubule-polymerizing and bundling activities, but the SXIP motif alone failed to do so. An SXIP-binding-deficient EB1 mutant displayed significantly lower microtubule plus-end tracking than the wild-type protein in transfected cells. These results suggest that EB1 cooperates with CDK5RAP2 and perhaps other SXIP-containing +TIPs in tracking growing microtubule tips. We also generated plus-end-tracking chimeras of CDK5RAP2 and the adenomatous polyposis coli protein (APC) and found that overexpression of the dimerization domains interfered with microtubule plus-end tracking of their respective SXIP-containing chimeras. Our results suggest that disruption of SXIP dimerization enables detailed investigations of microtubule plus-end-associated functions of individual SXIP-containing +TIPs. PMID:28320860

  16. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    PubMed

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  17. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells

    PubMed Central

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard

    2017-01-01

    ABSTRACT The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  18. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP) fused antigens: a potential tool to develop DNA vaccines against flaviviruses.

    PubMed

    Dhalia, Rafael; Maciel, Milton; Cruz, Fábia S P; Viana, Isabelle F T; Palma, Mariana L; August, Thomas; Marques, Ernesto T A

    2009-12-01

    Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the development of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP). The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.

  19. Protein Feeding in Pediatric Acute Kidney Injury Is Not Associated With a Delay in Renal Recovery.

    PubMed

    Kyle, Ursula G; Akcan-Arikan, Ayse; Silva, Jaime C; Goldsworthy, Michelle; Shekerdemian, Lara S; Coss-Bu, Jorge A

    2017-01-01

    Critically ill children with acute kidney injury (AKI) are at high risk of underfeeding. Newer guidelines for nutrition support recommend higher protein intake. Therefore, the study evaluated the effects of protein feeding on the resolution of AKI and compared energy and protein intake in patients with and without AKI after implementation of Nutrition Support guidelines. Retrospective study. Five hundred twenty critically ill children from October 2012 to June 2013 and October to December 2013. Energy and protein intake in patients with no AKI, resolved, or persistent AKI. Energy and protein intake was documented for days 1-8 of Pediatric Intensive Care Unit stay and in the postimplementation versus preimplementation period of nutrition support guidelines. AKI was defined by modified pRIFLE. Persistent AKI was defined as patients who did not resolve their AKI during the study period. A higher percentage of patients with resolved and persistent AKI met ≥ 80% of protein needs versus no AKI. After adjustment for Pediatric Risk of Mortality Score, the odds ratio for protein intake of ≥ 80% compared to <80% of estimated protein needs was not significant, which suggests that higher protein intake was not associated with nonresolution of AKI. There were significant improvements in the cumulative protein gap in patients with no AKI in the postimplementation (-1.0 [-1.7 to -0.6] g/kg/day) compared to preimplementation period (-1.3 [-1.7 to -0.9] g/kg/day, P = .001) and persistent AKI in the postimplementation (-0.8 [-1.4 to -0.1] g/kg/day) compared to preimplementation (-1.3 [-1.7 to -0.9] g/kg/day, P = .03). Higher protein intake was not associated with a delay in renal recovery in patients with AKI after adjustment for severity of illness. Protein intake was improved in critically ill children with no AKI, resolved, and persistent AKI after implementation of Nutrition Support Guidelines, but underfeeding persisted in these patients. Copyright © 2016 National

  20. Early energy and protein intakes and associations with growth, BPD, and ROP in extremely preterm infants.

    PubMed

    Klevebro, Susanna; Westin, Vera; Stoltz Sjöström, Elisabeth; Norman, Mikael; Domellöf, Magnus; Edstedt Bonamy, Anna-Karin; Hallberg, Boubou

    2018-05-29

    Extremely preterm infants face substantial neonatal morbidity. Nutrition is important to promote optimal growth and organ development in order to reduce late neonatal complications. The aim of this study was to examine the associations of early nutritional intakes on growth and risks of bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) in a high-risk population. This population-based cohort study includes infants born before 27 0/7 weeks of gestational age without severe malformations and surviving ≥10 days. Intake of energy and protein on postnatal days 4-6 and association with weight standard deviation score (WSDS) from birth to day 7, as well as intakes of energy and protein on postnatal days 4-6 and 7 to 27, respectively, and association with composite outcome of death and BPD and separate outcomes of BPD and ROP were examined, and adjusted for potential confounders. The cohort comprised 296 infants with a median gestational age of 25 3/7 weeks. Expressed as daily intakes, every additional 10 kcal/kg/d of energy during days 4-6 was associated with 0.08 higher WSDS on day 7 (95% CI 0.06-0.11; p < 0.001). Between days 7 and 27, every 10 kcal/kg/d increase in energy intake was associated with a reduced risk of BPD of 9% (95% CI 1-16; p = 0.029) and any grade of ROP with a reduced risk of 6% (95% CI 2-9; p = 0.005) in multivariable models. This association was statistically significant in infants with ≤10 days of mechanical ventilation. In infants with >10 days of mechanical ventilation, a combined higher intake of energy and protein was associated with a reduced risk of BPD. Early provision of energy and protein may reduce postnatal weight loss and risk of morbidity in extremely preterm infants. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.