Science.gov

Sample records for apis mellifera por

  1. Evidence of Apis cerana sacbrood virus infection in Apis mellifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sacbrood virus (SBV) is one of the most serious threats to Apis cerana but is much less destructive to Apis mellifera. In previous studies, SBV isolates infecting A. cerana and A. mellifera were identified as different serotypes, suggesting a species-barrier of SBV infection. In order to clarify whe...

  2. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera

    PubMed Central

    Gong, Hong-Ri; Chen, Xiu-Xian; Chen, Yan Ping; Hu, Fu-Liang; Zhang, Jiang-Lin; Lin, Zhe-Guang; Yu, Ji-Wei

    2016-01-01

    Sacbrood virus (SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera. In previous studies, SBV isolates infecting A. cerana (AcSBV) and SBV isolates infecting A. mellifera (AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318 A. mellifera colonies and 64 A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38 A. mellifera colonies and 37 A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated from A. mellifera were clustered with the A. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae of A. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV in A. mellifera. Our results suggest that AcSBV is able to infect A. mellifera colonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities of A. cerana and A. mellifera to sacbrood disease and is potentially useful for guiding beekeeping practices. PMID:26801569

  3. Standard methods for Apis mellifera propolis research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Propolis is one of the most fascinating honey bee (Apis mellifera L.) products. It is a plant derived product that bees produce from resins that they collect from different plant organs and with which they mix beeswax. Propolis is a building material and a protective agent in the beehive. It also pl...

  4. The Apis mellifera filamentous virus genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  5. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera.

    PubMed

    Gong, Hong-Ri; Chen, Xiu-Xian; Chen, Yan Ping; Hu, Fu-Liang; Zhang, Jiang-Lin; Lin, Zhe-Guang; Yu, Ji-Wei; Zheng, Huo-Qing

    2016-04-01

    Sacbrood virus(SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera In previous studies, SBV isolates infecting A. cerana(AcSBV) and SBV isolates infecting A. mellifera(AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318A. mellifera colonies and 64A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38A. mellifera colonies and 37A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated fromA. mellifera were clustered with theA. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae ofA. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV inA. mellifera Our results suggest that AcSBV is able to infectA. melliferacolonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities ofA. cerana and A. melliferato sacbrood disease and is potentially useful for guiding beekeeping practices.

  6. Rare royal families in honeybees, Apis mellifera

    NASA Astrophysics Data System (ADS)

    Moritz, Robin F. A.; Lattorff, H. Michael G.; Neumann, Peter; Kraus, F. Bernhard; Radloff, Sarah E.; Hepburn, H. Randall

    2005-10-01

    The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.

  7. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    PubMed

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells.

  8. The Apis mellifera Filamentous Virus Genome.

    PubMed

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D; de Miranda, Joachim R; Neumann, Peter

    2015-07-09

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  9. Inheritance of traits associated with reproductive potential in Apis mellifera capensis and Apis mellifera scutellata workers.

    PubMed

    Jordan, Lyndon A; Allsopp, Michael H; Beekman, Madeleine; Wossler, Theresa C; Oldroyd, Benjamin P

    2008-01-01

    When workers of the thelytokous Cape honeybee, Apis mellifera capensis, come into contact with colonies of the neighboring arrhenotokous subspecies Apis mellifera scutellata, they can become lethal social parasites. We examined the inheritance of 3 traits (number of ovarioles, number of basitarsal hairs, and size of spermatheca) that are thought to be associated with reproductive potential in A. m. capensis workers. To do so, we produced hybrid A. m. scutellata/A. m. capensis queens and backcrossed them to either A. m. capensis or A. m. scutellata drones. We then measured the 3 traits in parental, hybrid, and backcross offspring. We show that the 3 traits are phenotypically correlated. We also show that the expression of ovariole number, basitarsal hairs, and size of spermatheca is influenced by the genotype of the individual and the rearing environment but that the influence of the rearing environment is less important to the number of ovarioles. We hypothesize a single recessive allele (l), present at high frequency in natural A. m. capensis populations, which when homozygous causes larvae to elicit more food. This increased feeding as larvae causes resulting adult workers to develop more queen-like morphology and increased reproductive potential. The number of ovarioles, in contrast, appears to be under independent genetic control.

  10. From where did the Western honeybee (Apis mellifera) originate?

    PubMed

    Han, Fan; Wallberg, Andreas; Webster, Matthew T

    2012-08-01

    The native range of the honeybee Apis mellifera encompasses Europe, Africa, and the Middle East, whereas the nine other species of Apis are found exclusively in Asia. It is therefore commonly assumed that A. mellifera arose in Asia and expanded into Europe and Africa. However, other hypotheses for the origin of A. mellifera have also been proposed based on phylogenetic trees constructed from genetic markers. In particular, an analysis based on >1000 single-nucleotide polymorphism markers placed the root of the tree of A. mellifera subspecies among samples from Africa, suggestive of an out-of-Africa expansion. Here, we re-evaluate the evidence for this and other hypotheses by testing the robustness of the tree topology to different tree-building methods and by removing specimens with a potentially hybrid background. These analyses do not unequivocally place the root of the tree of A. mellifera subspecies within Africa, and are potentially consistent with a variety of hypotheses for honeybee evolution, including an expansion out of Asia. Our analyses also support high divergence between western and eastern European populations of A. mellifera, suggesting they are likely derived from two distinct colonization routes, although the sources of these expansions are still unclear.

  11. Standard methods for research on apis mellifera gut symbionts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  12. Standard methods for research on Apis mellifera gut symbionts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  13. Standard methods for Apis mellifera anatomy and dissection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the anatomy and functions of internal and external structures are fundamental to many studies on the honey bee Apis mellifera. Similarly, proficiency in dissection techniques is vital for many more complex procedures. In this paper, which is a prelude to the other papers of the C...

  14. Nosema ceranae an emergent pathogen of Apis mellifera in Chile.

    PubMed

    Martínez, Jessica; Leal, Germán; Conget, Paulette

    2012-08-01

    The microsporidian Nosema apis and Nosema ceranae have been associated with colony disorders of Apis mellifera and Apis cerana, respectively. N. apis is endemic in South America. Recently, N. ceranae has been detected in Brazil, Uruguay and Argentina. No report of its presence, distribution and prevalence in Chile is available. Here, we present a real-time PCR-based method that was able to discriminate between N. apis and N. ceranae. The dynamic range of this assay was 100 to 100,000 spores per honeybee. False-negative results were avoided due to the use of ACTIN gene as internal standard. False-positive results were obtained neither in experimentally nor in naturally contaminated samples. Using this method, we screened 240 beehives from the Chilean region where 42% of the total country honey production take places (Región del Biobío). Nosema spp. were detected in the four provinces and in 20 of the 26 communes of the region. Among the samples analysed, 49% were positive for N. ceranae. Their infection level ranged from 200 to more than 100,000 spores per honeybee. N. apis was not detected in this region. Hence, our data show that in Chile N. ceranae is an emergent pathogen that is been replacing N. apis. Also, they support that N. ceranae maybe the actual responsible for nosemosis in A. mellifera in South America.

  15. Comparison of learning and memory of Apis cerana and Apis mellifera.

    PubMed

    Qin, Qiu-Hong; He, Xu-Jiang; Tian, Liu-Qing; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2012-10-01

    The honeybee is an excellent model organism for research on learning and memory among invertebrates. Learning and memory in honeybees has intrigued neuroscientists and entomologists in the last few decades, but attention has focused almost solely on the Western honeybee, Apis mellifera. In contrast, there have been few studies on learning and memory in the Eastern honeybee, Apis cerana. Here we report comparative behavioral data of color and grating learning and memory for A. cerana and A. mellifera in China, gathered using a Y-maze apparatus. We show for the first time that the learning and memory performance of A. cerana is significantly better on both color and grating patterns than that of A. mellifera. This study provides the first evidence of a learning and memory difference between A. cerana and A. mellifera under controlled conditions, and it is an important basis for the further study of the mechanism of learning and memory in honeybees.

  16. [New Approach to the Mitotype Classification in Black Honeybee Apis mellifera mellifera and Iberian Honeybee Apis mellifera iberiensis].

    PubMed

    Ilyasov, R A; Poskryakov, A V; Petukhov, A V; Nikolenko, A G

    2016-03-01

    The black honeybee Apis mellifera mellifera L. is today the only subspecies of honeybee which is suitable for commercial breeding in the climatic conditions of Northern Europe with long cold winters. The main problem of the black honeybee in Russia and European countries is the preservation of the indigenous gene pool purity, which is lost as a result of hybridization with subspecies, A. m. caucasica, A. m. carnica, A. m. carpatica, and A. m. armeniaca, introduced from southern regions. Genetic identification of the subspecies will reduce the extent of hybridization and provide the gene pool conservation of the black honeybee. Modern classification of the honeybee mitotypes is mainly based on the combined use ofthe DraI restriction endonuclease recognition site polymorphism and sequence polymorphism of the mtDNA COI-COII region. We performed a comparative analysis of the mtDNA COI-COII region sequence polymorphism in the honeybees ofthe evolutionary lineage M from Ural and West European populations of black honeybee A. m. mellifera and Spanish bee A. m. iberiensis. A new approach to the classification of the honeybee M mitotypes was suggested. Using this approach and on the basis of the seven most informative SNPs of the mtDNA COI-COII region, eight honeybee mitotype groups were identified. In addition, it is suggested that this approach will simplify the previously proposed complicated mitotype classification and will make it possible to assess the level of the mitotype diversity and to identify the mitotypes that are the most valuable for the honeybee breeding and rearing.

  17. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers.

    PubMed

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y; Miao, Xiaoqing

    2013-01-01

    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  18. Nosema ceranae in European honey bees (Apis mellifera).

    PubMed

    Fries, Ingemar

    2010-01-01

    Nosema ceranae is a microsporidian parasite described from the Asian honey bee, Apis cerana. The parasite is cross-infective with the European honey bee, Apis mellifera. It is not known when or where N. ceranae first infected European bees, but N. ceranae has probably been infecting European bees for at least two decades. N. ceranae appears to be replacing Nosema apis, at least in some populations of European honey bees. This replacement is an enigma because the spores of the new parasite are less durable than those of N. apis. Virulence data at both the individual bee and at the colony level are conflicting possibly because the impact of this parasite differs in different environments. The recent advancements in N. ceranae genetics, with a draft assembly of the N. ceranae genome available, are discussed and the need for increased research on the impacts of this parasite on European honey bees is emphasized.

  19. Draft genome sequence of the Algerian bee Apis mellifera intermissa

    PubMed Central

    Haddad, Nizar Jamal; Loucif-Ayad, Wahida; Adjlane, Noureddine; Saini, Deepti; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; AlShagoor, Banan; Batainh, Ahmed Mahmud; Mugasimangalam, Raja

    2015-01-01

    Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation. PMID:26484171

  20. Draft genome sequence of the Algerian bee Apis mellifera intermissa.

    PubMed

    Haddad, Nizar Jamal; Loucif-Ayad, Wahida; Adjlane, Noureddine; Saini, Deepti; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; AlShagoor, Banan; Batainh, Ahmed Mahmud; Mugasimangalam, Raja

    2015-06-01

    Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation.

  1. Polymorphism analysis of csd gene in six Apis mellifera subspecies.

    PubMed

    Wang, Zilong; Liu, Zhiyong; Wu, Xiaobo; Yan, Weiyu; Zeng, Zhijiang

    2012-03-01

    The complementary sex determination (csd) gene is the primary gene determining the gender of honey bees (Apis spp). In this study we analyzed the polymorphism of csd gene in six Apis mellifera subspecies. The genomic region 3 of csd gene in these six A. mellifera was cloned, and identified. A total of 79 haplotypes were obtained from these six subspecies. Analysis showed that region 3 of csd gene has a high level of polymorphism in all the six A. mellifera subspecies. The A. m. anatolica subspecies has a slightly higher nucleotide diversity (π) than other subspecies, while the π values showed no significant difference among the other five subspecies. The phylogenetic tree showed that all the csd haplotypes from different A. mellifera subspecies are scattered throughout the tree, without forming six different clades. Population differentiation analysis showed that there are significant genetic differentiations among some of the subspecies. The NJ phylogenetic tree showed that the A. m. caucasica and A. m. carnica have the closest relationship, followed by A. m. ssp, A. m. ligustica, A. m. carpatica and A. m. anatolica that were gathered in the tree in turn.

  2. Carbonic anhydrase from Apis mellifera: purification and inhibition by pesticides.

    PubMed

    Soydan, Ercan; Güler, Ahmet; Bıyık, Selim; Şentürk, Murat; Supuran, Claudiu T; Ekinci, Deniz

    2017-12-01

    Carbonic anhydrase (CA) enzymes have been shown to play an important role in ion transport and in pH regulation in several organisms. Despite this information and the wealth of knowledge regarding the significance of CA enzymes, few studies have been reported about bee CA enzymes and the hazardous effects of chemicals. Using Apis mellifera as a model, this study aimed to determine the risk of pesticides on Apis mellifera Carbonic anhydrase enzyme (Am CA). CA was initially purified from Apis mellifera spermatheca for the first time in the literature. The enzyme was purified with an overall purification of ∼35-fold with a molecular weight of ∼32 kDa. The enzyme was then exposed to pesticides, including tebuconazole, propoxur, carbaryl, carbofuran, simazine and atrazine. The six pesticides dose-dependently inhibited in vitro AmCA activity at low micromolar concentrations. IC50 values for the pesticides were 0.0030, 0.0321, 0.0031, 0.0087, 0.0273 and 0.0165 μM, respectively. The AmCA inhibition mechanism of these compounds is unknown at this moment.

  3. Nosema ceranae in drone honey bees (Apis mellifera).

    PubMed

    Traver, Brenna E; Fell, Richard D

    2011-07-01

    Nosema ceranae is a microsporidian intracellular parasite of honey bees, Apis mellifera. Previously Nosema apis was thought to be the only cause of nosemosis, but it has recently been proposed that N. ceranae is displacing N. apis. The rapid spread of N. ceranae could be due to additional transmission mechanisms, as well as higher infectivity. We analyzed drones for N. ceranae infections using duplex qPCR with species specific primers and probes. We found that both immature and mature drones are infected with N. ceranae at low levels. This is the first report detecting N. ceranae in immature bees. Our data suggest that because drones are known to drift from their parent hives to other hives, they could provide a means for disease spread within and between apiaries.

  4. The pheromones of laying workers in two honeybee sister species: Apis cerana and Apis mellifera.

    PubMed

    Tan, Ken; Yang, Mingxian; Wang, Zhengwei; Radloff, Sarah E; Pirk, Christian W W

    2012-04-01

    When a honeybee colony loses its queen, workers activate their ovaries and begin to lay eggs. This is accompanied by a shift in their pheromonal bouquet, which becomes more queen like. Workers of the Asian hive bee Apis cerana show unusually high levels of ovary activation and this can be interpreted as evidence for a recent evolutionary arms race between queens and workers over worker reproduction in this species. To further explore this, we compared the rate of pheromonal bouquet change between two honeybee sister species of Apis cerana and Apis mellifera under queenright and queenless conditions. We show that in both species, the pheromonal components HOB, 9-ODA, HVA, 9-HDA, 10-HDAA and 10-HDA have significantly higher amounts in laying workers than in non-laying workers. In the queenright colonies of A. mellifera and A. cerana, the ratios (9-ODA)/(9-ODA + 9-HDA + 10-HDAA + 10-HDA) are not significantly different between the two species, but in queenless A. cerana colonies the ratio is significant higher than in A. mellifera, suggesting that in A. cerana, the workers' pheromonal bouquet is dominated by the queen compound, 9-ODA. The amount of 9-ODA in laying A. cerana workers increased by over 585% compared with the non-laying workers, that is 6.75 times higher than in A. mellifera where laying workers only had 86% more 9-ODA compared with non-laying workers.

  5. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories.

    PubMed

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event.

  6. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    PubMed Central

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event. PMID:26720131

  7. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana

    PubMed Central

    Beaurepaire, Alexis L.; Dinh, Tam Q.; Cervancia, Cleofas; Moritz, Robin F. A.

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation. PMID:26248192

  8. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    PubMed

    Beaurepaire, Alexis L; Truong, Tuan A; Fajardo, Alejandro C; Dinh, Tam Q; Cervancia, Cleofas; Moritz, Robin F A

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.

  9. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera).

    PubMed

    Milbrath, Meghan O; van Tran, Toan; Huang, Wei-Fong; Solter, Leellen F; Tarpy, David R; Lawrence, Frank; Huang, Zachary Y

    2015-02-01

    Honey bees (Apis mellifera) are infected by two species of microsporidia: Nosema apis and Nosemaceranae. Epidemiological evidence indicates that N. ceranae may be replacing N. apis globally in A. mellifera populations, suggesting a potential competitive advantage of N. ceranae. Mixed infections of the two species occur, and little is known about the interactions among the host and the two pathogens that have allowed N. ceranae to become dominant in most geographical areas. We demonstrated that mixed Nosema species infections negatively affected honey bee survival (median survival=15-17days) more than single species infections (median survival=21days and 20days for N. apis and N. ceranae, respectively), with median survival of control bees of 27days. We found similar rates of infection (percentage of bees with active infections after inoculation) for both species in mixed infections, with N. apis having a slightly higher rate (91% compared to 86% for N. ceranae). We observed slightly higher spore counts in bees infected with N. ceranae than in bees infected with N. apis in single microsporidia infections, especially at the midpoint of infection (day 10). Bees with mixed infections of both species had higher spore counts than bees with single infections, but spore counts in mixed infections were highly variable. We did not see a competitive advantage for N. ceranae in mixed infections; N. apis spore counts were either higher or counts were similar for both species and more N. apis spores were produced in 62% of bees inoculated with equal dosages of the two microsporidian species. N. ceranae does not, therefore, appear to have a strong within-host advantage for either infectivity or spore growth, suggesting that direct competition in these worker bee mid-guts is not responsible for its apparent replacement of N. apis.

  10. Comb construction in mixed-species colonies of honeybees, Apis cerana and Apis mellifera.

    PubMed

    Yang, Ming-Xian; Tan, Ken; Radloff, Sarah E; Phiancharoen, Mananya; Hepburn, H Randall

    2010-05-01

    Comb building in mixed-species colonies of Apis cerana and Apis mellifera was studied. Two types of cell-size foundation were made from the waxes of these species and inserted into mixed colonies headed either by an A. cerana or an A. mellifera queen. The colonies did not discriminate between the waxes but the A. cerana cell-size foundation was modified during comb building by the workers of both species. In pure A. cerana colonies workers did not accept any foundation but secreted wax and built on foundation in mixed colonies. Comb building is performed by small groups of workers through a mechanism of self-organisation. The two species cooperate in comb building and construct nearly normal combs but they contain many irregular cells. In pure A. mellifera colonies, the A. cerana cell size was modified and the queens were reluctant to lay eggs on such combs. In pure A. cerana colonies, the A. mellifera cell size was built without any modification but these cells were used either for drone brood rearing or for food storing. The principal elements of comb-building behaviour are common to both species, which indicates that they evolved prior to and were conserved after speciation.

  11. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera

    PubMed Central

    2013-01-01

    Background The aim of the present study was to evaluate the physicochemical and antioxidant properties of Malaysian monofloral honey samples—acacia, pineapple and borneo honey—and compare them with tualang honey. Acacia and pineapple honey are produced by Apis mellifera bees while borneo and tualang honey are produced by Apis cerana and Apis dorsata bees, respectively. Methods The physical parameters of honey, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and apparent sucrose content, were measured. Hydroxymethylfurfural (HMF) was measured using high performance liquid chromatography, and a number of biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. Results Acacia honey was the most acidic (pH 3.53), whereas pineapple honey had the lowest moisture content (14.86%), indicating that both types of honey can resist microbial spoilage more effectively when compared to tualang honey (pH 3.80 and 17.53% moisture content). Acacia honey contained the highest EC (0.76 mS/cm), whereas borneo honey had the highest (377 ppm) TDS. The mean HMF content in Malaysian honey was 35.98 mg/kg. Tualang honey, which is amber color, had the highest color intensity (544.33 mAU). Acacia honey is the sweetest, and contained the highest concentration of total sugar, reducing sugar and apparent sucrose. Tualang honey had the highest concentration of phenolic compounds (352.73 ± 0.81 mg galic acid/kg), flavonoids (65.65 ± 0.74 mg catechin/kg), DPPH (59.89%), FRAP values (576.91 ± 0.64 μM Fe (II)/100 g) and protein content (4.83 ± 0.02 g/kg) as well as the lowest AEAC values (244.10 ± 5.24 mg/kg), indicating its strong antioxidant properties. Proline, an important amino acid that is present in honey was also measured in the present study and it was found at the highest concentration in pineapple honey. Several strong correlations were found among the

  12. Genetic variation in natural honeybee populations, Apis mellifera capensis

    NASA Astrophysics Data System (ADS)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  13. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    NASA Astrophysics Data System (ADS)

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  14. Lethal fighting between honeybee queens and parasitic workers (Apis mellifera).

    PubMed

    Moritz, Robin F A; Pflugfelder, Jochen; Crewe, Robin M

    2003-08-01

    Pheromonal signals associated with queen and worker policing prevent worker reproduction and have been identified as important factors for establishing harmony in the honeybee (Apis mellifera) colony. However, "anarchic workers", which can evade both mechanisms, have been detected at low frequency in several honeybee populations. Worker bees of the Cape honeybee, Apis mellifera capensis, also show this anarchistic trait but to an extreme degree. They can develop into so called "pseudoqueens", which release a pheromonal bouquet very similar to that of queens. They prime and release very similar reactions in sterile workers to those of true queens (e.g. suppress ovary activation; release retinue behavior). Here we show in an experimental bioassay that lethal fights between these parasitic workers and the queen (similar to queen-queen fights) occur, resulting in the death of either queen or worker. Although it is usually the queen that attacks the parasitic workers and kills many of them, in a few cases the workers succeeded in killing the queen. If this also occurs in a parasitized colony where the queen encounters many parasitic workers, she may eventually be killed in one of the repeated fights she engages in.

  15. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing.

    PubMed

    Martin, Stephen J; Beekman, Madeleine; Wossler, Theresa C; Ratnieks, Francis L W

    2002-01-10

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  16. Neutralization of Apis mellifera bee venom activities by suramin.

    PubMed

    El-Kik, Camila Z; Fernandes, Fabrício F A; Tomaz, Marcelo Amorim; Gaban, Glauco A; Fonseca, Tatiane F; Calil-Elias, Sabrina; Oliveira, Suellen D S; Silva, Claudia L M; Martinez, Ana Maria Blanco; Melo, Paulo A

    2013-06-01

    In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom.

  17. Identification of Complete Repertoire of Apis florea Odorant Receptors Reveals Complex Orthologous Relationships with Apis mellifera.

    PubMed

    Karpe, Snehal D; Jain, Rikesh; Brockmann, Axel; Sowdhamini, Ramanathan

    2016-09-26

    We developed a computational pipeline for homology based identification of the complete repertoire of olfactory receptor (OR) genes in the Asian honey bee species, Apis florea Apis florea is phylogenetically the most basal honey bee species and also the most distant sister species to the Western honey bee Apis mellifera, for which all OR genes had been identified before. Using our pipeline, we identified 180 OR genes in A. florea, which is very similar to the number of ORs identified in A. mellifera (177 ORs). Many characteristics of the ORs including gene structure, synteny of tandemly repeated ORs and basic phylogenetic clustering are highly conserved. The composite phylogenetic tree of A. florea and A. mellifera ORs could be divided into 21 clades which are in harmony with the existing Hymenopteran tree. However, we found a few nonorthologous OR relationships between both species as well as independent pseudogenization of ORs suggesting separate evolutionary changes. Particularly, a subgroup of the OR gene clade XI, which had been hypothesized to code cuticular hydrocarbon receptors showed a high number of species-specific ORs RNAseq analysis detected a total number of 145 OR transcripts in male and 162 in female antennae. Most of the OR genes were highly expressed on the female antennae. However, we detected five distinct male-biased OR genes, out of which three genes (AfOr11, AfOr18, AfOr170P) were shown to be male-biased in A. mellifera, too, thus corroborating a behavioral function in sex-pheromone communication.

  18. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    PubMed

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation.

  19. [New SNP markers of the honeybee vitellogenin gene (Vg) used for identification of subspecies Apis mellifera mellifera L].

    PubMed

    Ilyasov, R A; Poskryakov, A V; Nikolenko, A G

    2015-02-01

    Preservation of the gene pool of honeybee subspecies Apis mellifera mellifera is of vital importance for successful beekeeping development in the northern regions of Eurasia. An effective method of genotyping honeybee colonies used in modern science is the mapping of sites of single nucleotide polymorphism (SNP). The honeybee vitellogenin gene (Vg) encodes a protein that affects reproductive function, behavior, immunity, longevity, and social organization in the honeybee Apis mellifera and is therefore a topical research subject. The results of comparative analysis of honeybee Vg sequences show that there are 26 SNP sites that differentiate M and C evolutionary branches and can be used as markers in selective breeding, DNA-barcoding, and the creation of genetic passports for A. m. mellifera colonies.

  20. Chill sensitivity of honey bee, Apis mellifera, embryos.

    PubMed

    Collins, Anita M; Mazur, Peter

    2006-08-01

    Improved methods for preservation of honey bee, Apis mellifera L., germplasm would be very welcome to beekeeping industry queen breeders. The introduction of two parasites and the emergence of an antibiotic resistant disease have increased demands for resistant stock. Techniques for artificial insemination of queens are available, and semen has been cryopreserved with limited success. However, cryopreservation of embryos for rearing queens would mesh well with current practices and also provide drones (haploid males). Eggs at five ages between twenty-four hours and sixty-two hours were exposed to 0, -6.6, and/or -15 degrees C for various times, and successful hatch measured. Honey bee embryos show chill sensitivity as do other insect embryos, and the rate of chill injury increases dramatically with decrease in holding temperature. The 48 h embryos in both groups showed the greatest tolerance to chilling, although 44 h embryos were only slightly less so.

  1. Pheromonal contest between honeybee workers ( Apis mellifera capensis)

    NASA Astrophysics Data System (ADS)

    Moritz, R. F. A.; Simon, U. E.; Crewe, R. M.

    2000-10-01

    Queenless workers of the Cape honeybee ( Apis mellifera capensis) can develop into reproductives termed pseudoqueens. Although they morphologically remain workers they become physiologically queenlike, produce offspring, and secrete mandibular gland pheromones similar to those of true queens. However, after queen loss only very few workers gain pseudoqueen status. A strong intracolonial selection governs which workers start oviposition and which remain sterile. The "queen substance", 9-keto-2(E)-decenoic acid (9-ODA), the dominant compound of the queen's mandibular gland pheromones, suppresses the secretion of queenlike mandibular gland pheromones in workers. It may act as an important signal in pseudoqueen selection. By analysing the mandibular gland pheromones of workers kept in pairs, we found that A. m. capensis workers compete to produce the strongest queen-like signal.

  2. A non-policing honey bee colony (Apis mellifera capensis).

    PubMed

    Beekman, Madeleine; Good, Gregory; Allsopp, Mike H; Radloff, Sarah; Pirk, Chris W W; Ratnieks, Francis L W

    2002-10-01

    In the Cape honey bee Apis mellifera capensis, workers lay female eggs without mating by thelytokous parthenogenesis. As a result, workers are as related to worker-laid eggs as they are to queen-laid eggs and therefore worker policing is expected to be lower, or even absent. This was tested by transferring worker- and queen-laid eggs into three queenright A. m. capensis discriminator colonies and monitoring their removal. Our results show that worker policing is variable in A. m. capensis and that in one colony worker-laid eggs were not removed. This is the first report of a non-policing queenright honey bee colony. DNA microsatellite and morphometric analysis suggests that the racial composition of the three discriminator colonies was different. The variation in policing rates could be explained by differences in degrees of hybridisation between A. m. capensis and A. m. scutellata, although a larger survey is needed to confirm this.

  3. A non-policing honey bee colony (Apis mellifera capensis)

    NASA Astrophysics Data System (ADS)

    Beekman, Madeleine; Good, Gregory; Allsopp, Mike; Radloff, Sarah; Pirk, Chris; Ratnieks, Francis

    2002-09-01

    In the Cape honey bee Apis mellifera capensis, workers lay female eggs without mating by thelytokous parthenogenesis. As a result, workers are as related to worker-laid eggs as they are to queen-laid eggs and therefore worker policing is expected to be lower, or even absent. This was tested by transferring worker- and queen-laid eggs into three queenright A. m. capensis discriminator colonies and monitoring their removal. Our results show that worker policing is variable in A. m. capensis and that in one colony worker-laid eggs were not removed. This is the first report of a non-policing queenright honey bee colony. DNA microsatellite and morphometric analysis suggests that the racial composition of the three discriminator colonies was different. The variation in policing rates could be explained by differences in degrees of hybridisation between A. m. capensis and A. m. scutellata, although a larger survey is needed to confirm this.

  4. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory

    PubMed Central

    Charbonneau, Lise R.; Hillier, Neil Kirk; Rogers, Richard E. L.; Williams, Geoffrey R.; Shutler, Dave

    2016-01-01

    Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex. PMID:26961062

  5. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory.

    PubMed

    Charbonneau, Lise R; Hillier, Neil Kirk; Rogers, Richard E L; Williams, Geoffrey R; Shutler, Dave

    2016-03-10

    Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex.

  6. Sequential hygienic behavior in Carniolan honey bees (Apis mellifera carnica).

    PubMed

    Gramacho, K P; Gonçalves, L S

    2009-01-01

    We examined the sequence, order or steps of hygienic behavior (HB) from pin-killed pupae until the removal of them by the bees. We conducted our study with four colonies of Apis mellifera carnica in Germany and made four repetitions. The pin-killing method was used for evaluation of the HB of bees. The data were collected every 2 h after perforation, totaling 13 observations. Additionally, for one hygienic colony and another non-hygienic colony, individual analyses of each dead pupa were made at every observation, including all details, steps or sequences of HB. The bees recognize the cells containing dead pupae within 2 h after perforation, initially making a hole in the capping, which is the beginning of HB. Uncapping of the dead brood cell reached maximum values from 4 to 6 h after perforation; after 24 h, practically all cells were already uncapped. Another variable, called brood partially removed, was analyzed 4 h after perforation, after the cells had been perforated, which involved uncapping, followed by partial or total removal of the brood. Maximum values of brood partially removed were found 10 h after perforation, though such cells could be found up to 48 h after perforation. The most frequent sequence of events in both colonies was: capped cell --> punctured cell --> brood partially removed --> empty cell. A new model of three pairs of recessive genes (uncapping u1, u2 and remover r) was proposed in order to explain the genetic control of the HB in Apis mellifera. We recommend evaluating HB 24 h after perforation and using a correction factor to compensate for control removal levels. We found a series of details of HB, which allow a study of how various factors may affect the sequence of the activities involved in HB and investigation of the genetics that controls this process.

  7. [Genetic Differentiation of Local Populations of the Dark European Bee Apis mellifera mellifera L. in the Urals].

    PubMed

    Il'yasov, R A; Poskryakov, A V; Petukhov, A V; Nikolenko, A G

    2015-07-01

    For the last two centuries, beekeepers in Russia and Europe have been introducing bees from the southern regions to the northern ones, subjecting the genetic pool of the dark European bee Apis mellifera mellifera L. subspecies to extensive hybridization. In order to reconfirm on the genetic level the previously published morphological data on the native bee population in the Urals, the Bashkortostan Republic, and the Perm Krai, we analyzed the polymorphism of the mitochondrial (mtDNA COI-COII intergenic locus) and nuclear (two microsatellite loci, ap243 and 4a110) DNA markers. Four local populations of the dark European bee A. m. mellifera surviving in the Urals have been identified, and their principal genetic characteristics have been determined. Data on the genetic structure and geographical localization of the areals of the dark European bee local populations in the Urals may be of use in restoring the damaged genetic pool of A. m. mellifera in Russia and other northern countries.

  8. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera.

    PubMed

    Tan, K; Radloff, S E; Li, J J; Hepburn, H R; Yang, M X; Zhang, L J; Neumann, P

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  9. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis.

    PubMed

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F A

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  10. A veterinary approach to the European honey bee (Apis mellifera)

    PubMed

    Williams, D L

    2000-07-01

    The European honey bee (Apis mellifera) has the unusual status of being an inherently wild species from which a natural foodstuff (honey) is derived by manipulating its behaviour to deposit this in man-made wooden frames. Bees also produce propolis and Royal Jelly which can be harvested but their most important effect is one not immediately obvious as an economic product: that of pollination. Bee diseases are predominantly infectious and parasitic conditions accentuated by the close confinement in which they congregate, either in man-made hives or in colonies in a natural cavity. Treatment or at least control of some of these conditions can be attempted. In some cases natural bee behavioural traits limit the effect of the disease while in others, such as the notifiable disease American foulbrood, destruction of the colony is the only method of control. The mite Varroa jacobsoni can be controlled by the synthetic pyrethroids flumethrin and tau-fluvalinate. The introduction of these products has heightened veterinary interest in this important invertebrate species.

  11. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    PubMed Central

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  12. Male fitness of honeybee colonies (Apis mellifera L.).

    PubMed

    Kraus, F B; Neumann, P; Scharpenberg, H; van Praagh, J; Moritz, R F A

    2003-09-01

    Honeybees (Apis mellifera L.) have an extreme polyandrous mating system. Worker offspring of 19 naturally mated queens was genotyped with DNA microsatellites, to estimate male reproductive success of 16 drone producing colonies. This allowed for estimating the male mating success on both the colony level and the level of individual drones. The experiment was conducted in a closed population on an isolated island to exclude interferences of drones from unknown colonies. Although all colonies had produced similar numbers of drones, differences among the colonies in male mating success exceeded one order of magnitude. These differences were enhanced by the siring success of individual drones within the offspring of mated queens. The siring success of individual drones was correlated with the mating frequency at the colony level. Thus more successful colonies not only produced drones with a higher chance of mating, but also with a significantly higher proportion of offspring sired than drones from less successful colonies. Although the life cycle of honeybee colonies is very female centred, the male reproductive success appears to be a major driver of natural selection in honeybees.

  13. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    PubMed

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  14. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  15. Activity of telomerase and telomeric length in Apis mellifera.

    PubMed

    Korandová, Michala; Frydrychová, Radmila Čapková

    2016-06-01

    Telomerase is an enzyme that adds repeats of DNA sequences to the ends of chromosomes, thereby preventing their shortening. Telomerase activity is associated with proliferative status of cells, organismal development, and aging. We report an analysis of telomerase activity and telomere length in the honeybee, Apis mellifera. Telomerase activity was found to be regulated in a development and caste-specific manner. During the development of somatic tissues of larval drones and workers, telomerase activity declined to 10 % of its level in embryos and remained low during pupal and adult stages but was upregulated in testes of late pupae, where it reached 70 % of the embryo level. Upregulation of telomerase activity was observed in the ovaries of late pupal queens, reaching 160 % of the level in embryos. Compared to workers and drones, queens displayed higher levels of telomerase activity. In the third larval instar of queens, telomerase activity reached the embryo level, and an enormous increase was observed in adult brains of queens, showing a 70-fold increase compared to a brain of an adult worker. Southern hybridization of terminal TTAGG fragments revealed a high variability of telomeric length between different individuals, although the same pattern of hybridization signals was observed in different tissues of each individual.

  16. The defensive response of the honeybee Apis mellifera.

    PubMed

    Nouvian, Morgane; Reinhard, Judith; Giurfa, Martin

    2016-11-15

    Honeybees (Apis mellifera) are insects living in colonies with a complex social organization. Their nest contains food stores in the form of honey and pollen, as well as the brood, the queen and the bees themselves. These resources have to be defended against a wide range of predators and parasites, a task that is performed by specialized workers, called guard bees. Guards tune their response to both the nature of the threat and the environmental conditions, in order to achieve an efficient trade-off between defence and loss of foraging workforce. By releasing alarm pheromones, they are able to recruit other bees to help them handle large predators. These chemicals trigger both rapid and longer-term changes in the behaviour of nearby bees, thus priming them for defence. Here, we review our current understanding on how this sequence of events is performed and regulated depending on a variety of factors that are both extrinsic and intrinsic to the colony. We present our current knowledge on the neural bases of honeybee aggression and highlight research avenues for future studies in this area. We present a brief overview of the techniques used to study honeybee aggression, and discuss how these could be used to gain further insights into the mechanisms of this behaviour.

  17. Studies of learned helplessness in honey bees (Apis mellifera ligustica).

    PubMed

    Dinges, Christopher W; Varnon, Christopher A; Cota, Lisa D; Slykerman, Stephen; Abramson, Charles I

    2017-04-01

    The current study reports 2 experiments investigating learned helplessness in the honey bee (Apis mellifera ligustica). In Experiment 1, we used a traditional escape method but found the bees' activity levels too high to observe changes due to treatment conditions. The bees were not able to learn in this traditional escape procedure; thus, such procedures may be inappropriate to study learned helplessness in honey bees. In Experiment 2, we used an alternative punishment, or passive avoidance, method to investigate learned helplessness. Using a master and yoked design where bees were trained as either master or yoked and tested as either master or yoked, we found that prior training with unavoidable and inescapable shock in the yoked condition interfered with avoidance and escape behavior in the later master condition. Unlike control bees, learned helplessness bees failed to restrict their movement to the safe compartment following inescapable shock. Unlike learned helplessness studies in other animals, no decrease in general activity was observed. Furthermore, we did not observe a "freezing" response to inescapable aversive stimuli-a phenomenon, thus far, consistently observed in learned helplessness tests with other species. The bees, instead, continued to move back and forth between compartments despite punishment in the incorrect compartment. These findings suggest that, although traditional escape methods may not be suitable, honey bees display learned helplessness in passive avoidance procedures. Thus, regardless of behavioral differences from other species, honey bees can be a unique invertebrate model organism for the study of learned helplessness. (PsycINFO Database Record

  18. Inheritance of thelytoky in the honey bee Apis mellifera capensis.

    PubMed

    Chapman, N C; Beekman, M; Allsopp, M H; Rinderer, T E; Lim, J; Oxley, P R; Oldroyd, B P

    2015-06-01

    Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9  p deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity.

  19. Insights into social insects from the genome of the honeybee Apis mellifera.

    PubMed

    2006-10-26

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement.

  20. Insights into social insects from the genome of the honeybee Apis mellifera

    PubMed Central

    2007-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement. PMID:17073008

  1. Open-air-nesting honey bees Apis dorsata and Apis laboriosa differ from the cavity-nesting Apis mellifera and Apis cerana in brood hygiene behaviour.

    PubMed

    Woyke, J; Wilde, J; Reddy, C C

    2004-01-01

    The cavity-nesting Apis mellifera and Apis cerana bees detect, uncap, and remove diseased brood. The hygiene behaviour of open-air-nesting bees Apis dorsata and Apis laboriosa was investigated in India and Nepal. Sealed A. dorsata pupae were pin-killed or deep-frozen. The workers removed 73 or 37% of damaged pin-killed pupae depending on the diameter of the pins, and only 7% of the frozen undamaged pupae. Migrating A. dorsata and A. laboriosa left unopened the sealed brood in deserted combs. Thus, A. dorsata and A. laboriosa do not open undamaged cells with dead brood. This behaviour is a more efficient mechanism in preventing the spread of diseases and parasitic mites than uncapping and removing dead pupae by A. mellifera and A. cerana. It may be beneficial for migrating A. dorsata and A. laboriosa to temporarily disuse part of the comb cells in exchange for arresting the mites there and thus reducing the increase of their population.

  2. T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in Thailand.

    PubMed

    Disayathanoowat, Terd; Young, John Peter W; Helgason, Thorunn; Chantawannakul, Panuwan

    2012-02-01

    This study investigated bacterial community structures in the midguts of Apis mellifera and Apis cerana in Thailand to understand how bacterial communities develop in Apis species. The bacterial species present in replicate colonies from different locations and life stages were analysed. PCR amplification of bacterial 16S rRNA gene fragments and terminal restriction fragment length polymorphism analyses revealed a total of 16 distinct terminal restriction fragments (T-RFs), 12 of which were shared between A. mellifera and A. cerana populations. The T-RFs were affiliated to Beta- and Gammaproteobacteria, Firmicutes and Actinomycetes. The Gammaproteobacteria were found to be common in all stages of honey bee, but in addition, the Firmicutes group was found to be present in the worker bees. Bacterial community structure showed no difference amongst the replicate colonies, but was affected to some degree by geographical location, life stage and species of honey bees.

  3. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera)

    PubMed Central

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog “alert” is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors. PMID:26083377

  4. Antibacterial Activity of a Cardanol from Thai Apis mellifera Propolis

    PubMed Central

    Boonsai, Pattaraporn; Phuwapraisirisan, Preecha; Chanchao, Chanpen

    2014-01-01

    Background: Propolis is a sticky, dark brown resinous residue made by bees that is derived from plant resins. It is used to construct and repair the nest, and in addition possesses several diverse bioactivities. Here, propolis from Apis mellifera from Nan province, Thailand, was tested for antibacterial activity against Gram+ve (Staphylococcus aureus and Paenibacillus larvae) and Gram-ve (Escherichia coli) bacteria. Materials and methods: The three bacterial isolates were confirmed for species designation by Gram staining and analysis of the partial sequence of 16S rDNA. Propolis was sequentially extracted by methanol, dichloromethane and hexane. The antibacterial activity was determined by agar well diffusion and microbroth dilution assays using streptomycin as a positive control. The most active crude extract was further purified by quick column and adsorption chromatography. The apparent purity of each bioactive fraction was tested by thin layer chromatography. The chemical structure of the isolated bioactive compound was analyzed by nuclear magnetic resonance (NMR). Results: Crude methanol extract of propolis showed the best antibacterial activity with a minimum inhibition concentration (MIC) value of 5 mg/mL for S. aureus and E. coli and 6.25 mg/mL for P. larvae. After quick column chromatography, only three active fractions were inhibitory to the growth of S. aureus and E. coli with MIC values of 6.25 and 31.3 µg/mL, respectively. Further adsorption chromatography yielded one pure bioactive fraction (A1A) with an IC50 value of 0.175 µg/mL for E. coli and 0.683 µg/mL for P. larvae, and was determined to be cardanol by NMR analysis. Scanning and transmission electron microscopy analysis revealed unusual shaped (especially in dividing cells), damaged and dead cells in cardanol-treated E. coli. Conclusion: Thai propolis contains a promising antibacterial agent. PMID:24578609

  5. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera).

    PubMed

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  6. Inheritance of thelytoky in the honey bee Apis mellifera capensis

    PubMed Central

    Chapman, N C; Beekman, M; Allsopp, M H; Rinderer, T E; Lim, J; Oxley, P R; Oldroyd, B P

    2015-01-01

    Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 bp deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity. PMID:25585920

  7. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera)

    PubMed Central

    Johnson, Reed M.; Dahlgren, Lizette; Siegfried, Blair D.; Ellis, Marion D.

    2013-01-01

    Background Chemical analysis shows that honey bees (Apis mellifera) and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. Methodology/Principal Findings Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17) while amitraz toxicity was mostly unchanged (1 of 15). The sterol biosynthesis inhibiting (SBI) fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. Conclusions/Significance Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication appears to play an

  8. [Melissopalynology and trophic niche of Apis cerana ceraca and Apis mellifera ligustica in Yunnan Province of Southwest China].

    PubMed

    Liu, Yu-Jia; Zhao, Tian-Rui; Zhao, Feng-Yun

    2013-01-01

    In 2010 and 2011, the honey samples of Apis cerana cerana and A. mellifera ligustica were collected from Kunming and Mengzi of Yunnan Province, respectively, aimed to analyze the melissopalynology and tropic niche of the two bee species. The absolute pollen concentration of the honey of A. cerana cerana was 1.55 x 10(4) ind x g(-1), being significantly higher than that (1.01 x 10(4) ind x g(-1)) of A. mellifera ligustica, and the number of nectar plant species collected by A. cerana cerana was 12.9, also significantly higher than that (7.7) collected by A. mellifera ligustica, indicating that A. cerana cerana could utilize more nectar plants, while A. mellifera ligustica had stronger selectivity to the nectar plants. The trophic niche breadth of A. cerana cerana was 0.35, which was significantly higher than that (0.23) of A. mellifera ligustica. The trophic niche overlap index between the two bee species was 0.71, and the interspecific competition index was 0.93, suggesting that the food competition between A. cerana cerana and A. mellifera ligustica was fierce.

  9. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    ERIC Educational Resources Information Center

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  10. Ovariole number and ovary activation of Russian honeybee workers (Apis mellifera L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although functionally sterile under normal hive conditions, honeybee workers retain small ovaries. The size of the worker ovaries varies considerably within Apis mellifera and has been linked to individual reproduction and various aspects of social behavior. Here, we report the ovary size of workers...

  11. Interactions of tropilaelaps mercedesae, honey bee viruses, and immune response in Apis mellifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropilaelaps mites are the major health threat to Apis mellifera colonies in Asia because of their widespread occurrence, rapid population growth and potential ability to transfer bee viruses. Honey bee immune responses in the presence of feeding mites may occur in response to mite feeding, to the ...

  12. A method for distinctly marking honey bees, Apis mellifera originating from multiple apiary locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inexpensive and non-intrusive marking methods are essential to track natural behavior of insects for biological experiments. An inexpensive, easy to construct, and easy to install bee marking device is described. The device is mounted at the entrance of a standard honey bee, Apis mellifera L. (Hymen...

  13. Young and old honey bee (Apis mellifera) larvae differentially prime the developmental maturation of their caregivers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In eusocial insects daughters rear the offspring of the queen to adulthood. In the honey bee, Apis mellifera, nurses differentially regulate larval nutrition. Among worker-destined larvae, younger instars receive an unrestricted diet paralleling that of queen larvae in protein composition but with r...

  14. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed wing virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative impact of Deformedwing virus (DWV) on European honey bees Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks, pure Russian honey bees (RHB) and out-crossed Varroa Sensitive Hygienic bees, Pol-line (POL)...

  15. Evaluation of Apis mellifera syriaca Levant Region honeybee conservation using Comparative Genome Hybridization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant Region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control r...

  16. Transcriptional markers of sub-optimal nutrition in developing young Apis mellifera nurse workers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bees (Apis mellifera) contribute substantially to the worldwide economy and ecosystem health as pollinators. Pollen is essential to the bee’s diet, providing protein, lipids, and micronutrients. The dramatic shifts in physiology, anatomy, and behavior that accompany normal worker development a...

  17. Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera.

    PubMed

    Kim, Pil Soo; Shin, Na-Ri; Kim, Joon Yong; Yun, Ji-Hyun; Hyun, Dong-Wook; Bae, Jin-Woo

    2014-08-01

    A novel Gram-negative, obligate aerobic, non-motile, and both coccobacillus- and bacillus-shaped bacterium, designated strain HYN18(T), was isolated from the intestinal tract of a honey bee (Apis mellifera). The isolate was oxidase-negative and catalase-positive. Strain HYN18(T) showed optimum growth at 25°C, pH 6-7, and in the presence of 1% (w/v) NaCl in trypticase soy broth medium. The isolate was negative for hydrolyses of starch, casein, gelatin and urea, indole production from tryptone and hemolysis on sheep blood agar. A phylogenetic analysis based on the 16S rRNA gene and rpoB gene sequence showed that strain HYN18(T) was most closely related to Acinetobacter nectaris SAP 763.2(T) and A. boissieri SAP 284.1(T) with 98.3% and 98.1% similarity (16S rRNA gene), respectively, and 84.4% similarity with Acinetobacter nectaris SAP 763.2(T) (rpoB gene). The major cellular fatty acids were summed features 3 (comprising C16:1ω7c /C16:1ω6c ), C12:0 and C16:0. The main isoprenoid quinone was ubiquinone-9 (Q-9). The polar lipids of strain HYN18(T) were phosphatidylethanolamine, three unidentified lipids, an unidentified phospholipid and an unidentified glycolipid. The DNA G+C content was 40.6 mol%. DNA-DNA hybridization experiments indicated less than 33 ± 10% relatedness to the closest phylogenetic species, Acinetobacter nectaris SAP 763.2(T). Thus, the phenotypic, phylogenetic and genotypic analyses indicate that strain HYN18(T) is a novel species within the genus Acinetobacter, for which the name Acinetobacter apis is proposed. The type strain is HYN18(T) (=KACC 16906(T) =JCM 18575(T)).

  18. First Detection of Nosema ceranae, a Microsporidian Protozoa of European Honeybees (Apis mellifera) In Iran

    PubMed Central

    Nabian, S; Ahmadi, K; Nazem Shirazi, MH; Gerami Sadeghian, A

    2011-01-01

    Background Nosemosis of European honey bee (Apis mellifera) is present in bee colonies worldwide. Until recently, Nosema apis had been regarded as the causative agent of the disease, that causes heavy economic losses in apicultures. Nosema ceranae is an emerging microsporidian parasite of European honeybees, A. mellifera, but its distribution is not well known. Previously, nosemosis in honeybees in Iran was attributed exclusively to N. apis. Methods Six Nosema positive samples (determined from light microscopy of spores) of adult worker bees from one province of Iran (Savadkouh- Mazandaran, northern Iran) were tested to determine Nosema species using previously- developed PCR primers of the 16 S rRNA gene. As it is difficult to distinguish N. ceranae and N. apis morphologically, a PCR assay based on 16 S ribosomal RNA has been used to differentiate N. apis and N. ceranae. Results Only N. ceranae was found in all samples, indicating that this species present in Iran apiaries. Conclusion This is the first report of N. ceranae in colonies of A. mellifera in Iran. It seems that intensive surveys are needed to determine the distribution and prevalence of N. ceranae in different regions of Iran. PMID:22347302

  19. The flight physiology of reproductives of Africanized, European, and hybrid honeybees (Apis mellifera).

    PubMed

    Harrison, Jon F; Taylor, Orley R; Hall, H Glenn

    2005-01-01

    Neotropical African honeybees (Apis mellifera scutellata), in the process of spreading throughout tropical and subtropical regions of the Americas, hybridize with and mostly replace European honeybees (primarily Apis mellifera mellifera and Apis mellifera ligustica). To help understand this process, we studied the effect of lineage (African, European, or hybrid) on the flight physiology of honeybee reproductives. Flight metabolic rates were higher in queens and drones of African lineage than in European or hybrid bees, as has been previously found for foraging workers. These differences were associated with higher thorax/body mass ratios and higher thorax-specific metabolic rates in African lineage bees. Queens were reared in common colonies, so these metabolic and morphological differences are likely to be genetic in origin. African drones had higher wing beat frequencies and thorax temperatures than European or hybrid bees. Hybrids were intermediate for many parameters, but hybrid queen mass-specific flight metabolic rates were low relative to Africans and were nonlinearly affected by the proportion of African lineage, consistent with some negative heterosis for this trait.

  20. The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): Their natural history and role in beekeeping.

    PubMed

    Alqarni, Abdulaziz S; Hannan, Mohammed A; Owayss, Ayman A; Engel, Michael S

    2011-01-01

    Apis mellifera jemenitica Ruttner (= yemenitica auctorum: videEngel 1999) has been used in apiculture throughout the Arabian Peninsula since at least 2000 BC. Existing literature demonstrates that these populations are well adapted for the harsh extremes of the region. Populations of Apis mellifera jemenitica native to Saudi Arabia are far more heat tolerant than the standard races often imported from Europe. Central Saudi Arabia has the highest summer temperatures for the Arabian Peninsula, and it is in this region where only Apis mellifera jemenitica survives, while other subspecies fail to persist. The indigenous race of Saudi Arabia differs from other subspecies in the region in some morphological, biological, and behavioral characteristics. Further taxonomic investigation, as well as molecular studies, is needed in order to confirm whether the Saudi indigenous bee populations represent a race distinct from Apis mellifera jemenitica, or merely an ecotype of this subspecies.

  1. The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): Their natural history and role in beekeeping

    PubMed Central

    Alqarni, Abdulaziz S.; Hannan, Mohammed A.; Owayss, Ayman A.; Engel, Michael S.

    2011-01-01

    Abstract Apis mellifera jemenitica Ruttner (= yemenitica auctorum: vide Engel 1999) has been used in apiculture throughout the Arabian Peninsula since at least 2000 BC. Existing literature demonstrates that these populations are well adapted for the harsh extremes of the region. Populations of Apis mellifera jemenitica native to Saudi Arabia are far more heat tolerant than the standard races often imported from Europe. Central Saudi Arabia has the highest summer temperatures for the Arabian Peninsula, and it is in this region where only Apis mellifera jemenitica survives, while other subspecies fail to persist. The indigenous race of Saudi Arabia differs from other subspecies in the region in some morphological, biological, and behavioral characteristics. Further taxonomic investigation, as well as molecular studies, is needed in order to confirm whether the Saudi indigenous bee populations represent a race distinct from Apis mellifera jemenitica, or merely an ecotype of this subspecies. PMID:22140343

  2. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera.

    PubMed

    Whitfield, Charles W; Behura, Susanta K; Berlocher, Stewart H; Clark, Andrew G; Johnston, J Spencer; Sheppard, Walter S; Smith, Deborah R; Suarez, Andrew V; Weaver, Daniel; Tsutsui, Neil D

    2006-10-27

    We characterized Apis mellifera in both native and introduced ranges using 1136 single-nucleotide polymorphisms genotyped in 341 individuals. Our results indicate that A. mellifera originated in Africa and expanded into Eurasia at least twice, resulting in populations in eastern and western Europe that are geographically close but genetically distant. A third expansion in the New World has involved the near-replacement of previously introduced "European" honey bees by descendants of more recently introduced A. m. scutellata ("African" or "killer" bees). Our analyses of spatial transects and temporal series in the New World revealed differential replacement of alleles derived from eastern versus western Europe, with admixture evident in all individuals.

  3. Juvenile hormone titer in capped worker brood of Apis mellifera and reproduction in the bee mite Varroa jacobsoni.

    PubMed

    Rosenkranz, P; Rachinsky, A; Strambi, A; Strambi, C; Röpstorf, P

    1990-05-01

    Juvenile hormone (JH) titers were recorded from fifth instar worker larvae of Apis mellifera carnica, Apis mellifera lamarckii, and Africanized honeybees kept under temperate and tropical climatic conditions. No differences in hormone titer according to honeybee race or climatic conditions were determined. However, the rate of reproduction of the ectoparasitic mite, Varroa jacobsoni, on larvae of the different honeybee races was highly variable. The possible role of honeybee JH in control of the parasite's reproduction is discussed.

  4. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin.

    PubMed

    Artz, Derek R; Nault, Brian A

    2011-08-01

    Pollination services of pumpkin, Cucurbita pepo L., provided by the European honey bee, Apis mellifera L., were compared with two native bee species, the common eastern bumble bee, Bombus impatiens (Cresson), and Peponapis pruinosa Say, in New York from 2008 to 2010. Performance of each species was determined by comparing single-visit pollen deposition, percentage of visits that contacted the stigma, flower-handling time, fruit and seed set, and fruit weight per number of visits. Fruit yield from small fields (0.6 ha) supplemented with commercial B. impatiens colonies was compared with yield from those not supplemented. A. mellifera spent nearly 2 and 3 times longer foraging on each pistillate flower compared with B. impatiens and P. pruinosa, respectively. A. mellifera also visited pistillate flowers 10-20 times more frequently than B. impatiens and P. pruinosa, respectively. Yet, B. impatiens deposited 3 times more pollen grains per stigma and contacted stigmas significantly more often than either A. mellifera or P. pruinosa. Fruit set and weight from flowers visited four to eight times by B. impatiens were similar to those from open-pollinated flowers, whereas flowers pollinated by A. mellifera and P. pruinosa produced fewer fruit and smaller fruit compared with those from open-pollinated flowers. Fields supplemented with B. impatiens produced significantly more pumpkins per plant than nonsupplemented fields. B. impatiens was a better pollinator of pumpkin than P. pruinosa and should be considered as a promising alternative to A. mellifera for pollinating this crop.

  5. Complete Genome Sequence of Spiroplasma apis B31T (ATCC 33834), a Bacterium Associated with May Disease of Honeybees (Apis mellifera).

    PubMed

    Ku, Chuan; Lo, Wen-Sui; Chen, Ling-Ling; Kuo, Chih-Horng

    2014-01-09

    Spiroplasma apis B31(T) (ATCC 33834) is a wall-less bacterium in the class Mollicutes that has been linked to May disease of honeybees (Apis mellifera). Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its virulence factors.

  6. Pheromonal dominance and the selection of a socially parasitic honeybee worker lineage (Apis mellifera capensis Esch.).

    PubMed

    Dietemann, V; Neumann, P; Härtel, S; Pirk, C W W; Crewe, R M

    2007-05-01

    The recent invasion by self-replicating socially parasitic Cape honeybee workers, Apis mellifera capensis, of colonies of the neighbouring African subspecies Apis mellifera scutellata represents an opportunity to study evolution of intraspecific parasitism in real time. As honeybee workers compete pheromonally for reproductive dominance, and as A. m. capensis workers readily produce queen-like pheromones, we hypothesized that these semiochemicals promoted the evolution of intraspecific social parasitism. Remarkably, the offspring of a single worker became established as a parasite in A. m. scutellata's range. This could have resulted from extreme selection among different clonal parasitic worker lineages. Using pheromonal contest experiments, we show that the selected parasitic lineage dominates in the production of mandibular gland pheromones over all other competitors to which it is exposed. Our results suggest that mandibular gland pheromones played a key role in the evolution of intraspecific social parasitism in the honeybee and in the selection of a single genotype of parasitic workers.

  7. The role of pollen in chalkbrood disease in Apis mellifera: transmission and predisposing conditions.

    PubMed

    Flores, J M; Gutiérrez, I; Espejo, R

    2005-01-01

    Chalkbrood in honeybees (Apis mellifera L. Himenoptera: Apidae) is a fungal disease caused by Ascosphaera apis (Maassen ex Claussen) Olive and Spiltoir. This disease requires the presence of fungal spores and a predisposing condition in the susceptible brood for the disease to develop. In this study we examined the role of pollen in the development of chalkbrood disease under two experimental conditions: (i) pollen combs were transferred from infected to uninfected beehives and (ii) colonies were deprived of adequate pollen supplies to feed the brood. The results of both treatments confirmed that pollen is an element that should be taken into account when controlling this honeybee disease.

  8. Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan.

    PubMed

    Morimoto, Tomomi; Kojima, Yuriko; Yoshiyama, Mikio; Kimura, Kiyoshi; Yang, Bu; Peng, Guangda; Kadowaki, Tatsuhiko

    2013-02-01

    The role of protozoan parasites in honey bee health and distribution in the world is not well understood. Therefore, we carried out a molecular survey for the presence of Crithidia mellificae and Apicystis bombi in the colonies of both non-native Apis mellifera and native Apis cerana japonica in Japan. We found that A. mellifera, but not A. c. japonica, colonies are parasitized with C. mellificae and A. bombi. Their absence in A. c. japonica colonies indicates that A. mellifera is their native host. Nevertheless, the prevalence in A. mellifera colonies is low compared with other pathogens such as viruses and Nosema microsporidia. Japanese C. mellificae isolates share well-conserved nuclear-encoded gene sequences with Swiss and US isolates. We have found two Japanese haplotypes (A and B) with two nucleotide differences in the kinetoplast-encoded cytochrome b sequence. The haplotype A is identical to Swiss isolate. These results demonstrate that C. mellificae and A. bombi distribute in Asia, Oceania, Europe, and South and North Americas.

  9. A new record of phoretic mites on honey bee Apis mellifera L. in Egypt.

    PubMed

    Abou Senna, F M

    1997-12-01

    Five species of mites, belonging to different families, were found infesting honeybee workers, Apis mellifera L., in different apiaries in Al-Gharbiya Governorate, Nile Delta. All the identified species except Varroa jacobsoni Oudemans (Varroidae) are new records for the phoretic bee mites in Egypt. These are Neocypholaelaps indica Evans (Ameroseiidae), Pediculochelus raulti Lavoipiere (Pediculochelidae), Tarsonemus indoapis Lindquist (Tarsonemidae) and Chaetodactylus osmiae (dufour) (Chaetodactylidae). The host parasite relationship was discussed. A brief diagnosis with diagrammatic illustrations is given.

  10. Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera).

    PubMed

    Martín-Hernández, Raquel; Botías, Cristina; Barrios, Laura; Martínez-Salvador, Amparo; Meana, Aránzazu; Mayack, Christopher; Higes, Mariano

    2011-09-01

    Nosema ceranae is a relatively new and widespread parasite of the western honeybee Apis mellifera that provokes a new form of nosemosis. In comparison to Nosema apis, which has been infecting the honeybee for much longer, N. ceranae seems to have co-evolved less with this host, causing a more virulent disease. Given that N. apis and N. ceranae are obligate intracellular microsporidian parasites, needing host energy to reproduce, energetic stress may be an important factor contributing to the increased virulence observed. Through feeding experiments on caged bees, we show that both mortality and sugar syrup consumption were higher in N. ceranae-infected bees than in N. apis-infected and control bees. The mortality and sugar syrup consumption are also higher in N. apis-infected bees than in controls, but are less than in N. ceranae-infected bees. With both microsporidia, mortality and sugar syrup consumption increased in function of the increasing spore counts administered for infection. The differences in energetic requirements between both Nosema spp. confirm that their metabolic patterns are not the same, which may depend critically on host-parasite interactions and, ultimately, on host pathology. The repercussions of this increased energetic stress may even explain the changes in host behavior due to starvation, lack of thermoregulatory capacity, or higher rates of trophallaxis, which might enhance transmission and bee death.

  11. Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera).

    PubMed

    Forsgren, Eva; de Miranda, Joachim R; Isaksson, Mats; Wei, Shi; Fries, Ingemar

    2009-02-01

    Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.

  12. A SNP Based High-Density Linkage Map of Apis cerana Reveals a High Recombination Rate Similar to Apis mellifera

    PubMed Central

    Huang, Zachary Y.; Wu, Xiao Bo; Zhu, Yong Qiang; Zheng, Hua Jun; Zeng, Zhi Jiang

    2013-01-01

    Background The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. Results F2 workers (N = 103) were genotyped for 126,990 single nucleotide polymorphisms (SNPs). After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM) with the largest linkage group (180 loci) measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. Conclusion We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera. PMID:24130775

  13. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea.

    PubMed

    Ahn, Jae-Hyung; Hong, In-Pyo; Bok, Jeung-Im; Kim, Byung-Yong; Song, Jaekyeong; Weon, Hang-Yeon

    2012-10-01

    The bacterial communities in the guts of the adults and larvae of the Asian honey bee Apis cerana and the European honey bee Apis mellifera were surveyed by pyrosequencing the 16S rRNA genes. Most of the gut bacterial 16S rRNA gene sequences were highly similar to the known honey bee-specific ones and affiliated with Pasteurellaceae or lactic acid bacteria (LAB). The numbers of operational taxonomic units (OTUs, defined at 97% similarity) were lower in the larval guts (6 or 9) than in the adult guts (18 or 20), and the frequencies of Pasteurellaceae-related OTUs were higher in the larval guts while those of LAB-related OTUs in the adult guts. The frequencies of Lactococcus, Bartonella, Spiroplasma, Enterobacteriaceae, and Flavobacteriaceae-related OTUs were much higher in A. cerana guts while Bifidobacterium and Lachnospiraceae-related OTUs were more abundant in A. mellfera guts. The bacterial community structures in the midguts and hindguts of the adult honey bees were not different for A. cerana, but significantly different for A. mellifera. The above results substantiated the previous observation that honey bee guts are dominated by several specific bacterial groups, and also showed that the relative abundances of OTUs could be markedly changed depending on the developmental stage, the location within the gut, and the honey bee species. The possibility of using the gut bacterial community as an indicator of honey bee health was discussed.

  14. Homology differences between complete Sacbrood virus genomes from infected Apis mellifera and Apis cerana honeybees in Korea.

    PubMed

    Reddy, Kondreddy Eswar; Yoo, Mi Sun; Kim, Young-Ha; Kim, Nam-Hee; Ramya, Mummadireddy; Jung, Ha-Na; Thao, Le Thi Bich; Lee, Hee-Soo; Kang, Seung-Won

    2016-04-01

    Sacbrood virus (SBV) represents a serious threat to the health of managed honeybees. We determined four complete SBV genomic sequences (AmSBV-Kor1, AmSBV-Kor2, AcSBV-Kor3, and AcSBV-Kor4) isolated from Apis mellifera and Apis cerana in various regions of South Korea. A phylogenetic tree was constructed from the complete genomic sequences of these Korean SBVs (KSBVs) and 21 previously reported SBV sequences from other countries. Three KSBVs (not AmSBV-Kor1) clustered with previously reported Korean genomes, but separately from SBV genomes from other countries. The KSBVs shared 90-98 % identity, and 89-97 % identity with the genomes from other countries. AmSBV-Kor1 was least similar (~90 % identity) to the other KSBVs, and was most similar to previously reported strains AmSBV-Kor21 (97 %) and AmSBV-UK (93 %). Phylogenetic analysis of the partial VP1 region sequences indicated that SBVs clustered by host species and country of origin. The KSBVs were aligned with nine previously reported complete SBV genomes and compared. The KSBVs were most different from the other genomes at the end of the 5' untranslated region and in the entire open reading frame. A SimPlot graph of the VP1 region confirmed its high variability, especially between the SBVs infecting A. mellifera and A. cerana. In this genomic region, SBVs from A. mellifera species contain an extra continuous 51-nucleotide sequence relative to the SBVs from A. cerana. This genomic diversity may reflect the adaptation of SBV to specific hosts, viral cross-infections, and the spatial distances separating the KSBVs from other SBVs.

  15. Molecular Identification of Chronic Bee Paralysis Virus Infection in Apis mellifera Colonies in Japan

    PubMed Central

    Morimoto, Tomomi; Kojima, Yuriko; Yoshiyama, Mikio; Kimura, Kiyoshi; Yang, Bu; Kadowaki, Tatsuhiko

    2012-01-01

    Chronic bee paralysis virus (CBPV) infection causes chronic paralysis and loss of workers in honey bee colonies around the world. Although CBPV shows a worldwide distribution, it had not been molecularly detected in Japan. Our investigation of Apis mellifera and Apis cerana japonica colonies with RT-PCR has revealed CBPV infection in A. mellifera but not A. c. japonica colonies in Japan. The prevalence of CBPV is low compared with that of other viruses: deformed wing virus (DWV), black queen cell virus (BQCV), Israel acute paralysis virus (IAPV), and sac brood virus (SBV), previously reported in Japan. Because of its low prevalence (5.6%) in A. mellifera colonies, the incidence of colony losses by CBPV infection must be sporadic in Japan. The presence of the (−) strand RNA in dying workers suggests that CBPV infection and replication may contribute to their symptoms. Phylogenetic analysis demonstrates a geographic separation of Japanese isolates from European, Uruguayan, and mainland US isolates. The lack of major exchange of honey bees between Europe/mainland US and Japan for the recent 26 years (1985–2010) may have resulted in the geographic separation of Japanese CBPV isolates. PMID:22852042

  16. Molecular identification of chronic bee paralysis virus infection in Apis mellifera colonies in Japan.

    PubMed

    Morimoto, Tomomi; Kojima, Yuriko; Yoshiyama, Mikio; Kimura, Kiyoshi; Yang, Bu; Kadowaki, Tatsuhiko

    2012-07-01

    Chronic bee paralysis virus (CBPV) infection causes chronic paralysis and loss of workers in honey bee colonies around the world. Although CBPV shows a worldwide distribution, it had not been molecularly detected in Japan. Our investigation of Apis mellifera and Apis cerana japonica colonies with RT-PCR has revealed CBPV infection in A. mellifera but not A. c. japonica colonies in Japan. The prevalence of CBPV is low compared with that of other viruses: deformed wing virus (DWV), black queen cell virus (BQCV), Israel acute paralysis virus (IAPV), and sac brood virus (SBV), previously reported in Japan. Because of its low prevalence (5.6%) in A. mellifera colonies, the incidence of colony losses by CBPV infection must be sporadic in Japan. The presence of the (-) strand RNA in dying workers suggests that CBPV infection and replication may contribute to their symptoms. Phylogenetic analysis demonstrates a geographic separation of Japanese isolates from European, Uruguayan, and mainland US isolates. The lack of major exchange of honey bees between Europe/mainland US and Japan for the recent 26 years (1985-2010) may have resulted in the geographic separation of Japanese CBPV isolates.

  17. Mitochondrial genome of the Levant Region honeybee, Apis mellifera syriaca (Hymenoptera: Apidae).

    PubMed

    Haddad, Nizar Jamal

    2016-11-01

    The mitochondrial genome sequence of Levant Region honeybee, Apis mellifera syriaca, is analyzed and presented for the public for the first time. The genome of this honeybee is 15,428 bp in its length, containing 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The overall base composition is A (42.88%), C (9.97%), G (5.85%), and T (41.3%), the percentage of A and T being higher than that of G and C. Percentage of non-ATGC characters is 0.007. All the genes are encoded on H-strand, except for four subunit genes (ND1, ND4, ND4L, and ND5), two rRNA genes and eight tRNA genes. The publication of the mitochondrial genome sequence will play a vital role in the conservation genetic projects of A. mellifera, in general, and Apis mellifera syriaca, in particular; moreover, it will be useful for further phylogenetic analysis.

  18. Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana.

    PubMed

    Park, Doori; Jung, Je Won; Lee, Mi Ok; Lee, Si Young; Kim, Boyun; Jin, Hye Jun; Kim, Jiyoung; Ahn, Young-Joon; Lee, Ki Won; Song, Yong Sang; Hong, Seunghun; Womack, James E; Kwon, Hyung Wook

    2014-03-01

    Insect-derived antimicrobial peptides (AMPs) have diverse effects on antimicrobial properties and pharmacological activities such as anti-inflammation and anticancer properties. Naturally occurring genetic polymorphism have a direct and/or indirect influence on pharmacological effect of AMPs, therefore information on single nucleotide polymorphism (SNP) occurring in natural AMPs provides an important clue to therapeutic applications. Here we identified nucleotide polymorphisms in melittin gene of honey bee populations, which is one of the potent AMP in bee venoms. We found that the novel SNP of melittin gene exists in these two honey bee species, Apis mellifera and Apis cerana. Nine polymorphisms were identified within the coding region of the melittin gene, of which one polymorphism that resulted in serine (Ser) to asparagine (Asp) substitution that can potentially effect on biological activities of melittin peptide. Serine-substituted melittin (Mel-S) showed more cytotoxic effect than asparagine-substituted melittin (Mel-N) against E. coli. Also, Mel-N and Mel-S had different inhibitory effects on the production of inflammatory factors such as IL-6 and TNF-α in BV-2 cells. Moreover, Mel-S showed stronger cytotoxic activities than Mel-N peptide against two human ovarian cancer cell lines. Using carbon nanotube-based transistor, we here characterized that Mel-S interacted with small unilamellar liposomes more strongly than Mel-N. Taken together, our present study demonstrates that there exist different characteristics of the gene frequency and the biological activities of the melittin peptide in two honey bee species, Apis mellifera and A. cerana.

  19. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera

    PubMed Central

    Tsutsui, Neil D.; Ramírez, Santiago R.

    2017-01-01

    The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. PMID:28164223

  20. Geographical overlap of two mitochondrial genomes in Spanish honeybees (Apis mellifera iberica).

    PubMed

    Smith, D R; Palopoli, M F; Taylor, B R; Garnery, L; Cornuet, J M; Solignac, M; Brown, W M

    1991-01-01

    Restriction enzyme cleavage maps of mitochondrial DNA from the Spanish honeybee, Apis mellifera iberica (Hymenoptera: Apidae), were compared with those from the European subspecies A. m. mellifera, A. m. ligustica, and A. m. carnica, and the African subspecies A. m. intermissa and A. m. scutellata. The mitochondrial DNA (mtDNA) of the two African subspecies can be distinguished by restriction fragment polymorphisms revealed by Hinf I digests. Two distinct mtDNA types were found among Spanish honeybees: a west European mellifera-like type, which predominates in the north of Spain, and an African intermissa-like type, which predominates in the south. Spain appears to be a region of contact and hybridization between the two subspecies A. m. intermissa and A. m. mellifera, which respectively represent African and west European honeybee lineages. This natural boundary between European and African honeybee populations in the Old World may provide a model for predicting the eventual outcome of the colonization of North America by introduced African honeybees.

  1. Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis mellifera mellifera)

    PubMed Central

    Muñoz, Irene; Henriques, Dora; Johnston, J. Spencer; Chávez-Galarza, Julio; Kryger, Per; Pinto, M. Alice

    2015-01-01

    Beekeeping activities, especially queen trading, have shaped the distribution of honey bee (Apis mellifera) subspecies in Europe, and have resulted in extensive introductions of two eastern European C-lineage subspecies (A. m. ligustica and A. m. carnica) into the native range of the M-lineage A. m. mellifera subspecies in Western Europe. As a consequence, replacement and gene flow between native and commercial populations have occurred at varying levels across western European populations. Genetic identification and introgression analysis using molecular markers is an important tool for management and conservation of honey bee subspecies. Previous studies have monitored introgression by using microsatellite, PCR-RFLP markers and most recently, high density assays using single nucleotide polymorphism (SNP) markers. While the latter are almost prohibitively expensive, the information gained to date can be exploited to create a reduced panel containing the most ancestry-informative markers (AIMs) for those purposes with very little loss of information. The objective of this study was to design reduced panels of AIMs to verify the origin of A. m. mellifera individuals and to provide accurate estimates of the level of C-lineage introgression into their genome. The discriminant power of the SNPs using a variety of metrics and approaches including the Weir & Cockerham’s FST, an FST-based outlier test, Delta, informativeness (In), and PCA was evaluated. This study shows that reduced AIMs panels assign individuals to the correct origin and calculates the admixture level with a high degree of accuracy. These panels provide an essential tool in Europe for genetic stock identification and estimation of admixture levels which can assist management strategies and monitor honey bee conservation programs. PMID:25875986

  2. Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera).

    PubMed

    Muñoz, Irene; Henriques, Dora; Johnston, J Spencer; Chávez-Galarza, Julio; Kryger, Per; Pinto, M Alice

    2015-01-01

    Beekeeping activities, especially queen trading, have shaped the distribution of honey bee (Apis mellifera) subspecies in Europe, and have resulted in extensive introductions of two eastern European C-lineage subspecies (A. m. ligustica and A. m. carnica) into the native range of the M-lineage A. m. mellifera subspecies in Western Europe. As a consequence, replacement and gene flow between native and commercial populations have occurred at varying levels across western European populations. Genetic identification and introgression analysis using molecular markers is an important tool for management and conservation of honey bee subspecies. Previous studies have monitored introgression by using microsatellite, PCR-RFLP markers and most recently, high density assays using single nucleotide polymorphism (SNP) markers. While the latter are almost prohibitively expensive, the information gained to date can be exploited to create a reduced panel containing the most ancestry-informative markers (AIMs) for those purposes with very little loss of information. The objective of this study was to design reduced panels of AIMs to verify the origin of A. m. mellifera individuals and to provide accurate estimates of the level of C-lineage introgression into their genome. The discriminant power of the SNPs using a variety of metrics and approaches including the Weir & Cockerham's FST, an FST-based outlier test, Delta, informativeness (In), and PCA was evaluated. This study shows that reduced AIMs panels assign individuals to the correct origin and calculates the admixture level with a high degree of accuracy. These panels provide an essential tool in Europe for genetic stock identification and estimation of admixture levels which can assist management strategies and monitor honey bee conservation programs.

  3. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    PubMed

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  4. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences.

    PubMed

    Jeyaprakash, Ayyamperumal; Hoy, Marjorie A; Allsopp, Michael H

    2003-10-01

    High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned. Ten unique sequences were obtained: one sequence each clustered with Bifidobacterium (Gram-positive eubacteria), Lactobacillus (Gram-positive eubacteria), and Gluconacetobacter (Gram-negative alpha-proteobacteria); two sequences each clustered with Simonsiella (beta-proteobacteria) and Serratia (gamma-proteobacteria); and three sequences each clustered with Bartonella (alpha-proteobacteria). Although the sequences relating to these six bacterial genera initially were obtained from either A. m. capensis or A. m. scutellata or both, newly designed honeybee-specific 16S rRNA primers subsequently amplified all sequences from all individual workers of both subspecies. Attempts to amplify these sequences from eggs have failed. However, the wsp primers designed to amplify Wolbachia DNA from arthropods, including these bees, consistently produced a 0.6-kb DNA band from individual eggs, indicating that amplifiable bacterial DNA was present. Hence, the 10 bacteria could have been acquired orally from workers or from other substrates. This screening of 16S rRNA sequences from A. m. capensis and A. m. scutellata found sequences related to Lactobacillus and Bifidobacterium which previously had been identified from other honeybee subspecies, as well as sequences related to Bartonella, Gluconacetobacter, Simonsiella/Neisseria, and Serratia, which have not been identified previously from honeybees.

  5. Influence of honey bee, Apis mellifera, hives and field size on foraging activity of native bee species in pumpkin fields.

    PubMed

    Artz, Derek R; Hsu, Cynthia L; Nault, Brian A

    2011-10-01

    The purpose of this study was to identify bee species active in pumpkin fields in New York and to estimate their potential as pollinators by examining their foraging activity. In addition, we examined whether foraging activity was affected by either the addition of hives of the honey bee, Apis mellifera L., or by field size. Thirty-five pumpkin (Cucurbita spp.) fields ranging from 0.6 to 26.3 ha, 12 supplemented with A. mellifera hives and 23 not supplemented, were sampled during peak flowering over three successive weeks in 2008 and 2009. Flowers from 300 plants per field were visually sampled for bees on each sampling date. A. mellifera, Bombus impatiens Cresson, and Peponapis pruinosa (Say) accounted for 99% of all bee visits to flowers. A. mellifera and B. impatiens visited significantly more pistillate flowers than would be expected by chance, whereas P. pruinosa showed no preference for visiting pistillate flowers. There were significantly more A. mellifera visits per flower in fields supplemented with A. mellifera hives than in fields not supplemented, but there were significantly fewer P. pruinosa visits in supplemented fields. The number of B. impatiens visits was not affected by supplementation, but was affected by number of flowers per field. A. mellifera and P. pruinosa visits were not affected by field size, but B. impatiens visited fewer flowers as field size increased in fields that were not supplemented with A. mellifera hives. Declining A. mellifera populations may increase the relative importance of B. impatiens in pollinating pumpkins in New York.

  6. High Royal Jelly-Producing Honeybees (Apis mellifera ligustica) (Hymenoptera: Apidae) in China.

    PubMed

    Cao, Lian-Fei; Zheng, Huo-Qing; Pirk, Christian W W; Hu, Fu-Liang; Xu, Zi-Wei

    2016-04-01

    China is the largest producer and exporter of royal jelly (RJ) in the world, supplying >90% of the global market. The high production of RJ in China is principally owing to the high RJ-producing lineage of honeybees (Apis mellifera ligustica Spinola, 1806) established by beekeepers in the 1980s. We describe the development of high royal jelly-producing honeybees and the management of this lineage today. Previous research and recent advances in the genetic characterization of this lineage, and the molecular markers and mechanisms associated with high RJ production are summarized. The gaps in our knowledge and prospects for future research are also highlighted.

  7. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  8. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    PubMed

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees.

  9. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed.

  10. Nosema ceranae induced mortality in honey bees (Apis mellifera) depends on infection methods.

    PubMed

    Milbrath, Meghan O; Xie, Xianbing; Huang, Zachary Y

    2013-09-01

    Nosema ceranae infection can reduce survival of the Western honey bee, Apis mellifera, but experiments examining its virulence have highly variable results. This variation may arise from differences in experimental techniques. We examined survival effects of two techniques: Nosema infection at day 1 without anesthesia and infection at day 5 using CO2 anesthesia. All bees infected with the latter method had poorer survival. Interestingly, these bees also had significantly fewer spores than bees infected without anesthesia. These results indicate that differences in Nosema ceranae-induced mortality in honey bees may be partially due to differences in experimental techniques.

  11. Social Reinforcement Delays in Free-Flying Honey Bees (Apis mellifera L.)

    PubMed Central

    Craig, David Philip Arthur; Grice, James W.; Varnon, Chris A.; Gibson, B.; Sokolowski, Michel B. C.; Abramson, Charles I.

    2012-01-01

    Free-flying honey bees (Apis mellifera L.) reactions were observed when presented with varying schedules of post-reinforcement delays of 0 s, 300 s, or 600 s. We measured inter-visit-interval, response length, inter-response-time, and response rate. Honey bees exposed to these post-reinforcement delay intervals exhibit one of several patterns compared to groups not encountering delays, and had longer inter-visit-intervals. We observed no group differences in inter-response time. Honey bees with higher response rates tended to not finish the experiment. The removal of the delay intervals increased response rates for those subjects that completed the trials. PMID:23056425

  12. Assessing hygienic behavior of Apis mellifera unicolor (Hymenoptera: Apidae), the endemic honey bee from Madagascar.

    PubMed

    Rasolofoarivao, H; Delatte, H; Raveloson Ravaomanarivo, L H; Reynaud, B; Clémencet, J

    2015-06-01

    Hygienic behavior (HB) is one of the natural mechanisms of honey bee for limiting the spread of brood diseases and Varroa destructor parasitic mite. Objective of our study was to measure HB of Apis mellifera unicolor colonies (N = 403) from three geographic regions (one infested and two free of V. destructor) in Madagascar. The pin-killing method was used for evaluation of the HB. Responses were measured from 3 h 30 min to 7 h after perforation of the cells. Colonies were very effective in detecting perforated cells. In the first 4 h, on average, they detected at least 50% of the pin-killed brood. Six hours after cell perforation, colonies tested (N = 91) showed a wide range of uncapped (0 to 100%) and cleaned cells (0 to 82%). Global distribution of the rate of cleaned cells at 6 h was multimodal and hygienic responses could be split in three classes. Colonies from the three regions showed a significant difference in HB responses. Three hypotheses (geographic, genetic traits, presence of V. destructor) are further discussed to explain variability of HB responses among the regions. Levels of HB efficiency of A. mellifera unicolor colonies are among the greatest levels reported for A. mellifera subspecies. Presence of highly hygienic colonies is a great opportunity for future breeding program in selection for HB.

  13. Exploring poisonous mechanism of honeybee, Apis mellifera ligustica Spinola, caused by pyrethroids.

    PubMed

    Wang, Qiang; Diao, Qingyun; Dai, Pingli; Chu, Yanna; Wu, Yanyan; Zhou, Ting; Cai, Qingnian

    2017-01-01

    As the important intracellular secondary messengers, calcium channel is the target of many neurotoxic pesticides as calcium homeostasis in the neuroplasm play important role in neuronal functions and behavior in insects. This study investigated the effect of deltamethrin (DM) on calcium channel in the brain nerve cells of adult workers of Apis mellifera ligustica Spinola that were cultured in vitro. The results showed that the intracellular calcium concentration was significantly elevated even with a very low concentration of the DM (3.125×10(-2)mg/L). Further testing revealed that T-type voltage-gated calcium channels (VGCCs), except for sodium channels, was one of the target of DM on toxicity of Apis mellifera, while DM has no significant effect on the L-type VGCCs, N-methyl-d-aspartate receptor-gated calcium channels and calcium store. These results suggesting that the DM may act on T-type VGCCs in brain cells of honeybees and result in behavioral abnormalities including swarming, feeding, learning, and acquisition.

  14. Maintenance and loss of heterozygosity in a thelytokous lineage of honey bees (Apis mellifera capensis).

    PubMed

    Goudie, Frances; Allsopp, Michael H; Beekman, Madeleine; Oxley, Peter R; Lim, Julianne; Oldroyd, Benjamin P

    2012-06-01

    An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades. It has been proposed that cytological adaptations slow the loss of heterozygosity in this lineage. However, we show that heterozygosity at the complementary sex determining (csd) locus is maintained via selection against homozygous diploid males that arise from recombination. Further, because zygosity is correlated across the genome, it appears that selection against diploid males reduces loss of homozygosity at other loci. Selection against homozygotes at csd results in substantial genetic load, so that if a thelytokous lineage is to endure, unusual ecological circumstances must exist in which asexuality permits such a high degree of fecundity that the genetic load can be tolerated. Without these ecological circumstances, sex will triumph over asexuality. In A. m. capensis, these conditions are provided by the parasitic interaction with its conspecific host, Apis mellifera scutellata.

  15. Flight behaviour of honey bee (Apis mellifera) workers is altered by initial infections of the fungal parasite Nosema apis

    PubMed Central

    Dosselli, Ryan; Grassl, Julia; Carson, Andrew; Simmons, Leigh W.; Baer, Boris

    2016-01-01

    Honey bees (Apis mellifera) host a wide range of parasites, some being known contributors towards dramatic colony losses as reported over recent years. To counter parasitic threats, honey bees possess effective immune systems. Because immune responses are predicted to cause substantial physiological costs for infected individuals, they are expected to trade off with other life history traits that ultimately affect the performance and fitness of the entire colony. Here, we tested whether the initial onset of an infection negatively impacts the flight behaviour of honey bee workers, which is an energetically demanding behaviour and a key component of foraging activities. To do this, we infected workers with the widespread fungal pathogen Nosema apis, which is recognised and killed by the honey bee immune system. We compared their survival and flight behaviour with non-infected individuals from the same cohort and colony using radio frequency identification tags (RFID). We found that over a time frame of four days post infection, Nosema did not increase mortality but workers quickly altered their flight behaviour and performed more flights of shorter duration. We conclude that parasitic infections influence foraging activities, which could reduce foraging ranges of colonies and impact their ability to provide pollination services. PMID:27827404

  16. Resisting majesty: Apis cerana, has lower antennal sensitivity and decreased attraction to queen mandibular pheromone than Apis mellifera

    NASA Astrophysics Data System (ADS)

    Dong, Shihao; Wen, Ping; Zhang, Qi; Li, Xinyu; Tan, Ken; Nieh, James

    2017-03-01

    In highly social bees, queen mandibular pheromone (QMP) is vital for colony life. Both Apis cerana (Ac) and Apis mellifera (Am) share an evolutionarily conserved set of QMP compounds: (E)-9-oxodec-2-enoic acid (9-ODA), (E)-9-hydroxydec-2-enoic acid (9-HDA), (E)-10-hydroxy-dec-2-enoic acid (10-HDA), 10-hydroxy-decanoic acid (10-HDAA), and methyl p–hydroxybenzoate (HOB) found at similar levels. However, evidence suggests there may be species-specific sensitivity differences to QMP compounds because Ac workers have higher levels of ovarian activation than Am workers. Using electroantennograms, we found species-specific sensitivity differences for a blend of the major QMP compounds and three individual compounds (9-HDA, 10-HDAA, and 10-HDA). As predicted, Am was more sensitive than Ac in all cases (1.3- to 2.7- fold higher responses). There were also species differences in worker retinue attraction to three compounds (9-HDA, HOB, and 10-HDA). In all significantly different cases, Am workers were 4.5- to 6.2-fold more strongly attracted than Ac workers were. Thus, Ac workers responded less strongly to QMP than Ac workers, and 9-HDA and 10-HDA consistently elicited stronger antennal and retinue formation responses.

  17. Resisting majesty: Apis cerana, has lower antennal sensitivity and decreased attraction to queen mandibular pheromone than Apis mellifera

    PubMed Central

    Dong, Shihao; Wen, Ping; Zhang, Qi; Li, Xinyu; Tan, Ken; Nieh, James

    2017-01-01

    In highly social bees, queen mandibular pheromone (QMP) is vital for colony life. Both Apis cerana (Ac) and Apis mellifera (Am) share an evolutionarily conserved set of QMP compounds: (E)-9-oxodec-2-enoic acid (9-ODA), (E)-9-hydroxydec-2-enoic acid (9-HDA), (E)-10-hydroxy-dec-2-enoic acid (10-HDA), 10-hydroxy-decanoic acid (10-HDAA), and methyl p–hydroxybenzoate (HOB) found at similar levels. However, evidence suggests there may be species-specific sensitivity differences to QMP compounds because Ac workers have higher levels of ovarian activation than Am workers. Using electroantennograms, we found species-specific sensitivity differences for a blend of the major QMP compounds and three individual compounds (9-HDA, 10-HDAA, and 10-HDA). As predicted, Am was more sensitive than Ac in all cases (1.3- to 2.7- fold higher responses). There were also species differences in worker retinue attraction to three compounds (9-HDA, HOB, and 10-HDA). In all significantly different cases, Am workers were 4.5- to 6.2-fold more strongly attracted than Ac workers were. Thus, Ac workers responded less strongly to QMP than Ac workers, and 9-HDA and 10-HDA consistently elicited stronger antennal and retinue formation responses. PMID:28294146

  18. Resisting majesty: Apis cerana, has lower antennal sensitivity and decreased attraction to queen mandibular pheromone than Apis mellifera.

    PubMed

    Dong, Shihao; Wen, Ping; Zhang, Qi; Li, Xinyu; Tan, Ken; Nieh, James

    2017-03-15

    In highly social bees, queen mandibular pheromone (QMP) is vital for colony life. Both Apis cerana (Ac) and Apis mellifera (Am) share an evolutionarily conserved set of QMP compounds: (E)-9-oxodec-2-enoic acid (9-ODA), (E)-9-hydroxydec-2-enoic acid (9-HDA), (E)-10-hydroxy-dec-2-enoic acid (10-HDA), 10-hydroxy-decanoic acid (10-HDAA), and methyl p-hydroxybenzoate (HOB) found at similar levels. However, evidence suggests there may be species-specific sensitivity differences to QMP compounds because Ac workers have higher levels of ovarian activation than Am workers. Using electroantennograms, we found species-specific sensitivity differences for a blend of the major QMP compounds and three individual compounds (9-HDA, 10-HDAA, and 10-HDA). As predicted, Am was more sensitive than Ac in all cases (1.3- to 2.7- fold higher responses). There were also species differences in worker retinue attraction to three compounds (9-HDA, HOB, and 10-HDA). In all significantly different cases, Am workers were 4.5- to 6.2-fold more strongly attracted than Ac workers were. Thus, Ac workers responded less strongly to QMP than Ac workers, and 9-HDA and 10-HDA consistently elicited stronger antennal and retinue formation responses.

  19. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    ERIC Educational Resources Information Center

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  20. Genome characterization, prevalence and distribution of a Macula-like virus from Apis mellifera and Varroa destructor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous viruses have been detected in honeybees, which can be roughly divided into 14 unique and distinct species-complexes, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.)...

  1. SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera).

    PubMed

    Muñoz, Irene; Henriques, Dora; Jara, Laura; Johnston, J Spencer; Chávez-Galarza, Julio; De La Rúa, Pilar; Pinto, M Alice

    2016-11-14

    The honeybee (Apis mellifera) has been threatened by multiple factors including pests and pathogens, pesticides and loss of locally adapted gene complexes due to replacement and introgression. In western Europe, the genetic integrity of the native A. m. mellifera (M-lineage) is endangered due to trading and intensive queen breeding with commercial subspecies of eastern European ancestry (C-lineage). Effective conservation actions require reliable molecular tools to identify pure-bred A. m. mellifera colonies. Microsatellites have been preferred for identification of A. m. mellifera stocks across conservation centres. However, owing to high throughput, easy transferability between laboratories and low genotyping error, SNPs promise to become popular. Here, we compared the resolving power of a widely utilized microsatellite set to detect structure and introgression with that of different sets that combine a variable number of SNPs selected for their information content and genomic proximity to the microsatellite loci. Contrary to every SNP data set, microsatellites did not discriminate between the two lineages in the PCA space. Mean introgression proportions were identical across the two marker types, although at the individual level, microsatellites' performance was relatively poor at the upper range of Q-values, a result reflected by their lower precision. Our results suggest that SNPs are more accurate and powerful than microsatellites for identification of A. m. mellifera colonies, especially when they are selected by information content.

  2. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp.

    PubMed

    Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei

    2016-05-01

    Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies.

  3. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp

    PubMed Central

    Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei

    2016-01-01

    Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. PMID:26823447

  4. Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera) hosts.

    PubMed

    Williams, Geoffrey R; Shutler, Dave; Burgher-MacLellan, Karen L; Rogers, Richard E L

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.

  5. Infra-Population and -Community Dynamics of the Parasites Nosema apis and Nosema ceranae, and Consequences for Honey Bee (Apis mellifera) Hosts

    PubMed Central

    Williams, Geoffrey R.; Shutler, Dave; Burgher-MacLellan, Karen L.; Rogers, Richard E. L.

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species. PMID:24987989

  6. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  7. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    PubMed

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers.

  8. Behavioural mimicry of honeybees (Apis mellifera) by droneflies (Diptera: Syrphidae: Eristalis spp.).

    PubMed

    Golding, Y C; Edmunds, M

    2000-05-07

    Droneflies (Syrphidae: Eristalis spp. resemble honeybees (Apis mellifera) in appearance and have often been considered to be Batesian mimics. This study used a focal watch technique in order to compare the foraging behaviour of droneflies Eristalis tenax, Eristalis pertinax, Eristalis arbustorum and Eristalis nemorum) whilst they were feeding on patches of flowers with the behaviour of honeybees and other hymenopterans and dipterans. It was found that, on a range of plant species, the time droneflies spent on individual flowers and the time spent flying between them was more similar to that of honeybees than to the times of other hymenopterans and dipterans. These results suggest that dronefly behaviour has evolved to become more similar to that of honeybees and they support the hypothesis that droneflies are Batesian mimics.

  9. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae

    PubMed Central

    Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L.; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins. PMID:28350872

  10. Detection of honey bee (Apis mellifera) viruses with an oligonucleotide microarray.

    PubMed

    Glover, Rachel H; Adams, Ian P; Budge, Giles; Wilkins, Selwyn; Boonham, Neil

    2011-07-01

    In recent years, declines in honey bee (Apis mellifera L.) colonies have been observed to varying degrees worldwide with the worst losses in the USA being termed Colony Collapse Disorder (CCD). Pathogen load and the prevalence of honey bee viruses have been implicated in these losses and many diseased hives have multiple viruses present. We have designed and tested an oligonucleotide microarray which enables the simultaneous detection of nine honey bee viruses: Acute bee paralysis virus, Black queen cell virus, Chronic bee paralysis virus, Deformed wing virus, Kashmir bee virus, Sacbrood virus, Israel acute paralysis virus, Varroa destructor virus 1 and Slow paralysis virus. The microarray can be used to robustly diagnose nine viruses in one test.

  11. Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly.

    PubMed

    Albert, S; Klaudiny, J; Simúth, J

    1999-05-01

    Major proteins of honey bee (Apis mellifera) royal jelly are members of the MRJP protein family. One MRJP protein termed MRJP3 exhibits a size polymorphism as detected by SDS-PAGE. In this report we show that polymorphism of the MRJP3 protein is a consequence of the polymorphism of a region with a variable number of tandem repeats (VNTR) located at the C-terminal part of the MRJP3 coding region. We present the characterization of five polymorphic alleles of MRJP3 by DNA sequencing. By PCR analyses, at least 10 alleles of distinct sizes were found in randomly sampled bees. Studies with nurse bees from a single honeybee colony revealed both Mendelian inheritance and very high variability of the MRJP3 genomic locus. The high variability and simple detection of the MRJP3 polymorphism may be useful for genotyping of individuals in studies of the honeybee.

  12. Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.).

    PubMed

    de Miranda, Joachim R; Dainat, Benjamin; Locke, Barbara; Cordoni, Guido; Berthoud, Helène; Gauthier, Laurent; Neumann, Peter; Budge, Giles E; Ball, Brenda V; Stoltz, Don B

    2010-10-01

    Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9.5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae. The two strains, labelled 'Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations. The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation.

  13. Asymmetric introgression of African genes in honeybee populations (Apis mellifera L.) in Central Mexico.

    PubMed

    Kraus, F B; Franck, P; Vandame, R

    2007-08-01

    The Africanization of the honeybee (Apis mellifera) in South America is one of the most spectacular examples of biological invasions. In this study, we analyzed the Africanization process in Central Mexico along an altitudinal transect from 72 to 2800 m, using both mitochondrial and nuclear DNA markers. The mitochondrial analysis revealed that the two high-altitude populations had a significantly greater percentage of African mitotypes (95%) than the three lowland populations (67%), indicating successful spreading of Africanized swarms to these altitudes. All populations (highland and lowland) had a similar overall proportion of African alleles at nuclear loci (58%). Thus, all populations showed an asymmetric introgression of African nuclear and mtDNA. Colonies with African mitotypes had, on average, significantly more African nuclear alleles (60%) than those with European mitotypes (51%). Furthermore, the three lowland populations showed clear signs of linkage disequilibrium, while the two high-altitude populations did not, indicating recent genetic introgression events into the lowland populations.

  14. Antennal malformations in light ocelli drones of Apis mellifera (Hymenoptera, Apidae).

    PubMed

    Chaud-Netto, J

    2000-02-01

    Malformed antennae of Apis mellifera light ocelli drones were drawn, dissected and mounted permanently on slides containing Canada balsam, in order to count the olfactory discs present in each segment, in comparison with the number of those structures in normal antennae of their brothers. Some drones presented morphological abnormalities in a single segment of the right or left antenna, but others had two or more malformed segments in a same antenna. Drones with malformations in both antennae were also observed. The 4th and 5th flagellum segments were the most frequently affected. In a low number of cases the frequency of olfactory discs in malformed segments did not differ from that one recorded for normal segments. However, in most cases studied, the antennal malformations brought about a significant reduction in the number of olfactory discs from malformed segments.

  15. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens

    NASA Astrophysics Data System (ADS)

    Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi

    2005-07-01

    To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.

  16. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    NASA Astrophysics Data System (ADS)

    Desoil, M.; Gillis, P.; Gossuin, Y.; Pankhurst, Q. A.; Hautot, D.

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe3O4) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  17. Complete mitochondrial genome of the Algerian honeybee, Apis mellifera intermissa (Hymenoptera: Apidae).

    PubMed

    Hu, Peng; Lu, Zhi-Xiang; Haddad, Nizar; Noureddine, Adjlane; Loucif-Ayad, Wahida; Wang, Yong-Zhi; Zhao, Ren-Bin; Zhang, Ai-Ling; Guan, Xin; Zhang, Hai-Xi; Niu, Hua

    2016-05-01

    In this study, the complete mitochondrial genome sequence of Algerian honeybee, Apis mellifera intermissa, is analyzed for the first time. The results show that this genome is 16,336 bp in length, and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region (D-loop). The overall base composition is A (43.2%), C (9.8%), G (5.6%), and T (41.4%), so the percentage of A and T (84.6%) is considerably higher than that of G and C. All the genes are encoded on H-strand, except for four subunit genes (ND1, ND4, ND4L, and ND5), two rRNA genes (12S and 16S rRNA), and eight tRNA genes. The complete mitochondrial genome sequence reported here would be useful for further phylogenetic analysis and conservation genetic studies in A. m. intermissa.

  18. Kiwifruit Flower Odor Perception and Recognition by Honey Bees, Apis mellifera.

    PubMed

    Twidle, Andrew M; Mas, Flore; Harper, Aimee R; Horner, Rachael M; Welsh, Taylor J; Suckling, David M

    2015-06-17

    Volatile organic compounds (VOCs) from male and female kiwifruit (Actinidia deliciosa 'Hayward') flowers were collected by dynamic headspace sampling. Honey bee (Apis mellifera) perception of the flower VOCs was tested using gas chromatography coupled to electroantennogram detection. Honey bees consistently responded to six compounds present in the headspace of female kiwifruit flowers and five compounds in the headspace of male flowers. Analysis of the floral volatiles by gas chromatography-mass spectrometry and microscale chemical derivatization showed the compounds to be nonanal, 2-phenylethanol, 4-oxoisophorone, (3E,6E)-α-farnesene, (6Z,9Z)-heptadecadiene, and (8Z)-heptadecene. Bees were then trained via olfactory conditioning of the proboscis extension response (PER) to synthetic mixtures of these compounds using the ratios present in each flower type. Honey bees trained to the synthetic mixtures showed a high response to the natural floral extracts, indicating that these may be the key compounds for honey bee perception of kiwifruit flower odor.

  19. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae.

    PubMed

    Badaoui, Bouabid; Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins.

  20. Mimicry of queen Dufour's gland secretions by workers of Apis mellifera scutellata and A. m. capensis.

    PubMed

    Sole, Catherine L; Kryger, Per; Hefetz, Abraham; Katzav-Gozansky, Tamar; Crewe, Robin M

    2002-12-01

    The development of the Dufour's gland of workers of the two honey bee races Apis mellifera scutellata and A. m. capensis was measured. The Dufour's glands of A. m. capensis workers were longer and increased in length more rapidly than the glands of workers of A. m. scutellata at comparable ages. Analysis of the Dufour's gland secretions of workers and queens of both races revealed that there were caste and racial differences. Secretions of queenright A. m. scutellata workers were dominated by a series of long-chain hydrocarbons. In contrast the secretions of the A. m. capensis workers both under queenright and queenless conditions were a mixture of hydrocarbons and wax-type esters, as were those of queens. Multivariate analysis of the secretion profiles indicated that laying workers of both races mimic queens. The secretions of the A. m. capensis laying workers mimicked queen secretions most closely, enabling them to act as successful social parasites.

  1. Mimicry of queen Dufour's gland secretions by workers of Apis mellifera scutellata and A. m. capensis

    NASA Astrophysics Data System (ADS)

    Sole, Catherine; Kryger, Per; Hefetz, Abraham; Katzav-Gozansky, Tamar; Crewe, Robin

    2002-10-01

    The development of the Dufour's gland of workers of the two honey bee races Apis mellifera scutellata and A. m. capensis was measured. The Dufour's glands of A. m. capensis workers were longer and increased in length more rapidly than the glands of workers of A. m. scutellata at comparable ages. Analysis of the Dufour's gland secretions of workers and queens of both races revealed that there were caste and racial differences. Secretions of queenright A. m. scutellata workers were dominated by a series of long-chain hydrocarbons. In contrast the secretions of the A. m. capensis workers both under queenright and queenless conditions were a mixture of hydrocarbons and wax-type esters, as were those of queens. Multivariate analysis of the secretion profiles indicated that laying workers of both races mimic queens. The secretions of the A. m. capensis laying workers mimicked queen secretions most closely, enabling them to act as successful social parasites.

  2. Short-sighted evolution of virulence in parasitic honeybee workers (Apis mellifera capensis Esch.).

    PubMed

    Moritz, Robin F A; Pirk, Christian W W; Hepburn, H Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  3. The complete mitochondrial genome of the invasive Africanized Honey Bee, Apis mellifera scutellata (Insecta: Hymenoptera: Apidae).

    PubMed

    Gibson, Joshua D; Hunt, Greg J

    2016-01-01

    The complete mitochondrial genome from an Africanized honey bee population (AHB, derived from Apis mellifera scutellata) was assembled and analyzed. The mitogenome is 16,411 bp long and contains the same gene repertoire and gene order as the European honey bee (13 protein coding genes, 22 tRNA genes and 2 rRNA genes). ND4 appears to use an alternate start codon and the long rRNA gene is 48 bp shorter in AHB due to a deletion in a terminal AT dinucleotide repeat. The dihydrouracil arm is missing from tRNA-Ser (AGN) and tRNA-Glu is missing the TV loop. The A + T content is comparable to the European honey bee (84.7%), which increases to 95% for the 3rd position in the protein coding genes.

  4. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production.

    PubMed

    Parpinelli, R S; Ruvolo-Takasusuki, M C C; Toledo, V A A

    2014-08-28

    It is important to select the best honeybees that produce royal jelly to identify important molecular markers, such as major royal jelly proteins (MRJPs), and hence contribute to the development of new breeding strategies to improve the production of this substance. Therefore, this study focused on evaluating the genetic variability of mrjp3, mrjp5, and mrjp8 and associated allele maintenance during the process of selective reproduction in Africanized Apis mellifera individuals, which were chosen based on royal jelly production. The three loci analyzed were polymorphic, and produced a total of 16 alleles, with 4 new alleles, which were identified at mrjp5. The effective number of alleles at mrjp3 was 3.81. The observed average heterozygosity was 0.4905, indicating a high degree of genetic variability at these loci. The elevated FIS values for mrjp3, mrjp5, and mrjp8 (0.4188, 0.1077, and 0.2847, respectively) indicate an excess of homozygotes. The selection of Africanized A. mellifera queens for royal jelly production has maintained the mrjp3 C, D, and E alleles; although, the C allele occurred at a low frequency. The heterozygosity and FIS values show that the genetic variability of the queens is decreasing at the analyzed loci, generating an excess of homozygotes. However, the large numbers of drones that fertilize the queens make it difficult to develop homozygotes at mrjp3. Mating through instrumental insemination using the drones of known genotypes is required to increase the efficiency of Africanized A. mellifera-breeding programs, and to improve the quality and efficiency of commercial royal jelly apiaries.

  5. Drug leads agents from methanol extract of Nigerian bee (Apis mellifera) propolis

    PubMed Central

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Abubakar, Asmau Niwoye; Olalekan, Ibrahim Azeez; Jimoh, Adisa Mohammed; Abdulazeez, Adeniyi Kamoru

    2016-01-01

    Background: Propolis is a bee (Apis mellifera) product of plant origin with varied chemical composition depending on the ecology of the botanical origin. It has been reported in literature to possess various therapeutic effects both traditionally, clinical trial, and animal study. Objectives: In the present study bioactive principle in methanol extract of Nigerian bee (A. mellifera) propolis was determined by gas chromatography-mass spectrometry (GC/MS) study. Materials and Methods: The methanol extract of Nigerian bee (A. mellifera) propolis was characterized for its chemical composition by preliminary phytochemicals screening and GC/MS analysis using standard procedures and methods. Results: Phytochemical screening revealed the presence of flavonoids, saponins, alkaloids, tannins, cardiac glycosides, anthraquinones phlobatannins, and steroids while GC/MS chromatogram revealed nineteen peaks representing 60 different chemical compounds. The first compounds identified with less retention time (RT) (13.33s) were methyl tetradecanoate, tridecanoic acid, methyl ester, decanoic acid, methyl ester while squalene, all-trans-squalene, 2,6,10-dodecatrien-1-ol, 3,7,11-trimethyl-, (E,E)- and farnesol isomer a took longest RT (23.647s) to identify. Methyl 14-methylpentadecanoate, hexadecanoic acid methyl ester, methyl isoheptadecanoate, and methyl tridecanoate were the most concentrated constituent as revealed by there peak height (26.01%) while eicosanoic acid was the least concentrated (peak height 0.81%) constituent of Nigerian bee propolis. Conclusion: The presence of these chemical principles is an indication that methanol extract of Nigeria bee propolis, if properly screened could yield a drug of pharmaceutical importance. PMID:27069724

  6. Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski)

    PubMed Central

    Biddinger, David J.; Robertson, Jacqueline L.; Mullin, Chris; Frazier, James; Ashcraft, Sara A.; Rajotte, Edwin G.; Joshi, Neelendra K.; Vaughn, Mace

    2013-01-01

    The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L.) (Hymenoptera: Apidae) and Japanese orchard bees, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae). The pesticides were acetamiprid (Assail 30SG), λ-cyhalothrin (Warrior II), dimethoate (Dimethoate 4EC), phosmet (Imidan 70W), and imidacloprid (Provado 1.6F). At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD50 was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD50 was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F) was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species) was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards. PMID:24039783

  7. Developing an in vivo toxicity assay for RNAi risk assessment in honey bees, Apis mellifera L.

    PubMed

    Vélez, Ana María; Jurzenski, Jessica; Matz, Natalie; Zhou, Xuguo; Wang, Haichuan; Ellis, Marion; Siegfried, Blair D

    2016-02-01

    Maize plants expressing dsRNA for the management of Diabrotica virgifera virgifera are likely to be commercially available by the end of this decade. Honey bees, Apis mellifera, can potentially be exposed to pollen from transformed maize expressing dsRNA. Consequently, evaluation of the biological impacts of RNAi in honey bees is a fundamental component for ecological risk assessment. The insecticidal activity of a known lethal dsRNA target for D. v. virgifera, the vATPase subunit A, was evaluated in larval and adult honey bees. Activity of both D. v. virgifera (Dvv)- and A. mellifera (Am)-specific dsRNA was tested by dietary exposure to dsRNA. Larval development, survival, adult eclosion, adult life span and relative gene expression were evaluated. The results of these tests indicated that Dvv vATPase-A dsRNA has limited effects on larval and adult honey bee survival. Importantly, no effects were observed upon exposure of Am vATPase-A dsRNA suggesting that the lack of response involves factors other than sequence specificity. The results from this study provide guidance for future RNAi risk analyses and for the development of a risk assessment framework that incorporates similar hazard assessments.

  8. Prevalence, intensity and associated factor analysis of Tropilaelaps mercedesae infesting Apis mellifera in China.

    PubMed

    Luo, Qi Hua; Zhou, Ting; Dai, Ping Li; Song, Huai Lei; Wu, Yan Yan; Wang, Qiang

    2011-10-01

    Tropilaelaps mercedesae is a serious ectoparasite of Apis mellifera in China. The aim of this study was to investigate the infestation rates and intensity of T. mercedesae in A. mellifera in China, and to explore the relative importance of climate, district, management practices and beekeeper characteristics that are assumed to be associated with the intensity of T. mercedesae. Of the 410 participating apiaries, 379 apiaries were included in analyses of seasonal infestation rates and 352 apiaries were included in multivariable regression analysis. The highest infestation rate (86.3%) of T. mercedesae was encountered in autumn, followed by summer (66.5%), spring (17.2%) and winter (14.8%). In autumn, 28.9% (93) of the infested apiaries were in the north (including the northeast and northwest of China), 71.1% (229) were in the central and south (including east, southeast and southwest China), and 306 apiaries (82.9%) were co-infested by both T. mercedesae and Varroa. Multivariable regression analysis showed that geographical location, season, royal jelly collection and Varroa infestation were the factors that influence the intensity of T. mercedesae. The influence of beekeeper's education, time of beekeeping, operation size, and hive migration on the intensity of T. mercedesa was not statistically significant. This study provided information about the establishment of the linkage of the environment and the parasite and could lead to better timing and methods of control.

  9. A variant reference data set for the Africanized honeybee, Apis mellifera

    PubMed Central

    Kadri, Samir M.; Harpur, Brock A.; Orsi, Ricardo O.; Zayed, Amro

    2016-01-01

    The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs—often referred to as ‘Killer Bees’— are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs. PMID:27824336

  10. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor.

    PubMed

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-11-24

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences' reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses.

  11. Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera.

    PubMed

    Alquisira-Ramírez, Eva Vianey; Peña-Chora, Guadalupe; Hernández-Velázquez, Víctor Manuel; Alvear-García, Andrés; Arenas-Sosa, Iván; Suarez-Rodríguez, Ramón

    2017-04-04

    The sublethal effects of two strains of Bacillus thuringiensis, which were virulent in vitro to Varroa destructor, were measured on Apis mellifera. The effects of five concentrations of total protein (1, 5, 25, 50 and 100μg/mL) from the EA3 and EA26.1 strains on larval and adult honey bees were evaluated for two and seven days under laboratory conditions. Based on the concentrations evaluated, total protein from the two strains did not affect the development of larvae, the syrup consumption, locomotor activity or proboscis extension response of adults. These same parameters were also tested for the effects of three concentrations (1, 10 and 15μg/kg) of cypermethrin as a positive control. Although no significant differences were observed after two days of treatment with cypermethrin, a dose-response relationship in syrup consumption and locomotor activity was observed. A significant reduction in the proboscis extension response of the bees treated with cypermethrin was also observed. Therefore, in contrast to cypermethrin, our results indicate that the EA3 and EA26.1 strains of B. thuringiensis can be used in beehives to control V. destructor and reduce the negative effects of this mite on colonies without adverse effects on the larvae and adults of A. mellifera. Additionally, the overuse of synthetic miticides, which produce both lethal and sublethal effects on bees, can be reduced.

  12. Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization.

    PubMed

    Francoy, T M; Wittmann, D; Steinhage, V; Drauschke, M; Müller, S; Cunha, D R; Nascimento, A M; Figueiredo, V L C; Simões, Z L P; De Jong, D; Arias, M C; Gonçalves, L S

    2009-01-01

    Though the replacement of European bees by Africanized honey bees in tropical America has attracted considerable attention, little is known about the temporal changes in morphological and genetic characteristics in these bee populations. We examined the changes in the morphometric and genetic profiles of an Africanized honey bee population collected near where the original African swarms escaped, after 34 years of Africanization. Workers from colonies sampled in 1968 and in 2002 were morphometrically analyzed using relative warps analysis and an Automatic Bee Identification System (ABIS). All the colonies had their mitochondrial DNA identified. The subspecies that mixed to form the Africanized honey bees were used as a comparison for the morphometric analysis. The two morphometric approaches showed great similarity of Africanized bees with the African subspecies, Apis mellifera scutellata, corroborating with other markers. We also found the population of 1968 to have the pattern of wing venation to be more similar to A. m. scutellata than the current population. The mitochondrial DNA of European origin, which was very common in the 1968 population, was not found in the current population, indicating selective pressure replacing the European with the African genome in this tropical region. Both morphometric methodologies were very effective in discriminating the A. mellifera groups; the non-linear analysis of ABIS was the most successful in identifying the bees, with more than 94% correct classifications.

  13. Characterization of an Unusually Conserved Alui Highly Reiterated DNA Sequence Family from the Honeybee, Apis Mellifera

    PubMed Central

    Tares, S.; Cornuet, J. M.; Abad, P.

    1993-01-01

    An AluI family of highly reiterated nontranscribed sequences has been found in the genome of the honeybee Apis mellifera. This repeated sequence is shown to be present at approximately 23,000 copies per haploid genome constituting about 2% of the total genomic DNA. The nucleotide sequence of 10 monomers was determined. The consensus sequence is 176 nucleotides long and has an A + T content of 58%. There are clusters of both direct and inverted repeats. Internal subrepeating units ranging from 11 to 17 nucleotides are observed, suggesting that it could have evolved from a shorter sequence. DNA sequence data reveal that this repeat class is unusually homogeneous compared to the other class of invertebrate highly reiterated DNA sequences. The average pairwise sequence divergence between the repeats is 2.5%. In spite of this unusual homogeneity, divergence has been found in the repeated sequence hybridization ladder between four different honeybee subspecies. Therefore, the AluI highly reiterated sequences provide a new probe for fingerprinting in A. m. mellifera. PMID:8104160

  14. A variant reference data set for the Africanized honeybee, Apis mellifera.

    PubMed

    Kadri, Samir M; Harpur, Brock A; Orsi, Ricardo O; Zayed, Amro

    2016-11-08

    The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs-often referred to as 'Killer Bees'- are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs.

  15. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis.

    PubMed

    Garnery, L; Cornuet, J M; Solignac, M

    1992-10-01

    Variability of mitochondrial DNA (mtDNA) of the honey bee Apis mellifera L. has been investigated by restriction and sequence analyses on a sample of 68 colonies from ten different subspecies. The 19 mtDNA types detected are clustered in three major phylogenetic lineages. These clades correspond well to three groups of populations with distinct geographical distributions: branch A for African subspecies (intermissa, monticola, scutellata, andansonii and capensis), branch C for North Mediterranean subspecies (caucasica, carnica and ligustica) and branch M for the West European populations (mellifera subspecies). These results partially confirm previous hypotheses based on morphometrical and allozymic studies, the main difference concerning North African populations, now assigned to branch A instead of branch M. The pattern of spatial structuring suggests the Middle East as the centre of dispersion of the species, in accordance with the geographic areas of the other species of the same genus. Based on a conservative 2% divergence rate per Myr, the separation of the three branches has been dated at about 1 Myr BP.

  16. Influence of pollen quality on ovarian development in honeybee workers (Apis mellifera scutellata).

    PubMed

    Human, H; Nicolson, S W; Strauss, K; Pirk, C W W; Dietemann, V

    2007-07-01

    Protein-rich diets are known to promote ovarian and egg development in workers of the honeybee, Apis mellifera, even in the presence of a queen. Since the main source of protein for honeybees is pollen, its quality and digestibility might be important dietary factors determining reproductive capacity. We have compared the effect of two types of pollen-sunflower, Helianthus annuus, and aloe, Aloe greatheadii var davyana-on ovarian development in A. mellifera scutellata workers. Under queenright conditions in the field, worker bees exhibited greater ovarian development when feeding on aloe pollen than on sunflower pollen. In their midgut, we observed higher extraction efficiency for aloe (80%) than for sunflower (69%) pollen. This may be attributed to the morphology and size of the two kinds of pollen grains and explains, together with the high protein content of aloe pollen (32% dry mass in bee-collected pollen) compared to sunflower pollen (15%), why aloe pollen promoted higher ovarian development. However, in the laboratory workers sustained on aloe pollen had significantly less-developed ovaries and higher mortality than those fed sunflower pollen. These detrimental effects may be due to an unbalanced protein:carbohydrate ratio. We discuss the effects of unbalanced diets on the physiology and ecology of honeybee reproduction.

  17. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor

    PubMed Central

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-01-01

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences’ reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses. PMID:27883042

  18. Patterns of Apis mellifera infection by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microsporidian Nosema ceranae has recently invaded managed honey bee (Apis mellifera) colonies beyond Asia. The presence of this emergent parasite in lineages of A. mellifera that are naïve to its selection pressure (“Italian”) and that have co-evolved with the parasite over ca. 150 generations ...

  19. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains

    PubMed Central

    Zolfagharian, Hossein; Mohajeri, Mohammad; Babaie, Mahdi

    2016-01-01

    Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. Methods: This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. Results: BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. Conclusion: The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood. PMID:27695631

  20. Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera)

    PubMed Central

    Jarosch, Antje; Stolle, Eckart; Crewe, Robin M.; Moritz, Robin F. A.

    2011-01-01

    In eusocial insects the production of daughters is generally restricted to mated queens, and unmated workers are functionally sterile. The evolution of this worker sterility has been plausibly explained by kin selection theory [Hamilton W (1964) J Theor Biol 7:1–52], and many traits have evolved to prevent conflict over reproduction among the females in an insect colony. In honeybees (Apis mellifera), worker reproduction is regulated by the queen, brood pheromones, and worker policing. However, workers of the Cape honeybee, Apis mellifera capensis, can evade this control and establish themselves as social parasites by activating their ovaries, parthenogenetically producing diploid female offspring (thelytoky) and producing queen-like amounts of queen pheromones. All these traits have been shown to be strongly influenced by a single locus on chromosome 13 [Lattorff HMG, et al. (2007) Biol Lett 3:292–295]. We screened this region for candidate genes and found that alternative splicing of a gene homologous to the gemini transcription factor of Drosophila controls worker sterility. Knocking out the critical exon in a series of RNAi experiments resulted in rapid worker ovary activation—one of the traits characteristic of the social parasites. This genetic switch may be controlled by a short intronic splice enhancer motif of nine nucleotides attached to the alternative splice site. The lack of this motif in parasitic Cape honeybee clones suggests that the removal of nine nucleotides from the altruistic worker genome may be sufficient to turn a honeybee from an altruistic worker into a parasite. PMID:21896748

  1. Honey Bee Venom (Apis mellifera) Contains Anticoagulation Factors and Increases the Blood-clotting Time

    PubMed Central

    Zolfagharian, Hossein; Mohajeri, Mohammad; Babaie, Mahdi

    2015-01-01

    Objectives: Bee venom (BV) is a complex mixture of proteins and contains proteins such as phospholipase and melittin, which have an effect on blood clotting and blood clots. The mechanism of action of honey bee venom (HBV, Apis mellifera) on human plasma proteins and its anti-thrombotic effect were studied. The purpose of this study was to investigate the anti-coagulation effect of BV and its effects on blood coagulation and purification. Methods: Crude venom obtained from Apis mellifera was selected. The anti-coagulation factor of the crude venom from this species was purified by using gel filtration chromatography (sephadex G-50), and the molecular weights of the anti-coagulants in this venom estimated by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Blood samples were obtained from 10 rabbits, and the prothrombin time (PT) and the partial thromboplastin time (PTT) tests were conducted. The approximate lethal dose (LD) values of BV were determined. Results: Crude BV increased the blood clotting time. For BV concentrations from 1 to 4 mg/mL, clotting was not observed even at more than 300 seconds, standard deviations (SDs) = ± 0.71; however, clotting was observed in the control group 13.8 s, SDs = ± 0.52. Thus, BV can be considered as containing anti-coagulation factors. Crude BV is composed 4 protein bands with molecular weights of 3, 15, 20 and 41 kilodalton (kDa), respectively. The LD50 of the crude BV was found to be 177.8 μg/mouse. Conclusion: BV contains anti-coagulation factors. The fraction extracted from the Iranian bees contains proteins that are similar to anti-coagulation proteins, such as phospholipase A2 (PLA2) and melittin, and that can increase the blood clotting times in vitro. PMID:26998384

  2. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera.

    PubMed

    Elango, Navin; Hunt, Brendan G; Goodisman, Michael A D; Yi, Soojin V

    2009-07-07

    The recent, unexpected discovery of a functional DNA methylation system in the genome of the social bee Apis mellifera underscores the potential importance of DNA methylation in invertebrates. The extent of genomic DNA methylation and its role in A. mellifera remain unknown, however. Here we show that genes in A. mellifera can be divided into 2 distinct classes, one with low-CpG dinucleotide content and the other with high-CpG dinucleotide content. This dichotomy is explained by the gradual depletion of CpG dinucleotides, a well-known consequence of DNA methylation. The loss of CpG dinucleotides associated with DNA methylation also may explain the unusual mutational patterns seen in A. mellifera that lead to AT-rich regions of the genome. A detailed investigation of this dichotomy implicates DNA methylation in A. mellifera development. High-CpG genes, which are predicted to be hypomethylated in germlines, are enriched with functions associated with developmental processes, whereas low-CpG genes, predicted to be hypermethylated in germlines, are enriched with functions associated with basic biological processes. Furthermore, genes more highly expressed in one caste than another are overrepresented among high-CpG genes. Our results highlight the potential significance of epigenetic modifications, such as DNA methylation, in developmental processes in social insects. In particular, the pervasiveness of DNA methylation in the genome of A. mellifera provides fertile ground for future studies of phenotypic plasticity and genomic imprinting.

  3. Using Errors by Guard Honeybees (Apis mellifera) to Gain New Insights into Nestmate Recognition Signals.

    PubMed

    Pradella, Duccio; Martin, Stephen J; Dani, Francesca R

    2015-11-01

    Although the honeybee (Apis mellifera) is one of the world most studied insects, the chemical compounds used in nestmate recognition, remains an open question. By exploiting the error prone recognition system of the honeybee, coupled with genotyping, we studied the correlation between cuticular hydrocarbon (CHC) profile of returning foragers and acceptance or rejection behavior by guards. We revealed an average recognition error rate of 14% across 3 study colonies, that is, allowing a non-nestmate colony entry, or preventing a nestmate from entry, which is lower than reported in previous studies. By analyzing CHCs, we found that CHC profile of returning foragers correlates with acceptance or rejection by guarding bees. Although several CHC were identified as potential recognition cues, only a subset of 4 differed consistently for their relative amount between accepted and rejected individuals in the 3 studied colonies. These include a unique group of 2 positional alkene isomers (Z-8 and Z-10), which are almost exclusively produced by the bees Bombus and Apis spp, and may be candidate compounds for further study.

  4. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera).

    PubMed

    Retschnig, Gina; Williams, Geoffrey R; Mehmann, Marion M; Yañez, Orlando; de Miranda, Joachim R; Neumann, Peter

    2014-01-01

    Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.

  5. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata).

    PubMed

    Strauss, Ursula; Human, Hannelie; Gauthier, Laurent; Crewe, Robin M; Dietemann, Vincent; Pirk, Christian W W

    2013-09-01

    The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly high. No single cause has been identified for these losses, but the interactions between several factors (mostly pathogens and parasites) have been held responsible. Work in the Americas on honeybees originating mainly from South Africa indicates that Africanised honeybees are less affected by the interplay of pathogens and parasites. However, little is known about the health status of South African honeybees (A. m. scutellata and A. m. capensis) in relation to pathogens and parasites. We therefore compared the seasonal prevalence of honeybee pathogens (viruses, bacteria, fungi) and parasites (mites, bee lice, wax moth, small hive beetles, A. m. capensis social parasites) between sedentary and migratory A. m. scutellata apiaries situated in the Gauteng region of South Africa. No significant differences were found in the prevalence of pathogens and parasites between sedentary and migratory apiaries. Three (Black queen cell virus, Varroa destructor virus 1 and Israeli acute paralysis virus) of the eight viruses screened were detected, a remarkable difference compared to European honeybees. Even though no bacterial pathogens were detected, Nosema apis and Chalkbrood were confirmed. All of the honeybee parasites were found in the majority of the apiaries with the most common parasite being the Varroa mite. In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy.

  6. Honey Bee Apis mellifera Parasites in the Absence of Nosema ceranae Fungi and Varroa destructor Mites

    PubMed Central

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L.; Colwell, Megan J.; Levitt, Abby L.; Ostiguy, Nancy; Williams, Geoffrey R.

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present. PMID:24955834

  7. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    PubMed

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L; Colwell, Megan J; Levitt, Abby L; Ostiguy, Nancy; Williams, Geoffrey R

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

  8. A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera).

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H

    2010-10-01

    Correct identification of the microsporidia, Nosema apis and Nosema ceranae, is key to the study and control of Nosema disease of honey bees (Apis mellifera). A rapid DNA extraction method combined with multiplex PCR to amplify the 16S rRNA gene with species-specific primers was compared with a previously published assay requiring spore-germination buffer and a DNA extraction kit. When the spore germination-extraction kit method was used, 10 or more bees were required to detect the pathogens, whereas the new extraction method made it possible to detect the pathogens in single bees. Approx. 4-8 times better detection of N. ceranae was found with the new method compared to the spore germination-extraction kit method. In addition, the time and cost required to process samples was lower with the proposed method compared to using a kit. Using the new DNA extraction method, a spore quantification procedure was developed using a triplex PCR involving co-amplifying the N. apis and N. ceranae 16S rRNA gene with the ribosomal protein gene, RpS5, from the honey bee. The accuracy of this semi-quantitative PCR was determined by comparing the relative band intensities to the number of spores per bee determined by microscopy for 23 samples, and a high correlation (R(2)=0.95) was observed. This method of Nosema spore quantification revealed that spore numbers as low as 100 spores/bee could be detected by PCR. The new semi-quantitative triplex PCR assay is more sensitive, economical, rapid, simple, and reliable than previously published standard PCR-based methods for detection of Nosema and will be useful in laboratories where real-time PCR is not available.

  9. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera.

    PubMed

    Lin, Zheguang; Page, Paul; Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide.

  10. Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera.

    PubMed

    Kent, Clement F; Issa, Amer; Bunting, Alexandra C; Zayed, Amro

    2011-12-01

    The vitellogenin egg yolk precursor protein represents a well-studied case of social pleiotropy in the model organism Apis mellifera. Vitellogenin is associated with fecundity in queens and plays a major role in controlling division of labour in workers, thereby affecting both individual and colony-level fitness. We studied the molecular evolution of vitellogenin and seven other genes sequenced in a large population panel of Apis mellifera and several closely related species to investigate the role of social pleiotropy on adaptive protein evolution. We found a significant excess of nonsynonymous fixed differences between A. mellifera, A. cerana and A. florea relative to synonymous sites indicating high rates of adaptive evolution at vitellogenin. Indeed, 88% of amino acid changes were fixed by selection in some portions of the gene. Further, vitellogenin exhibited hallmark signatures of selective sweeps in A. mellifera, including a significant skew in the allele frequency spectrum, extreme levels of genetic differentiation and linkage disequilibrium. Finally, replacement polymorphisms in vitellogenin were significantly enriched in parts of the protein involved in binding lipid, establishing a link between the gene's structure, function and effects on fitness. Our case study provides unequivocal evidence of historical and ongoing bouts of adaptive evolution acting on a key socially pleiotropic gene in the honey bee.

  11. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera

    PubMed Central

    Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide. PMID:27606819

  12. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    PubMed

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-07

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  13. Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented

    PubMed Central

    Petersen, Jessica D.; Reiners, Stephen; Nault, Brian A.

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system. PMID:23894544

  14. Pollination services provided by bees in pumpkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented.

    PubMed

    Petersen, Jessica D; Reiners, Stephen; Nault, Brian A

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.

  15. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues.

    PubMed

    Goblirsch, Michael J; Spivak, Marla S; Kurtti, Timothy J

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  16. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera

    PubMed Central

    Barchuk, Angel R; Cristino, Alexandre S; Kucharski, Robert; Costa, Luciano F; Simões, Zilá LP; Maleszka, Ryszard

    2007-01-01

    Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during

  17. Infections with the Sexually Transmitted Pathogen Nosema apis Trigger an Immune Response in the Seminal Fluid of Honey Bees (Apis mellifera).

    PubMed

    Grassl, Julia; Peng, Yan; Baer-Imhoof, Barbara; Welch, Mat; Millar, A Harvey; Baer, Boris

    2017-01-06

    Honey bee (Apis mellifera) males are highly susceptible to infections with the sexually transmitted fungal pathogen Nosema apis. However, they are able to suppress this parasite in the ejaculate using immune molecules in the seminal fluid. We predicted that males respond to infections by altering the seminal fluid proteome to minimize the risk to sexually transmit the parasite to the queen and her colony. We used iTRAQ isotopic labeling to compare seminal fluid proteins from infected and noninfected males and found that N. apis infections resulted in significant abundance changes in 111 of the 260 seminal fluid proteins quantitated. The largest group of proteins with significantly changed abundances consisted of 15 proteins with well-known immune-related functions, which included two significantly more abundant chitinases in the seminal fluid of infected males. Chitinases were previously hypothesized to be involved in honey bee antifungal activity against N. apis. Here we show that infection with N. apis triggers a highly specific immune response in the seminal fluid of honey bee males.

  18. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    PubMed

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  19. Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera).

    PubMed

    Polykretis, P; Delfino, G; Petrocelli, I; Cervo, R; Tanteri, G; Montori, G; Perito, B; Branca, J J V; Morucci, G; Gulisano, M

    2016-11-01

    In the last decades a dramatic loss of Apis mellifera hives has been reported in both Europe and USA. Research in this field is oriented towards identifying a synergy of contributing factors, i.e. pathogens, pesticides, habitat loss and pollution to the weakening of the hive. Cadmium (Cd) is a hazardous anthropogenic pollutant whose effects are proving to be increasingly lethal. Among the multiple damages related to Cd contamination, some studies report that it causes immunosuppression in various animal species. The aim of this paper is to determine whether contamination by Cd, may have a similar effect on the honey bees' immunocompetence. Our results, obtained by immune challenge experiments and confirmed by structural and ultrastructural observations show that such metal causes a reduction in immunocompetence in 3 days Cd exposed bees. As further evidence of honey bee response to Cd treatment, Energy Dispersive X-ray Spectroscopy (X-EDS) has revealed the presence of zinc (Zn) in peculiar electron-dense granules in fat body cells. Zn is a characteristic component of metallothioneins (MTs), which are usually synthesized as anti-oxidant and scavenger tools against Cd contamination. Our findings suggest that honey bee colonies may have a weakened immune system in Cd polluted areas, resulting in a decreased ability in dealing with pathogens.

  20. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    PubMed

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  1. The absolute configurations of hydroxy fatty acids from the royal jelly of honeybees (Apis mellifera).

    PubMed

    Kodai, Tetsuya; Nakatani, Takafumi; Noda, Naoki

    2011-03-01

    9-Hydroxy-2E-decenoic acid (9-HDA) is a precursor of the queen-produced substance, 9-oxo-2E-decenoic acid (9-ODA), which has various important functions and roles for caste maintenance in honeybee colonies (Apis mellifera). 9-HDA in royal jelly is considered to be a metabolite of 9-ODA produced by worker bees, and it is fed back to the queen who then transforms it into 9-ODA. Recently we found that 9-HDA is present in royal jelly as a mixture of optical isomers (R:S, 2:1). The finding leads us to suspect that chiral fatty acids in royal jelly are precursors of semiochemicals. Rather than looking for semiochemicals in the mandibular glands of the queen bee, this study involves the search for precursors of pheromones from large quantities of royal jelly. Seven chiral hydroxy fatty acids, 9,10-dihydroxy-2E-decenoic, 4,10-dihydroxy-2E-decenoic, 4,9-dihydroxy-2E-decenoic, 3-hydroxydecanoic, 3,9-dihydroxydecanoic, 3,11-dihydroxydodecanoic, and 3,10-dihydroxydecanoic acids were isolated. The absolute configurations of these acids were determined using the modified Mosher's method, and it was revealed that, similar to 9-HDA, five acids are present in royal jelly as mixtures of optical isomers.

  2. Odorant cues linked to social immunity induce lateralized antenna stimulation in honey bees (Apis mellifera L.)

    PubMed Central

    McAfee, Alison; Collins, Troy F.; Madilao, Lufiani L.; Foster, Leonard J.

    2017-01-01

    Hygienic behaviour (HB) is a social immunity trait in honey bees (Apis mellifera L.) whereby workers detect, uncap and remove unhealthy brood, improving disease resistance in the colony. This is clearly economically valuable; however, the molecular mechanism behind it is not well understood. The freeze-killed brood (FKB) assay is the conventional method of HB selection, so we compared odour profiles of FKB and live brood to find candidate HB-inducing odours. Surprisingly, we found that significantly more brood pheromone (β-ocimene) was released from FKB. β-ocimene abundance also positively correlated with HB, suggesting there could be a brood effect contributing to overall hygiene. Furthermore, we found that β-ocimene stimulated worker antennae in a dose-dependent manner, with the left antennae responding significantly stronger than right antennae in hygienic bees, but not in non-hygienic bees. Five other unidentifiable compounds were differentially emitted from FKB which could also be important for HB. We also compared odour profiles of Varroa-infested brood to healthy brood and found an overall interactive effect between developmental stage and infestation, but specific odours did not drive these differences. Overall, the data we present here is an important foundation on which to build our understanding the molecular mechanism behind this complex behaviour. PMID:28387332

  3. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera

    PubMed Central

    Eyer, Michael; Neumann, Peter; Dietemann, Vincent

    2016-01-01

    Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved. PMID:27560969

  4. Influence of the insecticide pyriproxyfen on the flight muscle differentiation of Apis mellifera (Hymenoptera, Apidae).

    PubMed

    Corrêa Fernandez, Fernanda; Da Cruz-Landim, Carminda; Malaspina, Osmar

    2012-06-01

    The Brazilian africanized Apis mellifera is currently considered as one of the most important pollinators threatened by the use of insecticides due to its frequent exposition to their toxic action while foraging in the crops it pollinated. Among the insecticides, the most used in the control of insect pragues has as active agent the pyriproxyfen, analogous to the juvenile hormone (JH). Unfortunately the insecticides used in agriculture affect not only the target insects but also beneficial nontarget ones as bees compromising therefore, the growth rate of their colonies at the boundaries of crop fields. Workers that forage for provisions in contaminated areas can introduce contaminated pollen or/and nectar inside the beehives. As analogous to JH the insecticide pyriproxyfen acts in the bee's larval growth and differentiation during pupation or metamorphosis timing. The flighty muscle is not present in the larvae wingless organisms, but differentiates during pupation/metamorphosis. This work aimed to investigate the effect of pyriproxyfen insecticide on differentiation of such musculature in workers of Brazilian africanized honey bees fed with artificial diet containing the pesticide. The results show that the bees fed with contaminated diet, independent of the insecticide concentration used, show a delay in flight muscle differentiation when compared to the control.

  5. Expression of acetylcholinesterase 1 is associated with brood rearing status in the honey bee, Apis mellifera.

    PubMed

    Kim, Young Ho; Kim, Ju Hyeon; Kim, Kyungmun; Lee, Si Hyeock

    2017-01-03

    Acetylcholinesterase 1 (AmAChE1) of the honey bee, Apis mellifera, has been suggested to have non-neuronal functions. A systematic expression profiling of AmAChE1 over a year-long cycle on a monthly basis revealed that AmAChE1 was predominantly expressed in both head and abdomen during the winter months and was moderately expressed during the rainy summer months. Interestingly, AmAChE1 expression was inhibited when bees were stimulated for brood rearing by placing overwintering beehives in strawberry greenhouses with a pollen diet, whereas it resumed when the beehives were moved back to the cold field, thereby suppressing brood rearing. In early spring, pollen diet supplementation accelerated the induction of brood-rearing activity and the inhibition of AmAChE1 expression. When active beehives were placed in a screen tent in late spring, thereby artificially suppressing brood-rearing activity, AmAChE1 was highly expressed. In contrast, AmAChE1 expression was inhibited when beehives were allowed to restore brood rearing by removing the screen, supporting the hypothesis that brood rearing status is a main factor in the regulation of AmAChE1 expression. Since brood rearing status is influenced by various stress factors, including temperature and diet shortage, our finding discreetly suggests that AmAChE1 is likely involved in the stress response or stress management.

  6. Expression of acetylcholinesterase 1 is associated with brood rearing status in the honey bee, Apis mellifera

    PubMed Central

    Kim, Young Ho; Kim, Ju Hyeon; Kim, Kyungmun; Lee, Si Hyeock

    2017-01-01

    Acetylcholinesterase 1 (AmAChE1) of the honey bee, Apis mellifera, has been suggested to have non-neuronal functions. A systematic expression profiling of AmAChE1 over a year-long cycle on a monthly basis revealed that AmAChE1 was predominantly expressed in both head and abdomen during the winter months and was moderately expressed during the rainy summer months. Interestingly, AmAChE1 expression was inhibited when bees were stimulated for brood rearing by placing overwintering beehives in strawberry greenhouses with a pollen diet, whereas it resumed when the beehives were moved back to the cold field, thereby suppressing brood rearing. In early spring, pollen diet supplementation accelerated the induction of brood-rearing activity and the inhibition of AmAChE1 expression. When active beehives were placed in a screen tent in late spring, thereby artificially suppressing brood-rearing activity, AmAChE1 was highly expressed. In contrast, AmAChE1 expression was inhibited when beehives were allowed to restore brood rearing by removing the screen, supporting the hypothesis that brood rearing status is a main factor in the regulation of AmAChE1 expression. Since brood rearing status is influenced by various stress factors, including temperature and diet shortage, our finding discreetly suggests that AmAChE1 is likely involved in the stress response or stress management. PMID:28045085

  7. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera.

    PubMed

    Eyer, Michael; Neumann, Peter; Dietemann, Vincent

    2016-01-01

    Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved.

  8. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall

    NASA Astrophysics Data System (ADS)

    Zhao, Jieliang; Huang, He; Yan, Shaoze

    2017-03-01

    Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.

  9. Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.).

    PubMed

    Rueppell, Olav; Bachelier, Cédric; Fondrk, M Kim; Page, Robert E

    2007-10-01

    Life expectancy of honey bees (Apis mellifera L.) is of general interest to gerontological research because its variability among different groups of bees is one of the most striking cases of natural plasticity of aging. Worker honey bees spend their first days of adult life working in the nest, then transition to foraging and die between 4 and 8 weeks of age. Foraging is believed to be primarily responsible for the early death of workers. Three large-scale experiments were performed to quantitatively assess the importance of flight activity, chronological age, extrinsic mortality factors and foraging specialization. Forager mortality was higher than in-hive bee mortality. Most importantly however, reducing the external mortality hazards and foraging activity did not lead to the expected strong extension of life. Most of the experimental effects were attributable to an earlier transition from hive tasks to foraging. This transition is accompanied by a significant mortality peak. The age at the onset of foraging is the central variable in worker life-history and behavioral state was found more important than chronological age for honey bee aging. However, mortality risk increased with age and the negative relation between pre-foraging and foraging lifespan indicate some senescence irrespective of behavioral state. Overall, honey bee workers exhibit a logistic mortality dynamic which is mainly caused by the age-dependent transition from a low mortality pre-foraging state to a higher mortality foraging state.

  10. Autophagy and apoptosis coordinate physiological cell death in larval salivary glands of Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Zacarin, Elaine C M Silva

    2007-01-01

    Larval salivary glands of bees provide a good model for the study of hormone-induced programmed cell death in Hymenoptera because they have a well-defined secretory cycle with a peak of secretory activity phase, prior to cocoon spinning, and a degenerative phase, after the cocoon spinning. Our findings demonstrate that there is a relationship between apoptosis and autophagy during physiological cell death in these larval salivary glands, that adds evidence to the hypothesis of overlap in the regulation pathways of both types of programmed cell death. Features of autophagy include cytoplasm vacuolation, acid phosphatase activity, presence of autophagic vacuoles and multi-lamellar structures, as well as a delay in the collapse of many nuclei. Features of apoptosis include bleb formation in the cytoplasm and nuclei, with release of parts of the cytoplasm into the lumen, chromatin compaction, and DNA and nucleolar fragmentation. We propose a model for programmed cell death in larval salivary glands of Apis mellifera where autophagy and apoptosis function cooperatively for a more efficient degeneration of the gland secretory cells.

  11. Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid.

    PubMed

    de Almeida Rossi, Caroline; Roat, Thaisa Cristina; Tavares, Daiana Antonia; Cintra-Socolowski, Priscila; Malaspina, Osmar

    2013-08-01

    Several synthetic substances are used in agricultural areas to combat insect pests; however, the indiscriminate use of these products may affect nontarget insects, such as bees. In Brazil, one of the most widely used insecticides is imidacloprid, which targets the nervous system of insects. Therefore, the aim of this study was to evaluate the effects of chronic exposure to sublethal doses of imidacloprid on the brain of the Africanized Apis mellifera. The organs of both control bees and bees exposed to insecticide were subjected to morphological, histochemical and immunocytochemical analysis after exposure to imidacloprid, respectively, for 1, 3, 5, 7, and 10 days. In mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 and in optic lobes of bees exposed to imidacloprid concentrations of LD50/10, LD50/100, and LD50/50, we observed the presence of condensed cells. The Feulgen reaction revealed the presence of some cells with pyknotic nuclei, whereas Xylidine Ponceau stain revealed strongly stained cells. These characteristics can indicate the occurrence of cell death. Furthermore, cells in mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 appeared to be swollen. Cell death was confirmed by immunocytochemical technique. Therefore, it was concluded that sublethal doses of imidacloprid have cytotoxic effects on exposed bee brains and that optic lobes are more sensitive to the insecticide than other regions of the brain.

  12. Programmed Cell Death in the Honey Bee (Apis mellifera) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid.

    PubMed

    Wu, Yan-Yan; Zhou, Ting; Wang, Qiang; Dai, Ping-Li; Xu, Shu-Fa; Jia, Hui-Ru; Wang, Xing

    2015-08-01

    Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators.

  13. The HEX 110 Hexamerin Is a Cytoplasmic and Nucleolar Protein in the Ovaries of Apis mellifera

    PubMed Central

    Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile

    2016-01-01

    Hexamerins are insect storage proteins abundantly secreted by the larval fat body into the haemolymph. The canonical role of hexamerins consists of serving as an amino acid reserve for development toward the adult stage. However, in Apis mellifera, immunofluorescence assays coupled to confocal laser-scanning microscopy, and high-throughput sequencing, have recently shown the presence of hexamerins in other organs than the fat body. These findings have led us to study these proteins with the expectation of uncovering additional functions in insect development. We show here that a honeybee hexamerin, HEX 110, localizes in the cytoplasm and nucleus of ovarian cells. In the nucleus of somatic and germline cells, HEX 110 colocalized with a nucleolar protein, fibrillarin, suggesting a structural or even regulatory function in the nucleolus. RNase A provoked the loss of HEX 110 signals in the ovarioles, indicating that the subcellular localization depends on RNA. This was reinforced by incubating ovaries with pyronin Y, a RNA-specific dye. Together, the colocalization with fibrillarin and pyronin Y, and the sensitivity to RNase, highlight unprecedented roles for HEX110 in the nucleolus, the nuclear structure harbouring the gene cluster involved in ribosomal RNA production. However, the similar patterns of HEX 110 foci distribution in the active and inactive ovaries of queens and workers preclude its association with the functional status of these organs. PMID:26954256

  14. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria

    PubMed Central

    Burritt, Nancy L.; Foss, Nicole J.; Neeno-Eckwall, Eric C.; Church, James O.; Hildebrand, Jacob A.; Warshauer, David M.; Perna, Nicole T.; Burritt, James B.

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies. PMID:28002470

  15. Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.).

    PubMed

    Scheiner, R; Erber, J; Page, R E

    1999-07-01

    Using the proboscis extension response we conditioned pollen and nectar foragers of the honey bee (Apis mellifera L.) to tactile patterns under laboratory conditions. Pollen foragers demonstrated better acquisition, extinction, and reversal learning than nectar foragers. We tested whether the known differences in response thresholds to sucrose between pollen and nectar foragers could explain the observed differences in learning and found that nectar foragers with low response thresholds performed better during acquisition and extinction than ones with higher thresholds. Conditioning pollen and nectar foragers with similar response thresholds did not yield differences in their learning performance. These results suggest that differences in the learning performance of pollen and nectar foragers are a consequence of differences in their perception of sucrose. Furthermore, we analysed the effect which the perception of sucrose reward has on associative learning. Nectar foragers with uniform low response thresholds were conditioned using varying concentrations of sucrose. We found significant positive correlations between the concentrations of the sucrose rewards and the performance during acquisition and extinction. The results are summarised in a model which describes the relationships between learning performance, response threshold to sucrose, concentration of sucrose and the number of rewards.

  16. Cheaters sometimes prosper: targeted worker reproduction in honeybee (Apis mellifera) colonies during swarming.

    PubMed

    Holmes, Michael J; Oldroyd, Benjamin P; Duncan, Michael; Allsopp, Michael H; Beekman, Madeleine

    2013-08-01

    Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre-emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season. We show that the overall contribution of workers to male (drone) production is 4.2%, nearly 40 times higher than is generally reported, and is highest during reproductive swarming, when an average of 6.2% of the males genotyped are worker-produced. Similarly, workers in our samples were 100 times more likely to have active ovaries than previously assumed. Worker reproduction is seasonally influenced and peaks when colonies are rearing new queens. Not all worker subfamilies contribute equally to reproduction. Instead, certain subfamilies are massively over-represented in drone brood. By laying eggs within the period in which many colonies produce virgin queens, these rare worker subfamilies increase their direct fitness via their well-timed sons.

  17. Nectar robbery by bees Xylocopa virginica and Apis mellifera contributes to the pollination of rabbiteye blueberry.

    PubMed

    Sampson, Blair J; Danka, Robert G; Stringer, Stephen J

    2004-06-01

    Honey bees, Apis mellifera L., probe for nectar from robbery slits previously made by male carpenter bees, Xylocopa virginica (L.), at the flowers of rabbiteye blueberry, Vaccinium ashei Reade. This relationship between primary nectar robbers (carpenter bees) and secondary nectar thieves (honey bees) is poorly understood but seemingly unfavorable for V. ashei pollination. We designed two studies to measure the impact of nectar robbers on V. ashei pollination. First, counting the amount of pollen on stigmas (stigmatic pollen loading) showed that nectar robbers delivered fewer blueberry tetrads per stigma after single floral visits than did our benchmark pollinator, the southeastern blueberry bee, Habropoda laboriosa (F.), a recognized effective pollinator of blueberries. Increasing numbers of floral visits by carpenter bee and honey bee robbers yielded larger stigmatic loads. As few as three robbery visits were equivalent to one legitimate visit by a pollen-collecting H. laboriosa female. More than three robbery visits per flower slightly depressed stigmatic pollen loads. In our second study, a survey of 10 commercial blueberry farms demonstrated that corolla slitting by carpenter bees (i.e., robbery) has no appreciable affect on overall V. ashei fruit set. Our observations demonstrate male carpenter bees are benign or even potentially beneficial floral visitors of V ashei. Their robbery of blueberry flowers in the southeast may attract more honey bee pollinators to the crop.

  18. A Method for Distinctly Marking Honey Bees, Apis mellifera, Originating from Multiple Apiary Locations

    PubMed Central

    Hagler, James; Mueller, Shannon; Teuber, Larry R.; Deynze, Allen Van; Martin, Joe

    2011-01-01

    Inexpensive and non-intrusive marking methods are essential to track natural behavior of insects for biological experiments. An inexpensive, easy to construct, and easy to install bee marking device is described in this paper. The device is mounted at the entrance of a standard honey bee Apis mellifera L. (Hymenoptera: Apidae) hive and is fitted with a removable tube that dispenses a powdered marker. Marking devices were installed on 80 honey bee colonies distributed in nine separate apiaries. Each device held a tube containing one of five colored fluorescent powders, or a combination of a fluorescent powder (either green or magenta) plus one of two protein powders, resulting in nine unique marks. The powdered protein markers included egg albumin from dry chicken egg whites and casein from dry powdered milk. The efficacy of the marking procedure for each of the unique markers was assessed on honey bees exiting each apiary. Each bee was examined, first by visual inspection for the presence of colored fluorescent powder and then by egg albumin and milk casein specific enzyme-linked immunosorbent assays (ELISA). Data indicated that all five of the colored fluorescent powders and both of the protein powders were effective honey bee markers. However, the fluorescent powders consistently yielded more reliable marks than the protein powders. In general, there was less than a 1% chance of obtaining a false positive colored or protein-marked bee, but the chance of obtaining a false negative marked bee was higher for “protein-marked” bees. PMID:22236037

  19. Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa.

    PubMed

    Strauss, Ursula; Pirk, Christian W W; Crewe, Robin M; Human, Hannelie; Dietemann, Vincent

    2015-01-01

    The devastating effects of Varroa destructor Anderson & Trueman on European honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitised individuals when they feed on them, they also transmit viruses and other pathogens, weaken colonies and can ultimately cause their death. Nevertheless, not all honeybee colonies are doomed once Varroa mites become established. Some populations, such as the savannah honeybee, A. m. scutellata, have become tolerant after the introduction of the parasite and are able to withstand the presence of these mites without the need for acaricides. In this study, we measured daily Varroa mite fall, Varroa infestation rates of adult honeybees and worker brood, and total Varroa population size in acaricide treated and untreated honeybee colonies. In addition, honeybee colony development was compared between these groups in order to measure the cost incurred by Varroa mites to their hosts. Daily Varroa mite fall decreased over the experimental period with different dynamics in treated and untreated colonies. Varroa infestation rates in treated adult honeybees and brood were lower than in untreated colonies, but not significantly so. Thus, indicating a minimal benefit of treatment thereby suggesting that A. m. scutellata have the ability to maintain mite populations at low levels. We obtained baseline data on Varroa population dynamics in a tolerant honeybee over the winter period. Varroa mites appeared to have a low impact on this honeybee population, given that colony development was similar in the treated and untreated colonies.

  20. Utilization of bee (Apis mellifera) honey for vinegar production at laboratory scale.

    PubMed

    Ilha, E C; Sant'Anna, E; Torres, R C; Porto, A C; Meinert, E M

    2000-01-01

    Vinegar was obtained from bee (Apis mellifera) honey. The wort was prepared by diluting honey in distilled water to 21% total solids and by adding ammonium sulfate and ammonium phosphate. Saccharomyces cerevisiae was inoculated to the wort (4 g/L). Ethanol production was carried out at room temperature during 84 hours. In this study, 1 Kg of honey yielded about 5 L of wine, containing 8% alcohol (v/v), from a wort with 17.11% total sugars (w/v). The efficiency of the alcoholic fermentation was 81.34%. The acetic fermentation with an inoculum of mixed acetic microorganisms was performed by quick process in a 15 L vertical fermenter. This resulted in a vinegar containing up to 9% of acetic acid (w/v) and about 1% of alcohol (v/v). The acetic fermentation yielded between 91.24 and 97.21%. Approximately 5 L of honey vinegar with 9% acetic acid (w/v) were obtained from 1 Kg of bee honey. All attributes of honey vinegar showed acceptability index over 70%: 95.37% for appearance, 94.81% for color, 79.07% for odor and 75.56% for flavor, indicating it would show good consumer acceptability.

  1. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus

    PubMed Central

    2009-01-01

    Background Deformed wing virus (DWV) is a positive-strand RNA virus that infects European honeybees (Apis mellifera L.) and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. Results In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. Conclusion These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior. PMID:19878557

  2. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera

    PubMed Central

    Drewell, Robert A.; Bush, Eliot C.; Remnant, Emily J.; Wong, Garrett T.; Beeler, Suzannah M.; Stringham, Jessica L.; Lim, Julianne; Oldroyd, Benjamin P.

    2014-01-01

    In honey bees (Apis mellifera), the epigenetic mark of DNA methylation is central to the developmental regulation of caste differentiation, but may also be involved in additional biological functions. In this study, we examine the whole genome methylation profiles of three stages of the haploid honey bee genome: unfertilised eggs, the adult drones that develop from these eggs and the sperm produced by these drones. These methylomes reveal distinct patterns of methylation. Eggs and sperm show 381 genes with significantly different CpG methylation patterns, with the vast majority being more methylated in eggs. Adult drones show greatly reduced levels of methylation across the genome when compared with both gamete samples. This suggests a dynamic cycle of methylation loss and gain through the development of the drone and during spermatogenesis. Although fluxes in methylation during embryogenesis may account for some of the differentially methylated sites, the distinct methylation patterns at some genes suggest parent-specific epigenetic marking in the gametes. Extensive germ line methylation of some genes possibly explains the lower-than-expected frequency of CpG sites in these genes. We discuss the potential developmental and evolutionary implications of methylation in eggs and sperm in this eusocial insect species. PMID:24924193

  3. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor).

    PubMed

    Gregorc, Aleš; Evans, Jay D; Scharf, Mike; Ellis, James D

    2012-08-01

    Honey bee (Apis mellifera) larvae reared in vitro were exposed to one of nine pesticides and/or were challenged with the parasitic mite, Varroa destructor. Total RNA was extracted from individual larvae and first strand cDNAs were generated. Gene-expression changes in larvae were measured using quantitative PCR (qPCR) targeting transcripts for pathogens and genes involved in physiological processes, bee health, immunity, and/or xenobiotic detoxification. Transcript levels for Peptidoglycan Recognition Protein (PGRPSC), a pathogen recognition gene, increased in larvae exposed to Varroa mites (P<0.001) and were not changed in pesticide treated larvae. As expected, Varroa-parasitized brood had higher transcripts of Deformed Wing Virus than did control larvae (P<0.001). Varroa parasitism, arguably coupled with virus infection, resulted in significantly higher transcript abundances for the antimicrobial peptides abaecin, hymenoptaecin, and defensin1. Transcript levels for Prophenoloxidase-activating enzyme (PPOact), an immune end product, were elevated in larvae treated with myclobutanil and chlorothalonil (both are fungicides) (P<0.001). Transcript levels for Hexameric storage protein (Hsp70) were significantly upregulated in imidacloprid, fluvalinate, coumaphos, myclobutanil, and amitraz treated larvae. Definitive impacts of pesticides and Varroa parasitism on honey bee larval gene expression were demonstrated. Interactions between larval treatments and gene expression for the targeted genes are discussed.

  4. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  5. The proboscis extension reflex to evaluate learning and memory in honeybees (Apis mellifera): some caveats.

    PubMed

    Frost, Elisabeth H; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees (Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  6. Honeybees (Apis mellifera) learn to discriminate the smell of organic compounds from their respective deuterated isotopomers.

    PubMed

    Gronenberg, Wulfila; Raikhelkar, Ajay; Abshire, Eric; Stevens, Jennifer; Epstein, Eric; Loyola, Karin; Rauscher, Michael; Buchmann, Stephen

    2014-03-07

    The understanding of physiological and molecular processes underlying the sense of smell has made considerable progress during the past three decades, revealing the cascade of molecular steps that lead to the activation of olfactory receptor (OR) neurons. However, the mode of primary interaction of odorant molecules with the OR proteins within the sensory cells is still enigmatic. Two different concepts try to explain these interactions: the 'odotope hypothesis' suggests that OR proteins recognize structural aspects of the odorant molecule, whereas the 'vibration hypothesis' proposes that intra-molecular vibrations are the basis for the recognition of the odorant by the receptor protein. The vibration hypothesis predicts that OR proteins should be able to discriminate compounds containing deuterium from their common counterparts which contain hydrogen instead of deuterium. This study tests this prediction in honeybees (Apis mellifera) using the proboscis extension reflex learning in a differential conditioning paradigm. Rewarding one odour (e.g. a deuterated compound) with sucrose and not rewarding the respective analogue (e.g. hydrogen-based odorant) shows that honeybees readily learn to discriminate hydrogen-based odorants from their deuterated counterparts and supports the idea that intra-molecular vibrations may contribute to odour discrimination.

  7. Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera).

    PubMed

    Strachecka, A; Krauze, M; Olszewski, K; Borsuk, G; Paleolog, J; Merska, M; Chobotow, J; Bajda, M; Grzywnowicz, K

    2014-11-01

    We examined the influence of caffeine on honeybee lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations, and total DNA methylation levels. Caffeine slowed age-related metabolic tendencies. Bees that consumed caffeine lived longer and were not infested with Nosema spp. Caffeine-treated workers had higher protein concentrations. The levels increased with aging but they then decreased in older bees. Caffeine increased the activities of antioxidant enzymes (SOD, GPx, CAT, GST), AST, ALT, ALP, neutral proteases, and protease inhibitors, and the concentrations of uric acid, triglycerides, cholesterol, glucose, and Ca2+. Acidic and alkaline protease activities were lower in the bees treated with caffeine. Creatinine and Mg2+ concentrations were higher in the caffeine-treated workers but only up to 14 days of age. Caffeine significantly decreased DNA methylation levels in older bees. The compound could be considered as a natural diet supplement increasing apian resistance to stress factors. Our studies will enhance possibilities of using Apis mellifera as a model organism in gerontological studies.

  8. Maternal effects on the hygienic behavior of Russian x Ontario hybrid honeybees (Apis mellifera L.).

    PubMed

    Unger, Peter; Guzmán-novoa, Ernesto

    2010-01-01

    Strains and hybrids of Russian and Ontario honeybees (Apis mellifera L.) were evaluated for hygienic behavior at both colony and individual levels. The objectives were to determine phenotypic and genotypic variability and to study the inheritance of this behavior. At the colony level, Russian bees uncapped and removed significantly more freeze-killed brood than Ontario bees. The most hygienic Russian colonies and the least hygienic Ontario colonies were selected to perform reciprocal crosses between the strains. Bees from the hybrid colonies as well as from the parental colonies were tagged and introduced into observation hives, where hygienic behavior was directly observed on a piece of frozen brood comb. Russian and hybrid bees of Russian mother had the highest percentages of workers uncapping cells and removing brood. Conversely, Ontario and hybrid bees of Ontario mother had the lowest percentages of individuals for these variables. Differences were also observed among the 4 genotypes for their degree of specialization on hygienic tasks. Russian and hybrid bees of Russian mother showed a significantly higher uncapping frequency per individual than Ontario and hybrid bees of Ontario mother. These results demonstrate phenotypic and genotypic variability for hygienic behavior and are suggestive of maternal effects in the inheritance of hygienic traits.

  9. [Effect of Mexican propolis extracts from Apis mellifera on Candida albicans in vitro growth].

    PubMed

    Quintero-Mora, María Leonor; Londoño-Orozco, Amparo; Hernández-Hernández, Francisca; Manzano-Gayosso, Patricia; López-Martínez, Rubén; Soto-Zárate, Carlos Ignacio; Carrillo-Miranda, Liborio; Penieres-Carrillo, Guillermo; García-Tovar, Carlos Gerardo; Cruz-Sánchez, Tonatiuh A

    2008-03-01

    Propolis is a resinous substance collected by bees (Apis mellifera) from different trees and bushes. Due to its antifungal, antibacterial, antiviral and antiparasitic properties, it has continued to be very popular throughout the time showing variable activity depending on its geographical origin. In Mexico, information about this product is very limited. The aim of this work was to evaluate the antifungal activity of four propolis ethanolic extracts from three different Mexican states, and four commercial extracts on Candida albicans growth. A reference strain (ATCC 10231) and 36 clinical isolates of C. albicans were used. The Minimal Inhibitory Concentration (MIC) was determined by the dilution on agar method. Growth curves on Sabouraud Dextrose broth with and without different propolis ethanolic extracts concentrations were performed. In addition, whether the effect was fungistatic or fungicide was determined. The propolis ethanolic extract obtained from Cuautitlán Izcalli, State of Mexico, showed the best biological activity, inhibiting 94.4% from the clinical isolates at 0.8 mg/ml; the reference strain was inhibited at 0.6 mg/ml. The propolis effect was fungistatic in low concentrations and fungicide in concentrations higher to MIC. The Mexican propolis ethanolic extract could be further investigated for its alternative use for the treatment of some C. albicans infections.

  10. Distance Between Honey Bee Apis mellifera Colonies Regulates Populations of Varroa destructor at a Landscape Scale.

    PubMed

    Nolan, Maxcy P; Delaplane, Keith S

    2016-01-01

    Inter-colony distance of Apis mellifera significantly affects colony numbers of the parasitic mite Varroa destructor. We set up 15 apiaries, each consisting of two colonies. Each apiary pair was assigned an inter-colony distance of 0, 10, or 100 m. Colonies were rendered nearly mite-free, then one colony in each pair was seeded with 300 female mites (mite-donor colony), while the other remained uninoculated (mite-recipient colony). After four months of monitoring, a whole model analysis showed that apiaries in which colonies were spaced 100 m apart contained lower average mite numbers than 0 m or 10 m apiaries. There were interactions among colony type, distance, and sampling date; however, when there were significant differences mite numbers were always lower in 100 m apiaries than 10 m apiaries. These findings pose the possibility that Varroa populations are resource regulated at a landscape scale: near-neighbor colonies constitute reproductive resource for mites in the form of additional bee brood.

  11. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics.

    PubMed

    McAfee, Alison; Harpur, Brock A; Michaud, Sarah; Beavis, Ronald C; Kent, Clement F; Zayed, Amro; Foster, Leonard J

    2016-02-05

    The honey bee is a key pollinator in agricultural operations as well as a model organism for studying the genetics and evolution of social behavior. The Apis mellifera genome has been sequenced and annotated twice over, enabling proteomics and functional genomics methods for probing relevant aspects of their biology. One troubling trend that emerged from proteomic analyses is that honey bee peptide samples consistently result in lower peptide identification rates compared with other organisms. This suggests that the genome annotation can be improved, or atypical biological processes are interfering with the mass spectrometry workflow. First, we tested whether high levels of polymorphisms could explain some of the missed identifications by searching spectra against the reference proteome (OGSv3.2) versus a customized proteome of a single honey bee, but our results indicate that this contribution was minor. Likewise, error-tolerant peptide searches lead us to eliminate unexpected post-translational modifications as a major factor in missed identifications. We then used a proteogenomic approach with ~1500 raw files to search for missing genes and new exons, to revive discarded annotations and to identify over 2000 new coding regions. These results will contribute to a more comprehensive genome annotation and facilitate continued research on this important insect.

  12. Apis mellifera ultraspiracle: cDNA sequence and rapid up-regulation by juvenile hormone.

    PubMed

    Barchuk, A R; Maleszka, R; Simões, Z L P

    2004-10-01

    Two hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development including the differentiation of the alternative caste phenotypes of social insects. In addition, JH plays a different role in adult honey bees, acting as a 'behavioural pacemaker'. The functional receptor for 20E is a heterodimer consisting of the ecdysone receptor and ultraspiracle (USP) whereas the identity of the JH receptor remains unknown. We have cloned and sequenced a cDNA encoding Apis mellifera ultraspiracle (AMUSP) and examined its responses to JH. A rapid, but transient up-regulation of the AMUSP messenger is observed in the fat bodies of both queens and workers. AMusp appears to be a single copy gene that produces two transcripts ( approximately 4 and approximately 5 kb) that are differentially expressed in the animal's body. The predicted AMUSP protein shows greater sequence similarity to its orthologues from the vertebrate-crab-tick-locust group than to the dipteran-lepidopteran group. These characteristics and the rapid up-regulation by JH suggest that some of the USP functions in the honey bee may depend on ligand binding.

  13. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.).

    PubMed

    Lanzi, Gaetana; de Miranda, Joachim R; Boniotti, Maria Beatrice; Cameron, Craig E; Lavazza, Antonio; Capucci, Lorenzo; Camazine, Scott M; Rossi, Cesare

    2006-05-01

    Deformed wing virus (DWV) of honeybees (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. The virus was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of DWV is 10,140 nucleotides in length and contains a single large open reading frame encoding a 328-kDa polyprotein. The coding sequence is flanked by a 1,144-nucleotide 5' nontranslated leader sequence and a 317-nucleotide 3' nontranslated region, followed by a poly(A) tail. The three major structural proteins, VP1 (44 kDa), VP2 (32 kDa), and VP3 (28 kDa), were identified, and their genes were mapped to the N-terminal section of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs typical of well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease, and an RNA-dependent RNA polymerase. The genome organization, capsid morphology, and sequence comparison data indicate that DWV is a member of the recently established genus Iflavirus.

  14. Functional characterization of Ih-channel splice variants from Apis mellifera.

    PubMed

    Gisselmann, Günter; Wetzel, Christian H; Warnstedt, Maike; Hatt, Hanns

    2004-09-24

    We isolated splice variants of the AMIH cDNA by means of polymerase chain reaction and homology screening. Splicing at one site generates at least four different channel transcripts (AMIH, AMIHL, AMIHM and AMIHT), which code for ion-channel proteins that vary in the interloop regions between the membrane-spanning domains S4 and S5. HEK293 cells in which the AMIHL splice variants were functionally expressed generated currents that were activated by hyperpolarizing voltage steps. Compared to AMIH, AMIHL cells showed pronounced differences in the voltage dependency of activation: the incorporation of 32 extra amino acids between S4 and S5 shifts the activation curve by +25 mV. Intracellular cAMP made the current-activation potential still less negative and accelerated the activation more effectively than it does in AMIH cells. In vertebrates, functional diversity of Ih-channels is generated by four different genes. In Apis mellifera, splice variants coded by the single gene AMIH could generate a similar diversity.

  15. Molecular and Biological Characterization of Deformed Wing Virus of Honeybees (Apis mellifera L.)

    PubMed Central

    Lanzi, Gaetana; de Miranda, Joachim R.; Boniotti, Maria Beatrice; Cameron, Craig E.; Lavazza, Antonio; Capucci, Lorenzo; Camazine, Scott M.; Rossi, Cesare

    2006-01-01

    Deformed wing virus (DWV) of honeybees (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. The virus was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of DWV is 10,140 nucleotides in length and contains a single large open reading frame encoding a 328-kDa polyprotein. The coding sequence is flanked by a 1,144-nucleotide 5′ nontranslated leader sequence and a 317-nucleotide 3′ nontranslated region, followed by a poly(A) tail. The three major structural proteins, VP1 (44 kDa), VP2 (32 kDa), and VP3 (28 kDa), were identified, and their genes were mapped to the N-terminal section of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs typical of well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease, and an RNA-dependent RNA polymerase. The genome organization, capsid morphology, and sequence comparison data indicate that DWV is a member of the recently established genus Iflavirus. PMID:16641291

  16. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    PubMed Central

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  17. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones.

    PubMed

    Herrmann, Matthias; Trenzcek, Tina; Fahrenhorst, Hartmut; Engels, Wolf

    2005-12-30

    Diploid males have long been considered a curiosity contradictory to the haplo-diploid mode of sex determination in the Hymenoptera. In Apis mellifera, 'false' diploid male larvae are eliminated by worker cannibalism immediately after hatching. A 'cannibalism substance' produced by diploid drone larvae to induce worker-assisted suicide has been hypothesized, but it has never been detected. Diploid drones are only removed some hours after hatching. Older larvae are evidently not regarded as 'false males' and instead are regularly nursed by the brood-attending worker bees. As the pheromonal cues presumably are located on the surface of newly hatched bee larvae, we extracted the cuticular secretions and analyzed their chemical composition by gas chromatograph-mass spectrometry (GC-MS) analyses. Larvae were sexed and then reared in vitro for up to three days. The GC-MS pattern that was obtained, with alkanes as the major compounds, was compared between diploid and haploid drone larvae. We also examined some physical parameters of adult drones. There was no difference between diploid and haploid males in their weight at the day of emergence. The diploid adult drones had fewer wing hooks and smaller testes. The sperm DNA content was 0.30 and 0.15 pg per nucleus, giving an exact 2:1 ratio for the gametocytes of diploid and haploid drones, respectively. Vitellogenin was found in the hemolymph of both types of imaginal drones at 5 to 6 days, with a significantly lower titer in the diploids.

  18. The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge.

    PubMed

    Laughton, Alice M; Boots, Michael; Siva-Jothy, Michael T

    2011-07-01

    The honey bee, Apis mellifera, is an ideal system for investigating ontogenetic changes in the immune system, because it combines holometabolous development within a eusocial caste system. As adults, male and female bees are subject to differing selective pressures: worker bees (females) exhibit temporal polyethism, while the male drones invest in mating. They are further influenced by changes in the threat of pathogen infection at different life stages. We investigated the immune response of workers and drones at all developmental phases, from larvae through to late stage adults, assaying both a constitutive (phenoloxidase, PO activity) and induced (antimicrobial peptide, AMP) immune response. We found that larval bees have low levels of PO activity. Adult workers produced stronger immune responses than drones, and a greater plasticity in immune investment. Immune challenge resulted in lower levels of PO activity in adult workers, which may be due to the rapid utilisation and a subsequent failure to replenish the constitutive phenoloxidase. Both adult workers and drones responded to an immune challenge by producing higher titres of AMPs, suggesting that the cost of this response prohibits its constant maintenance. Both castes showed signs of senescence in immune investment in the AMP response. Different sexes and life stages therefore alter their immune system management based on the combined factors of disease risk and life history.

  19. Aversive conditioning in honey bees (Apis mellifera anatolica): a comparison of drones and workers.

    PubMed

    Dinges, Christopher W; Avalos, Arian; Abramson, Charles I; Craig, David Philip Arthur; Austin, Zoe M; Varnon, Christopher A; Dal, Fatima Nur; Giray, Tugrul; Wells, Harrington

    2013-11-01

    Honey bees provide a model system to elucidate the relationship between sociality and complex behaviors within the same species, as females (workers) are highly social and males (drones) are more solitary. We report on aversive learning studies in drone and worker honey bees (Apis mellifera anatolica) in escape, punishment and discriminative punishment situations. In all three experiments, a newly developed electric shock avoidance assay was used. The comparisons of expected and observed responses were performed with conventional statistical methods and a systematic randomization modeling approach called object oriented modeling. The escape experiment consisted of two measurements recorded in a master-yoked paradigm: frequency of response and latency to respond following administration of shock. Master individuals could terminate an unavoidable shock triggered by a decrementing 30 s timer by crossing the shuttlebox centerline following shock activation. Across all groups, there was large individual response variation. When assessing group response frequency and latency, master subjects performed better than yoked subjects for both workers and drones. In the punishment experiment, individuals were shocked upon entering the shock portion of a bilaterally wired shuttlebox. The shock portion was spatially static and unsignalled. Only workers effectively avoided the shock. The discriminative punishment experiment repeated the punishment experiment but included a counterbalanced blue and yellow background signal and the side of shock was manipulated. Drones correctly responded less than workers when shock was paired with blue. However, when shock was paired with yellow there was no observable difference between drones and workers.

  20. Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.).

    PubMed

    Crailsheim, K; Panzenböck, U

    1997-02-21

    Honey bees (Apis mellifera carnica Pollm.) have low glycogen reserves in summer. Upon emergence drones have significantly larger amounts per unit weight when emerging, than workers; perhaps as adaption to the risk of not being fed as intensely as young workers. Maximum content was 0.23mg for workers (28d), and 0.59mg for drones (after emergence). Workers have relatively constant glycogen contents during their life, and very young drones have more glycogen than older ones. Young queens are similar to workers. In workers and queens in summer the greatest amounts of glycogen are found in the thorax. When the bees start flying (6th-8th day of life), drones have the highest amounts in the head (probably to supply their eyes), and upon maturity, drones have the least glycogen in the abdomen.Workers in winter show different glycogen values depending on whether they are active bees from the core area (0.23mg) or inactive ones from the outer surface of the winter cluster (0.37mg). They use glycogen from the thorax and the abdomen for their ongoing energy need.

  1. Physiology of reproductive worker honey bees (Apis mellifera): insights for the development of the worker caste.

    PubMed

    Peso, Marianne; Even, Naïla; Søvik, Eirik; Naeger, Nicholas L; Robinson, Gene E; Barron, Andrew B

    2016-02-01

    Reproductive and behavioural specialisations characterise advanced social insect societies. Typically, the honey bee (Apis mellifera) shows a pronounced reproductive division of labour between worker and queen castes, and a clear division of colony roles among workers. In a queenless condition, however, both of these aspects of social organisation break down. Queenless workers reproduce, forage and maintain their colony operating in a manner similar to communal bees, rather than as an advanced eusocial group. This plasticity in social organisation provides a natural experiment for exploring physiological mechanisms of division of labour. We measured brain biogenic amine (BA) levels and abdominal fat body vitellogenin gene expression levels of workers in queenright and queenless colonies. Age, ovary activation and social environment influenced brain BA levels in honey bees. BA levels were most influenced by ovary activation state in queenless bees. Vitellogenin expression levels were higher in queenless workers than queenright workers, but in both colony environments vitellogenin expression was lower in foragers than non-foragers. We propose this plasticity in the interacting signalling systems that influence both reproductive and behavioural development allows queenless workers to deviate significantly from the typical worker bee reaction norm and develop as reproductively active behavioural generalists.

  2. Paratransgenesis: an approach to improve colony health and molecular insight in honey bees (Apis mellifera)?

    PubMed

    Rangberg, Anbjørg; Diep, Dzung B; Rudi, Knut; Amdam, Gro V

    2012-07-01

    The honey bee (Apis mellifera) is highly valued as a commercial crop pollinator and a model animal in research. Over the past several years, governments, beekeepers, and the general public in the United States and Europe have become concerned by increased losses of honey bee colonies, calling for more research on how to keep colonies healthy while still employing them extensively in agriculture. The honey bee, like virtually all multicellular organisms, has a mutually beneficial relationship with specific microbes. The microbiota of the gut can contribute essential nutrients and vitamins and prevent colonization by non-indigenous and potentially harmful species. The gut microbiota is also of interest as a resource for paratransgenesis; a Trojan horse strategy based on genetically modified symbiotic microbes that express effector molecules antagonizing development or transmission of pathogens. Paratransgenesis was originally engineered to combat human diseases and agricultural pests that are vectored by insects. We suggest an alternative use, as a method to promote health of honey bees and to expand the molecular toolbox for research on this beneficial social insect. The honey bees' gut microbiota contains lactic acid bacteria including the genus Lactobacillus that has paratransgenic potential. We present a strategy for transforming one Lactobacillus species, L. kunkeei, for use as a vector to promote health of honey bees and functional genetic research.

  3. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera).

    PubMed

    Kapheim, Karen M; Rao, Vikyath D; Yeoman, Carl J; Wilson, Brenda A; White, Bryan A; Goldenfeld, Nigel; Robinson, Gene E

    2015-01-01

    Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior.

  4. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera).

    PubMed

    De Souza, Daiana A; Wang, Ying; Kaftanoglu, Osman; De Jong, David; Amdam, Gro V; Gonçalves, Lionel S; Francoy, Tiago M

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.

  5. Dynamics of persistent and acute deformed wing virus infections in honey bees, Apis mellifera.

    PubMed

    Prisco, Gennaro Di; Zhang, Xuan; Pennacchio, Francesco; Caprio, Emilio; Li, Jilian; Evans, Jay D; Degrandi-Hoffman, Gloria; Hamilton, Michele; Chen, Yan Ping

    2011-12-01

    The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV) as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  6. Tactile conditioning and movement analysis of antennal sampling strategies in honey bees (Apis mellifera L.).

    PubMed

    Mujagić, Samir; Würth, Simon Michael; Hellbach, Sven; Dürr, Volker

    2012-12-12

    Honey bees (Apis mellifera L.) are eusocial insects and well known for their complex division of labor and associative learning capability(1, 2). The worker bees spend the first half of their life inside the dark hive, where they are nursing the larvae or building the regular hexagonal combs for food (e.g. pollen or nectar) and brood(3). The antennae are extraordinary multisensory feelers and play a pivotal role in various tactile mediated tasks(4), including hive building(5) and pattern recognition(6). Later in life, each single bee leaves the hive to forage for food. Then a bee has to learn to discriminate profitable food sources, memorize their location, and communicate it to its nest mates(7). Bees use different floral signals like colors or odors(7, 8), but also tactile cues from the petal surface(9) to form multisensory memories of the food source. Under laboratory conditions, bees can be trained in an appetitive learning paradigm to discriminate tactile object features, such as edges or grooves with their antennae(10, 11, 12, 13). This learning paradigm is closely related to the classical olfactory conditioning of the proboscis extension response (PER) in harnessed bees(14). The advantage of the tactile learning paradigm in the laboratory is the possibility of combining behavioral experiments on learning with various physiological measurements, including the analysis of the antennal movement pattern.

  7. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Catae, Aline Fernanda; Roat, Thaisa Cristina; De Oliveira, Regiane Alves; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2014-04-01

    Due to its expansion, agriculture has become increasingly dependent on the use of pesticides. However, the indiscriminate use of insecticides has had additional effects on the environment. These products have a broad spectrum of action, and therefore the insecticide affects not only the pests but also non-target insects such as bees, which are important pollinators of agricultural crops and natural environments. Among the most used pesticides, the neonicotinoids are particularly harmful. One of the neonicotinoids of specific concern is thiamethoxam, which is used on a wide variety of crops and is toxic to bees. Thus, this study aimed to analyze the effects of this insecticide in the midgut and Malpighian tubule cells of Africanized Apis mellifera. Newly emerged workers were exposed until 8 days to a diet containing a sublethal dose of thiamethoxam equal to 1/10 of LC₅₀ (0.0428 ng a.i./l L of diet). The bees were dissected and the organs were processed for transmission electron microscopy. The results showed that thiamethoxam is cytotoxic to midgut and Malpighian tubules. In the midgut, the damage was more evident in bees exposed to the insecticide on the first day. On the eighth day, the cells were ultrastructurally intact suggesting a recovery of this organ. The Malpighian tubules showed pronounced alterations on the eighth day of exposure of bees to the insecticide. This study demonstrates that the continuous exposure to a sublethal dose of thiamethoxam can impair organs that are used during the metabolism of the insecticide.

  8. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Tavares, Daiana Antonia; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Silva-Zacarin, Elaine Cristina Mathias; Malaspina, Osmar

    2015-09-01

    Several investigations have revealed the toxic effects that neonicotinoids can have on Apis mellifera, while few studies have evaluated the impact of these insecticides can have on the larval stage of the honeybee. From the lethal concentration (LC50) of thiamethoxam for the larvae of the Africanized honeybee, we evaluated the sublethal effects of this insecticide on morphology of the brain. After determine the LC50 (14.34 ng/μL of diet) of thiamethoxam, larvae were exposed to a sublethal concentration of thiamethoxam equivalent to 1.43 ng/μL by acute and subchronic exposure. Morphological and immunocytochemistry analysis of the brains of the exposed bees, showed condensed cells and early cell death in the optic lobes. Additional dose-related effects were observed on larval development. Our results show that the sublethal concentrations of thiamethoxam tested are toxic to Africanized honeybees larvae and can modulate the development and consequently could affect the maintenance and survival of the colony. These results represent the first assessment of the effects of thiamethoxam in Africanized honeybee larvae and should contribute to studies on honey bee colony decline.

  9. Does pea lectin expressed transgenically in oilseed rape (Brassica napus) influence honey bee (Apis mellifera) larvae?

    PubMed

    Lehrman, Anna

    2007-01-01

    The European honey bee (Apis mellifera) is important both for pollination and for honey production. Pollen is the major protein source for bees, which exposes them directly to changes in pollen quality e.g. through genetic engineering. In order to create a worst case scenario regarding pea lectin (PSL) expressed transgenically in oilseed rape anthers and pollen, the maximum amount of dried pollen that could be mixed in an artificial diet without negatively affecting larval performance (1.5% w/w) was fed to bee larvae. Pollen from two transgenic plant lines expressing PSL up to 1.2% of total soluble protein and pollen from one non-transgenic line was added to the same diet and used as a pollen control. When these three pollen diets and the control diet (without added pollen) were compared, no negative effect from the pollen of the transgenic plants could be detected on larval mortality, weight, or development time. An increased weight and a reduced developmental time were recorded for larvae on all diets containing pollen when compared to the diet without pollen.

  10. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera).

    PubMed

    Wilson-Rich, Noah; Dres, Stephanie T; Starks, Philip T

    2008-01-01

    Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate immune strength across developmental stages. We investigated immune strength across four developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22-30 days old adults). The immune strength of honey bees was quantified using standard immunocompetence assays: total hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. Importantly, we found that adult honey bees do not abandon cellular immunocompetence as has recently been proposed. Induced shifts in behavioral roles may increase a colony's susceptibility to disease if nurses begin foraging activity prematurely.

  11. Diffusion and consumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness

    PubMed Central

    1981-01-01

    Double-barreled O2 microelectrodes were used to study O2 diffusion and consumption in the superfused drone (Apis mellifera) retina in darkness at 22 degrees C. Po2 was measured at different sites in the bath and retinas. It was found that diffusion was essentially in one dimension and that the rate of O2 consumption (Q) was practically constant (on the macroscale) down to Po2 s less than 20 mm Hg, a situation that greatly simplified the analysis. The value obtained for Q was 18 +/- 0.7 (SEM) microliter O2/cm3 tissue . min (n = 10), and Krogh's permeation coefficient (alpha D) was 3.24 +/- 0.18 (SEM) X 10(-5) ml O1/min . atm . cm (n = 10). Calculations indicate that only a small fraction of this Q in darkness is necessary for the energy requirements of the sodium pump. the diffusion coefficient (D) in the retina was measured by abruptly cutting off diffusion from the bath and analyzing the time-course of the fall in Po2 at the surface of the tissue. The mean value of D was 1.03 +/- 0.08 (SEM) X 10(-5) cm2/s (n = 10). From alpha D and D, the solubility coefficient alpha was calculated to be 54 +/- 4.0 (SEM) microliter O2 STP/cm3 . atm (n = 10), approximately 1.8 times that for water. PMID:7264598

  12. A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations.

    PubMed

    Hagler, James; Mueller, Shannon; Teuber, Larry R; Van Deynze, Allen; Martin, Joe

    2011-01-01

    Inexpensive and non-intrusive marking methods are essential to track natural behavior of insects for biological experiments. An inexpensive, easy to construct, and easy to install bee marking device is described in this paper. The device is mounted at the entrance of a standard honey bee Apis mellifera L. (Hymenoptera: Apidae) hive and is fitted with a removable tube that dispenses a powdered marker. Marking devices were installed on 80 honey bee colonies distributed in nine separate apiaries. Each device held a tube containing one of five colored fluorescent powders, or a combination of a fluorescent powder (either green or magenta) plus one of two protein powders, resulting in nine unique marks. The powdered protein markers included egg albumin from dry chicken egg whites and casein from dry powdered milk. The efficacy of the marking procedure for each of the unique markers was assessed on honey bees exiting each apiary. Each bee was examined, first by visual inspection for the presence of colored fluorescent powder and then by egg albumin and milk casein specific enzyme-linked immunosorbent assays (ELISA). Data indicated that all five of the colored fluorescent powders and both of the protein powders were effective honey bee markers. However, the fluorescent powders consistently yielded more reliable marks than the protein powders. In general, there was less than a 1% chance of obtaining a false positive colored or protein-marked bee, but the chance of obtaining a false negative marked bee was higher for "protein-marked" bees.

  13. Practical sampling plans for Varroa destructor (Acari: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies and apiaries.

    PubMed

    Lee, K V; Moon, R D; Burkness, E C; Hutchison, W D; Spivak, M

    2010-08-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is arguably the most detrimental pest of the European-derived honey bee, Apis mellifera L. Unfortunately, beekeepers lack a standardized sampling plan to make informed treatment decisions. Based on data from 31 commercial apiaries, we developed sampling plans for use by beekeepers and researchers to estimate the density of mites in individual colonies or whole apiaries. Beekeepers can estimate a colony's mite density with chosen level of precision by dislodging mites from approximately to 300 adult bees taken from one brood box frame in the colony, and they can extrapolate to mite density on a colony's adults and pupae combined by doubling the number of mites on adults. For sampling whole apiaries, beekeepers can repeat the process in each of n = 8 colonies, regardless of apiary size. Researchers desiring greater precision can estimate mite density in an individual colony by examining three, 300-bee sample units. Extrapolation to density on adults and pupae may require independent estimates of numbers of adults, of pupae, and of their respective mite densities. Researchers can estimate apiary-level mite density by taking one 300-bee sample unit per colony, but should do so from a variable number of colonies, depending on apiary size. These practical sampling plans will allow beekeepers and researchers to quantify mite infestation levels and enhance understanding and management of V. destructor.

  14. Maternity of emergency queens in the Cape honey bee, Apis mellifera capensis.

    PubMed

    Holmes, Michael J; Oldroyd, Benjamin P; Allsopp, Michael H; Lim, Julianne; Wossler, Theresa C; Beekman, Madeleine

    2010-07-01

    During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de-queened colonies and determined the maternity of larvae and pupae that were reared as queens. This allowed us to determine how soon after queen loss workers contribute to the production of new queens. We were further interested to see if workers would preferentially raise new queens from queen-laid brood if this was introduced later. We performed our manipulations in two different settings: an apiary setting where colonies were situated close together and a more natural situation in which the colonies were well separated. This allowed us to determine how the vicinity of other colonies affects the presence of parasites. We found that workers do indeed contribute to queen cell production immediately after the loss of their queen, thus demonstrating that some workers either have activated ovaries even when their colony has a queen or are able to activate their ovaries extremely rapidly. Queen-laid brood introduced days after queen loss was ignored, showing that workers do not prefer to raise new queens from queen brood when given a choice. We also detected non-natal parasitism of queen cells in both settings. We therefore conclude that some A. m. capensis genotypes specialize in parasitizing queen cells.

  15. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    NASA Astrophysics Data System (ADS)

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  16. Latent inhibition in the honey bee, Apis mellifera: Is it a unitary phenomenon?

    PubMed

    Chandra, Sathees B C; Wright, Geraldine A; Smith, Brian H

    2010-11-01

    Latent inhibition refers to learning that some stimuli are not signals of important events. It has been widely studied in vertebrates, but it has been substantially less well studied in invertebrates. We present an investigation into latent inhibition in the honey bee (Apis mellifera) using a proboscis extension response conditioning procedure that involved 'preexposure' of an odor without reinforcement prior to appetitive conditioning. A significant latent inhibition effect, measured in terms of a reduction in acquisition performance to the preexposed odor, was observed after 8 unreinforced presentations, and the effect continued to increase in strength up to 30 presentations. We also observed that memories formed for the preexposed odor lasted at least 24 h. Further manipulation of interstimulus interval and the visual conditioning context partially attenuated the effect. The latter results indicate that latent inhibition in honey bees may not be a unitary phenomenon. Two different mechanisms may be required, in which one mechanism is dependent on the visual context and the second is not.

  17. Medium for development of bee cell cultures (Apis mellifera: Hymenoptera: Apidae).

    PubMed

    Hunter, Wayne B

    2010-02-01

    A media for the production of cell cultures from hymenopteran species such as honey bee, Apis mellifera L. (Hymenoptera: Apidae) was developed. Multiple bee cell cultures were produced when using bee larvae and pupae as starting material and modified Hert-Hunter 70 media. Cell culture systems for bees solves an impasse that has hindered efforts to isolate and screen pathogens which may be influencing or causing colony collapse disorder of bees. Multiple life stages of maturing larvae to early pupae were used to successfully establish cell cultures from the tissues of the head, thorax, and abdomen. Multiple cell types were observed which included free-floating suspensions, fibroblast-like, and epithelia-like monolayers. The final culture medium, WH2, was originally developed for hemipterans, Asian citrus psyllid, Diaphorina citri, and leafhopper, Homalodisca vitripennis cell cultures but has been shown to work for a diverse range of insect species such as bees. Bee cell cultures had various doubling times at 21-23 degrees C ranging from 9-15 d. Deformed wing virus was detected in the primary explanted tissues, which tested negative by rt-PCR for Israeli acute paralysis virus (IAPV), Kashmir bee virus, acute bee paralysis virus, and black queen cell virus. Culture inoculation with IAPV from an isolate from Florida field samples, was detectable in cell cultures after two subcultures. Cell culture from hymenoptera species, such as bees, greatly advances the approaches available to the field of study on colony collapse disorders.

  18. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    NASA Astrophysics Data System (ADS)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  19. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria.

    PubMed

    Burritt, Nancy L; Foss, Nicole J; Neeno-Eckwall, Eric C; Church, James O; Hilger, Anna M; Hildebrand, Jacob A; Warshauer, David M; Perna, Nicole T; Burritt, James B

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.

  20. Immunosenescence and resistance to parasite infection in the honey bee, Apis mellifera.

    PubMed

    Roberts, Katherine E; Hughes, William O H

    2014-09-01

    Immunosenescence, the systemic reduction of immune efficiency with age, is increasingly recognised as having important implications for host-parasite dynamics. Changes in the immune response can impact on the ability of an individual to resist or moderate parasite infection, depending on how and when it encounters a parasite challenge. Using the European honey bee Apis mellifera and its microsporidian parasite Nosema ceranae, we investigated the effects of host age on the ability to resist parasite infection and on baseline immunocompetence, assessed by quantifying constitutive (PO) and potential levels (PPO) of the phenoloxidase immune enzyme as general measures of immune function. There was a significant correlation between the level of general immune function and infection intensity, but not with survival, and changes in immune function with age correlated with the ability of individuals to resist parasite infection. Older individuals had better survival when challenged with a parasite than younger individuals, however they also had more intense infections and lower baseline immunocomptence. The ability of older individuals to have high infection intensities yet live longer, has potential consequences for parasite transmission. The results highlight the need to consider age in host-parasite studies and show the importance of choosing the correct measure when assaying invertebrate immunity.

  1. Social regulation of ageing by young workers in the honey bee, Apis mellifera.

    PubMed

    Eyer, Michael; Dainat, Benjamin; Neumann, Peter; Dietemann, Vincent

    2017-01-01

    Organisms' lifespans are modulated by both genetic and environmental factors. The lifespan of eusocial insects is determined by features of the division of labor, which itself is influenced by social regulatory mechanisms. In the honey bee, Apis mellifera, the presence of brood and of old workers carrying out foraging tasks are important social drivers of ageing, but the influence of young adult workers is unknown, as it has not been experimentally teased apart from that of brood. In this study, we test the role of young workers in the ageing of their nestmates. We measured the impact of different social contexts characterized by the absence of brood and/or young adults on the lifespan of worker nestmates in field colonies. To acquire insight into the physiological processes occurring under these contexts, we analyzed the expression of genes known to affect honey bee ageing. The data showed that young workers significantly reduced the lifespan of nestmate workers, similar to the effect of brood on its own. Differential expression of vitellogenin, major royal jelly protein-1, and methylase transferase, but not methyl farneosate epoxidase genes suggests that young workers and brood influence ageing of adult nestmate workers via different physiological pathways. We identify young workers as an essential part of the social regulation of ageing in honey bee colonies.

  2. Evaluation of Apis mellifera syriaca Levant region honeybee conservation using comparative genome hybridization.

    PubMed

    Haddad, Nizar Jamal; Batainh, Ahmed; Saini, Deepti; Migdadi, Osama; Aiyaz, Mohamed; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; Al-Shagour, Banan; Brake, Mohammad; Bourgeois, Lelania; De Guzman, Lilia; Rinderer, Thomas; Hamouri, Zayed Mahoud

    2016-06-01

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca.

  3. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera).

    PubMed

    Retschnig, Gina; Williams, Geoffrey R; Schneeberger, Annette; Neumann, Peter

    2017-02-09

    Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera) colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary) over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday). The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts.

  4. Selection on worker honeybee responses to queen pheromone (Apis mellifera L.)

    NASA Astrophysics Data System (ADS)

    Pankiw, T.; Winston, Mark L.; Fondrk, M. Kim; Slessor, Keith N.

    Disruptive selection for responsiveness to queen mandibular gland pheromone (QMP) in the retinue bioassay resulted in the production of high and low QMP responding strains of honeybees (Apis mellifera L.). Strains differed significantly in their retinue response to QMP after one generation of selection. By the third generation the high strain was on average at least nine times more responsive than the low strain. The strains showed seasonal phenotypic plasticity such that both strains were more responsive to the pheromone in the spring than in the fall. Directional selection for low seasonal variation indicated that phenotypic plasticity was an additional genetic component to retinue response to QMP. Selection for high and low retinue responsiveness to QMP was not an artifact of the synthetic blend because both strains were equally responsive or non-responsive to whole mandibular gland extracts compared with QMP. The use of these strains clearly pointed to an extra-mandibular source of retinue pheromones (Pankiw et al. 1995; Slessor et al. 1998; Keeling et al. 1999).

  5. Longevity extension of worker honey bees (Apis mellifera) by royal jelly: optimal dose and active ingredient

    PubMed Central

    Han, Mingfeng

    2017-01-01

    In the Western honey bee, Apis mellifera, queens and workers have different longevity although they share the same genome. Queens consume royal jelly (RJ) as the main food throughout their life, including as adults, but workers only eat worker jelly when they are larvae less than 3 days old. In order to explore the effect of RJ and the components affecting longevity of worker honey bees, we first determined the optimal dose for prolonging longevity of workers as 4% RJ in 50% sucrose solution, and developed a method of obtaining long lived workers. We then compared the effects of longevity extension by RJ 4% with bee-collected pollen from rapeseed (Brassica napus). Lastly, we determined that a water soluble RJ protein obtained by precipitation with 60% ammonium sulfate (RJP60) contained the main component for longevity extension after comparing the effects of RJ crude protein extract (RJCP), RJP30 (obtained by precipitation with 30% ammonium sulfate), and RJ ethanol extract (RJEE). Understanding what regulates worker longevity has potential to help increase colony productivity and improve crop pollination efficiency. PMID:28367370

  6. Distance Between Honey Bee Apis mellifera Colonies Regulates Populations of Varroa destructor at a Landscape Scale

    PubMed Central

    Nolan, Maxcy P.; Delaplane, Keith S.

    2016-01-01

    Inter-colony distance of Apis mellifera significantly affects colony numbers of the parasitic mite Varroa destructor. We set up 15 apiaries, each consisting of two colonies. Each apiary pair was assigned an inter-colony distance of 0, 10, or 100 m. Colonies were rendered nearly mite-free, then one colony in each pair was seeded with 300 female mites (mite-donor colony), while the other remained uninoculated (mite-recipient colony). After four months of monitoring, a whole model analysis showed that apiaries in which colonies were spaced 100 m apart contained lower average mite numbers than 0 m or 10 m apiaries. There were interactions among colony type, distance, and sampling date; however, when there were significant differences mite numbers were always lower in 100 m apiaries than 10 m apiaries. These findings pose the possibility that Varroa populations are resource regulated at a landscape scale: near-neighbor colonies constitute reproductive resource for mites in the form of additional bee brood. PMID:27812228

  7. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera

    PubMed Central

    Li, Zhiyong; Huang, Zachary Y.; Sharma, Dhruv B.; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Background Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. Methodology/Principal Findings We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. Conclusions/Significance We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices. PMID:26882104

  8. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera.

    PubMed

    Drewell, Robert A; Bush, Eliot C; Remnant, Emily J; Wong, Garrett T; Beeler, Suzannah M; Stringham, Jessica L; Lim, Julianne; Oldroyd, Benjamin P

    2014-07-01

    In honey bees (Apis mellifera), the epigenetic mark of DNA methylation is central to the developmental regulation of caste differentiation, but may also be involved in additional biological functions. In this study, we examine the whole genome methylation profiles of three stages of the haploid honey bee genome: unfertilised eggs, the adult drones that develop from these eggs and the sperm produced by these drones. These methylomes reveal distinct patterns of methylation. Eggs and sperm show 381 genes with significantly different CpG methylation patterns, with the vast majority being more methylated in eggs. Adult drones show greatly reduced levels of methylation across the genome when compared with both gamete samples. This suggests a dynamic cycle of methylation loss and gain through the development of the drone and during spermatogenesis. Although fluxes in methylation during embryogenesis may account for some of the differentially methylated sites, the distinct methylation patterns at some genes suggest parent-specific epigenetic marking in the gametes. Extensive germ line methylation of some genes possibly explains the lower-than-expected frequency of CpG sites in these genes. We discuss the potential developmental and evolutionary implications of methylation in eggs and sperm in this eusocial insect species.

  9. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera).

    PubMed

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert; Bienefeld, Kaspar

    2016-05-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes.

  10. Tactile Conditioning And Movement Analysis Of Antennal Sampling Strategies In Honey Bees (Apis mellifera L.)

    PubMed Central

    Mujagić, Samir; Würth, Simon Michael; Hellbach, Sven; Dürr, Volker

    2012-01-01

    Honey bees (Apis mellifera L.) are eusocial insects and well known for their complex division of labor and associative learning capability1, 2. The worker bees spend the first half of their life inside the dark hive, where they are nursing the larvae or building the regular hexagonal combs for food (e.g. pollen or nectar) and brood3. The antennae are extraordinary multisensory feelers and play a pivotal role in various tactile mediated tasks4, including hive building5 and pattern recognition6. Later in life, each single bee leaves the hive to forage for food. Then a bee has to learn to discriminate profitable food sources, memorize their location, and communicate it to its nest mates7. Bees use different floral signals like colors or odors7, 8, but also tactile cues from the petal surface9 to form multisensory memories of the food source. Under laboratory conditions, bees can be trained in an appetitive learning paradigm to discriminate tactile object features, such as edges or grooves with their antennae10, 11, 12, 13. This learning paradigm is closely related to the classical olfactory conditioning of the proboscis extension response (PER) in harnessed bees14. The advantage of the tactile learning paradigm in the laboratory is the possibility of combining behavioral experiments on learning with various physiological measurements, including the analysis of the antennal movement pattern. PMID:23271329

  11. Thelytokous parthenogenesis in unmated queen honeybees (Apis mellifera capensis): central fusion and high recombination rates.

    PubMed

    Oldroyd, Benjamin P; Allsopp, Michael H; Gloag, Rosalyn S; Lim, Julianne; Jordan, Lyndon A; Beekman, Madeleine

    2008-09-01

    The subspecies of honeybee indigenous to the Cape region of South Africa, Apis mellifera capensis, is unique because a high proportion of unmated workers can lay eggs that develop into females via thelytokous parthenogenesis involving central fusion of meiotic products. This ability allows pseudoclonal lineages of workers to establish, which are presently widespread as reproductive parasites within the honeybee populations of South Africa. Successful long-term propagation of a parthenogen requires the maintenance of heterozygosity at the sex locus, which in honeybees must be heterozygous for the expression of female traits. Thus, in successful lineages of parasitic workers, recombination events are reduced by an order of magnitude relative to meiosis in queens of other honeybee subspecies. Here we show that in unmated A. m. capensis queens treated to induce oviposition, no such reduction in recombination occurs, indicating that thelytoky and reduced recombination are not controlled by the same gene. Our virgin queens were able to lay both arrhenotokous male-producing haploid eggs and thelytokous female-producing diploid eggs at the same time, with evidence that they have some voluntary control over which kind of egg was laid. If so, they are able to influence the kind of second-division meiosis that occurs in their eggs post partum.

  12. Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera

    PubMed Central

    Martinson, Vincent G.; Urban-Mead, Katherine; Moran, Nancy A.

    2014-01-01

    Studies of newly emerged Apis mellifera worker bees have demonstrated that their guts are colonized by a consistent core microbiota within several days of eclosure. We conducted experiments aimed at illuminating the transmission routes and spatiotemporal colonization dynamics of this microbiota. Experimental groups of newly emerged workers were maintained in cup cages and exposed to different potential transmission sources. Colonization patterns were evaluated using quantitative real-time PCR (qPCR) to assess community sizes and using deep sequencing of 16S rRNA gene amplicons to assess community composition. In addition, we monitored the establishment of the ileum and rectum communities within workers sampled over time from natural hive conditions. The study verified that workers initially lack gut bacteria and gain large characteristic communities in the ileum and rectum within 4 to 6 days within hives. Typical communities, resembling those of workers within hives, were established in the presence of nurse workers or nurse worker fecal material, and atypical communities of noncore or highly skewed compositions were established when workers were exposed only to oral trophallaxis or hive components (comb, honey, bee bread). The core species of Gram-negative bacteria, Snodgrassella alvi, Gilliamella apicola, and Frischella perrara, were dependent on the presence of nurses or hindgut material, whereas some Gram-positive species were more often transferred through exposure to hive components. These results indicate aspects of the colony life cycle and behavior that are key to the propagation of the characteristic honey bee gut microbiota. PMID:25239900

  13. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera)

    PubMed Central

    Retschnig, Gina; Williams, Geoffrey R.; Schneeberger, Annette; Neumann, Peter

    2017-01-01

    Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera) colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary) over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday). The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts. PMID:28208761

  14. Longevity extension of worker honey bees (Apis mellifera) by royal jelly: optimal dose and active ingredient.

    PubMed

    Yang, Wenchao; Tian, Yuanyuan; Han, Mingfeng; Miao, Xiaoqing

    2017-01-01

    In the Western honey bee, Apis mellifera, queens and workers have different longevity although they share the same genome. Queens consume royal jelly (RJ) as the main food throughout their life, including as adults, but workers only eat worker jelly when they are larvae less than 3 days old. In order to explore the effect of RJ and the components affecting longevity of worker honey bees, we first determined the optimal dose for prolonging longevity of workers as 4% RJ in 50% sucrose solution, and developed a method of obtaining long lived workers. We then compared the effects of longevity extension by RJ 4% with bee-collected pollen from rapeseed (Brassica napus). Lastly, we determined that a water soluble RJ protein obtained by precipitation with 60% ammonium sulfate (RJP60) contained the main component for longevity extension after comparing the effects of RJ crude protein extract (RJCP), RJP30 (obtained by precipitation with 30% ammonium sulfate), and RJ ethanol extract (RJEE). Understanding what regulates worker longevity has potential to help increase colony productivity and improve crop pollination efficiency.

  15. Odorant cues linked to social immunity induce lateralized antenna stimulation in honey bees (Apis mellifera L.).

    PubMed

    McAfee, Alison; Collins, Troy F; Madilao, Lufiani L; Foster, Leonard J

    2017-04-07

    Hygienic behaviour (HB) is a social immunity trait in honey bees (Apis mellifera L.) whereby workers detect, uncap and remove unhealthy brood, improving disease resistance in the colony. This is clearly economically valuable; however, the molecular mechanism behind it is not well understood. The freeze-killed brood (FKB) assay is the conventional method of HB selection, so we compared odour profiles of FKB and live brood to find candidate HB-inducing odours. Surprisingly, we found that significantly more brood pheromone (β-ocimene) was released from FKB. β-ocimene abundance also positively correlated with HB, suggesting there could be a brood effect contributing to overall hygiene. Furthermore, we found that β-ocimene stimulated worker antennae in a dose-dependent manner, with the left antennae responding significantly stronger than right antennae in hygienic bees, but not in non-hygienic bees. Five other unidentifiable compounds were differentially emitted from FKB which could also be important for HB. We also compared odour profiles of Varroa-infested brood to healthy brood and found an overall interactive effect between developmental stage and infestation, but specific odours did not drive these differences. Overall, the data we present here is an important foundation on which to build our understanding the molecular mechanism behind this complex behaviour.

  16. Origin of honeybees (Apis mellifera L.) from the Yucatan peninsula inferred from mitochondrial DNA analysis.

    PubMed

    Clarke, K E; Oldroyd, B P; Javier, J; Quezada-Euán, G; Rinderer, T E

    2001-06-01

    Honeybees (Apis mellifera L.) sampled at sites in Europe, Africa and South America were analysed using a mitochondrial DNA restriction fragment length polymorphism (RFLP) marker. These samples were used to provide baseline information for a detailed analysis of the process of Africanization of bees from the neotropical Yucatan peninsula of Mexico. Radical changes in mitochondrial haplotype (mitotype) frequencies were found to have occurred in the 13-year period studied. Prior to the arrival of Africanized bees (1986) the original inhabitants of the Yucatan peninsula appear to have been essentially of southeastern European origin with a smaller proportion having northwestern European ancestry. Three years after the migration of Africanized bees into the area (1989), only very low levels of maternal gene flow from Africanized populations into the resident European populations had occurred. By 1998, however, there was a sizeable increase in the proportion of African mitotypes in domestic populations (61%) with feral populations having 87% of mitotypes classified as African derived. The results suggest that the early stages of Africanization did not involve a rapid replacement of European with African mitotypes and that earlier studies probably overestimated the prevalence of African mitotypes.

  17. Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa.

    PubMed

    Beekman, M; Allsopp, M H; Wossler, T C; Oldroyd, B P

    2008-01-01

    Hybrid zones are found wherever two populations distinguishable on the basis of heritable characters overlap spatially and temporally and hybridization occurs. If hybrids have lower fitness than the parental types a tension zone may emerge, in which there is a barrier to gene flow between the two parental populations. Here we discuss a hybrid zone between two honeybee subspecies, Apis mellifera capensis and A. m. scutellata and argue that this zone is an example of a tension zone. This tension zone is particularly interesting because A. m. capensis can be a lethal social parasite of A. m. scutellata. However, despite its parasitic potential, A. m. capensis appears to be unable to increase its natural range unassisted. We propose three interlinked mechanisms that could maintain the South African honeybee hybrid zone: (1) low fitness of intercrossed and genetically mixed colonies arising from inadequate regulation of worker reproduction; (2) higher reproductive success of A. m. scutellata via both high dispersal rates into the hybrid zone and increased competitiveness of males, countered by (3) the parasitic nature of A. m. capensis.

  18. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera)

    PubMed Central

    A. De Souza, Daiana; Wang, Ying; Kaftanoglu, Osman; De Jong, David; V. Amdam, Gro; S. Gonçalves, Lionel; M. Francoy, Tiago

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates. PMID:25894528

  19. Caste-Specific Differences in Hindgut Microbial Communities of Honey Bees (Apis mellifera)

    PubMed Central

    Yeoman, Carl J.; Wilson, Brenda A.; White, Bryan A.; Goldenfeld, Nigel; Robinson, Gene E.

    2015-01-01

    Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior. PMID:25874551

  20. Honeybees (Apis mellifera) learn to discriminate the smell of organic compounds from their respective deuterated isotopomers

    PubMed Central

    Gronenberg, Wulfila; Raikhelkar, Ajay; Abshire, Eric; Stevens, Jennifer; Epstein, Eric; Loyola, Karin; Rauscher, Michael; Buchmann, Stephen

    2014-01-01

    The understanding of physiological and molecular processes underlying the sense of smell has made considerable progress during the past three decades, revealing the cascade of molecular steps that lead to the activation of olfactory receptor (OR) neurons. However, the mode of primary interaction of odorant molecules with the OR proteins within the sensory cells is still enigmatic. Two different concepts try to explain these interactions: the ‘odotope hypothesis’ suggests that OR proteins recognize structural aspects of the odorant molecule, whereas the ‘vibration hypothesis’ proposes that intra-molecular vibrations are the basis for the recognition of the odorant by the receptor protein. The vibration hypothesis predicts that OR proteins should be able to discriminate compounds containing deuterium from their common counterparts which contain hydrogen instead of deuterium. This study tests this prediction in honeybees (Apis mellifera) using the proboscis extension reflex learning in a differential conditioning paradigm. Rewarding one odour (e.g. a deuterated compound) with sucrose and not rewarding the respective analogue (e.g. hydrogen-based odorant) shows that honeybees readily learn to discriminate hydrogen-based odorants from their deuterated counterparts and supports the idea that intra-molecular vibrations may contribute to odour discrimination. PMID:24452031

  1. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  2. A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis).

    PubMed

    Lattorff, H M G; Moritz, R F A; Fuchs, S

    2005-05-01

    The evolution and maintenance of parthenogenetic species are a puzzling issue in evolutionary biology. Although the genetic mechanisms that act to restore diploidy are well studied, the underlying genes that cause the switch from sexual reproduction to parthenogenesis have not been analysed. There are several species that are polymorphic for sexual and parthenogenetic reproduction, which may have a genetic basis. We use the South African honeybee subspecies Apis mellifera capensis to analyse the genetic control of thelytoky (asexual production of female workers). Due to the caste system of honeybees, it is possible to establish classical backcrosses using sexually reproducing queens and drones of both arrhenotokous and thelytokous subspecies, and to score the frequency of parthenogenesis in the resulting workers. We found Mendelian segregation for thelytoky of egg-laying workers, which appears to be controlled by a single major gene (th). The segregation pattern indicates a recessive allele causing thelytoky. We found no evidence for maternal transmission of bacterial endosymbionts controlling parthenogenesis. Thelytokous parthenogenesis of honeybee workers appears to be a classical qualitative trait, because we did not observe mixed parthenogenesis (amphitoky), which might be expected in the case of multi-locus inheritance.

  3. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera

    NASA Astrophysics Data System (ADS)

    Brockmann, Axel; Brückner, Dorothea

    2001-01-01

    Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera.

  4. Phylogenetic relationship of Turkish Apis mellifera subspecies based on sequencing of mitochondrial cytochrome C oxidase I region.

    PubMed

    Özdil, F; İlhan, F

    2012-04-27

    Mitochondrial DNA sequence variation can be used to infer honey bee evolutionary relationships. We examined DNA sequence diversity in the cytochrome C oxidase I (COI or Cox1) gene segment of the mitochondrial genome in 112 samples of Apis mellifera from 15 different populations in Turkey. Six novel haplotypes were found for the COI gene segment. There were eight variable sites in the COI gene, although only three were parsimony-informative sites. The mean pairwise genetic distance was 0.3% for the COI gene segment. Neighbor-joining (NJ) trees of the COI gene segment were constructed with the published sequences of A. mellifera haplotypes that are available in GenBank; the genetic variation was compared among the different honeybee haplotypes. The NJ dendogram based on the COI sequences available in GenBank showed that Eastern European races were clustered together, whereas the Mellifera and Iberian haplotypes were clustered far apart. The haplotypes found in this study were clustered together with A. mellifera ligustica and some of the Greek honey bees (accession Nos. GU056169 and GU056170) found in NCBI GenBank database. This study expands the knowledge about the mitochondrial COI region and presents the first comprehensive sequence analysis of this region in Turkish honeybees.

  5. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera.

    PubMed

    Brockmann, A; Brückner, D

    2001-02-01

    Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera. Research in honey bee sex-pheromone communication dates back to the 1960s, when Gary (1962) demonstrated that in Apis mellifera the queen's mandibular gland secretion and especially its main component, 9-ODA (9-keto-2(E)-decenoic acid), is highly attractive to drones on their nuptial flight. Later, cross-species attraction experiments showed that other honey bee species, Apis florea, A. cerana, and A. dorsata probably also use the queen's mandibular gland secretion as a mating attractant (Butler et al. 1967; Sanasi et al. 1971). Besides its function in

  6. Molecular and Kinetic Properties of Two Acetylcholinesterases from the Western Honey Bee, Apis mellifera

    PubMed Central

    Kim, Young Ho; Cha, Deok Jea; Jung, Je Won; Kwon, Hyung Wook; Lee, Si Hyeock

    2012-01-01

    We investigated the molecular and kinetic properties of two acetylcholinesterases (AmAChE1 and AmAChE2) from the Western honey bee, Apis mellifera. Western blot analysis revealed that AmAChE2 has most of catalytic activity rather than AmAChE1, further suggesting that AmAChE2 is responsible for synaptic transmission in A. mellifera, in contrast to most other insects. AmAChE2 was predominately expressed in the ganglia and head containing the central nervous system (CNS), while AmAChE1 was abundantly observed not only in the CNS but also in the peripheral nervous system/non-neuronal tissues. Both AmAChEs exist as homodimers; the monomers are covalently connected via a disulfide bond under native conditions. However, AmAChE2 was associated with the cell membrane via the glycophosphatidylinositol anchor, while AmAChE1 was present as a soluble form. The two AmAChEs were functionally expressed with a baculovirus system. Kinetic analysis revealed that AmAChE2 has approximately 2,500-fold greater catalytic efficiency toward acetylthiocholine and butyrylthiocholine than AmAChE1, supporting the synaptic function of AmAChE2. In addition, AmAChE2 likely serves as the main target of the organophosphate (OP) and carbamate (CB) insecticides as judged by the lower IC50 values against AmAChE2 than against AmAChE1. When OP and CB insecticides were pre-incubated with a mixture of AmAChE1 and AmAChE2, a significant reduction in the inhibition of AmAChE2 was observed, suggesting a protective role of AmAChE1 against xenobiotics. Taken together, based on their tissue distribution pattern, molecular and kinetic properties, AmAChE2 plays a major role in synaptic transmission, while AmAChE1 has non-neuronal functions, including chemical defense. PMID:23144990

  7. Molecular and kinetic properties of two acetylcholinesterases from the western honey bee, Apis mellifera.

    PubMed

    Kim, Young Ho; Cha, Deok Jea; Jung, Je Won; Kwon, Hyung Wook; Lee, Si Hyeock

    2012-01-01

    We investigated the molecular and kinetic properties of two acetylcholinesterases (AmAChE1 and AmAChE2) from the Western honey bee, Apis mellifera. Western blot analysis revealed that AmAChE2 has most of catalytic activity rather than AmAChE1, further suggesting that AmAChE2 is responsible for synaptic transmission in A. mellifera, in contrast to most other insects. AmAChE2 was predominately expressed in the ganglia and head containing the central nervous system (CNS), while AmAChE1 was abundantly observed not only in the CNS but also in the peripheral nervous system/non-neuronal tissues. Both AmAChEs exist as homodimers; the monomers are covalently connected via a disulfide bond under native conditions. However, AmAChE2 was associated with the cell membrane via the glycophosphatidylinositol anchor, while AmAChE1 was present as a soluble form. The two AmAChEs were functionally expressed with a baculovirus system. Kinetic analysis revealed that AmAChE2 has approximately 2,500-fold greater catalytic efficiency toward acetylthiocholine and butyrylthiocholine than AmAChE1, supporting the synaptic function of AmAChE2. In addition, AmAChE2 likely serves as the main target of the organophosphate (OP) and carbamate (CB) insecticides as judged by the lower IC(50) values against AmAChE2 than against AmAChE1. When OP and CB insecticides were pre-incubated with a mixture of AmAChE1 and AmAChE2, a significant reduction in the inhibition of AmAChE2 was observed, suggesting a protective role of AmAChE1 against xenobiotics. Taken together, based on their tissue distribution pattern, molecular and kinetic properties, AmAChE2 plays a major role in synaptic transmission, while AmAChE1 has non-neuronal functions, including chemical defense.

  8. Differences in mushroom bodies morphogenesis in workers, queens and drones of Apis mellifera: neuroblasts proliferation and death.

    PubMed

    Roat, Thaisa Cristina; da Cruz Landim, Carminda

    2010-06-01

    Apis mellifera is an interesting model to neurobiological studies. It has a relatively small brain that commands the complex learning and memory tasks demanded by the social organization. An A. mellifera colony is made up of a queen, thousands of workers and a varying number of drones. The latter are males, whereas the former are the two female castes. These three phenotypes differ in morphology, physiology and behavior, correlated with their respective functions in the society. Such differences include the morphology and architecture of their brains. To understand the processes generating such polymorphic brains we characterized the cell division and cell death dynamics which underlie the morphogenesis of the mushroom bodies, through several methods suitable for evidence the time and place of occurrence. Cell death was detected in mushroom bodies of last larval instar and mainly in black-eyed pupae. Cell division was observed in mushroom bodies, primarily at the start of metamorphosis, exhibiting temporal differences among workers, queens and males.

  9. Genetic and Biochemical Diversity among Isolates of Paenibacillus alvei Cultured from Australian Honeybee (Apis mellifera) Colonies

    PubMed Central

    Djordjevic, Steven P.; Forbes, Wendy A.; Smith, Lisa A.; Hornitzky, Michael A.

    2000-01-01

    Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI, CfoI, AluI, FokI, and RsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in the HinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI, FokI, and HinfI differentiated P. alvei from the phylogenetically closely related species Paenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1,555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymes CfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity in P. alvei isolates may be a reflection of adaptation to the special habitats in which they

  10. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera).

    PubMed

    Dynes, Travis L; De Roode, Jacobus C; Lyons, Justine I; Berry, Jennifer A; Delaplane, Keith S; Brosi, Berry J

    2016-01-01

    Varroa destructor is an obligate ectoparasitic mite and the most important biotic threat currently facing honey bees (Apis mellifera). We used neutral microsatellites to analyze previously unreported fine scale population structure of V. destructor, a species characterized by extreme lack of genetic diversity owing to multiple bottleneck events, haplodiploidy, and primarily brother-sister matings. Our results surprisingly indicate that detectable hierarchical genetic variation exists between apiaries, between colonies within an apiary, and even within colonies. This finding of within-colony parasite diversity provides empirical evidence that the spread of V. destructor is not accomplished solely by vertical transmission but that horizontal transmission (natural or human-mediated) must occur regularly.

  11. Detection of viral sequences in semen of honeybees (Apis mellifera): evidence for vertical transmission of viruses through drones.

    PubMed

    Yue, Constanze; Schröder, Marion; Bienefeld, Kaspar; Genersch, Elke

    2006-06-01

    Honeybees (Apis mellifera) can be attacked by many eukaryotic parasites, and bacterial as well as viral pathogens. Especially in combination with the ectoparasitic mite Varroa destructor, viral honeybee diseases are becoming a major problem in apiculture, causing economic losses worldwide. Several horizontal transmission routes are described for some honeybee viruses. Here, we report for the first time the detection of viral sequences in semen of honeybee drones suggesting mating as another horizontal and/or vertical route of virus transmission. Since artificial insemination and controlled mating is widely used in honeybee breeding, the impact of our findings for disease transmission is discussed.

  12. First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA.

    PubMed

    Williams, Geoffrey R; Shafer, Aaron B A; Rogers, Richard E L; Shutler, Dave; Stewart, Donald T

    2008-02-01

    Nosema ceranae is an emerging microsporidian parasite of European honey bees, Apis mellifera, but its distribution is not well known. Six Nosema-positive samples (determined from light microscopy of spores) of adult worker bees from Canada (two each from Nova Scotia, New Brunswick, and Prince Edward Island) and two from USA (Minnesota) were tested to determine Nosema species using previously-developed PCR primers of the 16S rRNA gene. We detected for the first time N. ceranae in Canada and central USA. One haplotype of N. ceranae was identified; its virulence may differ from that of other haplotypes.

  13. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter.

    PubMed

    Negri, Ilaria; Mavris, Christian; Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  14. Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite.

    PubMed

    Bernardi, Sara; Venturino, Ezio

    2016-05-01

    The ectoparasitic mite Varroa destructor has become one of the major worldwide threats for apiculture. Varroa destructor attacks the honey bee Apis mellifera weakening its host by sucking hemolymph. However, the damage to bee colonies is not strictly related to the parasitic action of the mite but it derives, above all, from its action as vector increasing the transmission of many viral diseases such as acute paralysis (ABPV) and deformed wing viruses (DWV), that are considered among the main causes of CCD (Colony Collapse Disorder). In this work we discuss an [Formula: see text] model that describes how the presence of the mite affects the epidemiology of these viruses on adult bees. The acronym [Formula: see text] means that the disease affects both populations. In fact it accounts for the bee and mite populations, that are each divided among the S (susceptible) and I (infected) states. We characterize the system behavior, establishing that ultimately either only healthy bees survive, or the disease becomes endemic and mites are wiped out. Another dangerous alternative is the Varroa invasion scenario with the extinction of healthy bees. The final possible configuration is the coexistence equilibrium in which honey bees share their infected hive with mites. The analysis is in line with some observed facts in natural honey bee colonies. Namely, these diseases are endemic. Further, if the mite population is present, necessarily the viral infection occurs. The findings of this study indicate that a low horizontal transmission rate of the virus among honey bees in beehives will help in protecting bee colonies from Varroa infestation and viral epidemics.

  15. Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera

    PubMed Central

    Baer, Boris; Eubel, Holger; Taylor, Nicolas L; O'Toole, Nicholas; Millar, A Harvey

    2009-01-01

    Background Female animals are often able to store sperm inside their body - in some species even for several decades. The molecular basis of how females keep non-own cells alive is largely unknown, but since sperm cells are reported to be transcriptionally silenced and, therefore, limited in their ability to maintain their own function, it is likely that females actively participate in sperm maintenance. Because female contributions are likely to be of central importance for sperm survival, molecular insights into the process offer opportunities to observe mechanisms through which females manipulate sperm. Results We used the honeybee, Apis mellifera, in which queens are highly polyandrous and able to maintain sperm viable for several years. We identified over a hundred proteins representing the major constituents of the spermathecal fluid, which females contribute to sperm in storage. We found that the gel profile of proteins from spermathecal fluid is very similar to the secretions of the spermathecal gland and concluded that the spermathecal glands are the main contributors to the spermathecal fluid proteome. A detailed analysis of the spermathecal fluid proteins indicate that they fall into a range of different functional groups, most notably enzymes of energy metabolism and antioxidant defense. A metabolic network analysis comparing the proteins detected in seminal fluid and spermathecal fluid showed a more integrated network is present in the spermathecal fluid that could facilitate long-term storage of sperm. Conclusions We present a large-scale identification of proteins in the spermathecal fluid of honeybee queens and provide insights into the molecular regulation of female sperm storage. PMID:19538722

  16. Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera

    PubMed Central

    Dussaubat, Claudia; Brunet, Jean-Luc; Higes, Mariano; Colbourne, John K.; Lopez, Jacqueline; Choi, Jeong-Hyeon; Martín-Hernández, Raquel; Botías, Cristina; Cousin, Marianne; McDonnell, Cynthia; Bonnet, Marc; Belzunces, Luc P.; Moritz, Robin F. A.; Le Conte, Yves; Alaux, Cédric

    2012-01-01

    The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses. PMID:22623972

  17. Honeybee Apis mellifera acetylcholinesterase--a biomarker to detect deltamethrin exposure.

    PubMed

    Badiou, A; Meled, M; Belzunces, L P

    2008-02-01

    The purpose of this study is to investigate the possibility to use acetylcholinesterase (AChE) as a biomarker of exposure to deltamethrin insecticide in the honeybee, Apis mellifera and to test its reliability in the presence of other contaminants, as carbamate insecticide. Joined actions of deltamethrin (pyrethroid) and pirimicarb (carbamate), alone or in association, are investigated on AChE activity in surviving and dead honeybees, with a special focus on the relative proportions of its membrane and soluble forms. At the 0.5X dose (12.5 ng of deltamethrin and/or 2.5 microg of pirimicarb per bee), the residual tissue AChE activity in dead bees was 78% with deltamethrin, 43% with pirimicarb and 33% with dual treatment. In surviving bees, tissue AChE activity represented 250%, and 270% of control AChE activity with deltamethrin and dual treatment, respectively. The analysis of membrane and soluble AChE forms revealed an increase in the soluble form in dead bees after deltamethrin and dual treatment. However, in vitro investigations showed no direct interaction of deltamethrin on soluble and membrane AChE activity. The results suggest that the action of deltamethrin on AChE activity, in honeybee intact organisms, could be due to indirect mechanisms. The duality of AChE response to deltamethrin exposure, exhibited by the possibility of increase (surviving bees) or decrease (dead bees) of its activity has been pointed out for the first time. The important increase in AChE activity in response to deltamethrin, not altered by pirimicarb treatment, suggests that AChE activity could represent a robust biomarker specific to deltamethrin exposure in living bees.

  18. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera).

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2011-08-02

    Although Apis mellifera, the western honey bee, has long encountered pesticides when foraging in agricultural fields, for two decades it has encountered pesticides in-hive in the form of acaricides to control Varroa destructor, a devastating parasitic mite. The pyrethroid tau-fluvalinate and the organophosphate coumaphos have been used for Varroa control, with little knowledge of honey bee detoxification mechanisms. Cytochrome P450-mediated detoxification contributes to pyrethroid tolerance in many insects, but specific P450s responsible for pesticide detoxification in honey bees (indeed, in any hymenopteran pollinator) have not been defined. We expressed and assayed CYP3 clan midgut P450s and demonstrated that CYP9Q1, CYP9Q2, and CYP9Q3 metabolize tau-fluvalinate to a form suitable for further cleavage by the carboxylesterases that also contribute to tau-fluvalinate tolerance. These in vitro assays indicated that all of the three CYP9Q enzymes also detoxify coumaphos. Molecular models demonstrate that coumaphos and tau-fluvalinate fit into the same catalytic pocket, providing a possible explanation for the synergism observed between these two compounds. Induction of CYP9Q2 and CYP9Q3 transcripts by honey extracts suggested that diet-derived phytochemicals may be natural substrates and heterologous expression of CYP9Q3 confirmed activity against quercetin, a flavonoid ubiquitous in honey. Up-regulation by honey constituents suggests that diet may influence the ability of honey bees to detoxify pesticides. Quantitative RT-PCR assays demonstrated that tau-fluvalinate enhances CYP9Q3 transcripts, whereas the pyrethroid bifenthrin enhances CYP9Q1 and CYP9Q2 transcripts and represses CYP9Q3 transcripts. The independent regulation of these P450s can be useful for monitoring and differentiating between pesticide exposures in-hive and in agricultural fields.

  19. Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)

    PubMed Central

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783

  20. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    PubMed

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa.

  1. New components of the honey bee (Apis mellifera L.) queen retinue pheromone.

    PubMed

    Keeling, Christopher I; Slessor, Keith N; Higo, Heather A; Winston, Mark L

    2003-04-15

    The honey bee queen produces pheromones that function in both releaser and primer roles such as attracting a retinue of workers around her, attracting drones on mating flights, preventing workers from reproducing at the individual (worker egg-laying) and colony (swarming) level, and regulating several other aspects of colony functioning. The queen mandibular pheromone (QMP), consisting of five synergistic components, is the only pheromone chemically identified in the honey bee (Apis mellifera L.) queen, but this pheromone does not fully duplicate the pheromonal activity of a full queen extract. To identify the remaining unknown compounds for retinue attraction, honey bee colonies were selectively bred to have low response to synthetic QMP and high response to a queen extract in a laboratory retinue bioassay. Workers from these colonies were then used in the bioassay to guide the isolation and identification of the remaining active components. Four new compounds were identified from several glandular sources that account for the majority of the difference in retinue attraction between synthetic QMP and queen extract: methyl (Z)-octadec-9-enoate (methyl oleate), (E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-en-1-ol (coniferyl alcohol), hexadecan-1-ol, and (Z9,Z12,Z15)-octadeca-9,12,15-trienoic acid (linolenic acid). These compounds were inactive alone or in combination, and they only elicited attraction in the presence of QMP. There was still unidentified activity remaining in the queen extract. The queen therefore produces a synergistic, multiglandular pheromone blend of at least nine compounds for retinue attraction, the most complex pheromone blend known for inducing a single behavior in any organism.

  2. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    NASA Astrophysics Data System (ADS)

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  3. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    PubMed

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  4. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields.

    PubMed

    Hagler, James R; Mueller, Shannon; Teuber, Larry R; Machtley, Scott A; Van Deynze, Allen

    2011-01-01

    A study was conducted in 2006 and 2007 designed to examine the foraging range of honey bees, Apis mellifera (Hymenoptera: Apidae), in a 15.2 km(2) area dominated by a 128.9 ha glyphosate-resistant Roundup Ready® alfalfa seed production field and several non-Roundup Ready alfalfa seed production fields (totaling 120.2 ha). Each year, honey bee self-marking devices were placed on 112 selected honey bee colonies originating from nine different apiary locations. The foraging bees exiting each apiary location were uniquely marked so that the apiary of origin and the distance traveled by the marked (field-collected) bees into each of the alfalfa fields could be pinpointed. Honey bee self-marking devices were installed on 14.4 and 11.2% of the total hives located within the research area in 2006 and 2007, respectively. The frequency of field-collected bees possessing a distinct mark was similar, averaging 14.0% in 2006 and 12.6% in 2007. A grand total of 12,266 bees were collected from the various alfalfa fields on seven sampling dates over the course of the study. The distances traveled by marked bees ranged from a minimum of 45 m to a maximum of 5983 m. On average, marked bees were recovered ~ 800 m from their apiary of origin and the recovery rate of marked bees decreased exponentially as the distance from the apiary of origin increased. Ultimately, these data will be used to identify the extent of pollen-mediated gene flow from Roundup Ready to conventional alfalfa.

  5. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter

    PubMed Central

    Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry -, postmining -, and soil –derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants. PMID:26147982

  6. Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae.

    PubMed

    Baffoni, L; Gaggìa, F; Alberoni, D; Cabbri, R; Nanetti, A; Biavati, B; Di Gioia, D

    2016-02-01

    Nosema ceranae is a widespread microsporidium of European honeybee Apis mellifera L. affecting bee health. The ban of Fumagillin-B (dicyclohexylammonium salt) in the European Union has driven the search for sustainable strategies to prevent and control the infection. The gut microbial symbionts, associated to the intestinal system of vertebrates and invertebrates and its impact on host health, are receiving increasing attention. In particular, bifidobacteria and lactobacilli, which are normal inhabitants of the digestive system of bees, are known to protect their hosts via antimicrobial metabolites, immunomodulation and competition. In this work, the dietary supplementation of gut bacteria was evaluated under laboratory conditions in bees artificially infected with the parasite and bees not artificially infected but evidencing a low natural infection. Supplemented bacteria were selected among bifidobacteria, previously isolated, and lactobacilli, isolated in this work from healthy honeybee gut. Four treatments were compared: bees fed with sugar syrup (CTR); bees fed with sugar syrup containing bifidobacteria and lactobacilli (PRO); bees infected with N. ceranae spores and fed with sugar syrup (NOS); bees infected with N. ceranae and fed with sugar syrup containing bifidobacteria and lactobacilli (NP). The sugar syrup, with or without microorganisms, was administered to bees from the first day of life for 13 days. N. ceranae infection was carried out individually on anesthetised 5-day-old bees. Eight days after infection, a significant (P<0.05) lower level of N. ceranae was detected by real-time PCR in both NP and PRO group, showing a positive effect of supplemented microorganisms in controlling the infection. These results represent a first attempt of application of bifidobacteria and lactobacilli against N. ceranae in honeybees.

  7. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia.

    PubMed

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees (Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL(-1) against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  8. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  9. Temporal and preparation effects in the magnetic nanoparticles of Apis mellifera body parts

    NASA Astrophysics Data System (ADS)

    Chambarelli, L. L.; Pinho, M. A.; Abraçado, L. G.; Esquivel, D. M. S.; Wajnberg, E.

    Magnetic nanoparticles in the Apis mellifera abdomens are well accepted as involved in their magnetoreception mechanism. The effects of sample preparation on the time evolution of magnetic particles in the honeybee body parts (antennae, head, thorax and abdomen) were investigated by Ferromagnetic Resonance (FMR) at room temperature (RT), for about 100 days. Three preparations were tested: (a) washed with water (WT); (b) as (a), kept in glutaraldehyde 2.5% in 0.1 M cacodylate buffer (pH 7.4) for 24 h and washed with cacodylate buffer (C); (c) as (a), kept in glutaraldehyde 2.5% for 24 h and washed with glutaraldehyde 2.5% in cacodylate buffer (GLC). The four body parts of young and adult worker presented magnetic nanoparticles. The Mn 2+ lines are observed except for the antennae spectra. The high field (HF) and low field (LF) components previously observed in the spectra of social insects, are confirmed in these spectra. The HF line is present in all spectra while the LF is easily observed in the spectra of the young bee and it appears as a baseline shift in spectra of some adult parts. The HF intensity of the abdomen is commonly one order of magnitude larger than any other body parts. This is the first systematic study on the conservation of magnetic material in all body parts of bees. The results show that the time evolution of the spectra depends on the body part, conserving solution and bee age. Further measurements are necessary to understand these effects and extend it to other social insects.

  10. Differential expression of hypoxia pathway genes in honey bee (Apis mellifera L.) caste development.

    PubMed

    Azevedo, Sergio Vicente; Caranton, Omar Arvey Martinez; de Oliveira, Tatiane Lippi; Hartfelder, Klaus

    2011-01-01

    Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIFα/Sima, HIFβ/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae.

  11. Quercetin-metabolizing CYP6AS enzymes of the pollinator Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Mao, Wenfu; Rupasinghe, Sanjeewa G; Johnson, Reed M; Zangerl, Arthur R; Schuler, Mary A; Berenbaum, May R

    2009-12-01

    Although the honey bee (Apis mellifera) genome contains far fewer cytochrome P450 genes associated with xenobiotic metabolism than other insect genomes sequenced to date, the CYP6AS subfamily, apparently unique to hymenopterans, has undergone an expansion relative to the genome of the jewel wasp (Nasonia vitripennis). The relative dominance of this family in the honey bee genome is suggestive of a role in processing phytochemicals encountered by honey bees in their relatively unusual diet of honey (comprising concentrated processed nectar of many plant species) and bee bread (a mixture of honey and pollen from many plant species). In this study, quercetin was initially suggested as a shared substrate for CYP6AS1, CYP6AS3, and CYP6AS4, by its presence in honey, extracts of which induce transcription of these three genes, and by in silico substrate predictions based on a molecular model of CYP6AS3. Biochemical assays with heterologously expressed CYP6AS1, CYP6AS3, CYP6AS4 and CYP6AS10 enzymes subsequently confirmed their activity toward this substrate. CYP6AS1, CYP6AS3, CYP6AS4 and CYP6AS10 metabolize quercetin at rates of 0.5+/-0.1, 0.5+/-0.1, 0.2+/-0.1, and 0.2+/-0.1 pmol quercetin/ pmol P450/min, respectively. Substrate dockings and sequence alignments revealed that the positively charged amino acids His107 and Lys217 and the carbonyl group of the backbone between Leu302 and Ala303 are essential for quercetin orientation in the CYP6AS3 catalytic site and its efficient metabolism. Multiple replacements in the catalytic site of CYP6AS4 and CYP6AS10 and repositioning of the quercetin molecule likely account for the lower metabolic activities of CYP6AS4 and CYP6AS10 compared to CYP6AS1 and CYP6AS3.

  12. The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera.

    PubMed

    Rangberg, A; Mathiesen, G; Amdam, G V; Diep, D B

    2015-01-01

    The honey bee (Apis mellifera) is a domestic insect of high value to human societies, as a crop pollinator in agriculture and a model animal in scientific research. The honey bee, however, has experienced massive mortality worldwide due to the phenomenon Colony Collapse Disorder (CCD), resulting in alarming prospects for crop failure in Europe and the USA. The reasons for CCD are complex and much debated, but several honey bee pathogens are believed to be involved. Paratransgenesis is a Trojan horse strategy, where endogenous microorganisms are used to express effector molecules that antagonise pathogen development. For use in honey bees, paratransgenesis must rely on a set of criteria that the candidate paratransgenic microorganism must fulfil in order to obtain a successful outcome: (1) the candidate must be genetically modifiable to express effector molecules; (2) the modified organism should have no adverse effects on honey bee health upon reintroduction; and (3) it must survive together with other non-pathogenic bee-associated microorganisms. Lactic acid bacteria (LAB) are common gut bacteria in vertebrates and invertebrates, and some have naturally beneficial properties in their host. In the present work we aimed to find a potential paratransgenic candidate within this bacterial group for use in honey bees. Among isolated LAB associated with bee gut microbiota, we found the fructophilic Lactobacillus kunkeei to be the most predominant species during foraging seasons. Four genetically different strains of L. kunkeei were selected for further assessment. We demonstrated (1) that L. kunkeei is transformable; (2) that the transformed cells had no obvious adverse effect on honey bee survival; and (3) that transformed cells survived well in the gut environment of bees upon reintroduction. Our study demonstrates that L. kunkeei fulfils the three criteria for paratransgenesis and can be a suitable candidate for further research on this strategy in honey bees.

  13. A Mathematical Model of Intra-Colony Spread of American Foulbrood in European Honeybees (Apis mellifera L.)

    PubMed Central

    Jatulan, Eduardo O.; Rabajante, Jomar F.; Banaay, Charina Gracia B.; Fajardo, Alejandro C.; Jose, Editha C.

    2015-01-01

    American foulbrood (AFB) is one of the severe infectious diseases of European honeybees (Apis mellifera L.) and other Apis species. This disease is caused by a gram-positive, spore-forming bacterium Paenibacillus larvae. In this paper, a compartmental (SI framework) model is constructed to represent the spread of AFB within a colony. The model is analyzed to determine the long-term fate of the colony once exposed to AFB spores. It was found out that without effective and efficient treatment, AFB infection eventually leads to colony collapse. Furthermore, infection thresholds were predicted based on the stability of the equilibrium states. The number of infected cell combs is one of the factors that drive disease spread. Our results can be used to forecast the transmission timeline of AFB infection and to evaluate the control strategies for minimizing a possible epidemic. PMID:26674357

  14. Vitellogenins Are New High Molecular Weight Components and Allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris Venom

    PubMed Central

    Blank, Simon; Seismann, Henning; McIntyre, Mareike; Ollert, Markus; Wolf, Sara; Bantleon, Frank I.; Spillner, Edzard

    2013-01-01

    Background/Objectives Anaphylaxis due to hymenoptera stings is one of the most severe clinical outcomes of IgE-mediated hypersensitivity reactions. Although allergic reactions to hymenoptera stings are often considered as a general model for the underlying principles of allergic disease, venom immunotherapy is still hampered by severe systemic side effects and incomplete protection. The identification and detailed characterization of all allergens of hymenoptera venoms might result in an improvement in this field and promote the detailed understanding of the allergological mechanism. Our aim was the identification and detailed immunochemical and allergological characterization of the low abundant IgE-reactive 200 kDa proteins of Apis mellifera and Vespula vulgaris venom. Methods/Principal Findings Tandem mass spectrometry-based sequencing of a 200 kDa venom protein yielded peptides that could be assigned to honeybee vitellogenin. The coding regions of the honeybee protein as well as of the homologue from yellow jacket venom were cloned from venom gland cDNA. The newly identified 200 kDa proteins share a sequence identity on protein level of 40% and belong to the family of vitellogenins, present in all oviparous animals, and are the first vitellogenins identified as components of venom. Both vitellogenins could be recombinantly produced as soluble proteins in insect cells and assessed for their specific IgE reactivity. The particular vitellogenins were recognized by approximately 40% of sera of venom-allergic patients even in the absence of cross-reactive carbohydrate determinants. Conclusion With the vitellogenins of Apis mellifera and Vespula vulgaris venom a new homologous pair of venom allergens was identified and becomes available for future applications. Due to their allergenic properties the honeybee and the yellow jacket venom vitellogenin were designated as allergens Api m 12 and Ves v 6, respectively. PMID:23626765

  15. A scientific note on the lactic acid bacterial flora within the honeybee subspecies Apis mellifera (Buckfast), A.m. scutellata, A.m. mellifera, and A.m. monticola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was discovered by Olofsson and Vásquez (2008) that a novel lactic acid bacteria (LAB) microbiota with numerous LAB, comprising the genera Lactobacillus and Bifidobacterium, live in a symbiotic relationship with honeybees (Apis mellifera) in their honey stomach. Previous results from 16S rRNA gene...

  16. Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults.

    PubMed

    Wang, Yuanyuan; Dai, Pingli; Chen, Xiuping; Romeis, Jörg; Shi, Jianrong; Peng, Yufa; Li, Yunhe

    2016-10-07

    Because of its ecological and economic importance, the honey bee Apis mellifera is commonly used to assess the environmental risk of insect-resistant, genetically modified plants. In the current laboratory study, feeding-exposure experiments were used to determine whether pollen from transgenic rice harms A. mellifera worker bee. In one experiment, the survival and mean acinus diameter of hypopharyngeal glands of adult bees were similar when bees were fed on pollen from Bt rice lines or from a non-Bt rice line, but bee survival was significantly reduced when they received pollen that was mixed with potassium arsenate as a positive control. In a second experiment, bee survival and hypopharyngeal gland development were not reduced when adult bees were fed on non-Bt pollen and a sucrose solution supplemented with Cry2A at 400 µg/g, Cry1C at 50 µg/g, or bovine serum albumin (BSA) at 400 µg/g diet, but bee survival and hypopharyngeal gland development were reduced when the diet was supplemented with soybean trypsin inhibitor (SBTI) as a positive control. In both experiments, the uptake of Cry proteins by adult bees was confirmed. Overall, the results indicate that the planting of Bt rice lines expressing Cry2A or Cry1C protein poses a negligible risk to A. mellifera worker bees. This article is protected by copyright. All rights reserved.

  17. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor.

    PubMed

    Strauss, Ursula; Dietemann, Vincent; Human, Hannelie; Crewe, Robin M; Pirk, Christian W W

    2016-03-01

    Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation.

  18. Large pathogen screening reveals first report of Megaselia scalaris (Diptera: Phoridae) parasitizing Apis mellifera intermissa (Hymenoptera: Apidae).

    PubMed

    Menail, Ahmed Hichem; Piot, Niels; Meeus, Ivan; Smagghe, Guy; Loucif-Ayad, Wahida

    2016-06-01

    As it is most likely that global warming will also lead to a shift in pollinator-habitats northwards, the study of southern species becomes more and more important. Pathogen screenings in subspecies of Apis mellifera capable of withstanding higher temperatures, provide an insight into future pathogen host interactions. Screenings in different climate regions also provide a global perspective on the prevalence of certain pathogens. In this project, we performed a pathogen screening in Apis mellifera intermissa, a native subspecies of Algeria in northern Africa. Colonies were sampled from different areas in the region of Annaba over a period of two years. Several pathogens were detected, among them Apicystis bombi, Crithidia mellificae, Nosema ceranae, Paenibacillus larvae, Lake Sinai Virus, Sacbrood Virus and Deformed Wing Virus (DWV). Our screening also revealed a phoroid fly, Megaselia scalaris, parasitizing honey bee colonies, which we report here for the first time. In addition, we found DWV to be present in the adult flies and replicating virus in the larval stages of the fly, which could indicate that M. scalaris acts as a vector of DWV.

  19. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation.

    PubMed

    Gómez-Moracho, T; Bartolomé, C; Bello, X; Martín-Hernández, R; Higes, M; Maside, X

    2015-04-01

    Nosema ceranae has been found infecting Apismellifera colonies with increasing frequency and it now represents a major threat to the health and long-term survival of these honeybees worldwide. However, so far little is known about the population genetics of this parasite. Here, we describe the patterns of genetic variation at three genomic loci in a collection of isolates from all over the world. Our main findings are: (i) the levels of genetic polymorphism (πS≈1%) do not vary significantly across its distribution range, (ii) there is substantial evidence for recombination among haplotypes, (iii) the best part of the observed genetic variance corresponds to differences within bee colonies (up to 88% of the total variance), (iv) parasites collected from Asian honeybees (Apis cerana and Apis florea) display significant differentiation from those obtained from Apismellifera (8-16% of the total variance, p<0.01) and (v) there is a significant excess of low frequency variants over neutral expectations among samples obtained from A. mellifera, but not from Asian honeybees. Overall these results are consistent with a recent colonization and rapid expansion of N. ceranae throughout A. mellifera colonies.

  20. Observations on the removal of brood inoculated with Tropilaelaps mercedesae (Mesostigmata: Laelapidae) and the mite’s reproductive success in Apis mellifera colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study assessed the response of Apis mellifera to brood deliberately infested with Tropilaelaps mercedesae. The reproductive success of T. mercedesae in mite-inoculated and naturally infested brood was also compared. The presence of T. mercedesae inside brood cells significantly affected brood ...

  1. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fermentation by fungi converts stored pollen into bee bread that is fed to and eaten by honey bee larvae, Apis mellifera. To explore the relationship between fungicide spraying and bee bread fungi, samples of bee bread collected from bee colonies pollinating orchards from seven locations over two y...

  2. Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake.

    PubMed Central

    Coles, J A; Orkand, R K

    1983-01-01

    Intracellular recordings were made in photoreceptors and glial cells (outer pigment cells) of the superfused cut head of the honey-bee drone (Apis mellifera male). When the [K+] in the superfusate was abruptly increased from 3.2 mM to 17.9 mM both photoreceptors and glial cells depolarized. The time course of the depolarization of the photoreceptors was slower with increasing depth from the surface. Half time of depolarization was plotted against depth: this graph was compatible with the arrival of K+ being exclusively by diffusion through the extracellular clefts. However, as we then showed, this interpretation is inadequate. The time course of depolarization of the glial cells was almost the same at all depths. This indicates that they are electrically coupled. Consequently, current-mediated K+ flux (spatial buffering) through glial cells will contribute to the transport of K+ through the tissue: K+ ions enter the glial syncytium in the region of high external potassium concentration, [K+]0, and an equivalent quantity of K+ ions leave in regions of low [K+]0. Intracellular K+ activity (aiK) was measured with double-barrelled K+-sensitive micro-electrodes in slices of retina superfused on both faces. When [K+] in the superfusate was increased from 7.5 mM to 17.9 mM an increase in aiK was observed in glial cells at all depths in the slice (initial rate 1.7 mM min-1, S.E. of the mean = 0.2 mM min-1), but there was little increase in the photoreceptors (0.3 +/- 0.2 mM min-1). The increase in aiK in glial cells near the centre of the slice could not have been caused by spatial buffering; it presumably resulted from net uptake. We conclude that when [K+] is increased at the surface of this tissue, the build up of K+ in the extracellular clefts depends on extracellular diffusion, spatial buffering and net uptake. The latter two processes, which have opposing effects, involve about 10 times as much K+ as the first. This is in rough agreement with less direct experiments

  3. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels.

    PubMed

    Cens, Thierry; Rousset, Matthieu; Collet, Claude; Charreton, Mercedes; Garnery, Lionel; Le Conte, Yves; Chahine, Mohamed; Sandoz, Jean-Christophe; Charnet, Pierre

    2015-03-01

    Voltage-gated Ca(2+) channels allow the influx of Ca(2+) ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca(2+) transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca(2+) channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca(2+) channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca(2+) channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca(2+) channels.

  4. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions

    PubMed Central

    Koo, Hyun-Na; Lee, Soon-Gyu; Yun, Seung-Hwan; Kim, Hyun Kyung; Choi, Yong Soo; Kim, Gil-Hah

    2016-01-01

    This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4°C) or heat (37°C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress. PMID:26798140

  5. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions.

    PubMed

    Koo, Hyun-Na; Lee, Soon-Gyu; Yun, Seung-Hwan; Kim, Hyun Kyung; Choi, Yong Soo; Kim, Gil-Hah

    2016-01-01

    This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4 °C) or heat (37 °C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress.

  6. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera)

    PubMed Central

    Dynes, Travis L.; De Roode, Jacobus C.; Lyons, Justine I.; Berry, Jennifer A.; Delaplane, Keith S.; Brosi, Berry J.

    2016-01-01

    Varroa destructor is an obligate ectoparasitic mite and the most important biotic threat currently facing honey bees (Apis mellifera). We used neutral microsatellites to analyze previously unreported fine scale population structure of V. destructor, a species characterized by extreme lack of genetic diversity owing to multiple bottleneck events, haplodiploidy, and primarily brother-sister matings. Our results surprisingly indicate that detectable hierarchical genetic variation exists between apiaries, between colonies within an apiary, and even within colonies. This finding of within-colony parasite diversity provides empirical evidence that the spread of V. destructor is not accomplished solely by vertical transmission but that horizontal transmission (natural or human-mediated) must occur regularly. PMID:27812229

  7. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    PubMed

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.

  8. The total protein content, protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.

    PubMed

    Zółtowska, Krystyna; Lipiński, Zbigniew; Dmitryjuk, Małgorzata

    2005-01-01

    The proteins level and activities of acid and alkaline proteases in whole body extracts of drone prepupae of Apis mellifera naturally infested with Varroa destructor were studied. The infested and a non-infested group did not differ significantly in their total protein content. However, some differences in protein profiles were found. A lack of three protein fractions of moderate and lower molecular weight in infested prepupae was noted. Moreover, some differences in the quantity of protein in most of the fractions were observed. The activity of acid proteases from infested prepupae was lower (p < 0.05) compared with the activity of these proteases from the non-infested one group. The infested drone had higher activity of alkaline proteases than non-infested but this difference was not statisticaly significant.

  9. Purification and properties of a very high density lipoprotein from the hemolymph of the honeybee Apis mellifera.

    PubMed

    Shipman, B A; Ryan, R O; Schmidt, J O; Law, J H

    1987-04-07

    A larval-specific very high density lipoprotein (VHDL) has been isolated from the hemolymph of the honeybee Apis mellifera. VHDL was isolated by a combination of density gradient ultracentrifugation and gel filtration. The purified protein is a dimer of Mr 160,000 apoproteins as shown by chemical cross-linking with dimethyl suberimidate. N-Terminal sequence analysis indicates that the two polypeptide chains are identical. The holoprotein contains 10% lipid by weight and 2.6% covalently bound carbohydrate. A native Mr 330,000 species was obtained by gel permeation chromatography. Antiserum directed against VHDL was used to show that VHDL is distinct from other hemolymph proteins and appears to constitute a novel lipoprotein of unknown function. However, the lipoprotein is present in high amounts in hemolymph only at the end of larval life, suggesting a potential role in lipid transport and/or storage protein metabolism during metamorphosis.

  10. Residues of Pesticides in honeybee (Apis mellifera carnica) bee bread and in pollen loads from treated apple orchards.

    PubMed

    Smodis Skerl, Maja Ivana; Velikonja Bolta, Spela; Basa Cesnik, Helena; Gregorc, Ales

    2009-09-01

    Honey bee (Apis mellifera carnica) colonies were placed in two apple orchards treated with the insecticides diazinon and thiacloprid and the fungicide difenoconazole in accordance with a Protection Treatment Plan in the spring of 2007. Pollen and bee bread were collected from combs inside the hives. The residue of diazinon in pollen loads 10 days after orchard treatment was 0.09 mg/kg, and the same amount of residue was found in bee bread 16 days after treatment. In pollen loads 6 days after application 0.03 mg/kg of thiacloprid residues and 0.01 mg/kg of difenoconazole were found on the first day after application. Possible sub-lethal effects on individual honey bees and brood are discussed.

  11. Experimental evaluation of the reproductive quality of Africanized queen bees (Apis mellifera) on the basis of body weight at emergence.

    PubMed

    De Souza, D A; Bezzera-Laure, M A F; Francoy, T M; Gonçalves, L S

    2013-11-07

    There has been much speculation about which phenotypic traits serve as reliable indicators of productivity in queen honeybees (Apis mellifera). To investigate the predictive value of queen body weight on colony development and quality, we compared colonies in which queens weighed less than 180 mg to those in which queens weighed more than 200 mg. Both groups contained naturally mated and instrumentally inseminated queens. Colonies were evaluated on the basis of performance quality, growth rate, and queen longevity. We found that queen body weight was significantly correlated with fecundity and colony quality. Heavy queens exhibited the most favorable performance and colony quality. In contrast, naturally mated, with the opposite trend being obtained for light-weight queens. We found no statistically significant difference between instrumentally inseminated queens and naturally mated queens. Our results support the use of queen body weight as a reliable visual (physiological) indicator of potential colony productivity in honey bees to enhance genetic lines in genetic improvement programs.

  12. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France.

    PubMed

    Chauzat, Marie-Pierre; Martel, Anne-Claire; Cougoule, Nicolas; Porta, Philippe; Lachaize, Julie; Zeggane, Sarah; Aubert, Michel; Carpentier, Patrice; Faucon, Jean-Paul

    2011-01-01

    The frequency of occurrence and relative concentration of 44 pesticides in apicultural (Apis mellifera) matrices collected from five French locations (24 apiaries) were assessed from 2002 to 2005. The number and nature of the pesticides investigated varied with the matrices examined-living honeybees, pollen loads, honey, and beeswax. Pollen loads and beeswax had the highest frequency of pesticide occurrence among the apiary matrices examined in the present study, whereas honey samples had the lowest. The imidacloprid group and the fipronil group were detected in sufficient amounts in all matrices to allow statistical comparisons. Some seasonal variation was shown when residues were identified in pollen loads. Given the results (highest frequency of presence) and practical aspects (easy to collect; matrix with no turnover, unlike with bees that are naturally renewed), pollen loads were the best matrix for assessing the presence of pesticide residues in the environment in our given conditions.

  13. Virgin queen mandibular gland signals of Apis mellifera capensis change with age and affect honeybee worker responses.

    PubMed

    Wossler, Theresa C; Jones, Georgina E; Allsopp, Michael H; Hepburn, Randall

    2006-05-01

    The mandibular gland secretions of Apis mellifera capensis virgin queens were analyzed by gas chromatography-mass spectroscopy. Changes in the patterns of the mandibular gland volatiles of A. m. capensis virgin queens were followed from emergence until 14-d old. Ontogenetic changes in the mandibular gland secretions were largely quantitative in nature, delineating the age categories (global R = 0.612, P = 0.001), except for 7- and 14-d-old queens, which cannot be separated on their mandibular gland profiles (P = 0.2). (E)-9-Oxodec-2-enoic acid (9ODA) contributes most and most consistently to the dissimilarity between groups as well as the similarity within groups. Worker reactions to introduced virgin queens of various ages were recorded. Workers showed a significant increase in hostile reactions as queens aged (r = 0.615, N = 20, P < 0.05). Consequently, worker reactions and relative 9ODA production exhibit a positive queen age-dependent response.

  14. Mitochondrial DNA diversity of honey bees (Apis mellifera) from unmanaged colonies and swarms in the United States.

    PubMed

    Magnus, Roxane M; Tripodi, Amber D; Szalanski, Allen L

    2014-06-01

    To study the genetic diversity of honey bees (Apis mellifera L.) from unmanaged colonies in the United States, we sequenced a portion of the mitochondrial DNA COI-COII region. From the 530 to 1,230 bp amplicon, we observed 23 haplotypes from 247 samples collected from 12 states, representing three of the four A. mellifera lineages known to have been imported into the United States (C, M, and O). Six of the 13 C lineage haplotypes were not found in previous queen breeder studies in the United States. The O lineage accounted for 9% of unmanaged colonies which have not yet been reported in queen breeder studies. The M lineage accounted for a larger portion of unmanaged samples (7%) than queen breeder samples (3%). Based on our mitochondrial DNA data, the genetic diversity of unmanaged honey bees in the United States differs significantly from that of queen breeder populations (p < 0.00001). The detection of genetically distinct maternal lineages of unmanaged honey bees suggests that these haplotypes may have existed outside the managed honey bee population for a long period.

  15. Differential Flight Muscle Development in Workers, Queens and Males of the Eusocial Bees, Apis mellifera and Scaptotrigona postica

    PubMed Central

    Correa-Fernandez, Fernanda; Cruz-Landim, Carminda

    2010-01-01

    The flight capability of the adult eusocial bees, Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae), is intrinsically linked to their colonial functions, such as the nuptial flight for mating in the case of queens and males, and the exploration of new habitats for nesting and food sources in the case of workers. Flight is achieved by the contraction of indirect flight muscles that produce changes in thoracic volume and, therefore, wing movement. The purpose of this work is to examine possible differences in muscle development that may be associated with the flying activity of individuals in a given life stage considering the behavioral and physiological differences among the stages and between the two species studied. Measurements of the muscle fibers obtained from light microscopy preparations of muscle were submitted to statistical analysis in order to detect the differences at a given time, or throughout the life of the individual. The results show that muscle morphology is similar in both species, but in A. mellifera the muscle fibers are thicker and more numerous than in S. postica. Differences in the fiber thickness according to life stage in all classes of individuals of both species were detected. These results are discussed in relation to the need for flying in each life stage. PMID:20673070

  16. Abundance of phosphorylated Apis mellifera CREB in the honeybee's mushroom body inner compact cells varies with age.

    PubMed

    Gehring, Katrin B; Heufelder, Karin; Kersting, Isabella; Eisenhardt, Dorothea

    2016-04-15

    Hymenopteran eusociality has been proposed to be associated with the activity of the transcription factor CREB (cAMP-response element binding protein). The honeybee (Apis mellifera) is a eusocial insect displaying a pronounced age-dependent division of labor. In honeybee brains, CREB-dependent genes are regulated in an age-dependent manner, indicating that there might be a role for neuronal honeybee CREB (Apis mellifera CREB, or AmCREB) in the bee's division of labor. In this study, we further explore this hypothesis by asking where in the honeybee brain AmCREB-dependent processes might take place and whether they vary with age in these brain regions. CREB is activated following phosphorylation at a conserved serine residue. An increase of phosphorylated CREB is therefore regarded as an indicator of CREB-dependent transcriptional activation. Thus, we here examine the localization of phosphorylated AmCREB (pAmCREB) in the brain and its age-dependent variability. We report prominent pAmCREB staining in a subpopulation of intrinsic neurons of the mushroom bodies. In these neurons, the inner compact cells (IC), pAmCREB is located in the nuclei, axons, and dendrites. In the central bee brain, the IC somata and their dendritic region, we observed an age-dependent increase of pAmCREB. Our results demonstrate the IC to be candidate neurons involved in age-dependent division of labor. We hypothesize that the IC display a high level of CREB-dependent transcription that might be related to neuronal and behavioral plasticity underlying a bee's foraging behavior.

  17. Performance evaluation of indigenous and exotic honey bee (Apis mellifera L.) races in Assir region, southwestern Saudi Arabia.

    PubMed

    Alqarni, Abdulaziz S; Balhareth, Hassan M; Owayss, Ayman A

    2014-07-01

    This study was conducted in the Assir region of southwestern Saudi Arabia to compare the activities of honeybee colonies of indigenous Apis mellifera jemenitica (AMJ) and imported Apis mellifera carnica (AMC) during the late summer and autumn of 2009 and 2010. The results showed that the workers of the two races exhibited relatively similar forage timings throughout the period of study (August-November). The highest numbers of foraged workers were recorded at 6:00 am, 10:00 am and 6:00 pm, while the lowest numbers were recorded at 8:00 am, 12:00 pm and 4:00 pm. Although foraging activity was negatively affected by decreased temperature, AMJ was more resistant to cold than AMC. In the first season, the smallest amount of worker brood rearing was recorded in August, and the highest amount of rearing occurred in November in both races. In the second season, the smallest amount of brood was observed in October, and the largest amount of brood was observed in November. Brood rearing and pollen collecting was significantly (P < 0.05) higher in AMJ compared with AMC, while AMC stored significantly (P < 0.05) more honey than AMJ during the tested periods. In AMJ colonies, a positive significant correlation was observed between the area of the sealed worker brood and stored pollen, while a negative but nonsignificant correlation was observed between the area of the sealed worker brood and surplus honey. In the AMC colonies, a positive significant correlation was observed between the area of the sealed brood and the stored pollen and surplus honey.

  18. Performance evaluation of indigenous and exotic honey bee (Apis mellifera L.) races in Assir region, southwestern Saudi Arabia

    PubMed Central

    Alqarni, Abdulaziz S.; Balhareth, Hassan M.; Owayss, Ayman A.

    2013-01-01

    This study was conducted in the Assir region of southwestern Saudi Arabia to compare the activities of honeybee colonies of indigenous Apis mellifera jemenitica (AMJ) and imported Apis mellifera carnica (AMC) during the late summer and autumn of 2009 and 2010. The results showed that the workers of the two races exhibited relatively similar forage timings throughout the period of study (August–November). The highest numbers of foraged workers were recorded at 6:00 am, 10:00 am and 6:00 pm, while the lowest numbers were recorded at 8:00 am, 12:00 pm and 4:00 pm. Although foraging activity was negatively affected by decreased temperature, AMJ was more resistant to cold than AMC. In the first season, the smallest amount of worker brood rearing was recorded in August, and the highest amount of rearing occurred in November in both races. In the second season, the smallest amount of brood was observed in October, and the largest amount of brood was observed in November. Brood rearing and pollen collecting was significantly (P < 0.05) higher in AMJ compared with AMC, while AMC stored significantly (P < 0.05) more honey than AMJ during the tested periods. In AMJ colonies, a positive significant correlation was observed between the area of the sealed worker brood and stored pollen, while a negative but nonsignificant correlation was observed between the area of the sealed worker brood and surplus honey. In the AMC colonies, a positive significant correlation was observed between the area of the sealed brood and the stored pollen and surplus honey. PMID:24955011

  19. Influence of Apis mellifera L. (Hymenoptera: Apidae) on the Use of the Most Abundant and Attractive Floral Resources in a Plant Community.

    PubMed

    Polatto, L P; Chaud-Netto, J

    2013-12-01

    Some factors influence the distribution of abundance of floral visitors, especially the amount and quality of the floral resources available, the size of the area occupied by the visitor, habitat heterogeneity, and the impact caused by natural enemies and introduced species. The objective of this research was to evaluate the distribution of abundance of the foraging activity of native floral visitors and Apis mellifera L. in the most abundant and attractive food sources in a secondary forest fragment with features of Cerrado-Atlantic Forest. Some plant species were selected and the frequency of foraging made by floral visitors was recorded. A high abundance of visits in flowers was performed by A. mellifera. Two factors may have influenced this result: (1) the occupation of the forest fragment predominantly by vines and shrubs at the expenses of vegetation with arboreal characteristics that favored the encounter of the flowering plants by A. mellifera; (2) rational beekeeping of A. mellifera, causing the number of natural swarms which originate annually from colonies of commercial apiaries and colonies previously established in the environment to be very high, thus leading to an increase in the population size of this bee species in the study site. The frequent occurrence of human-induced fire and deforestation within the forest fragment may have reduced the population size of the bee species, including A. mellifera. As the populations of A. mellifera have the capacity to quickly occupy the environment, this species possibly became dominant after successive disturbances made in the forest fragment.

  20. Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of Tropilaelaps mercedesae and Varroa destructor in concurrently infested A. mellifera colonies in Thailand was monitored. We also assessed the fecundity of T. mercedesae and V. destructor in naturally infested brood and in brood cells deliberately infested with both mite genera. Resu...

  1. Tropilaelaps mercedesae and Varroa destructor: prevalence and reproduction in concurrently infested Apis mellifera colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of Tropilaelaps mercedesae and Varroa destructor in concurrently infested A. mellifera colonies in Thailand was monitored. We also assessed the reproductive ability of T. mercedesae and V. destructor in naturally infested brood and in brood cells deliberately infested with both mite g...

  2. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.

    PubMed

    da Silva Cruz, Aline; da Silva-Zacarin, Elaine C M; Bueno, Odair C; Malaspina, Osmar

    2010-04-01

    Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 microg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.

  3. Risk assessment of various insecticides used for management of Asian citrus psyllid, Diaphorina citri in Florida citrus, against honey bee, Apis mellifera.

    PubMed

    Chen, Xue Dong; Gill, Torrence A; Pelz-Stelinski, Kirsten S; Stelinski, Lukasz L

    2017-01-23

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of citrus trees worldwide. A wide variety of insecticides are used to manage D. citri populations within citrus groves in Florida. However, in areas shared by citrus growers and beekeepers the use of insecticides may increase the risks of Apis mellifera  L. (Hymenoptera: Apidae) loss and contaminated honey. The objective of this research was to determine the environmental toxicity of insecticides, spanning five different modes of action used to control D. citri, to A. mellifera. The insecticides investigated were imidacloprid, fenpropathrin, dimethoate, spinetoram and diflubenzuron. In laboratory experiments, LD50 values were determined and ranged from 0.10 to 0.53 ng/μl for imidacloprid, fenpropathrin, dimethoate and spinetoram. LD50 values for diflubenzuron were >1000 ng/μl. Also, a hazard quotient was determined and ranged from 1130.43 to 10893.27 for imidacloprid, fenpropathrin, dimethoate, and spinetoram. This quotient was <0.447 for diflubenzuron. In field experiments, residual activity of fenpropathrin and dimethoate applied to citrus caused significant mortality of A. mellifera 3 and 7 days after application. Spinetoram and imidacloprid were moderately toxic to A. mellifera at the recommended rates for D. citri. Diflubenzuron was not toxic to A. mellifera in the field as compared with untreated control plots. Phenoloxidase (PO) activity of A. mellifera was higher than in untreated controls when A. mellifera were exposed to 14 days old residues. The results indicate that diflubenzuron may be safe to apply in citrus when A. mellifera are foraging, while most insecticides used for management of D. citri in citrus are likely hazardous under various exposure scenarios.

  4. Ties between ageing plasticity and reproductive physiology in honey bees (Apis mellifera) reveal a positive relation between fecundity and longevity as consequence of advanced social evolution.

    PubMed

    Rueppell, Olav; Aumer, Denise; Moritz, Robin Fa

    2016-08-01

    Honey bees (Apis mellifera) are the best studied model of ageing among the social insects. As in other social insects, the reproductive queen far outlives her non-reproductive workers despite developing from the same genome in the same colony environment. Thus, the different social roles of the two female castes are critical for the profound phenotypic plasticity. In several special cases, such as the reproductive workers of Apis mellifera capensis, within-caste plasticity enables further studies of the fecundity-longevity syndrome in honey bees. At present, molecular evidence suggests that a reorganization of physiological control pathways may facilitate longevity of reproductive individuals. However, the social role and social environment of the different colony members are also very important and one of the key future questions is how much social facilitation versus internal regulation is responsible for the positive association between fecundity and longevity in honey bees.

  5. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    PubMed

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-04

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  6. Toxicological, Biochemical, and Histopathological Analyses Demonstrating That Cry1C and Cry2A Are Not Toxic to Larvae of the Honeybee, Apis mellifera.

    PubMed

    Wang, Yuan-Yuan; Li, Yun-He; Huang, Zachary Y; Chen, Xiu-Ping; Romeis, Jörg; Dai, Ping-Li; Peng, Yu-Fa

    2015-07-15

    The honey bee, Apis mellifera, is commonly used as a test species for the regulatory risk assessment of insect-resistant genetically engineered (IRGE) plants. In the current study, a dietary exposure assay was developed, validated, and used to assess the potential toxicity of Cry1C and Cry2A proteins from Bacillus thuringiensis (Bt) to A. mellifera larvae; Cry1C and Cry2A are produced by different IRGE crops. The assay, which uses the soybean trypsin inhibitor (SBTI) as a positive control and bovine serum albumin (BSA) as a negative control, was used to measure the responses of A. mellifera larvae to high concentrations of Cry1C and Cry2A. Survival was reduced and development was delayed when larvae were fed SBTI (1 mg/g diet) but were unaffected when larvae were fed BSA (400 μg/g), Cry1C (50 μg/g), or Cry2A (400 μg/g). The enzymatic activities of A. mellifera larvae were not altered and their midgut brush border membranes (BBMs) were not damaged after being fed with diets containing BSA, Cry1C, or Cry2A; however, enzymatic activities were increased and BBMs were damaged when diets contained SBTI. The study confirms that Cry1C and Cry2A have no acute toxicity to A. mellifera larvae at concentrations >10 times higher than those detected in pollen from Bt plants.

  7. Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam.

    PubMed

    Badiou-Bénéteau, Alexandra; Carvalho, Stephan M; Brunet, Jean-Luc; Carvalho, Geraldo A; Buleté, Audrey; Giroud, Barbara; Belzunces, Luc P

    2012-08-01

    This study describes the development of acetylcholinesterase (AChE), carboxylesterases (CaE1, CaE2, CaE3), glutathion-S-transferase (GST), alkaline phosphatase (ALP) and catalase (CAT) as enzyme biomarkers of exposure to xenobiotics such as thiamethoxam in the honey bee Apis mellifera. Extraction efficiency, stability under freezing and biological variability were studied. The extraction procedure achieved good recovery rates in one extraction step and ranged from 65 percent (AChE) to 97.3 percent (GST). Most of the enzymes were stable at -20°C, except ALP that displayed a slight but progressive decrease in its activity. Modifications of enzyme activities were considered after exposure to thiamethoxam at the lethal dose 50 percent (LD(50), 51.16 ng bee(-1)) and two sublethal doses, LD(50)/10 (5.12 ng bee(-1)) and LD(50)/20 (2.56 ng bee(-1)). The biomarker responses revealed that, even at the lowest dose used, exposure to thiamethoxam elicited sublethal effects and modified the activity of CaEs, GST, CAT and ALP. Different patterns of biomarker responses were observed: no response for AChE, an increase for GST and CAT, and differential effects for CaEs isoforms with a decrease in CaE1 and CaE3 and an increase in CaE2. ALP and CaE3 displayed contrasting variations but only at 2.56 ng bee(-1). We consider that this profile of biomarker variation could represent a useful fingerprint to characterise exposure to thiamethoxam in the honey bee A. mellifera. This battery of honey bee biomarkers might be a promising option to biomonitor the health of aerial and terrestrial ecosystems and to generate valuable information on the modes of action of pesticides.

  8. Next generation sequencing of Apis mellifera syriaca identifies genes for Varroa resistance and beneficial bee keeping traits.

    PubMed

    Haddad, Nizar; Mahmud Batainh, Ahmed; Suleiman Migdadi, Osama; Saini, Deepti; Krishnamurthy, Venkatesh; Parameswaran, Sriram; Alhamuri, Zaid

    2016-08-01

    Apis mellifera syriaca exhibits a high degree of tolerance to pests and pathogens including varroa mites. This native honey bee subspecies of Jordan expresses behavioral adaptations to high temperature and dry seasons typical of the region. However, persistent honey bee imports of commercial breeder lines are endangering local honey bee population. This study reports the use of next-generation sequencing (NGS) technology to study the A. m. syriaca genome and to identify genetic factors possibly contributing toward mite resistance and other favorable traits. We obtained a total of 46.2 million raw reads by applying the NGS to sequence A. m. syriaca and used extensive bioinformatics approach to identify several candidate genes for Varroa mite resistance, behavioral and immune responses characteristic for these bees. As a part of characterizing the functional regulation of molecular genetic pathway, we have mapped the pathway genes potentially involved using information from Drosophila melanogaster and present possible functional changes implicated in responses to Varroa destructor mite infestation toward this. We performed in-depth functional annotation methods to identify ∼600 candidates that are relevant, genes involved in pathways such as microbial recognition and phagocytosis, peptidoglycan recognition protein family, Gram negative binding protein family, phagocytosis receptors, serpins, Toll signaling pathway, Imd pathway, Tnf, JAK-STAT and MAPK pathway, heamatopioesis and cellular response pathways, antiviral, RNAi pathway, stress factors, etc. were selected. Finally, we have cataloged function-specific polymorphisms between A. mellifera and A. m. syriaca that could give better understanding of varroa mite resistance mechanisms and assist in breeding. We have identified immune related embryonic development (Cactus, Relish, dorsal, Ank2, baz), Varroa hygiene (NorpA2, Zasp, LanA, gasp, impl3) and Varroa resistance (Pug, pcmt, elk, elf3-s10, Dscam2, Dhc64C, gro

  9. Evaluation of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee (Apis mellifera) Populations in East Africa

    PubMed Central

    Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina

    2014-01-01

    In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations. PMID:24740399

  10. Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa.

    PubMed

    Muli, Elliud; Patch, Harland; Frazier, Maryann; Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina

    2014-01-01

    In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.

  11. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt.

    PubMed

    Al Naggar, Yahya; Codling, Garry; Vogt, Anja; Naiem, Elsaied; Mona, Mohamed; Seif, Amal; Giesy, John P

    2015-04-01

    There is no clear single factor to date that explains colony loss in bees, but one factor proposed is the wide-spread application of agrochemicals. Concentrations of 14 organophosphorous insecticides (OPs) in honey bees (Apis mellifera) and hive matrices (honey and pollen) were measured to assess their hazard to honey bees. Samples were collected during spring and summer of 2013, from 5 provinces in the middle delta of Egypt. LC/MS-MS was used to identify and quantify individual OPs by use of a modified Quick Easy Cheap Effective Rugged Safe (QuEChERS) method. Pesticides were detected more frequently in samples collected during summer. Pollen contained the greatest concentrations of OPs. Profenofos, chlorpyrifos, malation and diazinon were the most frequently detected OPs. In contrast, ethoprop, phorate, coumaphos and chlorpyrifos-oxon were not detected. A toxic units approach, with lethality as the endpoint was used in an additive model to assess the cumulative potential for adverse effects posed by OPs. Hazard quotients (HQs) in honey and pollen ranged from 0.01-0.05 during spring and from 0.02-0.08 during summer, respectively. HQs based on lethality due to direct exposure of adult worker bees to OPs during spring and summer ranged from 0.04 to 0.1 for best and worst case respectively. It is concluded that direct exposure and/or dietary exposure to OPs in honey and pollen pose little threat due to lethality of bees in Egypt.

  12. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees.

    PubMed

    Gregorc, Ales; Silva-Zacarin, Elaine C M; Carvalho, Stephan Malfitano; Kramberger, Doris; Teixeira, Erica W; Malaspina, Osmar

    2016-03-01

    Multiple stressors, such as chemicals and pathogens, are likely to be detrimental for the health and lifespan of Apis mellifera, a bee species frequently exposed to both factors in the field and inside hives. The main objective of the present study was to evaluate comparatively the health of Carniolan and Africanized honey bees (AHB) co-exposed to thiamethoxam and Nosema ceranae (N. ceranae) spores. Newly-emerged worker honey bees were exposed solely with different sublethal doses of thiamethoxam (2% and 0.2% of LD50 for AHB), which could be consumed by bees under field conditions. Toxicity tests for the Carniolan bees were performed, and the LD50 of thiamethoxam for Carniolan honey bees was 7.86 ng bee(-1). Immunohistological analyses were also performed to detect cell death in the midgut of thiamethoxam and/or N. ceranae treated bees. Thiamethoxam exposure had no negative impact on Nosema development in experimental conditions, but it clearly inhibited cell death in the midgut of thiamethoxam and Nosema-exposed bees, as demonstrated by immunohistochemical data. Indeed, thiamethoxam exposure only had a minor synergistic toxic effect on midgut tissue when applied as a low dose simultaneously with N. ceranae to AHB and Carniolan honey bees, in comparison with the effect caused by both stressors separately. Our data provides insights into the effects of the neonicotenoid thiamethoxam on the AHB and Carniolan honey bee life span, as well as the effects of simultaneous application of thiamethoxam and N. ceranae spores to honey bees.

  13. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment.

  14. Accelerated behavioural development changes fine-scale search behaviour and spatial memory in honey bees (Apis mellifera L.).

    PubMed

    Ushitani, Tomokazu; Perry, Clint J; Cheng, Ken; Barron, Andrew B

    2016-02-01

    Normally, worker honey bees (Apis mellifera) begin foraging when more than 2 weeks old as adults, but if individual bees or the colony is stressed, bees often begin foraging precociously. Here, we examined whether bees that accelerated their behavioural development to begin foraging precociously differed from normal-aged foragers in cognitive performance. We used a social manipulation to generate precocious foragers from small experimental colonies and tested their performance in a free-flight visual reversal learning task, and a test of spatial memory. To assess spatial memory, bees were trained to learn the location of a small sucrose feeder within an array of three landmarks. In tests, the feeder and one landmark were removed and the search behaviour of the bees was recorded. Performance of precocious and normal-aged foragers did not differ in a visual reversal learning task, but the two groups showed a clear difference in spatial memory. Flight behaviour suggested normal-aged foragers were better able to infer the position of the removed landmark and feeder relative to the remaining landmarks than precocious foragers. Previous studies have documented the cognitive decline of old foragers, but this is the first suggestion of a cognitive deficit in young foragers. These data imply that worker honey bees continue their cognitive development during the adult stage. These findings may also help to explain why precocious foragers perform quite poorly as foragers and have a higher than normal loss rate.

  15. Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada.

    PubMed

    Codling, Garry; Al Naggar, Yahya; Giesy, John P; Robertson, Albert J

    2016-02-01

    Neonicotinoid insecticides (NIs) and their transformation products were detected in honey, pollen and honey bees, (Apis mellifera) from hives located within 30 km of the City of Saskatoon, Saskatchewan, Canada. Clothianidin and thiamethoxam were the most frequently detected NIs, found in 68 and 75% of honey samples at mean concentrations of 8.2 and 17.2 ng g(-1) wet mass, (wm), respectively. Clothianidin was also found in >50% of samples of bees and pollen. Concentrations of clothianidin in bees exceed the LD50 in 2 of 28 samples, while for other NIs concentrations were typically 10-100-fold less than the oral LD50. Imidaclorpid was detected in ∼30% of samples of honey, but only 5% of pollen and concentrations were

  16. Diet and Cell Size Both Affect Queen-Worker Differentiation through DNA Methylation in Honey Bees (Apis mellifera, Apidae)

    PubMed Central

    Shi, Yuan Yuan; Huang, Zachary Y.; Zeng, Zhi Jiang; Wang, Zi Long; Wu, Xiao Bo; Yan, Wei Yu

    2011-01-01

    Background Young larvae of the honey bee (Apis mellifera) are totipotent; they can become either queens (reproductives) or workers (largely sterile helpers). DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation. Methodology/Principal Findings We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene dynactin p62; as well as morphological characteristics of adult bees developed either from larvae fed with worker jelly or royal jelly; and larvae raised in either queen or worker cells. We show that both diet type and cell size contributed to the queen-worker differentiation, and that the two factors affected different methylation sites inside the same gene dynactin p62. Conclusions/Significance We confirm previous findings that Dnmt3 plays a critical role in honey bee caste differentiation. Further, we show for the first time that cell size also plays a role in influencing larval development when diet is kept the same. PMID:21541319

  17. Histological Estimates of Ovariole Number in Honey Bee Queens, Apis mellifera, Reveal Lack of Correlation with other Queen Quality Measures

    PubMed Central

    Jackson, Jeffrey T.; Tarpy, David R.; Fahrbach, Susan E.

    2011-01-01

    Published estimates of the number of ovarioles found in the ovaries of honey bee, Apis mellifera L. (Hymenoptera: Apidae) queens range from 100 to 180 per ovary. Within the context of a large-scale study designed to assay the overall quality of queens obtained from various commercial sources, a simple histology-based method for accurate determination of ovariole number was developed and then applied to a sample of 75 queens. Although all 10 commercial sources evaluated provided queens with ovariole numbers within the expected range, ovariole number was found to vary significantly across sources. Overall, and within most of the individual samples, there was no correlation of ovariole number with other morphological attributes such as thoracic width, wing length, or wet weight. Queens from two of the sources, however, displayed a significant negative relationship between wet weight and ovariole number. This study provides baseline data on ovariole number in commercial honey bee queens in the United States at a time when honey bee populations are declining; the method described can be used in studies relating ovariole number in queens to egg production and behavior. PMID:21870968

  18. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil.

    PubMed

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 10(2) UFC.g(-1), there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases.

  19. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil

    PubMed Central

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 102 UFC.g−1, there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases. PMID:24516434

  20. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor.

    PubMed

    Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F A; Kraus, F B

    2011-12-01

    Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock.

  1. Mating frequencies of honey bee queens (Apis mellifera L.) in a population of feral colonies in the Northeastern United States.

    PubMed

    Tarpy, David R; Delaney, Deborah A; Seeley, Thomas D

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.

  2. Effects of seasonal variations and collection methods on the mineral composition of propolis from Apis mellifera Linnaeus Beehives.

    PubMed

    Souza, E A; Zaluski, R; Veiga, N; Orsi, R O

    2016-06-01

    The effects of seasonal variations and the methods of collection of propolis produced by Africanized honey bees Apis mellifera Linnaeus, 1758, on the composition of constituent minerals such as magnesium (Mg), zinc (Zn), iron (Fe), sodium (Na), calcium (Ca), copper (Cu), and potassium (K) were evaluated. Propolis was harvested from 25 beehives by scraping or by means of propolis collectors (screen, "intelligent" collector propolis [ICP], lateral opening of the super [LOS], and underlay method). During the one-year study, the propolis produced was harvested each month, ground, homogenized, and stored in a freezer at -10 ºC. Seasonal analyses of the mineral composition were carried out by atomic absorption spectrophotometry and the results were evaluated by analysis of variance (ANOVA), followed by Tukey-Kramer's test to compare the mean values (p<0.05). The results showed that seasonal variations influence the contents of 5 minerals (Mg, Fe, Na, Ca, and Cu), and the propolis harvesting method affects the contents of 4 minerals (Mg, Zn, Fe, and Ca).

  3. The nurse's load: early-life exposure to brood-rearing affects behavior and lifespan in honey bees (Apis mellifera).

    PubMed

    Amdam, Gro V; Rueppell, Olav; Fondrk, M Kim; Page, Robert E; Nelson, C Mindy

    2009-01-01

    Long-lived honey bees (Apis mellifera) develop in fall. This pattern may be explained by reduced nurse loads. When the amount of brood in colonies declines as a function of adverse foraging conditions, adult bees build up surplus nutrient stores that include vitellogenin, a behavioral affector protein that also can increase lifespan. Although the seasonal reduction in exposure to nursing tasks predictably results in vitellogenin accumulation, the assumption that long-lived adults thereby develop is confounded by a concomitant decline in foraging effort. Foraging activity reduces lifespan, and is influenced by colony resource consumption, brood pheromones, availability of nectar and pollen, and weather. Here, we perform the first controlled experiment where the nursing environment of pre-foraging sister bees was set to vary, while their foraging environment later was set to be the same. We measure vitellogenin, age at foraging onset and lifespan. We establish that reduced brood-rearing increases vitellogenin levels, and delays foraging onset and death. Longevity is largely explained by the effect of nursing on the onset of foraging behavior, but is also influenced by the level of brood-rearing independent of behavioral change. Our findings are consistent with the roles of vitellogenin in regulation of honey bee behavior and lifespan.

  4. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli.

    PubMed

    Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.

  5. Purification, crystallization and preliminary crystallographic analysis of the full-length cystathionine β-synthase from Apis mellifera

    PubMed Central

    Oyenarte, Iker; Majtan, Tomas; Ereño, June; Corral-Rodríguez, María Angeles; Klaudiny, Jaroslav; Majtan, Juraj; Kraus, Jan P.; Martínez-Cruz, Luis Alfonso

    2012-01-01

    Cystathionine β-synthase (CBS) is a pyridoxal-5′-phosphate-dependent enzyme that catalyzes the first step of the transsulfuration pathway, namely the condensation of serine with homocysteine to form cystathionine. Mutations in the CBS gene are the single most common cause of hereditary homocystinuria, a multisystemic disease affecting to various extents the vasculature, connective tissues and central nervous system. At present, the crystal structure of CBS from Drosophila melanogaster is the only available structure of the full-length enzyme. Here we describe a cloning, overexpression, purification and preliminary crystallographic analysis of a full-length CBS from Apis mellifera (AmCBS) which maintains 51 and 46% sequence identity with its Drosophila and human homologs, respectively. The AmCBS yielded crystals belonging to space group P212121, with unit-cell parameters a = 85.90, b = 95.87, c = 180.33 Å. Diffraction data were collected to a resolution of 3.0 Å. The crystal structure contained two molecules in the asymmetric unit which presumably correspond to the dimeric species observed in solution. PMID:23143241

  6. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.

    PubMed

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-12-31

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  7. Potential exposure of bees, Apis mellifera L., to particulate matter and pesticides derived from seed dressing during maize sowing.

    PubMed

    Pochi, Daniele; Biocca, Marcello; Fanigliulo, Roberto; Pulcini, Patrizio; Conte, Elisa

    2012-08-01

    This paper assessed the potential exposure of bees (Apis mellifera L.) to pesticides during maize (Zea mays L.) sowing with pneumatic drills. Data were derived from tests carried out in field tests, comparing two configurations of a pneumatic precision drill: conventional drill; drill with air deflectors. In addition, static tests simulating the sowing under controlled conditions, were performed on the drill equipped with an innovative system developed at CRA-ING. During the field tests, the concentrations in the air of the active ingredients of four insecticides used in maize seed dressing (imidacloprid, clothianidin, thiamethoxam and fipronil) were recorded. The concentrations of active ingredients in the air were used for assessing the quantities of active ingredients that a bee might intercept as it flies in a sort of virtual tunnel, the dimensions of which were dependent upon the bee body cross-section and the length of flight. The results of the field tests show that the air deflectors were not completely effective in reducing the amount of active ingredients dispersed in the air. The results of the static tests with drill equipped with the prototype indicated reductions of the active ingredient air concentrations ranging from 72 % up to 95 %, with reference to the conventional drill. Such ratios were applied to the amounts of active ingredients intercepted by the bees in the virtual tunnel contributing to a consistent reduction of the probability that sub-lethal effects can occur.

  8. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae)

    PubMed Central

    Jia, Hui-Ru; Geng, Li-Li; Li, Yun-He; Wang, Qiang; Diao, Qing-Yun; Zhou, Ting; Dai, Ping-Li

    2016-01-01

    The honey bee has been regarded as a key species in the environmental risk assessment of biotech crops. Here, the potential adverse effects of Cry1Ie toxin on the midgut bacteria of the worker bees (Apis mellifera ligustica) were investigated under laboratory conditions. Newly emerged bees were fed with different concentrations of Cry1Ie toxin syrups (20 ng/mL, 200 ng/mL, and 20 μg/mL), pure sugar syrup, and 48 ppb of imidacloprid syrups, then sampled after 15 and 30 d. We characterized the dominant midgut bacteria and compared the composition and structure of the midgut bacterial community in all samples using the Illumina MiSeq platform targeting the V3–V4 regions of 16S rDNA. No significant differences in the diversity of the midgut bacteria were observed between the five treatments. This work was the first to show the effects of Cry1Ie toxin on honey bees, and our study provided a theoretical basis for the biosafety assessment of transgenic Cry1Ie maize. PMID:27090812

  9. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites

    PubMed Central

    Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent

    2015-01-01

    Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies. PMID:26008705

  10. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes.

    PubMed

    Alptekin, S; Bass, C; Nicholls, C; Paine, M J I; Clark, S J; Field, L; Moores, G D

    2016-04-01

    Honey bees, Apis mellifera, are markedly less sensitive to neonicotinoid insecticides containing a cyanoimino pharmacophore than to those with a nitroimino group. Although previous work has suggested that this results from enhanced metabolism of the former by detoxification enzymes, the specific enzyme(s) involved remain to be characterized. In this work, a pretreatment of honey bees with a sublethal dose of thiacloprid resulted in induced insensitivity to the same compound immediately following thiacloprid feeding. A longer pretreatment time resulted in no, or increased, sensitivity. Transcriptome profiling, using microarrays, identified a number of genes encoding detoxification enzymes that were over-expressed significantly in insecticide-treated bees compared with untreated controls. These included five P450s, CYP6BE1, CYP305D1, CYP6AS5, CYP315A1, CYP301A1, and a carboxyl/cholinesterase (CCE) CCE8. Four of these P450s were functionally expressed in Escherichia coli and their ability to metabolize thiacloprid examined by liquid chromatography-mass spectrometry (LC-MS) analysis.

  11. Supplementing with vitamin C the diet of honeybees (Apis mellifera carnica) parasitized with Varroa destructor: effects on antioxidative status.

    PubMed

    Farjan, Marek; Łopieńska-Biernat, Elżbieta; Lipiński, Zbigniew; Dmitryjuk, Małgorzata; Żółtowska, Krystyna

    2014-05-01

    We studied a total of eight developmental stages of capped brood and newly emerged workers of Apis mellifera carnica colonies naturally parasitized with Varroa destructor. During winter and early spring four colonies were fed syrup containing 1.8 mg vitamin C kg(-1) (ascorbic acid group; group AA) while four colonies were fed syrup without the vitamin C (control group C). Selected elements of the antioxidative system were analysed including total antioxidant status (TAS), glutathione content and antioxidative enzyme activities (superoxide dismutase, catalase, peroxidase and glutathione S-transferase). Body weight, protein content and indices of infestation were also determined. The prevalence (8.11%) and intensity (1·15 parasite per bee) of the infestation were lower in group AA compared with group C (11.3% and 1.21, respectively). Changes in the indicators of antioxidative stress were evidence for the strengthening of the antioxidative system in the brood by administration of vitamin C. In freshly emerged worker bees of group AA, despite the infestation, protein content, TAS, and the activity of all antioxidative enzymes had significantly higher values in relation to group C.

  12. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing 'phyloh' as a novel phylogenetic diversity analysis tool.

    PubMed

    Sandionigi, A; Vicario, S; Prosdocimi, E M; Galimberti, A; Ferri, E; Bruno, A; Balech, B; Mezzasalma, V; Casiraghi, M

    2015-07-01

    The study of diversity in biological communities is an intriguing field. Huge amount of data are nowadays available (provided by the innovative DNA sequencing techniques), and management, analysis and display of results are not trivial. Here, we propose for the first time the use of phylogenetic entropy as a measure of bacterial diversity in studies of microbial community structure. We then compared our new method (i.e. the web tool phyloh) for partitioning phylogenetic diversity with the traditional approach in diversity analyses of bacteria communities. We tested phyloh to characterize microbiome in the honeybee (Apis mellifera, Insecta: Hymenoptera) and its parasitic mite varroa (Varroa destructor, Arachnida: Parasitiformes). The rationale is that the comparative analysis of honeybee and varroa microbiomes could open new perspectives concerning the role of the parasites on honeybee colonies health. Our results showed a dramatic change of the honeybee microbiome when varroa occurs, suggesting that this parasite is able to influence host microbiome. Among the different approaches used, only the entropy method, in conjunction with phylogenetic constraint as implemented in phyloh, was able to discriminate varroa microbiome from that of parasitized honeybees. In conclusion, we foresee that the use of phylogenetic entropy could become a new standard in the analyses of community structure, in particular to prove the contribution of each biological entity to the overall diversity.

  13. Assessment of food source profitability in honeybees (Apis mellifera): how does disturbance of foraging activity affect trophallactic behaviour?

    PubMed

    Wainselboim, A J; Roces, F; Farina, W M

    2003-01-01

    When forager honeybees (Apis mellifera) return to the hive after a successful foraging trip, they unload the collected liquid to recipient hive mates through mouth-to-mouth contacts (trophallaxis). The speed at which the liquid is transferred (unloading rate) from donor to recipient is related to the profitability of the recently visited food source. Two main characteristics that define this profitability are the flow of solution delivered by the feeder and the time invested by the forager at the source (visit time). To investigate the effect of visit time on trophallactic behaviour, donor foragers were trained to a rate feeder that could deliver different flows of solution. We dissociated visit time and flow of solution by introducing pauses in the solution's deliverance at different moments of the foraging visit. We analysed whether timing of the non-deliverance period within the visit is important for the forager's assessment of resource profitability. During the subsequent trophallactic encounter with a hive mate, unloading rate was related to the total time invested by the forager at the food source only if the ingestion process had already been started. These results together with previous ones suggest that foragers integrate an overall flow rate of solution of the feeder throughout the entire foraging visit.

  14. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor

    PubMed Central

    de Miranda, Joachim R.; Cornman, R. Scott; Evans, Jay D.; Semberg, Emilia; Haddad, Nizar; Neumann, Peter; Gauthier, Laurent

    2015-01-01

    Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV). PMID:26154017

  15. Purification, crystallization and preliminary crystallographic analysis of the full-length cystathionine β-synthase from Apis mellifera.

    PubMed

    Oyenarte, Iker; Majtan, Tomas; Ereño, June; Corral-Rodríguez, María Angeles; Klaudiny, Jaroslav; Majtan, Juraj; Kraus, Jan P; Martínez-Cruz, Luis Alfonso

    2012-11-01

    Cystathionine β-synthase (CBS) is a pyridoxal-5'-phosphate-dependent enzyme that catalyzes the first step of the transsulfuration pathway, namely the condensation of serine with homocysteine to form cystathionine. Mutations in the CBS gene are the single most common cause of hereditary homocystinuria, a multisystemic disease affecting to various extents the vasculature, connective tissues and central nervous system. At present, the crystal structure of CBS from Drosophila melanogaster is the only available structure of the full-length enzyme. Here we describe a cloning, overexpression, purification and preliminary crystallographic analysis of a full-length CBS from Apis mellifera (AmCBS) which maintains 51 and 46% sequence identity with its Drosophila and human homologs, respectively. The AmCBS yielded crystals belonging to space group P2(1)2(1)2(1), with unit-cell parameters a=85.90, b=95.87, c=180.33 Å. Diffraction data were collected to a resolution of 3.0 Å. The crystal structure contained two molecules in the asymmetric unit which presumably correspond to the dimeric species observed in solution.

  16. Analysis of the complete genome sequence of two Korean sacbrood viruses in the Honey bee, Apis mellifera.

    PubMed

    Choe, Se E; Nguyen, Lien T K; Noh, Jin H; Kweon, Chang H; Reddy, Kondreddy E; Koh, Hong B; Chang, Ki Y; Kang, Seung W

    2012-10-10

    The complete genomic RNAs of two Korean sacbrood virus (SBV) strains, which infect the honey bee, Apis mellifera, were sequenced. The two sequences (AmSBV-Kor19, AmSBV-Kor21) were distinguished by the presence or absence of a PstI restriction site. These strains comprised of 8784 bp and 8835 bp; contained a single large ORF (179-8707 and 179-8758) encoding 2843 and 2860 amino acids, respectively. Deduced amino acid sequences comparison with some insect viruses showed that regions of helicase, protease and RdRp domains; structural genes were located at the 5' end and non-structural genes at the 3' end. Multiple sequence alignment showed that AmSBV-Kor19 was missing a section between nucleotides 2311 and 2361 (present in SBV-UK and CSBV) but was similar to that of the Korean SBV strain that infects A. cerana (AcSBV-Kor). The differences in the AmSBV-Kor19 strain may be the result of the virus adapting to a different host.

  17. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees.

  18. Neurophysiological mechanisms underlying sex- and maturation-related variation in pheromone responses in honey bees (Apis mellifera).

    PubMed

    Villar, Gabriel; Baker, Thomas C; Patch, Harland M; Grozinger, Christina M

    2015-07-01

    In the honey bee (Apis mellifera), social organization is primarily mediated by pheromones. Queen-produced 9-oxo-2-decenoic acid (9-ODA) functions as both a social and sex pheromone, eliciting attraction in both female workers and male drones, but also affecting other critical aspects of worker physiology and behavior. These effects are also maturation related, as younger workers and sexually mature drones are most receptive to 9-ODA. While changes in the peripheral nervous system drive sex-related differences in sensitivity to 9-ODA, the mechanisms driving maturation-related shifts in receptivity to 9-ODA remain unknown. Here, we investigate the hypothesis that changes at the peripheral nervous system may be mediating plastic responses to 9-ODA by characterizing expression levels of AmOR11 (the olfactory receptor tuned to 9-ODA) and electrophysiological responses to 9-ODA. We find that receptor expression correlates significantly with behavioral receptivity to 9-ODA, with nurses and sexually mature drones exhibiting higher levels of expression than foragers and immature drones, respectively. Electrophysiological responses to 9-ODA were not found to correlate with behavioral receptivity or receptor expression, however. Thus, while receptor expression at the periphery exhibits a level of plasticity that correlates with behavior, the mechanisms driving maturation-dependent responsiveness to 9-ODA appear to function primarily in the central nervous system.

  19. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites.

    PubMed

    Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent

    2015-05-22

    Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  20. The effect of ethanol on reversal learning in honey bees (Apis mellifera anatolica): Response inhibition in a social insect model.

    PubMed

    Abramson, Charles I; Craig, David Philip Arthur; Varnon, Christopher A; Wells, Harrington

    2015-05-01

    We investigated the effects of ethanol on reversal learning in honey bees (Apis mellifera anatolica). The rationale behind the present experiment was to determine the species generality of the effect of ethanol on response inhibition. Subjects were originally trained to associate either a cinnamon or lavender odor with a sucrose feeding before a reversal of the conditioned stimuli. We administered 15 μL of ethanol at varying doses (0%, 2.5%, 5%, 10%, or 20%) according to group assignment. Ethanol was either administered 5 min before original discrimination training or 5 min before the stimuli reversal. We analyzed the effects of these three manipulations via a recently developed individual analysis that eschews aggregate assessments in favor of a model that conceptualizes learning as occurring in individual organisms. We measured responding in the presence of conditioned stimuli associated with a sucrose feeding, responding in the presence of conditioned stimuli associated with distilled water, and responding in the presence of the unconditioned stimulus (sucrose). Our analyses revealed the ethanol dose manipulation lowered responding for all three measures at increasingly higher doses, which suggests ethanol served as a general behavioral suppressor. Consistent with previous ethanol reversal literature, we found administering ethanol before the original discrimination phase or before the reversal produced inconsistent patterns of responding at varying ethanol doses.

  1. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    PubMed

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress.

  2. Within- and across-colony effects of hyperpolyandry on immune function and body condition in honey bees (Apis mellifera).

    PubMed

    Wilson-Rich, Noah; Tarpy, David R; Starks, Philip T

    2012-03-01

    Honey bees (Apis mellifera) have become a model system for studies on the influence of genetic diversity on disease. Honey bee queens mate with a remarkably high number of males-up to 29 in the current study-from which they produce a colony of genetically diverse daughter workers. Recent evidence suggests a significant benefit of intracolony genetic diversity on disease resistance. Here, we explored the relationship between the level of genetic diversity and multiple physiological mechanisms of cellular and humoral immune defense (encapsulation response and phenoloxidase activity). We also investigated an effect of genetic diversity on a measure of body condition (fat body mass). While we predicted that mean colony phenoloxidase activity, encapsulation response, and fat body mass would show a positive relationship with increased intracolonial genetic diversity, we found no significant relationship between genetic diversity and these immune measures, and found no consistent effect on body condition. These results suggest that high genetic diversity as a result of extreme polyandry may have little bearing on the physiological mechanisms of immune function at naturally occurring mating levels in honey bees.

  3. An assessment of fixed interval timing in free-flying honey bees (Apis mellifera ligustica): an analysis of individual performance.

    PubMed

    Craig, David Philip Arthur; Varnon, Christopher A; Sokolowski, Michel B C; Wells, Harrington; Abramson, Charles I

    2014-01-01

    Interval timing is a key element of foraging theory, models of predator avoidance, and competitive interactions. Although interval timing is well documented in vertebrate species, it is virtually unstudied in invertebrates. In the present experiment, we used free-flying honey bees (Apis mellifera ligustica) as a model for timing behaviors. Subjects were trained to enter a hole in an automated artificial flower to receive a nectar reinforcer (i.e. reward). Responses were continuously reinforced prior to exposure to either a fixed interval (FI) 15-sec, FI 30-sec, FI 60-sec, or FI 120-sec reinforcement schedule. We measured response rate and post-reinforcement pause within each fixed interval trial between reinforcers. Honey bees responded at higher frequencies earlier in the fixed interval suggesting subject responding did not come under traditional forms of temporal control. Response rates were lower during FI conditions compared to performance on continuous reinforcement schedules, and responding was more resistant to extinction when previously reinforced on FI schedules. However, no "scalloped" or "break-and-run" patterns of group or individual responses reinforced on FI schedules were observed; no traditional evidence of temporal control was found. Finally, longer FI schedules eventually caused all subjects to cease returning to the operant chamber indicating subjects did not tolerate the longer FI schedules.

  4. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico.

    PubMed

    Medina-Flores, C A; Guzmán-Novoa, E; Hamiduzzaman, M M; Aréchiga-Flores, C F; López-Carlos, M A

    2014-02-21

    Honey bee (Apis mellifera) colonies of African and European descent were compared for levels of Varroa destructor infestation in 3 different ecological regions in Mexico. The 300 colonies that were studied were located in subtropical, temperate sub-humid, and temperate dry climates. The morphotype and mitotype of adult bees as well as their rates of infestation by varroa mites were determined. Additionally, the number of combs with brood and covered with bees was recorded for each colony. The highest frequency of colonies that were classified as African-derived was found in the subtropical environment, whereas the lowest occurred in the temperate dry region. Overall, the colonies of African genotype had significantly lower mite infestation rates (3.5±0.34%) than the colonies of European genotype (4.7±0.49%) regardless of the region sampled. Significant effects of genotype and region on Varroa infestation rates were evident, and there were no differences in bee population or capped brood between genotypes. Mite infestation levels were significantly lower in the colonies of the temperate dry region than in the colonies of the other 2 regions. These results are discussed within the context of results from studies that were previously conducted in Brazil. This is the first study that demonstrates the effects of Africanization and ecological environment on V. destructor infestation rates in honey bee colonies in North America.

  5. Side-effects of thiamethoxam on the brain andmidgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae).

    PubMed

    Oliveira, Regiane Alves; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Malaspina, Osmar

    2014-10-01

    The development of agricultural activities coincides with the increased use of pesticides to control pests, which can also be harmful to nontarget insects such as bees. Thus, the goal of this work was assess the toxic effects of thiamethoxam on newly emerged worker bees of Apis mellifera (africanized honeybee-AHB). Initially, we determined that the lethal concentration 50 (LC50 ) of thiamethoxam was 4.28 ng a.i./μL of diet. To determine the lethal time 50 (LT50 ), a survival assay was conducted using diets containing sublethal doses of thiamethoxam equal to 1/10 and 1/100 of the LC50. The group of bees exposed to 1/10 of the LC50 had a 41.2% reduction of lifespan. When AHB samples were analyzed by morphological technique we found the presence of condensed cells in the mushroom bodies and optical lobes in exposed honeybees. Through Xylidine Ponceau technique, we found cells which stained more intensely in groups exposed to thiamethoxam. The digestive and regenerative cells of the midgut from exposed bees also showed morphological and histochemical alterations, like cytoplasm vacuolization, increased apocrine secretion and increased cell elimination. Thus, intoxication with a sublethal doses of thiamethoxam can cause impairment in the brain and midgut of AHB and contribute to the honeybee lifespan reduction.

  6. More than royal food - Major royal jelly protein genes in sexuals and workers of the honeybee Apis mellifera

    PubMed Central

    2013-01-01

    Background In the honeybee Apis mellifera, female larvae destined to become a queen are fed with royal jelly, a secretion of the hypopharyngeal glands of young nurse bees that rear the brood. The protein moiety of royal jelly comprises mostly major royal jelly proteins (MRJPs) of which the coding genes (mrjp1-9) have been identified on chromosome 11 in the honeybee’s genome. Results We determined the expression of mrjp1-9 among the honeybee worker caste (nurses, foragers) and the sexuals (queens (unmated, mated) and drones) in various body parts (head, thorax, abdomen). Specific mrjp expression was not only found in brood rearing nurse bees, but also in foragers and the sexuals. Conclusions The expression of mrjp1 to 7 is characteristic for the heads of worker bees, with an elevated expression of mrjp1-4 and 7 in nurse bees compared to foragers. Mrjp5 and 6 were higher in foragers compared to nurses suggesting functions in addition to those of brood food proteins. Furthermore, the expression of mrjp9 was high in the heads, thoraces and abdomen of almost all female bees, suggesting a function irrespective of body section. This completely different expression profile suggests mrjp9 to code for the most ancestral major royal jelly protein of the honeybee. PMID:24279675

  7. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation

    PubMed Central

    Hu, Yee-Tung; Wu, Tsai-Chin; Yang, En-Cheng; Wu, Pei-Chi; Lin, Po-Tse; Wu, Yueh-Lung

    2017-01-01

    The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping. PMID:28112264

  8. Evaluation of Oxalic Acid Treatments against the Mite Varroa destructor and Secondary Effects on Honey Bees Apis mellifera

    PubMed Central

    Adjlane, Noureddine; Tarek, El-Ounass; Haddad, Nizar

    2016-01-01

    Background: The Varroa destructor varroasis is a very serious parasite of honeybee Apis mellifera. The objective of this study was to evaluate the effectiveness of Varroa treatment using organic acid (oxalic acid) in Algeria identifying its side effects on bee colonies. Methods: Treatment was conducted in one apiary consisting 30 colonies kept in Langstroth hives kind. Oxalic acid dripped directly on bees 5ml of this solution of oxalic acid per lane occupied by a syringe. Three doses were tested: 4.2, 3.2 and 2.1% oxalic acid is 100, 75 and 50 g of oxalic acid dehydrate in one litter of sugar syrup (1water to1 surge) concentration. Results: The percentage of average efficiency obtained for the first dose was 81%, 72.19% for the second dose, and 65% for third one, while the dose of 100 g oxalic acid causes a weakening of honey bee colonies. Conclusion: The experiments revealed that clear variation in the treatment efficiency among colonies that this might be related to brood presence therefore in order to assure the treatment efficiency oxalic acid should be part of a bigger strategy of Varroa treatment. PMID:28032102

  9. Monitoring of polycyclic aromatic hydrocarbons in bees (Apis mellifera) and honey in urban areas and wildlife reserves.

    PubMed

    Perugini, Monia; Di Serafino, Gabriella; Giacomelli, Alessandra; Medrzycki, Piotr; Sabatini, Anna Gloria; Persano Oddo, Livia; Marinelli, Enzo; Amorena, Michele

    2009-08-26

    The honeybee is a good biological indicator that quickly reflects chemical impairment of the environment by its high mortality and the presence of pollutants in its body or in beehive products. In this work the honeybee (Apis mellifera) and honey were used to detect the presence of polycyclic aromatic hydrocarbons (PAHs) in several areas with different degrees of environmental pollution. All sampling sites showed the presence of PAHs. Benzo(a)pyrene was never detected. Fluorene, phenanthrene, anthracene, fluoranthene, benz(a)anthracene, benzo(b)fluoranthene, and benzo(k)fluoranthene were the PAHs detected in bees, whereas the honey contained only phenanthrene, anthracene, and chrysene. Phenanthrene showed the highest mean values in honeybees and honey. Independent from the season and location the pattern of PAHs in honeybees and honey was dominated by the presence of the lowest molecular weight PAHs. Furthermore, the mean PAH concentrations in honey samples were lower than those reported in honeybees, and no positive correlation was found between the compounds detected in bees and those in honey.

  10. Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera.

    PubMed

    Strachecka, Aneta; Olszewski, Krzysztof; Paleolog, Jerzy; Borsuk, Grzegorz; Bajda, Milena; Krauze, Magdalena; Merska, Malwina; Chobotow, Jacek

    2014-07-01

    Natural bioactive preparations that will boost apian resistance, aid body detoxification, or fight crucial bee diseases are in demand. Therefore, we examined the influence of coenzyme Q10 (CoQ10, 2,3-dimethoxy, 5-methyl, 6-decaprenyl benzoquinone) treatment on honeybee lifespan, Nosema resistance, the activity/concentration of antioxidants, proteases and protease inhibitors, and biomarkers. CoQ10 slows age-related metabolic processes. Workers that consumed CoQ10 lived longer than untreated controls and were less infested with Nosema spp. Relative to controls, the CoQ10-treated workers had higher protein concentrations that increased with age but then they decreased in older bees. CoQ10 treatments increased the activities of antioxidant enzymes (superoxide dismutase, GPx, catalase, glutathione S-transferase), protease inhibitors, biomarkers (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase), the total antioxidant potential level, and concentrations of uric acid and creatinine. The activities of acidic, neutral, and alkaline proteases, and concentrations of albumin and urea were lower in the bees that were administered CoQ10. CoQ10 could be taken into consideration as a natural diet supplement in early spring before pollen sources become available in the temperate Central European climate. A response to CoQ10 administration that is similar to mammals supports our view that Apis mellifera is a model organism for biochemical gerontology.

  11. Cloning and functional expression of intracellular loop variants of the honey bee (Apis mellifera) RDL GABA receptor.

    PubMed

    Taylor-Wells, Jennina; Hawkins, Joseph; Colombo, Claudia; Bermudez, Isabel; Jones, Andrew K

    2016-06-08

    The insect GABA receptor, RDL (resistance to dieldrin), plays central roles in neuronal signalling and is the target of several classes of insecticides. To study the GABA receptor from an important pollinator species, we cloned Rdl cDNA from the honey bee, Apis mellifera. Three Rdl variants were identified, arising from differential use of splice acceptor sites in the large intracellular loop between transmembrane regions 3 and 4. These variants were renamed from previously, as Amel_RDLvar1, Amel_RDLvar2 and Amel_RDLvar3. When expressed in Xenopus laevis oocytes, the three variants showed no difference in sensitivity to the agonist, GABA, with EC50s of 29μM, 20μM and 29μM respectively. Also, the potencies of the antagonists, fipronil and imidacloprid, were similar on all three variants. Fipronil IC50 values were 0.18μM, 0.31μM and 0.20μM whereas 100μM imidacloprid reduced the GABA response by 17%, 24% and 31%. The possibility that differential splicing of the RDL intracellular loop may represent a species-specific mechanism leading to insensitivity to insecticides is discussed.

  12. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation.

    PubMed

    Hu, Yee-Tung; Wu, Tsai-Chin; Yang, En-Cheng; Wu, Pei-Chi; Lin, Po-Tse; Wu, Yueh-Lung

    2017-01-23

    The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping.

  13. Biochemical and histological biomarkers in the midgut of Apis mellifera from polluted environment at Beheira Governorate, Egypt.

    PubMed

    El-Saad, Ahmed M Abu; Kheirallah, Dalia A; El-Samad, Lamia M

    2017-01-01

    The aim of this study was to analyze the impact of organophosphorus (OP) pollutants on oxidative stress and ultrastructural biomarkers in the midgut of the honeybee Apis mellifera collected from three locations that differ in their extent of spraying load with OP insecticides: a weakly anthropised rural site, Bolin which is considered as a reference site; moderately spraying site, El Kaza; and a strongly anthropised urban site, Tiba with a long history of pesticide use. Results showed that high concentrations of chlorpyrifos, malathion, diazinon, chlorpyrifos-methyl, and pirimiphos-methyl were detected in midgut at locations with extensive pesticide spraying. Reduced glutathione content, superoxide dismutase, catalase, and glutathione peroxidase displayed lowest activities in the heavily sprayed location (Tiba). Lipid peroxidation level in the midgut of honeybees in the sprayed locations was found to be significantly higher compared to the reference values. Meanwhile, various ultrastructural abnormalities were observed in the epithelial cells of midgut of honeybees collected from El Kaza and Tiba, included confluent and disorganized microvilli and destruction of their brush border, the cytoplasm with large vacuoles and alteration of cytoplasmic organelles including the presence of swollen mitochondria with lysis of matrices, disruption of limiting membranes, and disintegration of cristae. The nuclei with indented nuclear envelope and disorganized chromatin were observed. These investigated biomarkers indicated that the surveyed honeybees are being under stressful environmental conditions. So, we suggest using those biomarkers in the assessment of environmental quality using honeybees in future monitoring of ecotoxicological studies.

  14. Moving without a purpose: an experimental study of swarm guidance in the Western honey bee, Apis mellifera.

    PubMed

    Makinson, James C; Beekman, Madeleine

    2014-06-01

    During reproductive swarming, honey bee scouts perform two very important functions. Firstly, they find new nesting locations and return to the swarm cluster to communicate their discoveries. Secondly, once the swarm is ready to depart, informed scout bees act as guides, leading the swarm to its final destination. We have previously hypothesised that the two processes, selecting a new nest site and swarm guidance, are tightly linked in honey bees. When swarms can be laissez faire about where they nest, reaching directional consensus prior to lift off seems unnecessary. If, in contrast, it is essential that the swarm reaches a precise location, either directional consensus must be near unanimous prior to swarm departure or only a select subgroup of the scouts guide the swarm. Here, we tested experimentally whether directional consensus is necessary for the successful guidance of swarms of the Western honey bee Apis mellifera by forcing swarms into the air prior to the completion of the decision-making process. Our results show that swarms were unable to guide themselves prior to the swarm reaching the pre-flight buzzing phase of the decision-making process, even when directional consensus was high. We therefore suggest that not all scouts involved in the decision-making process attempt to guide the swarm.

  15. Making a queen: an epigenetic analysis of the robustness of the honeybee (Apis mellifera) queen developmental pathway.

    PubMed

    He, Xu Jiang; Zhou, Lin Bin; Pan, Qi Zhong; Barron, Andrew B; Yan, Wei Yu; Zeng, Zhi Jiang

    2016-12-27

    Specialized castes are considered a key reason for the evolutionary and ecological success of the social insect lifestyle. The most essential caste distinction is between the fertile queen and the sterile workers. Honeybee (Apis mellifera) workers and queens are not genetically distinct, rather these different phenotypes are the result of epigenetically regulated divergent developmental pathways. This is an important phenomenon in understanding the evolution of social insect societies. Here, we studied the genomic regulation of the worker and queen developmental pathways, and the robustness of the pathways by transplanting eggs or young larvae to queen cells. Queens could be successfully reared from worker larvae transplanted up to 3 days age, but queens reared from older worker larvae had decreased queen body size and weight compared with queens from transplanted eggs. Gene expression analysis showed that queens raised from worker larvae differed from queens raised from eggs in the expression of genes involved in the immune system, caste differentiation, body development and longevity. DNA methylation levels were also higher in 3-day-old queen larvae raised from worker larvae compared with that raised from transplanted eggs identifying a possible mechanism stabilizing the two developmental paths. We propose that environmental (nutrition and space) changes induced by the commercial rearing practice result in a suboptimal queen phenotype via epigenetic processes, which may potentially contribute to the evolution of queen-worker dimorphism. This also has potentially contributed to the global increase in honeybee colony failure rates.

  16. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor.

    PubMed

    de Miranda, Joachim R; Cornman, R Scott; Evans, Jay D; Semberg, Emilia; Haddad, Nizar; Neumann, Peter; Gauthier, Laurent

    2015-07-06

    Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).

  17. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel

    PubMed Central

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-01-01

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area. PMID:26462581

  18. Histological estimates of ovariole number in honey bee queens, Apis mellifera, reveal lack of correlation with other queen quality measures.

    PubMed

    Jackson, Jeffrey T; Tarpy, David R; Fahrbach, Susan E

    2011-01-01

    Published estimates of the number of ovarioles found in the ovaries of honey bee, Apis mellifera L. (Hymenoptera: Apidae) queens range from 100 to 180 per ovary. Within the context of a large-scale study designed to assay the overall quality of queens obtained from various commercial sources, a simple histology-based method for accurate determination of ovariole number was developed and then applied to a sample of 75 queens. Although all 10 commercial sources evaluated provided queens with ovariole numbers within the expected range, ovariole number was found to vary significantly across sources. Overall, and within most of the individual samples, there was no correlation of ovariole number with other morphological attributes such as thoracic width, wing length, or wet weight. Queens from two of the sources, however, displayed a significant negative relationship between wet weight and ovariole number. This study provides baseline data on ovariole number in commercial honey bee queens in the United States at a time when honey bee populations are declining; the method described can be used in studies relating ovariole number in queens to egg production and behavior.

  19. The Africanization of honeybees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time.

    PubMed

    Clarke, Kylea E; Rinderer, Thomas E; Franck, Pierre; Quezada-Euán, Javier G; Oldroyd, Benjamin P

    2002-07-01

    Until recently, African and European subspecies of the honeybee (Apis mellifera L.) had been geographically separated for around 10,000 years. However, human-assisted introductions have caused the mixing of large populations of African and European subspecies in South and Central America, permitting an unprecedented opportunity to study a large-scale hybridization event using molecular analyses. We obtained reference populations from Europe, Africa, and South America and used these to provide baseline information for a microsatellite and mitochondrial analysis of the process of Africanization of the bees of the Yucatan Peninsula, Mexico. The genetic structure of the Yucatecan population has changed dramatically over time. The pre-Africanized Yucatecan population (1985) comprised bees that were most similar to samples from southeastern Europe and northern and western Europe. Three years after the arrival of Africanized bees (1989), substantial paternal gene flow had occurred from feral Africanized drones into the resident European population, but maternal gene flow from the invading Africanized population into the local population was negligible. However by 1998, there was a radical shift with both African nuclear alleles (65%) and African-derived mitochondria (61%) dominating the genomes of domestic colonies. We suggest that although European mitochondria may eventually be driven to extinction in the feral population, stable introgression of European nuclear alleles has occurred.

  20. Reproductive division of labour and thelytoky result in sympatric barriers to gene flow in honeybees (Apis mellifera L.).

    PubMed

    Neumann, P; Härtel, S; Kryger, P; Crewe, R M; Moritz, R F A

    2011-02-01

    Determining the extent and causes of barriers to gene flow is essential for understanding sympatric speciation, but the practical difficulties of quantifying reproductive isolation remain an obstacle to analysing this process. Social parasites are common in eusocial insects and tend to be close phylogenetic relatives of their hosts (= Emery's rule). Sympatric speciation caused by reproductive isolation between host and parasite is a possible evolutionary pathway. Socially parasitic workers of the Cape honeybee, Apis mellifera capensis, produce female clonal offspring parthenogenetically and invade colonies of the neighbouring subspecies A. m. scutellata. In the host colony, socially parasitic workers can become pseudoqueens, an intermediate caste with queenlike pheromone secretion. Here, we show that over an area of approximately 275.000 km², all parasitic workers bear the genetic signature of a clone founded by a single ancestral worker genotype. Any gene flow from the host to the parasite is impossible because honeybee workers cannot mate. Gene flow from the parasite to the host is possible, as parasitic larvae can develop into queens. However, we show that despite sympatric coexistence for more than a decade, gene flow between host and social parasite (F(st) = 0.32) and hybridizations (0.71%) are rare, resulting in reproductive isolation. Our data suggest a new barrier to gene flow in sympatry, which is not based on assortative matings but on thelytoky and reproductive division of labour in eusocial insects, thereby suggesting a new potential pathway to Emery's rule.

  1. Differences in Varroa destructor infestation rates of two indigenous subspecies of Apis mellifera in the Republic of South Africa.

    PubMed

    Mortensen, Ashley N; Schmehl, Daniel R; Allsopp, Mike; Bustamante, Tomas A; Kimmel, Chase B; Dykes, Mark E; Ellis, James D

    2016-04-01

    Varroa destructor Anderson & Trueman (Varroa) is a damaging pest of the Western honey bee, Apis mellifera, in North America, Europe, and Asia. However, Varroa infestations have not produced equivalent colony losses of African subspecies of honey bee throughout Africa and parts of the Americas. We surveyed the Varroa infestation rates (number of Varroa per 100 adult honey bees) in colonies of A. m. scutellata, A. m. capensis, and hybrids of the two subspecies throughout the Republic of South Africa in the fall of 2014. We found that A. m. scutellata colonies had significantly higher Varroa infestations than did A. m. capensis colonies. Furthermore, hybridized colonies of the two subspecies had Varroa infestations intermediate to those of A. m. scutellata and A. m. capensis. This is the first documentation of a clear difference in Varroa infestation rates of A. m. scutellata, A. m. capensis, and hybridized colonies in South Africa. Furthermore, our data confirm that Varroa populations in A. m. scutellata colonies are within the range of populations that are damaging to European honey bees.

  2. Morphological and Chemical Characterization of the Invasive Ants in Hives of Apis mellifera scutellata Lepeletier (Hymenoptera: Apidae).

    PubMed

    Simoes, M R; Giannotti, E; Tofolo, V C; Pizano, M A; Firmino, E L B; Antonialli-Junior, W F; Andrade, L H C; Lima, S M

    2016-02-01

    Apiculture in Brazil is quite profitable and has great potential for expansion because of the favorable climate and abundancy of plant diversity. However, the occurrence of pests, diseases, and parasites hinders the growth and profitability of beekeeping. In the interior of the state of São Paulo, apiaries are attacked by ants, especially the species Camponotus atriceps (Smith) (Hymenoptera: Formicidae), which use the substances produced by Apis mellifera scutellata (Lepeletier) (Hymenoptera: Apidae), like honey, wax, pollen, and offspring as a source of nourishment for the adult and immature ants, and kill or expel the adult bees during the invasion. This study aimed to understand the invasion of C. atriceps in hives of A. m. scutellata. The individuals were classified into castes and subcastes according to morphometric analyses, and their cuticular chemical compounds were identified using Photoacoustic Fourier transform infrared spectroscopy (FTIR-PAS). The morphometric analyses were able to classify the individuals into reproductive castes (queen and gynes), workers (minor and small ants), and the soldier subcaste (medium and major ants). Identification of cuticular hydrocarbons of these individuals revealed that the eight beehives were invaded by only three colonies of C. atriceps; one of the colonies invaded only one beehive, and the other two colonies underwent a process called sociotomy and were responsible for the invasion of the other seven beehives. The lack of preventive measures and the nocturnal behavior of the ants favored the invasion and attack on the bees.

  3. Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States

    PubMed Central

    Tarpy, David R.; Delaney, Deborah A.; Seeley, Thomas D.

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens—and the increased intracolony genetic diversity it confers—has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one. PMID:25775410

  4. An Assessment of Fixed Interval Timing in Free-Flying Honey Bees (Apis mellifera ligustica): An Analysis of Individual Performance

    PubMed Central

    Craig, David Philip Arthur; Varnon, Christopher A.; Sokolowski, Michel B. C.; Wells, Harrington; Abramson, Charles I.

    2014-01-01

    Interval timing is a key element of foraging theory, models of predator avoidance, and competitive interactions. Although interval timing is well documented in vertebrate species, it is virtually unstudied in invertebrates. In the present experiment, we used free-flying honey bees (Apis mellifera ligustica) as a model for timing behaviors. Subjects were trained to enter a hole in an automated artificial flower to receive a nectar reinforcer (i.e. reward). Responses were continuously reinforced prior to exposure to either a fixed interval (FI) 15-sec, FI 30-sec, FI 60-sec, or FI 120-sec reinforcement schedule. We measured response rate and post-reinforcement pause within each fixed interval trial between reinforcers. Honey bees responded at higher frequencies earlier in the fixed interval suggesting subject responding did not come under traditional forms of temporal control. Response rates were lower during FI conditions compared to performance on continuous reinforcement schedules, and responding was more resistant to extinction when previously reinforced on FI schedules. However, no “scalloped” or “break-and-run” patterns of group or individual responses reinforced on FI schedules were observed; no traditional evidence of temporal control was found. Finally, longer FI schedules eventually caused all subjects to cease returning to the operant chamber indicating subjects did not tolerate the longer FI schedules. PMID:24983960

  5. Fluctuating asymmetry in Apis mellifera (Hymenoptera: Apidae) as bioindicator of anthropogenic environments.

    PubMed

    Nunes, Lorena Andrade; de Araújo, Edilson Divino; Marchini, Luís Carlos

    2015-09-01

    The successful distribution of A. mellifera is due to their ability to adjust to seasonal variations, considerable control over their internal physical environment and exploration of different resources. However, their populations have experienced different forms and levels of environmental pressure. This research aimed to verify the phenotypic plasticity in both size and shape of wings in A. mellifera using fluctuating asymmetry, based on geometric morphometrics from apiaries located in sites with high and low levels of anthropization. We sampled 16 locations throughout all five geographic regions of Brazil. At each site, samples were collected from 20 beehives installed in apiaries: 10 installed near high anthropogenic environments (Cassilandia - MS, Fortaleza - CE, Maringá - PR, Aquidauana - MS, Rolim de Moura - RO, Riachuelo - SE, Ubiratã - PR and Piracicaba - SP), and 10 in sites with low levels of human disturbance (Cassilândia - MS, Itapiúna CE, União da Vitória - PR, Aquidauana - MS, Rolim de Moura - RO, Pacatuba - SE, Erval Seco - RS, Rio Claro - SP). A sample of 10 individuals was taken in each hive, totaling 200 per location, for a total of 1,600 individuals. We used fluctuating asymmetry (FA) in size and shape of the forewing through geometric morphometrics. The FA analysis was conducted in order to check bilateral differences. The indexes of size and shape were submitted to analysis of variance (ANOVA), where the characters evaluated were used as factors to verify the size and shape differences. The results indicated an asymmetry on the shape of the wing (P < 0.001) but no asymmetry was observed on wing size. Considering FA as an environmental response and high and low impacted areas as a fixed factor, we observed significant differences (P < 0.05). The results for the wing shape in A. mellifera demonstrated that this feature undergoes more variation during ontogeny compared to the variation in size. We concluded that bee samples collected from

  6. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate.

    PubMed

    Asenjo, Freddy; Olmos, Alejandro; Henríquez-Piskulich, Patricia; Polanco, Victor; Aldea, Patricia; Ugalde, Juan A; Trombert, Annette N

    2016-01-01

    Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components

  7. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

    PubMed Central

    Asenjo, Freddy; Olmos, Alejandro; Henríquez-Piskulich, Patricia; Polanco, Victor; Aldea, Patricia

    2016-01-01

    Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components

  8. Defensive behaviour of Apis mellifera against Vespa velutina in France: testing whether European honeybees can develop an effective collective defence against a new predator.

    PubMed

    Arca, Mariangela; Papachristoforou, Alexandros; Mougel, Florence; Rortais, Agnès; Monceau, Karine; Bonnard, Olivier; Tardy, Pascal; Thiéry, Denis; Silvain, Jean-François; Arnold, Gérard

    2014-07-01

    We investigated the prey-predator interactions between the European honeybee, Apis mellifera, and the invasive yellow-legged hornet, Vespa velutina, which first invaded France in 2004 and thereafter spread to neighbouring European countries (Spain, Portugal and Italy). Our goal was to determine how successfully honeybees are able to defend their colonies against their new predator in Europe. Experiments were conducted in the southwest of France-the point of entry of the hornet in Europe-under natural and semi-controlled field conditions. We investigated a total of eight apiaries and 95 colonies subjected to either low or high levels of predation. We analyzed hornet predatory behaviour and collective response of colonies under attack. The results showed that A. mellifera in France exhibit an inefficient and unorganized defence against V. velutina, unlike in other regions of Europe and other areas around the globe where honeybees have co-evolved with their natural Vespa predators.

  9. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera

    PubMed Central

    2010-01-01

    Background The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project. Results The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs) in the pooled mites was estimated to be 6.2 × 10-5per bp, a low rate consistent with the historical demography and life history of the species. Conclusions This survey has provided general tools for the research community and novel directions for investigating the biology and control of Varroa mites. Ongoing

  10. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    PubMed

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  11. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    PubMed

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony.

  12. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference?

    PubMed

    Rangel, Juliana; Giresi, Melissa; Pinto, Maria Alice; Baum, Kristen A; Rubink, William L; Coulson, Robert N; Johnston, John Spencer

    2016-04-01

    The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11-year survey of this population (1991-2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata- and European-derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km(2) area, resulting in a colony density of 5.4 colonies/km(2). Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata-derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African-derived mitochondrial genetic composition.

  13. Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera)

    PubMed Central

    Liao, Ling-Hsiu; Wu, Wen-Yen; Berenbaum, May R.

    2017-01-01

    Because certain flavonols and phenolic acids are found in pollen and nectar of most angiosperms, they are routinely ingested by Apis mellifera, the western honey bee. The flavonol quercetin and the phenolic acid p-coumaric acid are known to upregulate detoxification enzymes in adult bees; their presence or absence in the diet may thus affect the toxicity of ingested pesticides. We conducted a series of longevity assays with one-day-old adult workers to test if dietary phytochemicals enhance longevity and pesticide tolerance. One-day-old bees were maintained on sugar syrup with or without casein (a phytochemical-free protein source) in the presence or absence of quercetin and p-coumaric acid as well as in the presence or absence of two pyrethroid insecticides, bifenthrin and β-cyfluthrin. Dietary quercetin (hazard ratio, HR = 0.82), p-coumaric acid (HR = 0.91) and casein (HR = 0.74) were associated with extended lifespan and the two pyrethroid insecticides, 4 ppm bifenthrin (HR = 9.17) and 0.5 ppm β-cyfluthrin (HR = 1.34), reduced lifespan. Dietary quercetin enhanced tolerance of both pyrethroids; p-coumaric acid had a similar effect trend, although of reduced magnitude. Casein in the diet appears to eliminate the life-prolonging effect of p-coumaric acid in the absence of quercetin. Collectively, these assays demonstrate that dietary phytochemicals influence honey bee longevity and pesticide stress; substituting sugar syrups for honey or yeast/soy flour patties may thus have hitherto unrecognized impacts on adult bee health. PMID:28216580

  14. Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model.

    PubMed

    Como, F; Carnesecchi, E; Volani, S; Dorne, J L; Richardson, J; Bassan, A; Pavan, M; Benfenati, E

    2017-01-01

    Ecological risk assessment of plant protection products (PPPs) requires an understanding of both the toxicity and the extent of exposure to assess risks for a range of taxa of ecological importance including target and non-target species. Non-target species such as honey bees (Apis mellifera), solitary bees and bumble bees are of utmost importance because of their vital ecological services as pollinators of wild plants and crops. To improve risk assessment of PPPs in bee species, computational models predicting the acute and chronic toxicity of a range of PPPs and contaminants can play a major role in providing structural and physico-chemical properties for the prioritisation of compounds of concern and future risk assessments. Over the last three decades, scientific advisory bodies and the research community have developed toxicological databases and quantitative structure-activity relationship (QSAR) models that are proving invaluable to predict toxicity using historical data and reduce animal testing. This paper describes the development and validation of a k-Nearest Neighbor (k-NN) model using in-house software for the prediction of acute contact toxicity of pesticides on honey bees. Acute contact toxicity data were collected from different sources for 256 pesticides, which were divided into training and test sets. The k-NN models were validated with good prediction, with an accuracy of 70% for all compounds and of 65% for highly toxic compounds, suggesting that they might reliably predict the toxicity of structurally diverse pesticides and could be used to screen and prioritise new pesticides.

  15. Lifetime- and caste-specific changes in flight metabolic rate and muscle biochemistry of honeybees, Apis mellifera.

    PubMed

    Schippers, Marie-Pierre; Dukas, Reuven; McClelland, Grant B

    2010-01-01

    Honeybees, Apis mellifera, who show temporal polyethism, begin their adult life performing tasks inside the hive (hive bees) and then switch to foraging when they are about 2-3 weeks old (foragers). Usually hive tasks require little or no flying, whereas foraging involves flying for several hours a day and carrying heavy loads of nectar and pollen. Flight muscles are particularly plastic organs that can respond to use and disuse, and accordingly it would be expected that adjustments in flight muscle metabolism occur throughout a bee's life. We thus investigated changes in lifetime flight metabolic rate and flight muscle biochemistry of differently aged hive bees and of foragers with varying foraging experience. Rapid increases in flight metabolic rates early in life coincided with a switch in troponin T isoforms and increases in flight muscle maximal activities (V (max)) of the enzymes citrate synthase, cytochrome c oxidase, hexokinase, phosphofructokinase, and pyruvate kinase. However, further increases in flight metabolic rate in experienced foragers occurred without additional changes in the in vitro V (max) of these flight muscle metabolic enzymes. Estimates of in vivo flux (v) compared to maximum flux of each enzyme in vitro (fractional velocity, v/V (max)) suggest that most enzymes operate at a higher fraction of V (max) in mature foragers compared to young hive bees. Our results indicate that honeybees develop most of their flight muscle metabolic machinery early in life. Any further increases in flight metabolism with age or foraging experience are most likely achieved by operating metabolic enzymes closer to their maximal flux capacity.

  16. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera

    PubMed Central

    Elias-Neto, Moysés; Falcon, Tiago; Dallacqua, Rodrigo Pires; Martins, Juliana Ramos; Bitondi, Marcia Maria Gentile

    2016-01-01

    Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs β bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs β and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs β and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones. PMID:27907116

  17. Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria

    PubMed Central

    Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B.; Steffan-Dewenter, Ingolf; Tebbe, Christoph C.

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees. PMID:23533634

  18. Removal of drone brood from Apis mellifera (Hymenoptera: Apidae) colonies to control Varroa destructor (Acari: Varroidae) and retain adult drones.

    PubMed

    Wantuch, Holly A; Tarpy, David R

    2009-12-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) has plagued European honey bees, Apis mellifera L. (Hymenoptera: Apidae), in the Americas since its introduction in the 1980s. For many years, these mites were sufficiently controlled using synthetic acaricides. Recently, however, beekeepers have experienced increased resistance by mites to chemical pesticides, which are also known to leave residues in hive products such as wax and honey. Thus there has been increased emphasis on nonchemical integrated pest management control tactics for Varroa. Because mites preferentially reproduce in drone brood (pupal males), we developed a treatment strategy focusing on salvaging parasitized drones while removing mites from them. We removed drone brood from colonies in which there was no acaricidal application and banked them in separate "drone-brood receiving" colonies treated with pesticides to kill mites emerging with drones. We tested 20 colonies divided into three groups: 1) negative control (no mite treatment), 2) positive control (treatment with acaricides), and 3) drone-brood removal and placement into drone-brood receiving colonies. We found that drone-brood trapping significantly lowered mite numbers during the early months of the season, eliminating the need for additional control measures in the spring. However, mite levels in the drone-brood removal group increased later in the summer, suggesting that this benefit does not persist throughout the entire season. Our results suggest that this method of drone-brood trapping can be used as an element of an integrated control strategy to control varroa mites, eliminating a large portion of the Varroa population with limited chemical treatments while retaining the benefits of maintaining adult drones in the population.

  19. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria.

    PubMed

    Hendriksma, Harmen P; Küting, Meike; Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B; Steffan-Dewenter, Ingolf; Tebbe, Christoph C

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  20. Differences in microRNAs and their expressions between foraging and dancing honey bees, Apis mellifera L.

    PubMed

    Li, Li; Liu, Fang; Li, Wenfeng; Li, Zhiguo; Pan, Jiao; Yan, Limin; Zhang, Shaowu; Huang, Zachary Y; Su, Songkun

    2012-11-01

    Many studies have established that microRNAs (miRNAs) regulate gene expression in various biological processes in mammals and insects including honey bees. Dancing behavior is a form of communication unique to honey bees. However, it remains unclear which miRNAs regulate the dancing behavior in honey bees, and how. In the present study, total small RNAs (sRNAs) in Apis mellifera foragers and dancers were extracted and analyzed by a Solexa Sequencer to determine differentially expressed miRNAs. A small percentage (12.62%) of the unique sRNAs (the number of sequence types) were shared between foragers and dancers, but their expression accounted for 92.92% of the total sRNAs (the number of all sequence reads), and the length of them centered around 22nt. Out of 58 previously identified miRNAs, 54 were present in both foragers and dancers and most of them were down-regulated in dancers. The fold-changes of ame-miR-34, ame-miR-210, ame-miR-278 and ame-miR-282 were higher than 2. 86 and 104 novel miRNAs were detected in foragers and dancers, respectively. Furthermore, two known miRNAs (ame-miR-278 and ame-miR-282) were confirmed, by qPCR, to have lower expressions in dancers. The target genes of ame-miR-278 and ame-miR-282 were associated with kinase, neural function, synaptotagmin and energy. These results indicate that miRNAs are substantially different between the foraging and dancing stages, and suggest that miRNAs might play important roles in regulating dancing behaviors in honey bees.

  1. RNAi-mediated silencing of vitellogenin gene function turns honeybee ( Apis mellifera) workers into extremely precocious foragers

    NASA Astrophysics Data System (ADS)

    Marco Antonio, David Santos; Guidugli-Lazzarini, Karina Rosa; Do Nascimento, Adriana Mendes; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2008-10-01

    The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee ( Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (>10 min) to earlier in life (by 3 4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (<10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.

  2. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera.

    PubMed

    Bloch, Guy; Cohen, Mira

    2014-06-01

    Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide.

  3. Honey Bee (Apis mellifera) Queen Reproductive Potential Affects Queen Mandibular Gland Pheromone Composition and Worker Retinue Response

    PubMed Central

    Böröczky, Katalin; Schal, Coby; Tarpy, David R.

    2016-01-01

    Reproductive division of labor is one of the defining traits of honey bees (Apis mellifera), with non-reproductive tasks being performed by workers while a single queen normally monopolizes reproduction. The decentralized organization of a honey bee colony is maintained in large part by a bouquet of queen-produced pheromones, the distribution of which is facilitated by contact among workers throughout the hive. Previous studies have shown that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures of reproductive potential compared to queens raised from older worker larvae. We investigated differences in the chemical composition of the mandibular glands and attractiveness to workers of “high-quality” queens (i.e., raised from first instar worker larvae; more queen-like) and “low-quality” queens (i.e., raised from third instar worker larvae; more worker-like). We characterized the chemical profiles of the mandibular glands of high-quality queens and low-quality queens using GC-MS and used the worker retinue response as a measure of the attractiveness to workers of high-quality queens vs. low-quality queens. We found that queen quality affected the chemical profiles of mandibular gland contents differently across years, showing significant differences in the production of the queen mandibular pheromone (“QMP”) components HVA and 9-HDA in 2010, but no significant differences of any glandular compound in 2012. We also found that workers were significantly more attracted to high-quality queens than to low-quality queens in 2012, possibly because of increased attractiveness of their mandibular gland chemical profiles. Our results indicate that the age at which honey bee larvae enter the “queen-specific” developmental pathway influences the chemical composition of queen mandibular glands and worker behavior. However, these changes are not consistent across years, suggesting

  4. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera.

    PubMed

    Costa, Claudinéia Pereira; Elias-Neto, Moysés; Falcon, Tiago; Dallacqua, Rodrigo Pires; Martins, Juliana Ramos; Bitondi, Marcia Maria Gentile

    2016-01-01

    Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs β bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs β and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs β and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones.

  5. Effects of some insecticides on longevity of the foragers honey bee worker of local honey bee race Apis mellifera jemenatica

    PubMed Central

    Aljedani, Dalal Musleh; Almehmadi, Roqaya Mohammed

    2016-01-01

    Introduction Honeybees are constantly exposed to a wide range of vital and non-vital pressures that may interact with each other and affect the health or survival of the insects. Pesticides are the main danger for the insects, and they subsequently have impacts on human and environmental health. Methods Field research was conducted in the apiary of Hada Al Sham Research Station, where the worker honeybees forager Apis mellifera jemenatica were selected to examine the effect of pesticides on workers’ longevity. We used three insecticides, i.e., deltamethrin, malathion, and abamectin, in different concentrations. The longevity of worker honeybee foragers was calculated; the honeybees were supplied with water, food, natural protein, and sugar solution laced with selected insecticide by mouth under laboratory conditions. Results The longest period of insect longevity was 15.5 days when using deltamethrin concentrate at a concentration of 1.00 ppm; the lowest longevity was two days when using abamectin at a concentration 1.00 ppm. The longevity of the unexposed forager worker honeybees was 18 days, as the variation in the intensity of the effect of the insecticide on the bees appeared with the severity of the effect diminishing in the order of abamectin followed by malathion followed by deltamethrin. Conclusion The study found that the type and concentration of the insecticides that are found in the honeybees’ food had a significant impact on the time of survival of the insects. The longevity of a worker honeybee depends on the health and safety of all of the members of the beehive, and safe alternatives to insecticides must be used because of the danger imposed by the application of insecticides on the continuity of life of the entire society depends on the life of this layer bee community. PMID:26955457

  6. Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera).

    PubMed

    Liao, Ling-Hsiu; Wu, Wen-Yen; Berenbaum, May R

    2017-02-14

    Because certain flavonols and phenolic acids are found in pollen and nectar of most angiosperms, they are routinely ingested by Apis mellifera, the western honey bee. The flavonol quercetin and the phenolic acid p-coumaric acid are known to upregulate detoxification enzymes in adult bees; their presence or absence in the diet may thus affect the toxicity of ingested pesticides. We conducted a series of longevity assays with one-day-old adult workers to test if dietary phytochemicals enhance longevity and pesticide tolerance. One-day-old bees were maintained on sugar syrup with or without casein (a phytochemical-free protein source) in the presence or absence of quercetin and p-coumaric acid as well as in the presence or absence of two pyrethroid insecticides, bifenthrin and β-cyfluthrin. Dietary quercetin (hazard ratio, HR = 0.82), p-coumaric acid (HR = 0.91) and casein (HR = 0.74) were associated with extended lifespan and the two pyrethroid insecticides, 4 ppm bifenthrin (HR = 9.17) and 0.5 ppm β-cyfluthrin (HR = 1.34), reduced lifespan. Dietary quercetin enhanced tolerance of both pyrethroids; p-coumaric acid had a similar effect trend, although of reduced magnitude. Casein in the diet appears to eliminate the life-prolonging effect of p-coumaric acid in the absence of quercetin. Collectively, these assays demonstrate that dietary phytochemicals influence honey bee longevity and pesticide stress; substituting sugar syrups for honey or yeast/soy flour patties may thus have hitherto unrecognized impacts on adult bee health.

  7. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera

    PubMed Central

    Zayed, Amro; Whitfield, Charles W.

    2008-01-01

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating “Africanized” honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (FST) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher FST estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852–1,371 genes or ≈10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between FST estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee. PMID:18299560

  8. Spectroscopic study of honey from Apis mellifera from different regions in Mexico.

    PubMed

    Frausto-Reyes, C; Casillas-Peñuelas, R; Quintanar-Stephano, J L; Macías-López, E; Bujdud-Pérez, J M; Medina-Ramírez, I

    2017-05-05

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  9. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera.

    PubMed

    Boncristiani, Humberto; Underwood, Robyn; Schwarz, Ryan; Evans, Jay D; Pettis, Jeffery; vanEngelsdorp, Dennis

    2012-05-01

    The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies.

  10. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection.

    PubMed

    Goblirsch, Mike; Huang, Zachary Y; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  11. Characterization of Two Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp.

    PubMed

    Schwarz, Ryan S; Bauchan, Gary R; Murphy, Charles A; Ravoet, Jorgen; de Graaf, Dirk C; Evans, Jay D

    2015-01-01

    Trypanosomatids are increasingly recognized as prevalent in European honey bees (Apis mellifera) and by default are attributed to one recognized species, Crithidia mellificae Langridge and McGhee, 1967. We provide reference genetic and ultrastructural data for type isolates of C. mellificae (ATCC 30254 and 30862) in comparison with two recent isolates from A. mellifera (BRL and SF). Phylogenetics unambiguously identify strains BRL/SF as a novel taxonomic unit distinct from C. mellificae strains 30254/30862 and assign all four strains as lineages of a novel clade within the subfamily Leishmaniinae. In vivo analyses show strains BRL/SF preferably colonize the hindgut, lining the lumen as adherent spheroids in a manner identical to previous descriptions from C. mellificae. Microscopy images show motile forms of C. mellificae are distinct from strains BRL/SF. We propose the binomial Lotmaria passim n. gen., n. sp. for this previously undescribed taxon. Analyses of new and previously accessioned genetic data show C. mellificae is still extant in bee populations, however, L. passim n. gen., n. sp. is currently the predominant trypanosomatid in A. mellifera globally. Our findings require that previous reports of C. mellificae be reconsidered and that subsequent trypanosomatid species designations from Hymenoptera provide genetic support.

  12. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis.

    PubMed

    Roat, Thaisa Cristina; Landim, Carminda da Cruz

    2010-09-01

    Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.

  13. Microsatellite Variation in Honey Bee (Apis Mellifera L.) Populations: Hierarchical Genetic Structure and Test of the Infinite Allele and Stepwise Mutation Models

    PubMed Central

    Estoup, A.; Garnery, L.; Solignac, M.; Cornuet, J. M.

    1995-01-01

    Samples from nine populations belonging to three African (intermissa, scutellata and capensis) and four European (mellifera, ligustica, carnica and cecropia) Apis mellifera subspecies were scored for seven microsatellite loci. A large amount of genetic variation (between seven and 30 alleles per locus) was detected. Average heterozygosity and average number of alleles were significantly higher in African than in European subspecies, in agreement with larger effective population sizes in Africa. Microsatellite analyses confirmed that A. mellifera evolved in three distinct and deeply differentiated lineages previously detected by morphological and mitochondrial DNA studies. Dendrogram analysis of workers from a given population indicated that super-sisters cluster together when using a sufficient number of microsatellite data whereas half-sisters do not. An index of classification was derived to summarize the clustering of different taxonomic levels in large phylogenetic trees based on individual genotypes. Finally, individual population X loci data were used to test the adequacy of the two alternative mutation models, the infinite allele model (IAM) and the stepwise mutation models. The better fit overall of the IAM probably results from the majority of the microsatellites used including repeats of two or three different length motifs (compound microsatellites). PMID:7498746

  14. Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models.

    PubMed

    Estoup, A; Garnery, L; Solignac, M; Cornuet, J M

    1995-06-01

    Samples from nine populations belonging to three African (intermissa, scutellata and capensis) and four European (mellifera, ligustica, carnica and cecropia) Apis mellifera subspecies were scored for seven microsatellite loci. A large amount of genetic variation (between seven and 30 alleles per locus) was detected. Average heterozygosity and average number of alleles were significantly higher in African than in European subspecies, in agreement with larger effective population sizes in Africa. Microsatellite analyses confirmed that A. mellifera evolved in three distinct and deeply differentiated lineages previously detected by morphological and mitochondrial DNA studies. Dendrogram analysis of workers from a given population indicated that super-sisters cluster together when using a sufficient number of microsatellite data whereas half-sisters do not. An index of classification was derived to summarize the clustering of different taxonomic levels in large phylogenetic trees based on individual genotypes. Finally, individual population x loci data were used to test the adequacy of the two alternative mutation models, the infinite allele model (IAM) and the stepwise mutation models. The better fit overall of the IAM probably results from the majority of the microsatellites used including repeats of two or three different length motifs (compound microsatellites).

  15. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera).

    PubMed

    Thany, Steeve H; Bourdin, Céline M; Graton, Jérôme; Laurent, Adèle D; Mathé-Allainmat, Monique; Lebreton, Jacques; Questel, Jean-Yves le

    2015-09-28

    In the present study, the effects of low (10 ng/bee) and high (100 ng/bee) doses of acetamiprid and deltamethrin insecticides on multi-trial learning and retrieval were evaluated in the honey bee Apis mellifera. After oral application, acetamiprid and deltamethrin at the concentrations used were not able to impair learning sessions. When the retention tests were performed 1 h, 6 h, and 24 h after learning, we found a significant difference between bees after learning sessions when drugs were applied 24 h before learning. Deltamethrin-treated bees were found to be more sensitive at 10 ng/bee and 100 ng/bee doses compared to acetamiprid-treated bees, only with amounts of 100 ng/bee and at 6 h and 24 h delays. When insecticides were applied during learning sessions, none of the tested insecticides was able to impair learning performance at 10 ng/bee or 100 ng/bee but retention performance was altered 24 h after learning sessions. Acetamiprid was the only one to impair retrieval at 10 ng/bee, whereas at 100 ng/bee an impairment of retrieval was found with both insecticides. The present results therefore suggest that acetamiprid and deltamethrin are able to impair retrieval performance in the honey bee Apis mellifera.

  16. Observations on the removal of brood inoculated with Tropilaelaps mercedesae (Acari: Laelapidae) and the mite's reproductive success in Apis mellifera colonies.

    PubMed

    Khongphinitbunjong, Kitiphong; de Guzman, Lilia I; Buawangpong, Ninat; Rinderer, Thomas E; Frake, Amanda M; Chantawannakul, Panuwan

    2014-01-01

    This study assessed the response of Apis mellifera to brood deliberately infested with Tropilaelaps mercedesae. The reproductive success of T. mercedesae in mite-inoculated and naturally infested brood was also compared. The presence of T. mercedesae inside brood cells significantly affected brood removal. Thai A. mellifera removed 52.6 ± 8.2 % of the brood inoculated with T. mercedesae as compared to 17.2 ± 1.8 and 5.7 ± 1.1 % removal rates for the groups of brood with their cell cappings opened and closed without mite inoculation and the control brood (undisturbed, no mite inoculation), respectively. Brood removal peaked during the second and third days post inoculation when test brood was at the prepupal stage. Overall, non-reproduction (NR) of foundress T. mercedesae was high. However, when NR was measured based on the criteria used for Varroa, the naturally infested pupae (NIP) supported the highest NR (92.8 %). Newly sealed larvae inoculated with Tropilaelaps collected from newly sealed larvae (NSL) had 78.2 % NR and those inoculated with Tropilaelaps collected from tan-bodied pupae (TBP) had 76.8 % NR. Since Tropilaelaps is known to have a short development period and nearly all progeny reach adulthood by the time of host emergence, we also used two Tropilaelaps-specific criteria to determine NR. Foundresses that did not produce progeny and those that produced only one progeny were considered NR. Using these two criteria, NR decreased tremendously but showed similar trends with means of 65, 40 and 33 % for NIP, NSL and TBP, respectively. High NR in the NIP group may indicate increased hygienic behavior in Thai A. mellifera colonies. The removal of infested prepupae or tan-bodied pupae will likely decrease the reproductive potential of Tropilaelaps. Our study suggests that brood removal may be one of the resistance mechanisms towards T. mercedesae by naturally adapted Thai A. mellifera.

  17. Genetic and ultrastructure characterization of a known and a new species of trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, 1967 and Leptomonas passim sp. n.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trypanosomes are increasingly recognized as prevalent in European honey bee (Apis mellifera) colonies and by default are attributed to one formally recognized species, Crithidia mellificae Langridge and McGhee, 1967. We have undertaken a taxonomic evaluation of the two reference isolates of C. melli...

  18. Age, caste, and behavior determine the replicative activity of intestinal stem cells in honeybees (Apis mellifera L.).

    PubMed

    Ward, Kristen N; Coleman, Jennifer L; Clinnin, Kaitlin; Fahrbach, Susan; Rueppell, Olav

    2008-06-01

    Honeybees (Apis mellifera L.) display a pronounced natural aging plasticity. The differences in aging rates between the alternative phenotypes and behavioral classes could reflect differences in protection against damage or in the ability to repair vulnerable tissues. As in other animals, including humans, the gut is continually exposed to environmental insults and harbors a large population of replicating stem cells that maintain the intestinal epithelium. Through studies of the major internal organs using incorporation and immunodetection of the mitotic marker bromo-deoxyuridine, the intestine was determined to be the main site of tissue renewal in adult honeybees. Proliferative activity of the intestinal stem cells was compared among queens, workers, and males of different ages. Simultaneous attempts to assess intestinal cell loss via apoptosis yielded inconclusive results. The relationship between intestinal cell proliferation and worker life-history was evaluated in greater depth by studying diutinus winter workers, reproductive workers, and by decoupling worker behavioral status from chronological age in a single-cohort colony. Intestinal cell proliferation was abundant in all groups and showed an age-related decline in workers, queens, and males. At young ages, workers exhibited relatively more intestinal cell proliferation than did queens and queens more than drones, but the caste and sex differences decreased with age. Cell proliferation did not decrease beyond 6 weeks of age in older queens and in diutinus workers. Ovary activation did not correlate with the amount of intestinal stem cell proliferation in workers, although the queenless hive condition was associated with lower overall counts. In the single-cohort colony, nurse bees exhibited more cell proliferation than foragers, regardless of age. The overall results do not support our hypothesis that longer-lived phenotypes exhibit increased somatic repair in the form of higher replicative activity of

  19. Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees (Apis mellifera L.).

    PubMed

    Jianke, Li; Mao, Feng; Begna, Desalegn; Yu, Fang; Aijuan, Zheng

    2010-12-03

    The hypopharyngeal gland (HG) of the honeybee (Apis mellifera L.) produces royal jelly (RJ) that is essential to feed and raise broods and queens. A strain of bees (high royal jelly producing bee, RJb) has been selected for its high RJ production, but the mechanisms of its higher yield are not understood. In this study, we compared HG acini size, RJ production, and protein differential expressions between the RJb and nonselected honeybee (Italian bee, ITb) using proteomics in combination with an electron microscopy, Western blot, and quantitative real-time PCR (qRT-PCR). Generally, the HG of both bees showed age-dependent changes in acini sizes and protein expression as worker behaviors changed from brood nursing to nectar ripening, foraging, and storage activities. The electron microscopic analysis revealed that the HG acini diameter of the RJb strain was large and produced 5 times more RJ than the ITb, demonstrating a positive correlation between the yield and HG acini size. In addition, the proteomic analysis showed that RJb significantly upregulated a large group of proteins involved in carbohydrate metabolism and energy production, those involved in protein biosynthesis, development, amino acid metabolism, nucleotide and fatty acid, transporter, protein folding, cytoskeleton, and antioxidation, which coincides with the fact that the HGs of the RJb strain produce more RJ than the ITb strain that is owing to selection pressure. We also observed age-dependent major royal jelly proteins (MRJPs) changing both in form and expressional intensity concurrent with task-switching. In addition to MRJPs, the RJb overexpressed proteins such as enolase and transitional endoplasmic reticulum ATPase, protein biosynthesis, and development proteins compared to the ITb strain to support its large HG growth and RJ secretion. Because of selection pressure, RJb pursued a different strategy of increased RJ production by involving additional proteins compared to its original

  20. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family.

    PubMed

    Buttstedt, Anja; Moritz, Robin F A; Erler, Silvio

    2014-05-01

    In the honeybee, Apis mellifera, the queen larvae are fed with a diet exclusively composed of royal jelly (RJ), a secretion of the hypopharyngeal gland of young worker bees that nurse the brood. Up to 15% of RJ is composed of proteins, the nine most abundant of which have been termed major royal jelly proteins (MRJPs). Although it is widely accepted that RJ somehow determines the fate of a female larva and in spite of considerable research efforts, there are surprisingly few studies that address the biochemical characterisation and functions of these MRJPs. Here we review the research on MRJPs not only in honeybees but in hymenopteran insects in general and provide metadata analyses on genome organisation of mrjp genes, corroborating previous reports that MRJPs have important functions for insect development and not just a nutritional value for developing honeybee larvae.

  1. Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada and the first description of an overtly-infected emerging queen.

    PubMed

    Williams, Geoffrey R; Rogers, Richard E L; Kalkstein, Abby L; Taylor, Benjamin A; Shutler, Dave; Ostiguy, Nancy

    2009-04-01

    Deformed wing virus (DWV) in western honey bees (Apis mellifera) often remains asymptomatic in workers and drones, and symptoms have never been described from queens. However, intense infections linked to parasitism by the mite Varroa destructor can cause worker wing deformity and death within 67 h of emergence. Ten workers (eight with deformed wings and two with normal wings) and three drones (two with deformed wings and one with normal wings) from two colonies infected with V. destructor from Nova Scotia, Canada, and two newly-emerged queens (one with deformed wings and one with normal wings) from two colonies infected with V. destructor from Prince Edward Island, Canada, were genetically analyzed for DWV. We detected DWV in all workers and drones, regardless of wing morphology, but only in the deformed-winged queen. This is the first report of DWV from Atlantic Canada and the first detection of a symptomatic queen with DWV from anywhere.

  2. Relationship of the neutral sterols and ecdysteroids of the parasitic mite, Varroa jacobsoni to those of the honey bee, Apis mellifera.

    PubMed

    Hartfelder, K; Feldlaufer, M F.

    1997-06-01

    The neutral sterols of the parasitic mite Varroa jacobsoni were compared with Apis mellifera carnica drone pupae. Analysis by GLC-mass spectrometry indicated mite sterols were reflective of the sterol composition of the drones; 24-methylenecholesterol was the major sterol in both species, with lesser amounts of sitosterol and isofucosterol. Cholesterol accounted for less than 1% of the total sterols. Ecdysteroid analyses indicated drones contained primarily makisterone A. In addition to makisterone A, mites contained ecdysone and 20-hydroxyecdysone, which accounted for over 66% of the ecdysteroid detected. These results indicate that while V. jacobsoni are apparently unable to convert dietary sterols to cholesterol, they are able to produce significant amount of C(27) ecdysteroids in a low cholesterol environment.

  3. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica.

    PubMed

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.

  4. Observation of the Mating Behavior of Honey Bee (Apis mellifera L.) Queens Using Radio-Frequency Identification (RFID): Factors Influencing the Duration and Frequency of Nuptial Flights.

    PubMed

    Heidinger, Ina Monika Margret; Meixner, Marina Doris; Berg, Stefan; Büchler, Ralph

    2014-07-01

    We used radio-frequency identification (RFID) to record the duration and frequency of nuptial flights of honey bee queens (Apis mellifera carnica) at two mainland mating apiaries. We investigated the effect of a number of factors on flight duration and frequency: mating apiary, number of drone colonies, queen's age and temperature. We found significant differences between the two locations concerning the number of flights on the first three days. We also observed an effect of the ambient temperature, with queens flying less often but longer at high temperatures compared to lower temperatures. Increasing the number of drone colonies from 33 to 80 colonies had no effect on the duration or on the frequency of nuptial flights. Since our results agree well with the results of previous studies, we suggest RFID as an appropriate tool to investigate the mating behavior of honey bee queens.

  5. Pollen analysis of honey and pollen collected by Apis mellifera linnaeus, 1758 (Hymenoptera, Apidae), in a mixed environment of Eucalyptus plantation and native cerrado in Southeastern Brazil.

    PubMed

    Simeão, C M G; Silveira, F A; Sampaio, I B M; Bastos, E M A F

    2015-11-01

    Eucalyptus plantations are frequently used for the establishment of bee yards. This study was carried on at Fazenda Brejão, northwestern region of the State of Minas Gerais, Brazil. This farm is covered both with native Cerrado vegetation (Brazilian savanna) and eucalyptus plantations. This paper reports on the botanic origin of pollen pellets and honey collected from honeybee (Apis mellifera) hives along a thirteen-month period (January 2004 to January 2005). The most frequent pollen types found in the pollen pellets during the rainy season were Trema micrantha (Ulmaceae), Copaifera langsdorffii (Fabaceae), an unidentified Poaceae, unidentified Asteraceae-2, Cecropia sp. 1 (Cecropiaceae) and Eucalyptus spp. (Myrtaceae); during the dry season the most frequent pollen types were Acosmium dasycarpum (Fabaceae), Cecropia sp. 1 (Cecropiaceae) and Eucalyptus spp. (Myrtaceae). Pollen grains of Baccharis sp. (Asteraceae), Cecropia sp. 1 (Cecropiaceae), Copaifera langsdorffii (Fabaceae), Mimosa nuda (Fabaceae), Eucalyptus spp. (Myrtaceae) and Trema micrantha (Ulmaceae) were present in the honey samples throughout the study period.

  6. Comparative analysis of two immunohistochemical methods for antigen retrieval in the optical lobe of the honeybee Apis mellifera: myosin-V assay.

    PubMed

    Calábria, Luciana Karen; Teixeira, Renata Roland; Coelho Gonçalves, Sybelli Magda; Passos Lima, Andreia Barcelos; Santos, Ana Alice Diniz Dos; Martins, Antônio Roberto; Espindola, Foued Salmen

    2010-01-01

    The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 ºC, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.

  7. Genetic structure of Africanized honeybee populations (Apis mellifera L.) from Brazil and Uruguay viewed through mitochondrial DNA COI-COII patterns.

    PubMed

    Collet, T; Ferreira, K M; Arias, M C; Soares, A E E; Del Lama, M A

    2006-11-01

    Mitochondrial genotypes of Africanized honeybees from Brazil and Uruguay were surveyed by DraI restriction of the COI-COII region. Eleven mitotypes were found, three of which had not previously been described (A28-A30). Out of 775 samples (725 from Brazil, 50 from Uruguay), 197 were A1 and 520 were A4. A1 frequency increases toward the north of Brazil, whereas A4 frequency increases toward the south, a pattern echoing the African distribution. The origin of the A4 and most of the A1 African patterns can be attributed to the introduction of Apis mellifera scutellata into Brazil in 1956. The A29 and A30 patterns have the P1 sequence observed in many Iberian Peninsula samples, which represent the traces of the introductions into Brazil and Uruguay by settlers.

  8. [Important bee plants to the africanized honey Bee Apis mellifera L. (Hymenoptera: Apidae) in a fragment of savannah in Itirapina, São Paulo State, Brazil].

    PubMed

    Mendonça, Kiára; Marchini, Luís C; Souza, Bruno de A; Almeida-Anacleto, Daniela de; Moreti, Augusta C de C C

    2008-01-01

    The present work had as objectives to know the bee flora composition in an savannah fragment of the Estação Experimental de Itirapina, unit of Divisão de Florestas e Estações Experimentais do Instituto Florestal, in Itirapina county, São Paulo State, Brazil (22 masculine14'S and 47 masculine49'W). The pollen spectrum of the produced honey and the pollen collected by the Africanized honey bee Apis mellifera L. were determined in the area. The information contributes to understand the beekeeping exploration potential in remaining areas of savannah, as an alternative for the sustainable development. The blooming plants were collected biweekly between December 2004 and November 2005, along a trail with 3 km of extension. Pollen loads samples were collected biweekly from February to November 2005, and honey samples were collected monthly, from February to October of the same year, in five beehives of A. mellifera, installed at the same area. The local flora was represented by 82 species, belonging to 59 genera and 30 families, being 3.7% represented in hony samples and 6.1% in pollen loads. Asteraceae, Bignoniaceae, Malpighiaceae and Myrtaceae were the most representative families.

  9. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    PubMed

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations.

  10. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion.

    PubMed

    Desai, S D; Eu, Y-J; Whyard, S; Currie, R W

    2012-08-01

    Deformed wing virus (DWV) is a serious pathogen of the honey bee, Apis mellifera L., vectored by the parasitic mite Varroa destructor. The virus is associated with wing deformity in symptomatic bees, and premature death and reduced colony performance in asymptomatic bees. In the present study we reduced DWV infection by feeding both first instar larvae and adult A. mellifera with a double-stranded (ds) RNA construct, DWV-dsRNA, which is specific to DWV in DWV-inoculated bees, by mixing it with their food. We showed that feeding DWV to larvae causes wing deformity in adult bees in the absence of varroa mites and decreases survival rates of adult bees relative to bees not fed DWV. Feeding larvae with DWV-dsRNA in advance of inoculation with virus reduced the DWV viral level and reduced wing deformity relative to larvae fed DWV or DWV with green fluorescent protein-dsRNA (probably a result of RNA silencing), but did not affect survival to the adult stage. Feeding DWV-dsRNA did not affect larval survival rates, which suggests that dsRNA is non-toxic to larvae. Feeding adult workers with DWV-dsRNA in advance of inoculation with virus increased their longevity and reduced DWV concentration relative to controls.

  11. A new antigenic marker specifically labels a subpopulation of the class II Kenyon cells in the brain of the European honeybee Apis mellifera.

    PubMed

    Watanabe, Takayuki; Kubo, Takeo

    2015-01-01

    The mushroom bodies are the higher-order integration center in the insect brain and are involved in higher brain functions such as learning and memory. In the social hymenopteran insects such as honeybees, the mushroom bodies are the prominent brain structures. The mushroom bodies are composed of lobed neuropils formed by thousands of parallel-projecting axons of intrinsic neurons, and the lobes are divided into parallel subdivisions. In the present paper, we report a new antigenic marker to label a single layer in the vertical lobes of the European honeybee Apis mellifera. In the brain of A. mellifera, a monoclonal antibody (mAb) 15C3, which was originally developed against an insect ecdysone receptor (EcR) protein, immunolabels a single layer of the vertical lobes that correspond to the most dorsal layer of the γ-lobe. The 15C3 mAb recognizes a single ~200 kDa protein expressed in the adult honeybee brain. In addition, the 15C3 mAb immunoreactivity was also observed in the lobes of the developing pupal mushroom bodies. Since γ-lobe is well known to their extensive reorganization that occurs during metamorphosis in Drosophila, the novel antigenic marker for the honeybee γ-lobe allows us to investigate morphological changes of the mushroom bodies during metamorphosis.

  12. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones

    PubMed Central

    Solignac, Michel; Cornuet, Jean-Marie; Vautrin, Dominique; Le Conte, Yves; Anderson, Denis; Evans, Jay; Cros-Arteil, Sandrine; Navajas, Maria

    2005-01-01

    Varroa destructor, now a major pest of the Western honeybee, Apis mellifera, switched from its original host, the Eastern honeybee, A. cerana, ca. 50 years ago. So far, only two out of several known mitochondrial haplotypes of V. destructor have been found to be capable of reproducing on A. mellifera (Korea and Japan). These haplotypes are associated in almost complete cytonuclear disequilibrium to diagnostic alleles at 11 microsatellite loci. By contrast, microsatellite polymorphism within each type is virtually absent, because of a severe bottleneck at the time of host change. Accordingly, 12 mitochondrial sequences of 5185 nucleotides displayed 0.40% of nucleotide divergence between haplotypes and no intra haplotype variation. Hence, each type has a quasi-clonal structure. The nascent intratype variability is subsequent to the clone formation 50 years ago: in both types the variant alleles differ from the most common by one (in 10 cases), two (five cases) or three (one case) repeated motifs. In addition to individuals of the two ‘pure’ types, five F1 hybrids and 19 recombinant individuals (Japan alleles introgressed into the Korea genetic background) were detected. The existence of F1 and recombinant individuals in admixed populations requires that double infestations of honeybee cells occur in a high proportion but the persistence of pure types suggests a post-zygotic isolation between the two clones. PMID:15734696

  13. Metabolism of fructophilic lactic acid bacteria isolated from Apis mellifera L. bee-gut: a focus on the phenolic acids as external electron acceptors.

    PubMed

    Filannino, Pasquale; Di Cagno, Raffaella; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-09-16

    Fructophilic lactic acid bacteria (FLAB) are strongly associated to the gastrointestinal tract (GIT) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GIT of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of Apulia region (Italy). Almost all the isolates showed fructophilic tendencies, which were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray, targeting 190 carbon sources, was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic or gallic acids, as electron acceptors was investigated in fructose based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by 4 FLAB, showing the highest phenolic acid reductase activity, was investigated in glucose based medium supplemented with p-coumaric acid. Metabolic responses observed through phenotypic microarray suggested that FLAB may use p-coumaric acid as external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid.

  14. Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency.

    PubMed

    Maggi, Matías; Negri, Pedro; Plischuk, Santiago; Szawarski, Nicolás; De Piano, Fiorella; De Feudis, Leonardo; Eguaras, Martín; Audisio, Carina

    2013-12-27

    The European honey bee Apis mellifera is known to be affected by many parasites and pathogens that have great impact over the insect development. Among parasites affecting bee health, Nosema ceranae is one of the main biotic factors affecting colony populations. As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. The main goal of the current study was to assess the effect of the oral administration of the metabolites produced by Lactobacillus johnsonii CRL1647 (mainly organic acids) supplemented in syrup, on: (I) N. ceranae sporulation dynamics before and after fumagillin application, and (II) performance of A. mellifera colonies. Different experiments were conducted to evaluate the effects of these bacterial metabolites on bees: in vitro administration revealed no toxic effects against bees. Colonies fed with the lactic acids incremented their beehive population and also the amount of fat bodies per bee. Finally, the organic acids reduced the intensity of the pathogen after the second application of treatment as well as enhanced the fumagillin efficiency. This study provides important information for the development of new control substances against nosemosis.

  15. Nosema ceranae is an old resident of honey bee (Apis mellifera) colonies in Mexico, causing infection levels of one million spores per bee or higher during summer and fall.

    PubMed

    Guerrero-Molina, Cristina; Correa-Benítez, Adriana; Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto

    2016-11-01

    This study was conducted to identify Nosema spp. and to determine their infection levels in honey bee (Apis mellifera) samples collected in Mexico in 1995-1996. Samples of historical surveys from different countries are of particular interest to support or challenge the hypothesis that the microsporidium Nosema ceranae is a new parasite of A. mellifera that has recently dispersed across the world. We demonstrate that N. ceranae has parasitized honey bees in Mexico since at least 1995 and that the infection levels of this parasite during summer and fall, exceed the threshold at which treatment of honey bee colonies is recommended.

  16. Morphological, molecular, and phylogenetic characterization of Nosema cerana, a microsporidian parasite isolated from the European honey bee, Apis mellifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nosema ceranae, a microsporidian parasite originally described from Apis cerana, has been found to infect Apis melllifera and is highly pathogenic to its new host. In the present study, data on N. ceranae ultrastructure, host tissue tropism, secondary structures of ribosomal RNA, and phylogenetic ...

  17. Species-specific diagnostics of Apis mellifera trypanosomatids: A nine-year survey (2007-2015) for trypanosomatids and microsporidians in Serbian honey bees.

    PubMed

    Stevanovic, Jevrosima; Schwarz, Ryan S; Vejnovic, Branislav; Evans, Jay D; Irwin, Rebecca E; Glavinic, Uros; Stanimirovic, Zoran

    2016-09-01

    In this study, honey bees collected in Serbia over 9 consecutive years (2007-2015) were retrospectively surveyed to determine the prevalence of eukaryotic gut parasites by molecular screening of archival DNA samples. We developed species-specific primers for PCR to detect the two known honey bee trypanosomatid species, Crithidia mellificae and the recently described Lotmaria passim. These primers were validated for target specificity under single and mixed-species conditions as well as against the bumblebee trypanosomatid Crithidia bombi. Infections by Nosema apis and Nosema ceranae (Microsporidia) were also determined using PCR. Samples from 162 colonies (18 from each year) originating from 57 different localities were surveyed. L. passim was detected in every year with an overall frequency of 62.3% and annual frequencies ranging from 38.9% to 83.3%. This provides the earliest confirmed record to date for L. passim and the first report of this species in Serbia. N. ceranae was ubiquitous, occurring in every year and at 95.7% overall frequency, ranging annually from 83.3% to 100%. The majority of colonies (60.5%) were co-infected with L. passim and N. ceranae, but colony infections by each species were statistically independent of one another over the nine years. Although C. mellificae and N. apis have both been reported recently at low frequency in Europe, neither of these species was detected in Serbia. These results support the hypothesis that L. passim has predominated over C. mellificae in A. mellifera during the past decade.

  18. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations

    PubMed Central

    Mortensen, Ashley N.; Ellis, James D.

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African−matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas. PMID:27518068

  19. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    PubMed

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas.

  20. Efficacy of modified hive entrances and a bottom screen device for controlling Aethina tumida (Coleoptera: Nitidulidae) infestations in Apis mellifera (Hymenoptera: Apidae) colonies.

    PubMed

    Ellis, James D; Delaplane, Keith S; Hepburn, Randall; Elzen, Patti J

    2003-12-01

    This study was designed to test whether hive entrances reduced with polyvinyl chloride pipe reduce the ingress of Aethina tumida Murray into Apis mellifera L. colonies and whether screen-mesh bottom boards alleviate side effects associated with restricted entrances. Forty-eight colonies distributed equally between two locations each received one of six experimental treatments: 1) conventional solid bottom board and open entrance, 2) ventilated bottom board and open entrance, 3) conventional bottom and 1.9-cm-i.d. pipe entrance, 4) conventional bottom and 3.8-cm pipe entrance, 5) screen bottom and 1.9-cm pipe entrance, and 6) screen bottom and 3.8-cm pipe entrance. Results were inconsistent between apiaries. In apiary 1, colonies with 3.8-cm pipe entrances had fewer A. tuzmida than colonies with open entrances, but this benefit was not apparent in apiary 2. Pipe entrances tended to reduce colony and brood production in both apiaries, and these losses were only partly mitigated with the addition of screened bottom boards. Pipe entrances had no measurable liability concerning colony thermoregulation. There were significantly fewer frames of adult A. mellifera in colonies with 3.8- or 1.9-cm pipe entrances compared with open entrances but more in colonies with screens. There were more frames of pollen in colonies with open or 3.8-cm pipe entrances than 1.9-cm entrances. We conclude that the efficacy of reduced hive entrances in reducing ingress of A. tumida remains uncertain due to observed differences between apiaries. Furthermore, there were side effects associated with restricted entrances that could be only partly mitigated with screened bottom boards.

  1. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera

    NASA Astrophysics Data System (ADS)

    Tan, K.; Radloff, S. E.; Li, J. J.; Hepburn, H. R.; Yang, M. X.; Zhang, L. J.; Neumann, P.

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  2. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    PubMed

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies.

  3. Comparative pollen preferences by africanized honeybees Apis mellifera L. of two colonies in Pará de Minas, Minas Gerais, Brazil.

    PubMed

    da Luz, Cynthia F P; Bacha Junior, Gabriel L; Fonseca, Rafael L S E; Sousa, Priscila R de

    2010-06-01

    The aim of this study was to investigate the polliniferous floral sources used by Apis mellifera (L.) (africanized) in an apiary situated in Pará de Minas, Minas Gerais state, and evaluate the pollen prefences among the beehives. Two beehives of Langstroth type with frontal pollen trap collectors were used. The harvest was made from September 2007 to March 2008, with three samples of pollen pellets colected per month per beehive. The subsamples of 2 grams each were prepared according to the European standard melissopalynological method. A total of 56 pollen types were observed, identifying 43 genus and 32 families. The families that showed the major richness of pollen types were: Mimosaceae (8), Asteraceae (6), Fabaceae (3), Arecaceae (3), Euphorbiaceae (3), Rubiaceae (3), Caesalpiniaceae (2), Moraceae (2) and Myrtaceae (2). The most frequent pollen types (> 45%) were Mimosa scabrella, Myrcia and Sorocea. The results demonstrated a similarity regarding the preferences of floral sources during the major part of the time. There was a distinct utilization of floral sources among the pollen types of minor frequency. In spite of the strong antropic influence, the region showed a great polliniferous variety, which was an indicative of the potential for monofloral as well as heterofloral pollen production.

  4. Impact of naled on honey bee Apis mellifera L. survival and productivity: aerial ULV application using a flat-fan nozzle system.

    PubMed

    Zhong, H; Latham, M; Hester, P G; Frommer, R L; Brock, C

    2003-08-01

    A study was conducted to evaluate the impact of naled on honey bees as a result of their exposure to aerial ULV applications of this insecticide during three routine mosquito spray missions by Manatee County Mosquito Control District in Florida during the summer of 1999. Naled deposits were collected on filter paper and subsequently analyzed by gas chromatography. Mortality of adult honey bees Apis mellifera L. was estimated based on numbers from dead bee collectors placed in front of the entrance of the beehives. We found that honey bees clustering outside of the beehives were subject to naled exposure. Bee mortality increased when higher naled residues were found around the hives. The highest average naled deposit was 6,227 +/- 696 microg/m2 at the site 1 forest area following the mosquito spray mission on July 15, 1999. The range of naled deposition for this application was 2,818-7,101 microg/m2. The range of dead bees per hive was 0-39 prior to spraying and 9-200 within 24 h following this spray mission. The average yield of honey per hive was significantly lower (p < 0.05) for naled-exposed hives compared with unexposed hives. Because reduction of honey yield also may be affected by other factors, such as location of the hives relative to a food source and vigor of the queen bee, the final assessment of honey yield was complicated.

  5. Pollen types and levels of total phenolic compounds in propolis produced by Apis mellifera L. (Apidae) in an area of the Semiarid Region of Bahia, Brazil.

    PubMed

    Matos, Vanessa R; Alencar, Severino M; Santos, Francisco A R

    2014-03-01

    Twenty-two propolis samples produced by Apis mellifera L. in an area of the Semiarid region the the State of Bahia (Agreste of Alagoinhas), Brazil, were palynologically analyzed and quantified regarding their levels of total phenolic compounds. These samples were processed using the acetolysis technique with the changes suggested for use with propolis. We found 59 pollen types belonging to 19 families and 36 genera. The family Fabaceae was the most representative in this study with nine pollen types, followed by the family Asteraceae with seven types. The types Mikania and Mimosa pudica occurred in all samples analyzed. The types Mimosa pudica and Eucalyptus had frequency of occurrence above 50% in at least one sample. The highest similarity index (c. 72%) occurred between the samples ER1 and ER2, belonging to the municipality of Entre Rios. Samples from the municipality of Inhambupe displayed the highest (36.78±1.52 mg/g EqAG) and lowest (7.68 ± 2.58 mg/g EqAG) levels of total phenolic compounds. Through the Spearman Correlation Coefficient we noticed that there was a negative linear correlation between the types Mimosa pudica (rs = -0.0419) and Eucalyptus (rs = -0.7090) with the profile of the levels of total phenolic compounds of the samples.

  6. Determining the Environmental Factors Underlying the Spatial Variability of Insect Appearance Phenology for the Honey Bee, Apis mellifera, and the Small White, Pieris rapae

    PubMed Central

    Gordo, Oscar; Sanz, Juan José; Lobo, Jorge M.

    2010-01-01

    The spatial patterns of the variability of the appearance dates of the honey bee Apis mellifera L. (Hymenoptera: Apidea) and the small white Pieris rapae (L.) (Lepidoptera: Pieridae) were investigated in Spain. A database of more than 7,000 records of the dates of the first spring sightings of each species in more than 700 localities from 1952–2004 was used. Phenological data were related to spatial, topographical, climate, land use, and vegetation productivity explanatory variables by means of multiple regression models in order to search for the environmental mechanisms underlying the observable phenological variability. Temperature and altitudinal spatial gradients accounted for most of the spatial variability in the phenology of the studied species, while vegetation productivity and land use had low relevance. In both species, the first individuals were recorded at those sites with warmer springs and dry summers, at low altitudes, and not covered with dry farming (i.e., cereal crops). The identity and magnitude of the effect of the variables were almost identical for both species and closely mirrored spatial temperature gradients. The best explanatory models accounted for up to half of the variability of appearance dates. Residuals did not show a spatial autocorrelation, meaning that no other spatially structured variable at our working resolution could have improved the results. Differences in the spatial patterns of phenology with regard to other taxa, such as arrival dates of migratory birds, suggest that spatial constraints may play an essential role in the phenological matching between trophic levels. PMID:20578955

  7. Hygienic Behavior of Africanized Honey Bees Apis mellifera Directed towards Brood in Old and New Combs during Diurnal and Nocturnal Periods.

    PubMed

    Pereira, Rogério A; Morais, Michelle M; Francoy, Tiago M; Gonçalves, Lionel S

    2013-09-26

    Hygienic behavior in honey bees, Apis mellifera, is measured by determining the rate at which the bees uncap and remove dead sealed brood. We analyzed individual behavior of house-cleaning Africanized honey bees in order to focus on some poorly understood aspects of hygienic behavior. Two observation hives, each with approximately 3,000 individually marked bees, were used in this study. The efficiency of hygienic behavior was evaluated in hygienic and non-hygienic strains of bees using two types of combs (new and old), as well as at different periods of the day (night and day). We also recorded the age of workers that performed this task of removing dead brood. In both strains, the workers that performed tasks related to hygienic behavior were within the same age cohort; we found no influence of age on the amount of time dedicated to the task, independent of the type of comb or period of the day. The total time from perforation of the cell capping until the dead brood had been completely removed, and was significantly shorter during daytime than at night. Hygienic behavior directed towards dead brood in new combs was also significantly more efficient (faster) than for brood in old combs. The type of comb had significantly more effect than did the time of day. We conclude that the type of comb and time of day should be taken into consideration when evaluating hygienic behavior in honey bees.

  8. Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata).

    PubMed

    Jaffé, R; Dietemann, V; Crewe, R M; Moritz, R F A

    2009-04-01

    The mating system of the honeybee (Apis mellifera) has been regarded as one of the most panmictic in the animal kingdom, with thousands of males aggregating in drone congregation areas (DCAs) that virgin queens visit to mate with tens of partners. Although males from many colonies gather at such congregations, the temporal changes in the colonies contributing drones remain unknown. Yet, changes in the DCAs' genetic structure will ultimately determine population gene flow and effective population size. By repeatedly sampling drones from an African DCA over a period of 3 years, we studied the temporal changes in the genetic structure of a wild honeybee population. Using three sets of tightly linked microsatellite markers, we were able to reconstruct individual queen genotypes with a high accuracy, follow them through time and estimate their rate of replacement. The number of queens contributing drones to the DCA varied from 12 to 72 and was correlated with temperature and rainfall. We found that more than 80% of these queens were replaced by mostly unrelated ones in successive eight months sampling intervals, which resulted in a clear temporal genetic differentiation of the DCA. Our results suggest that the frequent long-range migration of colonies without nest-site fidelity is the main driver of this high queen turnover. DCAs of African honeybees should thus be regarded as extremely dynamic systems which together with migration boost the effective population size and maintain a high genetic diversity in the population.

  9. Effects of juvenile hormone and ecdysone on the timing of vitellogenin appearance in hemolymph of queen and worker pupae of Apis mellifera

    PubMed Central

    Barchuk, Angel Roberto; Bitondi, Marcia Maria Gentile; Simões, Zilá Luz Paulino

    2002-01-01

    The caste-specific regulation of vitellogenin synthesis in the honeybee represents a problem with many yet unresolved details. We carried out experiments to determine when levels of vitellogenin are first detected in hemolymph of female castes of Apis mellifera, and whether juvenile hormone and ecdysteroids modulate this process. Vitellogenin levels were measured in hemolymph using immunological techniques. We show that in both castes the appearance of vitellogenin in the hemolymph occurs during the pupal period, but the timing was different in the queen and worker. Vitellogenin appears in queens during an early phase of cuticle pigmentation approximately 60h before eclosion, while in workers the appearance of vitellogenin is more delayed, initiating in the pharate adult stage, approximately 10h before eclosion. The timing of vitellogenin appearance in both castes coincides with a slight increase in endogenous levels of juvenile hormone that occurs at the end of pupal development. The correlation between these events was corroborated by topical application of juvenile hormone. Exogenous juvenile hormone advanced the timing of vitellogenin appearance in both castes, but caste-specific differences in timing were maintained. Injection of actinomycin D prevented the response to juvenile hormone. In contrast, queen and worker pupae that were treated with ecdysone showed a delay in the appearance of vitellogenin. These data suggest that queens and workers share a common control mechanism for the timing of vitellogenin synthesis, involving an increase in juvenile hormone titers in the presence of low levels of ecdysteroids. PMID:15455035

  10. A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols.

    PubMed

    Teerawanichpan, Prapapan; Robertson, Albert J; Qiu, Xiao

    2010-09-01

    Honey bees (Apis mellifera) are social insects which have remarkable complexity in communication pheromones. These chemical signals comprise a mixture of hydrocarbons, wax esters, fatty acids, aldehydes and alcohols. In this study, we detected several long chain aliphatic alcohols ranging from C18-C32 in honey bees and the level of these alcohols varied in each body segment. C18:0Alc and C20:0Alc are more pronounced in the head, whereas C22:0Alc to C32Alc are abundant in the abdomen. One of the cDNAs coding for a fatty acyl-CoA reductase (AmFAR1) involved in the synthesis of fatty alcohols was isolated and characterized. AmFAR1 was ubiquitously expressed in all body segments with the predominance in the head of honey bees. Heterologous expression of AmFAR1 in yeast revealed that AmFAR1 could convert a wide range of fatty acids (14:0-22:0) to their corresponding alcohols, with stearic acid 18:0 as the most preferred substrate. The substrate preference and the expression pattern of AmFAR1 were correlated with the level of total fatty alcohols in bees. Reconstitution of the wax biosynthetic pathway by heterologous expression of AmFAR1, together with Euglena wax synthase led to the high level production of medium to long chain wax monoesters in yeast.

  11. Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee.

    PubMed

    Anfora, Gianfranco; Frasnelli, Elisa; Maccagnani, Bettina; Rogers, Lesley J; Vallortigara, Giorgio

    2010-01-20

    Recent evidence suggests that asymmetry between the left and right sides of the brain is not limited to vertebrates but extends to invertebrates as well. We compared olfactory lateralization in two species of Hymenoptera Apoidea, the honeybee (Apis mellifera), a social species, and the mason bee (Osmia cornuta), a solitary species. Recall of the olfactory memory 1 h after training to associate an odour with a sugar reward, as revealed by the bee extending its proboscis when presented with the trained odour, was better in honeybees trained with their right than with their left antenna. No such asymmetry was observed in mason bees. Similarly, electroantennographic responses to a floral volatile compound and to an alarm pheromone component were higher in the right than in the left antenna in honeybees but not in mason bees. These findings seem to support recent game-theoretical models suggesting that population-level lateralization is more likely to have evolved in social than in non-social species.

  12. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil.

    PubMed

    Roat, T C; dos Santos-Pinto, J R A; Dos Santos, L D; Santos, K S; Malaspina, O; Palma, M S

    2014-11-01

    Fipronil is a phenylpyrazole insecticide that is widely used in Brazilian agriculture for pest control. Although honeybees are not targets of fipronil, studies indicate that this pesticide can be harmful to honeybees. To assess the effects of fipronil in the brain of Africanized Apis mellifera workers, this study focused on the toxico-proteome profiling of the brain of newly emerged and aged honeybee workers that were exposed to a sub-lethal dose (10 pg fipronil per day. i.e. (1)/100 of LD50/bee/day during 5 days) of the insecticide. Proteomic analysis identified 25 proteins that were differentially up-regulated or down-regulated when the fipronil-exposed and non-exposed groups were compared. These proteins are potentially related to pathogen susceptibility, neuronal chemical stress, neuronal protein misfolding, and occurrence of apoptosis, ischemia, visual impairment, damaged synapse formation, brain degeneration, memory and learning impairment. The exposure of honeybees to a very low dose of fipronil, even for a short period of time (5 days), was sufficient to cause a series of important neuroproteomic changes in the brains of honeybees.

  13. Bioactivity of Rosmarinus officinalis essential oils against Apis mellifera, Varroa destructor and Paenibacillus larvae related to the drying treatment of the plant material.

    PubMed

    Maggi, M; Gende, L; Russo, K; Fritz, R; Eguaras, M

    2011-02-01

    In this study, chemical composition, physicochemical properties and bioactivity of two essential oils of Rosmarinus officinalis extracted from plant material with different drying treatments against Apis mellifera, Varroa destructor and Paenibacillus larvae were assessed. The lethal concentration 50 (LC50) for mites and bees was estimated using a complete exposure method test. The broth microdilution method was followed in order to determine the minimum inhibitory concentrations (MICs) of the essential oils against P. larvae. Physicochemical properties were similar in both the essential oils, but the percentage of components showed certain differences according to their drying treatment. β-Myrcene and 1,8-cineole were the main constituents in the oils. The LC50 for complete exposure method at 24, 48 and 72 h was minor for mites exposed to R. officinalis essential oil dried in oven conditions. MIC values were 700-800 µg mL(-1) and 1200 µg mL(-1) for R. officinalis dried in air and oven conditions, respectively. The results reported in this research show that oil toxicity against V. destructor and P. larvae differed depending on the drying treatment of the plant material before the distillation of essential oil.

  14. Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells.

    PubMed

    Salvy, M; Martin, C; Bagnères, A G; Provost, E; Roux, M; Le Conte, Y; Clément, J L

    2001-02-01

    Varroa jacobsoni is an ectoparasite of Apis mellifera which invades brood cells, on 8-day-old larvae several hours before cell capping. Reproduction of the parasite takes place in the capped brood cells during the nymphose of the bee. Cuticular hydrocarbons of unparasitized bees and of bees parasitized by Varroa jacobsoni were extracted and analysed by gas chromatography (GC) coupled with mass spectrometry (GC-MS). Three developmental stages of worker honey bees were studied: larvae, pupae and emergent adults. The comparison between unparasitized and parasitized hosts was performed with Principal Components Analysis coupled with a multivariate variance analysis. The cuticular hydrocarbon profiles of honey bees were qualitatively similar, for the 3 developmental stages and regardless of the presence of Varroa in the cells. Nevertheless, comparison of the relative proportions of hydrocarbons showed that the cuticular profiles of pupae and emergent adults parasitized by 1 mite and of larvae parasitized by 2 mites were significantly different from the corresponding unparasitized individuals. Such modifications could be regarded (i) as a cause of the multi-infestation in larvae during invasion of brood and (ii) as a consequence of stress and/or removal of proteins contained in the haemolymph of the host during its development.

  15. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies.

    PubMed

    Yoder, Jay A; Jajack, Andrew J; Rosselot, Andrew E; Smith, Terrance J; Yerke, Mary Clare; Sammataro, Diana

    2013-01-01

    Fermentation by fungi converts stored pollen into bee bread that is fed to honey bee larvae, Apis mellifera, so the diversity of fungi in bee bread may be related to its food value. To explore the relationship between fungicide exposure and bee bread fungi, samples of bee bread collected from bee colonies pollinating orchards from 7 locations over 2 years were analyzed for fungicide residues and fungus composition. There were detectable levels of fungicides from regions that were sprayed before bloom. An organic orchard had the highest quantity and variety of fungicides, likely due to the presence of treated orchards within bees' flight range. Aspergillus, Penicillium, Rhizopus, and Cladosporium (beneficial fungi) were the primary fungal isolates found, regardless of habitat differences. There was some variation in fungal components amongst colonies, even within the same apiary. The variable components were Absidia, Alternaria, Aureobasidium, Bipolaris, Fusarium, Geotrichum, Mucor, Nigrospora, Paecilomyces, Scopulariopsis, and Trichoderma. The number of fungal isolates was reduced as an effect of fungicide contamination. Aspergillus abundance was particularly affected by increased fungicide levels, as indicated by Simpson's diversity index. Bee bread showing fungicide contamination originated from colonies, many of which showed chalkbrood symptoms.

  16. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment.

    PubMed

    Retschnig, Gina; Williams, Geoffrey R; Odemer, Richard; Boltin, Janina; Di Poto, Cornelia; Mehmann, Marion M; Retschnig, Peter; Winiger, Pius; Rosenkranz, Peter; Neumann, Peter

    2015-11-01

    Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.

  17. Apis mellifera ligustica, Spinola 1806 as bioindicator for detecting environmental contamination: a preliminary study of heavy metal pollution in Trieste, Italy.

    PubMed

    Giglio, Anita; Ammendola, Anna; Battistella, Silvia; Naccarato, Attilio; Pallavicini, Alberto; Simeon, Enrico; Tagarelli, Antonio; Giulianini, Piero Giulio

    2017-01-01

    Honeybees have become important tools for the ecotoxicological assessment of soil, water and air metal contamination due to their extraordinary capacity to bioaccumulate toxic metals from the environment. The level of heavy metal pollution in the Trieste city was monitored using foraging bees of Apis mellifera ligustica from hives owned by beekeepers in two sites strategically located in the suburban industrial area and urban ones chosen as control. The metal concentration in foraging bees was determined by inductively coupled plasma-mass spectrometry. The chemical analysis has identified and quantified 11 trace elements accumulated in two different rank orders: Zn> Cu > Sr > Bi > Ni > Cr > Pb = Co > V > Cd > As in foraging bees from the suburban site and Zn > Cu > Sr > Cr > Ni > Bi > Co = V > Pb > As > Cd in bees from urban site. Data revealed concentrations of Cr and Cu significantly higher and concentration of Cd significantly lower in bees from urban sites. The spatial difference and magnitude order in heavy metal accumulation along the urban-suburban gradient are mainly related to the different anthropogenic activity within sampled sites and represent a risk for the human health of people living in the city. We discussed and compared results with the range of values reported in literature.

  18. Molecular identification and phylogenetic analysis of Lactobacillus and Bifidobacterium spp. isolated from gut of honeybees (Apis mellifera) from West Azerbaijan, Iran

    PubMed Central

    Sharifpour, Mohammad Farouq; Mardani, Karim; Ownagh, Abdulghaffar

    2016-01-01

    Polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) and phylogenetic analysis were used for molecular identification of lactic acid bacteria (LABs) isolated from Apis mellifera. Eighteen honeybee workers were collected from three different apiaries in West Azerbaijan. LABs from the gut of honeybees were isolated and cultured using routine biochemical procedures. Genomic DNA was extracted from LABs and a fragment of 1540 bp in size of 16S rRNA gene was amplified. PCR products were digested using HinfI endonuclease and digested products with different RFLP patterns were subjected to nucleotide sequencing and phylogenetic analysis. The results revealed that Lactobacillus and Bifidobacteria spp. are were the most abundant LABs in honeybee gut. Phylogenetic analysis showed that both Lactobacillus and Bifidobacterium were closely clustered with high similarity percentage with the same bacteria isolated from honeybees’ gut elsewhere. It was concluded that LABs isolated from honeybees had low sequence divergence in comparison with LABs isolated from other sources such as dairy products. PMID:28144419

  19. In situ localization of heat-shock and histone proteins in honey-bee (Apis mellifera l.) larvae infected with Paenibacillus larvae.

    PubMed

    Gregorc, A; Bowen, I D

    1999-01-01

    The immunohistochemical localization of the heat shock proteins (Hsp70 and Hsp90) and histone protein in healthy and Paenibacillus larvae infected honeybee (Apis mellifera L.) larvae has been studied. Hsp70 was found in the nuclei and the cytoplasm of infected midgut, salivary gland cells and haemocytes, but not in uninfected larvae. Hsp90 was localized in both infected and uninfected cells. Exposed histone proteins were localized in the nuclei of dying uninfected cells undergoing programmed cell death. The distribution of histone protein in uninfected cells of midgut, salivary gland, and other tissues was nuclear and indicative of normal programmed cell death at levels between 1 and 5%. After applying histone protein antibodies to P. larvae infected honeybee larvae, the DAB based reaction product was located in the nuclei or immediate surroundings of all larval cells. The Hsp70, Hsp90 and histone protein distribution patterns are discussed in relation to the morphological, cytochemical and immunocytochemical characteristics of programmed cell death and pathological necrosis. Results produced by methyl green-pyronin staining confirm an elevation of RNA levels in normal programmed cell death and a reduced staining for RNA in necrotic infected cells.

  20. Natural Larval Diet Differently Influences the Pattern of Developmental Changes in DNA 5-Methylcytosine Levels in Apis mellifera Queens as Compared with Workers and Drones.

    PubMed

    Strachecka, A; Olszewski, K; Bajda, M; Demetraki-Paleolog, J

    2015-08-01

    The principal mechanism of gene activation/silencing is DNA 5-methylcytosine methylation. This study was aimed at determining global DNA methylation levels in larvae, prepupae, pupae, and 1-day-old adults of Apis mellifera queens, workers and drones. The Imprint Methylated DNA Quantification Kit MDQ1 was used. Percentages of DNA 5-methylcytosine were low and relatively similar in the larvae of all the castes until 4th day of larval development (3-5%). However, they were higher in the drone and worker larvae than in the queen larvae. Generally, the developmental patterns of changes in the DNA methylation levels were different in the queens in comparison with the drones and workers. While methylation increased in the queens, it decreased in the drones and workers. Methylated DNA methylcytosine percentages and weights in the queen prepupae (15%, 9.18 ng) and pupae (21%, 10.74 ng) were, respectively, three and four times higher than in the worker/drone brood of the same age (2.5-4%, 0.03-0.07 ng). Only in the queens, after a substantial increase, did DNA methylation decrease almost twice between the pupal stage and queen emergence (from 21% and 10.74 ng to 12% and 6.78 ng). This finding seems very interesting, particularly for experimental gerontology.

  1. Temporal and morphological differences in post-embryonic differentiation of the mushroom bodies in the brain of workers, queens, and drones of Apis mellifera (Hymenoptera, Apidae).

    PubMed

    Roat, Thaisa Cristina; da Cruz Landim, Carminda

    2008-12-01

    The mushroom bodies are structures present in the insect brain described as centers for the neural basis of learning, memory, and other higher functions. Honeybees (Apis mellifera) are insects with a sophisticated system of spatial orientation and possess well-developed learning and memory capabilities, which are associated with neural and brain structures. Thus, the present study aimed to compare the mushroom bodies during post-embryonic development and in newly emerged males, workers, and queens using light and transmission electron microscopy to examine how differential morphological characteristics are established during development. Measurements of structures were also taken in several post-embryonic developmental phases in order to evaluate size differences during the process and in the adult organs. The results show that workers, queens, and males exhibit temporal and size differences during the post-embryonic development of mushroom bodies, probably as adaptations to differences in behavior complexity. The mushroom bodies of workers are precociously formed and are larger than those of queens and drones. Thus, workers have the largest mushroom bodies resulting from differential development during metamorphosis.

  2. Virus present in the reproductive tract of asymptomatic drones of honey bee (Apis mellifera l.), and possible infection of queen during mating.

    PubMed

    Da Cruz-Landim, Carminda; Roat, Thaisa C; Fernadez, Fernanda C

    2012-07-01

    Virus particles and viral inclusions were detected by transmission electron microscopy examination of sections of the seminal vesicles and mucus gland of asymptomatic young drones from colonies of Apis mellifera lightly infested by Varroa mite. In the mucus gland the infection was found in the muscular sheath and epithelium, while in the seminal vesicle in cells of the outer serosa. Isolated viral particles were also observed in the hemolymph occupying the intercellular spaces of the muscular sheath fibers. In the muscle the virus appeared as polygonal crystalloid inclusions, while in the epithelium mainly inside cytoplasmic vesicles. The infected cells apparently are not damaged. The virus particles are present in the hemolymph and forming more mature structures, as crystalloids, in the muscle. This suggests that the virus is liberated in the body fluid and infects the tissues penetrating the cells through endocytosis. The presence of virus in mucus gland epithelial vesicles raise the possibility of its transference to the gland secretion and therefore, to the semen.

  3. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.).

    PubMed

    Guzman-Novoa, Ernesto; Emsen, Berna; Unger, Peter; Espinosa-Montaño, Laura G; Petukhova, Tatiana

    2012-07-01

    The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed.

  4. Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor

    NASA Astrophysics Data System (ADS)

    Mitchell, Derek

    2016-05-01

    In the absence of human intervention, the honeybee ( Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW-1 K for wooden hives and greater than 5 kgW-1 K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW-1 K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.

  5. The Activity of Carbohydrate-Degrading Enzymes in the Development of Brood and Newly Emerged workers and Drones of the Carniolan Honeybee, Apis mellifera carnica

    PubMed Central

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods. PMID:22943407

  6. Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies.

    PubMed

    Stanley, Johnson; Sah, Khushboo; Jain, S K; Bhatt, J C; Sushil, S N

    2015-01-01

    A series of experiments were carried out to determine the acute toxicity of pesticides in the laboratory, toxicity through spray on flowering plants of mustard (Tier II evaluation) and field on both Apis cerana and A. mellifera bees. The overall mortality of honey bees through topical (direct contact) were found significantly higher than that of indirect filter paper contamination assays. Insecticides viz., chlorpyriphos, dichlorvos, malathion, profenofos, monocrotophos and deltamethrin when exposed directly or indirectly at their field recommended doses caused very high mortality up to 100% to both the bees at 48 HAT. The insecticides that caused less mortality through filter paper contamination viz., flubendiamide, methyl demeton, imidacloprid and thiamethoxam caused very high morality through direct exposure. Apart from all the fungicides tested, carbendazim, mancozeb, chlorothalonil and propiconazole, insecticides acetamiprid and endosulfan were found safer to both the bees either by direct or indirect exposures. Tier II evaluation by spray of pesticides at their field recommended doses on potted mustard plants showed monocrotophos as the highly toxic insecticide with 100% mortality even with 1h of exposure followed by thiamethoxam, dichlorvos, profenofos and chlorpyriphos which are not to be recommended for use in pollinator attractive flowering plants. Acetamiprid and endosulfan did not cause any repellent effect on honey bees in the field trials endorse the usage of acetamiprid against sucking pest in flowering plants.

  7. Hygienic Behavior of Africanized Honey Bees Apis mellifera Directed towards Brood in Old and New Combs during Diurnal and Nocturnal Periods

    PubMed Central

    Pereira, Rogério A.; Morais, Michelle M.; Francoy, Tiago M.; Gonçalves, Lionel S.

    2013-01-01

    Hygienic behavior in honey bees, Apis mellifera, is measured by determining the rate at which the bees uncap and remove dead sealed brood. We analyzed individual behavior of house-cleaning Africanized honey bees in order to focus on some poorly understood aspects of hygienic behavior. Two observation hives, each with approximately 3,000 individually marked bees, were used in this study. The efficiency of hygienic behavior was evaluated in hygienic and non-hygienic strains of bees using two types of combs (new and old), as well as at different periods of the day (night and day). We also recorded the age of workers that performed this task of removing dead brood. In both strains, the workers that performed tasks related to hygienic behavior were within the same age cohort; we found no influence of age on the amount of time dedicated to the task, independent of the type of comb or period of the day. The total time from perforation of the cell capping until the dead brood had been completely removed, and was significantly shorter during daytime than at night. Hygienic behavior directed towards dead brood in new combs was also significantly more efficient (faster) than for brood in old combs. The type of comb had significantly more effect than did the time of day. We conclude that the type of comb and time of day should be taken into consideration when evaluating hygienic behavior in honey bees. PMID:26462521

  8. Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor.

    PubMed

    Mitchell, Derek

    2016-05-01

    In the absence of human intervention, the honeybee (Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW(-1) K for wooden hives and greater than 5 kgW(-1) K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW(-1) K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.

  9. Molecular identification and phylogenetic analysis of Lactobacillus and Bifidobacterium spp. isolated from gut of honeybees (Apis mellifera) from West Azerbaijan, Iran.

    PubMed

    Sharifpour, Mohammad Farouq; Mardani, Karim; Ownagh, Abdulghaffar

    2016-01-01

    Polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) and phylogenetic analysis were used for molecular identification of lactic acid bacteria (LABs) isolated from Apis mellifera. Eighteen honeybee workers were collected from three different apiaries in West Azerbaijan. LABs from the gut of honeybees were isolated and cultured using routine biochemical procedures. Genomic DNA was extracted from LABs and a fragment of 1540 bp in size of 16S rRNA gene was amplified. PCR products were digested using HinfI endonuclease and digested products with different RFLP patterns were subjected to nucleotide sequencing and phylogenetic analysis. The results revealed that Lactobacillus and Bifidobacteria spp. are were the most abundant LABs in honeybee gut. Phylogenetic analysis showed that both Lactobacillus and Bifidobacterium were closely clustered with high similarity percentage with the same bacteria isolated from honeybees' gut elsewhere. It was concluded that LABs isolated from honeybees had low sequence divergence in comparison with LABs isolated from other sources such as dairy products.

  10. Effects of instrumental insemination and insemination quantity on Dufour's gland chemical profiles and vitellogenin expression in honey bee queens (Apis mellifera).

    PubMed

    Richard, Freddie-Jeanne; Schal, Coby; Tarpy, David R; Grozinger, Christina M

    2011-09-01

    Honey bee queens (Apis mellifera) mate in their early adult lives with a variable number of males (drones). Mating stimulates dramatic changes in queen behavior, physiology, gene expression, and pheromone production. Here, we used virgin, single drone- (SDI), and multi-drone- (MDI) inseminated queens to study the effects of instrumental insemination and insemination quantity on the pheromone profiles of the Dufour's gland, and the expression of the egg-yolk protein, vitellogenin, in the fat body. Age, environmental conditions, and genetic background of the queens were standardized to specifically characterize the effects of these treatments. Our data demonstrate that insemination and insemination quantity significantly affect the chemical profiles of the Dufour's gland secretion. Moreover, workers were more attracted to Dufour's gland extract from inseminated queens compared to virgins, and to the extract of MDI queens compared to extract of SDI queens. However, while there were differences in the amounts