Science.gov

Sample records for apolipoprotein a-v interaction

  1. Apolipoprotein A-V gene therapy for disease prevention / treatment: a critical analysis.

    PubMed

    Forte, Trudy M; Sharma, Vineeta; Ryan, Robert O

    2016-03-01

    Apolipoprotein (apo) A-V is a novel member of the class of exchangeable apo's involved in triacylglycerol (TG) homeostasis. Whereas a portion of hepatic-derived apoA-V is secreted into plasma and functions to facilitate lipoprotein lipase-mediated TG hydrolysis, another portion is recovered intracellularly, in association with cytosolic lipid droplets. Loss of apoA-V function is positively correlated with elevated plasma TG and increased risk of cardiovascular disease. Single nucleotide polymorphisms (SNP) in the APOA5 locus can affect transcription efficiency or introduce deleterious amino acid substitutions. Likewise, rare mutations in APOA5 that compromise functionality are associated with increased plasma TG and premature myocardial infarction. Genetically engineered mouse models and human population studies suggest that, in certain instances, supplementation with wild type (WT) apoA-V may have therapeutic benefit. It is hypothesized that individuals that manifest elevated plasma TG owing to deleterious APOA5 SNPs or rare mutations would respond to WT apoA-V supplementation with improved plasma TG clearance. On the other hand, subjects with hypertriglyceridemia of independent origin (unrelated to apoA-V function) may not respond to apoA-V augmentation in this manner. Improvement in the ability to identify individuals predicted to benefit, advances in gene transfer technology and the strong connection between HTG and heart disease, point to apoA-V supplementation as a viable disease prevention / therapeutic strategy. Candidates would include individuals that manifest chronic TG elevation, have low plasma apoA-V due to an APOA5 mutation/polymorphism and not have deleterious mutations/polymorphisms in other genes known to influence plasma TG levels.

  2. Introduction of human apolipoprotein E4 "domain interaction" into mouse apolipoprotein E.

    PubMed

    Raffai, R L; Dong, L M; Farese, R V; Weisgraber, K H

    2001-09-25

    Human apolipoprotein E4 (apoE4) binds preferentially to lower density lipoproteins, including very low density lipoproteins, and is associated with increased risk of atherosclerosis and neurodegenerative disorders, including Alzheimer's disease. This binding preference is the result of the presence of Arg-112, which causes Arg-61 in the amino-terminal domain to interact with Glu-255 in the carboxyl-terminal domain. ApoE2 and apoE3, which have Cys-112, bind preferentially to high density lipoproteins (HDL) and do not display apoE4 domain interaction. Mouse apoE, like apoE4, contains the equivalent of Arg-112 and Glu-255, but lacks the critical Arg-61 equivalent (it contains Thr-61). Thus, mouse apoE does not display apoE4 domain interaction and, as a result, behaves like human apoE3, including preferential binding to HDL. To assess the potential role of apoE4 domain interaction in atherosclerosis and neurodegeneration, we sought to introduce apoE4 domain interaction into mouse apoE. Replacing Thr-61 in mouse apoE with arginine converted the binding preference from HDL to very low density lipoproteins in vitro, suggesting that apoE4 domain interaction could be introduced into mouse apoE in vivo. Using gene targeting in embryonic stem cells, we created mice expressing Arg-61 apoE. Heterozygous Arg-61/wild-type apoE mice displayed two phenotypes found in human apoE4/E3 heterozygotes: preferential binding to lower density lipoproteins and reduced abundance of Arg-61 apoE in the plasma, reflecting its more rapid catabolism. These findings demonstrate the successful introduction of apoE4 domain interaction into mouse apoE in vivo. The Arg-61 apoE mouse model will allow the effects of apoE4 domain interaction in lipoprotein metabolism, atherosclerosis, and neurodegeneration to be determined.

  3. Interaction of an atypical Plasmodium falciparum ETRAMP with human apolipoproteins

    PubMed Central

    Vignali, Marissa; McKinlay, Anastasia; LaCount, Douglas J; Chettier, Rakesh; Bell, Russell; Sahasrabudhe, Sudhir; Hughes, Robert E; Fields, Stanley

    2008-01-01

    Background In order to establish a successful infection in the human host, the malaria parasite Plasmodium falciparum must establish interactions with a variety of human proteins on the surface of different cell types, as well as with proteins inside the host cells. To better understand this aspect of malaria pathogenesis, a study was conducted with the goal of identifying interactions between proteins of the parasite and those of its human host. Methods A modified yeast two-hybrid methodology that preferentially selects protein fragments that can be expressed in yeast was used to conduct high-throughput screens with P. falciparum protein fragments against human liver and cerebellum libraries. The resulting dataset was analyzed to exclude interactions that are not likely to occur in the human host during infection. Results An initial set of 2,200 interactions was curated to remove proteins that are unlikely to play a role in pathogenesis based on their annotation or localization, and proteins that behave promiscuously in the two-hybrid assay, resulting in a final dataset of 456 interactions. A cluster that implicates binding between P. falciparum PFE1590w/ETRAMP5, a putative parasitophorous vacuole membrane protein, and human apolipoproteins ApoA, ApoB and ApoE was selected for further analysis. Different isoforms of ApoE, which are associated with different outcomes of malaria infection, were shown to display differential interactions with PFE1590w. Conclusion A dataset of interactions between proteins of P. falciparum and those of its human host was generated. The preferential interaction of the P. falciparum PFE1590w protein with the human ApoE ε3 and ApoE ε4 isoforms, but not the ApoE ε2 isoform, supports the hypothesis that ApoE genotype affects risk of malaria infection. The dataset contains other interactions of potential relevance to disease that may identify possible vaccine candidates and drug targets. PMID:18937849

  4. Relationship of Serum Apolipoprotein A-V Levels, Oxidative Stress and Inflammatory Biomarkers with Hypertriglyceridemia in Type 2 Diabetes Mellitus.

    PubMed

    Sharma, Devesh; Garg, Seema; Mehndiratta, Mohit; V Madhu, S; Puri, Dinesh

    2017-04-01

    Serum levels of triglycerides (TGs) are often found to be raised in type 2 diabetes mellitus (T2DM). TG levels ≥ 2.2 mM, systemic inflammation and oxidative stress (OS) are known to increase the risk of incident cardiovascular disease (CVD) substantially. In recent years, apolipoprotein A-V (Apo A-V protein) has attracted considerably as a modulator of circulating TG levels. The study was conducted in order to evaluate the levels of Apo A - V proteins and markers of inflammation and OS in patients of T2DM with and without hypertriglyceridemia (HTG) and also to assess correlation between them. T2DM patients were categorized into two groups of 40 participants, according to criteria for risk of CVD: group 1/ controls (TG ≤ 1.65 mM, n = 40) and group 2/ cases (TG ≥ 2.2 mM, n = 40). Despite the routine investigations, serum levels of Apo A-V, interleukin-6 (IL-6) and Insulin were estimated using ELISA, free fatty acids (FFA) with fluorometric assay and malondialdehyde (MDA) was measured using a spectrophotometer. Comparison of levels and correlation between variables was carried out with appropriate statistical tools. Serum Apo A-V protein levels were found significantly lower (P = 0.04) and MDA was significantly higher (P = 0.049) in cases. MDA correlated with TG levels positively (P = 0.000) and negatively with high density lipoproteins (HDL) (P = 0.000). However Apo A-V protein levels did not correlate with TG levels (P = 0.819, r = -0.027), IL-6 (r = 0.135, P = 0.269), FFA (r = 0.128, P = 0.277) and MDA (r = -0.217, P = 0.073). IL-6 levels significantly and positively correlated with HOMA-IR (r = 0.327, P = 0.004) in the all patients. In patients of T2DM, low levels of Apo A-V are associated with HTG, indicating that Apo A-V is linked with TG metabolism. Burden of oxidative stress is greater in HTG of T2DM as is evident from MDA levels and its correlation with TG levels. Since oxidative stress is an important patho-physiological basis which increases the risk

  5. Consumption of whole grains and legumes modulates the genetic effect of the APOA5 -1131C variant on changes in triglyceride and apolipoprotein A-V concentrations in patients with impaired fasting glucose or newly diagnosed type 2 diabetes

    PubMed Central

    2014-01-01

    Background The apolipoprotein A5 gene (APOA5) -1131 T > C polymorphism is associated with mild hypertriglyceridemia in type 2 diabetic subjects, and interacts with dietary fat in the determination of triglyceride concentrations. We examined whether a substitution of whole grains and legumes for refined rice in a high carbohydrate diet (about 65% of energy derived from carbohydrate) may modify the effect of this variant on changes in apolipoprotein A-V (apoA-V) and triglyceride concentrations. Methods We genotyped the APOA5 -1131 T > C in individuals with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes, who were randomly assigned to either a group ingesting whole grain and legume meals daily or a control group for 12 weeks. Results After dietary intervention, we observed significant interactions between the APOA5 -1131 T > C polymorphism and carbohydrate sources (whole grains and legumes versus refined rice) in the determination of mean percent changes in triglyceride and apoA-V (P interactions <0.001 and =0.038, respectively). In the refined rice group (n = 93), the carriers of the risk C allele (n = 50) showed a greater increase in the mean percent changes of triglyceride and apoA-V than noncarriers after adjusting for HOMA-IR (P = 0.004 and 0.021, respectively). The whole grain and legume group (n = 92), however, showed a decrease in fasting glucose, HOMA-IR, and triglyceride, and an increase in apoA-V, irrespective of genotype. Conclusions The data showed that the magnitude of the genetic effect of the APOA5 -1131C variant on triglyceride and apoA-V levels was modulated when substituting consumption of whole grains and legumes for refined rice as a carbohydrate source in IFG or diabetic subjects. Trial registration ClinicalTrials.gov: NCT01784952. PMID:24690159

  6. Consumption of whole grains and legumes modulates the genetic effect of the APOA5 -1131C variant on changes in triglyceride and apolipoprotein A-V concentrations in patients with impaired fasting glucose or newly diagnosed type 2 diabetes.

    PubMed

    Kang, Ryungwoo; Kim, Minjoo; Chae, Jey Sook; Lee, Sang-Hyun; Lee, Jong Ho

    2014-04-01

    The apolipoprotein A5 gene (APOA5) -1131 T > C polymorphism is associated with mild hypertriglyceridemia in type 2 diabetic subjects, and interacts with dietary fat in the determination of triglyceride concentrations. We examined whether a substitution of whole grains and legumes for refined rice in a high carbohydrate diet (about 65% of energy derived from carbohydrate) may modify the effect of this variant on changes in apolipoprotein A-V (apoA-V) and triglyceride concentrations. We genotyped the APOA5 -1131 T > C in individuals with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes, who were randomly assigned to either a group ingesting whole grain and legume meals daily or a control group for 12 weeks. After dietary intervention, we observed significant interactions between the APOA5 -1131 T > C polymorphism and carbohydrate sources (whole grains and legumes versus refined rice) in the determination of mean percent changes in triglyceride and apoA-V (P interactions <0.001 and =0.038, respectively). In the refined rice group (n = 93), the carriers of the risk C allele (n = 50) showed a greater increase in the mean percent changes of triglyceride and apoA-V than noncarriers after adjusting for HOMA-IR (P = 0.004 and 0.021, respectively). The whole grain and legume group (n = 92), however, showed a decrease in fasting glucose, HOMA-IR, and triglyceride, and an increase in apoA-V, irrespective of genotype. The data showed that the magnitude of the genetic effect of the APOA5 -1131C variant on triglyceride and apoA-V levels was modulated when substituting consumption of whole grains and legumes for refined rice as a carbohydrate source in IFG or diabetic subjects. ClinicalTrials.gov: NCT01784952.

  7. Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer's disease

    PubMed Central

    Salameh, Therese S; Rhea, Elizabeth M; Hanson, Angela J

    2016-01-01

    An increased risk for Alzheimer's disease is associated with dyslipidemia and insulin resistance. A separate literature shows the genetic risk for developing Alzheimer's disease is strongly correlated to the presence of the E4 isoform of the apolipoprotein E carrier protein. Understanding how apolipoprotein E carrier protein, lipids, amyloid β peptides, glucose, central nervous system insulin, and peripheral insulin interact with one another in Alzheimer's disease is an area of increasing interest. Here, we will review the evidence relating apolipoprotein E carrier protein, lipids, and insulin action to Alzheimer's disease and Aβ peptides and then propose mechanisms as to how these factors might interact with one another to impair cognition and promote Alzheimer's disease. PMID:27470930

  8. Apolipoprotein A-I interactions with insulin secretion and production.

    PubMed

    Rye, Kerry-Anne; Barter, Philip J; Cochran, Blake J

    2016-02-01

    Human population studies have established that an elevated plasma high-density lipoprotein cholesterol (HDL-C) level is associated with a decreased risk of developing cardiovascular disease. In addition to having several potentially cardioprotective functions, HDLs and apolipoprotein (apo)A-I, the main HDL apolipoprotein, also have antidiabetic properties. Interventions that elevate plasma HDL-C and apoA-I levels improve glycemic control in people with type 2 diabetes mellitus by enhancing pancreatic β-cell function and increasing insulin sensitivity. This review is concerned with recent advances in understanding the mechanisms by which HDLs and apoA-I improve pancreatic β-cell function. HDLs and apoA-I increase insulin synthesis and secretion in pancreatic β cells. The underlying mechanism of this effect is similar to what has been reported for intestinally derived incretins, such as glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, which both increase β-cell insulin secretion under high glucose conditions. This involves the activation of a heterotrimeric G protein Gαs subunit on the β-cell surface that leads to induction of a transmembrane adenylyl cyclase, increased intracellular cyclic adenosine monophosphate and Ca levels, and activation of protein kinase A. Protein kinase A increases insulin synthesis by excluding FoxO1 from the β-cell nucleus and derepressing transcription of the insulin gene.

  9. Apolipoprotein A5 and lipoprotein lipase interact to modulate anthropometric measures in Hispanics of Caribbean origin

    USDA-ARS?s Scientific Manuscript database

    Apolipoprotein A5 (APOA5) and lipoprotein lipase (LPL) proteins interact functionally to regulate lipid metabolism, and single nucleotide polymorphisms (SNPs) for each gene have also been associated independently with obesity risk. Evaluating gene combinations may be more effective than single SNP a...

  10. Plasma Apolipoprotein A-V Predicts Long-term Survival in Chronic Hepatitis B Patients with Acute-on-Chronic Liver Failure

    PubMed Central

    Chen, En-Qiang; Wang, Meng-Lan; Zhang, Dong-Mei; Shi, Ying; Wu, Do-Bo; Yan, Li-Bo; Du, Ling-Yao; Zhou, Ling-Yun; Tang, Hong

    2017-01-01

    Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a life-threatening condition, and the lipid metabolism disorder is common in the development of this disease. This prospective observational study aimed to define the characteristics of plasma apolipoprotein A-V (apoA-V) in long-term outcome prediction of HBV-ACLF, and a total of 330 HBV-ACLF patients were included and followed for more than 12 months. In this cohort, the 4-week, 12-week, 24-week and 48-week cumulative mortality of HBV-ACLF was 18.2%(60/330), 50.9%(168/330), 59.7%(197/330) and 63.3%(209/330), respectively. As compared to survivors, the non-survivors had significantly lower concentrations of plasma apoA-V on admission. Plasma apoA-V concentrations were positively correlated with prothrombin time activity (PTA), and negatively correlated with interleukin-10, tumor necrosis factor-α, and iMELD scores. Though plasma apoA-V, PTA, total bilirubin(TBil) and blood urea nitrogen(BUN) were all independent factors to predict one-year outcomes of HBV-ACLF, plasma apoA-V had the highest prediction accuracy. And its optimal cutoff value for one-year survival prediction was 480.00 ng/mL, which had a positive predictive value of 84.68% and a negative predictive value of 92.23%. In summary, plasma apoA-V decreases significantly in non-survivors of HBV-ACLF, and it may be regarded as a new predictive marker for the prognosis of patients with HBV-ACLF. PMID:28358016

  11. Genetic variation of apolipoproteins, diet and other environmental interactions; an updated review.

    PubMed

    Sotos-Prieto, Mercedes; Peñalvo, José Luis

    2013-01-01

    This paper summarizes the recent findings from studies investigating the potential environmental modulation of the genetic variation of apolipoprotein genes on metabolic traits. We reviewed nutrigenetic studies evaluating variations on apolipoproteins-related genes and its associated response to nutrients (mostly dietary fatty acids) or any other dietary or environmental component. Most revised research studied single nucleotide polymorphism (SNP) and specific nutrients through small intervention studies, and only few interactions have been replicated in large and independent populations (as in the case of -265T > C SNP in APOA2 gene). Although current knowledge shows that variations on apolipoprotein genes may contribute to the different response on metabolic traits due to dietary interventions, evidence is still scarce and results are inconsistent. Success in this area will require going beyond the limitations of current experimental designs and explore the hypotheses within large populations. Some of these limitations are being covered by the rapidly advance in high-throughput technologies and large scale-genome wide association studies.

  12. Apolipoprotein A2 polymorphism interacts with intakes of dairy foods to influence body weight in 2 U.S. populations

    USDA-ARS?s Scientific Manuscript database

    The interaction between a functional apolipoprotein A2 gene (APOA2) variant and saturated fatty acids (SFAs) for the outcome of body mass index (BMI) is among the most widely replicated gene-nutrient interactions. Whether this interaction can be extrapolated to food-based sources of SFAs, specifical...

  13. Interaction of human apolipoprotein A-I with model membranes exhibiting lipid domains.

    PubMed

    Arnulphi, Cristina; Sánchez, Susana A; Tricerri, M Alejandra; Gratton, Enrico; Jonas, Ana

    2005-07-01

    Several mechanisms for cell cholesterol efflux have been proposed, including membrane microsolubilization, suggesting that the existence of specific domains could enhance the transfer of lipids to apolipoproteins. In this work isothermal titration calorimetry, circular dichroism spectroscopy, and two-photon microscopy are used to study the interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl, 2-oleoyl phosphatidylcholine (POPC) and sphingomyelin (SM), with and without cholesterol. Below 30 degrees C the calorimetric results show that apoA-I interaction with POPC/SM SUVs produces an exothermic reaction, characterized as nonclassical hydrophobic binding. The heat capacity change (DeltaCp degrees ) is small and positive, whereas it was larger and negative for pure POPC bilayers, in the absence of SM. Inclusion of cholesterol in the membranes induces changes in the observed thermodynamic pattern of binding and counteracts the formation of alpha-helices in the protein. Above 30 degrees C the reactions are endothermic. Giant unilamellar vesicles (GUVs) of identical composition to the SUVs, and two-photon fluorescence microscopy techniques, were utilized to further characterize the interaction. Fluorescence imaging of the GUVs indicates coexistence of lipid domains under 30 degrees C. Binding experiments and Laurdan generalized-polarization measurements suggest that there is no preferential binding of the labeled apoA-I to any particular domain. Changes in the content of alpha-helix, binding, and fluidity data are discussed in the framework of the thermodynamic parameters.

  14. Interaction of Human Apolipoprotein A-I with Model Membranes Exhibiting Lipid Domains

    PubMed Central

    Arnulphi, Cristina; Sánchez, Susana A.; Tricerri, M. Alejandra; Gratton, Enrico; Jonas, Ana

    2005-01-01

    Several mechanisms for cell cholesterol efflux have been proposed, including membrane microsolubilization, suggesting that the existence of specific domains could enhance the transfer of lipids to apolipoproteins. In this work isothermal titration calorimetry, circular dichroism spectroscopy, and two-photon microscopy are used to study the interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl, 2-oleoyl phosphatidylcholine (POPC) and sphingomyelin (SM), with and without cholesterol. Below 30°C the calorimetric results show that apoA-I interaction with POPC/SM SUVs produces an exothermic reaction, characterized as nonclassical hydrophobic binding. The heat capacity change (ΔCp°) is small and positive, whereas it was larger and negative for pure POPC bilayers, in the absence of SM. Inclusion of cholesterol in the membranes induces changes in the observed thermodynamic pattern of binding and counteracts the formation of α-helices in the protein. Above 30°C the reactions are endothermic. Giant unilamellar vesicles (GUVs) of identical composition to the SUVs, and two-photon fluorescence microscopy techniques, were utilized to further characterize the interaction. Fluorescence imaging of the GUVs indicates coexistence of lipid domains under 30°C. Binding experiments and Laurdan generalized-polarization measurements suggest that there is no preferential binding of the labeled apoA-I to any particular domain. Changes in the content of α-helix, binding, and fluidity data are discussed in the framework of the thermodynamic parameters. PMID:15849246

  15. Apolipoprotein E, gender, and Alzheimer's disease: an overlooked, but potent and promising interaction.

    PubMed

    Ungar, Leo; Altmann, Andre; Greicius, Michael D

    2014-06-01

    Alzheimer's disease (AD) is an increasingly prevalent, fatal neurodegenerative disease that has proven resistant, thus far, to all attempts to prevent it, forestall it, or slow its progression. The ε4 allele of the Apolipoprotein E gene (APOE4) is a potent genetic risk factor for sporadic and late-onset familial AD. While the link between APOE4 and AD is strong, many expected effects, like increasing the risk of conversion from MCI to AD, have not been widely replicable. One critical, and commonly overlooked, feature of the APOE4 link to AD is that several lines of evidence suggest it is far more pronounced in women than in men. Here we review previous literature on the APOE4 by gender interaction with a particular focus on imaging-related studies.

  16. The apolipoprotein B3304-3317 peptide as an inhibitor of the lipoprotein (a):apolipoprotein B-containing lipoprotein interaction.

    PubMed Central

    Trieu, V N; Olsson, U; McConathy, W J

    1995-01-01

    Lipoprotein (a) [Lp(a)] is a risk factor for coronary artery disease. It is characterized by apolipoprotein (a) [apo(a)] disulphide linked to apolipoprotein B (apoB), by Cys4057 of apo(a) and possibly Cys3734 of apoB. We call this the covalent apo(a):apoB-Lp interaction, to distinguish it from the non-covalent Lp(a):apoB-Lp interaction, mediated by the proline-binding kringle-4-like domain(s) of Lp(a). The Lp(a):apoB-Lp interaction was inhibited by an apoB peptide spanning residues 3304-3317. This peptide was found by a computerized search for sites on apoB similar to the plasminogen's kringle-4-binding site of alpha 2-antiplasmin. It probably constitutes part of the Lp(a)-binding site on apoB because: (1) it corresponds to the alpha 2-antiplasmin minimum binding domain for plasminogen's kringle-4; (2) the competitive nature of inhibition [KI = (1.5 +/- 0.7) x 10(-4) M, n = 5] suggested that it and apoB-Lp bound to Lp(a) by the same mechanism at the same site; and (3) it specifically bound Lp(a) and not apoB-Lp, and the bound Lp(a) was dissociated by inhibitors of the Lp(a):apoB-Lp interaction, 6-aminohexanoic acid and L-proline. Inhibition was independent of its proline residue, suggesting that proline in the context of a peptide is not a ligand for the kringle(s) which mediated the binding of Lp(a) to apoB-Lp. Images Figure 2 Figure 4 Figure 5 PMID:7717972

  17. Apolipoprotein E4 domain interaction accelerates diet-induced atherosclerosis in hypomorphic Arg-61 Apoe mice

    PubMed Central

    Eberlé, Delphine; Kim, Roy Y.; Luk, Fu Sang; de Mochel, Nabora Soledad Reyes; Gaudreault, Nathalie; Olivas, Victor R.; Kumar, Nikit; Posada, Jessica M.; Birkeland, Andrew C.; Rapp, Joseph H.; Raffai, Robert L.

    2012-01-01

    Objective Apolipoprotein (apo) E4 is an established risk factor for atherosclerosis, but the structural components underlying this association remain unclear. ApoE4 is characterized by two biophysical properties: domain interaction and molten globule state. Substituting Arg-61 for Thr-61 in mouse apoE introduces domain interaction without molten globule state, allowing us to delineate potential pro-atherogenic effects of domain interaction in vivo. Methods and Results We studied atherosclerosis susceptibility of hypomorphic Apoe mice expressing either Thr-61 or Arg-61 apoE (ApoeTh/h or ApoeRh/h mice). On a chow diet, both mouse models were normo-lipidemic with similar levels of plasma apoE and lipoproteins. However, on a high cholesterol diet, ApoeRh/h mice displayed increased levels of total plasma cholesterol and VLDL as well as larger atherosclerotic plaques in the aortic root, arch and descending aorta compared to ApoeTh/h mice. In addition, evidence of cellular dysfunction was identified in peritoneal ApoeRh/h macrophages which released lower amounts of apoE in culture medium and displayed increased expression of MHC class II molecules. Conclusions These data indicate that domain interaction mediates pro-atherogenic effects of apoE4 in part by modulating lipoprotein metabolism and macrophage biology. Pharmaceutical targeting of domain interaction could lead to new treatments for atherosclerosis in apoE4 individuals. PMID:22441102

  18. Apolipoprotein(a) inhibits hepatitis C virus entry through interaction with infectious particles.

    PubMed

    Oliveira, Catarina; Fournier, Carole; Descamps, Véronique; Morel, Virginie; Scipione, Corey A; Romagnuolo, Rocco; Koschinsky, Marlys L; Boullier, Agnès; Marcelo, Paulo; Domon, Jean-Marc; Brochot, Etienne; Duverlie, Gilles; Francois, Catherine; Castelain, Sandrine; Helle, Francois

    2017-06-01

    The development of different cell culture models has greatly contributed to increased understanding of the hepatitis C virus (HCV) life cycle. However, it is still challenging to grow HCV clinical isolates in cell culture. If overcome, this would open new perspectives to study HCV biology, including drug-resistant variants emerging with new antiviral therapies. In this study we hypothesized that this hurdle could be due to the presence of inhibitory factors in patient serum. Combining polyethylene glycol precipitation, iodixanol gradient, and size-exclusion chromatography, we obtained from HCV-seronegative sera a purified fraction enriched in inhibitory factors. Mass spectrometric analysis identified apolipoprotein(a) (apo[a]) as a potential inhibitor of HCV entry. Apo(a) consists of 10 kringle IV domains (KIVs), one kringle V domain, and an inactive protease domain. The 10 KIVs are present in a single copy with the exception of KIV type 2 (KIV2 ), which is encoded in a variable number of tandemly repeated copies, giving rise to numerous apo(a) size isoforms. In addition, apo(a) covalently links to the apolipoprotein B component of a low-density lipoprotein through a disulfide bridge to form lipoprotein(a). Using a recombinant virus derived from the JFH1 strain, we confirmed that plasma-derived and recombinant lipoprotein(a) as well as purified recombinant apo(a) variants were able to specifically inhibit HCV by interacting with infectious particles. Our results also suggest that small isoforms are less inhibitory than the large ones. Finally, we observed that the lipoprotein moiety of HCV lipoviroparticles was essential for inhibition, whereas functional lysine-binding sites in KIV7 , KIV8 , and KIV10 were not required. Our results identify apo(a) as an additional component of the lipid metabolism modulating HCV infection. (Hepatology 2017;65:1851-1864). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for

  19. Charge-transfer interactions induce surface dependent conformational changes in apolipoprotein biocorona.

    PubMed

    Raghavendra, Achyut J; Alsaleh, Nasser; Brown, Jared M; Podila, Ramakrishna

    2017-03-07

    Upon introduction into a biological system, engineered nanomaterials (ENMs) rapidly associate with a variety of biomolecules such as proteins and lipids to form a biocorona. The presence of "biocorona" influences nano-bio interactions considerably, and could ultimately result in altered biological responses. Apolipoprotein A-I (ApoA-I), the major constituent of high-density lipoprotein (HDL), is one of the most prevalent proteins found in ENM-biocorona irrespective of ENM nature, size, and shape. Given the importance of ApoA-I in HDL and cholesterol transport, it is necessary to understand the mechanisms of ApoA-I adsorption and the associated structural changes for assessing consequences of ENM exposure. Here, the authors used a comprehensive array of microscopic and spectroscopic tools to elucidate the interactions between ApoA-I and 100 nm Ag nanoparticles (AgNPs) with four different surface functional groups. The authors found that the protein adsorption and secondary structural changes are highly dependent on the surface functionality. Our electrochemical studies provided new evidence for charge transfer interactions that influence ApoA-I unfolding. While the unfolding of ApoA-I on AgNPs did not significantly change their uptake and short-term cytotoxicity, the authors observed that it strongly altered the ability of only some AgNPs to generate of reactive oxygen species. Our results shed new light on the importance of surface functionality and charge transfer interactions in biocorona formation.

  20. C-terminal interactions of apolipoprotein E4 respond to the postprandial state.

    PubMed

    Tetali, Sarada D; Budamagunta, Madhu S; Voss, John C; Rutledge, John C

    2006-07-01

    Increased triglyceride-rich lipoproteins (TGRLs) in the postprandial state are associated with atherosclerosis. We investigated whether the postprandial state induced structural changes at the apolipoprotein E4 (apoE4) C terminus, its principal lipid binding domain, using electron paramagnetic resonance (EPR) spectroscopy of a site-directed spin label attached to the cysteine of apoE4-W264C. Spin coupling between labels located in the C termini was followed after mixing with preprandial and postprandial human plasma samples. Our results indicate that postprandial plasma triggers a reorganization of the protein such that the dipolar broadening is diminished, indicating a reduction in C-terminal interaction. The loss of spectral broadening was directly correlated with an increase in postprandial plasma triglycerides and was reduced with delipidated plasma. The spin-labeled apoE4 displayed a lipid preference of VLDL > LDL > HDL in the preprandial and postprandial states. The apoE4 shift to VLDL during the postprandial state was accompanied by a loss in spectral broadening of the protein. These findings suggest that apoE4 associated with LDL maintains self-association via its C terminus and that this association is diminished in VLDL-associated protein. Lipolyzed TGRL reflected a depletion of the C-terminal interaction of apoE4. Addition of palmitate to VLDL gave a similar response as lipolyzed TGRL, suggesting that lipolysis products play a major role in reorganizing apoE4 during the postprandial state.

  1. Cognitive deficits and disruption of neurogenesis in a mouse model of apolipoprotein E4 domain interaction.

    PubMed

    Adeosun, Samuel O; Hou, Xu; Zheng, Baoying; Stockmeier, Craig; Ou, Xiaoming; Paul, Ian; Mosley, Thomas; Weisgraber, Karl; Wang, Jun Ming

    2014-01-31

    Apolipoprotein E4 (apoE4) allele is the major genetic risk factor for sporadic Alzheimer disease (AD) due to the higher prevalence and earlier onset of AD in apoE4 carriers. Accumulating data suggest that the interaction between the N- and the C-terminal domains in the protein may be the main pathologic feature of apoE4. To test this hypothesis, we used Arg-61 mice, a model of apoE4 domain interaction, by introducing the domain interaction feature of human apoE4 into native mouse apoE. We carried out hippocampus-dependent learning and memory tests and related cellular and molecular assays on 12- and 3-month-old Arg-61 and age-matched background C57BL/6J mice. Learning and memory task performance were impaired in Arg-61 mice at both old and young ages compared with C57BL/6J mice. Surprisingly, young Arg-61 mice had more mitotic doublecortin-positive cells in the subgranular zone; mRNA levels of brain-derived neurotrophic factor (BDNF) and TrkB were also higher in 3-month-old Arg-61 hippocampus compared with C57BL/6J mice. These early-age neurotrophic and neurogenic (proliferative) effects in the Arg-61 mouse may be an inadequate compensatory but eventually detrimental attempt by the system to "repair" itself. This is supported by the higher cleaved caspase-3 levels in the young animals that not only persisted, but increased in old age, and the lower levels of doublecortin at old age in the hippocampus of Arg-61 mice. These results are consistent with human apoE4-dependent cognitive and neuro-pathologic changes, supporting the principal role of domain interaction in the pathologic effect of apoE4. Domain interaction is, therefore, a viable therapeutic/prophylactic target for cognitive impairment and AD in apoE4 subjects.

  2. [Association between peroxisome proliferator-activated receptor and gene-gene interactions with the apolipoprotein A I/apolipoprotein B100 ratio].

    PubMed

    Hai, Bo; Ni, Chuanmin; Xie, Huijian; Guo, Zhirong; Wu, Ming; Chen, Qiu; Zhou, Zhengyuan; Fan, Wei; Zhou, Hui

    2015-04-01

    To investigate the association between ten single nucleotide polymorphisms (SNPs) in the peroxisome proliferator-activated receptors (PPARα, β, γ) with apolipoprotein A I/apolipoprotein B100 (ApoA I/ApoB100) ratio and the additional role of a gene-gene interactions among the 10 SNPs. Participants were recruited under the framework of the Prevention of Multiple Metabolic Disorders and Metabolic Syndrome in Jiangsu Province (PMMJS) cohort population survey in the urban community of Jiangsu province of China.A total of 630 subjects were randomly selected and no individual was related.Ten SNPs (rs135539, rs4253778, rs1800206, rs2016520, rs9794, rs10865710, rs1805192, rs709158, rs3856806 and rs4684847) were selected from the HapMap database,which covered PPARα, PPARβ and PPARγ. A linear regression model was used to analyze the relations between ten SNPs in the PPARs and ApoA I/ApoB100 ratio level. Mean difference and 95% CI were calculated. Interactions were explored by using the method of Generalized Multifactor Dimensionality Reduction (GMDR). After adjusting for age, gender, smoking status, alcohol consumption, occupational physical activity, high-fat diet as well as low-fiber diet, both rs1800206 and rs3856806 were significantly associated with a decreased level of ApoA I/ApoB100 ratio, mean difference (95% CI) values were -1.19 (-1.88 to -0.50) and -0.77 (-1.40 to -0.14). Whereas rs4253778 was significantly associated with an increased level of ApoA I/ApoB100 ratio, Mean difference (95% CI) values was 0.80 (0.08 to 1.52). GMDR analysis showed a significant gene-gene interaction among rs4253778, rs1800206 of PPARα, rs9794, rs2016520 of PPARβ and rs10865710, rs3856806, rs709158, rs1805192 of PPARγ for eight-dimension models (P = 0.01), in which prediction accuracy was 0.624 and cross-validation consistency was 7/10. The rs1800206 of PPARα and rs3856806 of PPARγ are significantly associated with a decreased level of ApoA I/ApoB100 ratio while rs4253778 of

  3. Apolipoprotein E4 and Insulin Resistance Interact to Impair Cognition and Alter the Epigenome and Metabolome

    PubMed Central

    Johnson, Lance A.; Torres, Eileen Ruth S.; Impey, Soren; Stevens, Jan F.; Raber, Jacob

    2017-01-01

    Apolipoprotein E4 (E4) and type 2 diabetes are major risk factors for cognitive decline and late onset Alzheimer’s disease (AD). E4-associated phenotypes and insulin resistance (IR) share several features and appear to interact in driving cognitive dysfunction. However, shared mechanisms that could explain their overlapping pathophysiology have yet to be found. We hypothesized that, compared to E3 mice, E4 mice would be more susceptible to the harmful cognitive effects of high fat diet (HFD)-induced IR due to apoE isoform-specific differences in brain metabolism. While both E3 and E4 mice fed HFD displayed impairments in peripheral metabolism and cognition, deficits in hippocampal-dependent spatial learning and memory were exaggerated in E4 mice. Combining genome-wide measures of DNA hydroxymethylation with comprehensive untargeted metabolomics, we identified novel alterations in purine metabolism, glutamate metabolism, and the pentose phosphate pathway. Finally, in E4 mice, the metabolic and cognitive deficiencies caused by HFD were rescued by switching to a low fat diet for one month, suggesting a functional role was associated with reversal of the same metabolic pathways described above. These results suggest a susceptibility of E4 carriers to metabolic impairments brought on by IR, and may guide development of novel therapies for cognitive decline and dementia. PMID:28272510

  4. CHRNA7 Polymorphisms and Dementia Risk: Interactions with Apolipoprotein ε4 and Cigarette Smoking

    PubMed Central

    Weng, Pei-Hsuan; Chen, Jen-Hau; Chen, Ta-Fu; Sun, Yu; Wen, Li-Li; Yip, Ping-Keung; Chu, Yi-Min; Chen, Yen-Ching

    2016-01-01

    α7 nicotinic acetylcholine receptor (α7nAChR, encoded by CHRNA7) is involved in dementia pathogenesis through cholinergic neurotransmission, neuroprotection and interactions with amyloid-β. Smoking promotes atherosclerosis and increases dementia risk, but nicotine exerts neuroprotective effect via α7nAChR in preclinical studies. No studies explored the gene-gene, gene-environment interactions between CHRNA7 polymorphism, apolipoprotein E (APOE) ε4 status and smoking on dementia risk. This case-control study recruited 254 late-onset Alzheimer’s disease (LOAD) and 115 vascular dementia (VaD) cases (age ≥65) from the neurology clinics of three teaching hospitals in Taiwan during 2007–2010. Controls (N = 435) were recruited from health checkup programs and volunteers during the same period. Nine CHRNA7 haplotype-tagging single nucleotide polymorphisms representative for Taiwanese were genotyped. Among APOE ε4 non-carriers, CHRNA7 rs7179008 variant carriers had significantly decreased LOAD risk after correction for multiple tests (GG + AG vs. AA: adjusted odds ratio = 0.29, 95% confidence interval = 0.13–0.64, P = 0.002). Similar findings were observed for carriers of GT haplotype in CHRNA7 block4. A significant interaction was found between rs7179008, GT haplotype in block4 and APOE ε4 on LOAD risk. rs7179008 variant also reduced the detrimental effect of smoking on LOAD risk. No significant association was found between CHRNA7 and VaD. These findings help to understand dementia pathogenesis. PMID:27249957

  5. [Is there an interaction between sleep-disordered breathing, depression and apolipoprotein E phenotype?].

    PubMed

    Lemoine, P; Sassolas, A; Lestra, C; Laforest, L; Chamba, G

    2004-01-01

    Sleep-disordered breathing (SDB) is widely underdiagnosed among adults. However, SDB may be considered as a public health problem because of clinical consequences for the patient: impaired awake performance, increased risk factor for cardiovascular diseases and increased prevalence of depression. Apolipoprotein E (apoE), a protein involved in lipid metabolism, has 3 major alleles e2, e3 and e4. Recently, it has been shown that apoE e4 allele, a well-known risk factor for cardiovascular diseases, was also associated with SDB. In this study, we assessed a potential interaction between SDB, depression and apoE phenotype. 92 male patients (36-79 years old, mean age 58.0 11.2) consulting in hospital for SDB were enrolled in the study. Each patient had the following exams: 1) overnight polysomnography to determine apnea/hypopnea index (AHI=average number of respiratory events 10 seconds with no breathing per hour). A moderate-to-severe SDB was defined with AHI 15. 2) a psychiatric examination to look for previous or present symptoms of depressive illness. 3) blood sampling to determine apoE genotype (using PCR-RFLP method). In our study, allele frequencies for apoE e2, e3 and e4 were similar to those reported in general population. Among 92 patients, 68 (74%) presented moderate-to-severe SDB and 28 (30%) previous or present symptoms of depressive illness. Our results indicate that: 1) apoE e4 was significantly associated with moderate-to-severe SDB (n=92, p=0.03), 2) scores of apnea-hypopnea index were significantly higher in e4-positive versus e4-negative participants (n=57, p=0,05) and 3) ApoE and depression were not linked. This study confirms a potential interaction between SDB and apoE phenotype, as recently reported. This suggests that e4 allele might be a genetic risk factor for SDB (e4 allele frequency higher in patients with moderate-to-severe SDB versus general population) and/or consequently a deleterious factor for this pathology (increased AHI in e4-positive

  6. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia.

    PubMed

    Ahn, Hyeon Yeong; Kim, Minjoo; Chae, Jey Sook; Ahn, Young-Tae; Sim, Jae-Hun; Choi, Il-Dong; Lee, Sang-Hyun; Lee, Jong Ho

    2015-08-01

    Previous studies have indicated that supplementation with probiotics might improve lipid metabolism. The objective of the study was to evaluate the effect of supplementation with probiotic strains Lactobacillus curvatus (L. curvatus) HY7601 and Lactobacillus plantarum (L. plantarum) KY1032 on triglyceride (TG) and apolipoprotein A-V (apo A-V) levels. A randomized, double-blinded, placebo-controlled study was conducted with 128 non-diabetic subjects with hypertriglyceridemia. Over a 12-week test period, the probiotic group consumed 2 g/day of a powdered supplement containing L. curvatus HY7601 and L. plantarum KY1032, whereas the placebo group consumed a powder lacking probiotics. After the treatment, the probiotic group showed an 18.3% (P < 0.001) reduction in TGs and increases of 21.1% (P = 0.001) and 15.6% (P < 0.001) in the apo A-V and LDL particle size, respectively. The probiotic group had a significant reduction in TGs (P = 0.040) and increases in the plasma apo A-V (P = 0.003) and LDL particle size (P < 0.001) compared with the placebo group. In the probiotic group, the reduction in the TG levels was negatively correlated with changes in the apo A-V and baseline TGs, regardless of the APOA5 -1131T > C genotype. The consumption of two probiotic strains for 12 weeks reduced TGs and increased the apo A-V and LDL particle size in hypertriglyceridemic subjects. This effect was more pronounced in subjects with higher levels of fasting TGs regardless of their APOA5 -1131T > C genotype. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Defining Lipid Interacting Domains in the N-terminal Region of Apolipoprotein B

    PubMed Central

    Jiang, Zhenghui Gordon; Gantz, Donald; Bullitt, Esther; McKnight, C. James

    2008-01-01

    Apolipoprotein B (ApoB) is a nonexchangeable apolipoprotein that dictates the synthesis of chylomicrons and very low density lipoproteins. ApoB is the major protein in low density lipoprotein, also known as the “bad cholesterol” that is directly implicated in atherosclerosis. It has been suggested that the N-terminal domain of apoB plays a critical role in the formation of apoB-containing lipoproteins through the initial recruitment of phospholipids in the endoplasmic reticulum. However, very little is known about the mechanism of lipoprotein nucleation by apoB. Here we demonstrate that a strong phospholipid remodeling function is associated with the predicted α-helical and C-sheet domains in the N-terminal 17% of apoB (B17). Using dimyristoylphosphatidylcholine (DMPC) as a model lipid, these domains can convert multilamellar DMPC vesicles into discoidal-shaped particles. The nascent particles reconstituted from different apoB domains are distinctive and compositionally homogenous. This phospholipid remodeling activity is also observed with egg phosphatidylcholine (egg PC) and is therefore not DMPC dependent. Using kinetic analysis of the DMPC clearance assay, we show that the identified phospholipid binding sequences all map to the surface of the lipid binding pocket in the B17 model based on the homologous protein, lipovitellin. Since both B17 and microsomal triglyceride transfer protein (MTP), a critical chaperone during lipoprotein assembly, are homologous to lipovitellin, the identification of these phospholipid remodeling sequences in B17 provides important insights into the potential mechanism that initiates the assembly of apoB-containing lipoproteins. PMID:17002280

  8. Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A–I and High Density Lipoproteins

    PubMed Central

    Sánchez, Susana A.; Tricerri, M. Alejandra; Ossato, Giulia; Gratton, Enrico

    2010-01-01

    Summary Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. FCS (Fluorescence Correlation Spectroscopy) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan GP (Generalized Polarization) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A–I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis, and offer a methodological design suited to different biological systems. PMID:20347719

  9. Interaction of apolipoprotein AIV with cholecystokinin on the control of food intake.

    PubMed

    Lo, Chun Min; Zhang, Dian Ming; Pearson, Kevin; Ma, Liyun; Sun, William; Sakai, Randall R; Davidson, W Sean; Liu, Min; Raybould, Helen E; Woods, Stephen C; Tso, Patrick

    2007-10-01

    Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are peptides that act both peripherally and centrally to reduce food intake by decreasing meal size. The present study examined the effects of intraperitoneally administered bolus doses of recombinant apo AIV, CCK-8, and a combination of subthreshold doses of apo AIV and CCK on 4-h food intake in rats that were fasted overnight. Apo AIV at 100 microg/kg reduced food intake significantly relative to the saline control for 1 h, as did doses of CCK-8 at or above 0.125 microg/kg. Doses of apo AIV (50 microg/kg) or CCK (0.06 microg/kg) alone had no effect on food intake. However, when these subthreshold doses of apo AIV and CCK were administered together, the combination produced a significant inhibition of food intake relative to saline controls (P < 0.001), and the duration of the effect was longer than that caused by the administration of either apo AIV or CCK alone. The satiation effect produced by CCK-8 + apo AIV was attenuated by lorglumide, a CCK1 receptor antagonist. We conclude that, whereas the intraperitoneal administration of doses of either recombinant apo AIV or CCK at or above threshold levels reduces food intake, the coadministration of subthreshold doses of the two peptides is highly satiating and works via CCK1 receptor.

  10. Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E.

    PubMed

    Lefèvre, Mathieu; Felmlee, Daniel J; Parnot, Marie; Baumert, Thomas F; Schuster, Catherine

    2014-01-01

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE's HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection.

  11. Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E

    PubMed Central

    Lefèvre, Mathieu; Felmlee, Daniel J.; Parnot, Marie; Baumert, Thomas F.; Schuster, Catherine

    2014-01-01

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE’s HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection. PMID:24751902

  12. Amyloidogenic Propensity of a Natural Variant of Human Apolipoprotein A-I: Stability and Interaction with Ligands

    PubMed Central

    Rosú, Silvana A.; Rimoldi, Omar J.; Prieto, Eduardo D.; Curto, Lucrecia M.; Delfino, José M.

    2015-01-01

    A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses. PMID:25950566

  13. Enthalpy-driven apolipoprotein A-I and lipid bilayer interaction indicating protein penetration upon lipid binding.

    PubMed

    Arnulphi, Cristina; Jin, Lihua; Tricerri, M Alejandra; Jonas, Ana

    2004-09-28

    The interaction of lipid-free apolipoprotein A-I (apoA-I) with small unilamellar vesicles (SUVs) of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) with and without free cholesterol (FC) was studied by isothermal titration calorimetry and circular dichroism spectroscopy. Parameters reported are the affinity constant (K(a)), the number of protein molecules bound per vesicle (n), enthalpy change (DeltaH degrees), entropy change (DeltaS degrees ), and the heat capacity change (DeltaC(p) degrees). The binding process of apoA-I to SUVs of POPC plus 0-20% (mole) FC was exothermic between 15 and 37 degrees C studied, accompanied by a small negative entropy change, making enthalpy the main driving force of the interaction. The presence of cholesterol in the vesicles increased the binding affinity and the alpha-helix content of apoA-I but lowered the number of apoA-I bound per vesicle and the enthalpy and entropy changes per bound apoA-I. Binding affinity and stoichiometry were essentially invariant of temperature for binding to SUVs of POPC/FC at a molar ratio of 6/1 at (2.8-4) x 10(6) M(-1) and 2.4 apoA-I molecules bound per vesicle or 1.4 x 10(2) phospholipids per bound apoA-I. A plot of DeltaH degrees against temperature displayed a linear behavior, from which the DeltaC(p) degrees per mole of bound apoA-I was calculated to be -2.73 kcal/(mol x K). These results suggested that binding of apoA-I to POPC vesicles is characterized by nonclassical hydrophobic interactions, with alpha-helix formation as the main driving force for the binding to cholesterol-containing vesicles. In addition, comparison to literature data on peptides suggested a cooperativity of the helices in apoA-I in lipid interaction.

  14. Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif

    NASA Astrophysics Data System (ADS)

    Castelletto, V.; Hamley, I. W.; Reza, M.; Ruokolainen, J.

    2014-11-01

    The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers' disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly ``nanodisc'' structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

  15. In situ delipidation of low-density lipoproteins in capillary electrochromatography yields apolipoprotein B-100-coated surfaces for interaction studies.

    PubMed

    D'Ulivo, Lucia; Chen, Jie; Meinander, Kristoffer; Oörni, Katariina; Kovanen, Petri T; Riekkola, Marja-Liisa

    2008-12-01

    An electrochromatographic method was developed for the in situ delipidation of intact low-density lipoprotein (LDL) particles immobilized on the inner wall of a 50-microm inner diameter silica capillary. In this method, the immobilized LDL particles were delipidated with nonionic surfactant Nonidet P-40 at pH 7.4 and 25 degrees C, resulting in an apolipoprotein B-100 (apoB-100)-coated capillary surface. The mobility of the electroosmotic flow marker dimethyl sulfoxide gave information about the surface charge, and the retention factors of beta-estradiol, testosterone, and progesterone were informative of the surface hydrophobicity. The calculated distribution coefficients of the steroids produced specific information about the affinity interactions of the steroids, with capillary surfaces coated either with intact LDL particles or with apoB-100. Delipidation with Nonidet P-40 resulted in a strong decrease in the hydrophobicity of the LDL coating. Atomic force microscopy images confirmed the loss of lipids from the LDL particles and the presence of apoB-100 protein coating. The in situ delipidation of LDL particles in capillaries represents a novel approach for the isolation of immobilized apoB-100 and for the determination of its pI value. The technique requires extremely low quantities of LDL particles, and it is simple and fast.

  16. Mycoplasma gallisepticum (HS strain) surface lipoprotein pMGA interacts with host apolipoprotein A-I during infection in chicken.

    PubMed

    Hu, Fuli; Zhao, Chengcheng; Bi, Dingren; Tian, Wei; Chen, Jiao; Sun, Jianjun; Peng, Xiuli

    2016-02-01

    The adhesin protein from Mycoplasma gallisepticum (HS strain), namely pMGA1.2, is required for M. gallisepticum (MG) infection in chicken. However, the host factor(s) that interact with pMGA1.2 is not known. In this study, we prepared the membrane fraction of trachea epithelial cells from chicken embryos. Using an improved virus overlay protein blot assay (VOPBA) and glutathione S-transferase (GST) pull-down assay, we found that pMGA1.2 specifically bound to a ∼30 kDa host protein. This host protein was further identified by mass spectrometry as chicken apolipoprotein A-I (ApoA-I). We expressed and purified the recombinant ApoA-I protein in Escherichia coli and confirmed that it bound to the purified pMGA1.2 protein in vitro. Transiently expressed pMGA1.2 and ApoA-I were colocalized in HeLa cells. Finally, we designed small interfering RNA (siRNA) molecules to knock down the expression of either ApoA-I or pMGA1.2, which inhibited the MG-induced cell cycle disruption in cells of chicken embryo fibroblast cell line (DF-1). Similarly, knockdown of ApoA-I inhibited the cilia loss and damage in chicken trachea cells in MG infection. In summary, ApoA-I may be an essential host factor in MG infection through interacting with pMGA1.2.

  17. Blocking the Interaction between Apolipoprotein E and Aβ Reduces Intraneuronal Accumulation of Aβ and Inhibits Synaptic Degeneration

    PubMed Central

    Kuszczyk, Magdalena A.; Sanchez, Sandrine; Pankiewicz, Joanna; Kim, Jungsu; Duszczyk, Malgorzata; Guridi, Maitea; Asuni, Ayodeji A.; Sullivan, Patrick M.; Holtzman, David M.; Sadowski, Martin J.

    2014-01-01

    Accumulation of β-amyloid (Aβ) in the brain is a key event in Alzheimer disease pathogenesis. Apolipoprotein (Apo) E is a lipid carrier protein secreted by astrocytes, which shows inherent affinity for Aβ and has been implicated in the receptor-mediated Aβ uptake by neurons. To characterize ApoE involvement in the intraneuronal Aβ accumulation and to investigate whether blocking the ApoE/Aβ interaction could reduce intraneuronal Aβ buildup, we used a noncontact neuronal-astrocytic co-culture system, where synthetic Aβ peptides were added into the media without or with cotreatment with Aβ12-28P, which is a nontoxic peptide antagonist of ApoE/Aβ binding. Compared with neurons cultured alone, intraneuronal Aβ content was significantly increased in neurons co-cultured with wild-type but not with ApoE knockout (KO) astrocytes. Neurons co-cultured with astrocytes also showed impaired intraneuronal degradation of Aβ, increased level of intraneuronal Aβ oligomers, and marked down-regulation of several synaptic proteins. Aβ12-28P treatment significantly reduced intraneuronal Aβ accumulation, including Aβ oligomer level, and inhibited loss of synaptic proteins. Furthermore, we showed significantly reduced intraneuronal Aβ accumulation in APPSW/PS1dE9/ApoE KO mice compared with APPSW/PS1dE9/ApoE targeted replacement mice that expressed various human ApoE isoforms. Data from our co-culture and in vivo experiments indicate an essential role of ApoE in the mechanism of intraneuronal Aβ accumulation and provide evidence that ApoE/Aβ binding antagonists can effectively prevent this process. PMID:23499462

  18. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase.

    PubMed

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A; Laatsch, Alexander; Heeren, Joerg

    2005-06-03

    Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.

  19. Apolipoprotein AV Accelerates Plasma Hydrolysis OfTriglyceride-Rich Lipoproteins By Interaction With Proteoglycan BoundLipoprotein Lipase

    SciTech Connect

    Merkel, Martin; Loeffler, Britta; Kluger, Malte; Fabig, Nathalie; Geppert, Gesa; Pennacchio, Len A.; Laatsch, Alexander; Heeren, Joerg

    2005-02-22

    Apolipoprotein A5 (APOA5) is associated with differences intriglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasmatriglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In hAPOA5 transgenic mice(hAPOA5tr), catabolism of chylomicrons and VLDL was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL).Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by crossbreeding a human LPL transgene with the apoa5 knockout, and the hAPOA5tr to an LPL deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5 deficient mice,however, over expression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr HDL, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line.A direct interaction between LPL and apoAV was found by ligand blotting.It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycans bound LPL for lipolysis.

  20. Interaction of apolipoprotein AII with the putative high-density lipoprotein receptor.

    PubMed

    Vadiveloo, P K; Allan, C M; Murray, B J; Fidge, N H

    1993-09-14

    There is strong evidence to indicate that binding of HDL by cells is due to recognition of apoproteins residing on the surface of the lipoprotein by the putative HDL receptor(s). Although both of the major HDL apoproteins, AI and AII, are recognized by the putative receptor, the nature of the binding interaction and the domains of the apoproteins involved are largely unknown. Previous data from this laboratory led to the proposal of a model to explain how HDL particles containing AII interacted with the HDL receptor in a different manner as compared to HDL particles which contain apoAI but not apoAII [Vadiveloo, P. K., & Fidge, N. H. (1992) Biochem. J. 284, 145-151]. The model predicted that each chain of the apoAII homodimer contained a binding domain capable of interacting with the HDL receptor. This model was tested in the current study by preparing apoAII monomers, complexing them with phospholipid, and determining the ability of these complexes to bind to putative HDL receptors in rat liver plasma membranes (RLPM) and bovine aortic endothelial cell membranes (BAECM) by ligand blotting. The data showed that these complexes were bound by HB1 and HB2 from RLPM, and to the 110-kDa HDL binding protein from BAECM, providing critical evidence to support the model. Further investigation into the binding interaction revealed that apoAII complexed with phospholipid (apoAII-PC) bound more than delipidated apoAII, which bound more than delipidated apoAII monomers. Thus, optimum binding required the presence of lipid.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Clinical significance of apolipoprotein A5

    USDA-ARS?s Scientific Manuscript database

    We have investigated the evidence from recent human studies examining the role of apolipoprotein A-V (APOA-V) in triglyceride-rich lipoprotein metabolism and cardiovascular disease (CVD) risk. Special emphasis was placed on the evidence emerging from the association between genetic variability at th...

  2. The number of cysteine residues per mole in apolipoprotein E affects systematically synchronous neural interactions in women's healthy brains.

    PubMed

    Leuthold, Arthur C; Mahan, Margaret Y; Stanwyck, John J; Georgopoulos, Angeliki; Georgopoulos, Apostolos P

    2013-05-01

    Apolipoprotein E (apoE) is involved in lipid metabolism in the brain, but its effects on brain function are not understood. Three apoE isoforms (E4, E3, and E2) are the result of cysteine-arginine interchanges at two sites: there are zero interchanges in E4, one interchange in E3, and two interchanges in E2. The resulting six apoE genotypes (E4/4, E4/3, E4/2, E3/3, E3/2, E2/2) yield five groups with respect to the number of cysteine residues per mole (CysR/mole), as follows. ApoE4/4 has zero cysteine residues per mole (0-CysR/mole), E4/3 has one (1-CysR/mole), E4/2 and E3/3 each has two (2-CysR/mole), E3/2 has three (3-CysR/mole), and E2/2 has four (4-CysR/mole). The use of the number of CysR/mole to characterize the apoE molecule converts the categorical apoE genotype scale, consisting of 6 distinct genotypes above, to a 5-point continuous scale (0-4 CysR/mole). This allows the use of statistical analyses suitable for continuous variables (e.g. regression) to quantify the relations between various variables and apoE. Using such analyses, here, we show for the first time that apoE affects in a graded and orderly manner neural communication, as assessed by analyzing the relation between the number of CysR/mole and synchronous neural interactions (SNI) measured by magnetoencephalography (MEG) in 130 cognitively healthy women. At the one end of the CysR/mole range, the 4-CysR/mole (E2/2) SNI distribution had the highest mean, lowest variance, lowest range, and lowest coefficient of variation, whereas at the other end, 0-CysR/mole (E4/4) SNI distribution had the lowest mean, highest variance, highest range, and highest coefficient of variation. The special status of the 4-CysR/mole distribution was reinforced by the results of a hierarchical tree analysis where the 4-CysR/mole (E2/2) SNI distribution occupied a separate branch by itself and the remaining CysR/mole SNI distributions were placed at increasing distances from the 4-CysR/mole distribution, according to

  3. Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights

    PubMed Central

    Das, Madhurima

    2017-01-01

    Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer’s disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over- represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB > apoA-II > apoC-II ≥ apoA-I, apoC-III, SAA, apoC-I > apoA-IV, apoA-V, apoE) does not correlate with the proteins’ involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid

  4. Apolipoprotein E isoforms 3/3 and 3/4 differentially interact with circulating stearic, palmitic, and oleic fatty acids and lipid levels in Alaskan Natives.

    PubMed

    Castellanos-Tapia, Lyssia; López-Alvarenga, Juan Carlos; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth

    2015-04-01

    Lifestyle changes in Alaskan Natives have been related to the increase of cardiovascular disease and metabolic syndrome in the last decades. Variation of the apolipoprotein E (Apo E) genotype may contribute to the diverse response to diet in lipid metabolism and influence the association between fatty acids in plasma and risk factors for cardiovascular disease. The aim of this investigation was to analyze the interaction between Apo E isoforms and plasma fatty acids, influencing phenotypes related to metabolic diseases in Alaskan Natives. A sample of 427 adult Siberian Yupik Alaskan Natives was included. Fasting glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, Apo A1, and Apo B plasma concentrations were measured using reference methods. Concentrations of 13 fatty acids in fasting plasma were analyzed by gas chromatography, and Apo E variants were identified. Analyses of covariance were conducted to identify Apo E isoform and fatty acid main effects and multiplicative interactions. The means for body mass index and age were 26 ± 5.2 and 47 ± 1.5, respectively. Significant main effects were observed for variation in Apo E and different fatty acids influencing Apo B levels, triglycerides, and total cholesterol. Significant interactions were found between Apo E isoform and selected fatty acids influencing total cholesterol, triglycerides, and Apo B concentrations. In summary, Apo E3/3 and 3/4 isoforms had significant interactions with circulating levels of stearic, palmitic, oleic fatty acids, and phenotypes of lipid metabolism in Alaskan Natives.

  5. Interaction of thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: resonance energy transfer study.

    PubMed

    Girych, Mykhailo; Gorbenko, Galyna; Trusova, Valeriya; Adachi, Emi; Mizuguchi, Chiharu; Nagao, Kohjiro; Kawashima, Hiroyuki; Akaji, Kenichi; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki

    2014-01-01

    Apolipoprotein A-I is amenable to a number of specific mutations associated with hereditary systemic amyloidoses. Amyloidogenic properties of apoA-I are determined mainly by its N-terminal fragment. In the present study Förster resonance energy transfer between tryptophan as a donor and Thioflavin T as an acceptor was employed to obtain structural information on the amyloid fibrils formed by apoA-I variant 1-83/G26R/W@8. Analysis of the dye-fibril binding data provided evidence for the presence of two types of ThT binding sites with similar stoichiometries (bound dye to monomeric protein molar ratio ∼10), but different association constants (∼6 and 0.1μM(-1)) and ThT quantum yields in fibril-associated state (0.08 and 0.05, respectively). A β-strand-loop-β-strand structural model of 1-83/G26R/W@8 apoA-I fibrils has been proposed, with potential ThT binding sites located in the solvent-exposed grooves of the N-terminal β-sheet layer. Reasoning from the expanded FRET analysis allowing for heterogeneity of ThT binding centers and fibril polymorphism, the most probable locations of high- and low-affinity ThT binding sites were attributed to the grooves T16_Y18 and D20_L22, respectively.

  6. Interactive effects of apolipoprotein e4 and diabetes risk on later myelinating white matter regions in neurologically healthy older aged adults

    PubMed Central

    Foley, Jessica M.; Salat, David H.; Stricker, Nikki H.; Zink, Tyler A.; Grande, Laura J.; McGlinchey, Regina E.; Milberg, William P.; Leritz, Elizabeth C.

    2014-01-01

    Possession of the apolipoprotein e4 (APOE4) allele and diabetes risk are independently related to reduced white matter (WM) integrity that may contribute to the development of Alzheimer's disease (AD). The purpose of this study is to examine the interactive effects of APOE4 and diabetes risk on later myelinating WM regions among healthy elderly at risk for AD. A sample of 107 healthy elderly (80 APOE4−/27 APOE4+) underwent structural MRI/ DTI data were prepared using TBSS and a-priori ROIs were extracted from T1-based WM parcellations. ROIs included later myelinating frontal/temporal/parietal WM regions and control regions, measured by fractional anisotropy (FA). There were no APOE group differences on DTI for any ROI. Within the APOE4 group, we found negative relationships between HAIC/fasting glucose and APOE4 on FA for all later myelinating WM regions, but not for early/middle myelinating control regions. Results also showed APOE4/diabetes risk interactions for WM underlying supramarginal, superior temporal, precuneus, superior parietal, and superior frontal regions. Results suggest interactive effects of APOE4 and diabetes risk on later myelinating WM regions, which supports preclinical detection of AD among this particularly susceptible subgroup. PMID:24381137

  7. Apolipoprotein A2 Polymorphism Interacts with Intakes of Dairy Foods to Influence Body Weight in 2 U.S. Populations12

    PubMed Central

    Smith, Caren E.; Tucker, Katherine L.; Arnett, Donna K.; Noel, Sabrina E.; Corella, Dolores; Borecki, Ingrid B.; Feitosa, Mary F.; Aslibekyan, Stella; Parnell, Laurence D.; Lai, Chao-Qiang; Lee, Yu-Chi; Ordovás, José M.

    2013-01-01

    The interaction between a functional apolipoprotein A2 gene (APOA2) variant and saturated fatty acids (SFAs) for the outcome of body mass index (BMI) is among the most widely replicated gene-nutrient interactions. Whether this interaction can be extrapolated to food-based sources of SFAs, specifically dairy foods, is unexplored. Cross-sectional analyses were performed in 2 U.S. population–based samples. We evaluated interactions between dairy foods and APOA2 −265T > C (rs5082) for BMI in the Boston Puerto Rican Health Study (n = 955) and tested for replication in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study (n = 1116). Dairy products were evaluated as total dairy, higher-fat dairy (>1%), and low-fat dairy (≤1%) in servings per day, dichotomized into high and low based on each population median and also as continuous variables. We identified a statistically significant interaction between the APOA2 −265T > C variant and higher-fat dairy food intake in the Boston Puerto Ricans (P-interaction = 0.028) and replicated this relation in the GOLDN study (P-interaction = 0.001). In both groups, individuals with the previously demonstrated SFA-sensitive genotype (CC) who consumed a greater amount of higher-fat dairy foods had greater BMI (P = 0.013 in Boston Puerto Ricans; P = 0.0007 in GOLDN women) compared with those consuming less of the higher-fat dairy foods. The results expand the understanding of the metabolic influence of dairy products, an important food group for which variable relations to body weight may be in part genetically based. Moreover, these findings suggest that other strongly demonstrated gene-nutrient relations might be investigated through appropriate food-based, translatable avenues and may be relevant to dietary management of obesity. PMID:24108135

  8. Effects of a 3-year dietary intervention on age-related changes in triglyceride and apolipoprotein A-V levels in patients with impaired fasting glucose or new-onset type 2 diabetes as a function of the APOA5 -1131 T > C polymorphism

    PubMed Central

    2014-01-01

    Background The purpose of this study was to estimate the effects of a 3-year dietary intervention on age-related changes in triglyceride and apolipoprotein (apo A-V) levels in patients with impaired fasting glucose (IFG) or new-onset type 2 diabetes as a function of the APOA5 -1131 T > C polymorphism. Methods We genotyped the APOA5 -1131 T > C polymorphism in 203 Korean individuals with IFG or new-onset type 2 diabetes for the TT (n = 91), TC (n = 98), and CC (n = 14) alleles. Plasma apo A-V and triglyceride levels were evaluated at baseline and after a 3-year dietary intervention. Results Our results showed that HDL, glucose, insulin, HOMA-IR index, free fatty acids, and apo A-V decreased and brachial-ankle pulse wave velocity (ba-PWV) and malondialdehyde (MDA) increased at the 3-year follow-up visit compared with baseline. Plasma apo A-V levels were reduced in subjects with the C allele (TC or CC) (P = 0.036) and triglyceride levels were reduced in subjects with the TT allele (P = 0.047). Subjects with the C allele showed lower post-treatment apo A-V and higher post-treatment fasting triglyceride levels than subjects with the TT allele. Changes in apo A-V and triglyceride levels were negatively correlated in subjects with the TT allele and positively correlated in subjects with the C allele. Conclusions This study showed that the dietary intervention prevented an age-related increase in triglyceride levels in individuals with IFG or new-onset type 2 diabetes who possess the TT allele, but not the CT or CC allele, of the APOA5 -1131 T > C polymorphism. PMID:24775272

  9. Apolipoprotein E – Low Density Lipoprotein Receptor Interaction Affects Spatial Memory Retention and Brain ApoE Levels in an Isoform-Dependent Manner

    PubMed Central

    Johnson, Lance A.; Olsen, Reid H.J.; Merkens, Louise S.; DeBarber, Andrea; Steiner, Robert D.; Sullivan, Patrick M.; Maeda, Nobuyo; Raber, Jacob

    2014-01-01

    Human apolipoprotein E (apoE) exists in three isoforms: apoE2, apoE3 and apoE4. APOE ε4 (E4) is a major genetic risk factor for cardiovascular disease (CVD) and Alzheimer's disease (AD). ApoE mediates cholesterol metabolism by binding various receptors. The low-density lipoprotein receptor (LDLR) has a high affinity for apoE, and is the only member of its receptor family to demonstrate an apoE isoform specific binding affinity (E4>E3>>E2). Evidence suggests that a functional interaction between apoE and LDLR influences the risk of CVD and AD. We hypothesize that the differential cognitive effects of the apoE isoforms are a direct result of their varying interactions with LDLR. To test this hypothesis, we have employed transgenic mice that express human apoE2, apoE3, or apoE4, and either human LDLR (hLDLR) or no LDLR (LDLR−/−). Our results show that plasma and brain apoE levels, cortical cholesterol, and spatial memory are all regulated by isoform-dependent interactions between apoE and LDLR. Conversely, both anxiety-like behavior and cued associative memory are strongly influenced by APOE genotype, but these processes appear to occur via an LDLR-independent mechanism. Both the lack of LDLR and the interaction between E4 and the LDLR were associated with significant impairments in the retention of long term spatial memory. Finally, levels of hippocampal apoE correlate with long term spatial memory retention in mice with human LDLR. In summary, we demonstrate that the apoE-LDLR interaction affects regional brain apoE levels, brain cholesterol, and cognitive function in an apoE isoform-dependent manner. PMID:24412220

  10. Apolipoprotein E-low density lipoprotein receptor interaction affects spatial memory retention and brain ApoE levels in an isoform-dependent manner.

    PubMed

    Johnson, Lance A; Olsen, Reid H J; Merkens, Louise S; DeBarber, Andrea; Steiner, Robert D; Sullivan, Patrick M; Maeda, Nobuyo; Raber, Jacob

    2014-04-01

    Human apolipoprotein E (apoE) exists in three isoforms: apoE2, apoE3 and apoE4. APOE ε4 is a major genetic risk factor for cardiovascular disease (CVD) and Alzheimer's disease (AD). ApoE mediates cholesterol metabolism by binding various receptors. The low-density lipoprotein receptor (LDLR) has a high affinity for apoE, and is the only member of its receptor family to demonstrate an apoE isoform specific binding affinity (E4>E3>E2). Evidence suggests that a functional interaction between apoE and LDLR influences the risk of CVD and AD. We hypothesize that the differential cognitive effects of the apoE isoforms are a direct result of their varying interactions with LDLR. To test this hypothesis, we have employed transgenic mice that express human apoE2, apoE3, or apoE4, and either human LDLR (hLDLR) or no LDLR (LDLR(-/-)). Our results show that plasma and brain apoE levels, cortical cholesterol, and spatial memory are all regulated by isoform-dependent interactions between apoE and LDLR. Conversely, both anxiety-like behavior and cued associative memory are strongly influenced by APOE genotype, but these processes appear to occur via an LDLR-independent mechanism. Both the lack of LDLR and the interaction between E4 and the LDLR were associated with significant impairments in the retention of long term spatial memory. Finally, levels of hippocampal apoE correlate with long term spatial memory retention in mice with human LDLR. In summary, we demonstrate that the apoE-LDLR interaction affects regional brain apoE levels, brain cholesterol, and cognitive function in an apoE isoform-dependent manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Apolipoprotein B100

    MedlinePlus

    ... skin is broken) Multiple punctures to locate veins Considerations Apolipoprotein measurements may provide more detail about your risk for heart disease, but the added value of this test beyond a lipid panel is ...

  12. Blocking the Apolipoprotein E/Amyloid β Interaction in Triple Transgenic Mice Ameliorates Alzheimer’s Disease Related Amyloid β and Tau Pathology

    PubMed Central

    Liu, Shan; Breitbart, Ariel; Sun, Yanjie; Mehta, Pankaj D.; Boutajangout, Allal; Scholtzova, Henrieta; Wisniewski, Thomas

    2013-01-01

    Inheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late-onset Alzheimer’s disease (AD). Studies have shown that the binding between apoE and amyloid-β (Aβ) peptides occurs at residues 244–272 of apoE and residues 12–28 of Aβ. ApoE4 has been implicated in promoting Aβ deposition and impairing clearance of Aβ. We hypothesized that blocking the apoE/Aβ interaction would serve as an effective new approach to AD therapy. We have previously shown that treatment with Aβ12–28P can reduce amyloid plaques in APP/PS1 transgenic (Tg) mice and vascular amyloid in TgSwDI mice with congophilic amyloid angiopathy (CAA). In the present study, we investigated whether the Aβ12–28P elicits a therapeutic effect on tau-related pathology in addition to amyloid pathology using old triple transgenic Alzheimer’s disease mice (3xTg, with PS1M146V, APPSwe and tauP30IL transgenes) with established pathology from the ages of 21 to 26 months. We show that treatment with Aβ12–28P substantially reduces tau pathology both immunohistochemically and biochemically, as well as reducing the amyloid burden and suppressing the activation of astrocytes and microglia. These affects correlate with a behavioral amelioration in the treated Tg mice. PMID:24117759

  13. Apolipoprotein E–Promoter Single-Nucleotide Polymorphisms Affect the Phenotype of Primary Open-Angle Glaucoma and Demonstrate Interaction with the Myocilin Gene

    PubMed Central

    Copin, Bruno; Brézin, Antoine P.; Valtot, Françoise; Dascotte, Jean-Claude; Béchetoille, Alain; Garchon, Henri-Jean

    2002-01-01

    Primary open-angle glaucoma (POAG) is an optic neuropathy that has a high worldwide prevalence and that shows strong evidence of complex inheritance. The myocilin (MYOC) gene is the only one that has thus far been shown to have mutations in patients with POAG. Apolipoprotein E (APOE) plays an essential role in lipid metabolism, and the APOE gene has been involved in neuronal degeneration that occurs in Alzheimer disease (AD). Here, we report that two APOE-promoter single-nucleotide polymorphisms (SNPs) previously associated with AD also modify the POAG phenotype. APOE(−219G) is associated with increased optic nerve damage, as reflected by increased cup:disk ratio and visual field alteration. In addition, APOE(−491T), interacting at a highly significant level with an SNP in the MYOC promoter, MYOC(−1000G), is associated with increased intraocular pressure (IOP) and with limited effectiveness of IOP-lowering treatments in patients with POAG. Together, these findings establish APOE as a potent modifier for POAG, which could explain the linkage to chromosome 19q previously observed by use of a genome scan for this condition and an increased frequency of glaucoma in patients with AD. The findings also shed new light on potential mechanisms of optic nerve damage and of IOP regulation in POAG. PMID:11992263

  14. Accumulation of "small dense" low density lipoproteins (LDL) in a homozygous patients with familial defective apolipoprotein B-100 results from heterogenous interaction of LDL subfractions with the LDL receptor.

    PubMed Central

    März, W; Baumstark, M W; Scharnagl, H; Ruzicka, V; Buxbaum, S; Herwig, J; Pohl, T; Russ, A; Schaaf, L; Berg, A

    1993-01-01

    The interaction of LDL and LDL subfractions from a patient homozygous for familial defective apoB-100 (FDB) has been studied. His LDL cholesterol ranged from 2.65 to 3.34 g/liter. In cultured fibroblasts, binding, internalization, and degradation of the patient's LDL was diminished, but not completely abolished. The patient's apolipoprotein E concentration was low, and the amount of apolipoprotein E associated with LDL was not elevated over normal. LDL were separated into six subfractions: LDL-1 (1.019-1.031 kg/liter), LDL-2 (1.031-1.034 kg/liter), LDL-3 (1.034-1.037 kg/liter), LDL-4 (1.037-1.040 kg/liter), LDL-5 (1.040-1.044 kg/liter), and LDL-6 (> 1.044 kg/liter). LDL-5 and LDL-6 selectively accumulated in the patient's plasma. Concentrations of LDL-1 to 3 were normal. The LDL receptor-mediated uptake of LDL-1 and LDL-2 could not be distinguished from normal LDL. LDL-3 and LDL-4 displayed reduced uptake; LDL-5 and LDL-6 were completely defective in binding. When apolipoprotein E-containing particles were removed by immunoabsorption before preparing subfractions, LDL-3 and LDL-4, but not LDL-1 and LDL-2, retained some receptor binding activity. We conclude that in FDB, LDL-1 and LDL-2 contain sufficient apolipoprotein E to warrant normal cellular uptake. In LDL-3 and LDL-4, the defective apoB-100 itself displays some receptor binding; LDL-5 and LDL-6 are inable to interact with LDL receptors and accumulate in plasma. Images PMID:8254047

  15. [Genetic polymorphism of the E apolipoprotein in school age children: comparison with levels of plasma lipids and apolipoproteins].

    PubMed

    Callas, Ney; Poveda, Elpidia; Baracaldo, César; Hernández, Patricia; Castillo, Carlina; Guerra, Martha

    2007-12-01

    Research in laboratories around the world has documented the contribution of the E apolipoprotein alleles to structural variations of lipids and apolipoproteins. The gene frequencies of the E apolipoprotein alleles were compared with the lipid and apolipoprotein levels in school age children. Six hundred and ninety one 5 to 15 years old school age children from the Colombian departments of Cundinamarca, Boyacá, Meta, Santander and Norte de Santander, were evaluated. The genotypes of the E apolipoprotein were identified by polymerase chain reaction-restriction fragment length polymorphism. Plasma levels for the following 5 lipids and lipoproteins were assayed: total cholesterol, HDL (high density lipoprotein) cholesterol, LDL (low density lipoprotein) cholesterol, triglycerides, VLDL (very low density lipoprotein) cholesterol, A-I apolipoprotein and B-100 apolipoprotein. Alleles e2, e3 and e4 were found in frequencies of 0.04, 0.86 and 0.08, respectively. The E4 group (E4/3-E4/4), in contrast with the E2 group (E3/2-E2/2), presented highest plasma concentrations of total cholesterol, LDL cholesterol and B-100 apolipoprotein (p=0.014, 0.001 and 0.000, respectively). When the E3/3 group was compared with E2, the same result was obtained (p=0.015, 0.002 and 0.002, respectively). The influence of the E apolipoprotein polymorphism appeared greater in female children than male. The e4 allele was associated with higher levels of total cholesterol, LDL cholesterol and B-100 apolipoprotein and indicates the necessity of additional research into the interactions between polymorphism E apolipoprotein and other genes, life styles, risk factors and potential contribution to cardiovascular diseases.

  16. Lack of pharmacokinetic interaction of mipomersen sodium (ISIS 301012), a 2'-O-methoxyethyl modified antisense oligonucleotide targeting apolipoprotein B-100 messenger RNA, with simvastatin and ezetimibe.

    PubMed

    Yu, Rosie Z; Geary, Richard S; Flaim, Joann D; Riley, Gina C; Tribble, Diane L; vanVliet, André A; Wedel, Mark K

    2009-01-01

    Mipomersen sodium (ISIS 301012) is a 20-mer phosphorothioate antisense oligonucleotide that is complementary to human apolipoprotein B-100 (apoB-100) messenger RNA and subsequently reduces translation of ApoB-100 protein, the major apolipoprotein of very low-density lipoprotein, intermediate-density lipoprotein and low-density lipoprotein (LDL). Mipomersen sodium is currently being studied in phase II/III clinical studies to determine its clinical utility as add-on therapy to HMG-CoA reductase inhibitors or other lipid-lowering agents in subjects with hypercholesterolaemia. The aim of this study was to characterize the pharmacokinetic interactions of mipomersen sodium with simvastatin and ezetimibe. Another aim was to evaluate the ability of mipomersen sodium to inhibit major cytochrome P450 (CYP) isoenzymes in vitro. In a phase I clinical study, ten healthy subjects per cohort received a single oral dose of simvastatin 40 mg or ezetimibe 10 mg followed by four 2-hour intravenous doses of mipomersen sodium 200 mg over an 8-day period, with simvastatin 40 mg or ezetimibe 10 mg being administered again with the last dose of mipomersen sodium. Mipomersen sodium pharmacokinetic profiles were assessed following the first dose (mipomersen sodium alone) and the last dose (mipomersen sodium in combination with simvastatin or ezetimibe). Plasma samples for measurement of simvastatin, simvastatin acid, and free and total ezetimibe concentrations were collected at various timepoints following their first and last oral dosing. A comparative pharmacokinetic analysis was performed to determine if there were any effects resulting from coadministration of mipomersen sodium with these lipid-lowering drugs. In addition to the clinical pharmacokinetic analysis, the ability of mipomersen sodium to inhibit the major CYP isoform enzymes (namely CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) was evaluated in cryo-preserved human hepatocytes in vitro. The area under the plasma concentration

  17. Interactions between Hepatitis C Virus and the Human Apolipoprotein H Acute Phase Protein: A Tool for a Sensitive Detection of the Virus

    PubMed Central

    Dubois, Grégor; Kaiser, Marco; Lucarz, Estelle; Gobby, Delphine; Bray, Dorothy; Ellerbrok, Heinz; Zarski, Jean Pierre; Veas, Francisco

    2015-01-01

    The Hepatitis C virus (HCV) infection exhibits a high global prevalence frequently associated with hepatocellular carcinoma, taking years to develop. Despite the standardization of highly sensitive HCV quantitative RT-PCR (qRT-PCR) detection methods, false-negative diagnoses may be generated with current methods, mainly due to the presence of PCR inhibitors and/or low viral loads in the patient’s sample. These false-negative diagnoses impact both public health systems, in developing countries, and an in lesser extent, in developed countries, including both the risk of virus transmission during organ transplantation and/or blood transfusion and the quality of the antiviral treatment monitoring. To adopt an appropriate therapeutic strategy to improve the patient’s prognosis, it is urgent to increase the HCV detection sensitivity. Based upon previous studies on HBV, we worked on the capacity of the scavenger acute phase protein, Apolipoprotein H (ApoH) to interact with HCV. Using different approaches, including immunoassays, antibody-inhibition, oxidation, ultracentrifugation, electron microscopy and RT-PCR analyses, we demonstrated specific interactions between HCV particles and ApoH. Moreover, when using a two-step HCV detection process, including capture of HCV by ApoH-coated nanomagnetic beads and a home-made real-time HCV-RT-PCR, we confirmed the presence of HCV for all samples from a clinical collection of HCV-seropositive patients exhibiting an RT-PCR COBAS® TaqMan® HCV Test, v2.0 (COBAS)-positive result. In contrast, for HCV-seropositive patients with either low HCV-load as determined with COBAS or exhibiting HCV-negative COBAS results, the addition of the two-step ApoH-HCV-capture and HCV-detection process was able to increase the sensitivity of HCV detection or more interestingly, detect in a genotype sequence-independent manner, a high-proportion (44%) of HCV/RNA-positive among the COBAS HCV-negative patients. Thus, the immune interaction between Apo

  18. A Systematic Investigation of Structure/Function Requirements for the Apolipoprotein A-I/Lecithin Cholesterol Acyltransferase Interaction Loop of High-density Lipoprotein.

    PubMed

    Gu, Xiaodong; Wu, Zhiping; Huang, Ying; Wagner, Matthew A; Baleanu-Gogonea, Camelia; Mehl, Ryan A; Buffa, Jennifer A; DiDonato, Anthony J; Hazen, Leah B; Fox, Paul L; Gogonea, Valentin; Parks, John S; DiDonato, Joseph A; Hazen, Stanley L

    2016-03-18

    The interaction of lecithin-cholesterol acyltransferase (LCAT) with apolipoprotein A-I (apoA-I) plays a critical role in high-density lipoprotein (HDL) maturation. We previously identified a highly solvent-exposed apoA-I loop domain (Leu(159)-Leu(170)) in nascent HDL, the so-called "solar flare" (SF) region, and proposed that it serves as an LCAT docking site (Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy, J. M., 3rd, Smith, J. D., Gogonea, V., and Hazen, S. L. (2007) Nat. Struct. Mol. Biol. 14, 861-868). The stability and role of the SF domain of apoA-I in supporting HDL binding and activation of LCAT are debated. Here we show by site-directed mutagenesis that multiple residues within the SF region (Pro(165), Tyr(166), Ser(167), and Asp(168)) of apoA-I are critical for both LCAT binding to HDL and LCAT catalytic efficiency. The critical role for possible hydrogen bond interaction at apoA-I Tyr(166) was further supported using reconstituted HDL generated from apoA-I mutants (Tyr(166) → Glu or Asn), which showed preservation in both LCAT binding affinity and catalytic efficiency. Moreover, the in vivo functional significance of NO2-Tyr(166)-apoA-I, a specific post-translational modification on apoA-I that is abundant within human atherosclerotic plaque, was further investigated by using the recombinant protein generated from E. coli containing a mutated orthogonal tRNA synthetase/tRNACUA pair enabling site-specific insertion of the unnatural amino acid into apoA-I. NO2-Tyr(166)-apoA-I, after subcutaneous injection into hLCAT(Tg/Tg), apoA-I(-/-) mice, showed impaired LCAT activation in vivo, with significant reduction in HDL cholesteryl ester formation. The present results thus identify multiple structural features within the solvent-exposed SF region of apoA-I of nascent HDL essential for optimal LCAT binding and catalytic efficiency. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A Systematic Investigation of Structure/Function Requirements for the Apolipoprotein A-I/Lecithin Cholesterol Acyltransferase Interaction Loop of High-density Lipoprotein*

    PubMed Central

    Gu, Xiaodong; Wu, Zhiping; Huang, Ying; Wagner, Matthew A.; Baleanu-Gogonea, Camelia; Mehl, Ryan A.; Buffa, Jennifer A.; DiDonato, Anthony J.; Hazen, Leah B.; Fox, Paul L.; Gogonea, Valentin; Parks, John S.; DiDonato, Joseph A.; Hazen, Stanley L.

    2016-01-01

    The interaction of lecithin-cholesterol acyltransferase (LCAT) with apolipoprotein A-I (apoA-I) plays a critical role in high-density lipoprotein (HDL) maturation. We previously identified a highly solvent-exposed apoA-I loop domain (Leu159–Leu170) in nascent HDL, the so-called “solar flare” (SF) region, and proposed that it serves as an LCAT docking site (Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy, J. M., 3rd, Smith, J. D., Gogonea, V., and Hazen, S. L. (2007) Nat. Struct. Mol. Biol. 14, 861–868). The stability and role of the SF domain of apoA-I in supporting HDL binding and activation of LCAT are debated. Here we show by site-directed mutagenesis that multiple residues within the SF region (Pro165, Tyr166, Ser167, and Asp168) of apoA-I are critical for both LCAT binding to HDL and LCAT catalytic efficiency. The critical role for possible hydrogen bond interaction at apoA-I Tyr166 was further supported using reconstituted HDL generated from apoA-I mutants (Tyr166 → Glu or Asn), which showed preservation in both LCAT binding affinity and catalytic efficiency. Moreover, the in vivo functional significance of NO2-Tyr166-apoA-I, a specific post-translational modification on apoA-I that is abundant within human atherosclerotic plaque, was further investigated by using the recombinant protein generated from E. coli containing a mutated orthogonal tRNA synthetase/tRNACUA pair enabling site-specific insertion of the unnatural amino acid into apoA-I. NO2-Tyr166-apoA-I, after subcutaneous injection into hLCATTg/Tg, apoA-I−/− mice, showed impaired LCAT activation in vivo, with significant reduction in HDL cholesteryl ester formation. The present results thus identify multiple structural features within the solvent-exposed SF region of apoA-I of nascent HDL essential for optimal LCAT binding and catalytic efficiency. PMID:26797122

  20. Apolipoprotein-E genotypes and myasthenia gravis.

    PubMed

    Suhail, Hamid; Soundararajan, Christhunesa C; Vivekanandhan, Subbiah; Singh, Sumit; Behari, Madhuri

    2010-01-01

    Autoimmune myasthenia gravis (MG) is a disorder of neuromuscular junction. Possible role of multiple genes in the development of the MG has been documented. This case-control study, studied the association of apolipoprotein E (Apo-E) alleles with MG. Anti-AChR antibody was measured using radio receptor immunoassay. Apo-E genotypes were analyzed in 120 MG patients and 120 healthy subjects. Comparison between patients with MG and controls showed no significant association with Apo-E allelic variants. However, a significant association of Apo-E4 allele with AChR-antibody positive patients was observed (P = 0.007). Also, among seropositive patients, a significant association was seen between female gender and Apo-E4 allele (P = 0.023). Our results suggest that the presence of Apo-E4 allele might influence seropositive status in patients with MG and seems an associated susceptible factor in female patients.

  1. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration

    PubMed Central

    Burk, Raymond F.; Hill, Kristina E.; Motley, Amy K.; Winfrey, Virginia P.; Kurokawa, Suguru; Mitchell, Stuart L.; Zhang, Wanqi

    2014-01-01

    Selenoprotein P (Sepp1) and its receptor, apolipoprotein E receptor 2 (apoER2), account for brain retaining selenium better than other tissues. The primary sources of Sepp1 in plasma and brain are hepatocytes and astrocytes, respectively. ApoER2 is expressed in varying amounts by tissues; within the brain it is expressed primarily by neurons. Knockout of Sepp1 or apoER2 lowers brain selenium from ∼120 to ∼50 ng/g and leads to severe neurodegeneration and death in mild selenium deficiency. Interactions of Sepp1 and apoER2 that protect against this injury have not been characterized. We studied Sepp1, apoER2, and brain selenium in knockout mice. Immunocytochemistry showed that apoER2 mediates Sepp1 uptake at the blood-brain barrier. When Sepp1−/− or apoER2−/− mice developed severe neurodegeneration caused by mild selenium deficiency, brain selenium was ∼35 ng/g. In extreme selenium deficiency, however, brain selenium of ∼12 ng/g was tolerated when both Sepp1 and apoER2 were intact in the brain. These findings indicate that tandem Sepp1-apoER2 interactions supply selenium for maintenance of brain neurons. One interaction is at the blood-brain barrier, and the other is within the brain. We postulate that Sepp1 inside the blood-brain barrier is taken up by neurons via apoER2, concentrating brain selenium in them.—Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L., Zhang, W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. PMID:24760755

  2. Apolipoprotein nanodiscs with telodendrimer

    DOEpatents

    Luo, Juntao; He, Wei; Lam, Kit S.; Henderson, Paul; Coleman, Matthew; Cheng, R. Holland; Xing, Li

    2017-05-09

    The present invention provides a nanodisc with a membrane scaffold protein. The nanodisc includes a membrane scaffold protein, a telodendrimer and a lipid. The membrane scaffold protein can be apolipoprotein. The telodendrimer has the general formula PEG-L-D-(R).sub.n, wherein D is a dendritic polymer; L is a bond or a linker linked to the focal point group of the dendritic polymer; each PEG is a poly(ethylene glycol) polymer; each R is and end group of the dendritic polymer, or and end group with a covalently bound hydrophobic group, hydrophilic group, amphiphilic compound, or drug; and subscript n is an integer from 2 to 20. Cell free methods of making the nanodiscs are also provided.

  3. Familial apolipoprotein E deficiency.

    PubMed Central

    Schaefer, E J; Gregg, R E; Ghiselli, G; Forte, T M; Ordovas, J M; Zech, L A; Brewer, H B

    1986-01-01

    A unique kindred with premature cardiovascular disease, tubo-eruptive xanthomas, and type III hyperlipoproteinemia (HLP) associated with familial apolipoprotein (apo) E deficiency was examined. Homozygotes (n = 4) had marked increases in cholesterol-rich very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL), which could be effectively lowered with diet and medication (niacin, clofibrate). Homozygotes had only trace amounts of plasma apoE, and accumulations of apoB-48 and apoA-IV in VLDL, IDL, and low density lipoproteins. Radioiodinated VLDL apoB and apoE kinetic studies revealed that the homozygous proband had markedly retarded fractional catabolism of VLDL apoB-100, apoB-48 and plasma apoE, as well as an extremely low apoE synthesis rate as compared to normals. Obligate heterozygotes (n = 10) generally had normal plasma lipids and mean plasma apoE concentrations that were 42% of normal. The data indicate that homozygous familial apoE deficiency is a cause of type III HLP, is associated with markedly decreased apoE production, and that apoE is essential for the normal catabolism of triglyceride-rich lipoprotein constituents. Images PMID:3771793

  4. Emerging Roles of Apolipoprotein E and Apolipoprotein A-I in the Pathogenesis and Treatment of Lung Disease.

    PubMed

    Yao, Xianglan; Gordon, Elizabeth M; Figueroa, Debbie M; Barochia, Amisha V; Levine, Stewart J

    2016-08-01

    Emerging roles are being recognized increasingly for apolipoproteins in the pathogenesis and treatment of lung diseases on the basis of their ability to suppress inflammation, oxidative stress, and tissue remodeling, and to promote adaptive immunity and host defense. Apolipoproteins, such as apolipoprotein E (apoE) and apolipoprotein A-I (apoA-I), are important components of lipoprotein particles that facilitate the transport of cholesterol, triglycerides, and phospholipids between plasma and cells. ApoE-containing lipoprotein particles are internalized into cells by low-density lipoprotein receptors (LDLRs), whereas apoA-I can interact with the ATP-binding cassette subfamily A member 1 (ABCA1) transporter to efflux cholesterol and phospholipids out of cells. ApoE and apoA-I also mediate receptor-independent effects, such as binding to and neutralizing LPS. Both apoE and apoA-I are expressed by lung cells, which allows apoE/LDLR- and apoA-I/ABCA1-dependent pathways to modulate normal lung health and the pathogenesis of respiratory diseases, including asthma, acute lung injury, cancer, emphysema, pulmonary fibrosis, and pulmonary hypertension. Data from human studies and research using experimental murine model systems have shown that both apoE and apoA-I pathways play primarily protective roles in lung biology and respiratory disease. Furthermore, apolipoprotein mimetic peptides, corresponding to the LDLR-binding domain of apoE or the class A amphipathic α-helical structure of apoA-I, have antiinflammatory and antioxidant effects that attenuate the severity of lung disease in murine models. Thus, the development of inhaled apolipoprotein mimetic peptides as a novel treatment paradigm could represent a significant advance for patients with respiratory disease who do not respond to current therapies.

  5. Emerging Roles of Apolipoprotein E and Apolipoprotein A-I in the Pathogenesis and Treatment of Lung Disease

    PubMed Central

    Yao, Xianglan; Gordon, Elizabeth M.; Figueroa, Debbie M.; Barochia, Amisha V.

    2016-01-01

    Emerging roles are being recognized increasingly for apolipoproteins in the pathogenesis and treatment of lung diseases on the basis of their ability to suppress inflammation, oxidative stress, and tissue remodeling, and to promote adaptive immunity and host defense. Apolipoproteins, such as apolipoprotein E (apoE) and apolipoprotein A-I (apoA-I), are important components of lipoprotein particles that facilitate the transport of cholesterol, triglycerides, and phospholipids between plasma and cells. ApoE-containing lipoprotein particles are internalized into cells by low-density lipoprotein receptors (LDLRs), whereas apoA-I can interact with the ATP-binding cassette subfamily A member 1 (ABCA1) transporter to efflux cholesterol and phospholipids out of cells. ApoE and apoA-I also mediate receptor-independent effects, such as binding to and neutralizing LPS. Both apoE and apoA-I are expressed by lung cells, which allows apoE/LDLR- and apoA-I/ABCA1-dependent pathways to modulate normal lung health and the pathogenesis of respiratory diseases, including asthma, acute lung injury, cancer, emphysema, pulmonary fibrosis, and pulmonary hypertension. Data from human studies and research using experimental murine model systems have shown that both apoE and apoA-I pathways play primarily protective roles in lung biology and respiratory disease. Furthermore, apolipoprotein mimetic peptides, corresponding to the LDLR-binding domain of apoE or the class A amphipathic α-helical structure of apoA-I, have antiinflammatory and antioxidant effects that attenuate the severity of lung disease in murine models. Thus, the development of inhaled apolipoprotein mimetic peptides as a novel treatment paradigm could represent a significant advance for patients with respiratory disease who do not respond to current therapies. PMID:27073971

  6. Apolipoprotein E genotype in schizophrenia

    SciTech Connect

    Joober, R.; Lal, S.; Bloom, D.; Benkelfat, C.

    1996-04-09

    We investigated the association between schizophrenia and the allelic polymorphism in the apolipoprotein E (Apo E) gene in 51 schizophrenic patients and 35 controls. The Apo E4 allele was equally represented in the schizophrenic group (16%) and the control group (20%) suggesting no association between schizophrenia and the Apo E4 allele. The apolipoprotein E (Apo E) is a polymorphic (E2, E3, and E4) lipoprotein involved in the transmembrane transport of cholesterol and is thought to play an important role in neuronal growth and in the central nervous system response to injury, particularly in the hippocampal region. Recent findings strongly suggest that the Apo E4 allele is associated with cognitive deficits in normal and pathological aging, e.g., Alzheimer`s disease. 5 refs., 1 tab.

  7. Insulin-Mediated Downregulation of Apolipoprotein A-I Gene in Human Hepatoma Cell Line HepG2: The Role of Interaction Between FOXO1 and LXRβ Transcription Factors.

    PubMed

    Shavva, Vladimir S; Bogomolova, Alexandra M; Nikitin, Artemy A; Dizhe, Ella B; Tanyanskiy, Dmitry A; Efremov, Alexander M; Oleinikova, Galina N; Perevozchikov, Andrej P; Orlov, Sergey V

    2017-02-01

    Apolipoprotein A-I (ApoA-I) is a key component of high density lipoproteins which possess anti-atherosclerotic and anti-inflammatory properties. Insulin is a crucial mediator of the glucose and lipid metabolism that has been implicated in atherosclerotic and inflammatory processes. Important mediators of insulin signaling such as Liver X Receptors (LXRs) and Forkhead Box A2 (FOXA2) are known to regulate apoA-I expression in liver. Forkhead Box O1 (FOXO1) is a well-known target of insulin signaling and a key mediator of oxidative stress response. Low doses of insulin were shown to activate apoA-I expression in human hepatoma HepG2 cells. However, the detailed mechanisms for these processes are still unknown. We studied the possible involvement of FOXO1, FOXA2, LXRα, and LXRβ transcription factors in the insulin-mediated regulation of apoA-I expression. Treatment of HepG2 cells with high doses of insulin (48 h, 100 nM) suppresses apoA-I gene expression. siRNAs against FOXO1, FOXA2, LXRβ, or LXRα abrogated this effect. FOXO1 forms a complex with LXRβ and insulin treatment impairs FOXO1/LXRβ complex binding to hepatic enhancer and triggers its nuclear export. Insulin as well as LXR ligand TO901317 enhance the interaction between FOXA2, LXRα, and hepatic enhancer. These data suggest that high doses of insulin downregulate apoA-I gene expression in HepG2 cells through redistribution of FOXO1/LXRβ complex, FOXA2, and LXRα on hepatic enhancer of apoA-I gene. J. Cell. Biochem. 118: 382-396, 2017. © 2016 Wiley Periodicals, Inc.

  8. Interaction of white matter hyperintensities (WMHs) and apolipoprotein E (APOE) genotypes on cognition in patients with amnestic mild cognitive impairment (aMCI).

    PubMed

    Yoon, Bora; Shim, Yong S; Cheong, Hae-Kwan; Kim, Yong-Duk; Lee, Kee Ook; Hong, Yun-Jeong; Oh, Yoon-Sang; Na, Hae Ri; Kim, Beoung-Chae; Choi, Seong Hye; Yang, Dong-Won

    2013-01-01

    The clinical implications of WMHs in aMCI are inconclusive. Moreover, clinical interactions between APOE genotypes and WMHs remain unclear. This study was conducted to investigate the relationship between WMHs and cognitive functions and how this relationship interacted with APOE genotype in people with aMCI. This study included a total of 1472 patients with aMCI from the Clinical Research Center for Dementia of South Korea (CREDOS) and divided them into 3 groups according to the severity of WMHs as assessed by visual ratings of brain magnetic resonance images. The associations of WMHs with the various cognitive domains and with APOE epsilon 4 (ɛ4) status were evaluated. After multivariable adjustments, the severity of WMHs was independently associated with semantic/phonemic verbal fluency and Stroop test-color reading, while APOE ɛ4 status was associated with verbal and visual memory-immediate, delayed recall, and recognition. Moreover, there were interaction between WMHs and APOE ɛ4 status in semantic verbal fluency (animal, P=0.033; supermarket, P=0.047)/Stroop test-color reading (P=0.024). WMHs independently deleteriously affected frontal executive functions in aMCI patients, regardless of APOE ɛ4 presence. Furthermore, APOE ɛ4 possession caused a rapid decline in frontal executive functions with the increase in the WMHs severity (vs. absence), suggesting that WMHs and APOE ɛ4 genotypes synergistically contribute to frontal executive dysfunctions in aMCI. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Apolipoprotein-induced conversion of phosphatidylcholine bilayer vesicles into nanodisks.

    PubMed

    Wan, Chung-Ping Leon; Chiu, Michael H; Wu, Xinping; Lee, Sean K; Prenner, Elmar J; Weers, Paul M M

    2011-03-01

    Apolipoprotein mediated formation of nanodisks was studied in detail using apolipophorin III (apoLp-III), thereby providing insight in apolipoprotein-lipid binding interactions. The spontaneous solubilization of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles occured only in a very narrow temperature range at the gel-liquid-crystalline phase transition temperature, exhibiting a net exothermic interaction based on isothermal titration calorimetry analysis. The resulting nanodisks were protected from proteolysis by trypsin, endoproteinase Glu-C, chymotrypsin and elastase. DMPC solubilization and the simultaneous formation of nanodisks were promoted by increasing the vesicle diameter, protein to lipid ratio and concentration. Inclusion of cholesterol in DMPC dramatically enhanced the rate of nanodisk formation, presumably by stabilization of lattice defects which form the main insertion sites for apolipoprotein α-helices. The presence of fully saturated acyl chains with a length of 13 or 14 carbons in phosphatidylcholine allowed the spontaneous vesicle solubilization upon apolipoprotein addition. Nanodisks with C13:0-phosphatidylcholine were significantly smaller with a diameter of 11.7 ± 3.1nm compared to 18.5 ± 5.6 nm for DMPC nanodisks determined by transmission electron microscopy. Nanodisk formation was not observed when the phosphatidylcholine vesicles contained acyl chains of 15 or 16 carbons. However, using very high concentrations of lipid and protein (>10mg/ml), 1,2,-dipalmitoyl-sn-glycero-3-phosphocholine nanodisks could be produced spontaneously although the efficiency remained low. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Synthesis, crystal structure and interaction of L-valine Schiff base divanadium(V) complex containing a V2O3 core with DNA and BSA

    NASA Astrophysics Data System (ADS)

    Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong

    2013-04-01

    A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val = Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1dbnd V1⋯V1Adbnd O1A torsion angle 115.22 (28)° and the V1⋯V1A distance 3.455 Å. The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05 × 106 M-1 and the binding site number n was 1.18.

  11. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation.

    PubMed Central

    Linton, M F; Gish, R; Hubl, S T; Bütler, E; Esquivel, C; Bry, W I; Boyles, J K; Wardell, M R; Young, S G

    1991-01-01

    Apolipoprotein (apo) E and the two B apolipoproteins, apoB48 and apoB100, are important proteins in human lipoprotein metabolism. Commonly occurring polymorphisms in the genes for apoE and apoB result in amino acid substitutions that produce readily detectable phenotypic differences in these proteins. We studied changes in apoE and apoB phenotypes before and after liver transplantation to gain new insights into apolipoprotein physiology. In all 29 patients that we studied, the postoperative serum apoE phenotype of the recipient, as assessed by isoelectric focusing, converted virtually completely to that of the donor, providing evidence that greater than 90% of the apoE in the plasma is synthesized by the liver. In contrast, the cerebrospinal fluid apoE phenotype did not change to the donor's phenotype after liver transplantation, indicating that most of the apoE in CSF cannot be derived from the plasma pool and therefore must be synthesized locally. The apoB100 phenotype (assessed with immunoassays using monoclonal antibody MB19, an antibody that detects a two-allele polymorphism in apoB) invariably converted to the phenotype of the donor. In four normolipidemic patients, we determined the MB19 phenotype of both the apoB100 and apoB48 in the "chylomicron fraction" isolated from plasma 3 h after a fat-rich meal. Interestingly, the apoB100 in the chylomicron fraction invariably had the phenotype of the donor, indicating that the vast majority of the large, triglyceride-rich apoB100-containing lipoproteins that appear in the plasma after a fat-rich meal are actually VLDL of hepatic origin. The MB19 phenotype of the apoB48 in the plasma chylomicron fraction did not change after liver transplantation, indicating that almost all of the apoB48 in plasma chylomicrons is derived from the intestine. These results were consistent with our immunocytochemical studies on intestinal biopsy specimens of organ donors; using apoB-specific monoclonal antibodies, we found evidence for

  12. Apolipoprotein B Attenuates Albuminuria-Associated Cardiovascular Disease in Prevention of Renal and Vascular Endstage Disease (PREVEND) Participants

    PubMed Central

    Gansevoort, Ron T.; Bakker, Stephan J.L.; Sparks, Charles E.; Vart, Priya; Dullaart, Robin P.F.

    2014-01-01

    Whether urinary albumin excretion relates to higher levels of atherogenic apolipoprotein B fractions in the nondiabetic population is uncertain. Such a relationship could explain, in part, the association of elevated urinary albumin excretion with cardiovascular disease risk. We assessed the relationship of urinary albumin excretion with apolipoprotein B fractions and determined whether the association of elevated urinary albumin excretion with incident cardiovascular events is modified by high apolipoprotein B fraction levels. We performed a prospective study on 8286 nondiabetic participants (580 participants with cardiovascular disease; 4.9 years median follow-up time) with fasting lipids, apolipoprotein B, and urinary albumin excretion determined at baseline. With adjustment for sex and age, micro- and macroalbuminuria were associated with increased apolipoprotein B fractions (non-HDL cholesterol, LDL cholesterol, triglycerides, and apolipoprotein B). All four apolipoprotein B fractions modified associations of urinary albumin excretion with incident cardiovascular disease (hazard ratios for interaction terms ranged from 0.89 to 0.94 with 95% confidence intervals ranging from 0.84 to 0.99 and P values ranging from 0.001 to 0.02 by Cox proportional hazards modeling). These interactions remained present after additional adjustment for conventional risk factors, eGFR, cardiovascular history, and lipid-lowering and antihypertensive drug treatments. Such modification was also observed when urinary albumin excretion was stratified into normo-, micro-, and macroalbuminuria. We conclude that there is an association between elevated urinary albumin excretion and apolipoprotein B fraction levels and a negative interaction between these variables in their associations with incident cardiovascular events. Elevated urinary albumin excretion may share common causal pathways with high apolipoprotein B fractions in the pathogenesis of cardiovascular disease. PMID:24854276

  13. Role of apolipoprotein E in febrile convulsion.

    PubMed

    Giray, Ozlem; Ulgenalp, Ayfer; Bora, Elçin; Uran, Nedret; Yilmaz, Ebru; Unalp, Aycan; Erçal, Derya

    2008-10-01

    Apolipoprotein E is consistently associated with the progression of some common human neurodegenerative diseases, e.g., epilepsy. We hypothesized that genetic variations in the apolipoprotein E gene have implications for susceptibility to, and prognoses in, febrile convulsion, which plays an apparent role in the development of epilepsy. We used the polymerase chain reaction and restriction enzyme digestion to characterize variations of the apolipoprotein E gene. Sixty-nine patients with febrile convulsion (simple/complex) and a corresponding cohort of healthy patients (n = 75) were used. There was no significant difference in genotypic distribution and allelic frequencies of the apolipoprotein E gene between the febrile convulsion and control groups. Comparing subpopulations of the febrile convulsion group (patients with simple and complex febrile convulsion), we noted that no patients with the epsilon3/epsilon4 genotype had complex febrile convulsions. The apolipoprotein E epsilon3/epsilon4 genotype was more frequently seen in the simple febrile than in the complicated febrile convulsion group (9 versus 0 patients, respectively). The data indicate an association with the epsilon3/epsilon4 genotype of the apolipoprotein E gene with a milder phenotype. Although apolipoprotein E4 is not a vulnerability factor regarding febrile convulsions, it seems effective in regard to prognoses.

  14. Identification of apolipoprotein using feature selection technique.

    PubMed

    Tang, Hua; Zou, Ping; Zhang, Chunmei; Chen, Rong; Chen, Wei; Lin, Hao

    2016-07-22

    Apolipoprotein is a kind of protein which can transport the lipids through the lymphatic and circulatory systems. The abnormal expression level of apolipoprotein always causes angiocardiopathy. Thus, correct recognition of apolipoprotein from proteomic data is very crucial to the comprehension of cardiovascular system and drug design. This study is to develop a computational model to predict apolipoproteins. In the model, the apolipoproteins and non-apolipoproteins were collected to form benchmark dataset. On the basis of the dataset, we extracted the g-gap dipeptide composition information from residue sequences to formulate protein samples. To exclude redundant information or noise, the analysis of various (ANOVA)-based feature selection technique was proposed to find out the best feature subset. The support vector machine (SVM) was selected as discrimination algorithm. Results show that 96.2% of sensitivity and 99.3% of specificity were achieved in five-fold cross-validation. These findings open new perspectives to improve apolipoproteins prediction by considering the specific dipeptides. We expect that these findings will help to improve drug development in anti-angiocardiopathy disease.

  15. Identification of apolipoprotein using feature selection technique

    PubMed Central

    Tang, Hua; Zou, Ping; Zhang, Chunmei; Chen, Rong; Chen, Wei; Lin, Hao

    2016-01-01

    Apolipoprotein is a kind of protein which can transport the lipids through the lymphatic and circulatory systems. The abnormal expression level of apolipoprotein always causes angiocardiopathy. Thus, correct recognition of apolipoprotein from proteomic data is very crucial to the comprehension of cardiovascular system and drug design. This study is to develop a computational model to predict apolipoproteins. In the model, the apolipoproteins and non-apolipoproteins were collected to form benchmark dataset. On the basis of the dataset, we extracted the g-gap dipeptide composition information from residue sequences to formulate protein samples. To exclude redundant information or noise, the analysis of various (ANOVA)-based feature selection technique was proposed to find out the best feature subset. The support vector machine (SVM) was selected as discrimination algorithm. Results show that 96.2% of sensitivity and 99.3% of specificity were achieved in five-fold cross-validation. These findings open new perspectives to improve apolipoproteins prediction by considering the specific dipeptides. We expect that these findings will help to improve drug development in anti-angiocardiopathy disease. PMID:27443605

  16. ApolipoproteinE mimetic peptides improve outcome after focal ischemia.

    PubMed

    Wang, Haichen; Anderson, Lauren G; Lascola, Christopher D; James, Michael L; Venkatraman, Talaignair N; Bennett, Ellen R; Acheson, Shawn K; Vitek, Michael P; Laskowitz, Daniel T

    2013-03-01

    Growing clinical evidence implicates isoform-specific effects of apolipoprotein E (apoE) in reducing neuroinflammation and mediating adaptive responses following ischemic and traumatic brain injury. However, the intact apoE holoprotein does not cross the blood-brain barrier and thus has limited therapeutic potential. We have created a small peptide, COG1410 (acetyl-AS-Aib-LRKL-Aib-KRLL-amide), derived from the apoE receptor-binding region. COG1410 retains the anti-inflammatory and neuroprotective biological properties of the intact holoprotein and penetrates the blood-brain barrier. In the current study, we utilized a murine model of transient focal cerebral ischemia and reperfusion to demonstrate that intravenous (IV) administration of COG1410 reduces infarct volume and radiographic progression of infarct, and improves functional outcome as assessed by rotarod when delivered up to 4h after ischemia onset. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Heterogeneous expression of apolipoprotein-E by human macrophages

    PubMed Central

    Tedla, Nicodemus; Glaros, Elias N; Brunk, Ulf T; Jessup, Wendy; Garner, Brett

    2004-01-01

    Apolipoprotein-E (apoE) is expressed at high levels by macrophages. In addition to its role in lipid transport, macrophage-derived apoE plays an important role in immunoregulation. Previous studies have identified macrophage subpopulations that differ substantially in their ability to synthesize specific cytokines and enzymes, however, potential heterogeneous macrophage apoE expression has not been studied. Here we examined apoE expression in human THP-1 macrophages and monocyte-derived macrophages (MDM). Using immunocytochemistry and flow cytometry methods we reveal a striking heterogeneity in macrophage apoE expression in both cell types. In phorbol-ester-differentiated THP-1 macrophages, 5% of the cells over-expressed apoE at levels more than 50-fold higher than the rest of the population. ApoE over-expressing THP-1 macrophages contained condensed/fragmented nuclei and increased levels of activated caspase-3 indicating induction of apoptosis. In MDM, 3–5% of the cells also highly over-expressed apoE, up to 50-fold higher than the rest of the population; however, this was not associated with obvious nuclear alterations. The apoE over-expressing MDM were larger, more granular, and more autofluorescent than the majority of cells and they contained numerous vesicle-like structures that appeared to be coated by apoE. Flow cytometry experiments indicated that the apoE over-expressing subpopulation of MDM were positive for CD14, CD11b/Mac-1 and CD68. These observations suggest that specific macrophage subpopulations may be important for apoE-mediated immunoregulation and clearly indicate that subpopulation heterogeneity should be taken into account when investigating macrophage apoE expression. PMID:15500620

  18. Apolipoprotein E receptor pathways in Alzheimer disease.

    PubMed

    Schmidt, Vanessa; Carlo, Anne-Sophie; Willnow, Thomas E

    2014-01-01

    Alzheimer disease (AD) is the most common neurodegenerative disease affecting millions of patients worldwide. According to the amyloid cascade hypothesis, the formation of neurotoxic oligomers composed of amyloid-β (Aβ) peptides is the main mechanism that causes synaptic dysfunction and, eventually, neuronal cell death in this condition. Intriguingly, apolipoprotein E (apoE), the most important genetic risk factor for sporadic AD, emerges as a key factor that contributes to many aspects of the amyloid cascade including the clearance of Aβ from brain interstitial fluid and the ability of this peptide to form neurotoxic oligomers. Central to the activity of apoE in the healthy and in the diseased brain are apoE receptors that interact with this protein to mediate its multiple cellular and systemic effects. This review describes the molecular interactions that link apoE and its cellular receptors with neuronal viability and function, and how defects in these pathways in the brain promote neurodegeneration. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 Wiley Periodicals, Inc.

  19. Apolipoprotein B-containing lipoproteins and atherosclerotic cardiovascular disease

    PubMed Central

    Shapiro, Michael D.; Fazio, Sergio

    2017-01-01

    Cholesterol-rich, apolipoprotein B (apoB)-containing lipoproteins are now widely accepted as the most important causal agents of atherosclerotic cardiovascular disease. Multiple unequivocal and orthogonal lines of evidence all converge on low-density lipoprotein and related particles as being the principal actors in the genesis of atherosclerosis. Here, we review the fundamental role of atherogenic apoB-containing lipoproteins in cardiovascular disease and several other humoral and parietal factors that are required to initiate and maintain arterial degeneration. The biology of foam cells and their interactions with high-density lipoproteins, including cholesterol efflux, are also briefly reviewed. PMID:28299190

  20. Apolipoprotein A-II polymorphism: relationships to behavioural and hormonal mediators of obesity

    USDA-ARS?s Scientific Manuscript database

    Background: The interaction between apolipoprotein A-II (APOA2) m265 genotype and saturated fat for obesity traits has been more extensively demonstrated than for any other locus, but behavioural and hormonal mechanisms underlying this relationship are unexplored. In this study, we evaluated relatio...

  1. Effect of aerobic exercise on risk factors of cardiovascular disease and the apolipoprotein B / apolipoprotein a-1 ratio in obese woman.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young

    2014-11-01

    [Purpose] The objective of this study was to confirm whether consistent aerobic exercise has an effect on the apolipoprotein B/apolipoprotein A-1 ratio or reduces the risk of cardiovascular disease in obese women. [Subjects and Methods] The participants included 32 obese women between the ages of 40 and 49. Subjects were randomly divided into two groups (n = 16 in each group): the control group and the exercise group. The exercise program in this study corresponded to an intensity of 50 to 60% of the maximum volume of minute oxygen consumption and was performed three times per week over 12 weeks. Physical measurements, measurement of cardiorespiratory fitness and blood pressure, and blood collection were done before and after the 12 weeks of exercise at the same time and under the same conditions. [Results] Based on the results of this study, there were significant interaction effects in both time and group weight, for body mass index, percent body fat, maximum volume of minute oxygen consumption, high-density lipoprotein cholesterol, and the apolipoprotein B/apolipoprotein A-1 ratio. Moreover, waist circumference, total cholesterol, and the atherogenic index decreased significantly after 12 weeks of aerobic exercise. [Conclusion] Regular aerobic exercise effectively improved cardiovascular risk factors and decreased the obesity index in obese women.

  2. Response to a urate-lowering diet according to polymorphisms in the apolipoprotein AI-CIII-AIV cluster.

    PubMed

    Cardona, Fernando; Tinahones, Francisco J; Collantes, Eduardo; Garcia-Fuentes, Eduardo; Escudero, Alejandro; Soriguer, Federico

    2005-05-01

    The apolipoprotein AI-CIII-AIV cluster has been associated with the response to a urate-lowering diet, and polymorphisms in the apolipoprotein CIII gene have been associated with hyperuricemia and hypertriglyceridemia. We assessed the influence of polymorphisms in the apolipoprotein AI-CIII-AIV cluster on the response to a urate-lowering diet in patients with hyperuricemia. A urate-lowering diet was followed for 2 weeks by 64 men with hyperuricemia. Plasma concentrations of triglycerides, cholesterol, glucose, and uric acid, and the uric acid clearance and 24-hour uric acid urinary excretory fraction were measured before and after the diet. The data were analyzed in association with the polymorphisms of the apolipoprotein AI-CIII-AIV gene cluster. After the urate-lowering diet, the plasma levels of triglycerides, cholesterol, glucose, and uric acid and 24-hour uric acid excretion all fell significantly. Paired sample ANOVA showed that the decrease was mainly due to the diet, except for the plasma triglycerides, which were influenced by allele X2 of the XmnI polymorphism of the apolipoprotein AI gene. The response of the biological variables to a urate-lowering diet was mainly influenced by diet. Changes in triglycerides were also influenced by the apolipoprotein AI XmnI polymorphism (p = 0.04), suggesting a gene-diet interaction (p = 0.03).

  3. Amphipathic α-Helices in Apolipoproteins Are Crucial to the Formation of Infectious Hepatitis C Virus Particles

    PubMed Central

    Nakamura, Shota; Ono, Chikako; Shiokawa, Mai; Yamamoto, Satomi; Motomura, Takashi; Okamoto, Toru; Okuzaki, Daisuke; Yamamoto, Masahiro; Saito, Izumu; Wakita, Takaji; Koike, Kazuhiko; Matsuura, Yoshiharu

    2014-01-01

    Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly. PMID:25502789

  4. Contribution of polymorphisms in the apolipoprotein AI-CIII-AIV cluster to hyperlipidaemia in patients with gout.

    PubMed

    Cardona, F; Tinahones, F J; Collantes, E; Escudero, A; García-Fuentes, E; Soriguer, F J

    2005-01-01

    Studies have shown that hyperuricaemia is independently related to the insulin resistance syndrome and that polymorphisms of the apolipoprotein AI-CIII-AIV cluster are also related to insulin resistance. To study the prevalence of polymorphisms of the apolipoprotein AI-CIII-AIV cluster in persons with gout and to determine whether these polymorphisms contribute to the pathophysiology of gout or to altered lipid concentrations. Plasma cholesterol, triglycerides, uric acid, VLDL, LDL, IDL, and HDL triglycerides, cholesterol, and the renal excretion of uric acid were measured in 68 patients with gout with gout and 165 healthy subjects. Polymorphisms were studied by amplification and RFLP in all subjects, using XmnI and MspI in the apolipoprotein AI gene and SstI in the apolipoprotein CIII gene. The A allele at position -75 bp in the apolipoprotein AI gene was more common in patients with gout than in controls (p = 0.01). Levels of cholesterol, triglycerides, uric acid, basal glycaemia, and HDL cholesterol were higher in the patients (p<0.001). In the patients there was also an interaction between mutations at the two polymorphic loci studied in the apolipoprotein AI gene (p = 0.04). An absence of the mutation at position -75 bp of the apolipoprotein AI gene resulted in increased plasma triglyceride levels. Gouty patients have an altered allelic distribution in the apolipoprotein AI-CIII-AIV cluster, which could lead to changes in levels of lipoproteins. This is not caused by a single mutation but rather by a combination of different mutations.

  5. Contribution of polymorphisms in the apolipoprotein AI-CIII-AIV cluster to hyperlipidaemia in patients with gout

    PubMed Central

    Cardona, F; Tinahones, F; Collantes, E; Escudero, A; Garcia-Fuentes, E; Soriguer, F

    2005-01-01

    Background: Studies have shown that hyperuricaemia is independently related to the insulin resistance syndrome and that polymorphisms of the apolipoprotein AI-CIII-AIV cluster are also related to insulin resistance. Objective: To study the prevalence of polymorphisms of the apolipoprotein AI-CIII-AIV cluster in persons with gout and to determine whether these polymorphisms contribute to the pathophysiology of gout or to altered lipid concentrations. Methods: Plasma cholesterol, triglycerides, uric acid, VLDL, LDL, IDL, and HDL triglycerides, cholesterol, and the renal excretion of uric acid were measured in 68 patients with gout with gout and 165 healthy subjects. Polymorphisms were studied by amplification and RFLP in all subjects, using XmnI and MspI in the apolipoprotein AI gene and SstI in the apolipoprotein CIII gene. Results: The A allele at position –75 bp in the apolipoprotein AI gene was more common in patients with gout than in controls (p = 0.01). Levels of cholesterol, triglycerides, uric acid, basal glycaemia, and HDL cholesterol were higher in the patients (p<0.001). In the patients there was also an interaction between mutations at the two polymorphic loci studied in the apolipoprotein AI gene (p = 0.04). An absence of the mutation at position –75 bp of the apolipoprotein AI gene resulted in increased plasma triglyceride levels. Conclusions: Gouty patients have an altered allelic distribution in the apolipoprotein AI-CIII-AIV cluster, which could lead to changes in levels of lipoproteins. This is not caused by a single mutation but rather by a combination of different mutations. PMID:15115711

  6. Apolipoprotein E: the resilience gene.

    PubMed

    James, Lisa M; Engdahl, Brian E; Georgopoulos, Apostolos P

    2017-03-15

    The apolipoprotein E (apoE) gene has been implicated in various conditions, most notably Alzheimer's disease and coronary artery disease. A predisposing role of the apoE4 isoform and a protective role of apoE2 isoform in those diseases have been documented. Here we investigated the role of apoE in resilience to trauma. Three hundred and forty-three US veterans were genotyped for apoE and were assessed for their lifetime trauma exposure (trauma score, T) and severity of posttraumatic stress disorder symptoms (PCL). The ratio PCL/T indicates sensitivity to trauma; hence, its inverse indicates resilience, R, to trauma. We found a significantly higher resilience in participants with apoE genotype containing the E2 allele (E2/2, E2/3) as compared to participants with the E4 allele (E4/4, E4/3). In addition, when the categorical apoE genotype was reexpressed as the number of cysteine residues per apoE mole (CysR/mole), a highly significant positive association was found between resilience and CysR/mole, such that resilience was systematically higher as the number of CysR/mole increased, from zero CysR/mole in E4/4 to four CysR/mole in E2/2. These findings demonstrate the protective role of the CysR/mole apoE in resilience to trauma: the more CysR/mole, the higher the resilience. Thus, they are in accord with other findings pointing to a generally protective role of increasing number of CysR/mole (from E4/4 to E2/2) in other diseases. However, unlike other conditions (e.g., Alzheimer's disease and coronary artery disease), resilience to trauma is not a disease but an adaptive response to trauma. Therefore, the effects of apoE seem to be more pervasive along the CysR/mole continuum, most probably reflecting underlying effects on brain synchronicity and its variability that we have documented previously (Leuthold et al., Exp Brain Res 226:525-536, 2013).

  7. [Comparison of reabsorption of osmotically free water in the bud and energy of interaction of vasotocin analogs with a V2-receptor].

    PubMed

    Kutina, A V; Karavashkina, T A; Shakhmatova, E I; Gao, Ts; Mordvintsev, D Iu; Kuz'min, D A; Tsetlin, V I; Natochin, Iu V

    2011-01-01

    The calculated values of the binding energy of nonapeptides with receptors in docking with their influence on reabsorption of osmotically free water in a rat bud in vivo were compared. Vasotocin and some its analogs were intramuscularly introduced to non-narcotized rat females of the Wistar line in doses from 0.1 pmol to 0.5 nmol/kg of body weight against the background of peroral water load (50 ml/kg of body weight). A significant correlation between the calculated interaction energy of peptides with V2-receptors and an increase of reabsorption of osmotically free water in the rat bud stimulated by injection of nonapeptides was found. The results evidence that alterations in rat bud in vivo caused by analogs of vasotocin and their interactions with V2-receptors can be accurately simulated.

  8. Nutrient Intake, Apolipoprotein A5 -1131T>C Polymorphism and Its Relationship with Obesity

    NASA Astrophysics Data System (ADS)

    Sari, M. I.; Sari, D. I.

    2017-03-01

    Obesity is associated with the development of some of the most prevalent diseases of modern society. The World Health Organization estimates that at least 2.8 million adult die each year as result of being obesity. Nutrient intake is a key environmental factor that may interact with genotype to affect risk of obesity. The aim of study was assess the relation between nutrient intake and apolipoprotein A5 -1131T>C polimorphism with obesity. A cross sectional study has been carried out on 139 subjects. Nutrient intake data was collected by using a 24 hour dietary recall and analyzed by nutrisurvey software. Anthropometric variables were measured and body mass index (BMI). Apolipoprotein A5 -1131T>C polymorphism was visualized with 5% agarose gel after restriction length fragment polymorphism (RFLP) digested with MseI. Results : Subjects in this study were 55 male and 84 female, with average age 19.20 ± 1.08, 75 had obese and 64 non obese. Based on the chi square test is found a relationship between total energy intake and protein intake in obese group compared to the non-obese group (p = 0.029, p = 0.006) and no relationship was found in Apolipoprotein A5 -1131T> C polymorphism with obesity. These findings indicate that nutrient intake no depending with apolipoprotein A5 gene variant to modulate obesity

  9. Heredity links natural hazards and human health: Apolipoprotein E gene moderates the health of earthquake survivors.

    PubMed

    Daly, Michael; MacLachlan, Malcolm

    2011-03-01

    This study aimed to investigate the role of the apolipoprotein ε4 allele in moderating the influence of an exogenous stressor, an earthquake, on health. A "natural experiment" design was used where the interaction between the presence of the apolipoprotein ε4 allele and the level of subjective and objective exposure to a devastating earthquake was examined in a population-based cohort of elderly Taiwanese (N = 718). The cognitive-affective dimension of health was assessed by measures of perceived control and depression and functional limitations were assessed using measures of instrumental activities of daily living and mobility. Overall health status was gauged using a single-item measure of self-rated health. Those who experienced damage to their property or were forced to move from their homes (high objective exposure) demonstrated low levels of self-rated health and somewhat lower perceived control a year later, only if they were apolipoprotein ε4 carriers. Similarly, those who found the earthquake severely distressing (high subjective exposure) were shown to have low levels of functioning and low self-rated health a year later, only if they possessed the ε4 allele. Our findings suggest that genetic variation in the apolipoprotein E gene may modify the health effects of the exogenous stress of natural disaster exposure.

  10. Apolipoprotein E and Apolipoprotein E Receptors: Normal Biology and Roles in Alzheimer Disease

    PubMed Central

    Holtzman, David M.; Herz, Joachim; Bu, Guojun

    2012-01-01

    Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease (AD); the ε4 allele increases risk and the ε2 allele is protective. In the central nervous system (CNS), apoE is produced by glial cells, is present in high-density-like lipoproteins, interacts with several receptors that are members of the low-density lipoprotein receptor (LDLR) family, and is a protein that binds to the amyloid-β (Aβ) peptide. There are a variety of mechanisms by which apoE isoform may influence risk for AD. There is substantial evidence that differential effects of apoE isoform on AD risk are influenced by the ability of apoE to affect Aβ aggregation and clearance in the brain. Other mechanisms are also likely to play a role in the ability of apoE to influence CNS function as well as AD, including effects on synaptic plasticity, cell signaling, lipid transport and metabolism, and neuroinflammation. ApoE receptors, including LDLRs, Apoer2, very low-density lipoprotein receptors (VLDLRs), and lipoprotein receptor-related protein 1 (LRP1) appear to influence both the CNS effects of apoE as well as Aβ metabolism and toxicity. Therapeutic strategies based on apoE and apoE receptors may include influencing apoE/Aβ interactions, apoE structure, apoE lipidation, LDLR receptor family member function, and signaling. Understanding the normal and disease-related biology connecting apoE, apoE receptors, and AD is likely to provide novel insights into AD pathogenesis and treatment. PMID:22393530

  11. Interactive and additive influences of Gender, BMI and Apolipoprotein 4 on cognition in children chronically exposed to high concentrations of PM2.5 and ozone. APOE 4 females are at highest risk in Mexico City.

    PubMed

    Calderón-Garcidueñas, Lilian; Jewells, Valerie; Galaz-Montoya, Carolina; van Zundert, Brigitte; Pérez-Calatayud, Angel; Ascencio-Ferrel, Eric; Valencia-Salazar, Gildardo; Sandoval-Cano, Marcela; Carlos, Esperanza; Solorio, Edelmira; Acuña-Ayala, Hilda; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2016-10-01

    Children's air pollution exposures are associated with systemic and brain inflammation and the early hallmarks of Alzheimer's disease (AD). The Apolipoprotein E (APOE) 4 allele is the most prevalent genetic risk for AD, with higher risk for women. We assessed whether gender, BMI, APOE and metabolic variables in healthy children with high exposures to ozone and fine particulate matter (PM2.5) influence cognition. The Wechsler Intelligence Scale for Children (WISC-R) was administered to 105 Mexico City children (12.32±5.4 years, 69 APOE 3/3 and 36 APOE 3/4). APOE 4v 3 children showed decrements on attention and short-term memory subscales, and below-average scores in Verbal, Performance and Full Scale IQ. APOE 4 females had higher BMI and females with normal BMI between 75-94% percentiles had the highest deficits in Total IQ, Performance IQ, Digit Span, Picture Arrangement, Block Design and Object Assembly. Fasting glucose was significantly higher in APOE 4 children p=0.006, while Gender was the main variable accounting for the difference in insulin, HOMA-IR and leptin (p<.05). Gender, BMI and APOE influence children's cognitive responses to air pollution and glucose is likely a key player. APOE 4 heterozygous females with >75% to <94% BMI percentiles are at the highest risk of severe cognitive deficits (1.5-2SD from average IQ). Young female results highlight the urgent need for gender-targeted health programmes to improve cognitive responses. Multidisciplinary intervention strategies could provide paths for prevention or amelioration of female air pollution targeted cognitive deficits and possible long-term AD progression.

  12. Sex as a profound modifier of atherosclerotic lesion development in apolipoprotein E-deficient mice with different genetic backgrounds.

    PubMed

    Surra, Joaquín C; Guillén, Natalía; Arbonés-Mainar, José M; Barranquero, Cristina; Navarro, María A; Arnal, Carmen; Orman, Israel; Segovia, José C; Osada, Jesús

    2010-07-30

    Research suggests that sex may condition atherosclerosis development against different genetic backgrounds. This study addresses the hypothesis that this effect would be exerted by changes in the different apolipoproteins present in high-density lipoproteins. ApoE-deficient mice of both sexes with Ola 129 and C57BL/6J genetic backgrounds were fed a chow diet for 14 weeks. At the end of the dietary intervention, the development of atherosclerotic lesions, apolipoproteins, lipid metabolism, inflammation and paraoxonase were assessed. Differences between atherosclerotic lesions in Ola 129 and C57BL/6J strains of apoE-deficient mice were sex-dependent and were only statistically significant in females. Plasma levels of HDL cholesterol and apolipoproteins related to these lipoparticles, such as apoA-I, apoA-II, apoA-IV, apoA-V and apoJ, were significantly different between these two strains and there were sex-related differences in some of these apolipoproteins. Hepatic steatosis was also related to the strain and was independent of sex. In females, changes in HDL cholesterol and apolipoproteins A-I and A-II were important determinants of atherosclerosis, while this was not the case in males. Our results demonstrate that atherosclerosis-related differences between Ola129 and C57BL/6J genetic backgrounds in apoE-deficient mice are sex-dependent and that this finding is explained by the differences in HDL cholesterol and its apolipoprotein components, mainly apoA-I and A-II. Overall, our findings highlight the importance of taking sex into account in the analysis of atherosclerosis and lipid metabolism in animal models.

  13. Peptide Mimetics of Apolipoproteins Improve HDL Function

    PubMed Central

    Navab, Mohamad; Anantharamaiah, G. M.; Reddy, Srinivasa T.; Van Lenten, Brian J.; Buga, Georgette M.; Fogelman, Alan M.

    2007-01-01

    Over the past decade evidence has accumulated that suggests that the anti-inflammatory properties of HDL may be at least as important as the levels of HDL-cholesterol. The recent failure of the torcetrapib clinical trails has highlighted the potential differences between HDL-cholesterol levels and HDL function. Agents to improve HDL function including HDL anti-inflammatory properties provide a new therapeutic strategy for ameliorating atherosclerosis and other chronic inflammatory conditions related to dyslipidemia. Seeking guidance from the structure of the apolipoproteins of the plasma lipoproteins has allowed the creation of a series of polypeptides that have interesting functionality with therapeutic implications. In animal models of atherosclerosis, peptide mimetics of apolipoproteins have been shown to improve the anti-inflammatory properties of HDL, significantly reduce lesions and improve vascular inflammation and function without necessarily altering HDL-cholesterol levels. Some of these are now entering the clinical arena as interventions in pharmacologic and pharmacodynamic studies. PMID:18449337

  14. Pharmacogenomic effects of apolipoprotein e on intracerebral hemorrhage.

    PubMed

    James, Michael L; Sullivan, Patrick M; Lascola, Christopher D; Vitek, Michael P; Laskowitz, Daniel T

    2009-02-01

    The purpose of the study was to evaluate the effect of APOE genotype and the feasibility of administering an apolipoprotein E-mimetic therapeutic to modify outcomes in a murine model of intracerebral hemorrhage. Intracerebral hemorrhage was induced via stereotactic injection of 0.1 U Clostridial collagenase into the left basal ganglia of wild-type and apolipoprotein-E targeted-replacement mice, consisting of either homozygous 3/3 or 4/4 genotypes. Animals were randomized to receive either vehicle or apolipoprotein E-mimetic peptide. Outcomes included functional neurological tests (21-point neuroseverity score and Rotorod latency) over the initial 7 days after injury, radiographic and histological hemorrhage size at 3 and 7 days, brain water content for cerebral edema at 24 hours, and quantitative polymerase chain reaction for inflammatory markers at 6, 24, and 48 hours. Apolipoprotein-E targeted-replacement mice consisting of homozygous 3/3 demonstrated superior neuroseverity scores and Rotorod latencies over the first 3 days after intracerebral hemorrhage, decreased cerebral edema at 24 hours, and reduced upregulation of IL-6 and endothelial nitric oxide synthase at 6 hours when compared to their apolipoprotein-E targeted-replacement mice consisting of homozygous 4/4 counterparts. After intravenous administration of 1 mg/kg apolipoprotein E-mimetic peptide, both wild-type and apolipoprotein-E targeted-replacement mice consisting of homozygous 4/4 exhibited improved functional outcomes over 7 days after intracerebral hemorrhage, less edema at 24 hours, and reduced upregulation of IL-6 and endothelial nitric oxide synthase when compared to mice that did not receive the peptide. Our data indicate that APOE genotype influences neurological outcome after intracerebral hemorrhage in a murine model. In particular APOE4 is associated with poor functional outcome and increased cerebral edema. Additionally, this outcome can be modified by the addition of an apolipoprotein E

  15. Apolipoprotein E Polymorphism in Tuberculosis Patients

    NASA Astrophysics Data System (ADS)

    Naserpour Farivar, Taghi; Sharifi Moud, Batool; Sargazi, Mansur; Moeenrezakhanlou, Alireza

    In this study, we aimed to determine the significance of association between Tuberculosis and apolipoprotein E polymorphism. The apolipoprotein E genotypes were assayed in 250 tuberculosis patients by polymerase chain reaction followed by enzymatic digestion with Hha I. The results were compared with the results of the same experiments on 250 sex and age matched control peoples. Present results showed that in studied populations, prevalence of E4 genotype was lower in controls than in patients (8 v. 13.2%; OR = 1.75, p<0.05) and prevalence of E3 genotype was high in controls than in patients (86 v.51%; OR = 0.17, p<0.05). Statistically significant difference was found between patients and controls with respect to ɛ2 allele frequencies, while ɛ2 allele frequency was found to be much less prevalent in controls (6%) than in patients (35.8%; OR = 8.72, p<0.05). Also, our study revealed that there is an association between apolipoprotein E genotypes and amplitude to tuberculosis in studied populations. However, large population-based studies are needed to understand the exact role played by the locus in causing the condition.

  16. Direct Transcriptional Effects of Apolipoprotein E

    PubMed Central

    Theendakara, Veena; Peters-Libeu, Clare A.; Spilman, Patricia; Poksay, Karen S.

    2016-01-01

    A major unanswered question in biology and medicine is the mechanism by which the product of the apolipoprotein E ε4 allele, the lipid-binding protein apolipoprotein E4 (ApoE4), plays a pivotal role in processes as disparate as Alzheimer's disease (AD; in which it is the single most important genetic risk factor), atherosclerotic cardiovascular disease, Lewy body dementia, hominid evolution, and inflammation. Using a combination of neural cell lines, skin fibroblasts from AD patients, and ApoE targeted replacement mouse brains, we show in the present report that ApoE4 undergoes nuclear translocation, binds double-stranded DNA with high affinity (low nanomolar), and functions as a transcription factor. Using chromatin immunoprecipitation and high-throughput DNA sequencing, our results indicate that the ApoE4 DNA binding sites include ∼1700 gene promoter regions. The genes associated with these promoters provide new insight into the mechanism by which AD risk is conferred by ApoE4, because they include genes associated with trophic support, programmed cell death, microtubule disassembly, synaptic function, aging, and insulin resistance, all processes that have been implicated in AD pathogenesis. SIGNIFICANCE STATEMENT This study shows for the first time that apolipoprotein E4 binds DNA with high affinity and that its binding sites include 1700 promoter regions that include genes associated with neurotrophins, programmed cell death, synaptic function, sirtuins and aging, and insulin resistance, all processes that have been implicated in Alzheimer's disease pathogenesis. PMID:26791201

  17. Pressure Perturbation Calorimetry of Apolipoproteins in Solution and in Model Lipoproteins

    PubMed Central

    Benjwal, Sangeeta; Gursky, Olga

    2009-01-01

    High-density lipoproteins (HDL) are complexes of lipids and proteins (termed apolipoproteins) that remove cell cholesterol and protect from atherosclerosis. Apolipoproteins contain amphipathic α-helices that have high content (≥1/3) and distinct distribution of charged and apolar residues, adopt molten globule-like conformations in solution, and bind to lipid surfaces. We report the first pressure perturbation calorimetry (PPC) study of apolipoproteins. In solution, the main HDL protein, apoA-I, shows relatively large volume contraction, ΔVunf=-0.33%, and an apparent reduction in thermal expansivity upon unfolding, Δαunf≤0, which has not been observed in other proteins. We propose that these values are dominated by increased charged residue hydration upon α-helical unfolding, which may result from disruption of multiple salt bridges. At 5°C, apoA-I shows large thermal expansion coefficient, α(5°) = 15·10-4 K-1, that rapidly declines upon heating from 5-40°C, α(40°)-α(5°)=-4·10-4 K-1; apolipoprotein C-I shows similar values of α(5°) and α(40°). These values are larger than in globular proteins. They indicate dominant effect of charged residue hydration, which may modulate functional apolipoprotein interactions with a broad range of their protein and lipid ligands. The first PPC analysis of a protein-lipid complex is reported, which focuses on the chain melting transition in model HDL containing apoA-I or apoC-I, dimyristoyl phosphatidylcholine, and 0–20% cholesterol. The results may provide new insights into volumetric properties of HDL that modulate metabolic lipoprotein remodeling during cholesterol transport. PMID:19927327

  18. Independent effects of apolipoprotein AV and apolipoprotein CIII on plasma triglyceride concentrations

    SciTech Connect

    Baroukh, Nadine N.; Bauge, Eric; Akiyama, Jennifer; Chang, Jessie; Fruchart, Jean-Charles; Rubin, Edward M.; Fruchart, Jamila; Pennacchio, Len A.

    2003-08-15

    Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered triglycerides. To overcome these confounding factors and address their relationship, we generated independent lines of mice that either over-expressed (''double transgenic'') or completely lacked (''double knockout'') both apolipoprotein genes. We report that both ''double transgenic'' and ''double knockout'' mice display intermedia tetriglyceride concentrations compared to over-expression or deletion of either gene alone. Furthermore, we find that human ApoAV plasma protein levels in the ''double transgenic'' mice are approximately 500-fold lower than human ApoCIII levels, supporting ApoAV is a potent triglyceride modulator despite its low concentration. Together, these data indicate

  19. Apolipoproteins, lipids and risk of cancer.

    PubMed

    Borgquist, Signe; Butt, Talha; Almgren, Peter; Shiffman, Dov; Stocks, Tanja; Orho-Melander, Marju; Manjer, Jonas; Melander, Olle

    2016-06-01

    The epidemiological evidence for an obesity-cancer association is solid, whereas the association between obesity-associated lipoprotein levels and cancer is less evident. We investigated circulating levels of Apolipoprotein A1 (ApoA1), Apolipoprotein B (ApoB), LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) and association to risk of overall cancer and common cancer forms. The Malmö Diet and Cancer Study, a population-based prospective cohort study, enrolled 17,035 women and 11,063 men (1991-1996). Incident cancer cases were ascertained by record linkage with the Swedish Cancer Registry until end of follow-up, January 1, 2012. Baseline serum levels of ApoA1 and ApoB were analyzed for the entire cohort and HDL-C and LDL-C levels in 5,281 participants. Hazard ratios, with 95% confidence interval, were calculated using Cox's proportional hazards analysis. In the entire cohort, none of the exposures were related to overall cancer risk (HRadj ApoA1 = 0.98, 95%CI: 0.95,1.01; HRadj ApoB = 1.01, 95%CI: 0.98-1.04). Among men, ApoB was positively associated with cancer risk (HRadj ApoB = 1.06, 95%CI: 1.01,1.10). Female breast cancer risk was inversely associated with ApoB (HRadj = 0.92, 95%CI: 0.86,0.99). Among both genders, ApoA1 was inversely associated with lung cancer risk (HRadj = 0.88, 95%CI: 0.80,0.97), whereas high ApoB increased lung cancer risk (HRadj = 1.08, 95%CI: 0.99,1.18). Colorectal cancer risk was increased with high ApoB (HRadj = 1.08, 95%CI: 1.01,1.16) among both genders. Apolipoprotein levels were not associated with prostate cancer incidence. Circulating levels of apolipoproteins are associated with overall cancer risk in men and across both genders with breast, lung and colorectal cancer risk. Validation of these findings may facilitate future primary prevention strategies for cancer. © 2016 UICC.

  20. Isolation of human apolipoprotein E by chromatofocusing.

    PubMed

    Weisweiler, P; Schwandt, P

    1982-09-01

    Human prolipoprotein E is implicated in the transport of serum cholesterol and the binding of lipoproteins to cell receptors. Further investigations on this apolipoprotein would be facilitated by improved purification methods. We prepared human apo E by the combination of high performance gel filtration and chromatofocusing from serum very low density lipoproteins. Chromatofocusing was performed with a pH gradient from 7 to 4. Apo E contained all isoforms, but was homogeneous in SDS-polyacrylamide gel electrophoresis and in double immunodiffusion against a monospecific antiserum. The reported purification method allows a rapid and simple preparation of large amounts of apo E.

  1. Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B

    PubMed Central

    Crooke, Stanley T; Geary, Richard S

    2013-01-01

    Mipomersen is a second generation antisense oligonucleotide that targets apolipoprotein B. It has been studied thoroughly in clinical trials (more than 800 subjects), including four randomized double-blind placebo controlled phase 3 studies involving 391 patients, and is in registration for the treatment of severe hypercholesterolaemia. The pharmacokinetic and pharmacodynamic properties of mipomersen are well characterized. Mipomersen is rapidly and extensively absorbed after subcutaneous administration and has an elimination half-life of approximately 30 days across species. It is cleared by nuclease metabolism and renal excretion of the metabolites. Mipomersen reduces all apolipoprotein B containing atherogenic particles and displays dose dependent reductions between 50–400 mg week−1, both as a single agent and in the presence of maximal lipid lowering therapy. No drug–drug interactions have been identified. Mipomersen is a representative of second generation antisense drugs, all of which have similar properties, and is thus representative of the behaviour of the class of drugs. PMID:23013161

  2. Kinetic analysis of apolipoproteins in postprandial hypertriglyceridaemia rabbits.

    PubMed

    Hata, M; Ito, T; Ohwada, K

    2009-04-01

    The postprandial hypertriglyceridaemia (PHT) rabbit, developed as a new animal model of metabolic syndrome, is characterized by PHT, central obesity and glucose intolerance. For detailed investigation of lipid metabolism characteristics in PHT rabbit, the plasma levels of apolipoproteins A-I, B, C-II, C-III and E were measured. Movements of apolipoproteins B100 and B48 were investigated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis to determine whether postprandially increased triglyceride is exogenous or endogenous. The level of apolipoproteins A-I, B, C-II and E were increased in PHT rabbit after feeding. Apolipoproteins B100 and B48 were detected in the plasma fraction of d < 1.006 g/mL of the PHT rabbit. The postprandial increase in apolipoprotein B in the PHT rabbit reflects a numerical increase in lipoprotein particles in the blood; the increase in apolipoproteins C-II and E suggests some disturbance in lipoprotein catabolism. Apolipoprotein B48 was detected postprandially in PHT rabbits. These results suggest that delayed catabolism of exogenous lipids caused the retention of chylomicron remnants in the blood. Results also suggest that activities of the lipolytic enzyme lipoprotein lipase and hepatic triglyceride lipase were deficient and that the hepatic uptake of exogenous lipoproteins was delayed in the PHT rabbit. Especially, for examining remnant hyperlipoproteinaemia in humans, PHT rabbit is an excellent animal model for hypertriglyceridaemia research.

  3. Apolipoprotein E polymorphism and dendritic shape in hippocampal interneurons.

    PubMed

    Schönheit, Bärbel; Glöckner, Frauke; Ohm, Thomas G

    2007-05-01

    The apolipoprotein E genetic polymorphism exerts a well described influence on Alzheimer's disease (AD) risk, although the pathogenetic mechanism is still not clear. Increasing evidence points to a diminished neuroplasticity in apolipoprotein E varepsilon4-allele carriers. But, alternatively or additionally, developmental differences in dendritic geometry may be associated with the polymorphism. We morphometrically examined the dendritic ramification of CA1 Parvalbumin-positive GABAergic hippocampal neurons (n=571) in matched pairs of aged non-demented individuals with different apolipoprotein E genotype. We chose Parvalbumin-positive interneurons since they lack potentially confounding AD-like cytoskeletal changes. To minimize the risk of transneuronal dendritic changes due to significant deafferentation we focused on non-demented individuals. In this chosen paradigm, neither the disease-associated apolipoprotein E varepsilon4-allele nor the apolipoprotein E varepsilon2-allele had a significant impact on dendritic shape when compared to the most common allelic variant apolipoprotein E varepsilon3/3. At least with respect to the studied cell type, the data suggest that the apolipoprotein E polymorphism does not modulate the original formation of dendrites in vivo, contrary to conclusions drawn from in vitro studies on neurite outgrowth.

  4. Role of Conserved Proline Residues in Human Apolipoprotein A-IV Structure and Function*

    PubMed Central

    Deng, Xiaodi; Walker, Ryan G.; Morris, Jamie; Davidson, W. Sean; Thompson, Thomas B.

    2015-01-01

    Apolipoprotein (apo)A-IV is a lipid emulsifying protein linked to a range of protective roles in obesity, diabetes, and cardiovascular disease. It exists in several states in plasma including lipid-bound in HDL and chylomicrons and as monomeric and dimeric lipid-free/poor forms. Our recent x-ray crystal structure of the central domain of apoA-IV shows that it adopts an elongated helical structure that dimerizes via two long reciprocating helices. A striking feature is the alignment of conserved proline residues across the dimer interface. We speculated that this plays important roles in the structure of the lipid-free protein and its ability to bind lipid. Here we show that the systematic conversion of these prolines to alanine increased the thermodynamic stability of apoA-IV and its propensity to oligomerize. Despite the structural stabilization, we noted an increase in the ability to bind and reorganize lipids and to promote cholesterol efflux from cells. The novel properties of these mutants allowed us to isolate the first trimeric form of an exchangeable apolipoprotein and characterize it by small-angle x-ray scattering and chemical cross-linking. The results suggest that the reciprocating helix interaction is a common feature of all apoA-IV oligomers. We propose a model of how self-association of apoA-IV can result in spherical lipoprotein particles, a model that may have broader applications to other exchangeable apolipoprotein family members. PMID:25733664

  5. Human liver apolipoprotein B-100 cDNA: complete nucleic acid and derived amino acid sequence.

    PubMed Central

    Law, S W; Grant, S M; Higuchi, K; Hospattankar, A; Lackner, K; Lee, N; Brewer, H B

    1986-01-01

    Human apolipoprotein B-100 (apoB-100), the ligand on low density lipoproteins that interacts with the low density lipoprotein receptor and initiates receptor-mediated endocytosis and low density lipoprotein catabolism, has been cloned, and the complete nucleic acid and derived amino acid sequences have been determined. ApoB-100 cDNAs were isolated from normal human liver cDNA libraries utilizing immunoscreening as well as filter hybridization with radiolabeled apoB-100 oligodeoxynucleotides. The apoB-100 mRNA is 14.1 kilobases long encoding a mature apoB-100 protein of 4536 amino acids with a calculated amino acid molecular weight of 512,723. ApoB-100 contains 20 potential glycosylation sites, and 12 of a total of 25 cysteine residues are located in the amino-terminal region of the apolipoprotein providing a potential globular structure of the amino terminus of the protein. ApoB-100 contains relatively few regions of amphipathic helices, but compared to other human apolipoproteins it is enriched in beta-structure. The delineation of the entire human apoB-100 sequence will now permit a detailed analysis of the conformation of the protein, the low density lipoprotein receptor binding domain(s), and the structural relationship between apoB-100 and apoB-48 and will provide the basis for the study of genetic defects in apoB-100 in patients with dyslipoproteinemias. PMID:3464946

  6. Monocytic elastase-mediated apolipoprotein-E degradation: Potential involvement of microglial elastase-like proteases in apolipoprotein-E proteolysis in brains with Alzheimers disease.

    PubMed

    Suenaga, Midori; Furuta, Akiko; Wakabayashi, Koichi; Saibara, Toshiji; Matsunaga, Yoichi

    2015-08-01

    Impaired clearance of soluble Aβ (amyloid-β) promotes Aβ aggregation in brains with Alzheimer's disease (AD), while apolipoprotein-E (ApoE) in microglia mediates Aβ clearance. We studied the protease responsible for ApoE(4) degradation in human peripheral monocyte extracts, which are from the same lineage as microglia. We detected the hydrolytic activity for ApoE(4) in high-salt extracts with 2 M NaCl and found that the activity was inhibited by a serine protease inhibitor and an elastase-specific inhibitor, but not by other protease inhibitors. The extracts exhibited higher activity for the elastase substrate, and we followed the activity with ion-exchange and gel-filtration chromatography. Through silver staining, we partially purified a protein of 28 kDa, which was clarified as elastase by liquid chromatography-tandem mass spectrometry. These observations suggest that elastase is the key protease for ApoE(4) degradation. We also detected ApoE(4) hydrolytic activity in high-salt extracts in mouse microglial (BV-2) cell lysates, and showed that the ApoE(4) fragments by the BV-2 extracts differed from the fragments by the monocyte extracts. Though the ApoE(4) degradation by the extracts was not inhibited with elastase-specific inhibitors, it was inhibited by an elastase-specific monoclonal antibody, suggesting that elastase-like proteases in microglia differ from those of monocytes. Immunohistochemistry revealed that both elastase and ApoE were expressed in the senile plaques of brains with AD. In vitro studies also disclosed the localization of elastase in the microglial cell line, BV-2. Our results suggest that elastase-like proteases in the microglial cells surrounding Aβ plaques are responsible for ApoE degradation in the brain.

  7. Apolipoprotein A-II-mediated Conformational Changes of Apolipoprotein A-I in Discoidal High Density Lipoproteins*

    PubMed Central

    Gauthamadasa, Kekulawalage; Vaitinadin, Nataraja Sarma; Dressman, James L.; Macha, Stephen; Homan, Reyn; Greis, Kenneth D.; Silva, R. A. Gangani D.

    2012-01-01

    It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3–4 and 7–9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process. PMID:22235130

  8. The Effects of Ginger on Fasting Blood Sugar, Hemoglobin A1c, Apolipoprotein B, Apolipoprotein A-I and Malondialdehyde in Type 2 Diabetic Patients

    PubMed Central

    Khandouzi, Nafiseh; Shidfar, Farzad; Rajab, Asadollah; Rahideh, Tayebeh; Hosseini, Payam; Mir Taheri, Mohsen

    2015-01-01

    Diabetes mellitus is the most common endocrine disorder, causes many complications such as micro- and macro-vascular diseases. Anti-diabetic, hypolipidemic and anti-oxidative properties of ginger have been noticed in several researches. The present study was conducted to investigate the effects of ginger on fasting blood sugar, Hemoglobin A1c, apolipoprotein B, apolipoprotein A-I, and malondialdehyde in type 2 diabetic patients. In a randomized, double-blind, placebo-controlled, clinical trial, a total of 41 type 2 diabetic patients randomly were assigned to ginger or placebo groups (22 in ginger group and 19 in control group), received 2 g/day of ginger powder supplement or lactose as placebo for 12 weeks. The serum concentrations of fasting blood sugar, Hemoglobin A1c, apolipoprotein B, apolipoprotein A-I and malondialdehyde were analyzed before and after the intervention. Ginger supplementation significantly reduced the levels of fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein B/apolipoprotein A-I and malondialdehyde in ginger group in comparison to baseline, as well as control group, while it increased the level of apolipoprotein A-I (p<0.05). It seems that oral administration of ginger powder supplement can improves fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein A-I, apolipoprotein B/apolipoprotein A-I and malondialdehyde in type 2 diabetic patients. So it may have a role in alleviating the risk of some chronic complications of diabetes. PMID:25561919

  9. The effects of ginger on fasting blood sugar, hemoglobin a1c, apolipoprotein B, apolipoprotein a-I and malondialdehyde in type 2 diabetic patients.

    PubMed

    Khandouzi, Nafiseh; Shidfar, Farzad; Rajab, Asadollah; Rahideh, Tayebeh; Hosseini, Payam; Mir Taheri, Mohsen

    2015-01-01

    Diabetes mellitus is the most common endocrine disorder, causes many complications such as micro- and macro-vascular diseases. Anti-diabetic, hypolipidemic and anti-oxidative properties of ginger have been noticed in several researches. The present study was conducted to investigate the effects of ginger on fasting blood sugar, Hemoglobin A1c, apolipoprotein B, apolipoprotein A-I, and malondialdehyde in type 2 diabetic patients. In a randomized, double-blind, placebo-controlled, clinical trial, a total of 41 type 2 diabetic patients randomly were assigned to ginger or placebo groups (22 in ginger group and 19 in control group), received 2 g/day of ginger powder supplement or lactose as placebo for 12 weeks. The serum concentrations of fasting blood sugar, Hemoglobin A1c, apolipoprotein B, apolipoprotein A-I and malondialdehyde were analyzed before and after the intervention. Ginger supplementation significantly reduced the levels of fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein B/apolipoprotein A-I and malondialdehyde in ginger group in comparison to baseline, as well as control group, while it increased the level of apolipoprotein A-I (p<0.05). It seems that oral administration of ginger powder supplement can improves fasting blood sugar, hemoglobin A1c, apolipoprotein B, apolipoprotein A-I, apolipoprotein B/apolipoprotein A-I and malondialdehyde in type 2 diabetic patients. So it may have a role in alleviating the risk of some chronic complications of diabetes.

  10. Clarifying complex inheritance: apolipoprotein C3 and atherosclerosis.

    PubMed

    Galton, David J

    2017-08-01

    To describe some steps in the progress in the molecular biology of a peptide, apolipoprotein C3; its gene mutations that render individuals susceptible or resistant to developing hyperlipidaemia and atherosclerosis. Data that lead to the development of a new therapeutic agent volanesorsen. The agent blocks the function of the mRNA of apolipoprotein C3 and successfully treats severe hypertriglyceridaemia in phase 3 trials (Ionis Pharmaceuticals).

  11. Chromatofocusing of apolipoproteins from human serum high density lipoprotein.

    PubMed

    Knipping, G; Steyrer, E; Holasek, A

    1984-01-01

    Human HDL was delipidated and the apolipoproteins were fractionated by chromatofocusing. Chromatofocusing, which separates proteins due to their differing isoelectric points, resulted in 8 peaks with corresponding pI values of 7.40, 6.92, 6.64, 5.48, 5.30, 5.18, 4.92 and 4.63. By one single chromatofocusing run four apolipoproteins were obtained in pure form. Two additional polypeptides could be purified during the desalting step using phenyl-Sepharose.

  12. Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae

    PubMed Central

    Ono, Chikako; Shiokawa, Mai; Mori, Hiroyuki; Uemura, Kentaro; Yamamoto, Satomi; Okamoto, Toru; Suzuki, Ryosuke; Yoshii, Kentaro; Kurosu, Takeshi; Igarashi, Manabu; Aoki, Hiroshi; Sakoda, Yoshihiro

    2017-01-01

    Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV) particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1) as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB) and ApoE double-knockout Huh7 (BE-KO), and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene. PMID:28644867

  13. Role for apolipoprotein E in neurodegeneration and mercury intoxication.

    PubMed

    Arrifano, Gabriela de Paula Fonseca; de Oliveira, Marcus Augusto; Souza-Monteiro, Jose Rogerio; Paraense, Ricardo Oliveira; Ribeiro-Dos-Santos, Andrea; Vieira, Jose Richardo Dos Santos; Silva, Artur Luis da Costa; Macchi, Barbarella de Matos; do Nascimento, Jose Luiz Martins; Burbano, Rommel Mario Rodriguez; Crespo-Lopez, Maria Elena

    2018-01-01

    Mercury intoxication is a serious public health problem and a worldwide concern. The Minamata Convention on Mercury has been signed by 128 countries and endorsed by the World Health Organization with the recommendation of promoting the management of epidemiological information. The Central Nervous System is the main target organ for mercury. Symptoms of intoxication include altered motor coordination, visual and tactile dysfunction and paralysis, caused by neurodegeneration with a key role for oxidative damage. Recently, some studies have demonstrated a correlation between mercury intoxication and isoforms of apolipoprotein E (ApoE). In this review, epidemiological data and hypotheses about the possible molecular mechanisms underlying the association between ApoE and mercury intoxication are assessed. Based on the evidence and the neuropathological changes that the presence of ApoE4 and mercury neurotoxicity have in common, we propose a convergent action of both factors. ApoE4 seems to potentiate the damage caused by mercury. Increased knowledge of this interaction using epidemiological and pre-clinical studies is essential to improve prevention strategies to adequately manage intoxicated patients.

  14. Transgenic Drosophila model to study apolipoprotein E4-induced neurodegeneration.

    PubMed

    Haddadi, Mohammad; Nongthomba, Upendra; Jahromi, Samaneh Reiszadeh; Ramesh, S R

    2016-03-15

    The ε4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing ε3 and ε4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease.

    PubMed

    Zlokovic, Berislav V

    2013-04-01

    Human apolipoprotein E (apoE) has 3 isoforms: apoE2, apoE3, and apoE4. APOE4 is a major genetic risk factor for Alzheimer disease and is associated with dementia in Down syndrome and poor neurological outcome after traumatic brain injury, cerebral hemorrhage, and other neuropathological disorders. While apoE4 can induce neuropathology by participating in various cellular and molecular pathways, herein I review data supporting the hypothesis that apoE4 has direct toxic effects on the cerebrovascular system that in turn can lead to secondary neuronal dysfunction and degeneration as well as accumulation of neurotoxins in brain such as β-amyloid (Aβ) in Alzheimer disease. I review Aβ-independent cerebrovascular effects of apoE, particularly activation of a proinflammatory cyclophilin A-mediated pathway in brain vascular pericytes by apoE4 that has recently been shown to lead to a loss of cerebrovascular integrity and blood-brain barrier breakdown causing neuronal injury. I also review Aβ-dependent cerebrovascular effects of apoE such as faulty Aβ clearance from brain to circulation by apoE4. Finally, I discuss isoform-specific interactions of apoE with low-density lipoprotein receptor-related protein 1 on brain vascular cells (ie, endothelial cells, pericytes), which play an important role in Aβ-independent and Aβ-dependent effects of apoE on cerebral vasculature.

  16. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders.

    PubMed

    Mahley, Robert W

    2016-07-01

    Apolipoprotein (apo) E was initially described as a lipid transport protein and major ligand for low density lipoprotein (LDL) receptors with a role in cholesterol metabolism and cardiovascular disease. It has since emerged as a major risk factor (causative gene) for Alzheimer's disease and other neurodegenerative disorders. Detailed understanding of the structural features of the three isoforms (apoE2, apoE3, and apoE4), which differ by only a single amino acid interchange, has elucidated their unique functions. ApoE2 and apoE4 increase the risk for heart disease: apoE2 increases atherogenic lipoprotein levels (it binds poorly to LDL receptors), and apoE4 increases LDL levels (it binds preferentially to triglyceride-rich, very low density lipoproteins, leading to downregulation of LDL receptors). ApoE4 also increases the risk for neurodegenerative diseases, decreases their age of onset, or alters their progression. ApoE4 likely causes neurodegeneration secondary to its abnormal structure, caused by an interaction between its carboxyl- and amino-terminal domains, called domain interaction. When neurons are stressed or injured, they synthesize apoE to redistribute cholesterol for neuronal repair or remodeling. However, because of its altered structure, neuronal apoE4 undergoes neuron-specific proteolysis, generating neurotoxic fragments (12-29 kDa) that escape the secretory pathway and cause mitochondrial dysfunction and cytoskeletal alterations, including tau phosphorylation. ApoE4-associated pathology can be prevented by small-molecule structure correctors that block domain interaction by converting apoE4 to a molecule that resembles apoE3 both structurally and functionally. Structure correctors are a potential therapeutic approach to reduce apoE4 pathology in both cardiovascular and neurological disorders.

  17. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    PubMed

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.

  18. Role of apolipoprotein E in neurodegenerative diseases

    PubMed Central

    Giau, Vo Van; Bagyinszky, Eva; An, Seong Soo A; Kim, Sang Yun

    2015-01-01

    Apolipoprotein E (APOE) is a lipid-transport protein abundantly expressed in most neurons in the central nervous system. APOE-dependent alterations of the endocytic pathway can affect different functions. APOE binds to cell-surface receptors to deliver lipids and to the hydrophobic amyloid-β peptide, regulating amyloid-β aggregations and clearances in the brain. Several APOE isoforms with major structural differences were discovered and shown to influence the brain lipid transport, glucose metabolism, neuronal signaling, neuroinflammation, and mitochondrial function. This review will summarize the updated research progress on APOE functions and its role in Alzheimer’s disease, Parkinson’s disease, cardiovascular diseases, multiple sclerosis, type 2 diabetes mellitus, Type III hyperlipoproteinemia, vascular dementia, and ischemic stroke. Understanding the mutations in APOE, their structural properties, and their isoforms is important to determine its role in various diseases and to advance the development of therapeutic strategies. Targeting APOE may be a potential approach for diagnosis, risk assessment, prevention, and treatment of various neurodegenerative and cardiovascular diseases in humans. PMID:26213471

  19. Apolipoprotein E pathology in vascular dementia.

    PubMed

    Rohn, Troy T; Day, Ryan J; Sheffield, Colin B; Rajic, Alexander J; Poon, Wayne W

    2014-01-01

    Vascular dementia (VaD) is the second most common form of dementia and is currently defined as a cerebral vessel vascular disease leading to ischemic episodes. Apolipoprotein E (apoE) gene polymorphism has been proposed as a risk factor for VaD, however, to date there are few documented post-mortem studies on apoE pathology in the VaD brain. To investigate a potential role for the apoE protein, we analyzed seven confirmed cases of VaD by immunohistochemistry utilizing an antibody that specifically detects the amino-terminal fragment of apoE. Application of this antibody, termed N-terminal, apoE cleavage fragment (nApoECF) revealed consistent labeling within neurofibrillary tangles (NFTs), blood vessels, and reactive astrocytes. Labeling occurred in VaD cases that had confirmed APOE genotypes of 3/3, 3/4, and 4/4, with respect to NFTs, staining of the nApoECF co-localized with PHF-1 and was predominantly localized to large, stellate neurons in layer II of the entorhinal cortex. Quantitative analysis indicated that approximately 38.4% of all identified NFTs contained the amino-terminal fragment of apoE. Collectively, these data support a role for the proteolytic cleavage of apoE in the VaD and support previous reports that APOE polymorphism is significantly associated with susceptibility in this disease.

  20. Apolipoprotein E: from lipid transport to neurobiology

    PubMed Central

    Hauser, Paul S.; Narayanaswami, Vasanthy; Ryan, Robert O.

    2010-01-01

    Apolipoprotein (apo) E has a storied history as a lipid transport protein. The integral association between cholesterol homeostasis and lipoprotein clearance from circulation are intimately related to apoE's function as a ligand for cell surface receptors of the low density lipoprotein receptor family. The receptor binding properties of apoE are strongly influenced by isoform specific amino acid differences as well as the lipidation state of the protein. As understanding of apoE as a structural component of circulating plasma lipoproteins has evolved, exciting developments in neurobiology have revitalized interest in apoE. The strong and enduring correlation between the apoE4 isoform and age of onset and increased risk of Alzheimer's disease has catapulted apoE to the forefront of neurobiology. Using genetic tools generated for study of apoE lipoprotein metabolism, transgenic “knock-in” and gene-disrupted mice are now favored models for study of its role in a variety of neurodegenerative diseases. Key structural knowledge of apoE and isoform specific differences is driving research activity designed to elucidate how a single amino acid change can manifest such profoundly significant pathological consequences. This review describes apoE through a lens of structure-based knowledge that leads to hypotheses that attempt to explain the functions of apoE and isoform specific effects relating to disease mechanism. PMID:20854843

  1. Cloning and characterization of a novel apolipoprotein gene, apolipoprotein AV, in tree shrews.

    PubMed

    Li, Guoping; Luo, Huairong; Sun, Guotao; Wu, Guisheng; Wu, Gang; Wang, Yan; Man, Yong; Wang, Shu; Li, Jian; Chen, Baosheng

    2013-09-01

    Apolipoprotein AV (apoAV) modulates plasma triglyceride levels, which is an independent risk factor for cardiovascular disease. ApoAV is also involved in atherosclerosis lesion formation. In order to systematically evaluate the apolipoprotein-related gene profile in tree shrew, a model for its insusceptibility to atherosclerosis, we performed apoAV cloning and characterization. The full-length cDNA of apoAV was identified using SMART-RACE. ApoAV cDNA sequence revealed two transcripts, 1,948 and 1,397 base pairs, due to alternative polyadenylation. These two transcripts share the same open reading frame (ORF), which encodes a 369-amino acid protein with high identity to human apoAV (75 %), including a 23-amino acid N-terminal signal peptide. ApoAV is expressed exclusively in the liver. Mature apoAV was expressed in E. coli BL21(DE3) and purified by Ni-chelated resin. Lipoprotein lipase activity was significantly stimulated by this recombinant protein. The full-length ORF of apoAV was cloned into pDsRed-monomer-N1 vector with a red fluorescent protein tag and was primarily localized in cytoplasm of hepG2 cells. The successful cloning, expression and localization of apoAV in tree shrew has laid down the foundation for further investigation on its structure and functions.

  2. Apolipoproteins in the brain: implications for neurological and psychiatric disorders

    PubMed Central

    Elliott, David A; Weickert, Cyndi Shannon; Garner, Brett

    2011-01-01

    The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood–brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders. PMID:21423873

  3. Changes in helical content or net charge of apolipoprotein C-I alter its affinity for lipid/water interfaces.

    PubMed

    Meyers, Nathan L; Wang, Libo; Gursky, Olga; Small, Donald M

    2013-07-01

    Amphipathic α-helices mediate binding of exchangeable apolipoproteins to lipoproteins. To probe the role of α-helical structure in protein-lipid interactions, we used oil-drop tensiometry to characterize the interfacial behavior of apolipoprotein C-I (apoC-I) variants at triolein/water (TO/W) and 1-palmitoyl-2-oleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. ApoC-I, the smallest apolipoprotein, has two amphipathic α-helices. Mutants had single Pro or Ala substitutions that resulted in large differences in helical content in solution and on phospholipids. The ability of apoC-I to bind TO/W and POPC/TO/W interfaces correlated strongly with α-helical propensity. On binding these interfaces, peptides with higher helical propensity increased surface pressure to a greater extent. Likewise, peptide exclusion pressure at POPC/TO/W interfaces increased with greater helical propensity. ApoC-I retention on TO/W and POPC/TO/W interfaces correlated strongly with phospholipid-bound helical content. On compression of these interfaces, peptides with higher helical content were ejected at higher pressures. Substitution of Arg for Pro in the N-terminal α-helix altered net charge and reduced apoC-I affinity for POPC/TO/W interfaces. Our results suggest that peptide-lipid interactions drive α-helix binding to and retention on lipoproteins. Point mutations in small apolipoproteins could significantly change α-helical propensity or charge, thereby disrupting protein-lipid interactions and preventing the proteins from regulating lipoprotein catabolism at high surface pressures.

  4. Targeting nanodisks via a single chain variable antibody - Apolipoprotein chimera

    SciTech Connect

    Iovannisci, David M.; Beckstead, Jennifer A.; Ryan, Robert O.

    2009-02-06

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that {alpha}-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.

  5. Platelet activation indices and apolipoproteins in hypertensive patients.

    PubMed

    Catalano, M; Belletti, S; Russo, U; Aronica, A; Carzaniga, G; Seregni, R; Libretti, A

    1988-10-01

    We have studied the platelet activation indices beta-thromboglobulin (beta-TG and platelet factor 4(PF4), triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL) and apolipoprotein (A1, A2, B, C2, C3, E) profiles of 22 untreated essential hypertensive subjects (WHO stages 1 and 2) and 22 controls, to see if there might be some causal relationship between lipoprotein abnormalities and greater platelet activation. The results showed the patients had both greater platelet activation than the controls, as demonstrated by higher plasma beta-TG levels (P less than 0.01) and lower apolipoprotein A2 levels (P less than 0.05). However there were no significant correlations between the platelet activation indices and the plasma levels of apolipoproteins, lipoproteins or lipids in either group.

  6. Targeting nanodisks via a single chain variable antibody -apolipoprotein chimera*

    PubMed Central

    Iovannisci, David M.; Beckstead, Jennifer A.; Ryan, Robert O.

    2009-01-01

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In the present study we constructed a single chain variable antibody (scFv)•apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that α-vimentin scFv•apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues. PMID:19114030

  7. Apolipoprotein E: Risk factor for Alzheimer disease

    SciTech Connect

    Tsai, M.S.; Thibodeau, S.N.; Tangalos, E.G.; Petersen, R.C.; Kokmen, E.; Smith, G.E.; Schaid, D.J.; Ivnik, R.J. )

    1994-04-01

    The apolipoprotein E gene (APOE) has three common alleles (E2, E3, and E4) that determine six genotypes in the general population. In this study, the authors examined 77 patients with late-onset Alzheimer disease (AD), along with an equal number of age- and sex-matched controls, for an association with the APOE-E4 allele. They show that the frequency of this allele among AD patients was significantly higher than that among the control population (.351 vs. .130, P = .000006). The genotype frequencies also differed between the two groups (P = .0002), with the APOE-E4/E3 genotype being the most common in the AD group and the APOE-E3/E3 being the most common in the control group. In the AD group, homozygosity for E4 was found in nine individuals, whereas none was found in the control group. The odds ratio for AD, when associated with one or two E4 alleles, was 4.6 (95% confidence interval [CI] 1.9-12.3), while the odds ratio for AD, when associated with heterozygosity for APOE-E4, was 3.6 (05% CI 1.5-9.8). Finally, the median age at onset among the AD patients decreased from 83 to 78 to 74 years as the number of APOE-E4 alleles increased from 0 to 1 to 2, respectively (test for trend, P = .001). The data, which are in agreement with recent reports, suggest that the APOE-E4 allele is associated with AD and that this allelic variant may be an important risk factor for susceptibility to AD in the general population. 30 refs., 5 tabs.

  8. NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate.

    PubMed

    MacRaild, C A; Hatters, D M; Howlett, G J; Gooley, P R

    2001-05-08

    The structure and protein-detergent interactions of apolipoprotein C-II (apoC-II) in the presence of SDS micelles have been investigated using circular dichroism and heteronuclear NMR techniques applied to (15)N-labeled protein. Micellar SDS, a commonly used mimetic of the lipoprotein surface, inhibits the aggregation of apoC-II and induces a stable structure containing approximately 60% alpha-helix as determined by circular dichroism. NMR reveals the first 12 residues of apoC-II to be structurally heterogeneous and largely disordered, with the rest of the protein forming a predominantly helical structure. Three regions of helical conformation, residues 16-36, 50-56, and 63-77, are well-defined by NMR-derived constraints, with the intervening regions showing more loosely defined helical conformation. The structure of apoC-II is compared to that determined for other apolipoproteins in a similar environment. Our results shed light on the lipid interactions of apoC-II and its mechanism of lipoprotein lipase activation.

  9. Reaction of discoidal complexes of apolipoprotein A-I and various phosphatidylcholines with lecithin cholesterol acyltransferase. Interfacial effects.

    PubMed

    Jonas, A; Zorich, N L; Kézdy, K E; Trick, W E

    1987-03-25

    Complexes of phospholipids-apolipoprotein A-I-cholesterol, containing various bulk phosphatidylcholines or a matrix of the ether analog of 1-palmitoyl 2-oleoyl phosphatidylcholine including test phosphatidylcholines were used as substrates for human lecithin-cholesterol acyltransferase. The enzymatic reaction rates for both series of complexes were determined as a function of temperature, particle concentration, neutral salt concentration, and the type of anion present in solution. The kinetic results support the hypothesis that phospholipids, in discoidal complexes, modulate the reaction rates by molecular effects at the active site, but also by interfacial effects on the interaction of the enzyme with the particles. The relevant interfacial parameters are the lipid packing at the interface and the structure of apolipoprotein A-I.

  10. Cerebral lipid deposition in aged apolipoprotein-E-deficient mice.

    PubMed

    Walker, L C; Parker, C A; Lipinski, W J; Callahan, M J; Carroll, R T; Gandy, S E; Smith, J D; Jucker, M; Bisgaier, C L

    1997-11-01

    To assess the influence of age and diet on cerebral pathology in mice lacking apolipoprotein E (apoE), four male apoE knockout mice (epsilon -/-), and five male wild-type (epsilon +/+) littermate controls were placed on a high-fat/high-cholesterol diet for 7 weeks beginning at 17 months of age. All four aged knockout mice developed xanthomatous lesions in the brain consisting mostly of crystalline cholesterol clefts, lipid globules, and foam cells. Smaller xanthomas were confined mainly to the choroid plexus and ventral fornix in the roof of the third ventricle, occasionally extending subpially along the choroidal fissure and into the adjacent parenchyma. More advanced xanthomas disrupted adjoining neural tissue in the fornix, hippocampus, and dorsal diencephalon; in one case, over 60% of one telencephalic hemisphere, including nearly the entire neocortex, was obliterated by the lesion. No xanthomas were observed in aged wild-type controls fed the high-fat/high-cholesterol diet. Brains from 42 additional animals, fed only conventional chow, were examined; 3 of 15 aged (15- to 23-month-old) apoE knockout mice developed small choroidal xanthomas. In contrast, no lesions were observed in five young (2- to 4-month-old) apoE knockout mice or in any wild-type controls between the ages of 2 and 23 months. Our findings indicate that disorders of lipid metabolism can induce significant pathological changes in the central nervous system of aged apoE knockout mice, particularly those on a high-fat/high-cholesterol diet. It may be fruitful to seek potential interactions between genetic factors and diet in modulating the risk of Alzheimer's disease and other neurodegenerative disorders in aged humans.

  11. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes.

    PubMed

    Roman, Corina; Fuior, Elena V; Trusca, Violeta G; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain.

  12. Energy homeostasis in apolipoprotein AIV and cholecystokinin-deficient mice.

    PubMed

    Weng, Jonathan; Lou, Danwen; Benoit, Stephen C; Coschigano, Natalie; Woods, Stephen C; Tso, Patrick; Lo, Chunmin C

    2017-08-02

    Apolipoprotein AIV (ApoAIV) and cholecystokinin (CCK) are well-known satiating signals that are stimulated by fat consumption. Peripheral ApoAIV and CCK interact to prolong satiating signals. In the present study, we hypothesized that ApoAIV and CCK control energy homeostasis in response to high-fat diet feeding. To test this hypothesis, energy homeostasis in ApoAIV and CCK double knockout (ApoAIV/CCK-KO), ApoAIV knockout (ApoAIV-KO), and CCK knockout (CCK-KO) mice were monitored. When animals were maintained on a low-fat diet, ApoAIV/CCK-KO, ApoAIV-KO, and CCK-KO mice had comparable energy intake and expenditure, body weight, fat mass, fat absorption, and plasma parameters relative to the controls. In contrast, these KO mice exhibited impaired lipid transport to epididymal fat pads in response to intraduodenal infusion of dietary lipids. Furthermore, ApoAIV-KO mice had upregulated levels of CCK receptor 2 (CCK2R) in the small intestine while ApoAIV/CCK-KO mice had upregulated levels of CCK2R in the brown adipose tissue. After 20 weeks of a high-fat diet, ApoAIV-KO and CCK-KO mice had comparable body weight and fat mass, as well as lower energy expenditure at some time points. However, ApoAIV/CCK-KO mice exhibited reduced body weight and adiposity relative to wild-type mice, despite having normal food intake. Furthermore, ApoAIV/CCK-KO mice displayed normal fat absorption and locomotor activity, as well as enhanced energy expenditure. These observations suggest that mice lacking ApoAIV and CCK have reduced body weight and adiposity, possibly due to impaired lipid transport and elevated energy expenditure. Copyright © 2017, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

  13. Apolipoprotein E Mediates Evasion From Hepatitis C Virus Neutralizing Antibodies.

    PubMed

    Fauvelle, Catherine; Felmlee, Daniel J; Crouchet, Emilie; Lee, JiYoung; Heydmann, Laura; Lefèvre, Mathieu; Magri, Andrea; Hiet, Marie-Sophie; Fofana, Isabel; Habersetzer, François; Foung, Steven K H; Milne, Ross; Patel, Arvind H; Vercauteren, Koen; Meuleman, Philip; Zeisel, Mirjam B; Bartenschlager, Ralf; Schuster, Catherine; Baumert, Thomas F

    2016-01-01

    Efforts to develop an effective vaccine against hepatitis C virus (HCV) have been hindered by the propensity of the virus to evade host immune responses. HCV particles in serum and in cell culture associate with lipoproteins, which contribute to viral entry. Lipoprotein association has also been proposed to mediate viral evasion of the humoral immune response, though the mechanisms are poorly defined. We used small interfering RNAs to reduce levels of apolipoprotein E (apoE) in cell culture-derived HCV-producing Huh7.5-derived hepatoma cells and confirmed its depletion by immunoblot analyses of purified viral particles. Before infection of naïve hepatoma cells, we exposed cell culture-derived HCV strains of different genotypes, subtypes, and variants to serum and polyclonal and monoclonal antibodies isolated from patients with chronic HCV infection. We analyzed the interaction of apoE with viral envelope glycoprotein E2 and HCV virions by immunoprecipitation. Through loss-of-function studies on patient-derived HCV variants of several genotypes and subtypes, we found that the HCV particle apoE allows the virus to avoid neutralization by patient-derived antibodies. Functional studies with human monoclonal antiviral antibodies showed that conformational epitopes of envelope glycoprotein E2 domains B and C were exposed after depletion of apoE. The level and conformation of virion-associated apoE affected the ability of the virus to escape neutralization by antibodies. In cell-infection studies, we found that HCV-associated apoE helps the virus avoid neutralization by antibodies against HCV isolated from chronically infected patients. This method of immune evasion poses a challenge for the development of HCV vaccines. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Cerebral lipid deposition in aged apolipoprotein-E-deficient mice.

    PubMed Central

    Walker, L. C.; Parker, C. A.; Lipinski, W. J.; Callahan, M. J.; Carroll, R. T.; Gandy, S. E.; Smith, J. D.; Jucker, M.; Bisgaier, C. L.

    1997-01-01

    To assess the influence of age and diet on cerebral pathology in mice lacking apolipoprotein E (apoE), four male apoE knockout mice (epsilon -/-), and five male wild-type (epsilon +/+) littermate controls were placed on a high-fat/high-cholesterol diet for 7 weeks beginning at 17 months of age. All four aged knockout mice developed xanthomatous lesions in the brain consisting mostly of crystalline cholesterol clefts, lipid globules, and foam cells. Smaller xanthomas were confined mainly to the choroid plexus and ventral fornix in the roof of the third ventricle, occasionally extending subpially along the choroidal fissure and into the adjacent parenchyma. More advanced xanthomas disrupted adjoining neural tissue in the fornix, hippocampus, and dorsal diencephalon; in one case, over 60% of one telencephalic hemisphere, including nearly the entire neocortex, was obliterated by the lesion. No xanthomas were observed in aged wild-type controls fed the high-fat/high-cholesterol diet. Brains from 42 additional animals, fed only conventional chow, were examined; 3 of 15 aged (15- to 23-month-old) apoE knockout mice developed small choroidal xanthomas. In contrast, no lesions were observed in five young (2- to 4-month-old) apoE knockout mice or in any wild-type controls between the ages of 2 and 23 months. Our findings indicate that disorders of lipid metabolism can induce significant pathological changes in the central nervous system of aged apoE knockout mice, particularly those on a high-fat/high-cholesterol diet. It may be fruitful to seek potential interactions between genetic factors and diet in modulating the risk of Alzheimer's disease and other neurodegenerative disorders in aged humans. Images Figure 1 Figure 2 PMID:9358763

  15. Quercetin Represses Apolipoprotein B Expression by Inhibiting the Transcriptional Activity of C/EBPβ

    PubMed Central

    Inoue, Jun; Sato, Ryuichiro

    2015-01-01

    Quercetin is one of the most abundant polyphenolic flavonoids found in fruits and vegetables and has anti-oxidative and anti-obesity effects. Because the small intestine is a major absorptive organ of dietary nutrients, it is likely that highly concentrated food constituents, including polyphenols, are present in the small intestinal epithelial cells, suggesting that food factors may have a profound effect in this tissue. To identify novel targets of quercetin in the intestinal enterocytes, mRNA profiling using human intestinal epithelial Caco-2 cells was performed. We found that mRNA levels of some apolipoproteins, particularly apolipoprotein B (apoB), are downregulated in the presence of quercetin. On the exposure of Caco-2 cells to quercetin, both mRNA and protein levels of apoB were decreased. Promoter analysis of the human apoB revealed that quercetin response element is localized at the 5′-proximal promoter region, which contains a conserved CCAAT enhancer-binding protein (C/EBP)-response element. We found that quercetin reduces the promoter activity of apoB, driven by the enforced expression of C/EBPβ. Quercetin had no effect on either mRNA or protein levels of C/EBPβ. In contrast, we found that quercetin inhibits the transcriptional activity of C/EBPβ but not its recruitment to the apoB promoter. On the exposure of Caco-2 cells to quercetin 3-O-glucuronide, which is in a cell-impermeable form, no notable change in apoB mRNA was observed, suggesting an intracellular action of quercetin. In vitro interaction experiments using quercetin-conjugated beads revealed that quercetin binds to C/EBPβ. Our results describe a novel regulatory mechanism of transcription of apolipoprotein genes by quercetin in the intestinal enterocytes. PMID:25875015

  16. Neuropsychiatric symptoms and Apolipoprotein E: Associations with eventual Alzheimer's disease development.

    PubMed

    Burke, Shanna L; Maramaldi, Peter; Cadet, Tamara; Kukull, Walter

    2016-01-01

    Alzheimer's disease (AD) is the result of neurodegeneration, which manifests clinically as deficits in memory, thinking, and behavior. It was hypothesized that neuropsychiatric symptoms and the apolipoprotein E genotype increase the likelihood of Alzheimer's disease development. Utilizing data from the National Alzheimer's Coordinating Center, information from evaluations of 11,453 cognitively intact participants was analyzed. Survival analysis was used to explore relationships between individual neuropsychiatric symptoms as determined by the Neuropsychiatric Inventory Questionnaire, apolipoprotein E, and eventual AD diagnosis. Cox proportional hazard models were utilized to explore the main effects and synergistic (additive and multiplicative) interactions. This study provided evidence for an increased hazard of developing AD among participants with any of the symptoms assessed by the NPI-Q. The hazard of developing AD was almost thirteen times higher for ε4 carriers with delusions and eleven times greater for those with apathy and disinhibition. Statistically significant hazards (p>0.001) were also realized by ε4 carriers with hallucinations; agitation; depression; anxiety; elation; apathy; irritability; and motor, sleep, and appetite disturbances. Findings suggest that neuropsychiatric symptoms are associated with eventual AD diagnosis among a group of cognitively asymptomatic participants at baseline. Many studies begin with a group of participants already impacted by AD diagnosis. The longitudinal analysis of a group of participants who, at baseline, demonstrated no observable signs of AD was a strength of this study. This investigation contributes to the literature exploring an increased hazard of AD due to potential modifiable risk factors and genetic biomarkers such as apolipoprotein E. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Neuropsychiatric symptoms and Apolipoprotein E: Associations with eventual Alzheimer’s disease development

    PubMed Central

    Maramaldi, Peter; Cadet, Tamara; Kukull, Walter

    2016-01-01

    Objective Alzheimer’s disease (AD) is the result of neurodegeneration, which manifests clinically as deficits in memory, thinking, and behavior. It was hypothesized that neuropsychiatric symptoms and the apolipoprotein E genotype increase the likelihood of Alzheimer’s disease development. Methods Utilizing data from the National Alzheimer’s Coordinating Center, information from evaluations of 11,453 cognitively intact participants was analyzed. Survival analysis was used to explore relationships between individual neuropsychiatric symptoms as determined by the Neuropsychiatric Inventory Questionnaire, apolipoprotein E, and eventual AD diagnosis. Cox proportional hazard models were utilized to explore the main effects and synergistic (additive and multiplicative) interactions. Results This study provided evidence for an increased hazard of developing AD among participants with any of the symptoms assessed by the NPI-Q. The hazard of developing AD was almost thirteen times higher for ε4 carriers with delusions and eleven times greater for those with apathy and disinhibition. Statistically significant hazards (p > 0.001) were also realized by ε4 carriers with hallucinations; agitation; depression; anxiety; elation; apathy; irritability; and motor, sleep, and appetite disturbances. Conclusions Findings suggest that neuropsychiatric symptoms are associated with eventual AD diagnosis among a group of cognitively asymptomatic participants at baseline. Many studies begin with a group of participants already impacted by AD diagnosis. The longitudinal analysis of a group of participants who, at baseline, demonstrated no observable signs of AD was a strength of this study. This investigation contributes to the literature exploring an increased hazard of AD due to potential modifiable risk factors and genetic biomarkers such as apolipoprotein E. PMID:27111252

  18. Tel Aviv-Heidelberg three-generation offspring study: Genetic determinants of apolipoprotein A1 and apolipoprotein B

    SciTech Connect

    Livshits, G.; Graff, E.; Brunner, D.

    1995-07-03

    The contribution of major gene and multifactorial effects on variation of plasma apolipoproteins A1 and B has been tested in a large sample of population-based Israeli pedigrees. Our most parsimonious and best fitting model for both apolipoproteins is consistent with Mendelian transmissibility, with significant contribution of major genes (with 2 alleles recessive and dominant within each locus) and polygenes, but neglects effects of common sib environment as well as related intergeneration differences in polygenic effects. Total genetic effects explain 71 and 58% of phenotypic variance of APO-A1 and APO-B levels. The major genes account for about 44 and 32% of the variance in APO-A1 and APO-B, respectively, and the frequency of the recessive alleles determining the high level of apolipoproteins under the study in the Israeli population is in the vicinity of 40% at each locus. 27 refs, 1 fig., 4 tabs.

  19. Immunolocalization of cubilin, megalin, apolipoprotein J, and apolipoprotein A-I in the uterus and oviduct.

    PubMed

    Argraves, W Scott; Morales, Carlos R

    2004-12-01

    Spermatozoa maturation and capacitation occurring in the male and female reproductive tracts, respectively, involves the remodeling of the spermatozoa plasma membrane. Apolipoprotein J (apoJ) and apolipoprotein A-I (apoA-I) have been implicated in the process of lipid exchange from the spermatozoa plasma membrane to epithelial cells lining the male reproductive tract. Evidence suggests that this process is mediated by the cooperative action of the endocytic lipoprotein receptors megalin and cubilin, which are expressed at the apical surface of absorptive epithelia in various tissues, including the efferent ducts and epididymis. Here, we investigated the possibility that these receptors and their lipid-binding ligands, apoJ and apoA-I, might function similarly in the female reproductive tract. We show that megalin and cubilin are expressed in the uterine epithelium at all stages of the estrous cycle, maximally during estrous and metestrous stages. In the oviduct, there is pronounced expression of both megalin and cubilin in the nonciliated cells of the proximal oviduct and epithelial cells of the distal oviduct, particularly during estrous and metestrous stages. In both uterine and oviduct epithelial cells, megalin and cubilin were located on the apical regions of the cells, consistent with a distribution at the cell surface and in endosomes. ApoJ and apoA-I were both detected in apical regions of uterine and oviduct epithelial cells. Secretory cells of the uterine glands were found to express apoJ and apoA-I suggesting that the glands are a site of synthesis for both proteins. In summary, our findings indicate that megalin and cubilin function within the female reproductive tract, possibly mediating uterine and oviduct epithelial cell endocytosis of apoJ/apoA-I-lipid complexes and thus playing a role in lipid efflux from the sperm plasma membrane, a major initiator of capacitation.

  20. A study of serum apolipoprotein A1, apolipoprotein B and lipid profile in stroke.

    PubMed

    As, Shilpasree; Sahukar, Savitri; Murthy, Jayaprakash; Kumar, Kiran

    2013-07-01

    Role of Serum Lipids, Lipoproteins and Lipoprotein related variables in the prediction of Stroke is less clear. Abnormalities in plasma Lipoproteins are the most firmly established and best understood risk factors for Atherosclerosis and they are probable risk factors for Ischaemic stroke, largely by their link to Atherosclerosis. Apo B reflects the concentration of potentially atherogenic particles (LDL), and Apo A1 reflects the corresponding concentration of anti- atherogenic particles (HDL), represent additional lipoprotein related variables that may indicate the vascular risk. To study serum concentration of Apolipoprotein A1, Apolipoprotein B, Apo B/Apo A1 ratio and Lipid profile in Stroke Cases and to compare with healthy controls. A total number of 100 subjects within 30 - 70 years were considered for the study. 50 subjects with Stroke (both clinically as well as Computed tomographically proven cases) and 50 age and sex matched healthy individuals were taken for the study. Total cholesterol, HDL cholesterol and Triglycerides are estimated by Enzymatic method using Semiautoanalyser. LDL cholesterol is estimated by Friedewald formula. Apo B and Apo A1 are estimated by Immunoturbidimetric method using Semiautoanalyser. Student 't' test was used to compare the data between cases and controls. Diagnostic validity tests were conducted to assess the Diagnostic efficiency of Apo A1, Apo B and Apo B/Apo A1 ratio. Total cholesterol, LDL cholesterol and Triglycerides are significantly increased in Cases compared to Controls. HDL - cholesterol is significantly decreased in Cases compared to Controls. Apo B and Apo B/Apo A1 ratio are significantly increased and Apo A1 is significantly decreased in Cases compared to Controls. Diagnostic validity tests showed that, Apo B , Apo A1 and Apo B /Apo A1 ratio have highest Sensitivity, Specificity and Diagnostic efficiency. Apo B , Apo A1 and Apo B / Apo A1 ratio can be used as predictors of stroke along with traditional lipid

  1. Plasma levels of apolipoprotein-E in residents of the European North of Russia.

    PubMed

    Kaneva, Anastasiya M; Bojko, Evgeny R; Potolitsyna, Natalya N; Odland, Jon O

    2013-03-27

    Apolipoprotein-E (apoE) is one of the metabolically active apoproteins and plays an important role in lipid metabolism. However, there are no data on levels of apoE in residents of the North in spite of the fact that specific features of lipid metabolism in the northerners are described. The present work was designed to study plasma levels of apoE in residents of the European North of Russia. A total of 937 native residents of the European North of Russia (463 men and 474 women) aged 13-60 years were included in the study. ApoE concentrations in the blood plasma were measured by immunoturbidimetric method. Plasma levels of apoE in residents of the European North of Russia were low. ApoE concentrations below the defined normal values were detected in 57.0% of the men and in 59.2% of the women. The mean plasma levels of apoE did not significantly differ in men and women (2.80 mg/dl vs 2.87 mg/dl). Plasma apoE concentrations in residents of the European North of Russia changed with age. Plasma levels of apoE decreased from 13 to 21 years in men and from 13 to 35 years in women and then increased in both sexes (p < 0.001). The limits of variation of plasma apoE levels in residents of the European North of Russia shift towards lower values. Plasma levels of apoE below normal values were observed in approximately half of investigation subjects.

  2. C1QBP is upregulated in colon cancer and binds to apolipoprotein A-I.

    PubMed

    Kim, Kun; Kim, Min-Jeong; Kim, Kyung-Hee; Ahn, Sun-A; Kim, Jong Heon; Cho, Jae Youl; Yeo, Seung-Gu

    2017-05-01

    The present study aimed to investigate the expression of complement component 1, q subcomponent-binding protein (C1QBP) in colon cancer cells, and identify proteins that interact with C1QBP. Total proteins were extracted from both the tumor and normal tissues of 22 patients with colon cancer and analyzed using liquid chromatography-mass spectrometry (LC-MS) to identify proteins that were differentially-expressed in tumor tissues. C1QBP overexpression was induced in 293T cells using a pFLAG-CMV2 expression vector. Overexpressed FLAG-tagged C1QBP protein was then immunoprecipitated using anti-FLAG antibodies and C1QBP-interacting proteins were screened using LC-MS analysis of the immunoprecipitates. The C1QBP-interacting proteins were confirmed using reverse-immunoprecipitation and the differential expression of C1QBP in tissues and cell lines was confirmed using western blot analysis. LC-MS analysis revealed that C1QBP exhibited a typical tumor expression pattern. Two immune-reactive signals (33 and 14 kDa) were detected in normal and tumor tissues from 19 patients. Furthermore, 14 kDa C1QBP protein was upregulated in the tumors of 15 patients. In total, 39 proteins were identified as candidate C1QBP-interacting proteins, and an interaction between C1QBP and apolipoprotein A-I was confirmed. The present study indicates that C1QBP is involved in colon cancer carcinogenesis, and that the mechanisms underlying the established anti-tumor properties of apolipoprotein A-I may include interacting with and inhibiting the activity of C1QBP.

  3. Influence of domain stability on the properties of human apolipoprotein E3 and E4 and mouse apolipoprotein E.

    PubMed

    Nguyen, David; Dhanasekaran, Padmaja; Nickel, Margaret; Mizuguchi, Chiharu; Watanabe, Mayu; Saito, Hiroyuki; Phillips, Michael C; Lund-Katz, Sissel

    2014-06-24

    The human apolipoprotein (apo) E4 isoform, which differs from wild-type apoE3 by the single amino acid substitution C112R, is associated with elevated risk of cardiovascular and Alzheimer’s diseases, but the molecular basis for this variation between isoforms is not understood. Human apoE is a two-domain protein comprising an N-terminal helix bundle and a separately folded C-terminal region. Here, we examine the concept that the ability of the protein to bind to lipid surfaces is influenced by the stability (or readiness to unfold) of these domains. The lipid-free structures and abilities to bind to lipid and lipoprotein particles of a series of human and mouse apoE variants with varying domain stabilities and domain–domain interactions are compared. As assessed by urea denaturation, the two domains are more unstable in apoE4 than in apoE3. To distinguish the contributions of the destabilization of each domain to the greater lipid-binding ability of apoE4, the properties of the apoE4 R61T and E255A variants, which have the same helix bundle stabilities but altered C-terminal domain stabilities, are compared. In these cases, the effects on lipid-binding properties are relatively minor, indicating that the destabilization of the helix bundle domain is primarily responsible for the enhanced lipid-binding ability of apoE4. Unlike human apoE, mouse apoE behaves essentially as a single domain, and its lipid-binding characteristics are more similar to those of apoE4. Together, the results show that the overall stability of the entire apoE molecule exerts a major influence on its lipid- and lipoprotein-binding properties.

  4. Effects of apolipoproteins on the kinetics of cholesterol exchange

    SciTech Connect

    Letizia, J.Y.; Phillips, M.C. )

    1991-01-22

    The effects of apolipoproteins on the kinetics of cholesterol exchange have been investigated by monitoring the transfer of ({sup 14}C)cholesterol from donor phospholipid/cholesterol complexes containing human apolipoproteins A, B, or C. Negatively charged discoidal and vesicular particles containing purified apolipoproteins complexed with lipid and a trace of ({sup 14}C)cholesterol were incubated with a 10-fold excess of neutral, acceptor, small unilamellar vesicles. The donor and acceptor particles were separated by chromatogrphy of DEAE-Sepharose, and the rate of movement of labeled cholesterol was analyzed as a first-order exchange process. The kinetics of exchange of cholesterol from both vesicular and discoidal complexes that contain apoproteins are consistent with an aqueous diffusion mechanism, as has been established previously for PC/cholesterol SUV. Apolipoproteins A-I, A-II, reduced and carboxymethylated A-11, and B-100 present in SUV at the same lipid/protein (w/w) ratio all enhance the rate of cholesterol exchange to about the same degree. Cholesterol molecules exchange more rapidly from discoidal complexes. Generally, as the diameter of apoprotein/phospholipid/cholesterol discs decreases, t{sub 1/2} for cholesterol exchange decreases. Since small bilayer discs have a relatively high ratio of boundary to face surface area, cholesterol molecules desorb more rapidly than from larger discs. The modulation of lipid packing by the apoprotein molecules present at the surface of lipoprotein particles affects the rate of cholesterol exchange from such particles.

  5. Apolipoprotein A-I structural organization in high density lipoproteins isolated from human plasma

    PubMed Central

    Huang, Rong; Gangani D. Silva, R. A.; Jerome, W. Gray; Kontush, Anatol; Chapman, M. John; Curtiss, Linda K.; Hodges, Timothy J.; Davidson, W. Sean

    2010-01-01

    High density lipoproteins (HDL) mediate cholesterol transport and protection from cardiovascular disease. Although synthetic HDLs have been studied for 30 years, the structure of human plasma-derived HDL, and its major protein apolipoprotein (apo)A-I, is unknown. We separated normal human HDL into 5 density subfractions and then further isolated those containing predominantly apoA-I (LpA-I). Using cross-linking chemistry and mass spectrometry, we found that apoA-I adopts a structural framework in these particles that closely mirrors that in synthetic HDL. We adapted established structural models for synthetic HDL to generate the first detailed models of authentic human plasma HDL in which apoA-I adopts a symmetrical cage-like structure. The models suggest that HDL particle size is modulated via a twisting motion of the resident apoA-I molecules. This understanding offers insights into how apoA-I structure modulates HDL function and its interactions with other apolipoproteins. PMID:21399642

  6. Apolipoprotein E Sets the Stage: Response to Injury Triggers Neuropathology, Including Alzheimer's Disease

    PubMed Central

    Mahley, Robert W.; Huang, Yadong

    2013-01-01

    Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease and is associated with poor clinical outcome following traumatic brain injury and other neuropathological disorders. Protein instability and an isoform-specific apoE property called domain interaction are responsible for these neuropathological effects. ApoE4 is the most neurotoxic isoform and can induce neuropathology through various cellular pathways. Neuronal damage or stress induces apoE synthesis as part of the repair response; however, when apoE4 is expressed in neurons, its unique conformation makes it susceptible to proteolysis, resulting in the generation of neurotoxic fragments. These fragments cause pathological mitochondrial dysfunction and cytoskeletal alterations. Here, we review data supporting the hypothesis that apoE4 (> apoE3 > apoE2) has direct neurotoxic effects and highlight studies showing that blocking domain interaction reverses these detrimental effects. PMID:23217737

  7. Macrophage metalloproteinases degrade high-density-lipoprotein-associated apolipoprotein A-I at both the N- and C-termini.

    PubMed Central

    Eberini, Ivano; Calabresi, Laura; Wait, Robin; Tedeschi, Gabriella; Pirillo, Angela; Puglisi, Lina; Sirtori, Cesare R; Gianazza, Elisabetta

    2002-01-01

    Atheromatous plaques contain various cell types, including macrophages, endothelial cells and smooth-muscle cells. To investigate the possible interactions between secreted matrix metalloproteinases and high-density lipoprotein (HDL) components, we tested the above cell types by culturing them for 24 h. HDL(3) (HDL subfractions with average sizes of between 8.44 nm for HDL(3A) and 7.62 nm for HDL(3C)) were then incubated in their cell-free conditioned media. Proteolytic degradation of apolipoprotein A-I was observed with macrophages, but not with endothelial-cell- or muscle-cell-conditioned supernatant. Absence of calcium or addition of EDTA to incubation media prevented all proteolytic processes. The identified apolipoprotein A-I fragments had sizes of 26, 22, 14 and 9 kDa. Two-dimensional electrophoresis and MS resolved the 26 and the 22 kDa components and identified peptides resulting from both N- and C-terminal cleavage of apolipoprotein A-I. The higher abundance of C- than N-terminally cleaved peptides agrees with data in the literature for a fully structured alpha-helix around Tyr(18) compared with an unstructured region around Gly(185) and Gly(186). The flexibility in the latter region of apolipoprotein A-I may explain its susceptibility to proteolysis. In our experimental set-up, HDL(3C) was more extensively degraded than the other HDL(3) subclasses (HDL(3A) and HDL(3B)). Proteolytic fragments produced by metalloproteinase action were shown by gel filtration and electrophoresis to be neither associated with lipids nor self-associated. PMID:11879189

  8. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E

    NASA Astrophysics Data System (ADS)

    Rute Neves, Ana; Fontes Queiroz, Joana; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Reis, Salette

    2015-12-01

    Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml-1 over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.

  9. Turkish Heart Study: lipids, lipoproteins, and apolipoproteins.

    PubMed

    Mahley, R W; Palaoğlu, K E; Atak, Z; Dawson-Pepin, J; Langlois, A M; Cheung, V; Onat, H; Fulks, P; Mahley, L L; Vakar, F

    1995-04-01

    We examined the plasma lipids, lipoproteins, and selected apolipoproteins in approximately 9,000 men and women from six different regions of Turkey with markedly different diets, ranging from an Aegean coast diet high in olive oil (plasma cholesteryl ester fatty acids enriched in monounsaturated fatty acids) to an inland Anatolian diet high in meat and dairy products (plasma cholesteryl esters enriched in saturated fatty acids). The rural population consuming an olive oil-rich diet had the lowest plasma cholesterol levels (men, 149 mg/dl; women, 150 mg/dl). The urban populations of Istanbul and Adana had higher plasma cholesterol levels (men, 202 and 184 mg/dl, respectively; women, 181 and 190 mg/dl, respectively). Affluent men had the highest cholesterol levels (207 mg/dl). The low density lipoprotein (LDL) cholesterol levels tended to parallel the total cholesterol levels (highest for Istanbul men at 136 mg/dl and lowest for Aegean coast men and women at approximately 100 mg/dl). Strikingly, the Turkish people were found to have very low levels of high density lipoprotein (HDL) cholesterol (HDL-C) (mean values for all six regions: men, 34-38 mg/dl; women, 37-45 mg/dl) and total cholesterol/HDL-C ratios that were high (mean values for all six regions: men, 4.5-5.5; women, 3.9-5.0). The low HDL-C levels appear to be caused, at least in part, by a genetic factor. Triglyceride levels also tended to be high in Turkish men (approximately 120-150 mg/dl) and women (approximately 90-110 mg/dl). Thus, even though the total plasma cholesterol levels are not excessively elevated in comparison to those in other populations, the presence of low HDL-C or low HDL-C coupled with mildly elevated triglyceride levels may represent a significant risk factor for heart disease in the Turkish population. Affluence and higher education were associated with higher cholesterol levels. Lack of physical activity, smoking, and alcohol consumption also tended to be associated with a

  10. Endothelial cells synthesize and process apolipoprotein B.

    PubMed

    Sivaram, P; Vanni-Reyes, T; Goldberg, I J

    1996-06-21

    We reported previously that a 116-kDa lipoprotein lipase (LPL)-binding protein from endothelial cells has sequence homology to the amino-terminal region of apolipoprotein (apo) B. We now tested whether endothelial cells synthesize apoB mRNA and protein. Primers were designed to the human apoB cDNA sequence and reverse transcription polymerase chain reaction was performed using total RNA isolated from bovine and human endothelial cells. With primers to the 5' region of the apoB mRNA (amino-terminal region of apoB protein) expected size PCR products were generated from both bovine and human endothelial cells as well as from mouse liver RNA, which was used as a control. Primers designed to the 3' region of apoB mRNA generated PCR products from human endothelial cells and HepG2 cells but not from bovine or mouse cells. These data suggest that endothelial cells contain full-length apoB mRNA and that the 5' or the amino-terminal region of apoB is highly conserved from mouse to human. This was confirmed by direct sequencing of the mouse and bovine PCR products. To test whether apoB protein was produced, bovine endothelial cell proteins were metabolically labeled with [35S]methionine/cysteine or [3H]leucine and immunoprecipitated with anti-human apoB antibodies. Using extracts from cells labeled for 1 h, monoclonal antibody 47, directed to the low density lipoprotein receptor binding region of apoB, precipitated a protein of approximate molecular mass 550,000, the size of full-length apoB. Immunoprecipitation of the 550-kDa protein was abolished in the presence of added unlabeled low density lipoprotein. From cells labeled for 16 h, a 116-kDa protein was immunoprecipitated by polyclonal anti-apoB antibodies. This protein was partly released from cells by heparin treatment. Pulse-chase analysis showed that the 116-kDa fragment appeared at the same time as the full-length apoB began disappearing. The immunoprecipitated 116-kDa fragment also bound labeled LPL on ligand blot

  11. A Study of Serum Apolipoprotein A1, Apolipoprotein B and Lipid Profile in Stroke

    PubMed Central

    AS, Shilpasree; Sahukar, Savitri; Murthy, Jayaprakash; Kumar, Kiran

    2013-01-01

    Background: Role of Serum Lipids, Lipoproteins and Lipoprotein related variables in the prediction of Stroke is less clear. Abnormalities in plasma Lipoproteins are the most firmly established and best understood risk factors for Atherosclerosis and they are probable risk factors for Ischaemic stroke, largely by their link to Atherosclerosis. Apo B reflects the concentration of potentially atherogenic particles (LDL), and Apo A1 reflects the corresponding concentration of anti- atherogenic particles (HDL), represent additional lipoprotein related variables that may indicate the vascular risk. Aim: To study serum concentration of Apolipoprotein A1, Apolipoprotein B, Apo B/Apo A1 ratio and Lipid profile in Stroke Cases and to compare with healthy controls. Design: A total number of 100 subjects within 30 – 70 years were considered for the study. 50 subjects with Stroke (both clinically as well as Computed tomographically proven cases) and 50 age and sex matched healthy individuals were taken for the study. Material and Methods: Total cholesterol, HDL cholesterol and Triglycerides are estimated by Enzymatic method using Semiautoanalyser. LDL cholesterol is estimated by Friedewald formula. Apo B and Apo A1 are estimated by Immunoturbidimetric method using Semiautoanalyser. Statistical Analysis: Student ‘t’ test was used to compare the data between cases and controls. Diagnostic validity tests were conducted to assess the Diagnostic efficiency of Apo A1, Apo B and Apo B/Apo A1 ratio. Results: Total cholesterol, LDL cholesterol and Triglycerides are significantly increased in Cases compared to Controls. HDL – cholesterol is significantly decreased in Cases compared to Controls. Apo B and Apo B/Apo A1 ratio are significantly increased and Apo A1 is significantly decreased in Cases compared to Controls. Diagnostic validity tests showed that, Apo B , Apo A1 and Apo B /Apo A1 ratio have highest Sensitivity, Specificity and Diagnostic efficiency. Conclusion: Apo B

  12. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    SciTech Connect

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G.; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V.

    2015-12-04

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  13. Effect of apolipoprotein E genotype and diet on apolipoprotein E lipidation and amyloid peptides: randomized clinical trial.

    PubMed

    Hanson, Angela J; Bayer-Carter, Jennifer L; Green, Pattie S; Montine, Thomas J; Wilkinson, Charles W; Baker, Laura D; Watson, G Stennis; Bonner, Laura M; Callaghan, Maureen; Leverenz, James B; Tsai, Elaine; Postupna, Nadia; Zhang, Jing; Lampe, Johanna; Craft, Suzanne

    2013-08-01

    Sporadic Alzheimer disease (AD) is caused in part by decreased clearance of the β-amyloid (Aβ) peptide breakdown products. Lipid-depleted (LD) apolipoproteins are less effective at binding and clearing Aβ, and LD Aβ peptides are more toxic to neurons. However, not much is known about the lipid states of these proteins in human cerebrospinal fluid. To characterize the lipidation states of Aβ peptides and apolipoprotein E in the cerebrospinal fluid in adults with respect to cognitive diagnosis and APOE ε4 allele carrier status and after a dietary intervention. Randomized clinical trial. Veterans Affairs Medical Center clinical research unit. Twenty older adults with normal cognition (mean [SD] age, 69 [7] years) and 27 with amnestic mild cognitive impairment (67 [6] years). Randomization to a diet high in saturated fat content and with a high glycemic index (High diet; 45% of energy from fat [>25% saturated fat], 35%-40% from carbohydrates with a mean glycemic index >70, and 15%-20% from protein) or a diet low in saturated fat content and with a low glycemic index (Low diet; 25% of energy from fat [<7% saturated fat], 55%-60% from carbohydrates with a mean glycemic index <55, and 15%-20% from protein). Lipid-depleted Aβ42 and Aβ40 and apolipoprotein E in cerebrospinal fluid. Baseline levels of LD Aβ were greater for adults with mild cognitive impairment compared with adults with normal cognition (LD Aβ42, P = .05; LD Aβ40, P = .01). These findings were magnified in adults with mild cognitive impairment and the ε4 allele, who had higher LD apolipoprotein E levels irrespective of cognitive diagnosis (P < .001). The Low diet tended to decrease LD Aβ levels, whereas the High diet increased these fractions (LD Aβ42, P = .01; LD Aβ40, P = .15). Changes in LD Aβ levels with the Low diet negatively correlated with changes in cerebrospinal fluid levels of insulin (LD Aβ42 and insulin, r = -0.68 [P = .01]; LD Aβ40 and insulin, r = -0.78 [P = .002]). The

  14. ApolipoproteinL1 is expressed in papillary thyroid carcinomas.

    PubMed

    Chidiac, Mounia; Fayyad-Kazan, Mohammad; Daher, Jalil; Poelvoorde, Philippe; Bar, Isabelle; Maenhaut, Carine; Delrée, Paul; Badran, Bassam; Vanhamme, Luc

    2016-07-01

    The apolipoprotein L (apoL) family has not yet been ascribed any definite patho-physiological function although the conserved BH3 protein domain suggests a role in programmed cell death. As repression of the regular apoptotic program is considered a hallmark of tumor progression, we investigated apoL expression in cancer. We show that the levels of one member of the family, apolipoprotein L1 (apoL1) is higher in papillary thyroid carcinoma compared to normal tissue. A combination of qRTPCR, immunohistochemistry and in situ hybridization allowed us to ascribe this increase to endogenous overexpression in carcinoma cells. Whether apoL1 plays an instrumental role in refraining cell death is the subject of ongoing molecular biology experiments. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Ledipasvir/sofosbuvir treatment of hepatitis C virus is associated with reduction in serum apolipoprotein levels.

    PubMed

    Younossi, Z M; Elsheikh, E; Stepanova, M; Gerber, L; Nader, F; Stamm, L M; Brainard, D M; McHutchinson, J G

    2015-12-01

    The interaction of lipoproteins with hepatitis C virus (HCV) has pathogenic and therapeutic implications. Our aim was to evaluate changes in the apolipoprotein profile of patients with chronic hepatitis C during and after successful cure with ledipasvir and sofosbuvir (LDV/SOF) with and without ribavirin (RBV). One hundred HCV genotype 1 patients who had achieved SVR-12 after treatment with 12 weeks of LDV/SOF ± RBV were selected from the ION-1 clinical trial. Frozen serum samples from baseline, end of treatment and week 4 of follow-up were used to assay apolipoproteins (apoAI, apoAII, apoB, apoCII, apoCIII, apoE) using the Multiplex platform to assess for changes in the apolipoprotein levels. At the end of treatment compared to baseline, a significant reduction in apoAII levels (-14.97 ± 63.44 μg/mL, P = 0.0067) and apoE levels (-4.38 ± 12.19 μg/mL, P < 0.001) was noted. These declines from baseline in apoAII (-16.59 ±66.15 μg/mL, P = 0.0075) and apoE (-2.66 ± 12.64 μg/mL, P = 0.015) persisted at 4 weeks of post-treatment follow-up. In multivariate analysis, treatment with LDV/SOF + RBV was independently associated with reduction in apoE (beta = 5.31 μg/mL, P = 0.002) (compared to RBV-free LDV/SOF) (P < 0.05). In contrast, apoCII levels overall increased from baseline to end of treatment (+2.74 ±11.76 μg/mL, P = 0.03) and persisted at 4 weeks of follow-up (+4.46 ± 12.81 μg/mL from baseline, P = 0.0005). Subgroup analysis revealed an increase in apoCII during treatment only in patients receiving LDV/SOF without RBV (+5.52 ± 11.92 μg/mL, P = 0.0007) but not in patients receiving LDV/SOF + RBV (P = 0.638). Treatment with LDV/SOF ± RBV is associated with a persistent reduction in the apolipoprotein AII and E after achieving cure. These data suggest that treatment with LDV/SOF ± RBV may be associated with alterations in serum apolipoproteins which could potentially impact viral eradication.

  16. Cholesterol can stimulate secretion of apolipoprotein B by cultured human hepatocytes.

    PubMed

    Kosykh, V A; Preobrazhensky, S N; Fuki, I V; Zaikina, O E; Tsibulsky, V P; Repin, V S; Smirnov, V N

    1985-10-02

    During a 5 day cultivation of human hepatocytes in a primary culture the secretion of apolipoprotein B was measured by enzyme-linked immunosorbent assay. Density-gradient ultracentrifugation demonstrated that the majority of the secreted apolipoprotein B was associated with the very-low-density lipoprotein fraction. Exposure of the cells to cholesterol (5-100 micrograms/ml) resulted in a dose-dependent increase in apolipoprotein B secretion rate.

  17. cDNA sequences of two apolipoproteins from lamprey

    SciTech Connect

    Pontes, M.; Xu, X.; Graham, D.; Riley, M.; Doolittle, R.F.

    1987-03-24

    The messages for two small but abundant apolipoproteins found in lamprey blood plasma were cloned with the aid of oligonucleotide probes based on amino-terminal sequences. In both cases, numerous clones were identified in a lamprey liver cDNA library, consistent with the great abundance of these proteins in lamprey blood. One of the cDNAs (LAL1) has a coding region of 105 amino acids that corresponds to a 21-residue signal peptide, a putative 8-residue propeptide, and the 76-residue mature protein found in blood. The other cDNA (LAL2) codes for a total of 191 residues, the first 23 of which constitute a signal peptide. The two proteins, which occur in the high-density lipoprotein fraction of ultracentrifuged plasma, have amino acid compositions similar to those of apolipoproteins found in mammalian blood; computer analysis indicates that the sequences are largely helix-permissive. When the sequences were searched against an amino acid sequence data base, rat apolipoprotein IV was the best matching candidate in both cases. Although a reasonable alignment can be made with that sequence and LAL1, definitive assignment of the two lamprey proteins to typical mammalian classes cannot be made at this point.

  18. A human apolipoprotein E mimetic peptide reduces atherosclerosis in aged apolipoprotein E null mice

    PubMed Central

    Xu, Yanyong; Liu, Hongmei; Liu, Mengting; Li, Feifei; Liu, Liangchen; Du, Fen; Fan, Daping; Yu, Hong

    2016-01-01

    Apolipoprotein E (apoE) is well known as an antiatherogenic protein via regulating lipid metabolism and inflammation. We previously reported that a human apoE mimetic peptide, EpK, reduced atherosclerosis in apoE null (apoE-/-) mice through reducing inflammation without affecting plasma lipid levels. Here, we construct another human apoE mimetic peptide, named hEp, and investigate whether expression of hEp can reduce atherosclerotic lesion development in aged female apoE-/- mice with pre-existing lesions. We found that chemically synthesized hEp significantly decreased cholesterol accumulation induced by oxidized low density lipoprotein and the expression of inflammatory cytokines TNFα and IL-6 induced by lipopolysaccharide in macrophages. In an in vivo study, Lv-hEp-GFP lentiviruses were intravenously injected into 9 month-old apoE-/- mice. Mice were then fed a chow diet for 18 weeks. Results showed that in comparison to the Lv-GFP lentivirus injection (Lv-GFP) group, Lv-hEp-GFP lentivirus injection achieved hepatic hEp expression and secretion in apoE-/- mice. It was observed that hEp expression significantly reduced plasma VLDL and LDL cholesterol levels and decreased aortic atherosclerotic lesions. This was accompanied by an increase of LDL receptor expression and a reduction of TNFα and IL-6 mRNA levels in the liver. Moreover, expression of hEp increased plasma paraoxonase-1 activity and decreased plasma myeloperoxidase activity and serum amyloid A levels. Our study provides evidence that hEp may be developed as a promising therapeutic apoE mimetic peptide for atherosclerosis-related cardiovascular diseases through its induction of plasma VLDL/LDL cholesterol clearance as well as its anti-oxidative and anti-inflammatory activities. PMID:27648138

  19. The nonlinear association between apolipoprotein B to apolipoprotein A1 ratio and type 2 diabetes

    PubMed Central

    Mao, Yong; Xu, Yang; Lu, Leihong

    2017-01-01

    Abstract The ratio of ApoB/apolipoprotein A1 (ApoA1) has been found to be associated with type 2 diabetes, and it was proposed as a new biomarker for type 2 diabetes predictions. Previous studies have assumed that the association between apoB/apoA1 and type 2 diabetes was linear. However, the linearity assumption has rarely been examined. In the present study, we aimed to examine whether this association showed a linear trend in a nationally representative population. Participants aged 18 years and over (n = 8220) were selected from the China Health Nutrition Survey (CHNS). We used restricted cubic spline to model the association between ApoB/ApoA1 ratio and type 2 diabetes using logistic regression models. Additionally, we categorized the ApoB/ApoA1 ratio according to quartiles to compare with previous results. Age, gender, education, smoking status, high sensitivity C-reactive protein (hsCRP), lipid, body mass index (BMI), and hypertension were controlled as potential confounders. We found that the association between apoB/apoA1 ratio and type 2 diabetes may be nonlinear after adjusting for multiple potential confounders. Compared with the lowest quartile of apoB/apoA1 ratio, participants in the fourth quartile had a higher odds of type 2 diabetes [odds ratio (OR) = 1.35, 95% confidence interval (CI) = 1.01–1.81]. Our results suggest that, higher apoB/apoA1 ratio was associated with higher prevalence of type 2 diabetes. However, the association may be nonlinear. PMID:28072742

  20. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis.

    PubMed

    Leman, Luke J; Maryanoff, Bruce E; Ghadiri, M Reza

    2014-03-27

    Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.

  1. Molecules that Mimic Apolipoprotein A-I: Potential Agents for Treating Atherosclerosis

    PubMed Central

    Leman, Luke J.; Maryanoff, Bruce E.; Ghadiri, M. Reza

    2013-01-01

    Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL. PMID:24168751

  2. Conformational flexibility in the apolipoprotein E amino-terminal domain structure determined from three new crystal forms: implications for lipid binding.

    PubMed Central

    Segelke, B. W.; Forstner, M.; Knapp, M.; Trakhanov, S. D.; Parkin, S.; Newhouse, Y. M.; Bellamy, H. D.; Weisgraber, K. H.; Rupp, B.

    2000-01-01

    An amino-terminal fragment of human apolipoprotein E3 (residues 1-165) has been expressed and crystallized in three different crystal forms under similar crystallization conditions. One crystal form has nearly identical cell dimensions to the previously reported orthorhombic (P2(1)2(1)2(1)) crystal form of the amino-terminal 22 kDa fragment of apolipoprotein E (residues 1-191). A second orthorhombic crystal form (P2(1)2(1)2(1) with cell dimensions differing from the first form) and a trigonal (P3(1)21) crystal form were also characterized. The structures of the first orthorhombic and the trigonal form were determined by seleno-methionine multiwavelength anomalous dispersion, and the structure of the second orthorhombic form was determined by molecular replacement using the structure from the trigonal form as a search model. A combination of modern experimental and computational techniques provided high-quality electron-density maps, which revealed new features of the apolipoprotein E structure, including an unambiguously traced loop connecting helices 2 and 3 in the four-helix bundle and a number of multiconformation side chains. The three crystal forms contain a common intermolecular, antiparallel packing arrangement. The electrostatic complimentarity observed in this antiparallel packing resembles the interaction of apolipoprotein E with the monoclonal antibody 2E8 and the low density lipoprotein receptor. Superposition of the model structures from all three crystal forms reveals flexibility and pronounced kinks in helices near one end of the four-helix bundle. This mobility at one end of the molecule provides new insights into the structural changes in apolipoprotein E that occur with lipid association. PMID:10850798

  3. Human apolipoprotein E expression in Escherichia coli: structural and functional identity of the bacterially produced protein with plasma apolipoprotein E.

    PubMed Central

    Vogel, T; Weisgraber, K H; Zeevi, M I; Ben-Artzi, H; Levanon, A Z; Rall, S C; Innerarity, T L; Hui, D Y; Taylor, J M; Kanner, D

    1985-01-01

    Human apolipoprotein E (apoE) was produced in Escherichia coli by transforming cells with an expression vector containing a reconstructed apoE cDNA, a lambda PL promoter regulated by the thermolabile cI repressor, and a ribosomal binding site derived from the lambda cII or the E. coli beta-lactamase gene. Transformed cells induced at 42 degrees C for short periods of time (less than 20 min) produced apoE, which accumulated in the cells at levels of approximately equal to 1% of the total soluble cellular protein. Longer induction periods resulted in cell lysis and the proteolytic destruction of apoE. The bacterially produced apoE was purified by heparin-Sepharose affinity chromatography, Sephacryl S-300 gel filtration, and preparative Immobiline isoelectric focusing. The final yield was approximately equal to 20% of the initial apoE present in the cells. Except for an additional methionine at the amino terminus, the bacterially produced apoE was indistinguishable from authentic human plasma apoE as determined by NaDodSO4 and isoelectric focusing gel electrophoresis, amino acid composition of the total protein as well as its cyanogen bromide fragments, and partial amino acid sequence analysis (residues 1-17 and 109-164). Both the bacterially produced and authentic plasma apoE bound similarly to apolipoprotein B,E(low density lipoprotein) receptors of human fibroblasts and to hepatic apoE receptors. Intravenous injection resulted in similar rates of clearance for both the bacterially produced and authentic apoE from rabbit and rat plasma (approximately equal to 50% removed in 20 min). The ability to synthesize a bacterially produced human apolipoprotein with biological properties indistinguishable from those of the native protein will allow the production of large quantities of apoE for use in further investigations of the biological and physiological properties of this apolipoprotein. Images PMID:3909150

  4. Apolipoprotein A-IV polymorphism in Saami and Finns: frequency and effect on serum lipid levels.

    PubMed

    Lehtinen, S; Luoma, P; Näyhä, S; Hassi, J; Ehnholm, C; Nikkari, T; Peltonen, N; Jokela, H; Koivula, T; Lehtimäki, T

    1998-04-01

    Apolipoprotein A-IV (apoA-IV) is a glycoprotein constituent of triglyceride-rich and high-density lipoproteins (HDL) and may thus play an important role in lipid metabolism. In Finland two common isoforms (A-IV-1 and A-IV-2) of apoA-IV have been found. The isoforms are the result of the G to T substitution in the third base of the codon 360 in the apoA-IV-2 allele of the apoA-IV gene. The purpose of the study was to determine the apoA-IV allele frequencies in the Saami and the Finns, and to relate the apoA-IV phenotypes to serum lipids. The sample was drawn in connection with a Reindeer Herders' Health Survey performed in northern Finland in 1989. The study group included 248 men with known ethnic origin, Saami and Finns, who lived in the area of the nine northernmost municipalities of Finland. ApoA-IV phenotypes from 71 Saami (both parents Saami) and 177 Finns (both parents Finns) were determined by isoelectric focusing and Western blotting. Serum lipids were determined enzymatically. ApoA-IV allele frequencies in the Saami and the Finns were for A-IV-1 0.894 vs 0.944 and for A-IV-2 0.106 vs 0.056, respectively (chi2-test, P < 0.05). The effect of the apoA-IV phenotype on serum HDL-cholesterol levels differed significantly between the Saami and the Finns (two-way ANCOVA, interaction between ethnicity and apoA-IV phenotype, P < 0.02). In the Saami, HDL-cholesterol levels were significantly higher in the apoA-IV-2/1 than in the apoA-IV-1/1 phenotypes (ANCOVA, P < 0.05). Mean total cholesterol, low-density lipoprotein (LDL)-cholesterol, apolipoprotein B, HDL-cholesterol and triglyceride levels did not differ statistically significantly between the Saami and the Finns. Yet, there was a trend in the Saami of having higher mean total cholesterol, LDL-cholesterol and apolipoprotein B levels than the Finns among the apoA-IV-2/1 phenotypes, while there was only a small difference in these parameters between the Saami and the Finns among the apoA-IV-1/1 phenotypes. In

  5. Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury.

    PubMed

    Chen, Y; Lomnitski, L; Michaelson, D M; Shohami, E

    1997-10-01

    Previous studies suggest that traumatic brain injury is associated with increased risk factor for developing Alzheimer's disease. Furthermore, the extent of the risk seems to be most pronounced in Alzheimer's disease patients who carry the epsilon4 allele of apolipoprotein E, suggesting a connection between susceptibility to head trauma and the apolipoprotein E genotype. Apolipoprotein E-deficient mice provide a useful model for investigating the role of this lipoprotein in neuronal maintenance and repair. In the present study apolipoprotein E-deficient mice and a closed head injury experimental paradigm were used to examine the role of apolipoprotein E in brain susceptibility to head trauma and in neuronal repair. Apolipoprotein E-deficient mice were assessed up to 40 days after closed head injury for neurological and cognitive functions, as well as for histopathological changes in the hippocampus. A neurological severity score used for clinical assessment revealed more severe motor and behavioural deficits in the apolipoprotein E-deficient mice than in the controls, the impairment persisting for at least 40 days after injury. Performance in the Morris water maze, which tests spatial memory, showed a marked learning deficit of the apolipoprotein E-deficient mice when compared with injured controls, which was apparent for at least 40 days. At this time, histopathological examination revealed overt neuronal cell death bilaterally in the hippocampus of the injured apolipoprotein E-deficient mice. The finding that apolipoprotein E-deficient mice exhibit an impaired ability to recover from closed head injury suggests that apolipoprotein E plays an important role in neuronal repair following injury and highlights the applicability of this mouse model to the study of the cellular and molecular mechanisms involved.

  6. Changes in helical content or net charge of apolipoprotein C-I alter its affinity for lipid/water interfaces[S

    PubMed Central

    Meyers, Nathan L.; Wang, Libo; Gursky, Olga; Small, Donald M.

    2013-01-01

    Amphipathic α-helices mediate binding of exchangeable apolipoproteins to lipoproteins. To probe the role of α-helical structure in protein-lipid interactions, we used oil-drop tensiometry to characterize the interfacial behavior of apolipoprotein C-I (apoC-I) variants at triolein/water (TO/W) and 1-palmitoyl-2-oleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. ApoC-I, the smallest apolipoprotein, has two amphipathic α-helices. Mutants had single Pro or Ala substitutions that resulted in large differences in helical content in solution and on phospholipids. The ability of apoC-I to bind TO/W and POPC/TO/W interfaces correlated strongly with α-helical propensity. On binding these interfaces, peptides with higher helical propensity increased surface pressure to a greater extent. Likewise, peptide exclusion pressure at POPC/TO/W interfaces increased with greater helical propensity. ApoC-I retention on TO/W and POPC/TO/W interfaces correlated strongly with phospholipid-bound helical content. On compression of these interfaces, peptides with higher helical content were ejected at higher pressures. Substitution of Arg for Pro in the N-terminal α-helix altered net charge and reduced apoC-I affinity for POPC/TO/W interfaces. Our results suggest that peptide-lipid interactions drive α-helix binding to and retention on lipoproteins. Point mutations in small apolipoproteins could significantly change α-helical propensity or charge, thereby disrupting protein-lipid interactions and preventing the proteins from regulating lipoprotein catabolism at high surface pressures. PMID:23670531

  7. Low Density Lipoproteins Containing Apolipoprotein C-III and the Risk of Coronary Heart Disease

    PubMed Central

    Mendivil, Carlos O; Rimm, Eric B.; Furtado, Jeremy; Chiuve, Stephanie; Sacks, Frank M

    2011-01-01

    Background LDL that contains apolipoprotein C-III (apoC-III) comprises only 10 to 20% of plasma LDL, but has a markedly altered metabolism and proatherogenic effects on vascular cells. Methods and results We examined the association between plasma LDL with apoC-III and coronary heart disease (CHD) in 320 women and 419 men initially free of cardiovascular disease who developed a fatal or non-fatal myocardial infarction during 10 to 14 years of follow-up, and matched controls who remained free of CHD. Concentrations of LDL with apoC-III (measured as apoB in this fraction) were associated with risk of CHD in multivariable analysis that included the total cholesterol to HDL cholesterol ratio, LDL cholesterol, apolipoprotein B, triglycerides, or HDL cholesterol; and other risk factors. In all models, the relative risks for the top versus bottom quintile of LDL with apoC-III were greater than those for LDL without apoC-III. When included in the same multivariable adjusted model, the risk associated with LDL with apoC-III (relative risk for top versus bottom quintile 2.38, 95 percent confidence interval, 1.54 to 3.68; P for trend <0.001) was significantly greater than that associated with LDL without apoC-III (relative risk for top versus bottom quintile 1.25, 95 percent confidence interval, 0.76 to 2.05; P for trend=0.97), P for interaction <0.001. This divergence in association with CHD persisted even after adjustment for plasma triglycerides. Conclusions The risk of CHD contributed by LDL appeared to result to a large extent from LDL that contains apoC-III. PMID:21986282

  8. Serum lipids and apolipoproteins in patients with essential hypertension.

    PubMed

    Catalano, M; Aronica, A; Carzaniga, G; Seregni, R; Libretti, A

    1991-03-01

    Fifty hypertensive untreated outpatients (34 women, 16 men), with stage I and II essential hypertension, were studied in comparison to 50 age- and sex-matched controls with similar life-styles. Total cholesterol triglycerides, LDL-cholesterol, VLDL-cholesterol, and HDL-cholesterol were measured by enzymatic methods, and apolipoproteins AI, AII, B, CII, CIII and E by RID. The results showed significant differences between hypertensives and controls respectively in triglycerides (135.2 +/- 73.9 versus 90.2 +/- 33.8, P less than 0.01) and VLDL cholesterol (26.7 +/- 14.8 versus 17.7 +/- 6.6, P less than 0.01) while no significant differences were observed in total, LDL and HDL cholesterol. Significant differences between the two groups were also observed in apolipoproteins, particularly in apo AI (130.0 +/- 28.2 versus 144.9 +/- 27.9, P less than 0.05), apo AII (32.9 +/- 10.2 versus 39.6 +/- 11.4, P less than 0.01), apo CII (4.0 +/- 2.6 versus 5.4 +/- 2.9, P less than 0.05) and apo E (5.0 +/- 1.8 versus 4.3 +/- 1.8, P less than 0.05), while no significant differences were observed in apo B and CIII values. The results suggest that in untreated hypertensive patients alterations in the apolipoproteins profile are present which, in part, may be responsible for the elevated incidence of cardiovascular disease, independently from the blood pressure values.

  9. Apolipoprotein E epsilon4 allele and neurobehavioral status after on-pump coronary artery bypass grafting.

    PubMed

    Askar, Fatma Zekiye; Cetin, Hasan Yurday; Kumral, Emre; Cetin, Ozgul; Acarer, Ahmet; Kosova, Buket; Yagdi, Tahir

    2005-01-01

    Abstract Background and Aim: The presence of apolipoprotein E epsilon4 allele is being considered as a risk factor for cognitive decline after cardiac surgery. We sought the effect of apolipoprotein E epsilon4 allele on neurobehavioral status after on-pump coronary artery bypass grafting. Prior to the operation, neurologic examination and neurobehavioral cognitive status test (COGNISTAT) were performed. Both procedures were repeated on the day of discharge and 3 months after surgery. Apolipoprotein E epsilon4 allele positive and apolipoprotein E epsilon4 allele negative patients' performance on COGNISTAT were compared. There was no statistically significant demographic and operative data difference between two groups. No neurological impairment was observed on examinations. There was no statistically significant neurocognitive decline difference between two groups' postoperative performances. It seems that apolipoprotein E epsilon4 allele may not affect neurobehavioral status in the intermediate period after on-pump coronary artery bypass grafting.

  10. Nonreplication of an Association of Apolipoprotein E2 With Sinistrality

    PubMed Central

    Piper, Brian J.; Yasen, Alia L.; Taylor, Amy E.; Ruiz, Jonatan R.; Gaynor, J. William; Dayger, Catherine A.; Gonzalez-Gross, Marcela; Kwon, Oh D.; Nilsson, Lars-Göran; Day, Ian N. M.; Raber, Jacob; Miller, Jeremy K.

    2013-01-01

    A recent report found that left-handed adolescents were over three-fold more likely to have an Apolipoprotein (APOE) ε2 allele. This study was unable to replicate this association in young-adults (N=166). A meta-analysis of nine other datasets (N = 360 to 7,559, Power > 0.999) including that of National Alzheimer’s Coordinating Center also failed to find an over-representation of ε2 among left-handers indicating that this earlier outcome was most likely a statistical artifact. PMID:22721421

  11. Immunochemical determination of human apolipoprotein B by laser nephelometry.

    PubMed

    Fievet-Desreumaux, C; Dedonder-Decoopman, E; Fruchart, J C; Dewailly, P; Sezille, G

    1979-07-16

    The Hyland laser nephelometer PDQ system for the assay of apolipoprotein B (apo-B) in human serum is described. Within and between-batch precision, accuracy and reliability are discussed. This instrument represents an important development in the immunochemical assay of apo-B, and the speed, precision, and convenience of the methodology make such a system attractive. Quantitation of apo-B was assessed in normal and hyperlipaemic subjects. Comparisons were made with two other specific and sensitive immunological methods for quantifying apo-B: enzymeimmunoassay (EIA) and rocket immunoelectrophoresis (RIE). Results obtained by the three methods correlated very well.

  12. Silver-enhanced radial immunodiffusion assay of plasma apolipoproteins.

    PubMed

    Ishida, B Y; Paigen, B

    1992-07-01

    Silver-staining of immunoprecipitates extends the sensitivity of the radial immunodiffusion assay by tenfold. This modification permits the quantification of apolipoproteins A-I, A-II, C, and E at levels of 0.2-1.0 mg/dl in plasma samples at a sensitivity threshold of 10 ng. The silver-enhanced radial immunodiffusion method is readily adapted from the standard method, simple and inexpensive to perform, and does not require costly instrumentation. These advantages make the modified RID assay an attractive alternative to other forms of immunoassay.

  13. Modification by acrolein, a component of tobacco smoke and age-related oxidative stress, mediates functional impairment of human apolipoprotein E.

    PubMed

    Tamamizu-Kato, Shiori; Wong, Jason Yiu; Jairam, Vikram; Uchida, Koji; Raussens, Vincent; Kato, Hiroyuki; Ruysschaert, Jean-Marie; Narayanaswami, Vasanthy

    2007-07-17

    Oxidative damage to proteins such as apolipoprotein B-100 increases the atherogenicity of low-density lipoproteins (LDL). However, little is known about the potential oxidative damage to apolipoprotein E (apoE), an exchangeable antiatherogenic apolipoprotein. ApoE plays an integral role in lipoprotein metabolism by regulating the plasma cholesterol and triglyceride levels. Hepatic uptake of lipoproteins is facilitated by apoE's ability to bind with cell surface heparan sulfate proteoglycans and to lipoprotein receptors via basic residues in its 22 kDa N-terminal domain (NT). We investigated the effect of acrolein, an aldehydic product of endogenous lipid peroxidation and a tobacco smoke component, on the conformation and function of recombinant human apoE3-NT. Acrolein caused oxidative modification of apoE3-NT as detected by Western blot with acrolein-lysine-specific antibodies, and tertiary conformational alterations. Acrolein modification impairs the ability of apoE3-NT to interact with heparin and the LDL receptor. Furthermore, acrolein-modified apoE3-NT displayed a 5-fold decrease in its ability to interact with lipid surfaces. Our data indicate that acrolein disrupts the functional integrity of apoE3, which likely interferes with its role in regulating plasma cholesterol homeostasis. These observations have implications regarding the role of apoE in the pathogenesis of smoking- and oxidative stress-mediated cardiovascular and cerebrovascular diseases.

  14. Molecular characterization and developmental expression patterns of apolipoprotein A-I in Senegalese sole (Solea senegalensis Kaup).

    PubMed

    Román-Padilla, J; Rodríguez-Rúa, A; Manchado, M; Hachero-Cruzado, I

    2016-05-01

    The apolipoprotein A-I (ApoA-I) is an essential component of the high density lipoproteins (HDL). In this study, the cDNA and genomic sequences of this apolipoprotein were characterized for first time in Solea senegalensis. The predicted polypeptide revealed conserved structural features including ten repeats in the lipid-binding domain and some residues involved in cholesterol interaction and binding. The gene structure analysis identified four exons and three introns. Moreover, the synteny analysis revealed that apoA-I did not localize with other apolipoproteins indicating a divergent evolution with respect to the apoA-IV and apoE cluster. The phylogenetic analyses identified two distinct apoA-I paralogs in Ostariophysi (referred to as Ia and Ib) and only one (Ib) in Acanthopterygii. Whole-mount in situ hybridization located the apoA-I signal mainly in the yolk syncytial layer in lecitotrophic larval stages. Later at mouth opening, the mRNA signals were detected mainly in liver and intestine compatible with its role in the HDL formation. Moreover, a clear signal was detected in some regions of the brain, retina and neural cord suggesting a role in local regulation of cholesterol homeostasis. After metamorphosis, apoA-I was also detected in other tissues such as gills, head kidney and spleen suggesting a putative role in immunity. Expression analyses in larvae fed two diets with different triacylglycerol levels indicated that apoA-I mRNA levels were more associated to larval size and development than dietary lipid levels. Finally, qPCR analyses of immature and mature transcripts revealed distinct expression profiles suggesting a posttranscriptional regulatory mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry

    PubMed Central

    Chen, Jianzhong; Anderson, Michelle; Misek, David E.; Simeone, Diane M.; Lubman, David M.

    2009-01-01

    Major advances in cancer control depend upon early detection, early diagnosis and efficacious treatment modalities. Current existing markers of pancreatic ductal adenocarcinoma, generally incurable by available treatment modalities, are inadequate for early diagnosis or for distinguishing between pancreatic cancer and chronic pancreatitis. We have used a proteomic approach to identify proteins that are differentially expressed in sera from pancreatic cancer patients, as compared to control. Normal, chronic pancreatitis and pancreatic cancer serum samples were depleted of high molecular weight proteins by acetonitrile precipitation. Each sample was separated by chromatofocusing, and then further resolved by reversed-phase (RP)-HPLC. Effluent from the RP-HPLC column was split into two streams with one directly interfaced to an electrospray time-of-flight (ESI-TOF) mass spectrometer for MW determination of the intact proteins. The remainder went through a UV detector with the corresponding peaks collected with a fraction collector, subsequently used for MS/MS analysis. The ion intensities of proteins with the same MW obtained from ESI-TOF-MS analysis were compared, with the differentially expressed proteins determined. An 8915 Da protein was found to be up-regulated while a 9422 Da protein was down-regulated in the pancreatic cancer sera. Both proteins were identified by MS and MS/MS as proapolipoprotein C-II and apolipoprotein C-III1, respectively. The MS/MS data of proapolipoprotein C-II was searched using “semi-trypsin” as the search enzyme, thus confirming that the protein at 8915 Da was proapolipoprotein C-II. In order to confirm the identity of the protein at 9422 Da, we initially identified a protein of 8765 Da with a similar mass spectral pattern. Based on MS and MS/MS, its intact molecular weight and “semi-trypsin” database search, the protein at 8765 Da was identified as apolipoprotein C-III0. The MS and MS/MS data of the proteins at 8765 Da and 9422

  16. Mechanism of lipid lowering in mice expressing human apolipoprotein A5

    SciTech Connect

    Fruchart-Najib, Jamila; Bauge, Eric; Niculescu, Loredan-Stefan; Pham, Tatiana; Thomas, Benoit; Rommens, Corinne; Majd, Zouher; Brewer, Bryan; Rubin, Edward M.; Pennacchio, Len A.; Fruchart, Jean-Charles

    2004-01-15

    Recently, we reported that apoAV plays key role in triglycerides lowering. Here, we attempted to determine the mechanism underlying this hypotriglyceridemic effect. We showed that triglyceride turnover is faster in hAPOA5 transgenic compared to wild type mice. Moreover, both apoB and apoCIII are decreased and LPL activity is increased in postheparin plasma of hAPOA5 transgenic mice. These data suggest a decrease in size and number of VLDL. To further investigate the mechanism of hAPOA5 in hyperlipidemic background, we intercrossed hAPOA5 and hAPOC3 transgenic mice. The effect resulted in a marked decreased of VLDL triglyceride, cholesterol, apolipoproteins B and CIII. In postprandial state, the triglyceride response is abolished in hAPOA5 transgenic mice. We demonstrated that in response to the fat load in hAPOA5XhAPOC3 mice, apoAV shifted from HDL to VLDL, probably to limit the elevation of triglycerides. In vitro, apoAV activates lipoprotein lipase. However, apoAV does not interact with LPL but interacts physically with apoCIII. This interaction does not seem to displace apoCIII from VLDL but may induce conformational change in apoCIII and consequently change in its function leading the activation of lipoprotein lipase.

  17. Helical structure and stability in human apolipoprotein A-I by hydrogen exchange and mass spectrometry

    PubMed Central

    Chetty, Palaniappan Sevugan; Mayne, Leland; Lund-Katz, Sissel; Stranz, David; Englander, S. Walter; Phillips, Michael C.

    2009-01-01

    Apolipoprotein A-I (apoA-I) stabilizes anti-atherogenic high density lipoprotein particles (HDL) in the circulation and governs their biogenesis, metabolism, and functional interactions. To decipher these important structure–function relationships, it will be necessary to understand the structure, stability, and plasticity of the apoA-I molecule. Biophysical studies show that lipid-free apoA-I contains a large amount of α-helical structure but the location of this structure and its properties are not established. We used hydrogen-deuterium exchange coupled with a fragmentation-separation method and mass spectrometric analysis to study human lipid-free apoA-I in its physiologically pertinent monomeric form. The acquisition of ≈100 overlapping peptide fragments that redundantly cover the 243-residue apoA-I polypeptide made it possible to define the positions and stabilities of helical segments and to draw inferences about their interactions and dynamic properties. Residues 7–44, 54–65, 70–78, 81–115, and 147–178 form α-helices, accounting for a helical content of 48 ± 3%, in agreement with circular dichroism measurements (49%). At 3 to 5 kcal/mol in free energy of stabilization, the helices are far more stable than could be achieved in isolation, indicating mutually stabilizing helix bundle interactions. However the helical structure is dynamic, unfolding and refolding in seconds, allowing facile apoA-I reorganization during HDL particle formation and remodeling. PMID:19850866

  18. [Impact of apolipoprotein A5 on cardiovascular risk. Genetic and environmental modulation].

    PubMed

    Sotos-Prieto, Mercedes; Francés, Francesc; Corella, Dolores

    2010-07-01

    Triglyceride concentrations are an independent risk factor for coronary heart disease. Apolipoprotein A5 gene (APOAS) has an important role determining triglyceride metabolism and it is a potential cardiovascular risk. However the mechanisms for these actions are not well-known. Despite the different allelic frequency of its major polymorphisms in different populations, multiple studies have shown consistent associations between these variants and fasting triglycerides. Variations in the APOA5 gene have also been associated with postprandial triglycerides, as well as with different sizes of lipoproteins and other markers. Moreover, some of the APOA5 gene variants have been associated with ischemic heart disease, stroke, and carotid intima media thickness, although the references on this issue are scanty and contradictory. This may be due to the presence of gene-environment interactions that have been poorly studied until now. Among the few studies that have examined the influence of environmental factors on possible genetic variations, the most important are those that contemplate possible gene-diet interactions. However, the evidence is still scarce and more research is required in the field of nutrigenomics. To understand the impact of this gene on cardiovascular disease, we review the genetic functionality and variability of APOA5, its associations with intermediate and final phenotypes and gene-environment interactions detected.

  19. Apolipoprotein E Related Co-Morbidities and Alzheimer's Disease.

    PubMed

    Singhrao, Sim K; Harding, Alice; Chukkapalli, Sasanka; Olsen, Ingar; Kesavalu, Lakshmyya; Crean, StJohn

    2016-01-01

    The primary goal of advancement in clinical services is to provide a health care system that enhances an individual's quality of life. Incidence of diabetes mellitus, cardiovascular disease, and associated dementia coupled with the advancing age of the population, have led to an increase in the worldwide challenge to the healthcare system. In order to overcome these challenges, prior knowledge of common, reliable risk factors and their effectors is essential. Oral health constitutes one such relatively unexplored but indispensable risk factor for aforementioned co-morbidities, in the form of poor oral hygiene and tooth loss during aging. Behavioral traits such as low education, smoking, poor diet, neglect of oral health, lack of exercise, and hypertension are few of the risk factors that are shared commonly among these conditions. In addition, common genetic susceptibility traits such as the apolipoprotein E gene, together with an individual's lifestyle can also influence the development of co-morbidities such as periodontitis, atherosclerosis/stroke, diabetes, and Alzheimer's disease. This review specifically addresses the susceptibility of apolipoprotein E gene allele 4 as the plausible commonality for the etiology of co-morbidities that eventually result from periodontal diseases and ultimately progress to dementia.

  20. Absence of apolipoprotein E protects mice from cerebral malaria

    PubMed Central

    Kassa, Fikregabrail Aberra; Van Den Ham, Kristin; Rainone, Anthony; Fournier, Sylvie; Boilard, Eric; Olivier, Martin

    2016-01-01

    Cerebral malaria claims the life of millions of people each year, particularly those of children, and is a major global public health problem. Thus, the identification of novel malaria biomarkers that could be utilized as diagnostic or therapeutic targets is becoming increasingly important. Using a proteomic approach, we previously identified unique biomarkers in the sera of malaria-infected individuals, including apolipoprotein E (ApoE). ApoE is the dominant apolipoprotein in the brain and has been implicated in several neurological disorders; therefore, we were interested in the potential role of ApoE in cerebral malaria. Here we report the first demonstration that cerebral malaria is markedly attenuated in ApoE−/− mice. The protection provided by the absence of ApoE was associated with decreased sequestration of parasites and T cells within the brain, and was determined to be independent from the involvement of ApoE receptors and from the altered lipid metabolism associated with the knock-out mice. Importantly, we demonstrated that treatment of mice with the ApoE antagonist heparin octasaccharide significantly decreased the incidence of cerebral malaria. Overall, our study indicates that the reduction of ApoE could be utilized in the development of therapeutic treatments aimed at mitigating the neuropathology of cerebral malaria. PMID:27647324

  1. Expression of biologically active rat apolipoprotein AIV in Escherichia coli.

    PubMed

    Liu, Min; Maiorano, Nick; Shen, Ling; Pearson, Kevin; Tajima, Daisuke; Zhang, Dian Ming; Woods, Stephen C; Seeley, Randy J; Davidson, W Sean; Tso, Patrick

    2003-01-01

    Rat apolipoprotein AIV (apo AIV) is a 43-kDa intestinal apolipoprotein that is important in lipid metabolism and the suppression of food intake. In this study, a full-length rat apo AIV was expressed in Escherichia coli and purified in a bioactive form. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric analysis revealed that the isolated recombinant protein has a molecular mass of approximately 43 kDa, similar to that of natural rat apo AIV. Immunoblot analysis and N-terminal amino acid sequencing confirmed the identity of the recombinant apo AIV protein as natural rat apo AIV. The recombinant protein was functional in lipoprotein binding assays. Biological activity was assessed behaviorally in that the recombinant protein suppressed food intake of fasted rats comparably to natural rat apo AIV. Neither native nor recombinant apo AIV elicited a conditioned taste aversion (CTA) at doses that suppress feeding. These results indicate that the recombinant apo AIV is structurally and functionally indistinguishable from rat natural apo AIV, making this overexpression and purification scheme a powerful tool for future structure and function studies.

  2. Identification of the thiol ester lipids in apolipoprotein B

    SciTech Connect

    Huang, G.; Lee, D.M.; Singh, S.

    1988-03-08

    Human plasma low-density lipoproteins of 1.032-1.043 g/mL density were totally delipidized. The reduced and carboxymethylated apolipoprotein B was incubated with 50 mM (/sup 14/C) methylamine at pH 8.5 at 30 /sup 0/C. Covalent incorporation of (/sup 14/C) methylamine was observed with concomitant generation of new sulfhydryl groups, which could be blocked with (/sup 3/H)- or (/sup 14/C)iodoacetic acid. One type of the (/sup 14/C) methylamine-modified products was separated from the protein and was found to be lipid in nature. Its R/sub f/ on thin-layer chromatography (TLC) was similar to that of the synthetic N-methyl fatty acyl amides. After purification with TLC and transesterification in 3 N methanolic HCl, methyl esters of C/sub 16/ and C/sub 18/ fatty acids at 1:1 ratio were identified by gas-liquid chromatography. The transesterification method was verified with the known N-methyl fatty acyl amides. These results suggest the presence of labile thiol ester linked palmitate and stearate in apolipoprotein B. Under mild alkaline conditions, the thiol ester bonds are broken by methylamine and form N-methyl fatty acyl amides and release new -SH groups. Intramolecular thiol ester bonds linked between cysteine side chains and acidic amino acid residues were also found present, which will be reported separately.

  3. Identification of the thiol ester linked lipids in apolipoprotein B

    SciTech Connect

    Huang, G.; Lee, D.M.; Singh, S.

    1988-03-08

    Human plasma low-density lipoproteins of 1.032-1.043 g/mL density were totally delipidized. The reduced and carboxymethylated apolipoprotein B was incubated with 50 mM (/sup 14/C)methylamine at pH 8.5 at 30 degrees C. Covalent incorporation of (/sup 14/C)methylamine was observed with concomitant generation of new sulfhydryl groups, which could be blocked with (/sup 3/H)- or (/sup 14/C)iodoacetic acid. One type of the (/sup 14/C)methylamine-modified products was separated from the protein and was found to be lipid in nature. Its Rf on thin-layer chromatography (TLC) was similar to that of the synthetic N-methyl fatty acyl amides. After purification with TLC and transesterification in 3 N methanolic HCl, methyl esters of C16 and C18 fatty acids at 1:1 ratio were identified by gas-liquid chromatography. The transesterification method was verified with the known N-methyl fatty acyl amides. These results suggest the presence of labile thiol ester linked palmitate and stearate in apolipoprotein B. Under mild alkaline conditions, the thiol ester bonds are broken by methylamine and form N-methyl fatty acyl amides and release new-SH groups. Intramolecular thiol ester bonds linked between cysteine side chains and acidic amino acid residues were also found present, which will be reported separately.

  4. Absence of apolipoprotein E protects mice from cerebral malaria.

    PubMed

    Kassa, Fikregabrail Aberra; Van Den Ham, Kristin; Rainone, Anthony; Fournier, Sylvie; Boilard, Eric; Olivier, Martin

    2016-09-20

    Cerebral malaria claims the life of millions of people each year, particularly those of children, and is a major global public health problem. Thus, the identification of novel malaria biomarkers that could be utilized as diagnostic or therapeutic targets is becoming increasingly important. Using a proteomic approach, we previously identified unique biomarkers in the sera of malaria-infected individuals, including apolipoprotein E (ApoE). ApoE is the dominant apolipoprotein in the brain and has been implicated in several neurological disorders; therefore, we were interested in the potential role of ApoE in cerebral malaria. Here we report the first demonstration that cerebral malaria is markedly attenuated in ApoE(-/-) mice. The protection provided by the absence of ApoE was associated with decreased sequestration of parasites and T cells within the brain, and was determined to be independent from the involvement of ApoE receptors and from the altered lipid metabolism associated with the knock-out mice. Importantly, we demonstrated that treatment of mice with the ApoE antagonist heparin octasaccharide significantly decreased the incidence of cerebral malaria. Overall, our study indicates that the reduction of ApoE could be utilized in the development of therapeutic treatments aimed at mitigating the neuropathology of cerebral malaria.

  5. Amphotericin B induced interdigitation of apolipoprotein stabilized nanodisk bilayers

    SciTech Connect

    Nguyen, T; Weers, P M; Sulchek, T; Hoeprich, P D; Ryan, R O

    2006-12-07

    Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid (PL) and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 PL:AMB weight ratio, separated into two peaks. Peak 1 eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB (1:1 phospholipid:AMB molar ratio) were subjected to gel filtration chromatography, an increased proportion of phospholipid and apolipoprotein were recovered in the void volume with the AMB. Prior to gel filtration the AMB-ND sample could be passed through a 0.22 {micro}m filter without loss of AMB while the voided material was lost. Native gel electrophoresis studies corroborated the gel permeation chromatography data. Far UV circular dichroism analyses revealed that apoA-I associated with AMB-ND denatures at a lower guanidine HCl concentration than apoA-I associated with ND lacking AMB. Atomic force microscopy revealed that AMB induces compression of the ND bilayer thickness consistent with bilayer interdigitation, a phenomenon that is likely related to the ability of AMB to induce pore formation in susceptible membranes.

  6. Apolipoprotein E-deficient mice created by systemic administration of antisense oligodeoxynucleotides: a new model for lipoprotein metabolism studies.

    PubMed

    Morishita, R; Gibbons, G H; Kaneda, Y; Zhang, L; Ogihara, T; Dzau, V J

    2002-11-01

    Atherosclerotic cardiovascular disease results from complex interactions among multiple genetic and environmental factors. Thus, it is important to elucidate the influence of each factor on cholesterol metabolism. For this purpose, transgenic/gene-targeting technology is a powerful tool for studying gene functions. However, this technology has several disadvantages such as being time consuming and expensive. Accordingly, we established new animal models using in vivo gene transfer technology. In this study, we examined the feasibility of the creation of a new animal model for the study of atherosclerosis. We hypothesized that apolipoprotein (apo) E-deficient mice can be created by systemic administration of antisense apo E oligodeoxynucleotides (ODN) coupled to the HVJ-liposome complex. Initially, we examined the localization and cellular fate of FITC-labeled antisense ODN administered intravenously. FITC-labeled ODN transfection by the HVJ-liposome method resulted in fluorescence in the liver, spleen and kidney, but not in other organs such as brain. Moreover, fluorescence with the HVJ-liposome method was sustained for up to 2 weeks after transfection, which resulted in a striking difference from transfection of ODN alone or ODN in liposomes without HVJ, which showed rapid disappearance of fluorescence (within 1 day). Given these unique characteristics of the HVJ-liposome method, we next examined transfection of antisense apo E ODN by intravenous administration. Transfection of antisense apo E ODN resulted in a marked reduction of apo E mRNA levels in the liver, but no change in apo B and beta-actin mRNA levels. In mice fed a normal diet, a transient increase in cholesterol and triglyceride levels was observed in the antisense apo E-treated group, but they returned to normal levels by 6 days after transfection. Similar findings were also found in mice fed a high cholesterol diet. Neither scrambled nor mismatched ODN resulted in any increase in cholesterol. To make

  7. Apolipoproteins A-I, A-II and E in cholestatic liver disease.

    PubMed

    Florén, C H; Gustafson, A

    1985-04-01

    Apolipoproteins A-I, A-II and E were determined in the plasma of nine patients (five females, four males) with cholestatic liver disease (eight patients with primary biliary cirrhosis and one patient with sclerosing cholangitis). Plasma concentrations were measured by electroimmunoassay in the fasting state, postprandially after ingestion of either 100 g fat as whipping cream or a light mixed meal with or without addition of wheat fibre. Concentrations of apolipoproteins A-I and A-II were low in patients with cholestatic liver disease and A-I levels correlated inversely with the severity of liver disease as measured by bilirubin levels (r = -0.66). No changes in plasma apolipoprotein A-I, A-II or E concentrations occurred postprandially. There was an inverse correlation between plasma concentrations of apolipoproteins A-I and E (p less than 0.05, r = -0.68). A close relation existed between the ratio of apolipoprotein E to apolipoprotein A-I and plasma bile salt concentration (r = 0.80, p less than 0.01) and serum bilirubin (r = 0.76, p less than 0.01). This implies that in cholestatic liver disease apolipoprotein E and A-I levels reflect the degree of cholestasis.

  8. Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease.

    PubMed Central

    Francis, G A; Knopp, R H; Oram, J F

    1995-01-01

    Tangier disease is a rare genetic disorder characterized by extremely low plasma levels of HDL and apo A-I, deposition of cholesteryl esters in tissues, and a high prevalence of cardiovascular disease. We examined the possibility that HDL apolipoprotein-mediated removal of cellular lipids may be defective in Tangier disease. With fibroblasts from normal subjects, purified apo A-I cleared cells of cholesteryl esters, depleted cellular free cholesterol pools available for esterification, and stimulated efflux of radiolabeled cholesterol, phosphatidylcholine, and sphingomyelin. With fibroblasts from two unrelated Tangier patients, however, apo A-I had little or no effect on any of these lipid transport processes. Intact HDL also was unable to clear cholesteryl esters from Tangier cells even though it promoted radiolabeled cholesterol efflux to levels 50-70% normal. Passive desorption of radiolabeled cholesterol or phospholipids into medium containing albumin or trypsinized HDL was normal for Tangier cells. Binding studies showed that the interaction of apo A-I with high-affinity binding sites on Tangier fibroblasts was abnormal. These results indicate that apo A-I has an impaired ability to remove cholesterol and phospholipid from Tangier fibroblasts, possibly because of a defective interaction of apo A-I with cell-surface binding sites. Failure of apo A-I to acquire cellular lipids may account for the rapid catabolism of nascent HDL particles and the low plasma HDL levels in Tangier disease. Images PMID:7615839

  9. Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions

    PubMed Central

    Chen, Jianglei; Li, Qianqian; Wang, Jianjun

    2011-01-01

    Human apolipoprotein E (apoE) is one of the major determinants in lipid transport, playing a critical role in atherosclerosis and other diseases. Binding to lipid and heparan sulfate proteoglycans (HSPG) induces apoE to adopt active conformations for binding to low-density lipoprotein receptor (LDLR) family. ApoE also interacts with beta amyloid peptide, manifests critical isoform-specific effects on Alzheimer’s disease. Despite the importance of apoE in these major human diseases, the fundamental questions of how apoE adjusts its structure upon binding to regulate its diverse functions remain unsolved. We report the NMR structure of apoE3, displaying a unique topology of three structural domains. The C-terminal domain presents a large exposed hydrophobic surface that likely initiates interactions with lipids, HSPG, and beta amyloid peptides. The unique topology precisely regulates apoE tertiary structure to permit only one possible conformational adaptation upon binding and provides a double security in preventing lipid-free and partially-lipidated apoE from premature binding to apoE receptors during receptor biogenesis. This topology further ensures the optimal receptor-binding activity by the fully lipidated apoE during lipoprotein transport in circulation and in the brain. These findings provide a structural framework for understanding the structural basis of the diverse functions of this important protein in human diseases. PMID:21873229

  10. Apolipoprotein E ε4 genotype and the temporal relationship between depression and dementia

    PubMed Central

    Karlsson, Ida K.; Bennet, Anna M.; Ploner, Alexander; Andersson, Therese M.-L.; Reynolds, Chandra A.; Gatzc, Margaret; Pedersen, Nancy L.

    2015-01-01

    To investigate how apolipoprotein E (APOE) affects the temporal relationship between depression and dementia, we conducted a nested case-control study with longitudinal depression and dementia evaluations from several population studies, using 804 dementia cases and 1600 matched controls, totaling 1519 unique individuals. Depression within ten years of dementia onset was strongly associated with dementia diagnosis regardless of APOE status (IRR 5.25, 95%CI 3.32-8.31 for ε4 carriers, IRR 4.40, 95%CI 3.23-5.99 for non-carriers). However, we found a significant interaction between depression more than ten years prior to dementia onset and APOE (p=0.01), with depression more distal to dementia being a risk factor only in ε4 carriers (IRR 3.39, 95%CI 1.69-6.78 for carriers, IRR 1.01, 95%CI 0.60-1.70 for non-carriers). Thus, depression with onset close in time to dementia onset is associated with disease irrespective of APOE genotype, while depression more distal to dementia onset is a risk factor only in ε4-carriers. This is the first study to show the interaction between APOE and depression to be dependent on timing of depression onset. PMID:25670333

  11. Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides.

    PubMed

    Forbes, Sarah; McBain, Andrew J; Felton-Smith, Susan; Jowitt, Thomas A; Birchenough, Holly L; Dobson, Curtis B

    2013-07-01

    Medical device infection remains a major clinical concern. Biocidal compounds have been incorporated into medical device materials ideally to inhibit bacterial colonisation whilst exhibiting relatively low cytotoxicity. We compared the antibacterial activity, anti-biofilm efficacy and cytotoxicity of a novel peptide derivative of human apolipoprotein E (apoEdpL-W) to that of commonly used biocides, before and after coating onto a range of standard polymers. Since the antimicrobial function of most biocides frequently involves associations with cellular membranes, we have also studied the detailed interactions of the test antimicrobials with phospholipid bilayers, using the quartz crystal microbalance device combined with dual-polarisation interferometry. ApoEdpL-W displayed broad-spectrum antibacterial activity and marked efficacy against nascent Staphylococcus aureus biofilms. Compounds showed better antimicrobial activity when combined with hydrogel materials than with non-porous materials. The membrane interactions of apoEdpL-W were most similar to that of PHMB, with both agents appearing to readily bind and insert into lipid bilayers, possibly forming pores. However apoEdpL-W showed lower cytotoxicity than PHMB, its efficacy was less affected by the presence of serum, and it demonstrated the highest level of biocompatibility of all the biocides, as indicated by our measurement of its antimicrobial biocompatibility index. This work shows the potential of apoEdpL-W as an effective antiseptic coating agent.

  12. The insertion of human apolipoprotein H into phospholipid membranes: a monolayer study.

    PubMed

    Wang, S X; Cai, G P; Sui, S F

    1998-10-15

    Apolipoprotein H (ApoH) is a plasma glycoprotein isolated from human serum. The interactions of ApoH with lipid membrane were reported to be essential for its physiological and pathogenic roles. In this paper we studied the ability of ApoH to insert into phospholipid membranes using the monolayer approach. The results show that ApoH is surface active and can insert into the lipid monolayers. The insertion ability of ApoH is stronger when a higher content of negatively charged lipids is present in the membrane. The acidic-pH and low-ionic-strength conditions will also enhance ApoH insertion, but these factors may not have much influence on the final insertion ability of ApoH, suggesting that, in the mechanism of ApoH insertion, not only electrostatic forces, but also hydrophobic interactions, are evidently involved. Modification by heat inactivation and reduction/alkylation does not change the critical insertion pressure (pic) of ApoH, suggesting a stable domain, maybe a linear sequence motif, but not the native three-dimensional structure of ApoH, is responsible for its insertion. The extent to which insertion of ApoH into phospholipid membranes may facilitate the 'immune cleaning' of plasma liposomes is discussed.

  13. The apolipoprotein CIII enhancer regulates both extensive histone modification and intergenic transcription of human apolipoprotein AI/CIII/AIV genes but not apolipoprotein AV.

    PubMed

    Li, Ya-Jun; Wei, Yu-Sheng; Fu, Xiang-Hui; Hao, De-Long; Xue, Zheng; Gong, Huan; Zhang, Zhu-Qin; Liu, De-Pei; Liang, Chih-Chuan

    2008-10-17

    The apolipoprotein (apo) AI/CIII/AIV/AV cluster genes are expressed at different levels in the liver and intestine. The apoCIII enhancer, a common regulatory element, regulates the tissue-specific expression of apoAI, apoCIII, and apoAIV but not apoAV. To study this regulation at the chromatin level, the histone modifications and intergenic transcription in the human apoAI/CIII/AIV/AV cluster were investigated in HepG2 and Caco-2 cells and in the livers of transgenic mice carrying the human gene cluster constructs with or without the apoCIII enhancer. We found that both the promoters and the intergenic regions of the apoAI/CIII/AIV genes were hyperacetylated and formed an open subdomain that did not include the apoAV gene. Hepatic and intestinal intergenic transcripts were identified to transcribe bidirectionally with strand preferences along the cluster. The deletion of the apoCIII enhancer influenced both histone modification and intergenic transcription in the apoAI/CIII/AIV gene region. These results demonstrate that the apoCIII enhancer contributes to the maintenance of an active chromatin subdomain of the apoAI/CIII/AIV genes, but not apoAV.

  14. Apolipoprotein L1 and kidney disease in African Americans

    PubMed Central

    Friedman, David J.; Pollak, Martin R.

    2016-01-01

    Genetic variants in the Apolipoprotein L1 (APOL1) gene cause high rates of kidney disease in African Americans. These variants, found only in individuals with recent African ancestry, confer enhanced innate immunity against African trypanosomes. Though they are among the most powerful disease-causing common variants discovered to date, we are just beginning to understand how they promote kidney injury. Since APOL1 is only present in a few primate species, much of our current knowledge has come from natural experiments in humans and in vitro studies while awaiting the development of transgenic animal models. Understanding more about the function of ApoL1 and how the high-risk variants behave differently from other ApoL1 molecules is a high priority in kidney disease research. PMID:26947522

  15. Hepatosteatosis and estrogen increase apolipoprotein O production in the chicken.

    PubMed

    Schmidinger, Barbara; Weijler, Anna M; Schneider, Wolfgang J; Hermann, Marcela

    2016-08-01

    Apolipoprotein O (ApoO) is a recently discovered plasma apolipoprotein that may also play a role in the mitochondrial inner membrane. Possibly due to this complexity, its physiological functions have not been elucidated yet. To gain insight from a non-mammalian experimental system, we have investigated the regulation of ApoO levels in an alternative, well-suited model for studies on lipid metabolism, the chicken. qPCR using specific primer pairs and Western blot analysis with our rabbit anti-chicken ApoO antiserum demonstrated ApoO in the liver of chickens fed a control or a fat-enriched diet, as well as in 2 chicken hepatoma cell lines, LMH cells and the estrogen-responsive LMH-2A cells, under conditions of lipid loading by incubation with BSA-complexed oleic acid. Induced triglyceride accumulation in both the liver and the hepatic cells was associated with significantly increased levels of ApoO mRNA and protein. Furthermore, upon treatment for 24 h with estrogen of the estrogen receptor-expressing LMH-2A cells, quantitative analysis of ApoO transcripts and Western blotting revealed increases of ApoO expression. Finally, upon a single administration of estrogen to roosters that leads to hyperlipidemia, higher hepatic levels of both ApoO transcript and protein were observed within 24 h. Based on these data, we propose that hepatic expression of ApoO is tightly linked not only to diet-induced hepatosteatosis, but also to increased lipoprotein-production induced by, e.g., hormones. The findings support a role of ApoO as an effector of compromised mitochondrial function that likely accompanies the onset of non-alcoholic fatty liver disease.

  16. Pharmacogenomic effects of Apolipoprotein E on Intracerebral Hemorrhage

    PubMed Central

    James, Michael L.; Sullivan, Patrick M.; Lascola, Christopher D.; Vitek, Michael P.; Laskowitz, Daniel T.

    2009-01-01

    Background and Purpose To evaluate the effect of APOE genotype and the feasibility of administering an apoE-mimetic therapeutic to modify outcomes in a murine model of intracerebral hemorrhage (ICH). Methods ICH was induced via stereotactic injection of 0.1 U Clostridial collagenase into the left basal ganglia of wild-type (WT) and apolipoprotein-E targeted-replacement (APOETR) mice, consisting of either homozygous 3/3 (APOE3TR) or 4/4 (APOE4TR) genotypes. Animals were randomized to receive either vehicle or apoE-mimetic peptide. Outcomes included functional neurological tests (21-point neuroseverity score and rotorod latency) over the initial 7 d after injury, radiographic and histological hemorrhage size at 3 and 7 d, brain water content for cerebral edema at 24 h, and q-PCR for inflammatory markers at 6, 24, and 48 h. Results APOE3TR animals demonstrated superior neuroseverity scores and rotorod latencies over the first 3 d after ICH, decreased cerebral edema at 24 h, and reduced up-regulation of IL-6 and eNOS at 6 h when compared to their APOE4TR counterparts. Following intravenous administration of 1 mg/kg apoE-mimetic peptide, both WT and APOE4TR animals exhibited improved functional outcomes over 7 d after ICH, less edema at 24 h and reduced up-regulation of IL-6 and eNOS when compared to mice that did not receive the peptide. Conclusions Our data indicate that APOE genotype influences neurological outcome after ICH in a murine model. In particular APOE4 is associated with poor functional outcome and increased cerebral edema. Additionally, this outcome can be modified by the addition of an apoE mimetic-peptide, COG1410. PMID:19109539

  17. Distinct Hepatic Receptors for Low Density Lipoprotein and Apolipoprotein E in Humans

    NASA Astrophysics Data System (ADS)

    Hoeg, Jeffrey M.; Demosky, Stephen J.; Gregg, Richard E.; Schaefer, Ernst J.; Brewer, H. Bryan

    1985-02-01

    Since the liver is a central organ for lipid and lipoprotein synthesis and catabolism, hepatic receptors for specific apolipoproteins on plasma lipoproteins would be expected to modulate lipid and lipoprotein metabolism. The role of hepatic receptors for low density lipoproteins and apolipoprotein E-containing lipoproteins was evaluated in patients with complementary disorders in lipoprotein metabolism: abetalipoproteinemia and homozygous familial hypercholesterolemia. In addition, hepatic membranes from a patient with familial hypercholesterolemia were studied and compared before and after portacaval shunt surgery. The results establish that the human liver has receptors for apolipoproteins B and E. Furthermore, in the human, hepatic receptors for low density lipoproteins and apolipoprotein E are genetically distinct and can undergo independent control.

  18. Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye.

    PubMed

    Summers, Jody A; Harper, Angelica R; Feasley, Christa L; Van-Der-Wel, Hanke; Byrum, Jennifer N; Hermann, Marcela; West, Christopher M

    2016-09-02

    All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Influence of Peripheral Artery Disease and Statin Therapy on Apolipoprotein Profiles

    PubMed Central

    Gardner, Andrew W.; Parker, Donald E.; Montgomery, Polly S.; Esponda, Omar L.; Casanegra, Ana I.

    2013-01-01

    Apolipoprotein B is a stronger predictor of myocardial infarction than LDL cholesterol, and it is inversely related to physical activity and modifiable with exercise training. As such, apolipoprotein measures may be of particular relevance for subjects with PAD and claudication. We compared plasma apolipoprotein profiles in 29 subjects with peripheral artery disease (PAD) and intermittent claudication and in 39 control subjects. Furthermore, we compared the plasma apolipoprotein profiles of subjects with PAD either treated (n = 17) or untreated (n = 12) with statin medications. For the apolipoprotein subparticle analyses, subjects with PAD had higher age-adjusted Lp-B:C (P < 0.05) and lower values of Lp-A-I:A-II (P < 0.05) than controls. The PAD group taking statins had lower age-adjusted values for apoB (P < 0.05), Lp-A-II:B:C:D:E (P < 0.05), Lp-B:E + Lp-B:C:E (P < 0.05), Lp-B:C (P < 0.05), and Lp-A-I (P < 0.05) than the untreated PAD group. Subjects with PAD have impaired apolipoprotein profiles than controls, characterized by Lp-B:C and Lp-A-I:A-II. Furthermore, subjects with PAD on statin medications have a more favorable risk profile, particularly noted in multiple apolipoprotein subparticles. The efficacy of statin therapy to improve cardiovascular risk appears more evident in the apolipoprotein sub-particle profile than in the more traditional lipid profile of subjects with PAD and claudication. This trial is registered with ClinicalTrials.gov NCT00618670. PMID:24102029

  20. Apolipoprotein E forms stable complexes with recombinant Alzheimer's disease beta-amyloid precursor protein.

    PubMed Central

    Haas, C; Cazorla, P; Miguel, C D; Valdivieso, F; Vázquez, J

    1997-01-01

    Apolipoprotein E (apoE), a protein genetically linked to the incidence of Alzheimer's disease, forms SDS-stable complexes in vitro with beta-amyloid peptide (Abeta), the primary component of senile plaques. In the present study, we investigated whether apoE was able to bind full-length Abeta precursor protein (APP). Using a maltose-binding-protein-APP fusion protein and human very-low-density lipoprotein (VLDL), we detected an interaction of apoE with APP that was inhibited by Abeta or anti-apoE antibody. Saturation-binding experiments indicated a single binding equilibrium with an apparent 1:1 stoichiometry and a dissociation constant of 15 nM. An interaction was also observed using apoE from cerebrospinal fluid or delipidated VLDL, as well as recombinant apoE. APP.apoE complexes were SDS-stable, and their formation was not inhibited by reducing conditions; however, they were dissociated by SDS under reducing conditions. ApoE.APP complexes formed high-molecular-mass aggregates, and competition experiments suggested that amino acids 14-23 of Abeta are responsible for complex-formation. Finally, no differences were found when studying the interaction of APP with apoE3 or apoE4. Taken together, our results demonstrate that apoE may form stable complexes with the Abeta moiety of APP with characteristics similar to those of complexes formed with isolated Abeta, and suggest the intriguing possibility that apoE-APP interactions may be pathologically relevant in vivo. PMID:9224643

  1. Dipeptidyl peptidase-4 inhibitor, linagliptin, ameliorates endothelial dysfunction and atherogenesis in normoglycemic apolipoprotein-E deficient mice.

    PubMed

    Salim, Hotimah Masdan; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Yagi, Shusuke; Soeki, Takeshi; Shimabukuro, Michio; Sata, Masataka

    2016-04-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors have vasoprotective effects. This study investigated whether a recently approved DPP-4 inhibitor, linagliptin (Lina), suppresses atherogenesis in non-diabetic apolipoprotein-E deficient (ApoE(-/-)) mice, and examined its effects on endothelial function. Lina (10mg/kg/day) was administered orally to ApoE(-/-) mice for 20 weeks. Lina reduced atherogenesis without alteration of metabolic parameters including blood glucose level compared with control (P<0.05). Results of immunohistochemical analyses and quantitative RT-PCR demonstrated that Lina significantly decreased inflammatory molecule expression and macrophage infiltration in the atherosclerotic aorta. Lina administration to ApoE(-/-) mice for 9 weeks ameliorated endothelium-dependent vasodilation compared with that in untreated mice. Plasma active glucagon-like peptide-1 (GLP-1) level was significantly higher in the treated group (P<0.05). Exendin-4 (Ex-4), a GLP-1 analog, ameliorated endothelium-dependent vasodilation impaired by palmitic acid (PA) in wild-type mouse aortic segments. Ex-4 promoted phosphorylation of eNOS(Ser1177) and Akt, both of which were abrogated by PA, in human umbilical vein endothelial cells. In addition, Lina administration to ApoE(-/-) mice decreased oxidative stress, as determined by urinary 8-OHdG secretion and NADPH oxidase subunit expression in the abdominal aorta. Lina inhibited atherogenesis in non-diabetic ApoE(-/-) mice. Amelioration of endothelial dysfunction associated with a reduction of oxidative stress by GLP-1 contributes to the atheroprotective effects of Lina. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Metabolism of VLDL and LDL containing apolipoprotein C-III and not other small apolipoproteins – R2

    PubMed Central

    Mendivil, Carlos O; Zheng, Chunyu; Furtado, Jeremy; Lel, Julian; Sacks, Frank M

    2010-01-01

    Objective We aimed to clarify the influence of apolipoprotein C-III (apoCIII) on human apolipoprotein B metabolism. Methods and Results We studied the kinetics of four VLDL, IDL and LDL types containing: (1) OtherApos−CIII−: none of apoCIII, apoAII, apoCI, apoCII or apoE; (2) OtherApos+CIII−: no apoCIII but at least one of the others; (3) OtherApos−CIII+: apoCIII, but not any others; (4) OtherApos+CIII+: apoCIII and at least one other. VLDL and IDL OtherApos−CIII+ and OtherApos−CIII− had similar rates of lipolytic conversion to smaller particles. However, light LDL OtherApos−CIII+ compared to OtherApos−CIII− had much faster conversion to dense LDL, as did light LDL OtherApos+CIII+ compared to OtherApos+CIII−. VLDL and IDL OtherApos−CIII+ had minimal direct removal from circulation, while VLDL and IDL OtherApos+CIII−, rich in apoE, showed fast clearance. Lipoproteins in fraction OtherApos+CIII+ also rich in apoE had very low clearance. Conclusions The results suggest that apoCIII strongly inhibits hepatic uptake of VLDL and IDL overriding the opposite influence of apoE when both are present. The presence of apoCIII on dense VLDL is not associated with slow conversion to IDL, a lipoprotein lipase dependent process; but when on light LDL apoCIII is associated with enhanced conversion to dense LDL, a process involving hepatic lipase. PMID:19910636

  3. Advances in quantifying apolipoproteins using LC-MS/MS technology: implications for the clinic.

    PubMed

    van den Broek, Irene; Sobhani, Kimia; Van Eyk, Jennifer E

    2017-10-01

    Apolipoproteins play a key role in pre-, pro-, and anti-atherosclerotic processes and have become important circulating biomarkers for the prediction of cardiovascular disease (CVD) risk. Whereas currently clinical immunoassays are not available for most apolipoproteins and lack the capacity for multiplexing, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allows simultaneous, highly-specific, and precise quantification of multiple apolipoproteins. Areas covered: We discuss LC-MS/MS methods for quantification of apolipoproteins reported in the literature and highlight key requirements for clinical use. Besides the advances in sample preparation and LC-MS/MS technologies, this overview also discusses advances in proteoform analysis and applications of dried blood/plasma collection. Expert commentary: Standardized quantification using LC-MS/MS technology has been demonstrated for apolipoprotein A-I and B. However, for implementation in clinical CVD risk assessment, LC-MS/MS must bring significant added clinical value in comparison to fast, standardized, and straightforward clinical (immuno)assays. Ongoing advances in accuracy and multiplexing capacity of LC-MS/MS, nonetheless, bear potential to enable standardized and interpretable personalized profiling of a patient's CVD risk by simultaneous quantification of multiple apolipoproteins and -variants. We, moreover, anticipate further personalization of CVD risk assessment by the potential of LC-MS/MS to enable simultaneous genotyping and remote monitoring using dried blood/plasma collection devices.

  4. Measurement of apolipoproteins B and A by radial immunodiffusion: methodological assessment and clinical applications.

    PubMed

    Cano, M D; Gonzalvo, C; Scheen, A J; Castillo, M J

    1994-01-01

    The clinical evaluation of apolipoproteins is of interest in order to characterize the risk profile for ischemic heart disease both in normolipidemic and hyperlipidemic subjects. In the non-specialized and/or small practice clinical laboratory, the measurement of some apolipoproteins can be undertaken by simple methods of immunological analysis, among which radial immunodiffusion can be of interest due to its simplicity of use and because it does not require specific equipment. In this work several methodological questions concerning the measurement of plasma apolipoproteins B and A by radial immunodiffusion have been addressed; the results show that this method is particularly reliable for the apo B assay. Regression analysis between values obtained with radial immunodiffusion and radioimmunoassay was r = 0.972 for apo B and r = 0.782 for apo A. The recovery rate was above 90% for both apolipoproteins (93.8% for apo B and 99.5% for apo A). The inter and intraassay coefficients of variation were below 5%, and the detection limits were estimated as 9.6 mg/dl for apo A and 6.9 mg/dl for apo B. Neither the ingestion of a standard breakfast (500 Cal, 17 g fat, 120 mg cholesterol) 2 h prior to testing nor freezing the sample significantly affected the measurement of apolipoproteins B and A. Mean plasma concentrations of both apolipoproteins measured by radial immunodiffusion in normo and hyperlipidemic subjects are also presented.

  5. Association of apolipoprotein A1 and B with kidney function and chronic kidney disease in two multiethnic population samples

    PubMed Central

    Goek, Oemer-Necmi; Köttgen, Anna; Hoogeveen, Ron C.; Ballantyne, Christie M.; Coresh, Josef; Astor, Brad C.

    2012-01-01

    Background Circulating lipoproteins and their protein constituents, apolipoproteins, are risk factors for chronic kidney disease (CKD). The associations between apolipoprotein A1, apolipoprotein B and their ratio with glomerular filtration rate estimated from the new CKD Epidemiology Collaboration (CKD-EPI) equation (eGFR) are not well studied in the general population. Methods Associations between apolipoprotein A1, B and their ratio with the outcomes of eGFR, CKD (eGFR <60 mL/min/1.73m2) and albuminuria were examined in the Atherosclerosis Risk in Communities study (ARIC, n = 10 292, 1996–98) and the Third National Health and Nutrition Examination Survey (NHANES III, n = 7023, 1988–91). Cross-sectional multivariable-adjusted analyses were performed using linear and logistic regression. Prospective analyses related baseline apolipoprotein levels to subsequent CKD incidence over 10 years using the ARIC Carotid MRI follow-up cohort (n = 1659). Results Higher apolipoprotein A1 quartiles were associated with a lower prevalence of CKD [Q4 versus Q1: odds ratio (OR) 0.73, P-trend = 0.02 in ARIC; Q4 versus Q1: OR 0.53, P-trend <0.01 in NHANES III] as well as with higher eGFR (P-trend <0.01 in ARIC and NHANES III). No consistent significant associations were found for apolipoprotein B in either study. The apolipoprotein B/A1 ratio was significantly associated with eGFR across quartiles in both studies (P-trend <0.01) and with CKD in ARIC (Q4 versus Q1: OR 1.23, P-trend = 0.01). Prospectively, there were trends for the association of apolipoproteins with incident CKD [Q4 versus Q1: incidence rate ratio (IRR) = 0.68 for apolipoprotein A1, P-trend = 0.1; Q4 versus Q1: IRR = 1.35 for apolipoprotein B, P-trend = 0.2]. Associations were not systematically stronger when comparing traditional lipids (total cholesterol, low-density lipoprotein or high-density lipoprotein) to apolipoproteins. Conclusions Higher serum apolipoprotein A1 was associated with lower prevalence of CKD

  6. Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I.

    PubMed

    Bibow, Stefan; Polyhach, Yevhen; Eichmann, Cédric; Chi, Celestine N; Kowal, Julia; Albiez, Stefan; McLeod, Robert A; Stahlberg, Henning; Jeschke, Gunnar; Güntert, Peter; Riek, Roland

    2017-02-01

    High-density lipoprotein (HDL) particles are cholesterol and lipid transport containers. Mature HDL particles destined for the liver develop through the formation of intermediate discoidal HDL particles, which are the primary acceptors for cholesterol. Here we present the three-dimensional structure of reconstituted discoidal HDL (rdHDL) particles, using a shortened construct of human apolipoprotein A-I, determined from a combination of nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and transmission electron microscopy (TEM) data. The rdHDL particles feature a protein double belt surrounding a lipid bilayer patch in an antiparallel fashion. The integrity of this structure is maintained by up to 28 salt bridges and a zipper-like pattern of cation-π interactions between helices 4 and 6. To accommodate a hydrophobic interior, a gross 'right-to-right' rotation of the helices after lipidation is necessary. The structure reflects the complexity required for a shuttling container to hold a fluid lipid or cholesterol interior at a protein:lipid ratio of 1:50.

  7. Human apolipoprotein B transgenic SHR/NDmcr-cp rats show exacerbated kidney dysfunction.

    PubMed

    Asahina, Makoto; Shimizu, Fumi; Ohta, Masayuki; Takeyama, Michiyasu; Tozawa, Ryuichi

    2015-01-01

    Nephropathy frequently co-occurs with metabolic syndrome in humans. Metabolic syndrome is a cluster of metabolic diseases including obesity, diabetes, hypertension, and dyslipidemia, and some previous studies revealed that dyslipidemia contributes to the progression of kidney dysfunction. To establish a new nephropathy model with metabolic syndrome, we produced human apolipoprotein B (apoB) transgenic (Tg.) SHR/NDmcr-cp (SHR-cp/cp) rats, in which dyslipidemia is exacerbated more than in an established metabolic syndrome model, SHR-cp/cp rats. Human apoB Tg. SHR-cp/cp rats showed obesity, hyperinsulinemia, hypertension, and severe hyperlipidemia. They also exhibited exacerbated early-onset proteinuria, accompanied by increased kidney injury and increased oxidative and inflammatory markers. Histological analyses revealed the characteristic features of human apoB Tg. SHR-cp/cp rats including prominent glomerulosclerosis with lipid accumulation. Our newly established human apoB Tg. SHR-cp/cp rat could be a useful model for the nephropathy in metabolic syndrome and for understanding the interaction between dyslipidemia and renal dysfunction in metabolic syndrome.

  8. Human apolipoprotein B transgenic SHR/NDmcr-cp rats show exacerbated kidney dysfunction

    PubMed Central

    ASAHINA, Makoto; SHIMIZU, Fumi; OHTA, Masayuki; TAKEYAMA, Michiyasu; TOZAWA, Ryuichi

    2015-01-01

    Nephropathy frequently co-occurs with metabolic syndrome in humans. Metabolic syndrome is a cluster of metabolic diseases including obesity, diabetes, hypertension, and dyslipidemia, and some previous studies revealed that dyslipidemia contributes to the progression of kidney dysfunction. To establish a new nephropathy model with metabolic syndrome, we produced human apolipoprotein B (apoB) transgenic (Tg.) SHR/NDmcr-cp (SHR-cp/cp) rats, in which dyslipidemia is exacerbated more than in an established metabolic syndrome model, SHR-cp/cp rats. Human apoB Tg. SHR-cp/cp rats showed obesity, hyperinsulinemia, hypertension, and severe hyperlipidemia. They also exhibited exacerbated early-onset proteinuria, accompanied by increased kidney injury and increased oxidative and inflammatory markers. Histological analyses revealed the characteristic features of human apoB Tg. SHR-cp/cp rats including prominent glomerulosclerosis with lipid accumulation. Our newly established human apoB Tg. SHR-cp/cp rat could be a useful model for the nephropathy in metabolic syndrome and for understanding the interaction between dyslipidemia and renal dysfunction in metabolic syndrome. PMID:25912321

  9. Capture and concentration of viral and bacterial foodborne pathogens using apolipoprotein H.

    PubMed

    Almand, Erin A; Goulter, Rebecca M; Jaykus, Lee-Ann

    2016-09-01

    The need for improved pathogen separation and concentration methods to reduce time-to-detection for foodborne pathogens is well recognized. Apolipoprotein H (ApoH) is an acute phase human plasma protein that has been previously shown to interact with viruses, lipopolysaccharides (LPS) and bacterial proteins. The purpose of this study was to determine if ApoH was capable of binding and efficiently capturing two representative human norovirus strains (GI.1 and GII.4), a cultivable surrogate, and four bacterial pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus). Experiments were carried out using an ApoH-conjugated magnetic bead-based capture followed by pathogen detection using nucleic acid amplification. For all three viruses studied, >10% capture efficiency (<1 Log10 loss in RT-qPCR amplifiable units) was observed. The same capture efficiencies were observed for the bacterial pathogens tested, with the exception of E. coli O157:H7 (approximately 1% capture efficiency, or 2 Log10 loss in CFU equivalents). The efficiency of the capture steps did not vary as a consequence of input target concentration or in the presence of an abundance of background microflora. A complementary plate-based capture assay showed that ApoH bound to a variety of human norovirus virus-like particles. ApoH has the potential to be a broadly reactive ligand for separating and concentrating representative foodborne pathogens, both bacteria and viruses. Published by Elsevier B.V.

  10. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases.

    PubMed

    Huang, Yadong; Mahley, Robert W

    2014-12-01

    Apolipoprotein (apo) E is a multifunctional protein with central roles in lipid metabolism, neurobiology, and neurodegenerative diseases. It has three major isoforms (apoE2, apoE3, and apoE4) with different effects on lipid and neuronal homeostasis. A major function of apoE is to mediate the binding of lipoproteins or lipid complexes in the plasma or interstitial fluids to specific cell-surface receptors. These receptors internalize apoE-containing lipoprotein particles; thus, apoE participates in the distribution/redistribution of lipids among various tissues and cells of the body. In addition, intracellular apoE may modulate various cellular processes physiologically or pathophysiologically, including cytoskeletal assembly and stability, mitochondrial integrity and function, and dendritic morphology and function. Elucidation of the functional domains within this protein and of the three-dimensional structure of the major isoforms of apoE has contributed significantly to our understanding of its physiological and pathophysiological roles at a molecular level. It is likely that apoE, with its multiple cellular origins and multiple structural and biophysical properties, is involved widely in processes of lipid metabolism and neurobiology, possibly encompassing a variety of disorders of neuronal repair, remodeling, and degeneration by interacting with different factors through various pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Apolipoprotein E genotype and cognitive function in postmenopausal women with early-stage breast cancer.

    PubMed

    Koleck, Theresa A; Bender, Catherine M; Sereika, Susan M; Ahrendt, Gretchen; Jankowitz, Rachel C; McGuire, Kandace P; Ryan, Christopher M; Conley, Yvette P

    2014-11-01

    To examine the role of apolipoprotein E (APOE) genotype in the cognitive function of postmenopausal women with early-stage breast cancer prior to initiation of adjuvant therapy and over time with treatment. Longitudinal, genetic association study. Urban university cancer center. Three cohorts of postmenopausal women: 37 women with breast cancer receiving chemotherapy and anastrozole, 41 women with breast cancer receiving anastrozole alone, and 50 healthy women. Cognitive function was evaluated three times during a 12-month period using a comprehensive neuropsychological test battery. Participants were genotyped and classified based on the presence or absence of at least one APOE e4 allele. Multiple linear regression was used to determine if APOE genotype accounted for observed variability in cognitive function data. APOE genotype, breast cancer treatment, and cognitive function. Performance or changes in performance on tasks of executive function, attention, verbal learning and memory, and visual learning and memory were found to be influenced by APOE genotype and/or interactions between APOE genotype and study cohort. The results indicate that cognitive function in postmenopausal women with breast cancer is modified by APOE genotype and the combination of APOE genotype and treatment. APOE genotype, along with other biomarkers, may be used in the future to assist nurses in identifying women with breast cancer most at risk for cognitive decline.

  12. Human Apolipoprotein A-I Natural Variants: Molecular Mechanisms Underlying Amyloidogenic Propensity

    PubMed Central

    Ramella, Nahuel A.; Schinella, Guillermo R.; Ferreira, Sergio T.; Prieto, Eduardo D.; Vela, María E.; Ríos, José Luis

    2012-01-01

    Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe atherosclerosis. Results showed that both variants share common structural properties including decreased stability compared to Wt apoA-I and a more flexible structure that gives rise to formation of partially folded states. Interestingly, however, distinct features appear to determine their pathogenic mechanisms. ApoA-ILys107-0 has an increased propensity to aggregate at physiological pH and in a pro-inflammatory microenvironment than Wt apoA-I, whereas apoA-IGly26Arg elicited macrophage activation, thus stimulating local chronic inflammation. Our results strongly suggest that some natural mutations in apoA-I variants elicit protein tendency to aggregate, but in addition the specific interaction of different variants with macrophages may contribute to cellular stress and toxicity in hereditary amyloidosis. PMID:22952757

  13. Apolipoprotein E4 Genotype Does Not Increase Risk of HIV-associated Neurocognitive Disorders

    PubMed Central

    Morgan, E.E.; Woods, S.P.; Letendre, S.L.; Franklin, D.R.; Bloss, C.; Goate, A.; Heaton, R.K.; Collier, A.C.; Marra, C.M.; Gelman, B.B.; McArthur, J.C.; Morgello, S.; Simpson, D.M.; McCutchan, J.A.; Ellis, R.J.; Abramson, I.; Gamst, A.; Fennema-Notestine, C.; Smith, D.M.; Grant, I.; Vaida, F.; Clifford, D.B.

    2013-01-01

    This is a cross-sectional, observational study to evaluate the hypothesis that HIV-seropositive (HIV+) apolipoprotein E4 (APOE4) carriers are at increased risk for HIV-associated Neurocognitive Disorders (HAND) compared to APOE4 noncarriers with HIV in the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) Group sample. APOE genotype was determined in 466 CHARTER participants with varying disease stages and histories of antiretroviral treatment who did not have severe psychiatric or medical comorbid conditions that preclude diagnosis of HAND. HAND diagnoses were based on results of comprehensive neurobehavioral evaluation and use of current neuroAIDS diagnostic criteria. HAND status consisting of two levels: neuropsychologically normal status (i.e., no HAND) and any HAND diagnosis (i.e., asymptomatic neurocognitive impairment, minor neurocognitive disorder, HIV-associated dementia). Logistic regression analyses revealed no association between APOE4 carrier status and HAND, and there were no interactions between APOE4 carrier status and ethnicity, age, substance use disorders, duration of infection, or nadir CD4. Results did not differ when analysis was restricted to symptomatic HAND, and no APOE4 gene dose-dependent relationship to HAND emerged. APOE4 status was not associated with concurrent HAND in this large, well-characterized sample. This does not preclude emergence of an association between APOE4 status and HAND as this population ages. Prospective, longitudinal studies are needed to examine APOE4 as a risk factor for neurocognitive decline, incident HAND at older ages, and potential associations with CSF amyloid. PMID:23408335

  14. Apolipoprotein E Genotype and Cognitive Function in Postmenopausal Women With Early-Stage Breast Cancer

    PubMed Central

    Koleck, Theresa A.; Bender, Catherine M.; Sereika, Susan M.; Ahrendt, Gretchen; Jankowitz, Rachel C.; McGuire, Kandace P.; Ryan, Christopher M.; Conley, Yvette P.

    2015-01-01

    Purpose/Objectives To examine the role of apolipoprotein E (APOE) genotype in the cognitive function of post-menopausal women with early-stage breast cancer prior to initiation of adjuvant therapy and over time with treatment. Design Longitudinal, genetic association study. Setting Urban university cancer center. Sample Three cohorts of postmenopausal women: 37 women with breast cancer receiving chemotherapy and anastrozole, 41 women with breast cancer receiving anastrozole alone, and 50 healthy women. Methods Cognitive function was evaluated three times during a 12-month period using a comprehensive neuropsychological test battery. Participants were genotyped and classified based on the presence or absence of at least one APOE ε4 allele. Multiple linear regression was used to determine if APOE genotype accounted for observed variability in cognitive function data. Main Research Variables APOE genotype, breast cancer treatment, and cognitive function. Findings Performance or changes in performance on tasks of executive function, attention, verbal learning and memory, and visual learning and memory were found to be influenced by APOE genotype and/or interactions between APOE genotype and study cohort. Conclusions The results indicate that cognitive function in postmenopausal women with breast cancer is modified by APOE genotype and the combination of APOE genotype and treatment. Implications for Nursing APOE genotype, along with other biomarkers, may be used in the future to assist nurses in identifying women with breast cancer most at risk for cognitive decline. PMID:25355028

  15. Coronary artery disease and plasma apolipoprotein E4 in mild cognitive impairment

    PubMed Central

    Barekatain, Majid; Zahedian, Faezeh; Askarpour, Hedyeh; Maracy, Mohammad Reza; Hashemi-Jazi, Mohammad; Aghaye-Ghazvini, Mohammad Reza

    2014-01-01

    BACKGROUND Atherosclerosis and apolipoprotein E4 (APOE4) are known risks for Dementia. We sought to evaluate the relationship between coronary atherosclerosis and APOE4 with mild cognitive impairment (MCI). METHODS In a case-control study, subjects with age more than 60 years and recent coronary angiography were evaluated by mini-mental state examination and neuropsychiatry unit cognitive assessment tool (NUCOG) to find the patients with MCI (n = 40) and the controls with normal cognition (n = 40). Coronary angiography records were re-assessed to find the severity of coronary artery disease by the Gensini scores. Plasma levels of APOE4 were measured. RESULTS There were no-significant difference between the 2 groups regarding the plasma APOE4 levels (P = 0.706) and the Gensini scores (P = 0.236). Associations between the Gensini scores and the NUCOG scores in the MCI group (r = −0.196, P = 0.225) and the control group (r = 0.189, P = 0.243) were not significant. However, the interaction effect between the Gensini and the NUCOG scores based on allocation to the control or the patient groups showed statistically significant difference (F(1,67) = 4.84, P = 0.031). CONCLUSION Although atherosclerosis has been considered as known risk factor for dementia and MCI, this study could not reveal that coronary atherosclerosis-related to declining in cognitive functioning. There was no significant association between plasma APOE4 levels and MCI. PMID:25477981

  16. Biomarkers Associated With the Apolipoprotein E Genotype and Alzheimer Disease

    PubMed Central

    Soares, Holly D.; Potter, William Z.; Pickering, Eve; Kuhn, Max; Immermann, Frederick W.; Shera, David M; Ferm, Mats; Dean, Robert A.; Simon, Adam J.; Swenson, Frank; Siuciak, Judith A.; Kaplow, June; Thambisetty, Madhav; Zagouras, Panayiotis; Koroshetz, Walter J.; Wan, Hong I.; Trojanowski, John Q.; Shaw, Leslie M.

    2013-01-01

    Background A blood-based test that could be used as a screen for Alzheimer disease (AD) may enable early intervention and better access to treatment. Objective To apply a multiplex immunoassay panel to identify plasma biomarkers of AD using plasma samples from the Alzheimer’s Disease Neuroimaging Initiative cohort. Design Cohort study. Setting The Biomarkers Consortium Alzheimer’s Disease Plasma Proteomics Project. Participants Plasma samples at baseline and at 1 year were analyzed from 396 (345 at 1 year) patients with mild cognitive impairment, 112 (97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy control subjects. Main Outcome Measures Multivariate and univariate statistical analyses were used to examine differences across diagnostic groups and relative to the apolipoprotein E (ApoE) genotype. Results Increased levels of eotaxin 3, pancreatic polypeptide, and N-terminal protein B–type brain natriuretic peptide were observed in patients, confirming similar changes reported in cerebrospinal fluid samples of patients with AD and MCI. Increases in tenascin C levels and decreases in IgM and ApoE levels were also observed. All participants with Apo ε3/ε4 or ε4/ε4 alleles showed a distinct biochemical profile characterized by low C-reactive protein and ApoE levels and by high Cortisol, interleukin 13, apolipoprotein B, and gamma interferon levels. The use of plasma biomarkers improved specificity in differentiating patients with AD from controls, and ApoE plasma levels were lowest in patients whose mild cognitive impairment had progressed to dementia. Conclusions Plasma biomarker results confirm cerebrospinal fluid studies reporting increased levels of pancreatic polypeptide and N-terminal protein B–type brain natriuretic peptide in patients with AD and mild cognitive impairment. Incorporation of plasma biomarkers yielded high sensitivity with improved specificity, supporting their usefulness as a screening tool. The ApoE genotype was

  17. Recombinant neural protein PrP can bind with both recombinant and native apolipoprotein E in vitro.

    PubMed

    Gao, Chen; Lei, Yan-Jun; Han, Jun; Shi, Qi; Chen, Lan; Guo, Yan; Gao, Yong-Jun; Chen, Jian-Ming; Jiang, Hui-Ying; Zhou, Wei; Dong, Xiao-Ping

    2006-09-01

    The most essential and crucial step during the pathogenesis of transmissible spongiform encephalopathy is the conformational change of cellular prion protein (PrP(C)) to pathologic isoform (PrP(Sc)). A lot of data revealed that caveolae-like domains (CLDs) in the cell surface were the probable place where the conversion of PrP proteins happened. Apolipoprotein E (ApoE) is an apolipoprotein which is considered to play an important role in the development of Alzheimer's disease and other neurodegenerative diseases by forming protein complex through binding to the receptor located in the clathrin-coated pits of the cell surface. In this study, a 914-bp cDNA sequence encoding human ApoE3 was amplified from neuroblastoma cell line SH-SY5Y. Three human ApoE isomers were expressed and purified from Escherichia coli. ApoE-specific antiserum was prepared by immunizing rabbits with the purified ApoE3. GST/His pull-down assay, immunoprecipitation and ELISA revealed that three full-length ApoE isomers interact with the recombinant full-length PrP protein in vitro. The regions corresponding to protein binding were mapped in the N-terminal segment of ApoE (amino acid 1-194) and the N-terminal of PrP (amino acid 23-90). Moreover, the recombinant PrP showed the ability to form a complex with the native ApoE from liver tissues. Our data provided direct evidence of molecular interaction between ApoE and PrP. It also supplied scientific clues for assessing the significance of CLDs on the surface of cellular membrane in the process of conformational conversion from PrP(C) to PrP(Sc) and probing into the pathogenesis of transmissible spongiform encephalopathy.

  18. Apolipoprotein (a) concentrations and susceptibility to coronary artery disease in patients with peripheral vascular disease.

    PubMed Central

    Groves, P; Rees, A; Bishop, A; Morgan, R; Ruttley, M; Lewis, N; Lane, I; Hall, R

    1993-01-01

    OBJECTIVE--To investigate the relation between apolipoprotein(a) concentrations and angiographically defined coronary artery disease in patients with atheromatous peripheral vascular disease. DESIGN--40 consecutive patients were recruited at the time of admission for peripheral vascular surgery. All underwent clinical assessment and coronary arteriography. Apolipoprotein(a) concentrations were measured by an immunoradiometric assay. SETTING--Tertiary referral centre. SUBJECTS--Patients requiring surgical intervention for large vessel peripheral vascular disease. MAIN OUTCOME MEASURES--Presence or absence and severity and distribution of angiographically defined coronary artery disease. Measurement of circulating contractions of apolipoprotein(a) and other lipid indices. RESULTS--Coronary artery disease was absent in 11 patients (group 1), mild to moderate in 12 (group 2), and severe in 17 (group 3). The distribution of peripheral vascular disease and of standard lipid indices was similar in these three groups of patients. There was a significant difference in apolipoprotein(a) concentrations between the three groups, with concentrations progressively increasing with the severity of coronary artery disease (mean (95% confidence interval): group 1, 112 U/1 (52 to 242); group 2, 214 U/1 (129 to 355); group 3, 537 U/1 (271 to 1064) (analysis of variance p < 0.005). The prevalence of coronary artery disease was increased 7.4 fold in patients with apolipoprotein(a) concentrations that were greater than the cohort median (206 U/1) (p < 0.01). CONCLUSIONS--The results show an association between apolipoprotein(a) concentrations and angiographically defined coronary artery disease in patients with large vessel peripheral vascular disease. The findings imply differences in the pathogenesis of coronary and peripheral atheroma and suggest that the measurement of apolipoprotein(a) may prove a useful additional tool in the risk factor assessment of patients undergoing peripheral

  19. Renal apolipoprotein A-I amyloidosis: a rare and usually ignored cause of hereditary tubulointerstitial nephritis.

    PubMed

    Gregorini, Gina; Izzi, Claudia; Obici, Laura; Tardanico, Regina; Röcken, Christoph; Viola, Battista Fabio; Capistrano, Mariano; Donadei, Simona; Biasi, Luciano; Scalvini, Tiziano; Merlini, Giampaolo; Scolari, Francesco

    2005-12-01

    Apolipoprotein A-I amyloidosis is a rare, late-onset, autosomal dominant condition characterized by systemic deposition of amyloid in tissues, the major clinical problems being related to renal, hepatic, and cardiac involvement. Described is the clinical and histologic picture of renal involvement as a result of apolipoprotein A-I amyloidosis in five families of Italian ancestry. In all of the affected family members, the disease was caused by the Leu75Pro heterozygous mutation in exon 4 of apolipoprotein A-I gene, as demonstrated by direct sequencing and RFLP analysis. Immunohistochemistry confirmed that amyloid deposits were specifically stained with an anti-apolipoprotein A-I antibody. The clinical phenotype was mainly characterized by a variable combination of kidney and liver disturbance. The occurrence of renal involvement seemed to be almost universal, although its severity varied greatly ranging from subclinical organ damage to overt, slowly progressive renal dysfunction. The renal presentation was consistent with a tubulointerstitial disease, as suggested by the findings of defective urine-concentrating capacity, moderate polyuria, negative urinalysis, and mild tubular proteinuria. Histology confirmed tubulointerstitial nephritis. Surprising, amyloid was restricted to nonglomerular regions and limited to the renal medulla. This location of apolipoprotein A-I amyloid differs sharply from other systemic amyloidoses that are mainly characterized by glomerular and vascular deposits. The tubulointerstitial nephritis as a result of hereditary apolipoprotein A-I amyloidosis is a rare disease and a challenging diagnosis to recognize. Patients who present with familial tubulointerstitial nephritis associated with liver disease require a high index of suspicion for apolipoprotein A-I amyloidosis.

  20. Quantification by nano liquid chromatography parallel reaction monitoring mass spectrometry of human apolipoprotein A-I, apolipoprotein B, and hemoglobin A1c in dried blood spots.

    PubMed

    Henderson, Clark M; Bollinger, James G; Becker, Jessica O; Wallace, Jennifer M; Laha, Thomas J; MacCoss, Michael J; Hoofnagle, Andrew N

    2017-07-01

    Proteomic analysis of blood proteins in dried blood spots (DBS) is gaining attention as a possible replacement for measurements in plasma/serum collected by venipuncture. We aimed to develop and provisionally validate a nanoflow LC-PRM-MS method for clinical use. We used Skyline to develop a nanoflow LC-PRM-MS method to quantify glycated hemoglobin-β, apolipoprotein A-I, and apolipoprotein B in DBS. Precision, linearity, interferences, and stability were determined and the method was used to analyze samples from 36 human volunteers. The method was compared with clinically validated measurements in paired blood collected via venipuncture. The method was relatively precise for these proteins (10-11% CV) and linear across the normal concentration ranges of these proteins. Interference from high total serum protein concentration (>8 g/dL) was noted for apolipoprotein A-I and apolipoprotein B. Proteins in DBS were stable for 14 days at temperatures below 25°C and trypsinized samples were stable for 48 h at 7°C. There was moderate correlation with clinical methods (r = 0.783-0.858) and significant bias in individual samples. Although the method had adequate precision and linearity for a biomarker, the accuracy compared with clinically validated assays raises concerns regarding the use of DBS compared with venipuncture for clinical use. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Apolipoprotein A-IV protein polymorphism: frequency and effects on lipids, lipoproteins, and apolipoproteins among Mexican-Americans in Starr County, Texas.

    PubMed

    Hanis, C L; Douglas, T C; Hewett-Emmett, D

    1991-01-01

    Apolipoprotein A-IV phenotypes were determined by reprobing immunoblots initially typed for the apolipoprotein E polymorphism on a representative sample of Mexican-Americans from South Texas. Typings on 331 individuals gave frequency estimates of 0.928, 0.066, 0.003, and 0.003 for alleles 1, 2, 3, and 4, respectively. To evaluate the effects of this polymorphic variability on lipid-related measures, mean levels between phenotypes were tested for equality following adjustment for age, sex, and body mass index. Analyses of levels of cholesterol, triglycerides, total high density lipoprotein, and its subfractions, low density lipoprotein, alpha and beta lipoproteins and apolipoproteins A-I, A-II, B, C-II, C-III, and E demonstrate that the A-IV genetic variability contributes minimally to normal variation of these quantitative factors in the population. Examination of the rare types, however, indicates the possibility of large metabolic effects whose follow-up may be useful for elucidating the metabolic roles of apolipoprotein A-IV.

  2. The Effect of Aerobic Exercise on Total Cholesterol, High-Density Lipoprotein, Apolipoprotein B, Apolipoprotein A-I, and Percent Body Fat in Adolescent Females.

    ERIC Educational Resources Information Center

    Lungo, Diane; And Others

    The effect of aerobic exercise on total cholesterol (TC), high-density lipoprotein (HDL), apolipoprotein B (Apo B), apolioprotein A-I (Apo A-I), and percent body fat in adolescent females was studied. The control subjects (n=86) were volunteers who had completed a physical education class at least six months prior to the commencement of the study,…

  3. The Effect of Aerobic Exercise on Total Cholesterol, High-Density Lipoprotein, Apolipoprotein B, Apolipoprotein A-I, and Percent Body Fat in Adolescent Females.

    ERIC Educational Resources Information Center

    Lungo, Diane; And Others

    The effect of aerobic exercise on total cholesterol (TC), high-density lipoprotein (HDL), apolipoprotein B (Apo B), apolioprotein A-I (Apo A-I), and percent body fat in adolescent females was studied. The control subjects (n=86) were volunteers who had completed a physical education class at least six months prior to the commencement of the study,…

  4. Passive acoustic emissions from particulates in a V-blender.

    PubMed

    Crouter, Allison; Briens, Lauren

    2015-01-01

    Regulatory agencies are recommending the development of process analytical technologies (PAT) to improve the efficiency and product quality during pharmaceutical manufacturing. The objective of the research was to investigate the potential application of passive acoustic emission monitoring of a V-blender. Trials were conducted with sugar spheres, lactose or MCC in a V-blender. Vibrations from acoustic emissions were measured using PCB Piezotronics accelerometers with ICP signal conditioners. A wavelet filter was applied to the measured acoustic emissions to remove vibrations from the tumbling motion of the V-shell, allowing a focus on information about particle motion and interactions within the V-shell. The ideal sensor location was determined to be the lid of one of the V-shell arms due to the impact of the tumbling particles on the lid and transmission of the vibrations from other particle motion within the V-shell. The amplitude of vibrations increased with particle size due to larger particle momentum before a collision. The fill level and the V-shell scale also influenced the measured vibrations as particle motion was affected which in turn affected momentum. Changes in particle flowability could be detected through variations in the measured acoustic emissions. The measured vibrations from passive acoustic emissions reflected particle motion and interactions within a V-blender demonstrating potential as a monitoring method.

  5. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    SciTech Connect

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  6. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.

    PubMed

    Liu, Chia-Chen; Liu, Chia-Chan; Kanekiyo, Takahisa; Xu, Huaxi; Bu, Guojun

    2013-02-01

    Apolipoprotein E (Apo-E) is a major cholesterol carrier that supports lipid transport and injury repair in the brain. APOE polymorphic alleles are the main genetic determinants of Alzheimer disease (AD) risk: individuals carrying the ε4 allele are at increased risk of AD compared with those carrying the more common ε3 allele, whereas the ε2 allele decreases risk. Presence of the APOE ε4 allele is also associated with increased risk of cerebral amyloid angiopathy and age-related cognitive decline during normal ageing. Apo-E-lipoproteins bind to several cell-surface receptors to deliver lipids, and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. Apo-E isoforms differentially regulate Aβ aggregation and clearance in the brain, and have distinct functions in regulating brain lipid transport, glucose metabolism, neuronal signalling, neuroinflammation, and mitochondrial function. In this Review, we describe current knowledge on Apo-E in the CNS, with a particular emphasis on the clinical and pathological features associated with carriers of different Apo-E isoforms. We also discuss Aβ-dependent and Aβ-independent mechanisms that link Apo-E4 status with AD risk, and consider how to design effective strategies for AD therapy by targeting Apo-E.

  7. Hereditary apolipoprotein AI-associated renal amyloidosis: A diagnostic challenge.

    PubMed

    Samillán-Sosa, Kelly Del Rocío; Sención-Martínez, Gloria; Lopes-Martín, Vanessa; Martínez-González, Miguel Angel; Solé, Manel; Arostegui, Jose Luis; Mesa, Jose; García-Díaz, Juan de Dios; Rodríguez-Puyol, Diego; Martínez-Miguel, Patricia

    2015-01-01

    Hereditary renal amyloidosis is an autosomal dominant condition with considerable overlap with other amyloidosis types. Differential diagnosis is complicated, but is relevant for prognosis and treatment. We describe a patient with nephrotic syndrome and progressive renal failure, who had a mother with renal amiloidosis. Renal biopsy revealed amyloid deposits in glomerular space, with absence of light chains and protein AA. We suspected amyloidosis with fibrinogen A alpha chain deposits, which is the most frequent cause of hereditary amyloidosis in Europe, with a glomerular preferential affectation. However, the genetic study showed a novel mutation in apolipoprotein AI. On reviewing the biopsy of the patient's mother similar glomerular deposits were found, but there were significant deposits in the renal medulla as well, which is typical in APO AI amyloidosis. The diagnosis was confirmed by immunohistochemistry. Apo AI amyloidosis is characterized by slowly progressive renal disease and end-stage renal disease occurs aproximately 3 to 15 years from initial diagnosis. Renal transplantation offers an acceptable graft survival and in these patients with hepatorenal involvement simultaneous liver and kidney transplantation could be considered. Copyright © 2015 The Authors. Published by Elsevier España, S.L.U. All rights reserved.

  8. MicroRNAs regulating apolipoprotein B-containing lipoprotein production.

    PubMed

    Zhou, Liye; Irani, Sara; Sirwi, Alaa; Hussain, M Mahmood

    2016-12-01

    MicroRNAs (miRs) are small, non-coding RNAs that regulate gene expression and have been implicated in many pathological conditions. Significant progress has been made to unveil their role in lipid metabolism. This review aims at summarizing the role of different miRs that regulate hepatic assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins. Overproduction and/or impaired clearance of these lipoproteins from circulation increase plasma concentrations of lipids enhancing risk for cardiovascular disease. So far, three miRs, miR-122, miR-34a, and miR-30c have been shown to modulate hepatic production of apoB-containing low density lipoproteins. In this review, we will first provide a brief overview of lipid metabolism and apoB-containing lipoprotein assembly to orient readers to different steps that have been shown to be regulated by miRs. Then, we will discuss the role of each miR on plasma lipids and atherosclerotic burden. Furthermore, we will summarize mechanistic studies explaining how these miRs regulate hepatic lipid synthesis, fatty acid oxidation, and lipoprotein secretion. Finally, we will briefly highlight the potential use of each miR as a therapeutic drug for treating cardiovascular diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.

  9. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy

    PubMed Central

    Liu, Chia-Chen; Kanekiyo, Takahisa; Xu, Huaxi; Bu, Guojun

    2013-01-01

    Apolipoprotein E (ApoE) is a major cholesterol carrier that supports lipid transport and injury repair in the brain. APOE polymorphic alleles are the main genetic determinants of Alzheimer disease (AD) risk: individuals carrying the ε4 allele are at increased risk of AD compared with those carrying the more common ε3 allele, whereas the ε2 allele decreases risk. Presence of the APOE ε4 allele is also associated with increased risk for cerebral amyloid angiopathy and age-related cognitive decline during normal ageing. ApoE–lipoproteins bind to several cell-surface receptors to deliver lipids and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. ApoE isoforms differentially regulate Aβ aggregation and clearance in the brain, and have distinct functions in regulating brain lipid transport, glucose metabolism, neuronal signalling, neuroinflammation, and mitochondrial function. In this Review, we describe current knowledge on ApoE in the CNS, with a particular emphasis on the clinical and pathological features associated with carriers of different ApoE isoforms. We also discuss Aβ-dependent and Aβ-independent mechanisms that link ApoE4 status with AD risk, and consider how to design effective strategies for AD therapy by targeting ApoE. PMID:23296339

  10. Prenatal mercury exposure, neurodevelopment and apolipoprotein E genetic polymorphism.

    PubMed

    Snoj Tratnik, Janja; Falnoga, Ingrid; Trdin, Ajda; Mazej, Darja; Fajon, Vesna; Miklavčič, Ana; Kobal, Alfred B; Osredkar, Joško; Sešek Briški, Alenka; Krsnik, Mladen; Neubauer, David; Kodrič, Jana; Stropnik, Staša; Gosar, David; Lešnik Musek, Petra; Marc, Janja; Jurkovič Mlakar, Simona; Petrović, Oleg; Vlašić-Cicvarić, Inge; Prpić, Igor; Milardović, Ana; Radić Nišević, Jelena; Vuković, Danijela; Fišić, Elizabeta; Špirić, Zdravko; Horvat, Milena

    2017-01-01

    The aim of the present study was to evaluate the association between prenatal exposure to mercury (Hg) and neurodevelopment of the child, taking into account genetic polymorphism of apolipoprotein E (Apoe) and other relevant confounders. Six hundred and one mother-child pairs were recruited from the central Slovenia region and 243 from Rijeka, on the Croatian coast of the northern Adriatic. The total Hg in cord blood, Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) assessment at 18 months of age and Apoe genotyping was performed on 361 children; 237 of them were from Slovenia and 124 from Croatia. The results showed negative association between low-to-moderate Hg exposure in children with normal neurodevelopmental outcome and cognitive and fine motor scores at 18 months of age as assessed by Bayley III. The Hg-related decrease in cognitive score was observed only in children carrying at least one Apoe ε4 allele, while the decrease in fine motor scores was independent of the Apoe genotype. Adjusting for selenium (Se) and lead (Pb) levels, a positive association between Se and the language score and a negative association between Pb and the motor score was observed, but not in the subgroup of children carrying the ε4 allele.

  11. High serum apolipoprotein AIV levels in renal transplant recipients.

    PubMed

    Massy, Z A; Kandoussi, A M; Mamzer-Bruneel, M F; Kreis, H; Drüeke, T; Lacour, B

    2001-02-01

    Human apolipoprotein (apo) AIV might play a role in post-transplant reverse cholesterol transport, which appears to be comparable to that seen in healthy subjects. However, there may be subtle differences between healthy individuals and renal transplant recipients, given the other abnormalities of lipoprotein metabolism in the latter. Therefore, the aim of the present study was to investigate possible changes of serum apo AIV levels in renal transplant recipients, and to evaluate potential factors influencing these levels. Total and free serum apo AIV was determined in 36 clinically stable renal transplant recipients and in 20 sex- and age-matched healthy control subjects. Mean total serum apo IV concentrations (+/- SD) were significantly higher in renal transplant recipients than in control subjects (202 +/- 102 vs 79 +/- 45 mg/l, p < 0.01). The percentage of lipoprotein-free fractions of apo AIV was comparable in both groups. The elevated total serum concentrations of apo AIV were mainly related to creatinine clearance and partially to serum triglyceride levels in renal transplant recipients. Our data suggest that the observed elevation of serum apo AIV concentrations in renal transplant recipients is essentially related to the presence of impaired renal function.

  12. Monogenic hypocholesterolaemic lipid disorders and apolipoprotein B metabolism.

    PubMed

    Hooper, Amanda J; van Bockxmeer, Frank M; Burnett, John R

    2005-01-01

    The study of apolipoprotein (apo) B metabolism is central to our understanding of human lipoprotein metabolism. Moreover, the assembly and secretion of apoB-containing lipoproteins is a complex process. Increased plasma concentrations of apoB-containing lipoproteins are an important risk factor for the development of atherosclerotic coronary heart disease. In contrast, decreased levels of, but not the absence of, these apoB-containing lipoproteins is associated with resistance to atherosclerosis and potential long life. The study of inherited monogenic dyslipidaemias has been an effective means to elucidate key metabolic steps and biologically relevant mechanisms. Naturally occurring gene mutations in affected families have been useful in identifying important domains of apoB and microsomal triglyceride transfer protein (MTP) governing the metabolism of apoB-containing lipoproteins. Truncation-causing mutations in the APOB gene cause familial hypobetalipoproteinaemia, whereas mutations in MTP result in abetalipoproteinaemia; both rare conditions are characterised by marked hypocholesterolaemia. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the key biochemical, clinical, metabolic and genetic features of the monogenic hypocholesterolaemic lipid disorders affecting apoB metabolism.

  13. Apolipoprotein A5: Extracellular and Intracellular Roles in Triglyceride Metabolism.

    PubMed

    Forte, Trudy M; Ryan, Robert O

    2015-01-01

    This review addresses two major functions of apolipoprotein (apo) A5 including (1) its role in maintaining normal plasma levels of circulating triglyceride (TG) and (2) its role as a component of hepatic lipid droplets. ApoA5 is synthesized solely in the liver and circulating concentrations are extremely low. In the plasma, ApoA5 associates with TG-rich lipoproteins and enhances TG hydrolysis and remnant lipoprotein clearance. ApoA5 loss-of-function single nucleotide polymorphisms are associated with reduced lipolysis, poor remnant clearance and concomitantly, hypertriglyceridemia. Although there have been substantial breakthroughs in understanding pathophysiology associated with secreted ApoA5, there is a paucity of knowledge on the functionality of intracellular ApoA5. However, recent studies indicate that overexpression of intracellular ApoA5 is positively associated with accumulation of TG-rich lipid droplets in hepatocytes. It is thought that ApoA5 may have a causal role in non-alcoholic fatty liver disease (NAFLD) and thus, may serve as a target for developing therapeutics for NAFLD.

  14. Apolipoprotein D Internalization Is a Basigin-dependent Mechanism.

    PubMed

    Najyb, Ouafa; Brissette, Louise; Rassart, Eric

    2015-06-26

    Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection.

  15. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism

    PubMed Central

    Strong, Alanna; Ding, Qiurong; Edmondson, Andrew C.; Millar, John S.; Sachs, Katherine V.; Li, Xiaoyu; Kumaravel, Arthi; Wang, Margaret Ye; Ai, Ding; Guo, Liang; Alexander, Eric T.; Nguyen, David; Lund-Katz, Sissel; Phillips, Michael C.; Morales, Carlos R.; Tall, Alan R.; Kathiresan, Sekar; Fisher, Edward A.; Musunuru, Kiran; Rader, Daniel J.

    2012-01-01

    Genome-wide association studies (GWAS) have identified a genetic variant at a locus on chromosome 1p13 that is associated with reduced risk of myocardial infarction, reduced plasma levels of LDL cholesterol (LDL-C), and markedly increased expression of the gene sortilin-1 (SORT1) in liver. Sortilin is a lysosomal sorting protein that binds ligands both in the Golgi apparatus and at the plasma membrane and traffics them to the lysosome. We previously reported that increased hepatic sortilin expression in mice reduced plasma LDL-C levels. Here we show that increased hepatic sortilin not only reduced hepatic apolipoprotein B (APOB) secretion, but also increased LDL catabolism, and that both effects were dependent on intact lysosomal targeting. Loss-of-function studies demonstrated that sortilin serves as a bona fide receptor for LDL in vivo in mice. Our data are consistent with a model in which increased hepatic sortilin binds intracellular APOB-containing particles in the Golgi apparatus as well as extracellular LDL at the plasma membrane and traffics them to the lysosome for degradation. We thus provide functional evidence that genetically increased hepatic sortilin expression both reduces hepatic APOB secretion and increases LDL catabolism, providing dual mechanisms for the very strong association between increased hepatic sortilin expression and reduced plasma LDL-C levels in humans. PMID:22751103

  16. Digoxin reduces atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Shi, Huairui; Mao, Xiaobo; Zhong, Yucheng; Liu, Yuzhou; Zhao, Xiaoqi; Yu, Kunwu; Zhu, Ruirui; Wei, Yuzhen; Zhu, Jianghao; Sun, Haitao; Mao, Yi; Zeng, Qiutang

    2016-05-01

    Numerous in vitro studies have suggested that digoxin suppresses inflammation and alters lipid metabolism. However, the effect of dioxin on atherosclerosis is poorly understood. The present study was conducted to determine whether digoxin affects the development of atherosclerosis in a murine model of atherosclerotic disease. Apolipoprotein E-deficient mice maintained on a Western-type diet were administered PBS (control), low-dose digoxin (1 mg · kg(-1) · day(-1)) or high-dose digoxin (2 mg · kg(-1) · day(-1)) via i.p. injection for 12 weeks. Digoxin dose-dependently reduced atherosclerotic lesion formation and plasma lipid levels (reductions of 41% in total cholesterol, 54% in triglycerides and 20% in low-density lipoprotein cholesterol in the high-dose digoxin-treated group). Moreover, treatment with digoxin markedly attenuated IL-17A expression and IL-17A-related inflammatory responses and increased the abundance of regulatory T cells (Tregs). Our data demonstrate that digoxin acts as a specific antagonist of retinoid-related orphan receptor-γ to decrease atherosclerosis by suppressing lipid levels and IL-17A-related inflammatory responses. © 2016 The British Pharmacological Society.

  17. Digoxin reduces atherosclerosis in apolipoprotein E‐deficient mice

    PubMed Central

    Shi, Huairui; Mao, Xiaobo; Zhong, Yucheng; Liu, Yuzhou; Zhao, Xiaoqi; Yu, Kunwu; Zhu, Ruirui; Wei, Yuzhen; Zhu, Jianghao; Sun, Haitao; Mao, Yi

    2016-01-01

    Background and Purpose Numerous in vitro studies have suggested that digoxin suppresses inflammation and alters lipid metabolism. However, the effect of dioxin on atherosclerosis is poorly understood. The present study was conducted to determine whether digoxin affects the development of atherosclerosis in a murine model of atherosclerotic disease. Experimental Approach Apolipoprotein E‐deficient mice maintained on a Western‐type diet were administered PBS (control), low‐dose digoxin (1 mg·kg−1· day−1) or high‐dose digoxin (2 mg·kg−1 · day−1) via i.p. injection for 12 weeks. Key Results Digoxin dose‐dependently reduced atherosclerotic lesion formation and plasma lipid levels (reductions of 41% in total cholesterol, 54% in triglycerides and 20% in low‐density lipoprotein cholesterol in the high‐dose digoxin‐treated group). Moreover, treatment with digoxin markedly attenuated IL‐17A expression and IL‐17A‐related inflammatory responses and increased the abundance of regulatory T cells (Tregs). Conclusions and Implications Our data demonstrate that digoxin acts as a specific antagonist of retinoid‐related orphan receptor‐γ to decrease atherosclerosis by suppressing lipid levels and IL‐17A‐related inflammatory responses. PMID:26879387

  18. Role of Apolipoprotein E in β-Amyloidogenesis

    PubMed Central

    Hori, Yukiko; Hashimoto, Tadafumi; Nomoto, Hidetoshi; Hyman, Bradley T.; Iwatsubo, Takeshi

    2015-01-01

    Human APOE ϵ4 allele is a strong genetic risk factor of Alzheimer disease. Neuropathological and genetic studies suggested that apolipoprotein E4 (apoE4) protein facilitates deposition of amyloid β peptide (Aβ) in the brain, although the mechanism whereby apoE4 increases amyloid aggregates remains elusive. Here we show that injection of Aβ protofibrils induced Aβ deposition in the brain of APP transgenic mice, suggesting that Aβ protofibrils acted as a seed for aggregation and deposition of Aβ in vivo. Injection of Aβ protofibrils together with apoE3 significantly attenuated Aβ deposition, whereas apoE4 did not have this effect. In vitro assays revealed that the conversion of Aβ protofibrils to fibrils progressed more slowly upon coincubation with apoE2 or apoE3 compared with that with apoE4. Aβ protofibrils complexed with apoE4 were less stable than those with apoE2 or apoE3. These data suggest that the suppression effect of apoE2 or apoE3 on the structural conversion of Aβ protofibrils to fibrils is stronger than those of apoE4, thereby impeding β-amyloid deposition. PMID:25918154

  19. An apolipoprotein B100 mimotope prevents obesity in mice.

    PubMed

    Kim, Hyo Joon; Lee, Hee Jong; Choi, Jung Soon; Han, Jemin; Kim, Ji Young; Na, Hyun Kyun; Joung, Hae-Jung; Kim, Young Sik; Binas, Bert

    2016-01-01

    Although apolipoprotein B100 (ApoB100) plays a key role in peripheral fat deposition, it is not considered a suitable therapeutic target in obesity. In the present study we describe a novel ApoB100 mimotope, peptide pB1, and the use of pB1-based vaccine-like formulations (BVFs) against high-fat diet (HFD)-induced obesity. In HFD- compared with chow-fed adolescent mice, BVFs reduced the 3-month body-weight gains attributable to increased dietary fat by 44-65%, and prevented mesenteric fat accumulation and liver steatosis. The body-weight reductions paralleled the titres of pB1-reactive immunoglobulin G (IgG) antibodies, and pB1-reactive antibodies specifically recognized native ApoB100 and a synthetic peptide from the C-terminal half of ApoB100. In cultured 3T3L1 adipocytes, anti-pB1 antibodies increased lipolysis and inhibited low-density lipoprotein (LDL) uptake. In cultured RAW 264.7 macrophages, the same antibodies enhanced LDL uptake (without causing foam cell formation). These findings make ApoB100 a promising target for an immunization strategy against HFD-induced obesity. © 2016 The Author(s).

  20. Plasma apolipoproteins and risk for age related maculopathy

    PubMed Central

    Dashti, N; McGwin, G; Owsley, C; Curcio, C A

    2006-01-01

    Aim To determine if elevated plasma levels of atherogenic and/or anti‐atherogenic lipoproteins are risk factors for developing age related maculopathy (ARM). Methods In a cross sectional study in a university clinic setting, 129 patients (72 women and 57 men) underwent colour fundus photography, acuity and contrast sensitivity assessment, and electroimmunoassays of plasma apolipoproteins B (apoB) and A‐I (apoA‐I), the principal proteins of low density and high density lipoproteins, respectively. Maculopathy stage was assigned using the AREDS grading system. Results Levels of apoB in no ARM, mild, intermediate, and advanced ARM groups were 93.3, 91.8, 95.2, and 98.2 mg/dl, respectively. Levels of apoA‐I were 147.4, 148.6, 141.0, and 144.9 mg/dl in the same groups. There was no significant association between these measures, typical for age, and maculopathy stage. Conclusion Although drusen associated with ARM and ageing contain cholesterol and apoB, like the lipid rich core of an atherosclerotic plaque, the results of this study and our previous work in toto make the prospects of a plasma origin for these lesion constituents increasingly untenable. This conclusion is consistent with an emerging hypothesis that a large lipoprotein of intraocular origin is an important pathway for constituent retinal lipid processing and the biogenesis of drusen. PMID:16723359

  1. An apolipoprotein B100 mimotope prevents obesity in mice

    PubMed Central

    Lee, Hee Jong; Choi, Jung Soon; Han, Jemin; Kim, Ji Young; Na, Hyun Kyun; Joung, Hae-Jung; Kim, Young Sik

    2015-01-01

    Although apolipoprotein B100 (ApoB100) plays a key role in peripheral fat deposition, it is not considered a suitable therapeutic target in obesity. In the present study we describe a novel ApoB100 mimotope, peptide pB1, and the use of pB1-based vaccine-like formulations (BVFs) against high-fat diet (HFD)-induced obesity. In HFD- compared with chow-fed adolescent mice, BVFs reduced the 3-month body-weight gains attributable to increased dietary fat by 44–65%, and prevented mesenteric fat accumulation and liver steatosis. The body-weight reductions paralleled the titres of pB1-reactive immunoglobulin G (IgG) antibodies, and pB1-reactive antibodies specifically recognized native ApoB100 and a synthetic peptide from the C-terminal half of ApoB100. In cultured 3T3L1 adipocytes, anti-pB1 antibodies increased lipolysis and inhibited low-density lipoprotein (LDL) uptake. In cultured RAW 264.7 macrophages, the same antibodies enhanced LDL uptake (without causing foam cell formation). These findings make ApoB100 a promising target for an immunization strategy against HFD-induced obesity. PMID:26519425

  2. Alzheimer's disease, apolipoprotein E and hormone replacement therapy.

    PubMed

    Depypere, H; Vierin, A; Weyers, S; Sieben, A

    2016-12-01

    Alzheimer's disease is the most frequent cause of dementia in older patients. The prevalence is higher in women than in men. This may be the result of both the higher life expectancy of women and the loss of neuroprotective estrogen after menopause. Earlier age at menopause (spontaneous or surgical) is associated with an enhanced risk of developing Alzheimer's disease. Therefore, it is postulated that estrogen could be protective against it. If so, increasing exposure to estrogen through the use of postmenopausal hormone replacement could also be protective against Alzheimer's disease. The results of the clinical studies that have examined this hypothesis are inconclusive, however. One explanation for this is that estrogen treatment is protective only if it is initiated in the years immediately after menopause. Another possibility is that the neuroprotective effects of estrogen are negated by a particular genotype of apolipoprotein E. This protein plays an important role in cholesterol transport to the neurons. Studies that have examined the link between estrogen replacement therapy, Alzheimer's disease and the E4 allele of ApoE are inconclusive. This article reviews the literature on the influence of hormone replacement therapy on the incidence and progression of Alzheimer's disease.

  3. The Apolipoprotein L1 Gene and Cardiovascular Disease

    PubMed Central

    Robinson, Todd W.; Freedman, Barry I.

    2016-01-01

    Relative to those with European ancestry, African Americans have an excess incidence of nondiabetic chronic kidney disease predominantly due to two coding renal-risk variants in the apolipoprotein L1 gene (APOL1). This APOL1–kidney disease association is independent of systemic hypertension or blood pressure. Recent reports describe extra-renal effects of the APOL1 G1 and G2 renal-risk variants on cardiovascular disease (CVD), subclinical atherosclerosis, lipoprotein particle concentrations, and survival. However, results have been less consistent than those seen in kidney disease, and the observed APOL1 associations with CVD vary from risk to protective. This manuscript reviews the relationships between APOL1 renal-risk variants and CVD, with an emphasis on study-specific factors that may have contributed to disparate observations. It is possible that APOL1 renal-risk variants impact the systemic vasculature, not only the kidneys. As novel therapies for APOL1-associated nephropathy are developed, APOL1 variant protein effects on large blood vessels and risk of CVD will need to be considered. PMID:28298955

  4. Serum concentrations of cholesterol, apolipoprotein A-I and apolipoprotein B in a total of 1694 meat-eaters, fish-eaters, vegetarians and vegans.

    PubMed

    Bradbury, K E; Crowe, F L; Appleby, P N; Schmidt, J A; Travis, R C; Key, T J

    2014-02-01

    The objective of this study was to describe serum lipid concentrations, including apolipoproteins A-I and B, in different diet groups. A cross-sectional analysis of a sample of 424 meat-eaters, 425 fish-eaters, 423 vegetarians and 422 vegans, matched on sex and age, from the European Prospective Investigation into Cancer and Nutrition-Oxford cohort. Serum concentrations of total, and high-density lipoprotein (HDL) cholesterol, as well as apolipoproteins A-I and B were measured, and serum non-HDL cholesterol was calculated. Vegans had the lowest body mass index (BMI) and the highest and lowest intakes of polyunsaturated and saturated fat, respectively. After adjustment for age, alcohol and physical activity, compared with meat-eaters, fish-eaters and vegetarians, serum concentrations of total and non-HDL cholesterol and apolipoprotein B were significantly lower in vegans. Serum apolipoprotein A-I concentrations did not differ between the diet groups. In males, the mean serum total cholesterol concentration was 0.87 mmol/l lower in vegans than in meat-eaters; after further adjustment for BMI this difference was 0.76 mmol/l. In females, the difference in total cholesterol between these two groups was 0.6 mmol/l, and after further adjustment for BMI was 0.55 mmol/l. [corrected]. In this study, which included a large number of vegans, serum total cholesterol and apolipoprotein B concentrations were lower in vegans compared with meat-eaters, fish-eaters and vegetarians. A small proportion of the observed differences in serum lipid concentrations was explained by differences in BMI, but a large proportion is most likely due to diet.

  5. Serum concentrations of cholesterol, apolipoprotein A-I, and apolipoprotein B in a total of 1 694 meat-eaters, fish-eaters, vegetarians, and vegans

    PubMed Central

    Bradbury, Kathryn E; Crowe, Francesca L; Appleby, Paul N; Schmidt, Julie A; Travis, Ruth C; Key, Timothy J

    2013-01-01

    BACKGROUND The objective of this study was to describe serum lipid concentrations, including apolipoproteins A-I and B, in different diet groups. METHODS A cross-sectional analysis of a sample of 424 meat-eaters, 425 fish-eaters, 423 vegetarians, and 422 vegans, matched on sex and age, from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Oxford cohort. Serum concentrations of total, and HDL cholesterol, as well as apolipoproteins A-I and B were measured, and serum non-HDL cholesterol was calculated. RESULTS Vegans had the lowest BMI, and the highest and lowest intakes of polyunsaturated and saturated fat, respectively. After adjustment for age, alcohol and physical activity, compared to meat-eaters, fish-eaters and vegetarians, serum concentrations of total and non-HDL cholesterol, and apolipoprotein B were significantly lower in vegans. Serum apolipoprotein A-I concentrations did not differ between the diet groups. In males, the mean serum total cholesterol concentration was 0.87 nmol/L lower in vegans than in meat-eaters; after further adjustment for BMI this difference was 0.76 nmol/L. In females, the difference in total cholesterol between these two groups was 0.60 nmol/L, and after further adjustment for BMI was 0.55 nmol/L. CONCLUSIONS In this study, which included a large number of vegans, serum total cholesterol and apolipoprotein B concentrations were lower in vegans compared to meat-eaters, fish-eaters and vegetarians. A small proportion of the observed differences in serum lipid concentrations was explained by differences in BMI, but a large proportion is most likely due to diet. PMID:24346473

  6. Concentration of apolipoprotein B is comparable with the apolipoprotein B/apolipoprotein A-I ratio and better than routine clinical lipid measurements in predicting coronary heart disease mortality: findings from a multi-ethnic US population

    PubMed Central

    Sierra-Johnson, Justo; Fisher, Rachel M.; Romero-Corral, Abel; Somers, Virend K.; Lopez-Jimenez, Francisco; Öhrvik, John; Walldius, Göran; Hellenius, Mai-Lis; Hamsten, Anders

    2009-01-01

    Aims Prospective studies indicate that apolipoprotein measurements predict coronary heart disease (CHD) risk; however, evidence is conflicting, especially in the US. Our aim was to assess whether measurements of apolipoprotein B (apoB) and apolipoprotein A-I (apoA-I) can improve the ability to predict CHD death beyond what is possible based on traditional cardiovascular (CV) risk factors and clinical routine lipid measurements. Methods and results We analysed prospectively associations of apolipoprotein measurements, traditional CV risk factors, and clinical routine lipid measurements with CHD mortality in a multi-ethnic representative subset of 7594 US adults (mean age 45 years; 3881 men and 3713 women, median follow-up 124 person-months) from the Third National Health and Nutrition Examination Survey mortality study. Multiple Cox-proportional hazards regression was applied. There were 673 CV deaths of which 432 were from CHD. Concentrations of apoB [hazard ratio (HR) 1.98, 95% confidence interval (CI) 1.09–3.61], apoA-I (HR 0.48, 95% CI 0.27–0.85) and total cholesterol (TC) (HR 1.17, 95% CI 1.02–1.34) were significantly related to CHD death, whereas high density lipoprotein cholesterol (HDL-C) (HR 0.68, 95% CI 0.45–1.05) was borderline significant. Both the apoB/apoA-I ratio (HR 2.14, 95% CI 1.11–4.10) and the TC/HDL-C ratio (HR 1.10, 95% CI 1.04–1.16) were related to CHD death. Only apoB (HR 2.01, 95% CI 1.05–3.86) and the apoB/apoA-I ratio (HR 2.09, 95% CI 1.04–4.19) remained significantly associated with CHD death after adjusting for CV risk factors. Conclusion In the US population, apolipoprotein measurements significantly predict CHD death, independently of conventional lipids and other CV risk factors (smoking, dyslipidaemia, hypertension, obesity, diabetes and C-reactive protein). Furthermore, the predictive ability of apoB alone to detect CHD death was better than any of the routine clinical lipid measurements. Inclusion of apolipoprotein

  7. Formation of stable nanodiscs by bihelical apolipoprotein A-I mimetic peptide.

    PubMed

    Kariyazono, Hirokazu; Nadai, Ryo; Miyajima, Rin; Takechi-Haraya, Yuki; Baba, Teruhiko; Shigenaga, Akira; Okuhira, Keiichiro; Otaka, Akira; Saito, Hiroyuki

    2016-02-01

    Nanodiscs are composed of scaffold protein or peptide such as apolipoprotein A-I (apoA-I) and phospholipids. Although peptide-based nanodiscs have an advantage to modulate the size of nanodiscs by changing phospholipid/peptide ratios, they are usually less stable than apoA-I-based nanodiscs. In this study, we designed a novel nanodisc scaffold peptide (NSP) that has proline-punctuated bihelical amphipathic structure based on apoA-I mimetic peptides. NSP formed α-helical structure on 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) nanodiscs prepared by cholate dialysis method. Dynamic light scattering measurements demonstrated that diameters of NSP nanodiscs vary depending upon POPC/NSP ratios. Comparison of thermal unfolding of nanodiscs monitored by circular dichroism measurements demonstrated that NSP forms much more stable nanodiscs with POPC than monohelical peptide, 4F, exhibiting comparable stability to apoA-I-POPC nanodiscs. Intrinsic Trp fluorescence measurements showed that Trp residues of NSP exhibit more hydrophobic environment than that of 4 F on nanodiscs, suggesting the stronger interaction of NSP with phospholipids. Thus, the bihelical structure of NSP appears to increase the stability of nanodiscs because of the enhanced interaction of peptides with phospholipids. In addition, NSP as well as 4F spontaneously solubilized POPC vesicles into nanodiscs without using detergent. These results indicate that bihelical NSP forms nanodiscs with comparable stability to apoA-I and has an ability to control the size of nanodiscs simply by changing phospholipid/peptide ratios. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  8. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer's disease

    PubMed Central

    Liao, Fan; Yoon, Hyejin; Kim, Jungsu

    2017-01-01

    Purpose of review APOE4 genotype is the strongest genetic risk factor for Alzheimer's disease. Prevailing evidence suggests that amyloid β plays a critical role in Alzheimer's disease. The objective of this article is to review the recent findings about the metabolism of apolipoprotein E (ApoE) and amyloid β and other possible mechanisms by which ApoE contributes to the pathogenesis of Alzheimer's disease. Recent findings ApoE isoforms have differential effects on amyloid β metabolism. Recent studies demonstrated that ApoE-interacting proteins, such as ATP-binding cassette A1 (ABCA1) and LDL receptor, may be promising therapeutic targets for Alzheimer's disease treatment. Activation of liver X receptor and retinoid X receptor pathway induces ABCA1 and other genes, leading to amyloid β clearance. Inhibition of the negative regulators of ABCA1, such as microRNA-33, also induces ABCA1 and decreases the levels of ApoE and amyloid β. In addition, genetic inactivation of an E3 ubiquitin ligase, myosin regulatory light chain interacting protein, increases LDL receptor levels and inhibits amyloid accumulation. Although amyloid β-dependent pathways have been extensively investigated, there have been several recent studies linking ApoE with vascular function, neuroinflammation, metabolism, synaptic plasticity, and transcriptional regulation. For example, ApoE was identified as a ligand for a microglial receptor, TREM2, and studies suggested that ApoE may affect the TREM2-mediated microglial phagocytosis. Summary Emerging data suggest that ApoE affects several amyloid β-independent pathways. These underexplored pathways may provide new insights into Alzheimer's disease pathogenesis. However, it will be important to determine to what extent each mechanism contributes to the pathogenesis of Alzheimer's disease. PMID:27922847

  9. Angiotensin Converting Enzyme Inhibitors and Alzheimer Disease in the Presence of the Apolipoprotein E4 Allele

    PubMed Central

    Qiu, Wendy Wei Qiao; Lai, Angela; Mon, Timothy; Mwamburi, Mkaya; Taylor, Warren; Rosenzweig, James; Kowall, Neil; Stern, Robert; Zhu, Haihao; Steffens, David C.

    2013-01-01

    Objective The effect of angiotensin converting enzyme (ACE) inhibitors on Alzheimer disease (AD) remains unclear, with conflicting results reported. We studied the interaction of the Apolipoprotein E (ApoE) genotype and ACE inhibitors on AD. Methods This was a cross-sectional study of homebound elderly with an AD diagnosis and documentation of medications taken. ApoE genotype was determined. Results A total of 355 subjects with status on ApoE alleles and cognitive diagnoses were studied. The average age (mean ± SD) of this population was 73.3 ± 8.3 years old, and 73% were female. Cross-sectionally, there was no difference in the number of AD cases between ApoE4 carriers and ApoE4 non-carriers or between ACE inhibitor users and non-users in the homebound elderly. ApoE4 carriers treated with ACE inhibitors, however, had more diagnoses of AD compared with those who did not have the treatment (28% versus 6%, p = 0.01) or ApoE4 non-carriers treated with an ACE inhibitor (28% versus 10%, p = 0.03). ACE inhibitor use was associated with AD diagnosis only in the presence of an E4 allele. Using multivariate logistic regression analysis, we found that in diagnosed AD cases there was a significant interaction between ApoE4 and ACE inhibitor use (odds ratio: 20.85; 95% confidence interval: 3.08–140.95; p = 0.002) after adjusting for age, sex, ethnicity, and education. Conclusion The effects of ACE inhibitors on AD may be different depending on ApoE genotype. A prospective study is needed to determine whether ACE inhibitor use accelerates or poorly delays AD development in ApoE4 carriers compared with ApoE4 non-carriers. PMID:23567418

  10. Angiotensin converting enzyme inhibitors and Alzheimer disease in the presence of the apolipoprotein E4 allele.

    PubMed

    Qiu, Wendy Wei Qiao; Lai, Angela; Mon, Timothy; Mwamburi, Mkaya; Taylor, Warren; Rosenzweig, James; Kowall, Neil; Stern, Robert; Zhu, Haihao; Steffens, David C

    2014-02-01

    The effect of angiotensin converting enzyme (ACE) inhibitors on Alzheimer disease (AD) remains unclear, with conflicting results reported. We studied the interaction of the Apolipoprotein E (ApoE) genotype and ACE inhibitors on AD. This was a cross-sectional study of homebound elderly with an AD diagnosis and documentation of medications taken. ApoE genotype was determined. A total of 355 subjects with status on ApoE alleles and cognitive diagnoses were studied. The average age (mean ± SD) of this population was 73.3 ± 8.3 years old, and 73% were female. Cross-sectionally, there was no difference in the number of AD cases between ApoE4 carriers and ApoE4 non-carriers or between ACE inhibitor users and non-users in the homebound elderly. ApoE4 carriers treated with ACE inhibitors, however, had more diagnoses of AD compared with those who did not have the treatment (28% versus 6%, p = 0.01) or ApoE4 non-carriers treated with an ACE inhibitor (28% versus 10%, p = 0.03). ACE inhibitor use was associated with AD diagnosis only in the presence of an E4 allele. Using multivariate logistic regression analysis, we found that in diagnosed AD cases there was a significant interaction between ApoE4 and ACE inhibitor use (odds ratio: 20.85; 95% confidence interval: 3.08-140.95; p = 0.002) after adjusting for age, sex, ethnicity, and education. The effects of ACE inhibitors on AD may be different depending on ApoE genotype. A prospective study is needed to determine whether ACE inhibitor use accelerates or poorly delays AD development in ApoE4 carriers compared with ApoE4 non-carriers. Copyright © 2014. Published by Elsevier Inc.

  11. Age-Related Effects of the Apolipoprotein E Gene on Brain Function.

    PubMed

    Matura, Silke; Prvulovic, David; Hartmann, Daniel; Scheibe, Monika; Sepanski, Beate; Butz, Marius; Oertel-Knöchel, Viola; Knöchel, Christian; Karakaya, Tarik; Fußer, Fabian; Hattingen, Elke; Pantel, Johannes

    2016-03-16

    The apolipoprotein E (ApoE) ɛ4 allele is a well-established genetic risk factor for sporadic Alzheimer's disease. Some evidence suggests a negative role of the ApoE ɛ4 allele for cognitive performance in late life, while beneficial effects on cognition have been shown in young age. We investigated age-related effects of the ApoE gene on brain function by assessing cognitive performance, as well as functional activation patterns during retrieval of Face-Name pairs in a group of young (n = 50; age 26.4±4.6 years, 25 ɛ4 carriers) and old (n = 40; age 66.1±7.0 years, 20 ɛ4 carriers) participants. A cross-sectional factorial design was used to examine the effects of age, ApoE genotype, and their interaction on both cognitive performance and the blood oxygenation level dependent (BOLD) brain response during retrieval of Face-Name pairs. While there were no genotype-related differences in cognitive performance, we found a significant interaction of age and ApoE genotype on task-related activation bilaterally in anterior cingulate gyrus and superior frontal gyrus, as well as left and right insula. Old age was associated with increased activity in ɛ4 carriers. The increased BOLD response in old ɛ4 carriers during retrieval could indicate a neurocognitive disadvantage associated with the ɛ4 allele with increasing age. Furthermore, recruitment of neuronal resources resulted in enhanced memory performance in young ɛ4 carriers, pointing to a better neurofunctional capacity associated with the ApoE4 genotype in young age.

  12. Leisure activities, apolipoprotein E e4 status, and the risk of dementia.

    PubMed

    Yang, Sheng-Ying; Weng, Pei-Hsuan; Chen, Jen-Hau; Chiou, Jeng-Min; Lew-Ting, Chih-Yin; Chen, Ta-Fu; Sun, Yu; Wen, Li-Li; Yip, Ping-Keung; Chu, Yi-Min; Chen, Yen-Ching

    2015-12-01

    Leisure activities have been associated with a decreased risk of dementia. However, to date, no study has explored how apolipoprotein E (ApoE) e4 status or vascular risk factors modified the association between leisure activities and dementia risks. This case-control study recruited patients (age ≥ 60 years) with Alzheimer's disease (AD; n = 292) and vascular dementia (VaD; n = 144) and healthy controls (n = 506) from three teaching hospitals in Taiwan between 2007 and 2010. Information on patient's leisure activities were obtained through a questionnaire. Conditional logistic regression models were used to assess the association of leisure activities and ApoE e4 status with the risk of dementia. High-frequency physical activity was associated with a decreased risk of AD [adjusted odds ratio (AOR) = 0.45], and the results become more evident among ApoE e4 carriers with AD (AOR = 0.30) and VaD (AOR = 0.26). Similar findings were observed for cognitive (AOR = 0.42) and social activities (AOR = 0.55) for AD. High-frequency physical, cognitive, and social activities were associated with a decreased risk of VaD (AOR = 0.29-0.60). Physical and social activities significantly interacted with each other on the risk of VaD (pinteraction = 0.04). Physical activity consistently protects against AD and VaD. Significant interactions were identified across different types of leisure activities in lowering dementia risk. Copyright © 2014. Published by Elsevier B.V.

  13. Glucagon-like peptide-1 analogue liraglutide ameliorates atherogenesis via inhibiting advanced glycation end product-induced receptor for advanced glycosylation end product expression in apolipoprotein-E deficient mice.

    PubMed

    Li, Peicheng; Tang, Zhaosheng; Wang, Lin; Feng, Bo

    2017-09-01

    Glucagon-like peptide-1 (GLP-1) can protect arteriosclerotic lesions in apolipoprotein-E deficient (ApoE-/-) mice. Advanced glycation end products (AGEs)/receptor for advanced glycation end products (RAGE) interaction serves a key role in the development of diabetic vascular complications. The present study examined whether the GLP-1 analogue liraglutide can ameliorate atherogenesis via inhibiting AGEs-induced RAGE expression. Male ApoE-/- mice (age, 10 weeks) were divided into control, GLP-1, AGEs and AGEs+GLP-1 group. All mice were fed a high-fat diet. The AGEs and AGEs+GLP-1 groups were treated with intraperitoneal injection of AGEs (30 mg/kg/day). The GLP-1 and AGEs+GLP-1 groups were treated with subcutaneous injections of liraglutide (0.4 mg/kg/day). After 9 weeks, blood was drawn and the aortas were rapidly procured. The serum levels of AGEs, soluble RAGE (sRAGE), stromal cell-derived factor-1α (SDF-1α), total cholesterol and triacylglycerol were measured. Atherosclerotic plaque area was determined by Sudan IV staining. The mRNA and protein expression levels of RAGE were determined using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that AGEs treatment increased serum AGEs levels, increased the expression of RAGE in the aorta, and aggravated atherosclerotic lesions compared with the control. Liraglutide treatment reduced serum AGEs levels, reduced the expression of RAGE in aorta, and relieved atherosclerotic lesions compared with the control. In conclusion, these data suggested that liraglutide serves an anti-atherosclerotic effect via inhibiting AGEs-induced RAGE expression in ApoE-/- mice. These findings provide novel evidence for the use of GLP-1-type agents for the treatment of diabetic vascular complications.

  14. [Serum apolipoprotein and lipoprotein levels in patients with diabetes mellitus type 2].

    PubMed

    Gosiewska, A; Zarzycki, W; Depta, K; Składanek, J; Kinalski, M; Lopaczyński, W

    1989-04-01

    Lipid disturbances were evaluated in type II diabetes comparing the results of determinations of total cholesterol and HDL-cholesterol with apolipoprotein A and B levels. The study was carried out in 32 diabetics with type II disease with mean duration 7 +/- 9 years, 15 males and 17 females, and in 30 controls. In all cases postprandial glycaemia, haemoglobin A1C, total cholesterol concentration (by the Liebermann-Burchardt method), HDL-cholesterol (by the Błaszczyszyn method), triglycerides (by the enzymatic method), an apolipoprotein A and B (by Mancini radial immunodiffusion method using a Bio-Merieux kit) were determined. A significant correlation was demonstrated between the concentrations of cholesterol and apolipoprotein A, on the one hand, and blood glucose level, on the other, and apolipoprotein A was found to be a better indicator of lipid disturbances in the aspect of diabetes control then apolipoprotein B. The latter was a better indicator of lipid disturbances in diabetes connected with obesity, than total cholesterol.

  15. Surface pressure-dependent conformation change of apolipoprotein-derived amphipathic α-helices[S

    PubMed Central

    Mitsche, Matthew A.; Small, Donald M.

    2013-01-01

    Amphipathic α-helices (AαH) are the primary structural motif of exchangeable apolipoproteins. AαHs in exchangeable apolipoproteins adsorb, remodel, and desorb at the surface of plasma lipoproteins in response to changes in their size or composition. A triolein/water (TO/W) interface was used as a model surface to study adsorption and desorption of AαHs at a lipoprotein-like interface. We previously reported that AαH peptides spontaneously adsorb to a TO/W interface, but they only partially desorb from the surface when the excess peptide was removed from the system. This finding suggests that “exchangeable” apolipoproteins are in fact partially exchangeable and only desorb from a surface in response to compression or change in composition. Here, we develop a thermodynamic and kinetic model to describe this phenomenon based on the change in the interfacial pressure (Π) of the C-terminal 46 amino acids of apolipoprotein A-I (C46) at a TO/W interface. This model suggests that apolipoproteins have at least two interfacial conformations that are in a surface concentration and Π-dependent equilibrium. This two-state surface equilibrium model, which is based on experimental data and is consistent with dynamic changes in Π(t), provides insights into the selective metabolism and clearance of plasma lipoproteins and the process of lipoprotein remodeling. PMID:23528259

  16. Impact of apolipoprotein E genotype variation on means, variances, and correlations of plasma lipid, lipoprotein, and apolipoprotein traits in octogenarians

    SciTech Connect

    Haviland, M.B.; Sing, C.F.; Lussier-Cacan, S.; Davignon, J.

    1995-09-25

    The impact of apolipoprotein (apo) E genotype variation on means, variances and correlations between plasma lipid traits was studied in male and female octogenarians. Females had significantly higher mean levels of all 10 of the measured plasma lipid traits than males. The subset of concomitants (i.e., age, height, weight, body mass index, glucose and uric acid) that made a statistically significant contribution to interindividual variability was different in males and females for every trait considered. Gender-specific associations between variation in apo E genotype and variation in particular measures of lipid metabolism, adjusted for concomitant variation, were observed: in females there were no statistically significant associations while in males the means of the three common apo E genotypes were significantly different for adjusted measures of total cholesterol, low density lipoprotein cholesterol and low density lipoprotein-apo B. The common apo E genotypes were heterogeneous with respect to intragenotypic variance for adjusted log-transformed triglyceride levels in females only. Finally, the three common apo E genotypes were heterogeneous with respect to the correlation between traits, adjusted for concomitant variation, and gender influenced the manner in which the genotypes differed for specific correlations. This study documents that variation in the apo E gene has a significant impact on means, variances and correlations of plasma lipid traits in octogenarians, but the effects are context-, that is, gender- and age-, dependent. 65 refs., 4 figs., 3 tabs.

  17. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia.

    PubMed Central

    Ng, D S; Leiter, L A; Vezina, C; Connelly, P W; Hegele, R A

    1994-01-01

    We report a Canadian kindred with a novel mutation in the apolipoprotein (apo) A-I gene causing analphalipoproteinemia. The 34-yr-old proband, product of a consanguineous marriage, had bilateral retinopathy, bilateral cataracts, spinocerebellar ataxia, and tendon xanthomata. High density lipoprotein cholesterol (HDL-C) was < 0.1 mM and apoA-I was undetectable. Genomic DNA sequencing of the proband's apoA-I gene identified a nonsense mutation at codon [-2], which we designate as Q[-2]X. This mutation causes a loss of endonuclease digestion sites for both BbvI and Fnu4HI. Genotyping identified four additional homozygotes, four heterozygotes, and two unaffected subjects among the first-degree relatives. Q[-2]X homozygosity causes a selective failure to produce any portion of mature apoA-I, resulting in very low plasma level of HDL. Heterozygosity results in approximately half-normal apoA-I and HDL. Gradient gel electrophoresis and differential electroimmunodiffusion assay revealed that the HDL particles of the homozygotes had peak Stokes diameter of 7.9 nm and contained apoA-II without apoA-I (Lp-AII). Heterozygotes had an additional fraction of HDL3-like particles. Two of the proband's affected sisters had documented premature coronary heart disease. This kindred, the third reported apoA-I gene mutation causing isolated complete apoA-I deficiency, appears to be at significantly increased risk for atherosclerosis. Images PMID:8282791

  18. A 10-bp deletion in the apolipoprotein epsilon gene causing apolipoprotein E deficiency and severe type III hyperlipoproteinemia.

    PubMed Central

    Feussner, G.; Dobmeyer, J.; Gröne, H. J.; Lohmer, S.; Wohlfeil, S.

    1996-01-01

    Type III hyperlipoproteinemia (HLP) is usually associated with homozygosity for apolipoprotein (apo) E2. We identified a 30-year-old male German of Hungarian ancestry with severe type III HLP and apo E deficiency. The disease was expressed in an extreme phenotype with multiple cutaneous xanthomas. Apo E was detectable only in trace amounts in plasma but not in the different lipoprotein fractions. Direct sequencing of PCR-amplified segments of the apo epsilon gene identified a 10-bp deletion in exon 4 (bp 4037-4046 coding for amino acids 209-212 of the mature protein). The mutation is predictive for a reading frameshift introducing a premature stop codon (TGA) at amino acid 229. By western blot analysis, we found small amounts of a truncated apo E in the patient's plasma. Family analysis revealed that the proband was homozygous--and 10 of 24 relatives were heterozygous--for the mutation. Heterozygotes had, as compared to unaffected family members, significantly higher triglycerides (TG), very low-density lipoprotein (VLDL) cholesterol and a significantly higher VLDL cholesterol-to-serum TG ratio, which is indicative of a delayed remnant catabolism. We propose that the absence of a functionally active apo E is the cause of the severe type III HLP in the patient and that the mutation, even in a single dose in heterozygotes, predisposes in variable severity to the phenotypic expression of the disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8571954

  19. Polymorphism in the Apolipoprotein(a) Gene, Plasma Lipoprotein(a), Cardiovascular Disease, and Low-dose Aspirin Therapy

    PubMed Central

    Chasman, Daniel I.; Shiffman, Dov; Zee, Robert Y. L.; Louie, Judy Z.; Luke, May M.; Rowland, Charles M.; Catanese, Joseph J.; Buring, Julie E; Devlin, James J.; Ridker, Paul M

    2008-01-01

    Objective A minor allele variant (rs3798220) of apolipoprotein(a) has been reported to be associated with elevated plasma lipoprotein(a) [Lp(a)] and increased cardiovascular risk. We investigated whether this allele was associated with elevated Lp(a) and cardiovascular risk in Women's Health Study, a randomized trial of low-dose aspirin, and whether aspirin reduced cardiovascular risk in minor allele carriers. Methods and Results Genotypes of rs3798220 were determined for 25,131 initially healthy Caucasian participants. Median Lp(a) levels at baseline were 10.0, 79.5, and 153.9 mg/dL for major allele homozygotes, minor allele heterozygotes, and minor allele homozygotes, respectively (P<0.0001). During the 9.9 years of follow-up, minor allele carriers (3.7%) in the placebo group had two-fold higher risk of major cardiovascular events than non-carriers (age-adjusted hazard ratio (HR) = 2.21, 95% CI 1.39−3.52). Among carriers, risk was reduced more than two-fold by aspirin: for aspirin compared with placebo the age-adjusted HR was 0.44 (95% CI: 0.20−0.94); risk was not significantly reduced among non-carriers (age-adjusted HR=0.91, 95% CI: 0.77−1.08). This interaction between carrier status and aspirin allocation was significant (P=0.048). Conclusions In the Women's Health Study, carriers of an apolipoprotein(a) variant had elevated Lp(a), doubled cardiovascular risk, and appeared to benefit more from aspirin than non-carriers. PMID:18775538

  20. Apolipoprotein A1 in channel catfish: Transcriptional analysis, antimicrobial activity, and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to: 1) determine transcriptional profiles of apolipoprotein A1 (ApoA1) in collected channel catfish tissues after infection with A. hydrophila by bath immersion; 2) investigate whether recombinant channel catfish apolipoprotein A1 produced in E. coli expression syst...

  1. Apolipoprotein A1 in channel catfish: Transcriptional analysis, antimicrobial activity, and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to: 1) determine transcriptional profiles of apolipoprotein A1 (ApoA1) in collected channel catfish tissues after infection with A. hydrophila by bath immersion; 2) investigate whether recombinant channel catfish apolipoprotein A1 produced in E. coli expression syst...

  2. Apolipoprotein A1 as a novel anti-implantation biomarker in polycystic ovary syndrome: A case-control study

    PubMed Central

    Amjadi, Fatemehsadat; Aflatoonian, Reza; Javanmard, Shaghayegh Haghjoo; Saifi, Bita; Ashrafi, Mahnaz; Mehdizadeh, Mehdi

    2015-01-01

    Background: Women with polycystic ovary syndrome have lower pregnancy rates, possibly due to the decreased uterine receptivity. Successful implantation depends on protein networks that are essential for cross-talk between the embryo and endometrium. Apolipoprotein A1 has been proposed as a putative anti-implantation factor. In this study, we evaluated apolipoprotein A1 expression in human endometrial tissues. Materials and Methods: Endometrial apolipoprotein A1 messenger RNA (mRNA) and protein expression were investigated using quantitative real-time polymerase chain reaction (PCR) and Western blot. The distribution of apolipoprotein A1 was also detected by immunostaining. Samples were obtained from 10 patients with polycystic ovary syndrome and 15 healthy fertile women in the proliferative (on day 2 or day 3 before ovulation, n = 7) and secretory (on days 3-5 after ovulation, n = 8) phases. Results: Endometrial apolipoprotein A1 expression was upregulated in patients with polycystic ovary syndrome compared to normal subjects. However, apolipoprotein A1 expression in the proliferative phase was significantly higher than in the luteal phase (P value < 0.05). Conclusion: It seems that differentially expressed apolipoprotein A1 negatively affects endometrial receptivity in patients with polycystic ovary syndrome. The results showed that apolipoprotein A1 level significantly changes in the human endometrium during the menstrual cycle with minimum expression in the secretory phase, coincident with the receptive phase (window of implantation). Further studies are required to clarify the clinical application of this protein. PMID:26941806

  3. Targeting nanodisks via a single chain variable antibody--apolipoprotein chimera.

    PubMed

    Iovannisci, David M; Beckstead, Jennifer A; Ryan, Robert O

    2009-02-06

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that alpha-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.

  4. Postprandial changes in the distribution of apolipoprotein AIV between apolipoprotein B- and non apolipoprotein B-containing lipoproteins in obese women.

    PubMed

    Ferrer, F; Nazih, H; Zaïr, Y; Krempf, M; Bard, J M

    2003-12-01

    Plasma apolipoprotein AIV (apo AIV) level has been shown to be a good marker of triglyceride changes after a high-fat diet. However, the distribution of apo AIV between apo B- and non-apo B-containing lipoproteins (Lp) during the postprandial state has not been described as well as the influence of obesity on this distribution. Our aim was to study the influence of parameters related to obesity and insulin resistance on the postprandial changes in apo AIV-containing Lp after a high-fat meal in obese women. Twenty-three overweight or obese women (body mass index [BMI] ranging from 29.1 and 64.0 kg.1 m(-2)), for whom blood samples were taken after fasting overnight, participated in the study. Thirteen of these obese women were given a fatty meal and, in this case, blood samples were taken at fast and 30 minutes, 1, 2, 4, and 6 hours after ingestion of the fat meal. Apo AIV-containing particle families, Lp B:AIVf (family [f] of particles containing at least apo B and apo AIV) and Lp AIV non-Bf (family [f] of particles containing apo AIV, but free of apo B) were quantified by sandwich enzyme-linked immunosorbent assay (ELISA). When fasting, Lp B:AIVf and Lp AIV non-Bf did not correlate with any of the parameters related to obesity and insulin resistance, if one excepts a positive correlation between HDL-cholesterol (HDL-C) and Lp AIV non-Bf. Postprandial lipemia was associated with a trend towards an increase in the plasma levels of apo AIV-containing Lp 6 hours after fat ingestion. The postprandial peak of Lp B:AIVf and Lp AIV non-Bf occurred 2 hours after the triglyceride peak. The distribution between apo B- and non-apo B-containing Lp did not change after ingestion of the fat meal, if one excepts a tendancy towards a lower ratio of bound and nonbound forms at 8 hours. Fasting plasma Lp B:AIVf concentration correlated with the area under the curve (AUC) of plasma triglycerides (beta = 0.11, P <.02). In a multivariate analysis, BMI (beta = 51.85, P <.001), fasting

  5. Apolipoprotein A-I: A Molecule of Diverse Function.

    PubMed

    Mangaraj, Manaswini; Nanda, Rachita; Panda, Suchismita

    2016-07-01

    Apolipoprotein A-I (apo A-I) an indispensable component and a major structural protein of high-density lipoprotein (HDL), plays a vital role in reverse cholesterol transport and cellular cholesterol homeostasis since its identification. Its multifunctional role in immunity, inflammation, apoptosis, viral, bacterial infection etc. has crossed its boundary of its potential of protecting cardiovascular system and lowering cardiovascular disease risk, attributing HDL to be known as a protective fat removal particle. Its structural homology with prostacyclin stabilization factor has contributed to its anti-clotting and anti-aggregatory effect on platelet which has potentiated its cardio-protective role as well as its therapeutic efficacy against Alzheimer's disease. The binding affinity and neutralising action against endotoxin lipopolysaccharide, reduces the toxic manifestations of septic shock. As a negative acute phase protein, it blocks T-cell signalling of macrophages. However the recently identified anti-tumor activity of apo A-I has been highlighted in various models of melanoma, lung cancer, ovarian cancer, lymphoblastic leukaemia, gastric as well as pancreatic cancers. These cancer fighting effects are directed towards regression of tumor size and distant metastasis by its immuno modulatory activity as well as its clearing effect on serum lysophospholipids. This lowering effect on lysophospholipid concentration is utilized by apo A-I mimetic peptides to be used in retarding tumor cell proliferation and as a potential cancer therapeutic agent. Not only that, it inhibits the tumor associated neo-angiogenesis as well as brings down the matrix degrading enzymes associated with tumor metastasis. However this efficient therapeutic potential of apo A-I as an anti tumor agent awaits further future experimental studies in humans.

  6. Plasma apolipoprotein A1 as a biomarker for Parkinson disease.

    PubMed

    Qiang, Judy K; Wong, Yvette C; Siderowf, Andrew; Hurtig, Howard I; Xie, Sharon X; Lee, Virginia M-Y; Trojanowski, John Q; Yearout, Dora; B Leverenz, James; Montine, Thomas J; Stern, Matt; Mendick, Susan; Jennings, Danna; Zabetian, Cyrus; Marek, Ken; Chen-Plotkin, Alice S

    2013-07-01

    To identify plasma-based biomarkers for Parkinson disease (PD) risk. In a discovery cohort of 152 PD patients, plasma levels of 96 proteins were measured by multiplex immunoassay; proteins associated with age at PD onset were identified by linear regression. Findings from discovery screening were then assessed in a second cohort of 187 PD patients, using a different technique. Finally, in a third cohort of at-risk, asymptomatic individuals enrolled in the Parkinson's Associated Risk Study (PARS, n = 134), plasma levels of the top candidate biomarker were measured, and dopamine transporter (DAT) imaging was performed, to evaluate the association of plasma protein levels with dopaminergic system integrity. One of the best candidate protein biomarkers to emerge from discovery screening was apolipoprotein A1 (ApoA1; p = 0.001). Low levels of ApoA1 correlated with earlier PD onset, with a 26% decrease in risk of developing PD associated with each tertile increase in ApoA1 (Cox proportional hazards, p < 0.001, hazard ratio = 0.742). The association between plasma ApoA1 levels and age at PD onset was replicated in an independent cohort of PD patients (p < 0.001). Finally, in the PARS cohort of high-risk, asymptomatic subjects, lower plasma levels of ApoA1 were associated with greater putaminal DAT deficit (p = 0.037). Lower ApoA1 levels correlate with dopaminergic system vulnerability in symptomatic PD patients and in asymptomatic individuals with physiological reductions in dopamine transporter density consistent with prodromal PD. Plasma ApoA1 may be a new biomarker for PD risk. Copyright © 2013 American Neurological Association.

  7. Resveratrol exerts a biphasic effect on apolipoprotein M.

    PubMed

    Kurano, Makoto; Hara, Masumi; Nojiri, Takahiro; Ikeda, Hitoshi; Tsukamoto, Kazuhisa; Yatomi, Yutaka

    2016-01-01

    Resveratrol exerts a range of beneficial actions in several areas of pathophysiology, including vascular biology. Here, we have investigated the effects of resveratrol on apolipoprotein M (apoM), a carrier and modulator of sphingosine 1-phosphate (S1P), a vasoactive lipid mediator. We used a hepatoma cell line (HepG2), human primary hepatocytes and C57BL/6 mice. We measured apoM, S1P and related enzymes, LDL receptors and sirtuin1 activity, using Western blotting, RT-PCR and enzyme assays. We also used si-RNA to knock-down sirtuin1 in HepG2 cells. In cultures of HepG2 cells, resveratrol (1-10 μM) increased intracellular apoM and S1P. High concentrations of resveratrol (100 μM) decreased extracellular (in the culture medium) apoM, whereas moderate concentrations of resveratrol (1-10 μM) increased extracellular apoM. High concentrations of resveratrol also increased LDL receptor expression, while all concentrations of resveratrol activated the histone deacetylase sirtuin1. In cultures of human primary hepatocytes, resveratrol, at all concentrations, increased both intra- and extracellular apoM. When wild-type mice were fed a resveratrol-containing chow (0.3% w/w) for 2 weeks, both the plasma and hepatic apoM and S1P levels were increased. However, the resveratrol diet did not affect hepatic LDL receptor levels in this in vivo study. Resveratrol increased intra- and extracellular levels of apoM, along with intracellular S1P levels, while a high concentration of resveratrol reduced extracellular apoM. The present findings suggest that resveratrol has novel effects on the metabolic kinetics of S1P, a multi-functional bioactive phospholipid. © 2015 The British Pharmacological Society.

  8. Resveratrol exerts a biphasic effect on apolipoprotein M

    PubMed Central

    Kurano, Makoto; Hara, Masumi; Nojiri, Takahiro; Ikeda, Hitoshi; Tsukamoto, Kazuhisa

    2015-01-01

    Background and Purpose Resveratrol exerts a range of beneficial actions in several areas of pathophysiology, including vascular biology. Here, we have investigated the effects of resveratrol on apolipoprotein M (apoM), a carrier and modulator of sphingosine 1‐phosphate (S1P), a vasoactive lipid mediator. Experimental Approach We used a hepatoma cell line (HepG2), human primary hepatocytes and C57BL/6 mice. We measured apoM, S1P and related enzymes, LDL receptors and sirtuin1 activity, using Western blotting, RT‐PCR and enzyme assays. We also used si‐RNA to knock‐down sirtuin1 in HepG2 cells. Key Results In cultures of HepG2 cells, resveratrol (1‐10 μM) increased intracellular apoM and S1P. High concentrations of resveratrol (100 μM) decreased extracellular (in the culture medium) apoM, whereas moderate concentrations of resveratrol (1–10 μM) increased extracellular apoM. High concentrations of resveratrol also increased LDL receptor expression, while all concentrations of resveratrol activated the histone deacetylase sirtuin1. In cultures of human primary hepatocytes, resveratrol, at all concentrations, increased both intra‐ and extracellular apoM. When wild‐type mice were fed a resveratrol‐containing chow (0.3% w/w) for 2 weeks, both the plasma and hepatic apoM and S1P levels were increased. However, the resveratrol diet did not affect hepatic LDL receptor levels in this in vivo study. Conclusions and Implications Resveratrol increased intra‐ and extracellular levels of apoM, along with intracellular S1P levels, while a high concentration of resveratrol reduced extracellular apoM. The present findings suggest that resveratrol has novel effects on the metabolic kinetics of S1P, a multi‐functional bioactive phospholipid. PMID:26445217

  9. Plasma Apolipoprotein A1 as a Biomarker for Parkinson's Disease

    PubMed Central

    Qiang, Judy K.; Wong, Yvette C.; Siderowf, Andrew; Hurtig, Howard I.; Xie, Sharon X.; Lee, Virginia M.-Y.; Trojanowski, John Q.; Yearout, Dora; Leverenz, James; Montine, Thomas J.; Stern, Matt; Mendick, Susan; Jennings, Danna; Zabetian, Cyrus; Marek, Ken; Chen-Plotkin, Alice S.

    2013-01-01

    Objective To identify plasma-based biomarkers for Parkinson's Disease (PD) risk. Methods In a discovery cohort of 152 PD patients, plasma levels of 96 proteins were measured by multiplex immunoassay; proteins associated with age at PD onset were identified by linear regression. Findings from discovery screening were then assessed in a second cohort of 187 PD patients, using a different technique. Finally, in a third cohort of at-risk, asymptomatic individuals enrolled in the Parkinson's Associated Risk Study (PARS, n=134), plasma levels of the top candidate biomarker were measured, and dopamine transporter (DAT) imaging performed, to evaluate the association of plasma protein levels with dopaminergic system integrity. Results One of the best candidate protein biomarkers to emerge from discovery screening was apolipoprotein A1 (ApoA1, p=0.001). Low levels of ApoA1 correlated with earlier PD onset, with a 26% decrease in risk of developing PD associated with each tertile increase in ApoA1 (Cox proportional hazards p<0.001, hazard ratio=0.742). The association between plasma ApoA1 levels and age at PD onset replicated in an independent cohort of PD patients (p<0.001). Finally, in the PARS cohort of high-risk, asymptomatic subjects, lower plasma levels of ApoA1 were associated with greater putaminal DAT deficit (p=0.037). Interpretation Lower ApoA1 levels correlate with dopaminergic system vulnerability in symptomatic PD patients and in asymptomatic individuals with physiological reductions in dopamine transporter density consistent with prodromal PD. Plasma ApoA1 may be a new biomarker for PD risk. PMID:23447138

  10. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    SciTech Connect

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  11. Does Apolipoprotein E Genotype Increase Risk of Postoperative Delirium?

    PubMed Central

    Vasunilashorn, Sarinnapha; Ngo, Long; Kosar, Cyrus M.; Fong, Tamara G.; Jones, Richard N.

    2015-01-01

    Objectives To determine whether Apolipoprotein E (ApoE) is associated with postoperative delirium incidence, severity, and duration in older patients free of dementia at baseline. Design, Setting, Participants We examined 557 non-demented patients age ≥70 undergoing major non-cardiac surgery enrolled in the Successful Aging after Elective Surgery (SAGES) Study. Measurements We considered three ApoE measures: ε2, ε4 carriers vs. non-carriers, and a three-category ApoE measure. Delirium was determined using the Confusion Assessment Method (CAM) and chart review. We used generalized linear models to estimate the association between ApoE and delirium incidence, severity (peak CAM Severity [CAM-S] score), and days. Results ApoE ε2 and ε4 was present in 15% and 19% respectively, and postoperative delirium occurred in 24%. Among patients with delirium, the mean peak CAM-S score was 8.0 (standard deviation 4), with most patients experiencing one or two delirium days (51% or 28%, respectively). After adjusting for age, sex, surgical procedure, and preoperative cognitive function, ApoE ε4 and ε2 carrier status were not associated with postoperative delirium: RR for ε4=1.0, 95% confidence interval (CI) 0.7-1.5 and RR for ε2=0.9, 95% CI 0.6-1.4. No association between ApoE and delirium severity or number of delirium days was observed. Conclusions In older surgery patients free of dementia, our findings do not support the hypothesis that the ApoE genotype does not confer either risk or protection in postoperative delirium incidence, severity, or duration. Thus, an important genetic risk factor for Alzheimer's Disease does not affect risk of delirium. PMID:26238230

  12. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans

    PubMed Central

    Gonzales, Jon C.; Gordts, Philip L.S.M.; Foley, Erin M.; Esko, Jeffrey D.

    2013-01-01

    The heparan sulfate proteoglycan (HSPG) syndecan-1 (SDC1) acts as a major receptor for triglyceride-rich lipoprotein (TRL) clearance in the liver. We sought to identify the relevant apolipoproteins on TRLs that mediate binding to SDC1 and determine their clinical relevance. Evidence supporting ApoE as a major determinant arose from its enrichment in TRLs from mice defective in hepatic heparan sulfate (Ndst1f/fAlbCre+ mice), decreased binding of ApoE-deficient TRLs to HSPGs on human hepatoma cells, and decreased clearance of ApoE-deficient [3H]TRLs in vivo. Evidence for a second ligand was suggested by the faster clearance of ApoE-deficient TRLs after injection into WT Ndst1f/fAlbCre– versus mutant Ndst1f/fAlbCre+ mice and elevated fasting and postprandial plasma triglycerides in compound Apoe–/–Ndst1f/fAlbCre+ mice compared with either single mutant. ApoAV emerged as a candidate based on 6-fold enrichment of ApoAV in TRLs accumulating in Ndst1f/fAlbCre+ mice, decreased binding of TRLs to proteoglycans after depletion of ApoAV or addition of anti-ApoAV mAb, and decreased heparan sulfate–dependent binding of ApoAV-deficient particles to hepatocytes. Importantly, disruption of hepatic heparan sulfate–mediated clearance increased atherosclerosis. We conclude that clearance of TRLs by hepatic HSPGs is atheroprotective and mediated by multivalent binding to ApoE and ApoAV. PMID:23676495

  13. The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress

    PubMed Central

    Charron, Jean-Benoit F; Ouellet, Francois; Houde, Mario; Sarhan, Fathey

    2008-01-01

    Background Lipocalins are a large and diverse family of small, mostly extracellular proteins implicated in many important functions. This family has been studied in bacteria, invertebrate and vertebrate animals but little is known about these proteins in plants. We recently reported the identification and molecular characterization of the first true lipocalins from plants, including the Apolipoprotein D ortholog AtTIL identified in the plant model Arabidopsis thaliana. This study aimed to determine its physiological role in planta. Results Our results demonstrate that the AtTIL lipocalin is involved in modulating tolerance to oxidative stress. AtTIL knock-out plants are very sensitive to sudden drops in temperature and paraquat treatment, and dark-grown plants die shortly after transfer to light. These plants accumulate a high level of hydrogen peroxide and other ROS, which causes an oxidative stress that is associated with a reduction in hypocotyl growth and sensitivity to light. Complementation of the knock-out plants with the AtTIL cDNA restores the normal phenotype. On the other hand, overexpression enhances tolerance to stress caused by freezing, paraquat and light. Moreover, this overexpression delays flowering and maintains leaf greenness. Microarray analyses identified several differentially-regulated genes encoding components of oxidative stress and energy balance. Conclusion This study provides the first functional evidence that a plant lipocalin is involved in modulating tolerance to oxidative stress. These findings are in agreement with recently published data showing that overexpression of ApoD enhances tolerance to oxidative stress and increases life span in mice and Drosophila. Together, the three papers strongly support a similar function of lipocalins in these evolutionary-distant species. PMID:18671872

  14. Isoliquiritigenin Attenuates Atherogenesis in Apolipoprotein E-Deficient Mice

    PubMed Central

    Du, Fen; Gesang, Quzhen; Cao, Jia; Qian, Mei; Ma, Li; Wu, Dongfang; Yu, Hong

    2016-01-01

    Isoliquiritigenin (ISL) exhibits antioxidation and anti-inflammation activity. We sought to investigate the effects and mechanism of ISL on the development of atherosclerotic lesions in apolipoprotein E-deficient (apoE−/−) mice. Firstly, we determined that ISL reduced the mRNA levels of inflammatory factors interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and monocyte chemotactic protein-1 (MCP-1), while it increased the expression of several lipoprotein-related genes in peritoneal macrophages treated with lipopolysaccharide (LPS). ISL also enhanced peroxisome proliferator-activated receptor gamma (PPARγ) protein levels and reversed the changes of ATP-binding cassette transporter A (ABCA1) and cluster of differentiation 36 (CD36) in macrophages treated with oxidative low-density lipoprotein (ox-LDL). Then, in an in vivo study, female apoE−/− mice were fed a Western diet with ISL (0, 20, 100 mg/kg/day) added for 12 weeks. We found that ISL decreased the plasma cholesterol levels of very low-density lipoprotein (VLDL)/LDL, promoted plasma superoxide dismutase (SOD) and paraoxonase-1 (PON1) activities, and decreased plasma IL-6, TNF-α, and MCP-1 levels. Moreover, ISL significantly reduced the atherosclerotic lesions and hepatic steatosis in apoE−/− mice. In the liver, ISL altered the expression of several key genes (such as SRBI, ABCA1, ABCG8, PPARγ, and FASN) involving cholesterol-selective uptake and excretion into bile, triglyceride (TG) biosynthesis, and inflammation. These results suggest that the atheroprotective effects of ISL are due to the improvement of lipid metabolism, antioxidation, and anti-inflammation, which involve PPARγ-dependent signaling. PMID:27869741

  15. An abundant dysfunctional apolipoprotein A1 in human atheroma

    PubMed Central

    Huang, Ying; DiDonato, Joseph A.; Levison, Bruce S.; Schmitt, Dave; Li, Lin; Wu, Yuping; Buffa, Jennifer; Kim, Timothy; Gerstenecker, Gary; Gu, Xiaodong; Kadiyala, Chandra; Wang, Zeneng; Culley, Miranda K.; Hazen, Jennie E.; DiDonato, Anthony J.; Fu, Xiaoming; Berisha, Stela; Peng, Daoquan; Nguyen, Truc; Liang, Shaohong; Chuang, Chia-Chi; Cho, Leslie; Plow, Edward F.; Fox, Paul L.; Gogonea, Valentin; Tang, W.H. Wilson; Parks, John S.; Fisher, Edward A.; Smith, Jonathan D.; Hazen, Stanley L.

    2014-01-01

    Recent studies indicate high density lipoproteins (HDL) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma, are dysfunctional and extensively oxidized by myeloperoxidase (MPO), while in vitro oxidation of apoA1/HDL by MPO impairs its cholesterol acceptor function. We developed a high affinity monoclonal antibody (mAb) that specifically recognizes apoA1/HDL modified by the MPO/H2O2/Cl-system using phage display affinity maturation. An oxindolyl alanine (2-OH-Trp) moiety at tryptophan 72 of apoA1 is the immunogenic epitope. Mutagenesis studies confirm a critical role for apoA1 Trp72 in MPO-mediated inhibition of ABCA1-dependent cholesterol acceptor activity of apoA1 in vitro and in vivo. ApoA1 containing a 2-OH-Trp72 group (oxTrp72-apoA1) is in low abundance within the circulation, but accounts for 20% of the apoA1 in atherosclerotic plaque. OxTrp72-apoA1 recovered from human atheroma or plasma was lipid-poor, virtually devoid of cholesterol acceptor activity, and demonstrated both potent pro-inflammatory activities on endothelial cells and impaired HDL biogenesis activity in vivo. Elevated oxTrp72-apoA1 levels in subjects presenting to a cardiology clinic (n=627) were associated with increased cardiovascular disease risk. Circulating oxTrp72-apoA1 levels may serve as a way to monitor a pro-atherogenic process in the artery wall. PMID:24464187

  16. The promise of apolipoprotein A-I mimetics.

    PubMed

    Mendez, Armando J

    2010-04-01

    Synthetic high-density lipoprotein (HDL) and apolipoprotein (apo) A-I mimetic peptides emulate many of the atheroprotective biological functions attributed to HDL and can modify atherosclerotic disease processes. Administration of these agents as HDL replacement or modifying therapy has tremendous potential of providing new treatments for cardiovascular disease. Progress in the understanding of these agents is discussed in this review. Prospective, observational, and interventional studies have convincingly demonstrated that elevated serum levels of high-density lipoprotein-cholesterol (HDL-C) are associated with reduced risk for coronary heart disease (CHD). Although traditional pharmacological agents have shown modest utility in raising HDL levels and reducing CHD risk, use of HDL and apo A-I mimetics provides novel therapies to not only increase HDL levels, but to also influence HDL functionality. Evidence developed over the last several years has identified a number of pathways affected by synthetic HDL and apoA-I mimetic peptides, including enhancing reverse cholesterol transport and reducing oxidation and inflammation that directly influence the progression and regression of atherosclerotic disease. Clinical trials of relatively short-term synthetic HDL infusion into patients with CHD demonstrate beneficial effects. Use of apo A-I mimetic peptides could potentially overcome some of the limitations associated with use of the intact apo. Studies to establish the most efficacious peptides, optimal dosing regimens, and routes of administration are needed. Use of apo A-I mimetic peptides shows great promise as a therapeutic modality for HDL replacement and enhancing HDL function in treatment of patients with CHD.

  17. Plasma apolipoprotein E and severity of suicidal behaviour.

    PubMed

    Asellus, Peter; Nordström, Peter; Nordström, Anna-Lena; Jokinen, Jussi

    2016-01-15

    There is evidence for association between low cholesterol levels and suicidal behaviour. Since apolipoprotein E (ApoE) is involved in the cholesterol metabolism in both the periphery and in the central nervous system; it may be of particular interest in the neurobiology of suicidal behaviour. Furthermore, hypothalamic-pituitary-adrenal (HPA) axis function, one of the main biological systems implicated in both suicidal behaviour and early-life adversity, affect ApoE levels. Very few studies have assessed plasma ApoE in relation to suicidal behaviour. The purpose of this study was to investigate levels of ApoE in plasma in relation to the severity of suicidal behaviour and life-time adversity in the form of exposure to interpersonal violence in suicide attempters. A total of 100 suicide attempters (67 women and 33 men) were enroled in the study. Information on earlier suicide attempts and age at onset of suicidal behaviour was gathered using the Karolinska Suicide History Interview. The Karolinska Interpersonal Violence Scale was used to assess exposure to interpersonal violence. Plasma ApoE was measured by immunonephelometry according to accredited routines. Patients with at least one earlier suicide attempt had significantly higher ApoE levels compared to suicide attempters debuting with suicidal behaviour at inclusion in the study. A higher number of earlier suicide attempts was significantly correlated with higher plasma ApoE levels. Age at onset was significantly negatively correlated with ApoE after adjusting for age. ApoE showed a significant positive correlation with exposure to interpersonal violence as a child in male suicide attempters. Our findings indicate that ApoE may be related to stress and trauma and the temporal severity of suicidal behaviour.

  18. Nucleotide sequence and structure of the human apolipoprotein E gene.

    PubMed Central

    Paik, Y K; Chang, D J; Reardon, C A; Davies, G E; Mahley, R W; Taylor, J M

    1985-01-01

    The gene for human apolipoprotein E (apo-E) was selected from a library of cloned genomic DNA by screening with a specific cDNA hybridization probe, and its structure was characterized. The complete nucleotide sequence of the gene as well as 856 nucleotides of the 5' flanking region and 629 nucleotides of the 3' flanking region were determined. Analysis of the sequence showed that the mRNA-encoding region of the apo-E gene consists of four exons separated by three introns. In comparison to the structure of the mRNA, the introns are located in the 5' noncoding region, in the codon for glycine at position -4 of the signal peptide region, and in the codon for arginine at position +61 of the mature protein. The overall lengths of the apo-E gene and its corresponding mRNA are 3597 and 1163 nucleotides, respectively; a mature plasma protein of 299 amino acids is produced by this gene. Examination of the 5' terminus of the gene by S1 nuclease mapping shows apparent multiple transcription initiation sites. The proximal 5' flanking region contains a "TATA box" element as well as two nearby inverted repeat elements. In addition, there are four Alu family sequences associated with the apo-E gene: an Alu sequence located near each end of the gene and two Alu sequences located in the second intron. This knowledge of the structure permits a molecular approach to characterizing the regulation of the apo-E gene. Images PMID:2987927

  19. Apolipoprotein E and its role in aging and survival.

    PubMed

    Bonomini, Francesca; Filippini, Francesca; Hayek, Tony; Aviram, Michael; Keidar, Shlomo; Rodella, Luigi F; Coleman, Raymond; Rezzani, Rita

    2010-02-01

    The study of biological aging has seen spectacular progress in the last decade and markers are increasingly employed for understanding physiological processes that change with age. Recently, it has been demonstrated that apolipoprotein E (apoE) has a major impact on longevity, but its mechanisms are still not fully understood. ApoE-deficient (E(o)) mice have proved to be a very popular model for studying spontaneous hypercholesterolemia and the subsequent development of atherosclerotic lesions, but only limited data are available with regard to aging and aging changes. We used this murine model to better characterize the involvement of apoE in aging and to evaluate its role in the maintenance of normal organ morphology. Our results show that E(0) mice at different ages (6, 12, 20 weeks old) developed age-dependent morphological and biochemical alterations, including fibrosis (newly formed collagen), pro-inflammatory cytokine (IL-6 and iNOS), lipofuscin accumulation, and decrease of antioxidant enzymes (superoxide dismutase and catalase) in several organs (kidney, liver and heart). It is significant that the observed degenerative findings in E(0) mice at different ages (6, 12, 20 weeks old) were not identified in control mice (C57BL), at 6, 12 and 20 weeks of age. Consequently, since these mice showed enzymatic and structural alterations, normally linked to the age, such as increase of lipofuscin, pro-inflammatory cytokines and decrease of antioxidant enzymes, we can conclude that apoE is a useful player in studies of longevity and age-related diseases, such as inflammatory status and atherosclerosis that are known risk factors for functional decline and early mortality. Moreover, it is possible that apoE may also play a role in other pathological conditions including, for example, cancer, rheumatoid arthritis and macular degeneration.

  20. The distribution of apolipoprotein E alleles in Scottish perinatal deaths

    PubMed Central

    Becher, J‐C; Keeling, J W; McIntosh, N; Wyatt, B; Bell, J

    2006-01-01

    Background The apolipoprotein E (ApoE) polymorphism has been well studied in the adult human population, in part because the e4 allele is a known risk factor for Alzheimer's disease. Little is known of the distribution of ApoE alleles in newborns, and their association with perinatal brain damage has not been investigated. Methods ApoE genotyping was undertaken in a Scottish cohort of perinatal deaths (n = 261), some of whom had prenatal brain damage. The distribution of ApoE alleles in perinatal deaths was compared with that in healthy liveborn infants and in adults in Scotland. Results ApoE e2 was over‐represented in 251 perinatal deaths (13% v 8% in healthy newborns, odds ratio (OR) = 1.63, 95% confidence interval (CI) 1.13 to 2.36 and 13% v 8% in adults, OR = 1.67, 95% CI 1.16 to 2.41), both in liveborn and stillborn perinatal deaths. In contrast, the prevalence of ApoE e4 was raised in healthy liveborn infants (19%) compared with stillbirths (13%, OR = 1.59, 95% CI 1.11 to 2.26) and with adults (15%, OR = 1.35, 95% CI 1.04 to 1.76). However, no correlation was found between ApoE genotype and the presence or absence of perinatal brain damage. Conclusions This study shows a shift in ApoE allelic distribution in early life compared with adults. The raised prevalence of ApoE e2 associated with perinatal death suggests that this allele is detrimental to pregnancy outcome, whereas ApoE e4 may be less so. However, ApoE genotype did not appear to influence the vulnerability for perinatal hypoxic/ischaemic brain damage, in agreement with findings in adult brains and in animal models. PMID:16183800

  1. Expression and prognostic significance of apolipoprotein D in breast cancer.

    PubMed Central

    Díez-Itza, I.; Vizoso, F.; Merino, A. M.; Sánchez, L. M.; Tolivia, J.; Fernández, J.; Ruibal, A.; López-Otín, C.

    1994-01-01

    Apolipoprotein D (apo D) is a glycoprotein involved in the human plasma lipid transport system and present at large amounts in cyst fluid from women with gross cystic disease of the breast. Apo D expression in breast carcinomas was examined by immunoperoxidase staining of a series of 163 tumors. A total of 60 (36.8%) tumors were negative for apo D immunostaining, 28 (17.2%) carcinomas were weakly positive, 33 (20.2%) were moderately stained, whereas the remaining 42 (25.8%) tumors were strongly stained with the specific antibodies. No significant correlation was found between apo D content and tumor size, lymph node involvement, or biochemical parameters such as estrogen receptors, cathepsin D, or pS2 protein. However, the finding of a significant association between apo D and menopausal status of patients or differentiation grade of tumors, with apo D values being lower in tumors from premenopausal women or in poorly differentiated carcinomas, suggested a potential value of this glycoprotein as a prognostic factor in breast cancer. Preliminary analysis of relapse-free survival and overall survival in a subgroup of 152 women with a mean follow-up of 42 months confirmed that low apo D values were significantly associated to a shorter relapse-free survival and poorer survival. According to these data, we propose that apo D in combination with other well-established prognostic factors may contribute to more accurately identify subgroups of breast cancer patients with low or high risk for relapse and death. Images Figure 1 Figure 2 Figure 3 PMID:8311115

  2. Differential action of glucocorticoids on apolipoprotein E gene expression in macrophages and hepatocytes

    PubMed Central

    Trusca, Violeta Georgeta; Fuior, Elena Valeria; Fenyo, Ioana Madalina; Kardassis, Dimitris; Simionescu, Maya

    2017-01-01

    Apolipoprotein E (apoE) has anti-atherosclerotic properties, being involved in the transport and clearance of cholesterol-rich lipoproteins as well as in cholesterol efflux from cells. We hypothesized that glucocorticoids may exert anti-inflammatory properties by increasing the level of macrophage-derived apoE. Our data showed that glucocorticoids increased apoE expression in macrophages in vitro as well as in vivo. Dexamethasone increased ~6 fold apoE mRNA levels in cultured peritoneal macrophages and RAW 264.7 cells. Administered to C57BL/6J mice, dexamethasone induced a two-fold increase in apoE expression in peritoneal macrophages. By contrast, glucocorticoids did not influence apoE expression in hepatocytes, in vitro and in vivo. Moreover, dexamethasone enhanced apoE promoter transcriptional activity in RAW 264.7 macrophages, but not in HepG2 cells, as tested by transient transfections. Analysis of apoE proximal promoter deletion mutants, complemented by protein-DNA interaction assays demonstrated the functionality of a putative glucocorticoid receptors (GR) binding site predicted by in silico analysis in the -111/-104 region of the human apoE promoter. In hepatocytes, GR can bind to their specific site within apoE promoter but are not able to modulate the gene expression. The modulatory blockade in hepatocytes is a consequence of partial involvement of transcription factors and other signaling molecules activated through MEK1/2 and PLA2/PLC pathways. In conclusion, our study indicates that glucocorticoids (1) differentially target apoE gene expression; (2) induce a significant increase in apoE level specifically in macrophages. The local increase of apoE gene expression in macrophages at the level of the atheromatous plaque may have therapeutic implications in atherosclerosis. PMID:28355284

  3. Abdominal obesity with hypertriglyceridaemia, lipoprotein(a) and apolipoprotein A-I determine marked cardiometabolic risk.

    PubMed

    Onat, Altan; Can, Günay; Örnek, Ender; Sansoy, Vedat; Aydın, Mesut; Yüksel, Hüsniye

    2013-11-01

    Risks for coronary heart disease (CHD) and diabetes (T2DM) of the 'hypertriglyceridemic waist' phenotype (HtgW) warrant further investigation. We studied this issue and whether partial proinflammatory conversion of apolipoprotein (apo) A-I by lipoprotein(a) [Lp(a)] is a codeterminant. In a population-based prospective study, 1328 Turkish adults were analysed in four groups by the presence of abdominal obesity and elevated triglycerides (Htg). LDL-cholesterol levels, significantly elevated in isolated Htg, were lower in HtgW, yet significantly higher apoB and complement C3 values existed in women with HtgW in whom also the lowest Lp(a) values prevailed. Lp(a) was linearly associated, more strongly in HtgW than in the remaining groups, with apoB and, in women inversely, with gamma-glutamyltransferase. Incident HtgW was predicted, not in men, but in women inversely by Lp(a) (OR 0.80 [95%CI 0.65; 0.97]), regardless of adjustment for relevant confounders. After adjustment for conventional risk factors, HtgW (OR 2.84) and high apoA-I/HDL-C ratio (OR 1.50) were significantly and additively associated with combined prevalent and incident CHD risk. High apoA-I and low HDL-cholesterol levels interacted therein in women. Type-2 diabetes was strongly predicted by HtgW, mediated in men by high apoA-I/HDL-C ratio. HtgW is associated with excess inflammatory markers, is predicted in women paradoxically by lower circulating Lp(a) and is associated in both sexes with marked excess cardiometabolic risk to which high apoA-I/HDL-C ratio contributes additively. These findings are consistent in women with apoA-I being oxidized via aggregation to Lp(a). © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  4. Low density lipoprotein receptor-related protein 1 dependent endosomal trapping and recycling of apolipoprotein E.

    PubMed

    Laatsch, Alexander; Panteli, Malamatenia; Sornsakrin, Marijke; Hoffzimmer, Britta; Grewal, Thomas; Heeren, Joerg

    2012-01-01

    Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles.

  5. Low Density Lipoprotein Receptor-Related Protein 1 Dependent Endosomal Trapping and Recycling of Apolipoprotein E

    PubMed Central

    Laatsch, Alexander; Panteli, Malamatenia; Sornsakrin, Marijke; Hoffzimmer, Britta; Grewal, Thomas; Heeren, Joerg

    2012-01-01

    Background Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. Principal Findings Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. Conclusion We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles. PMID:22238606

  6. Association between Apolipoprotein E genotype and cerebral palsy is not confirmed in a Caucasian population.

    PubMed

    McMichael, Gai L; Gibson, Catherine S; Goldwater, Paul N; Haan, Eric A; Priest, Kevin; Dekker, Gustaaf A; MacLennan, Alastair H

    2008-11-01

    Apolipoprotein E (APOE) plays a significant role in lipid metabolism and has been implicated in the growth and repair of injured neurons. Two small studies have suggested an association between APOE genotype and cerebral palsy. We investigated if APOE genotype is associated with an increased risk for cerebral palsy, influences the type of cerebral palsy or interacts with prenatal viral infection to influence risk of cerebral palsy. The population-based case-control study comprised newborn screening cards of 443 Caucasian patients with cerebral palsy and 883 Caucasian matched controls. APOE genotyping was performed on DNA extracted from dried blood spots. Allelic and genotypic frequencies did not differ between cases and controls and combined frequencies were 0.10 (epsilon2), 0.76 (epsilon3), 0.14 (epsilon4), 0.03 (epsilon2/epsilon2), 0.10 (epsilon2/epsilon3), 0.03 (epsilon2/epsilon4), 0.02 (epsilon4/epsilon4), 0.21 (epsilon3/epsilon4), 0.61 (epsilon3/epsilon3). APOE genotype was correlated with cerebral palsy, type of cerebral palsy, gestation at birth and the presence of viral nucleic acids detected in previous work. Analysis by gestational age (all gestational ages, >/=37, 32-36 and <32 weeks) and type of cerebral palsy (all types, diplegia, hemiplegia and quadriplegia) showed no association between APOE genotype and cerebral palsy in this Caucasian population. An association between prenatal viral infection, APOE genotype and cerebral palsy was not demonstrated. These results did not confirm an association between APOE genotype, cerebral palsy, type of cerebral palsy and prenatal infection in a Caucasian population. Given the low frequency of APOE epsilon2 and some of the heterozygote and homozygote combinations in this study, a larger study is assessing this further.

  7. Apolipoprotein A-I Helsinki promotes intracellular acyl-CoA cholesterol acyltransferase (ACAT) protein accumulation.

    PubMed

    Toledo, Juan D; Garda, Horacio A; Cabaleiro, Laura V; Cuellar, Angela; Pellon-Maison, Magali; Gonzalez-Baro, Maria R; Gonzalez, Marina C

    2013-05-01

    Reverse cholesterol transport is a process of high antiatherogenic relevance in which apolipoprotein AI (apoA-I) plays an important role. The interaction of apoA-I with peripheral cells produces through mechanisms that are still poorly understood the mobilization of intracellular cholesterol depots toward plasma membrane. In macrophages, these mechanisms seem to be related to the modulation of the activity of acyl-CoA cholesterol acyltransferase (ACAT), the enzyme responsible for the intracellular cholesterol ester biosynthesis that is stored in lipid droplets. The activation of ACAT and the accumulation of lipid droplets play a key role in the transformation of macrophages into foam cells, leading to the formation of atheroma or atherosclerotic plaque. ApoA-I Helsinki (or ∆K107) is a natural apoA-I variant with a lysine deletion in the central protein region, carriers of which have increased atherosclerosis risk. We herein show that treatment of cultured RAW macrophages or CHOK1 cells with ∆K107, but not with wild-type apoA-I or a variant containing a similar deletion at the C-terminal region (∆K226), lead to a marked increase (more than 10 times) in the intracellular ACAT1 protein level as detected by western blot analysis. However, we could only detect a slight increase in cholesteryl ester produced by ∆K107 mainly when Chol loading was supplied by low-density lipoprotein (LDL). Although a similar choline-phospholipid efflux is evoked by these apoA-I variants, the change in phosphatidylcholine/sphyngomyelin distribution produced by wild-type apoA-I is not observed with either ∆K107 or ∆K226.

  8. Apolipoprotein E ε4 modulates functional brain connectome in Alzheimer's disease.

    PubMed

    Wang, Jinhui; Wang, Xiao; He, Yi; Yu, Xin; Wang, Huali; He, Yong

    2015-05-01

    The apolipoprotein E (APOE) ɛ4 allele is a well-established genetic risk factor for Alzheimer's disease (AD). Recent research has demonstrated an APOE ɛ4-mediated modulation of intrinsic functional brain networks in cognitively normal individuals. However, it remains largely unknown whether and how APOE ɛ4 affects the brain's functional network architecture in patients with AD. Using resting-state functional MRI and graph-theory approaches, we systematically investigated the topological organization of whole-brain functional networks in 16 APOE ɛ4 carriers and 26 matched noncarriers with AD at three levels: global whole-brain, intermediate module, and regional node/connection. Neuropsychological analysis showed that the APOE ɛ4 carriers performed worse on delayed memory but better on a late item generation of a verbal fluency task (associated with executive function) than noncarriers. Whole-brain graph analyses revealed that APOE ɛ4 significantly disrupted whole-brain topological organization as characterized by (i) reduced parallel information transformation efficiency; (ii) decreased intramodular connectivity within the posterior default mode network (pDMN) and intermodular connectivity of the pDMN and executive control network (ECN) with other neuroanatomical systems; and (iii) impaired functional hubs and their rich-club connectivities that primarily involve the pDMN, ECN, and sensorimotor systems. Further simulation analysis indicated that these altered connectivity profiles of the pDMN and ECN largely accounted for the abnormal global network topology. Finally, the changes in network topology exhibited significant correlations with the patients' cognitive performances. Together, our findings suggest that the APOE genotype modulates large-scale brain networks in AD and shed new light on the gene-connectome interaction in this disease.

  9. Apolipoprotein A-I Milano exhibits potent antioxidant activity on phospholipid surfaces

    SciTech Connect

    Bielicki, John K.; Oda, Michael N.

    2001-09-21

    Apolipoprotein(apo)A-IMilano and apoA-IParis are rare cysteine variants of apoA-I that produce a HDL deficiency in the absence of cardiovascular disease in humans. This paradox provides the basis for the hypothesis that the cysteine variants posses a beneficial activity not associated with wild-type apoA-I (apoA-IWT). In this study, a unique antioxidant activity of apoA-IMilano and apoA-IParis is described. Antioxidant activity was observed using the monomeric form of the variants and was equally effective before and after initiation of oxidative events. ApoA-IMilano was twice as effective as apoA-IParis in preventing lipoxygenase-mediated oxidation of phospholipids; whereas, apoA-IWT was poorly active. ApoA-IMilano protected phospholipid from reactive oxygen species (ROS) generated via xanthine/xanthine oxidase (X/Xo) but failed to inhibit X/Xo induced reduction of cytochrome C. These results indicate that (1) the antioxidant activity of apoA-IMilano was dependent on phospholipid and (2) the cysteine variant was unable to directly quench ROS in the aqueous phase. There were no differences between lipid-free apoA-IMilano, apoA-IParis, and apoA-IWT in mediating the efflux of cholesterol from macrophages indicating the cysteine variants interacted normally with the ABCA1 efflux pathway. The results indicate that incorporation of a free thiol within an amphipathic alpha helix of apoA-I confers an antioxidant activity distinct from that of apoA-IWT. These studies are the first to relate addition-of-function to rare cysteine mutations in apoA-I primary sequence.

  10. Apolipoprotein E gene associations in age-related macular degeneration: the Melbourne Collaborative Cohort Study.

    PubMed

    Adams, Madeleine K M; Simpson, Julie A; Richardson, Andrea J; English, Dallas R; Aung, Khin Zaw; Makeyeva, Galina A; Guymer, Robyn H; Giles, Graham G; Hopper, John; Robman, Liubov D; Baird, Paul N

    2012-03-15

    The apolipoprotein E gene (APOE) has been found to be associated with age-related macular degeneration (AMD). Reported associations have been questioned, as they are opposite those for Alzheimer's disease and cardiovascular disease. The authors examined associations between APOE genotype and AMD using a case-control study (2,287 cases and 2,287 controls individually matched on age, sex, and country of origin) nested within Melbourne Collaborative Cohort Study participants aged 48-86 years at AMD detection. The odds ratio for early AMD among participants with ε2-containing genotypes (ε2ε2/ε2ε3/ε2ε4) was 1.32 (95% confidence interval (CI): 1.11, 1.58; P = 0.002) versus persons with genotype ε3ε3. Associations with early AMD varied by smoking status; ε2-containing genotypes were positively associated with early AMD for never and previous smokers (never smokers: odds ratio (OR) = 1.40, 95% CI: 1.12, 1.76 (P = 0.003); previous smokers: OR = 1.39, 95% CI: 1.00, 1.93 (P = 0.05)) but not for current smokers (OR = 0.66, 95% CI: 0.34, 1.30 (P = 0.2; interaction P = 0.05). The ε4-containing genotype group (ε3ε4/ε4ε4) had an inverse association with early AMD among current smokers only (OR = 0.41, 95% CI: 0.22, 0.77 (P = 0.005)). These results highlight the importance of stratifying by smoking status in elderly populations. Smokers who survive to old age may be more likely to possess unknown genotypes which modify exposure-disease associations.

  11. Solution Conditions Affect the Ability of the K30D Mutation To Prevent Amyloid Fibril Formation by Apolipoprotein C-II: Insights from Experiments and Theoretical Simulations.

    PubMed

    Mao, Yu; Todorova, Nevena; Zlatic, Courtney O; Gooley, Paul R; Griffin, Michael D W; Howlett, Geoffrey J; Yarovsky, Irene

    2016-07-12

    Apolipoproteins form amphipathic helical structures that bind lipid surfaces. Paradoxically, lipid-free apolipoproteins display a strong propensity to form cross-β structure and self-associate into disease-related amyloid fibrils. Studies of apolipoprotein C-II (apoC-II) amyloid fibrils suggest that a K30-D69 ion pair accounts for the dual abilities to form helix and cross-β structure. Consistent with this is the observation that a K30D mutation prevents fibril formation under standard fibril forming conditions. However, we found that fibril formation by K30D apoC-II proceeded readily at low pH and a higher salt or protein concentration. Structural analysis demonstrated that K30D apoC-II fibrils at pH 7 have a structure similar to that of the wild-type fibrils but are less stable. Molecular dynamics simulations of the wild-type apoC-II fibril model at pH 7 and 3 showed that the loss of charge on D69 at pH 3 leads to greater separation between residues K30 and D69 within the fibril with a corresponding reduction in β-strand content around residue 30. In contrast, in simulations of the K30D mutant model at pH 7 and 3, residues D30 and D69 moved closer at pH 3, accompanied by an increase in β-strand content around residue 30. The simulations also demonstrated a strong dominance of inter- over intramolecular contacts between ionic residues of apoC-II and suggested a cooperative mechanism for forming favorable interactions between the individual strands under different conditions. These observations demonstrate the important role of the buried K30-D69 ion pair in the stability and solution properties of apoC-II amyloid fibrils.

  12. Expression of the C-terminal domain of human apolipoprotein A-I using a chimeric apolipoprotein.

    PubMed

    Sallee, Daniel E; Horn, James V C; Fuentes, Lukas A; Weers, Paul M M

    2017-09-01

    Human apolipoprotein A-I (apoA-I) is the most abundant protein in high-density lipoprotein, an anti-atherogenic lipid-protein complex responsible for reverse cholesterol transport. The protein is composed of an N-terminal helix bundle domain, and a small C-terminal (CT) domain. To facilitate study of CT-apoA-I, a novel strategy was employed to produce this small domain in a bacterial expression system. A protein construct was designed of insect apolipophorin III (apoLp-III) and residues 179-243 of apoA-I, with a unique methionine residue positioned between the two proteins and an N-terminal His-tag to facilitate purification. The chimera was expressed in E. coli, purified by Ni-affinity chromatography, and cleaved by cyanogen bromide. SDS-PAGE revealed the presence of three proteins with masses of 7 kDa (CT-apoA-I), 18 kDa (apoLp-III), and a minor 26 kDa band of uncleaved chimera. The digest was reloaded on the Ni-affinity column to bind apoLp-III and uncleaved chimera, while CT-apoA-I was washed from the column and collected. Alternatively, CT-apoA-I was isolated from the digest by reversed-phase HPLC. CT-apoA-I was α-helical, highly effective in solubilizing phospholipid vesicles and disaggregating LPS micelles. However, CT-apoA-I was less active compared to full-length apoA-I in protecting lipolyzed low density lipoproteins from aggregating, and disrupting phosphatidylglycerol bilayer vesicles. Thus the novel expression system produced mg quantities of functional CT-apoA-I, facilitating structural and functional studies of this critical domain of apoA-I. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quantitative measurement of lipoprotein particles containing both apolipoprotein AIV and apolipoprotein B in human plasma by a noncompetitive ELISA.

    PubMed

    Ferrer, Fanny; Bigot-Corbel, Edith; N'Guyen, Patrick; Krempf, Michel; Bard, Jean-Marie

    2002-06-01

    A reliable method for plasma would be useful to investigate the role of apolipoprotein (apo) AIV when associated with apo B-containing or triglyceride-rich lipoproteins. We used a sandwich ELISA to quantify lipoprotein B:AIV particles (Lp B:AIVf; lipoproteins containing at least apo B and apo AIV) in plasma. The method used microtiter plates coated with purified anti-apo B immunoglobulins that selectively retained apo B-containing particles. Lipoproteins containing both apo B and apo AIV were distinguished from those containing only apo B by use of a peroxidase-labeled anti-apo AIV antibody. These subspecies were revealed by ABTS reagent and further quantified by spectrophotometry. Results were expressed in mg/L apo AIV associated with apo B. This method was applied to samples with different cholesterol and triglyceride concentrations. The developed sandwich ELISA method identified and quantified Lp B:AIVf in plasma samples. Within- and between-run CVs were approximately 10%, and analytical recoveries were 95-107%. Results were not significantly influenced by addition of triglycerides or by storage at -20 degrees C (up to 9 months). Under these conditions, plasma Lp B:AIVf concentrations were statistically higher in hypercholesterolemic and mixed hyperlipidemic individuals (53 +/- 13 mg/L; P <0.001 and 70 +/- 18 mg/L; P <0.001, respectively) than in normolipidemic individuals (43 +/- 12 mg/L). Lp B:AIVf concentration appeared to be well correlated with total cholesterol, triglycerides, LDL-cholesterol, and apo B. These results were in contrast to total apo AIV, which was not different between dyslipidemic and normolipidemic individuals. The developed ELISA method for Lp B:AIVf in plasma combines specificity, reliability, and speed. The increase in Lp B:AIVf concentrations in various dyslipidemic states, together with a lack of change in total apo AIV concentrations, suggests a redistribution of apo AIV toward apo B-containing lipoproteins when these lipoproteins

  14. Genetic studies of human apolipoproteins. IX. Apolipoprotein D polymorphism and its relation to serum lipoprotein lipid levels.

    PubMed Central

    Kamboh, M I; Albers, J J; Majumder, P P; Ferrell, R E

    1989-01-01

    Apolipoprotein D (APO D) is a constituent of plasma high-density lipoproteins. Its precise role in lipid metabolism is not well established, though it may be involved in cholesterol esterification and cholester ester transport to the liver for catabolism. No genetic polymorphism has been reported in the APO D gene product. To investigate the extent of genetic variation at the APO D structural locus, we have developed an isoelectric focusing-immunoblotting technique and have screened a large number of plasma samples from U.S. whites, U.S. blacks, Nigerian blacks, the Aleuts of the Pribilof Islands, Eskimo groups from Kodiak Island and St. Lawrence Island, and Amerindian populations from Mexico and Canada. Except for the U.S. blacks and Nigerian blacks, the APO D locus is monomorphic in all other population groups tested. In populations with black ancestry, the products of two alleles, APO D*1 and APO D*2, have been observed at respective allele frequencies .987 and .013 in U.S. blacks and .978 and .022 in Nigerian blacks. The detection of a unique protein polymorphism in blacks makes APO D a useful black marker of significance in anthropogenetics and racial admixture studies. In addition to the interindividual variation observed, APO D reveals extensive intraindividual molecular variation with a multiple banding pattern. The basis of this molecular variation is explained, in part, by variation in the number of terminal sialic acid residues. We have investigated the effect of the APO D polymorphism on triglycerides, total cholesterol, LDL-, VLDL-, HDL-, and HDL3 cholesterol in 352 Nigerian blacks (190 males and 162 females).(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 PMID:2741945

  15. Apolipoprotein CII from rainbow trout (Oncorhynchus mykiss) is functionally active but structurally very different from mammalian apolipoprotein CII.

    PubMed

    Shen, Y; Lindberg, A; Olivecrona, G

    2000-08-22

    Apolipoprotein CII (apoCII) plays an important role in plasma lipid metabolism as an activator for lipoprotein lipase (LPL). We have amplified and sequenced apoCII cDNA from rainbow trout. Amino acid sequence analyses confirmed that this sequence corresponded to the protein that had apoCII activity. Northern blot analyses showed that apoCII mRNA was present in both liver and intestine, but the level in intestine was very low. Two major transcripts (800 and 600bp) were found. The predicted amino acid sequence consists of 112 amino acid residues, including the signal peptide. The mature peptide is seven residues longer than human apoCII (86 versus 79 residues) due to an extension at the amino-terminal end. The rainbow trout sequence showed an overall identity of only 20-25% to previously known apoCII sequences. The carboxy-terminal region (residues 51-79, human numbering) showed 35-45% identity to other apoCII sequences, while in the amino-terminal region, there was little if any identity and it was not possible to predict any long amphipathic, potentially lipid-binding alpha-helices. Trout apoCII was present in all lipoprotein fractions including LDL. At +10 degrees C trout plasma showed higher ability to stimulate LPL than human plasma. We conclude that apoCII from rainbow trout is in most parts structurally different from apoCII from other species, and that it is adapted to function at low temperature.

  16. International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. IV. Comparability of apolipoprotein B values by use of International Reference Material.

    PubMed

    Marcovina, S M; Albers, J J; Kennedy, H; Mei, J V; Henderson, L O; Hannon, W H

    1994-04-01

    We performed temporal and thermal stability studies on SP3-07, a liquid-stabilized reference material for apolipoprotein (apo) B, selected during the previous phase of the International Federation of Clinical Chemistry project on standardization of apolipoprotein measurements. Results indicate that SP3-07 stored at -70 degrees C has the long-term stability required for a reference material. We assigned an accuracy-based apo B value of 1.22 g/L to SP3-07, using a nephelometric method that was calibrated with freshly isolated low-density lipoprotein for which the apo B mass value was determined by a standardized sodium dodecyl sulfate-Lowry procedure. Using a common protocol, the study participants transferred the assigned mass value from SP3-07 to the individual calibrators of the analytical systems and measured the apo B concentration of 20 fresh-frozen samples obtained from individual donors and covering a clinically relevant range of apo B values. The among-laboratory CV on these samples, analyzed by 25 analytical systems, ranged from 3.1% to 6.7%. These results demonstrate the lack of matrix effects of SP3-07 and its ability to provide accurate and comparable apo B values in a variety of immunochemical methods. On the basis of the outcome of these studies, the World Health Organization has endorsed SP3-07 as the International Reference Material for Apolipoprotein B.

  17. Expression of mRNA of apolipoprotein E, apolipoprotein A-IV, and matricellular proteins in the myocardium and intensity of fibroplastic processes during experimental hypercholesterolemia.

    PubMed

    Lushnikova, E L; Nepomnyashchikh, L M; Pichigin, V I; Klinnikova, M G; Nepomnyashchikh, R D; Sergeevichev, D S

    2013-12-01

    The expression of mRNA of matricellular proteins (osteopontin, and lumican), apolipoproteins E and A-IV, and microsomal triglyceride transfer protein, and the intensity of fibroplastic processes were studied in the myocardium of rats during experimental chronic hypercholesterolemia. We have found that the development of chronic hypercholesterolemia was followed by an increase in volume density of interstitial connective tissue in the myocardium reflecting the activation of fibroplastic processes. A slight positive correlation was observed between the connective tissue density in the myocardium and expression of osteopontin mRNA (r=0.408) and lumican mRNA (r=0.470). Myocardium remodeling during hypercholesterolemia is realized against the background of increased expression of apolipoproteins E and A-IV mRNA and microsomal triglyceride transfer protein mRNA involved in transport and metabolism of lipoproteins in several tissues and probably play a pivotal role in the regulation of lipoprotein transport and metabolism in the myocardium. We concluded that the increase in the expression of apolipoproteins (E and A-IV) and microsomal triglyceride transfer protein play adaptive and compensatory role and is related to the increase in lipoprotein utilization by macrophages.

  18. Apolipoprotein E phenotypes in patients with gout: relation with hypertriglyceridaemia.

    PubMed Central

    Moriwaki, Y; Yamamoto, T; Takahashi, S; Tsutsumi, Z; Higashino, K

    1995-01-01

    OBJECTIVE--To elucidate the relationship, if any, between lipid abnormalities and apolipoprotein E (apo E) polymorphism, by investigating apo E phenotype and allele frequency. METHODS--Fasting blood samples were taken for determination of apo E phenotype and serum lipids in 221 male patients with gout and 141 control male subjects. Apo E phenotype was determined by one dimensional flat gel isoelectric focusing. RESULTS--Frequencies of apo E phenotypes in gout were apo E3/3 67.9%, E4/3 18.1%, E4/4 2.3%, E4/2 1.8%, E3/2 9.5%, and E2/2 0.5%; those in control male subjects were 74.5%, 15.6%, 0%, 1.4%, 7.1%, and 1.4%, respectively. Frequencies of the e2, e3, and e4 alleles in gout were 0.061, 0.817 and 0.122, compared with the corresponding control frequencies of 0.057, 0.858 and 0.085. These differences in apo E phenotype and allele frequencies between gout and control subjects were not significant. The frequency of apo e4 allele in hyperlipidaemic gout subjects was significantly greater than that in normolipidaemic gout subjects; in contrast, its frequency was not different between hyperlipidaemic and normolipidaemic control subjects. Serum triglyceride, total cholesterol, apo B and E concentrations were significantly greater in gouty patients with the apo E4/3 phenotype than in those with gout having the apo E3/3 phenotype. CONCLUSIONS--These data suggest that gout subjects with hyperlipidaemia (hypertriglyceridaemia, hypercholesterolaemia or both) possess the apo e4 allele with higher frequency than those with normolipidaemia. They also suggest that apo e4 may induce some susceptibility to the development of hyperlipidaemia in gout in addition to that induced by obesity or excessive alcohol consumption, and may contribute to the high prevalence of atherosclerotic diseases in gout patients. Images PMID:7794039

  19. Intestinal apolipoprotein synthesis and secretion in the suckling pig.

    PubMed

    Black, D D; Davidson, N O

    1989-02-01

    The present studies report characterization of intestinal apolipoprotein (apoLp) synthesis and secretion in the suckling pig. Lipoproteins (d less than 1.006 g/ml) from mesenteric lymph were found to contain both apoB-100 and B-48, in addition to apoA-IV, E, A-I, and Cs. Lymph low density lipoproteins (LDL) and high density lipoproteins (HDL) contained mainly apoB-100 and apoA-I, respectively. Analysis of core cholesteryl ester fatty acid composition suggested filtration from plasma as the major source of lymph LDL and HDL. Dual radioisotope labeling of intestinal and hepatic apoLps in lymph, as well as immunoprecipitation of radiolabeled intestinal mucosa, demonstrated intestinal synthesis of apoB-48, A-IV, and A-I. There was no evidence for apoB-100 synthesis by intestinal mucosa. By contrast, piglet liver synthesized apoB-100, E, A-I, and Cs, but not apoB-48. Newly synthesized intracellular intestinal apoA-I was mainly (basic) isoform 1 (pI 5.58), while lymph and plasma HDL apoA-I were predominantly isoform 3 (pI 5.33), mature apoA-I. Lymph apoB (P less than 0.001) and apoA-I (P less than 0.04) mass output increased significantly during lipid absorption. Studies were subsequently conducted in fasting, fat-fed, bile-diverted, and sham-operated animals to determine the role of both dietary and biliary lipid in regulating intestinal apoLp biosynthesis. Proximal and distal small intestinal loops were pulse-radiolabeled with [3H]leucine, and apoB-48 and A-I were immunoprecipitated from cytosolic supernatants. Although a proximal to distal gradient in intestinal synthesis rates for both apoB and A-I was noted in all groups, the acute absorption of dietary lipid did not significantly increase apoB or A-I synthesis in either location. Complete removal of biliary lipid for 48 hr did not alter synthesis rates in jejunum or ileum. These studies suggest that mesenteric lymph apoLps in the suckling pig are derived both by filtration from plasma and by direct secretion from

  20. Specific Regional Transcription of Apolipoprotein E in Human Brain Neurons

    PubMed Central

    Xu, Pu-Ting; Gilbert, John R.; Qiu, Hui-Ling; Ervin, John; Rothrock-Christian, Tracie R.; Hulette, Christine; Schmechel, Donald E.

    1999-01-01

    In central nervous system injury and disease, apolipoprotein E (APOE, gene; apoE, protein) might be involved in neuronal injury and death indirectly through extracellular effects and/or more directly through intracellular effects on neuronal metabolism. Although intracellular effects could clearly be mediated by neuronal uptake of extracellular apoE, recent experiments in injury models in normal rodents and in mice transgenic for the human APOE gene suggest the additional possibility of intraneuronal synthesis. To examine whether APOE might be synthesized by human neurons, we performed in situ hybridization on paraffin-embedded and frozen brain sections from three nondemented controls and five Alzheimer’s disease (AD) patients using digoxigenin-labeled antisense and sense cRNA probes to human APOE. Using the antisense APOE probes, we found the expected strong hybridization signal in glial cells as well as a generally fainter signal in selected neurons in cerebral cortex and hippocampus. In hippocampus, many APOE mRNA-containing neurons were observed in sectors CA1 to CA4 and the granule cell layer of the dentate gyrus. In these regions, APOE mRNA containing neurons could be observed adjacent to nonhybridizing neurons of the same cell class. APOE mRNA transcription in neurons is regionally specific. In cerebellar cortex, APOE mRNA was seen only in Bergmann glial cells and scattered astrocytes but not in Purkinje cells or granule cell neurons. ApoE immunocytochemical localization in semi-adjacent sections supported the selectivity of APOE transcription. These results demonstrate the expected result that APOE mRNA is transcribed and expressed in glial cells in human brain. The important new finding is that APOE mRNA is also transcribed and expressed in many neurons in frontal cortex and human hippocampus but not in neurons of cerebellar cortex from the same brains. This regionally specific human APOE gene expression suggests that synthesis of apoE might play a role

  1. D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile

    PubMed Central

    Valleix, Sophie; Verona, Guglielmo; Jourde-Chiche, Noémie; Nédelec, Brigitte; Mangione, P. Patrizia; Bridoux, Frank; Mangé, Alain; Dogan, Ahmet; Goujon, Jean-Michel; Lhomme, Marie; Dauteuille, Carolane; Chabert, Michèle; Porcari, Riccardo; Waudby, Christopher A.; Relini, Annalisa; Talmud, Philippa J.; Kovrov, Oleg; Olivecrona, Gunilla; Stoppini, Monica; Christodoulou, John; Hawkins, Philip N.; Grateau, Gilles; Delpech, Marc; Kontush, Anatol; Gillmore, Julian D.; Kalopissis, Athina D.; Bellotti, Vittorio

    2016-01-01

    Apolipoprotein C-III deficiency provides cardiovascular protection, but apolipoprotein C-III is not known to be associated with human amyloidosis. Here we report a form of amyloidosis characterized by renal insufficiency caused by a new apolipoprotein C-III variant, D25V. Despite their uremic state, the D25V-carriers exhibit low triglyceride (TG) and apolipoprotein C-III levels, and low very-low-density lipoprotein (VLDL)/high high-density lipoprotein (HDL) profile. Amyloid fibrils comprise the D25V-variant only, showing that wild-type apolipoprotein C-III does not contribute to amyloid deposition in vivo. The mutation profoundly impacts helical structure stability of D25V-variant, which is remarkably fibrillogenic under physiological conditions in vitro producing typical amyloid fibrils in its lipid-free form. D25V apolipoprotein C-III is a new human amyloidogenic protein and the first conferring cardioprotection even in the unfavourable context of renal failure, extending the evidence for an important cardiovascular protective role of apolipoprotein C-III deficiency. Thus, fibrate therapy, which reduces hepatic APOC3 transcription, may delay amyloid deposition in affected patients. PMID:26790392

  2. D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile.

    PubMed

    Valleix, Sophie; Verona, Guglielmo; Jourde-Chiche, Noémie; Nédelec, Brigitte; Mangione, P Patrizia; Bridoux, Frank; Mangé, Alain; Dogan, Ahmet; Goujon, Jean-Michel; Lhomme, Marie; Dauteuille, Carolane; Chabert, Michèle; Porcari, Riccardo; Waudby, Christopher A; Relini, Annalisa; Talmud, Philippa J; Kovrov, Oleg; Olivecrona, Gunilla; Stoppini, Monica; Christodoulou, John; Hawkins, Philip N; Grateau, Gilles; Delpech, Marc; Kontush, Anatol; Gillmore, Julian D; Kalopissis, Athina D; Bellotti, Vittorio

    2016-01-21

    Apolipoprotein C-III deficiency provides cardiovascular protection, but apolipoprotein C-III is not known to be associated with human amyloidosis. Here we report a form of amyloidosis characterized by renal insufficiency caused by a new apolipoprotein C-III variant, D25V. Despite their uremic state, the D25V-carriers exhibit low triglyceride (TG) and apolipoprotein C-III levels, and low very-low-density lipoprotein (VLDL)/high high-density lipoprotein (HDL) profile. Amyloid fibrils comprise the D25V-variant only, showing that wild-type apolipoprotein C-III does not contribute to amyloid deposition in vivo. The mutation profoundly impacts helical structure stability of D25V-variant, which is remarkably fibrillogenic under physiological conditions in vitro producing typical amyloid fibrils in its lipid-free form. D25V apolipoprotein C-III is a new human amyloidogenic protein and the first conferring cardioprotection even in the unfavourable context of renal failure, extending the evidence for an important cardiovascular protective role of apolipoprotein C-III deficiency. Thus, fibrate therapy, which reduces hepatic APOC3 transcription, may delay amyloid deposition in affected patients.

  3. Apolipoprotein A1/C3/A5 haplotypes and serum lipid levels

    USDA-ARS?s Scientific Manuscript database

    The association of single nucleotide polymorphisms (SNPs) in the apolipoprotein (Apo) A1/C3/A4/A5 gene cluster and serum lipid profiles is inconsistent. The present study was undertaken to detect the association between the ApoA1/C3/A5 gene polymorphisms and their haplotypes with serum lipid levels ...

  4. Apolipoprotein Mimetic Peptides: Mechanisms of Action as Anti-atherogenic Agents

    PubMed Central

    Osei-Hwedieh, David O.; Amar, Marcelo; Sviridov, Dmitri; Remaley, Alan T.

    2011-01-01

    Apolipoprotein mimetic peptides are short synthetic peptides that share structural, as well as biological features of native apolipoproteins. The early positive clinical trials of intravaenous preparations of apoA-I, the main protein component of high density lipoproteins (HDL), have stimulated great interest in the use of apolipoprotein mimetic peptides as possible therapeutic agents. Currently, there are a wide variety of apolipoprotein mimetic peptides at various stages of drug development. These peptides typically have been designed to either promote cholesterol efflux or act as anti-oxidants, but they usually exert other biological effects, such as anti-inflammatory and anti-thrombotic effects. Uncertainty about which of these biological properties is the most important for explaining their anti-atherogenic effect is a major unresolved question in the field. Structure-function studies relating the in vitro properties of these peptides to their ability to reduce atherosclerosis in animal models may uncover the best rationale for the design of these peptides and may lead to a better understanding of the mechanisms behind the atheroprotective effect of HDL. PMID:21172387

  5. Endotoxin contamination of apolipoprotein A-I: effect on macrophage proliferation--a cautionary tale.

    PubMed

    Jin, Xueting; Xu, Qing; Champion, Keith; Kruth, Howard S

    2015-05-01

    This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation>90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages.

  6. Does Possession of Apolipoprotein E[superscript E]4 Benefit Cognitive Function in Healthy Young Adults?

    ERIC Educational Resources Information Center

    Bunce, David; Anstey, Kaarin J.; Burns, Richard; Christensen, Helen; Easteal, Simon

    2011-01-01

    There is considerable evidence that the apolipoprotein E (APOE)[superscript E]4 allele is associated with cognitive deficits in older persons, and is a risk factor for dementia. However, it has recently been suggested that possession of the [superscript E]4 allele may benefit cognition in early adulthood. We tested this possibility in 5445…

  7. Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency

    USDA-ARS?s Scientific Manuscript database

    Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon 22, Q[22]X, with two documented homozygotes, eight heterozygotes, and two normal subjects in...

  8. Apolipoprotein polymorphism is associated with pro-thrombotic profile in non-demented dyslipidemic subjects

    PubMed Central

    Ferreira, Cláudia N; Carvalho, Maria G; Gomes, Karina B; Reis, Helton J; Fernandes, Ana-Paula; Sousa, Marinez O

    2015-01-01

    Apolipoprotein gene polymorphism has an important role in lipid metabolism and in the development of cerebro- and cardio-vascular disease (CCVD), including dementia. Dyslipidemia and hemostatic abnormalities are key risk factors associated with athero-sclerotic events preceding CCVD. The aim of this study was to evaluate the possible relationships of various apolipoprotein-species with hemostatic parameters and cognitive function. Lipid profile, gene polymorphism, coagulation markers, and mini-mental state examination (MMSE) scores were assessed in 109 dys-lipidemic subjects and in 107 healthy control volunteers. Thrombin-activatable fibrinolysis inhibitor (TAFI) plasma levels were significantly higher in apolipoprotein-E2 (apoE2) patients when compared to other apoE forms. The apoA5 -1131T>C polymorphism was associated with elevated D-dimer concentration in dyslipidemic TT homozygous individuals. MMSE did not correlate with lipid or coagulation profile. These data suggest that apoE and apoA5 variants have an effect on hemostatic parameters, but they neither influence nor predict cognitive performance in non-demented individuals. PMID:25073959

  9. Docosahexaenoic acid suppresses apolipoprotein A-I gene expression through hepatocyte nuclear factor-3beta

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Dietary fish-oil supplementation has been shown in human kinetic studies to lower the production rate of apolipoprotein (apo) A-I, the major protein component of HDL. The underlying mechanism responsible for this effect is not fully understood. OBJECTIVE: We investigated the effect and...

  10. In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL.

    PubMed

    Gan, Chaoye; Wang, Zhexuan; Chen, Yong

    2017-04-01

    The major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. Here, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. For the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped "O"-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. These data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lipid and apolipoprotein distribution as a function of density in equine plasma lipoprotein.

    PubMed

    Le Goff, D; Pastier, D; Hannan, Y; Petit, E; Ayrault-Jarrier, M; Nouvelot, A

    1989-01-01

    1. Equine lipoproteins were isolated from plasma by density gradient ultracentrifugation and apolipoprotein composition determined by SDS-polyacrylamide gel electrophoresis. 2. VLDL and IDL were present at low concentration (0.2 mg/ml). Two apoB components of Mr corresponding to human apoB-100 and one apoB-48-like component were represented in VLDL fraction. 3. LDL-1 and LDL-2 subfractions have displayed an almost equal concentration (0.4 mg/ml). Two apoB-100-like components were the major apolipoproteins in each fraction. Small amounts of apoB-48-like component were detectable in LDL-1 and LDL-2. 4. HDL-2 represented a major class of equine lipoproteins (1.8 mg/ml). ApoA-1-like component was the dominant protein in HDL-1, HDL-2 and HDL-3. Dimeric apoA-II-like components were slightly represented in HDL subfractions. 5. HDL-3 displayed the same apolipoprotein pattern as HDL-1 and HDL-2, but two further minor proteins of Mr 20,000 and 14,000 were detected. 6. VHDL represented a minor class of lipoprotein (0.2 mg/ml). ApoA-I-like component was the major apolipoprotein of VHDL. Small amounts of apoA-IV-like, apoE-like, and Mr 55,000 protein were detectable. 7. ApoC-like of Mr lower than 10,000 was represented in all equine lipoprotein classes.

  12. Apolipoprotein B genetic variants modify the response to fenofibrate: a GOLDN study

    USDA-ARS?s Scientific Manuscript database

    Hypertriglyceridemia, defined as a triglyceride measurement > 150 mg/dl, occurs in up to 34% of adults. Fenofibrate is a commonly used drug to treat hypertriglyceridemia, but response to fenofibrate varies considerably among individuals. We sought to determine if genetic variation in apolipoprotein...

  13. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    SciTech Connect

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-10-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  14. Ictalurus punctatus apolipoprotein A-I (ApoA1) mRNA, complete cds

    USDA-ARS?s Scientific Manuscript database

    The complete coding sequence of channel catfish apolipoprotein A-I is 777 bp in length, encoding 258 amino acids. The publishing of this coding sequence will also allow phylogenetic comparison between catfish ApoAI and ApoAI genes from other species. The availability of this complete coding sequence...

  15. Apolipoprotein E gene polymorphisms and retinal vascular signs: The Atherosclerosis Risk in Communities (ARIC) Study

    USDA-ARS?s Scientific Manuscript database

    Our objective was to examine the association between apolipoprotein E (APOE) gene polymorphisms and retinal microvascular signs. We used a population-based, cross-sectional study. Participants from the Atherosclerosis Risk in Communities Study (n=10,036; aged 49-73 years) had retinal photographs tak...

  16. Apolipoprotein C3 polymorphism is associated with cognitive function in Caribbean Hispanics

    USDA-ARS?s Scientific Manuscript database

    Background: Apolipoprotein C3(APOC3) modulates triglyceride metabolism through inhibition of lipoprotein lipase, but is itself regulated by insulin, so that APOC3 represents a potential mechanism by which glucose metabolism may affect lipid metabolism. Unfavorable lipoprotein profiles and impaired ...

  17. Apolipoprotein C-II Deposition Amyloidosis: A Potential Misdiagnosis as Light Chain Amyloidosis

    PubMed Central

    Schuiteman, Emily; Zarouk, Sami

    2016-01-01

    Hereditary amyloidoses are rare and pose a diagnostic challenge. We report a case of hereditary amyloidosis associated with apolipoprotein C-II deposition in a 61-year-old female presenting with renal failure and nephrotic syndrome misdiagnosed as light chain amyloidosis. Renal biopsy was consistent with amyloidosis on microscopy; however, immunofluorescence was inconclusive for the type of amyloid protein. Monoclonal gammopathy evaluation revealed kappa light chain. Bone marrow biopsy revealed minimal involvement with amyloidosis with kappa monotypic plasma cells on flow cytometry. She was started on chemotherapy for light chain amyloidosis. She was referred to the Mayo clinic where laser microdissection and liquid chromatography mass spectrometry detected high levels of apolipoprotein C-II, making a definitive diagnosis. Apolipoprotein C-II is a component of very low-density lipoprotein and aggregates in lipid-free conditions to form amyloid fibrils. The identification of apolipoprotein C-II as the cause of amyloidosis cannot be solely made with routine microscopy or immunofluorescence. Further evaluation of biopsy specimens with laser microdissection and mass spectrometry and DNA sequencing of exons should be done routinely in patients with amyloidoses for definitive diagnosis. Our case highlights the importance of determining the subtype of amyloidosis that is critical for avoiding unnecessary therapy such as chemotherapy. PMID:27840752

  18. Endotoxin Contamination of Apolipoprotein A-I: Effect on Macrophage Proliferation – A Cautionary Tale

    PubMed Central

    Jin, Xueting; Xu, Qing; Champion, Keith; Kruth, Howard S.

    2015-01-01

    This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation >90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages. PMID:25778625

  19. Cytokines decrease apolipoprotein accumulation in medium from Hep G2 cells.

    PubMed

    Ettinger, W H; Varma, V K; Sorci-Thomas, M; Parks, J S; Sigmon, R C; Smith, T K; Verdery, R B

    1994-01-01

    Cytokines, important biochemical mediators of inflammation, cause a rapid fall in the plasma concentration of cholesterol in vivo. One mechanism by which cytokines may cause acquired hypocholesterolemia is by decreasing the hepatic synthesis and secretion of apolipoproteins. To test this hypothesis, we incubated Hep G2 cells with human recombinant tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. Each of the cytokines resulted in a dose-related reduction in the concentrations of apolipoprotein (apo) A-I, apoB, and lecithin:cholesterol acyltransferase (LCAT) activity in the medium after 24 hours of incubation. The effect of cytokines on apolipoprotein accumulation was not affected by preincubation of Hep G2 cells with fatty acids. Cytokines decreased the concentration of cellular apoA-I mRNA in a dose-related fashion but did not affect cellular concentrations of apoB mRNA. The concentrations of triglyceride and cholesterol were also reduced in the medium of cells incubated with cytokines. Total cell sterol synthesis rates were calculated by [14C]acetate incorporation. Cells incubated with interleukin-6 had a 31% increase in sterol synthesis rate but a 41% decrease in sterol secretion. These data suggest that these cytokines can decrease the hepatic synthesis and/or secretion of apolipoproteins and that this may explain, in part, the acquired hypocholesterolemia seen during acute and chronic inflammation.

  20. Separation of apolipoproteins of human very low density lipoproteins by chromatofocusing.

    PubMed

    März, W; Gross, W

    1983-07-01

    Chromatofocusing represents a new chromatographic procedure for the separation of proteins according to their isoelectric points. We describe the application of this method for the fractionation of the urea-soluble apolipoproteins of very low density lipoproteins. They were separated into five peaks, four of which were homogeneous as judged by polyacrylamide gel electrophoresis in the presence of 7 mol/l urea.

  1. Fasting and post-prandial apolipoprotein B-48 levels in healthy, obese, and hyperlipidemic subjects

    USDA-ARS?s Scientific Manuscript database

    Apolipoprotein (apo) B-48 is the only specific marker of intestinal lipoproteins. We evaluated a novel enzyme-linked immunosorbent assay (ELISA) standardized with recombinant apo B-48 to measure apo B-48 in plasma and triglyceride-rich lipoproteins (TRLs, density b1.006 g/mL). Coefficients of variat...

  2. Cinnamon Extract Improves TNF-a Induced Overproduction of Intestinal ApolipoproteinB-48 Lipoproteins

    USDA-ARS?s Scientific Manuscript database

    TNF-alpha stimulates the overproduction of intestinal apolipoproteins. We evaluated whether a water extract of cinnamon (Cinnulin PF®) improved the dyslipidemia induced by TNF-alpha in Triton WR-1339 treated hamsters, and whether Cinnulin PF® inhibits the TNF-alpha-induced over the secretion of apoB...

  3. Apolipoprotein A-V Deficiency Results in MarkedHypertriglyceridemia Attributable to Decreased Lipolysis ofTriglyceride-Rich Lipoproteins and Removal of Their Remnants

    SciTech Connect

    Grosskopf, Itamar; Baroukh, Nadine; Lee, Sung-Joon; Kamari,Yehuda; Harats, Dror; Rubin, Edward M.; Pennacchio, Len A.; Cooper, AllenD.

    2005-09-01

    Objective--ApoAV, a newly discovered apoprotein, affectsplasma triglyceride level. To determine how this occurs, we studiedtriglyceride-rich lipoprotein (TRL) metabolism in mice deficient inapoAV. Methods and Results No significant difference in triglycerideproduction rate was found between apoa5_/_ mice and controls. Thepresence or absence of apoAV affected TRL catabolism. After the injectionof 14C-palmitate and 3H-cholesterol labeled chylomicrons and 125I-labeledchylomicron remnants, the disappearance of 14C, 3H, and 125I wassignificantly slower in apoa5_/_ mice relative to controls. This wasbecause of diminished lipolysis of TRL and the reduced rate of uptake oftheir remnants in apoa5_/_ mice. Observed elevated cholesterol level wascaused by increased high-density lipoprotein (HDL) cholesterol inapoa5_/_ mice. VLDL from apoa5_/_ mice were poor substrate forlipoprotein lipase, and did not bind to the low-density lipoprotein (LDL)receptor as well as normal very-low-density lipoprotein (VLDL). LDLreceptor levels were slightly elevated in apoa5_/_ mice consistent withlower remnant uptake rates. These alterations may be the result of thelower apoE-to-apoC ratio found in VLDL isolated from apoa5_/_mice.Conclusions These results support the hypothesis that the absence ofapoAV slows lipolysis of TRL and the removal of their remnants byregulating their apoproteins content after secretion.

  4. Human Cathelicidin Compensates for the Role of Apolipoproteins in Hepatitis C Virus Infectious Particle Formation

    PubMed Central

    Puig-Basagoiti, Francesc; Fukuhara, Takasuke; Tamura, Tomokazu; Ono, Chikako; Uemura, Kentaro; Kawachi, Yukako; Yamamoto, Satomi; Mori, Hiroyuki; Kurihara, Takeshi; Okamoto, Toru; Aizaki, Hideki

    2016-01-01

    ABSTRACT Exchangeable apolipoproteins (ApoA, -C, and -E) have been shown to redundantly participate in the formation of infectious hepatitis C virus (HCV) particles during the assembly process, although their precise role in the viral life cycle is not well understood. Recently, it was shown that the exogenous expression of only short sequences containing amphipathic α-helices from various apolipoproteins is sufficient to restore the formation of infectious HCV particles in ApoB and ApoE double-gene-knockout Huh7 (BE-KO) cells. In this study, through the expression of a small library of human secretory proteins containing amphipathic α-helix structures, we identified the human cathelicidin antimicrobial peptide (CAMP), the only known member of the cathelicidin family of antimicrobial peptides (AMPs) in humans and expressed mainly in bone marrow and leukocytes. We showed that CAMP is able to rescue HCV infectious particle formation in BE-KO cells. In addition, we revealed that the LL-37 domain in CAMP containing amphipathic α-helices is crucial for the compensation of infectivity in BE-KO cells, and the expression of CAMP in nonhepatic 293T cells expressing claudin 1 and microRNA miR-122 confers complete propagation of HCV. These results suggest the possibility of extrahepatic propagation of HCV in cells with low-level or no expression of apolipoproteins but expressing secretory proteins containing amphipathic α-helices such as CAMP. IMPORTANCE Various exchangeable apolipoproteins play a pivotal role in the formation of infectious HCV during the assembly of viral particles, and amphipathic α-helix motifs in the apolipoproteins have been shown to be a key factor. To the best of our knowledge, we have identified for the first time the human cathelicidin CAMP as a cellular protein that can compensate for the role of apolipoproteins in the life cycle of HCV. We have also identified the domain in CAMP that contains amphipathic α-helices crucial for compensation and

  5. Increased production of apolipoprotein B and its lipoproteins by oleic acid in Caco-2 cells.

    PubMed

    Dashti, N; Smith, E A; Alaupovic, P

    1990-01-01

    The production of lipids, apolipoproteins (apo), and lipoproteins induced by oleic acid has been examined in Caco-2 cells. The rates of accumulation in the control medium of 15-day-old Caco-2 cells of triglycerides, unesterified cholesterol, and cholesteryl esters were 102 +/- 8, 73 +/- 5, and 11 +/- 1 ng/mg cell protein/h, respectively; the accumulation rates for apolipoproteins A-I, B, C-III, and E were 111 +/- 9, 53 +/- 4, 13 +/- 1, and 63 +/- 4 ng/mg cell protein/h, respectively. Whereas apolipoproteins A-IV and C-II were detected by immunoblotting, apoA-II was absent in most culture media. In contrast to an early production of apolipoproteins A-I and E occurring 2 days after plating, the apoB expression appeared to be differentiation-dependent and was not measurable in the medium until the sixth day post-confluency. In the control medium, very low density lipoproteins (VLDL), low density lipoproteins (LDL), high density lipoproteins (HDL), and lipid-poor very high density lipoproteins (VHDL) accounted for 12%, 46%, 18%, and 24% of the total lipid and apolipoprotein contents, respectively. The triglyceride-rich VLDL contained mainly apoE (75%) and apoB (23%), while the protein moiety of LDL was composed of apoB (59%), apoE (20%), apoA-I (15%), and apoC-III (6%). The cholesterol-rich HDL contained mainly apoA-I (69%) and apoE (27%). In the control medium, major portions of apolipoproteins B and C-III (93-97%) were present in LDL, whereas the main parts of apoA-I (92%) and apoE (76%) were associated with HDL and VHDL. Oleate increased the production of triglycerides 10-fold, cholesteryl esters 7-fold, and apoB 2- to 4-fold. There was also a moderate increase (39%) in the production of apoC-III but no significant changes in those of apolipoproteins A-I and E. These increases were reflected mainly in a 55-fold elevation in the concentration of VLDL, and a 2-fold increase in the level of LDL; there were no significant changes in HDL and VHDL. VLDL contained the

  6. Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice.

    PubMed Central

    Berthou, L; Duverger, N; Emmanuel, F; Langouët, S; Auwerx, J; Guillouzo, A; Fruchart, J C; Rubin, E; Denèfle, P; Staels, B; Branellec, D

    1996-01-01

    The regulation of liver apolipoprotein (apo) A-I gene expression by fibrates was studied in human apo A-I transgenic mice containing a human genomic DNA fragment driving apo A-I expression in liver. Treatment with fenofibrate (0.5% wt/wt) for 7 d increased plasma human apo A-I levels up to 750% and HDL-cholesterol levels up to 200% with a shift to larger particles. The increase in human apo A-I plasma levels was time and dose dependent and was already evident after 3 d at the highest dose (0.5% wt/wt) of fenofibrate. In contrast, plasma mouse apo A-I concentration was decreased after fenofibrate in nontransgenic mice. The increase in plasma human apo A-I levels after fenofibrate treatment was associated with a 97% increase in hepatic human apo A-I mRNA, whereas mouse apo A-I mRNA levels decreased to 51%. In nontransgenic mice, a similar down-regulation of hepatic apo A-I mRNA levels was observed. Nuclear run-on experiments demonstrated that the increase in human apo A-I and the decrease in mouse apo A-I gene expression after fenofibrate occurred at the transcriptional level. Since part of the effects of fibrates are mediated through the nuclear receptor PPAR (peroxisome proliferator-activated receptor), the expression of the acyl CoA oxidase (ACO) gene was measured as a control of PPAR activation. Both in transgenic and nontransgenic mice, fenofibrate induced ACO mRNA levels up to sixfold. When transgenic mice were treated with gemfibrozil (0.5% wt/wt) plasma human apo A-I and HDL-cholesterol levels increased 32 and 73%, respectively, above control levels. The weaker effect of this compound on human apo A-I and HDL-cholesterol levels correlated with a less pronounced impact on ACO mRNA levels (a threefold increase) suggesting that the level of induction of human apo A-I gene is related to the PPAR activating potency of the fibrate used. Treatment of human primary hepatocytes with fenofibric acid (500 microM) provoked an 83 and 50% increase in apo A-I secretion and

  7. Activation of lecithin cholesterol acyltransferase by human apolipoprotein E in discoidal complexes with lipids.

    PubMed

    Zorich, N; Jonas, A; Pownall, H J

    1985-07-25

    In a continued investigation of lecithin cholesterol acyltransferase reaction with micellar discoidal complexes of phosphatidylcholine, cholesterol, and various water soluble apolipoproteins, we prepared complexes containing human apo-E by the cholate dialysis method. These complexes were systematically compared to apo-A-I complexes synthesized under the same reaction conditions. Apo-E complexes (134 A in diameter) were slightly larger than apo-A-I complexes (110 A) but were very similar in terms of their protein and lipid content (2.4:0.10:1.0, egg phosphatidylcholine/cholesterol/apolipoprotein, w/w) and in the percentage of apolipoprotein in alpha-helical structure (72-74%). Concentration and temperature-dependence experiments on the velocity of the lecithin cholesterol acyltransferase reaction revealed differences in apparent Km values and small differences in apparent Vmax but very similar activation energies (18-20 kcal/mol). These observations suggest that differences in lecithin cholesterol acyltransferase activation by apo-A-I and apo-E are primarily a result of different affinities of the enzyme for the particles but that the rate-limiting step of the reaction is comparable for both complexes. Apo-E was found to be 18% as effective as apo-A-I in activating purified human lecithin cholesterol acyltransferase. Addition of free apo-A-I to apo-E complexes resulted in the exchange of bound for free apolipoprotein causing a slight increase in the reactivity with the enzyme when the incubation mixture was assayed. When the unbound apolipoproteins were removed by ultracentrifugation reisolated complexes containing both apo-E and apo-A-I demonstrated an even greater increase in reactivity with the enzyme.

  8. Several Human Liver Cell Expressed Apolipoproteins Complement HCV Virus Production with Varying Efficacy Conferring Differential Specific Infectivity to Released Viruses

    PubMed Central

    Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W. R.; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas

    2015-01-01

    Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to

  9. Effect of apolipoprotein a-I complex with tetrahydrocortisone on protein biosynthesis and glucose absorption by rat hepatocytes.

    PubMed

    Sumenkova, D V; Knyazev, R A; Guschya, R S; Polyakov, L M; Panin, L E

    2009-08-01

    We studied the effect of apolipoprotein A-I-tetrahydrocortisone complex on (14)C glucose absorption and lactate accumulation and on the rate of protein biosynthesis in isolated rat hepatocytes. The presence of apolipoprotein A-I-tetrahydrocortisone complex in the incubation medium increased absorption of labeled glucose by hepatocytes by 52%, while lactate content in the conditioning medium increased 4-fold. The rate of protein biosynthesis increased by 80% in comparison with control cells. It is hypothesized that the increase in protein biosynthesis rate in hepatocytes under the effect of apolipoprotein A-I-tetrahydrocortisone complex is due to stimulation of energy metabolism, specifically, of its glycolytic component.

  10. Apolipoprotein C-II Adopts Distinct Structures in Complex with Micellar and Submicellar Forms of the Amyloid-Inhibiting Lipid-Mimetic Dodecylphosphocholine.

    PubMed

    Ryan, Timothy M; Griffin, Michael D W; McGillivray, Duncan J; Knott, Robert B; Wood, Kathleen; Masters, Colin L; Kirby, Nigel; Curtain, Cyril C

    2016-01-05

    The formation of amyloid deposits is a common feature of a broad range of diseases, including atherosclerosis, Alzheimer's disease, and Parkinson's disease. The basis and role of amyloid deposition in the pathogenesis of these diseases is still being defined, however an interesting feature of amyloidogenic proteins is that the majority of the pathologically associated proteins are involved in lipid homeostasis, be it in lipid transport, incorporation into membranes, or the regulation of lipid pathways. Thus, amyloid-forming proteins commonly bind lipids, and lipids are generally involved in the proper folding of these proteins. However, understanding of the basis for these lipid-related aspects of amyloidogenesis is lacking. Thus, we have used the apolipoprotein C-II amyloid model system in conjunction with x-ray and neutron scattering analyses to address this problem. Apolipoprotein C-II is a well-studied model system of systemic amyloid fibril formation, with a clear and well-defined pathway for fibril formation, where the effects of lipid interaction are characterized, particularly for the lipid mimetic dodecylphosphocholine. We show that the micellar state of an inhibitory lipid can have a very significant effect on protein conformation, with micelles stabilizing a particular α-helical structure, whereas submicellar lipids stabilize a very different dimeric, α-helical structure. These results indicate that lipids may have an important role in the development and progression of amyloid-related diseases.

  11. Apolipoprotein C-II Adopts Distinct Structures in Complex with Micellar and Submicellar Forms of the Amyloid-Inhibiting Lipid-Mimetic Dodecylphosphocholine

    PubMed Central

    Ryan, Timothy M.; Griffin, Michael D.W.; McGillivray, Duncan J.; Knott, Robert B.; Wood, Kathleen; Masters, Colin L.; Kirby, Nigel; Curtain, Cyril C.

    2016-01-01

    The formation of amyloid deposits is a common feature of a broad range of diseases, including atherosclerosis, Alzheimer’s disease, and Parkinson’s disease. The basis and role of amyloid deposition in the pathogenesis of these diseases is still being defined, however an interesting feature of amyloidogenic proteins is that the majority of the pathologically associated proteins are involved in lipid homeostasis, be it in lipid transport, incorporation into membranes, or the regulation of lipid pathways. Thus, amyloid-forming proteins commonly bind lipids, and lipids are generally involved in the proper folding of these proteins. However, understanding of the basis for these lipid-related aspects of amyloidogenesis is lacking. Thus, we have used the apolipoprotein C-II amyloid model system in conjunction with x-ray and neutron scattering analyses to address this problem. Apolipoprotein C-II is a well-studied model system of systemic amyloid fibril formation, with a clear and well-defined pathway for fibril formation, where the effects of lipid interaction are characterized, particularly for the lipid mimetic dodecylphosphocholine. We show that the micellar state of an inhibitory lipid can have a very significant effect on protein conformation, with micelles stabilizing a particular α-helical structure, whereas submicellar lipids stabilize a very different dimeric, α-helical structure. These results indicate that lipids may have an important role in the development and progression of amyloid-related diseases. PMID:26745412

  12. Influence of apolipoprotein E genotype on the transmission of Alzheimer disease in a community-based sample

    SciTech Connect

    Jarvik, G.P.; Larson, E.B.; Goddard, K.

    1996-01-01

    The {epsilon}4 allele of the apolipoprotein E locus (APOE) has been found to be an important predictor of Alzheimer disease (AD). However, linkage analysis has not clarified the role of APOE in the transmission of AD. The results of the current study provide evidence that the pattern of transmission of memory disorders differs in nuclear families in which the AD-affected proband did carry an {epsilon}4 allele versus those families in which the AD-affected proband did not carry an {epsilon}4 allele. Further, risk of AD due to APOE genotype in the probands is modified by family history of memory disorders, suggesting gene-by-gene interactions. Family history remained a significant predictor of AD for affected probands with some, but not all, APOE genotypes in a logistic regression analysis. Though nonadditive in the prediction of AD, APOE genotype and family history acted additively in the prediction of age at AD onset. The results of complex segregation analysis were inconsistent with Mendelian segregation of memory disorders both in families of affected probands who did or did not carry an {epsilon}4 allele, yet these two groups had significantly different parameter estimates for their transmission models. These results are consistent with gene-by-gene interactions, but also could result from common elements in the familial environment. 41 refs., 1 fig., 7 tabs.

  13. Cholesteryl ester transfer protein genotype modifies the effect of apolipoprotein ε4 on memory decline in older adults.

    PubMed

    Sundermann, Erin Elizabeth; Wang, Cuiling; Katz, Mindy; Zimmerman, Molly E; Derby, Carol A; Hall, Charles B; Ozelius, Laurie J; Lipton, Richard B

    2016-05-01

    Apolipoprotein ε4 (ApoE4) is a strong genetic risk factor for sporadic Alzheimer's disease and memory decline in older adults. A single-nucleotide polymorphism in the cholesteryl ester transfer protein (CETP) gene (isoleucine to valine; V405) is associated with slower memory decline and a lower risk of Alzheimer's disease. As both genes regulate cholesterol, we hypothesized that the favorable CETPV405 allele may buffer the effect of ApoE4 on memory decline in older adults. Using linear regression, we examined the interactive effect of ApoE4 by CETPV405 on memory decline among 909 community-dwelling, nondemented, older adults (≥70 years) from the Einstein Aging Study. Episodic memory was measured using the picture version of the Free and Cued Selective Reminding Test with immediate recall (pFCSRT+IR). There was a significant ApoE × CETP interaction on decline in pFCSRT+IR scores (p = 0.01). ApoE4 carriers experienced faster decline than noncarriers among CETPI405I homozygotes (p = 0.007) and in CETPI405V heterozygotes (p = 0.015) but not in CETPV405V homozygotes (p = 0.614). Results suggest that the CETPV405 allele buffers ApoE4-associated memory decline in a gene dose-dependent manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. P-selectin glycoprotein ligand-1 deficiency leads to cytokine resistance and protection against atherosclerosis in apolipoprotein E deficient mice.

    PubMed

    Luo, Wei; Wang, Hui; Ohman, Miina K; Guo, Chiao; Shi, Kate; Wang, Julia; Eitzman, Daniel T

    2012-01-01

    Adhesive interactions between endothelial cells and leukocytes contribute to atherosclerotic plaque growth. However, mechanism(s) responsible for endothelial priming and deactivation in inflammatory diseases such as atherosclerosis are not clear. Apolipoprotein E deficient mice were generated with deficiency of P-selectin glycoprotein ligand-1 (Psgl-1(-/-), ApoE(-/-)). On both standard chow and Western diet, Psgl-1(-/-), ApoE(-/-) mice were protected against atherosclerosis compared to Psgl-1(+/+), ApoE(-/-) controls. Psgl-1(-/-), ApoE(-/-) mice also showed reduced leukocyte rolling and firm attachment on endothelial cells, however, adoptively transferred Psgl-1(+/+), ApoE(-/-) leukocytes into Psgl-1(-/-), ApoE(-/-) hosts displayed similar reduced rolling as Psgl-1(-/-), ApoE(-/-) leukocytes. Hematopoietic deficiency of Psgl-1 conferred resistance to the effects of interleukin-1β (IL-1β) on leukocyte rolling along with reduced circulating levels of sP-sel and sE-sel. Antibody blockade of Psgl-1 also reduced endothelial activation in response to IL-1β, eliminated leukocyte rolling, and was protective against atherosclerosis in ApoE(-/-) mice. Monocyte depletion with clodronate restored the endothelial response to IL-1β in Psgl-1(-/-) mice. This study suggests that Psgl-1 deficiency leads to reduced atherosclerosis and adhesive interactions between endothelial cells and leukocytes by indirectly regulating endothelial responses to cytokine stimulation. Published by Elsevier Ireland Ltd.

  15. The positive relationship of serum paraoxonase-1 activity with apolipoprotein E is abrogated in metabolic syndrome.

    PubMed

    Dullaart, Robin P F; Kwakernaak, Arjan J; Dallinga-Thie, Geesje M

    2013-09-01

    High density lipoproteins (HDL) contain paraoxonase-1 (PON-1), which has strong anti-oxidative properties. Apolipoprotein E (apoE) may enhance PON-1 activity in vitro, but the extent to which PON-1 activity is determined by circulating apoE levels is unknown. Here we determined relationships of serum PON-1 activity with apoE in subjects without and with metabolic syndrome (MetS). We measured PON-1 activity (arylesterase activity), plasma apoE and serum amyloid A (SAA) in 93 subjects without and in 75 subjects with MetS (25 and 54 subjects with Type 2 diabetes mellitus (T2DM), respectively; p < 0.001). PON-1 activity was lower in MetS (p < 0.005) coinciding lower HDL cholesterol, apoA-I (p < 0.001)) and SAA levels (p < 0.01), whereas apoE was increased in relation to higher triglycerides (p < 0.01). In subjects without MetS, PON-1 activity was correlated positively with apoE (r = 0.376, p < 0.001), but this relationship was absent in MetS subjects (r = 0.085, p = 0.47). Multiple linear regression analysis showed that the relationship of PON-1 activity with apoE was different in subjects with MetS compared to subjects without MetS (β = -0.270, p = 0.014 for the interaction between apoE and MetS), independently from age, sex, T2DM, use of glucose lowering drugs, anti-hypertensives and the inverse relation with SAA levels (p = 0.008). Of the individual MetS components, apoE only interacted with low HDL-C on PON-1 activity (β = -0.175, p = 0.074). The relationship of apoE with PON-1 activity was neither modified by T2DM (p = 0.49), nor by SAA (p = 0.79). Higher apoE levels may confer higher PON-1 activity. The relationship of PON-I activity with total plasma apoE is apparently abrogated in MetS. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Cardiovascular effects of uremia in apolipoprotein E-deficient mice.

    PubMed

    Bro, Susanne

    2009-11-01

    The purpose of this thesis work was to establish an experimental mouse model for studying the pathogenesis and therapy of accelerated atherosclerosis in uremia. Uremia was induced by surgical 5/6 nephrectomy in apolipoprotein E-deficient (apoE-/-) mice and led to development of severe aortic atherosclerosis independently of BP and plasma homocysteine levels. Also, the accelerated atherosclerosis could not be fully explained by changes in total plasma cholesterol. Morphologic and biochemical analyses of aortas suggested that accelerated initiation and expansion rather than a specific uremic lesion composition characterize atherosclerosis in the uremic mice. Increased expression of inflammatory genes in aortas of uremic mice suggests that an augmented inflammatory response in the arterial wall might be an important impetus for accelerated atherosclerosis in uremia. A marked downregulation of expression of smooth muscle cell assigned genes indicates that besides intimal atherosclerosis, uremic vasculopathy in apoE-/- mice is characterized by a uremia-specific medial smooth muscle cell degeneration. Oxidative stress could also be important for the development of atherosclerotic lesions in uremia. In the mouse model, uremia led to a marked increase of titers of antibodies against oxidized LDL (OxLDL), and increased circulating levels of the oxidized phospholipid epitope EO6. Treatment with enalapril (an ACE inhibitor) almost completely prevented the development of accelerated aortic atherosclerosis in uremic mice. This effect was parallelled by reductions of aortic expression of the proinflammatory adhesion molecule VCAM-1, and plasma titers of IgM antibodies against OxLDL, and was at least partly independent of BP-lowering. To test the involvement of the receptor for advanced glycation end products (RAGE) in development of uremic atherosclerosis, uremic mice were treated with a neutralizing RAGE-antibody. This treatment reduced the aortic plaque area fraction by 59% in

  17. A Novel Apolipoprotein C-II Mimetic Peptide That Activates Lipoprotein Lipase and Decreases Serum Triglycerides in Apolipoprotein E–Knockout Mice

    PubMed Central

    Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T.

    2015-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E–knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. PMID:25395590

  18. A novel apolipoprotein C-II mimetic peptide that activates lipoprotein lipase and decreases serum triglycerides in apolipoprotein E-knockout mice.

    PubMed

    Amar, Marcelo J A; Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T

    2015-02-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E-knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. U.S. Government work not protected by U.S. copyright.

  19. Apolipoprotein E and Clusterin can magnify effects of personality vulnerability on declarative memory performance in non-demented older adults.

    PubMed

    Sapkota, Shraddha; Wiebe, Sandra A; Small, Brent J; Dixon, Roger A

    2016-05-01

    Recent research has linked psychological (personality) factors and specific genetic risk polymorphisms to performance on neurocognitive phenotypes. We examined whether episodic or semantic memory performance is associated with (a) three personality traits (i.e. neuroticism, extraversion, and openness to experience), (b) two neurodegenerative-related polymorphisms (i.e. Apolipoprotein E (APOE; rs7412; rs429358), Clusterin (CLU; rs11136000)), and (c) cross-domain risk interactions (magnification effects). Linear growth models were examined to test independent associations between personality traits and declarative memory performance, and potential interaction effects with APOE and CLU genetic risk. Normal older adults (n = 282) with personality and genetic data from the Victoria Longitudinal Study were included at baseline and for up to 14 years of follow-up. First, we observed that higher openness to experience levels were associated with better episodic and semantic memory. Second, three significant gene × personality interactions were associated with poorer memory performance at baseline. These synergistic effects are: (a) APOE allelic risk (ε4+) carriers with lower openness to experience levels, (b) CLU (no risk: T/T) homozygotes with higher extraversion levels, and (c) CLU (no risk: T/T) homozygotes with lower neuroticism levels. Specific neurodegenerative-related genetic polymorphisms (i.e. APOE and CLU) moderate and magnify the risk contributed by selected personality trait levels (i.e. openness to experience, extraversion) on declarative memory performance in non-demented aging. Future research could target interactions of other personality traits and genetic polymorphisms in different clinical populations to predict other neurocognitive deficits or transitions to cognitive impairment and dementia. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Atorvastatin and Fenofibrate have Comparable Effects on VLDL-Apolipoprotein C-III Kinetics in Men with the Metabolic Syndrome

    PubMed Central

    Chan, Dick C; Watts, Gerald F; Ooi, Esther M.M; Ji, Juying; Johnson, Anthony G; Barrett, P Hugh R

    2009-01-01

    Objectives The metabolic syndrome (MetS) is characterised by insulin resistance and dyslipidemia that may accelerate atherosclerosis. Disturbed apolipoprotein (apo) C-III metabolism may account for dyslipidemia in these subjects. Atorvastatin and fenofibrate decrease plasma apoC-III, but the underlying mechanisms are not fully understood. Methods and Results The effects of atorvastatin (40 mg/d) and fenofibrate (200mg/d) on the kinetics of very-low density lipoprotein (VLDL)-apoC-III were investigated in a cross-over trial of 11 MetS men. VLDL-apoC-III kinetics were studied, following intravenous d3-leucine administration using gas chromatography-mass spectrometry and compartmental modeling. Compared with placebo, both atorvastatin and fenofibrate significantly decreased (P<0.001) plasma concentrations of triglyceride, apoB, apoB-48 and total apoC-III. Atorvastatin, not fenofibrate, significantly decreased plasma apoA-V concentrations (P<0.05). Both agents significantly increased the fractional catabolic rate (+32% and +30%, respectively) and reduced the production rate of VLDL-apoC-III (−20% and −24%, respectively), accounting for a significant reduction in VLDL-apoC-III concentrations (−41% and −39%, respectively).Total plasma apoC-III production rates were not significantly altered by the two agents. Neither treatment altered insulin resistance and body weight. Conclusions Both atorvastatin and fenofibrate have dual regulatory effects on VLDL-apoC-III kinetics in MetS; reduced production and increased fractional catabolism of VLDL-apoC-III may explain the triglyceride-lowering effect of these agents. PMID:18566295

  1. Local Vascular Gene Therapy With Apolipoprotein A-I to Promote Regression of Atherosclerosis.

    PubMed

    Wacker, Bradley K; Dronadula, Nagadhara; Zhang, Jingwan; Dichek, David A

    2017-02-01

    Gene therapy, delivered directly to the blood vessel wall, could potentially prevent atherosclerotic lesion growth and promote atherosclerosis regression. Previously, we reported that a helper-dependent adenoviral (HDAd) vector expressing apolipoprotein A-I (apoA-I) in carotid endothelium of fat-fed rabbits reduced early (4 weeks) atherosclerotic lesion growth. Here, we tested whether the same HDAd-delivered to the existing carotid atherosclerotic lesions-could promote regression. Rabbits (n=26) were fed a high-fat diet for 7 months, then treated with bilateral carotid gene transfer. One carotid was infused with an HDAd expressing apoA-I (HDAdApoAI) and the other with a control nonexpressing HDAd (HDAdNull). The side with HDAdApoAI was randomized. Rabbits were then switched to regular chow, lowering their plasma cholesterols by over 70%. ApoA-I mRNA and protein were detected in HDAdApoAI-transduced arteries. After 7 weeks of gene therapy, compared with HDAdNull-treated arteries in the same rabbits, HDAdApoAI-treated arteries had significantly less vascular cell adhesion molecule-1 expression (28%; P=0.04) along with modest but statistically insignificant trends toward decreased intimal lesion volume, lipid and macrophage content, and intercellular adhesion molecule-1 expression (9%-21%; P=0.1-0.4). Post hoc subgroup analysis of rabbits with small-to-moderate-sized lesions (n=20) showed that HDAdApoAI caused large reductions in lesion volume, lipid content, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 expression (30%-50%; P≤0.04 for all). Macrophage content was reduced by 30% (P=0.06). There was a significant interaction (P=0.02) between lesion size and treatment efficacy. Even when administered on a background of aggressive lowering of plasma cholesterol, local HDAdApoAI vascular gene therapy may promote rapid regression of small-to-moderate-sized atherosclerotic lesions. © 2016 American Heart Association, Inc.

  2. High- and low-temperature unfolding of human high-density apolipoprotein A-2.

    PubMed

    Gursky, O; Atkinson, D

    1996-09-01

    Human plasma apolipoprotein A-2 (apoA-2) is the second major protein of the high-density lipoproteins that mediate the transport and metabolism of cholesterol. Using CD spectroscopy and differential scanning calorimetry, we demonstrate that the structure of lipid-free apoA-2 in neutral low-salt solutions is most stable at approximately 25 degrees C and unfolds reversibly both upon heating and cooling from 25 degrees C. High-temperature unfolding of apoA-2, monitored by far-UV CD, extends from 25-85 degrees C with midpoint Th = 56 +/- 2 degrees C and vant Hoff's enthalpy delta H(Th) = 17 +/- 2 kcal/mol that is substantially lower than the expected enthalpy of melting of the alpha-helical structure. This suggests low-cooperativity apoA-2 unfolding. The apparent free energy of apoA-2 stabilization inferred from the CD analysis of the thermal unfolding, delta G(app)(25 degrees) = 0.82 +/- 0.15 kcal/mol, agrees with the value determined from chemical denaturation. Enhanced low-temperature stability of apoA-2 observed upon increase in Na2HPO4 concentration from 0.3 mM to 50 mM or addition of 10% glycerol may be linked to reduced water activity. The close proximity of the heat and cold unfolding transitions, that is consistent with low delta G(app)(25 degrees), indicates that lipid-free apoA-2 has a substantial hydrophobic core but is only marginally stable under near-physiological solvent conditions. This suggests that in vivo apoA-2 transfer is unlikely to proceed via the lipid-free state. Low delta H(Th) and low apparent delta Cp approximately 0.52 kcal/mol.K inferred from the far-UV CD analysis of apoA-2 unfolding, and absence of tertiary packing interactions involving Tyr groups suggested by near-UV CD, are consistent with a molten globular-like state of lipid-free apoA-2.

  3. A genome-wide association meta-analysis on apolipoprotein A-IV concentrations.

    PubMed

    Lamina, Claudia; Friedel, Salome; Coassin, Stefan; Rueedi, Rico; Yousri, Noha A; Seppälä, Ilkka; Gieger, Christian; Schönherr, Sebastian; Forer, Lukas; Erhart, Gertraud; Kollerits, Barbara; Marques-Vidal, Pedro; Ried, Janina; Waeber, Gerard; Bergmann, Sven; Dähnhardt, Doreen; Stöckl, Andrea; Kiechl, Stefan; Raitakari, Olli T; Kähönen, Mika; Willeit, Johann; Kedenko, Ludmilla; Paulweber, Bernhard; Peters, Annette; Meitinger, Thomas; Strauch, Konstantin; Study Group, Kora; Lehtimäki, Terho; Hunt, Steven C; Vollenweider, Peter; Kronenberg, Florian

    2016-08-15

    Apolipoprotein A-IV (apoA-IV) is a major component of HDL and chylomicron particles and is involved in reverse cholesterol transport. It is an early marker of impaired renal function. We aimed to identify genetic loci associated with apoA-IV concentrations and to investigate relationships with known susceptibility loci for kidney function and lipids. A genome-wide association meta-analysis on apoA-IV concentrations was conducted in five population-based cohorts (n = 13,813) followed by two additional replication studies (n = 2,267) including approximately 10 M SNPs. Three independent SNPs from two genomic regions were significantly associated with apoA-IV concentrations: rs1729407 near APOA4 (P = 6.77 × 10 (-)  (44)), rs5104 in APOA4 (P = 1.79 × 10(-)(24)) and rs4241819 in KLKB1 (P = 5.6 × 10(-)(14)). Additionally, a look-up of the replicated SNPs in downloadable GWAS meta-analysis results was performed on kidney function (defined by eGFR), HDL-cholesterol and triglycerides. From these three SNPs mentioned above, only rs1729407 showed an association with HDL-cholesterol (P = 7.1 × 10 (-)  (07)). Moreover, weighted SNP-scores were built involving known susceptibility loci for the aforementioned traits (53, 70 and 38 SNPs, respectively) and were associated with apoA-IV concentrations. This analysis revealed a significant and an inverse association for kidney function with apoA-IV concentrations (P = 5.5 × 10(-)(05)). Furthermore, an increase of triglyceride-increasing alleles was found to decrease apoA-IV concentrations (P = 0.0078). In summary, we identified two independent SNPs located in or next the APOA4 gene and one SNP in KLKB1 The association of KLKB1 with apoA-IV suggests an involvement of apoA-IV in renal metabolism and/or an interaction within HDL particles. Analyses of SNP-scores indicate potential causal effects of kidney function and by lesser extent triglycerides on apoA-IV concentrations.

  4. A genome-wide association meta-analysis on apolipoprotein A-IV concentrations

    PubMed Central

    Lamina, Claudia; Friedel, Salome; Coassin, Stefan; Rueedi, Rico; Yousri, Noha A.; Seppälä, Ilkka; Gieger, Christian; Schönherr, Sebastian; Forer, Lukas; Erhart, Gertraud; Kollerits, Barbara; Marques-Vidal, Pedro; Ried, Janina; Waeber, Gerard; Bergmann, Sven; Dähnhardt, Doreen; Stöckl, Andrea; Kiechl, Stefan; Raitakari, Olli T.; Kähönen, Mika; Willeit, Johann; Kedenko, Ludmilla; Paulweber, Bernhard; Peters, Annette; Meitinger, Thomas; Strauch, Konstantin; Study Group, KORA; Lehtimäki, Terho; Hunt, Steven C.; Vollenweider, Peter; Kronenberg, Florian

    2016-01-01

    Apolipoprotein A-IV (apoA-IV) is a major component of HDL and chylomicron particles and is involved in reverse cholesterol transport. It is an early marker of impaired renal function. We aimed to identify genetic loci associated with apoA-IV concentrations and to investigate relationships with known susceptibility loci for kidney function and lipids. A genome-wide association meta-analysis on apoA-IV concentrations was conducted in five population-based cohorts (n = 13,813) followed by two additional replication studies (n = 2,267) including approximately 10 M SNPs. Three independent SNPs from two genomic regions were significantly associated with apoA-IV concentrations: rs1729407 near APOA4 (P = 6.77 × 10 − 44), rs5104 in APOA4 (P = 1.79 × 10−24) and rs4241819 in KLKB1 (P = 5.6 × 10−14). Additionally, a look-up of the replicated SNPs in downloadable GWAS meta-analysis results was performed on kidney function (defined by eGFR), HDL-cholesterol and triglycerides. From these three SNPs mentioned above, only rs1729407 showed an association with HDL-cholesterol (P = 7.1 × 10 − 07). Moreover, weighted SNP-scores were built involving known susceptibility loci for the aforementioned traits (53, 70 and 38 SNPs, respectively) and were associated with apoA-IV concentrations. This analysis revealed a significant and an inverse association for kidney function with apoA-IV concentrations (P = 5.5 × 10−05). Furthermore, an increase of triglyceride-increasing alleles was found to decrease apoA-IV concentrations (P = 0.0078). In summary, we identified two independent SNPs located in or next the APOA4 gene and one SNP in KLKB1. The association of KLKB1 with apoA-IV suggests an involvement of apoA-IV in renal metabolism and/or an interaction within HDL particles. Analyses of SNP-scores indicate potential causal effects of kidney function and by lesser extent triglycerides on apoA-IV concentrations. PMID

  5. Personality factors moderate the associations between Apolipoprotein genotype and cognitive function as well as late onset Alzheimer’s Disease

    PubMed Central

    Dar-Nimrod, Ilan; Chapman, Benjamin P.; Franks, Peter; Robbins, John; Porsteinsson, Anton; Mapstone, Mark; Duberstein, Paul R.

    2014-01-01

    Objectives We tested the hypothesis that neuroticism moderates the association between APOE (apolipoprotein E) genotype and two major outcomes, cognitive function and Alzheimer’s disease (AD). We also explored whether other personality dimensions (extraversion, openness to experience, agreeableness, and conscientiousness) moderate the associations of APOE with these outcomes. Design Primary analyses of existing randomized clinical trial data. Sample Six-hundred and two older adults (mean age of 78 at baseline). Measurements APOE genotype, the NEO-Five Factor Inventory, the Alzheimer’s Disease Assessment Scale- cognitive (ADAS-COG: measured every 6 months for 6.5 years) and relevant covariates. Results Fully adjusted multivariate analyses showed that the association between the presence of APOE ε-4 allele(s) and both outcomes was evident among individuals with high levels of neuroticism and extraversion but not among persons with low levels of these traits. Conclusions Phenotypic personality dimensions, primarily neuroticism and extraversion, moderate the relationship between APOE ε-4 genotype and cognitive outcomes among older adults. Future research is needed to elucidate the physiological processes involved in these particular phenotype-genotype interactions. PMID:23079898

  6. Definition of human apolipoprotein A-I epitopes recognized by autoantibodies present in patients with cardiovascular diseases.

    PubMed

    Teixeira, Priscila Camillo; Ducret, Axel; Ferber, Philippe; Gaertner, Hubert; Hartley, Oliver; Pagano, Sabrina; Butterfield, Michelle; Langen, Hanno; Vuilleumier, Nicolas; Cutler, Paul

    2014-10-10

    Autoantibodies to apolipoprotein A-I (anti-apoA-I IgG) have been shown to be both markers and mediators of cardiovascular disease, promoting atherogenesis and unstable atherosclerotic plaque. Previous studies have shown that high levels of anti-apoA-I IgGs are independently associated with major adverse cardiovascular events in patients with myocardial infarction. Autoantibody responses to apoA-I can be polyclonal and it is likely that more than one epitope may exist. To identify the specific immunoreactive peptides in apoA-I, we have developed a set of methodologies and procedures to isolate, purify, and identify novel apoA-I endogenous epitopes. First, we generated high purity apoA-I from human plasma, using thiophilic interaction chromatography followed by enzymatic digestion specifically at lysine or arginine residues. Immunoreactivity to the different peptides generated was tested by ELISA using serum obtained from patients with acute myocardial infarction and high titers of autoantibodies to native apoA-I. The immunoreactive peptides were further sequenced by mass spectrometry. Our approach successfully identified two novel immunoreactive peptides, recognized by autoantibodies from patients suffering from myocardial infarction, who contain a high titer of anti-apoA-I IgG. The discovery of these epitopes may open innovative prognostic and therapeutic opportunities potentially suitable to improve current cardiovascular risk stratification.

  7. Cigarette smoke enhances abdominal aortic aneurysm formation in angiotensin II-treated apolipoprotein E-deficient mice.

    PubMed

    Stolle, Katrin; Berges, An; Lietz, Michael; Lebrun, Stefan; Wallerath, Thomas

    2010-12-15

    Cigarette smoke, hyperlipidemia, and hypertension with the risk of development and progression of atherosclerosis and associated pathologies such as abdominal aortic aneurysm (AAA) are correlated. We examined the interaction of cigarette mainstream smoke (MS) and angiotensin-II (Ang II)-induced hypertension in the atherosclerotic process using hyperlipidemic apolipoprotein E-knockout (ApoE(-/-)) mice. ApoE(-/-) mice were treated with Ang II for 4 weeks and then further exposed to MS or to fresh air for 4 weeks. AAA formation was observed in all mice treated with Ang II, regardless of smoke exposure; however, smoke exposure increased the incidence of AAA in these mice. Ang II treatment resulted in higher gene expression of matrix metalloproteinases (MMP)-2, -3, -8, -9, and -12 in the abdominal aortas, which was further increased by MS exposure. The proteolytic activity of MMP-2 and MMP-9 was also enhanced in Ang II-treated mice exposed to MS, but only minor changes were seen with either smoke exposure or Ang II treatment alone. This study shows for the first time that both formation and severity of AAA in hypertensive ApoE(-/-) mice are accelerated by exposure to MS and that the proteolytic activity of MMPs is enhanced by the combination of Ang II and MS. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes.

    PubMed

    Basak, Jacob M; Verghese, Philip B; Yoon, Hyejin; Kim, Jungsu; Holtzman, David M

    2012-04-20

    Accumulation of the amyloid β (Aβ) peptide within the brain is hypothesized to be one of the main causes underlying the pathogenic events that occur in Alzheimer disease (AD). Consequently, identifying pathways by which Aβ is cleared from the brain is crucial for better understanding of the disease pathogenesis and developing novel therapeutics. Cellular uptake and degradation by glial cells is one means by which Aβ may be cleared from the brain. In the current study, we demonstrate that modulating levels of the low-density lipoprotein receptor (LDLR), a cell surface receptor that regulates the amount of apolipoprotein E (apoE) in the brain, altered both the uptake and degradation of Aβ by astrocytes. Deletion of LDLR caused a decrease in Aβ uptake, whereas increasing LDLR levels significantly enhanced both the uptake and clearance of Aβ. Increasing LDLR levels also enhanced the cellular degradation of Aβ and facilitated the vesicular transport of Aβ to lysosomes. Despite the fact that LDLR regulated the uptake of apoE by astrocytes, we found that the effect of LDLR on Aβ uptake and clearance occurred in the absence of apoE. Finally, we provide evidence that Aβ can directly bind to LDLR, suggesting that an interaction between LDLR and Aβ could be responsible for LDLR-mediated Aβ uptake. Therefore, these results identify LDLR as a receptor that mediates Aβ uptake and clearance by astrocytes, and provide evidence that increasing glial LDLR levels may promote Aβ degradation within the brain.

  9. Sex Differences in Neuropsychiatric Symptoms of Alzheimer's Disease: The Modifying Effect of Apolipoprotein E ε4 Status.

    PubMed

    Xing, Yi; Tang, Yi; Jia, Jianping

    2015-01-01

    Sex differences in neuropsychiatric symptoms of Alzheimer's disease (AD) have been demonstrated in previous studies, and apolipoprotein E (ApoE) ε4 status influences psychiatric manifestations of AD. However, whether ApoE ε4 status modifies the sex differences in neuropsychiatric symptoms of AD is still unclear. In this study, sex differences in neuropsychiatric abnormalities were stratified and analyzed by ApoE ε4 status in mild AD and moderate to severe AD separately. The Clinical Dementia Rating (CDR) scale and the Neuropsychiatric Inventory (NPI) were used to assess dementia severity and neuropsychiatric symptoms. No sex differences were found in mild AD. In moderate to severe AD, among ε4 positive individuals, disinhibition was significantly more prevalent (8.0% in men versus 43.2% in women, p = 0.003) and severer (p = 0.003) in female patients. The frequency (16.0% in men versus 51.4% in women, p = 0.005) and score (p = 0.004) of irritability were of borderline significance after strict Bonferroni correction. In conclusion, this study supported the modifying effect of ApoE ε4 status on sex differences in neuropsychiatric symptoms of AD, and this modifying effect was pronounced in moderate to severe stage of AD. The interaction between gender and ApoE ε4 status should be considered in studies on neuropsychiatric symptoms of AD.

  10. Low-density Lipoprotein Receptor Represents an Apolipoprotein E-independent Pathway of Aβ Uptake and Degradation by Astrocytes*

    PubMed Central

    Basak, Jacob M.; Verghese, Philip B.; Yoon, Hyejin; Kim, Jungsu; Holtzman, David M.

    2012-01-01

    Accumulation of the amyloid β (Aβ) peptide within the brain is hypothesized to be one of the main causes underlying the pathogenic events that occur in Alzheimer disease (AD). Consequently, identifying pathways by which Aβ is cleared from the brain is crucial for better understanding of the disease pathogenesis and developing novel therapeutics. Cellular uptake and degradation by glial cells is one means by which Aβ may be cleared from the brain. In the current study, we demonstrate that modulating levels of the low-density lipoprotein receptor (LDLR), a cell surface receptor that regulates the amount of apolipoprotein E (apoE) in the brain, altered both the uptake and degradation of Aβ by astrocytes. Deletion of LDLR caused a decrease in Aβ uptake, whereas increasing LDLR levels significantly enhanced both the uptake and clearance of Aβ. Increasing LDLR levels also enhanced the cellular degradation of Aβ and facilitated the vesicular transport of Aβ to lysosomes. Despite the fact that LDLR regulated the uptake of apoE by astrocytes, we found that the effect of LDLR on Aβ uptake and clearance occurred in the absence of apoE. Finally, we provide evidence that Aβ can directly bind to LDLR, suggesting that an interaction between LDLR and Aβ could be responsible for LDLR-mediated Aβ uptake. Therefore, these results identify LDLR as a receptor that mediates Aβ uptake and clearance by astrocytes, and provide evidence that increasing glial LDLR levels may promote Aβ degradation within the brain. PMID:22383525

  11. Apolipoprotein AI and Transthyretin as Components of Amyloid Fibrils in a Kindred with apoAI Leu178His Amyloidosis

    PubMed Central

    de Sousa, Mónica Mendes; Vital, Claude; Ostler, Dominique; Fernandes, Rui; Pouget-Abadie, Jean; Carles, Dominique; Saraiva, Maria João

    2000-01-01

    We found a new C-terminal amyloidogenic variant of apolipoprotein AI (apoAI), Leu178His in a French kindred, associated with cardiac and larynx amyloidosis and skin lesions with onset during the fourth decade. This single-point mutation in exon 4 of the apoAI gene was detected by DNA sequencing of polymerase chain reaction amplified material and restriction fragment length polymorphism analysis in two siblings. Blood, larynx, and skin biopsies were available from one sibling. Anti-apoAI immunoblotting of isoelectric focusing of plasma showed a +1 alteration in the charge of the protein. Extraction of fibrils from the skin biopsy revealed both full-length and N-terminal fragments of apoAI and transthyretin (TTR). ApoAI and TTR co-localized in amyloid deposits as demonstrated by immunohistochemistry. The present report, together with the first recently described C-terminal amyloidogenic variant of apoAI, Arg173Pro, shows that amyloidogenicity of apoAI is not a feature exclusive to N-terminal variants. The most striking characteristic of amyloid fibrils in Leu178His is that wild-type TTR is co-localized with apoAI in the fibrils. We have previously determined that a fraction of plasma TTR circulates in plasma bound to high-density lipoprotein and that this interaction occurs through binding to apoAI. Therefore we hypothesize that nonmutated TTR might influence deposition of apoAI as amyloid. PMID:10854214

  12. Apolipoprotein AI and transthyretin as components of amyloid fibrils in a kindred with apoAI Leu178His amyloidosis.

    PubMed

    de Sousa, M M; Vital, C; Ostler, D; Fernandes, R; Pouget-Abadie, J; Carles, D; Saraiva, M J

    2000-06-01

    We found a new C-terminal amyloidogenic variant of apolipoprotein AI (apoAI), Leu178His in a French kindred, associated with cardiac and larynx amyloidosis and skin lesions with onset during the fourth decade. This single-point mutation in exon 4 of the apoAI gene was detected by DNA sequencing of polymerase chain reaction amplified material and restriction fragment length polymorphism analysis in two siblings. Blood, larynx, and skin biopsies were available from one sibling. Anti-apoAI immunoblotting of isoelectric focusing of plasma showed a +1 alteration in the charge of the protein. Extraction of fibrils from the skin biopsy revealed both full-length and N-terminal fragments of apoAI and transthyretin (TTR). ApoAI and TTR co-localized in amyloid deposits as demonstrated by immunohistochemistry. The present report, together with the first recently described C-terminal amyloidogenic variant of apoAI, Arg173Pro, shows that amyloidogenicity of apoAI is not a feature exclusive to N-terminal variants. The most striking characteristic of amyloid fibrils in Leu178His is that wild-type TTR is co-localized with apoAI in the fibrils. We have previously determined that a fraction of plasma TTR circulates in plasma bound to high-density lipoprotein and that this interaction occurs through binding to apoAI. Therefore we hypothesize that nonmutated TTR might influence deposition of apoAI as amyloid.

  13. The Structure of Dimeric Apolipoprotein A-IV and Its Mechanism of Self-Association

    SciTech Connect

    Deng, Xiaodi; Morris, Jamie; Dressmen, James; Tubb, Matthew R.; Tso, Patrick; Jerome, W. Gray; Davidson, W. Sean; Thompson, Thomas B.

    2012-08-10

    Apolipoproteins are key structural elements of lipoproteins and critical mediators of lipid metabolism. Their detergent-like properties allow them to emulsify lipid or exist in a soluble lipid-free form in various states of self-association. Unfortunately, these traits have hampered high-resolution structural studies needed to understand the biogenesis of cardioprotective high-density lipoproteins (HDLs). We derived a crystal structure of the core domain of human apolipoprotein (apo)A-IV, an HDL component and important mediator of lipid absorption. The structure at 2.4 {angstrom} depicts two linearly connected 4-helix bundles participating in a helix swapping arrangement that offers a clear explanation for how the protein self-associates as well as clues to the structure of its monomeric form. This also provides a logical basis for antiparallel arrangements recently described for lipid-containing particles. Furthermore, we propose a 'swinging door' model for apoA-IV lipid association.

  14. Coffee Intake and Elevated Cholesterol and Apolipoprotein B Levels in Men

    PubMed Central

    Williams, Paul T.; Wood, Peter D.; Vranizan, Karen M.; Albers, John J.; Garay, Susan C.; Taylor, C. Barr

    2010-01-01

    Coffee intake from three-day diet records was studied in association with plasma lipoprotein concentrations in a cross-sectional sample of 77 middle-aged American men to determine the significance and form of their interrelationships. The number of cups consumed per day correlated positively with levels of apolipoprotein B (r =.27, P ≤ 0.01) and became more strongly correlated when adjusted for age, cigarette use, adiposity, aerobic capacity, nutrient intake, and stress. Coffee intake also correlated with total cholesterol and low-density lipoprotein (LDL) cholesterol levels when adjusted for these confounding factors. Graphic analyses revealed that plasma concentrations of apolipoprotein B and LDL-cholesterol were unrelated to intake of up to 2 cups of coffee per day and positively associated with intake exceeding 2 to 3 cups. These results suggest that male heavy coffee drinkers have lipoprotein profiles suggestive of increased cardiovascular disease risk, although the causality remains to be determined. PMID:3968770

  15. Lipoprotein lipase, LDL receptors and apo-lipoproteins in human fetal membranes at term.

    PubMed

    Huter, O; Wolf, H J; Schnetzer, A; Pfaller, K

    1997-11-01

    Ultrastructurally, all cells of human fetal membranes strongly exhibit a large amount of lipid deposits throughout pregnancy. Their origin and function is still unknown. The aim of this study was to investigate the localization of key components of lipid metabolism in this tissue. Using immunohistochemical techniques, the distribution of lipoprotein lipase (LPL), low density lipoprotein receptors (LDL receptors), and apo-lipoprotein B and E was investigated in 20 human fetal membranes at term. In addition, electron microscopy was used to study the intracellular localization of lipoprotein-sized particles. Amnionic epithelium and trophoblast cells reacted strongly for LPL. LDL receptors and apo-lipoproteins were present in amnionic epithelium and fibroblasts of the amnion. In none of the investigated cells were lipoprotein-sized particles identified. Similar results were obtained in all 20 cases. The findings indicate that lipoprotein from the amniotic fluid or from the maternal circulation may serve as substrate for lipids in human fetal membranes.

  16. The structure of dimeric apolipoprotein A-IV and its mechanism of self-association.

    PubMed

    Deng, Xiaodi; Morris, Jamie; Dressmen, James; Tubb, Matthew R; Tso, Patrick; Jerome, W Gray; Davidson, W Sean; Thompson, Thomas B

    2012-05-09

    Apolipoproteins are key structural elements of lipoproteins and critical mediators of lipid metabolism. Their detergent-like properties allow them to emulsify lipid or exist in a soluble lipid-free form in various states of self-association. Unfortunately, these traits have hampered high-resolution structural studies needed to understand the biogenesis of cardioprotective high-density lipoproteins (HDLs). We derived a crystal structure of the core domain of human apolipoprotein (apo)A-IV, an HDL component and important mediator of lipid absorption. The structure at 2.4 Å depicts two linearly connected 4-helix bundles participating in a helix swapping arrangement that offers a clear explanation for how the protein self-associates as well as clues to the structure of its monomeric form. This also provides a logical basis for antiparallel arrangements recently described for lipid-containing particles. Furthermore, we propose a "swinging door" model for apoA-IV lipid association.

  17. Lipoprotein-Related and Apolipoprotein-Mediated Delivery Systems for Drug Targeting and Imaging

    PubMed Central

    Almer, Gunter; Mangge, Harald; Zimmer, Andreas; Prassl, Ruth

    2015-01-01

    The integration of lipoprotein-related or apolipoprotein-targeted nanoparticles as pharmaceutical carriers opens new therapeutic and diagnostic avenues in nanomedicine. The concept is to exploit the intrinsic characteristics of lipoprotein particles as being the natural transporter of apolar lipids and fat in human circulation. Discrete lipoprotein assemblies and lipoprotein-based biomimetics offer a versatile nanoparticle platform that can be manipulated and tuned for specific medical applications. This article reviews the possibilities for constructing drug loaded, reconstituted or artificial lipoprotein particles. The advantages and limitations of lipoprotein-based delivery systems are critically evaluated and potential future challenges, especially concerning targeting specificity, concepts for lipoprotein rerouting and design of innovative lipoprotein mimetic particles using apolipoprotein sequences as targeting moieties are discussed. Finally, the review highlights potential medical applications for lipoprotein-based nanoparticle systems in the fields of cardiovascular research, cancer therapy, gene delivery and brain targeting focusing on representative examples from literature. PMID:26180001

  18. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    DOEpatents

    Oda, Michael N.; Forte, Trudy M.

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  19. Association of Apolipoprotein A1 Gene Polymorphisms with Serum Lipid Spectrum in Adolescents in East Siberia.

    PubMed

    Bairova, T A; Kalyuzhnaya, O V; Dolgikh, V V; Trukhin, A A; Pervushina, O A; Darenskaya, M A; Kolesnikova, L I; Kolesnikov, S I

    2015-12-01

    We studied the incidence of genotypes of polymorphic alleles (-75)G>A and (+83)C>T of apolipoprotein A1 gene in healthy Russian adolescents, residents of East Siberia. Genotyping was carried out by PCR with subsequent restriction fragment length polymorphism analysis. The incidence of allele (-75)A was 22.5%, of allele (+83)T - 7.3%. Association of allele (-75) A with high blood cholesterol level was revealed.

  20. Cacao polyphenols influence the regulation of apolipoprotein in HepG2 and Caco2 cells.

    PubMed

    Yasuda, Akiko; Natsume, Midori; Osakabe, Naomi; Kawahata, Keiko; Koga, Jinichiro

    2011-02-23

    Cocoa powder is rich in polyphenols, such as catechins and procyanidins, and has been shown to inhibit low-density lipoprotein (LDL) oxidation and atherogenesis in a variety of models. Human studies have also shown daily intake of cocoa increases plasma high-density lipoprotein (HDL) and decreases LDL levels. However, the mechanisms responsible for these effects of cocoa on cholesterol metabolism have yet to be fully elucidated. The present study investigated the effects of cacao polyphenols on the production of apolipoproteins A1 and B in human hepatoma HepG2 and intestinal Caco2 cell lines. The cultured HepG2 cells or Caco2 cells were incubated for 24 h in the presence of cacao polyphenols such as (-)-epicatechin, (+)-catechin, procyanidin B2, procyanidin C1, and cinnamtannin A2. The concentration of apolipoproteins in the cell culture media was quantified using an enzyme-linked immunoassay, and the mRNA expression was quantified by RT-PCR. Cacao polyphenols increased apolipoprotein A1 protein levels and mRNA expression, even though apolipoprotein B protein and the mRNA expression were slightly decreased in both HepG2 cells and Caco2 cells. In addition, cacao polyphenols increased sterol regulatory element binding proteins (SREBPs) and activated LDL receptors in HepG2 cells. These results suggest that cacao polyphenols may increase the production of mature form SREBPs and LDL receptor activity, thereby increasing ApoA1 and decreasing ApoB levels. These results elucidate a novel mechanism by which HDL cholesterol levels become elevated with daily cocoa intake.

  1. Nitric oxide-releasing agent, LA419, reduces atherogenesis in apolipoprotein E-deficient mice.

    PubMed

    Carnicer, Ricardo; Guillén, Natalia; Arbonés-Mainar, José M; Navarro, María A; Guzmán, Mario A; Barranquero, Cristina; Arnal, Carmen; Gascón, Sonia; Acín, Sergio; Mourelle, Marisabel; Osada, Jesús

    2009-05-01

    LA419 is a novel nitric oxide-donor with antioxidant properties. The effect of this compound on the development of atherosclerosis was investigated in apolipoprotein E-deficient mice. Male mice were randomized to receive vehicle or 5 mg/kg/day LA419 for 12 weeks. At the end of this period, plasma lipid and lipoprotein parameters, oxidative stress markers and hepatic fat, and mRNA levels were measured as well as en face and cross-sectional lesion areas of the aorta. Data showed that LA419 administration reduced atherosclerotic foci and cross-sectional lesion areas by decreasing the intimae presence of macrophage-derived foam cells despite an increase in plasma cholesterol. This agent induced a significant reduction in body weight gain and mass of adipose tissue. Furthermore, compared with placebo, LA419 administration significantly reduced plasma triglycerides and apolipoprotein C-III levels as well as systemic oxidative stress, estimated by plasma 8-isoprostane. Conversely, nonesterified fatty acid and HDL cholesterol levels remained unchanged, as well as apolipoproteins A-I, A-IV, and B and paraoxonase activity. Plasma triglycerides were significantly associated with plasma levels of apolipoprotein C-III and hepatic Fsp27 mRNA expression. These results indicate that administration of LA419 modulates lesion development. These actions are partly independent of total cholesterol as well as HDL particles and related to triglyceridemia and oxidative stress. Hypotriglyceridemia is associated with an equal number of apoB-containing particles. Hence, LA419 administration could be used as a safe alternative to control the metabolic syndrome and atherosclerosis.

  2. Association of apolipoprotein E allele {epsilon}4 with late-onset sporadic Alzheimer`s disease

    SciTech Connect

    Lucotte, G.; David, F.; Berriche, S.

    1994-09-15

    Apolipoprotein E, type {epsilon}4 allele (ApoE {epsilon}4), is associated with late-onset sporadic Alzheimer`s disease (AD) in French patients. The association is highly significant (0.45 AD versus 0.12 controls for {epsilon}4 allele frequencies). These data support the involvement of ApoE {epsilon}4 allele as a very important risk factor for the clinical expression of AD. 22 refs., 1 fig., 3 tabs.

  3. Analysis of apolipoprotein A5, C3 and plasma triglyceride concentrations in genetically engineered mice

    SciTech Connect

    Baroukh, Nadine; Bauge, Eric; Akiyama, Jennifer; Chang, Jessie; Afzal, Veena; Fruchart, Jean-Charles; Rubin, Edward M.; Fruchart, Jamila; Pennacchio, Len A.

    2004-03-11

    To address the relationship between the apolipoprotein A5 and C3 genes, we generated independent lines of mice that either over-expressed or completely lacked both genes. We report both lines display normal triglyceride concentrations compared to over-expression or deletion of either gene alone. Together, these data support that APOA5 and APOC3 independently influence plasma triglyceride concentrations but in an opposing manner.

  4. Two independent apolipoprotein A5 haplotypes modulate postprandial lipoprotein metabolism in a healthy Caucasian population

    USDA-ARS?s Scientific Manuscript database

    Background: Apolipoprotein A5 (APOA5) plays an important role in plasma triacylglycerol (TG) homeostasis. Five polymorphisms (1131T>C, c.-3A>G, c.56C>G, IVS3+476G>A, c.1259T>C) in the APOA5 gene define three common haplotypes (APOA5'1, APOA5'2 and APOA5'3) in Caucasian individuals. Our aim was to de...

  5. Apolipoprotein B and A-I ratio predicts severe acute pancreatitis.

    PubMed

    Huh, Ji Hye; Jung, Saehyun; Cho, Seung Kook; Lee, Kyong Joo; Kim, Jae Woo

    2017-07-05

    Severe acute pancreatitis (SAP) has considerable mortality and morbidity rates. Although many indices have been developed to classify the severity of acute pancreatitis (AP), an optimal method for predicting SAP has not been identified. The ratio of apolipoprotein B to A-I (apoB/A-I) is associated with metabolic syndrome and inflammatory status. This study investigated the association between severity of AP and serum apoB/A-I ratio. Patients with AP were prospectively enrolled at Yonsei University Wonju College of Medicine from March 2015 to August 2016. The severity of AP was assessed according to the revised Atlanta classification criteria (Atlanta 2012). Of 191 patients with AP, 134 (70.2%) had mild AP, 42 (22%) had moderately severe AP, and 15 (7.9%) had SAP; apoB/A-I ratio was highest in patients with SAP (P = 0.001). The apoB/A-I ratio was positively correlated with Atlanta classification, computed tomography severity index, and Bedside index for severity of AP. The apoB/A-I ratio showed the highest predictive value for SAP in patients with AP compared with apolipoprotein B or apolipoprotein A-I alone. Serum apoB/A-I ratio appears to have value for predicting SAP in patients with AP. This article is protected by copyright. All rights reserved.

  6. Factor XI Deficiency Protects Against Atherogenesis in Apolipoprotein E/Factor XI Double Knockout Mice.

    PubMed

    Shnerb Ganor, Reut; Harats, Dror; Schiby, Ginette; Gailani, David; Levkovitz, Hanna; Avivi, Camila; Tamarin, Ilia; Shaish, Aviv; Salomon, Ophira

    2016-03-01

    Atherosclerosis and atherothrombosis are still major causes of mortality in the Western world, even after the widespread use of cholesterol-lowering medications. Recently, an association between local thrombin generation and atherosclerotic burden has been reported. Here, we studied the role of factor XI (FXI) deficiency in the process of atherosclerosis in mice. Apolipoprotein E/FXI double knockout mice, created for the first time in our laboratory. There was no difference in cholesterol levels or lipoprotein profiles between apolipoprotein E knockout and double knockout mice. Nevertheless, in 24-week-old double knockout mice, the atherosclerotic lesion area in the aortic sinus was reduced by 32% (P=0.004) in comparison with apolipoprotein E knockout mice. In 42-week-old double knockout mice, FXI deficiency inhibited atherosclerosis progression significantly in the aortic sinus (25% reduction, P=0.024) and in the aortic arch (49% reduction, P=0.028), with a prominent reduction of macrophage infiltration in the atherosclerotic lesions. FXI deprivation was shown to slow down atherogenesis in mice. The results suggest that the development of atherosclerosis can be prevented by targeting FXI. © 2016 American Heart Association, Inc.

  7. Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition.

    PubMed

    Coetzee, G A; Strachan, A F; van der Westhuyzen, D R; Hoppe, H C; Jeenah, M S; de Beer, F C

    1986-07-25

    Serum amyloid A protein (apo-SAA), an acute phase reactant, is an apolipoprotein of high density lipoproteins (HDL), in particular the denser subpopulation HDL3. The structure of HDL3 isolated from humans affected by a variety of severe disease states was investigated with respect to density, size, and apolipoprotein composition, using density gradient ultracentrifugation, gradient gel electrophoresis, gel filtration, and solid phase immunoadsorption. Apo-SAA was present in HDL particles in increasing amounts as particle density increased. Apo-SAA-containing HDL3 had bigger radii than normal HDL3 of comparable density. Purified apo-SAA associated readily with normal HDL3 in vitro, giving rise to particles containing up to 80% of their apoproteins as apo-SAA. The addition of apo-SAA resulted in a displacement of apo-A-I and an increase in particle size. Acute phase HDL3 represented a mixture of particles, polydisperse with respect to apolipoprotein content; for example, some particles were isolated that contained apo-A-I, apo-A-II, and apo-SAA, whereas others contained apo-A-I and apo-SAA but no apo-A-II. We conclude that apo-SAA probably associates in the circulation of acute phase patients with existing HDL particles, causing the remodeling of the HDL shell to yield particles of bigger size and higher density that are relatively depleted of apo-A-I.

  8. The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects.

    PubMed Central

    Press, R. I.; Geller, J.; Evans, G. W.

    1990-01-01

    Chromium has been implicated as a cofactor in the maintenance of normal lipid and carbohydrate metabolism. A deficiency of chromium results from diets low in biologically available chromium. Picolinic acid, a metabolite of tryptophan, forms stable complexes with transitional metal ions, which results in an improved bioavailability of the metal ion chromium. To determine whether or not chromium picolinate is effective in humans, 28 volunteer subjects were given either chromium tripicolinate (3.8 micromol [200 micrograms] chromium) or a placebo daily for 42 days in a double-blind crossover study. A 14-day period off capsules was used between treatments. Levels of total cholesterol, low-density lipoprotein (LDL) cholesterol, and apolipoprotein B, the principal protein of the LDL fraction, decreased significantly while the subjects were ingesting chromium picolinate. The concentration of apolipoprotein A-I, the principal protein of the high-density lipoprotein (HDL) fraction, increased substantially during treatment with chromium picolinate. The HDL-cholesterol level was elevated slightly but not significantly during ingestion of chromium picolinate. Only apolipoprotein B, of the variables measured, was altered significantly during supplementation with the placebo. These observations show that chromium picolinate is efficacious in lowering blood lipids in humans. PMID:2408233

  9. [Separation and purification of human apolipoproteins A-I and C-III by chromatofocusing].

    PubMed

    Cheng, B

    1993-08-01

    Human very low density lipoprotein (VLDL) and high density lipoprotein (HDL) were isolated and purified by a process of combined dextran sulfate precipitation and density gradient ultracentrifugation. Chromatofocusing, which separates protein based on differences in isoelectric point, was used to separate apolipoprotein A-I (apoA-I) and apolipoprotein C-III from human HDL and VLDL, respectively. Discontinuous SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and analytical isoelectric focusing (IEF) were used to study the purity of different fractions. Both purified apoA-I and apoC-III showed single bands on SDS-PAGE at molecular weights of 28183 and 9400 Daltons, respectively. As determined by IEF in the presence of 8 mol/L urea, apoA-I had eight isoforms with pI of 5.66-5.87. The pI's of the three isoproteins of apoC-III (C-III0, C-III1 and C-III2) were 5.06, 4.88 and 4.72, respectively. Chromatofocusing, a new simple technique combining the high resolving power of IEF with the high capacity of ion-exchange column chromatography, is extremely valuable for large-scale purification of the major apolipoproteins of VLDL and HDL.

  10. Interferon-γ Protects from Staphylococcal Alpha Toxin-Induced Keratinocyte Death through Apolipoprotein L1.

    PubMed

    Brauweiler, Anne M; Goleva, Elena; Leung, Donald Y M

    2016-03-01

    Staphylococcus aureus is a bacterial pathogen that frequently infects the skin, causing lesions and cell destruction through its primary virulence factor, alpha toxin. Here we show that interferon gamma (IFN-?) protects human keratinocytes from cell death induced by staphylococcal alpha toxin. We find that IFN-? prevents alpha toxin binding and reduces expression of the alpha toxin receptor, a disintegrin and metalloproteinase 10 (ADAM10). We determine that the mechanism for IFN-?-mediated resistance to alpha toxin involves the induction of autophagy, a process of cellular adaptation to sublethal damage. We find that IFN-? potently stimulates activation of the primary autophagy effector, light chain 3 (LC3). This process is dependent on upregulation of apolipoprotein L1. Depletion of apolipoprotein L1 by small interfering RNA significantly increases alpha toxin-induced lethality and inhibits activation of light chain 3. We conclude that IFN-? plays a significant role in protecting human keratinocytes from the lethal effects of staphylococcal alpha toxin through apolipoprotein L1-induced autophagy.

  11. Effect of intestinal chylomicron secretory blockade on apolipoprotein synthesis in the newborn piglet.

    PubMed

    Black, D D

    1992-04-01

    Pluronic L-81 is a hydrophobic surfactant which blocks intestinal chylomicron secretion at the pre-Golgi level without affecting triacylglycerol uptake and re-esterification. To study the effects of such blockade on apolipoprotein synthesis, newborn female piglets received 24 h intraduodenal infusions of low-triacylglycerol, or high-triacylglycerol with or without Pluronic L-81, diets, followed by determination of apolipoprotein (apo) B-48, A-I and A-IV synthesis and content and apo B and A-IV mRNA levels in the small intestine. Jejunal apo B-48 content, synthesis and mRNA levels were down-regulated below basal levels by the addition of Pluronic to the high-triacylglycerol infusion. The normal increase in apo A-I synthesis induced by triacylglycerol absorption was ablated in both jejunum and ileum, even though the expected increase in apo A-I content in jejunum still occurred. Although attenuated, the expected increase in jejunal apo A-IV synthesis and mRNA levels with triacylglycerol absorption was still present with Pluronic treatment. These results suggest very different mechanisms of cellular regulation and trafficking for the various apolipoproteins incorporated into nascent intestinal chylomicrons. Apo B may be specifically down-regulated by the chylomicron secretory blockade induced by Pluronic L-81.

  12. Expression of apolipoprotein E by cultured vascular smooth muscle cells is controlled by growth state

    PubMed Central

    1988-01-01

    Rat vascular smooth muscle cells (SMC) in culture synthesize and secrete a approximately 38,000-Mr protein doublet or triplet that, as previously described (Majack and Bornstein. 1984. J. Cell Biol. 99:1688- 1695), rapidly and reversibly accumulates in the SMC culture medium upon addition of heparin. In the present study, we show that this approximately 38,000-Mr heparin-regulated protein is electrophoretically and immunologically identical to apolipoprotein E (apo-E), a major plasma apolipoprotein involved in cholesterol transport. In addition, we show that expression of apo-E by cultured SMC varies according to growth state: while proliferating SMC produced little apo-E and expressed low levels of apo-E mRNA, quiescent SMC produced significantly more apo-E (relative to other proteins) and expressed markedly increased levels of apo-E mRNA. Northern analysis of RNA extracted from aortic tissue revealed that fully differentiated, quiescent SMC contain significant quantities of apo-E mRNA. These data establish aortic SMC as a vascular source for apo-E and suggest new functional roles for this apolipoprotein, possibly unrelated to traditional concepts of lipid metabolism. PMID:2458361

  13. Amyloid-beta colocalizes with apolipoprotein B in absorptive cells of the small intestine.

    PubMed

    Galloway, Susan; Takechi, Ryusuke; Pallebage-Gamarallage, Menuka M S; Dhaliwal, Satvinder S; Mamo, John C L

    2009-10-22

    Amyloid-beta is recognized as the major constituent of senile plaque found in subjects with Alzheimer's disease. However, there is increasing evidence that in a physiological context amyloid-beta may serve as regulating apolipoprotein, primarily of the triglyceride enriched lipoproteins. To consider this hypothesis further, this study utilized an in vivo immunological approach to explore in lipogenic tissue whether amyloid-beta colocalizes with nascent triglyceride-rich lipoproteins. In murine absorptive epithelial cells of the small intestine, amyloid-beta had remarkable colocalization with chylomicrons (Manders overlap coefficient = 0.73 +/- 0.03 (SEM)), the latter identified as immunoreactive apolipoprotein B. A diet enriched in saturated fats doubled the abundance of both amyloid-beta and apo B and increased the overlap coefficient of the two proteins (0.87 +/- 0.02). However, there was no evidence that abundance of the two proteins was interdependent within the enterocytes (Pearson's Coefficient < 0.02 +/- 0.03), or in plasma (Pearson's Coefficient < 0.01). The findings of this study are consistent with the possibility that amyloid-beta is secreted by enterocytes as an apolipoprotein component of chylomicrons. However, secretion of amyloid-beta appears to be independent of chylomicron biogenesis.

  14. Complement Factor H Binds to Human Serum Apolipoprotein E and Mediates Complement Regulation on High Density Lipoprotein Particles.

    PubMed

    Haapasalo, Karita; van Kessel, Kok; Nissilä, Eija; Metso, Jari; Johansson, Tiira; Miettinen, Sini; Varjosalo, Markku; Kirveskari, Juha; Kuusela, Pentti; Chroni, Angelika; Jauhiainen, Matti; van Strijp, Jos; Jokiranta, T Sakari

    2015-11-27

    The alternative pathway of complement is an important part of the innate immunity response against foreign particles invading the human body. To avoid damage to host cells, it needs to be efficiently down-regulated by plasma factor H (FH) as exemplified by various diseases caused by mutations in its domains 19-20 (FH19-20) and 5-7 (FH5-7). These regions are also the main interaction sites for microbial pathogens that bind host FH to evade complement attack. We previously showed that inhibition of FH binding by a recombinant FH5-7 construct impairs survival of FH binding pathogens in human blood. In this study we found that upon exposure to full blood, the addition of FH5-7 reduces survival of, surprisingly, also those microbes that are not able to bind FH. This effect was mediated by inhibition of complement regulation and subsequently enhanced neutrophil phagocytosis by FH5-7. We found that although FH5-7 does not reduce complement regulation in the actual fluid phase of plasma, it reduces regulation on HDL particles in plasma. Using affinity chromatography and mass spectrometry we revealed that FH interacts with serum apolipoprotein E (apoE) via FH5-7 domains. Furthermore, binding of FH5-7 to HDL was dependent on the concentration of apoE on the HDL particles. These findings explain why the addition of FH5-7 to plasma leads to excessive complement activation and phagocytosis of microbes in full anticoagulated blood. In conclusion, our data show how FH interacts with apoE molecules via domains 5-7 and regulates alternative pathway activation on plasma HDL particles.

  15. The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein.

    PubMed

    Kozyraki, R; Fyfe, J; Kristiansen, M; Gerdes, C; Jacobsen, C; Cui, S; Christensen, E I; Aminoff, M; de la Chapelle, A; Krahe, R; Verroust, P J; Moestrup, S K

    1999-06-01

    Cubilin is the intestinal receptor for the endocytosis of intrinsic factor-vitamin B12. However, several lines of evidence, including a high expression in kidney and yolk sac, indicate it may have additional functions. We isolated apolipoprotein A-I (apoA-I), the main protein of high-density lipoprotein (HDL), using cubilin affinity chromatography. Surface plasmon resonance analysis demonstrated a high-affinity binding of apoA-I and HDL to cubilin, and cubilin-expressing yolk sac cells showed efficient 125I-HDL endocytosis that could be inhibited by IgG antibodies against apoA-I and cubilin. The physiological relevance of the cubilin-apoA-I interaction was further emphasized by urinary apoA-I loss in some known cases of functional cubilin deficiency. Therefore, cubilin is a receptor in epithelial apoA-I/HDL metabolism.

  16. Noninvasive in vivo magnetic resonance imaging of injury-induced neointima formation in the carotid artery of the apolipoprotein-E null mouse.

    PubMed

    Manka, D R; Gilson, W; Sarembock, I; Ley, K; Berr, S S

    2000-11-01

    Mice deficient in apolipoprotein-E (apoE) experience severe hypercholesterolemia, are prone to atherosclerosis, and recently have emerged as a powerful tool in the study of plaque formation. In this study, we developed magnetic resonance (MR) imaging methods to detect the progression of atherosclerosis noninvasively in a mouse model of arterial injury. Four 14-week-old apoE-deficient mice were imaged 5 weeks after beginning an atherogenic Western diet and 4 weeks after wire denudation injury of the left common carotid artery (LCCA). Information from several images was combined into high-information content images using methods previously developed. The image resolution was 47 x 47 x 750 microm(3). We acquired T1-, T2-, and proton density (PD)-weighted images (TR/TE 650/14, 2000/60, and 2000/14 msec, respectively). Each 8-bit image was placed in a separate color channel to produce a 24-bit color image (red = T1, green = PD, and blue = T2). The composite image created contrast between different tissue types that was superior to that of any single image and revealed significant luminal narrowing of the LCCA, but not the uninjured RCCA. MR images were compared with corresponding histopathology cross sections and luminal area measurements from each method correlated(r2= 0.61). Atherosclerotic luminal narrowing was successfully detected through MR imaging in a mouse model of arterial injury that is small, reproduces quickly, and lends itself to genetic analysis and manipulation.

  17. Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice

    PubMed Central

    2013-01-01

    Background Though the precise cause(s) of Alzheimer’s disease (AD) remain unknown, there is strong evidence that decreased clearance of β-amyloid (Aβ) from the brain can contribute to the disease. Therapeutic strategies to promote natural Aβ clearance mechanisms, such as the protein apolipoprotein-E (APOE), hold promise for the treatment of AD. The amount of APOE in the brain is regulated by nuclear receptors including retinoid X receptors (RXRs). Drugs that activate RXRs, including bexarotene, can increase APOE and ABCA1 production, and have been shown to decrease the Aβ burden and improve cognition in mouse models of Aβ amyloidosis. Although recent bexarotene studies failed to replicate the rapid clearance of Aβ from brains, behavioral and cognitive effects of this compound remain controversial. Findings In efforts to clarify these behavioral findings, mutant APP/PS1 mice were acutely dosed with bexarotene. While ABCA1 was upregulated in mutant APP/PS1 mice treated with bexarotene, this drug failed to attenuate Aβ plaques or cognitive deficits in these mice. Conclusions We recommend rigorous preclinical study to evaluate the mechanism and utility of such a compound for AD therapy. PMID:23764200

  18. Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis

    PubMed Central

    2009-01-01

    Background Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. Methods Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases) and 31 patients with severe hypertriglyceridaemia (controls) were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. Results Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS). Conclusion Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during chilhood. PMID:19534808

  19. Abnormalities in apolipoprotein and lipid levels in an HIV-infected Brazilian population under different treatment profiles: the relevance of apolipoprotein E genotypes and immunological status.

    PubMed

    Malavazi, Iran; Abrão, Emiliana P; Mikawa, Angela Y; Landgraf, Viviane O; da Costa, Paulo I

    2004-05-01

    HIV infection is associated with disturbances in lipid metabolism due to a host's response mechanism and the current antiretroviral therapy. The pathological appearance and progression of atherosclerosis is dependent on the presence of injurious agents in the vascular endothelium and variations in different subsets of candidate genes. Therefore, the Hha I polymorphism in the apolipoprotein E gene was evaluated in addition to triglycerides, total cholesterol, very low-density lipoprotein (VLDL), LDL, high-density lipoprotein (HDL), and apolipoprotein (apo) Al, B and E levels in 86 Brazilian HIV-infected patients and 29 healthy controls. The allele frequency for apoE in the HIV-infected group and controls was in agreement with data on the Brazilian population. Dyslipidemia was observed in the HIV group and verified by increased levels of triglycerides, VLDL and apoE, and decreased levels of HDL and apoAl. The greatest abnormalities in these biochemical variables were shown in the HIV-infected individuals whose immune function was more compromised. The effect of the genetic variation at the APOE gene on biochemical variables was more pronounced in the HIV-infected individuals who carried the apoE2/3 genotype. The highly active anti-retroviral therapy (HAART)-receiving group presented increased levels of total cholesterol and apoE. Dyslipidemia was a predictable consequence of HIV infection and the protease inhibitors intensified the increase in apoE values.

  20. Apolipoprotein-defined Lipoproteins and Apolipoproteins: Associations with Abnormal Albuminuria in Type 1Diabetes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Cohort

    PubMed Central

    Jenkins, Alicia J.; Yu, Jeremy; Alaupovic, Petar; Basu, Arpita; Klein, Richard L.; Lopes-Virella, Maria; Baker, Nathaniel L; Hunt, Kelly J; Lackland, Daniel T.; Garvey, W. Timothy; Lyons, Timothy J.

    2014-01-01

    Aims Dyslipoproteinemia has been associated with nephropathy in diabetes, with stronger correlations in men than in women. We aimed to characterize and compare plasma lipoprotein profiles associated with normal and increased albuminuria in men and women using apolipoprotein-defined lipoprotein subclasses and simple apolipoprotein measures. Methods This is a cross-sectional study in a subset (154 women and 282 men) of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort, using samples obtained in 1997-9. Immunochemical methods were used to quantify plasma apolipoprotein-based lipoprotein subclasses and individual apolipoprotein levels. Results In adjusted analyses, elevated Lipoprotein-B (Lp-B) was significantly associated with macroalbuminuria in men [odds ratios (OR) and 95% confidence interval (CI): 2.13 (1.15-3.97)] and women [3.01 (1.11-8.12)], while association with Lp-B:C was observed only in men [1.84 (1.19-2.86)]. For individual apolipoproteins the following significant associations with macroalbuminuria were observed in men only: Apolipoprotein B (ApoB) [1.97 (1.20-3.25)], Apo-AII [0.52 (0.29-0.93)], ApoC-III [1.95 (1.16-3.30)], “ApoC-III in VLDL” (heparin-manganese precipitate) [1.88 (1.16-3.04)], and “ApoCIII in HDL” (heparin-manganese supernatant) [2.03 (1.27-3.26)], all P<0.05). Conclusions Atherogenic apolipoprotein-based profiles are associated with nephropathy in Type 1 diabetic men and to a lesser extent in women. The difference could result from the greater prevalence and severity of dyslipoproteinemia, and from the greater prevalence of renal dysfunction, in men vs women. PMID:23850262

  1. Lipoprotein interactions with a polyurethane and a polyethylene oxide-modified polyurethane at the plasma-material interface.

    PubMed

    Cornelius, Rena M; Macri, Joseph; Cornelius, Katherine M; Brash, John L

    2016-06-15

    Lipoproteins [high density lipoprotein (HDL), low density lipoprotein (LDL), and very low density lipoprotein (VLDL)] are present in blood in relatively high concentrations, and, given their importance in cardiovascular disease, the interactions of these species with blood contacting biomaterials and their possible role in thrombogenesis is of interest. In the present communication, quantitative data on the adsorption of apolipoprotein AI, apolipoprotein AII (the main protein components of HDL), and apolipoprotein B (the main protein component of LDL and VLDL), as well as the lipoproteins themselves from plasma to a biomedical grade polyurethane (PU) with and without a copolymer additive that contains polyethylene oxide (PEO) segments, were investigated. Adsorption from some binary solutions was also studied. Significant quantities of the apolipoproteins were found to adsorb from plasma to the PU, while adsorption to the PEO material was more than 90% lower, demonstrating strong protein resistance of the latter material. In contrast, significant quantities of the lipoproteins were found to adsorb to the PEO as well as to the PU material. From these and previously published results, it is concluded that the protein layer formed on the PU surface from plasma (and by extension from blood) contains apolipoproteins and lipoproteins in addition to other plasma proteins; the layer formed on the PEO surface, however, appears to contain minimal quantities of plasma proteins (including free apolipoproteins) but significant quantities of lipoproteins.

  2. Inflammatory markers modify the risk of recurrent coronary events associated with apolipoprotein A-I in postinfarction patients.

    PubMed

    Wang, Meng; Corsetti, James; McNitt, Scott; Rich, David Q; Sparks, Charles E; Moss, Arthur J; Zareba, Wojciech

    Laboratory findings have suggested that systemic and vascular inflammation can impair the antiatherogenic function of high-density lipoproteins (HDLs). However, evidence from population studies is sparse. The objective of the study was to assess if blood inflammatory markers modify the risk of recurrent coronary events associated with apolipoprotein A-I (apoA-I) and HDL cholesterol (HDL-C) among postinfarction patients. ApoA-I, HDL-C, and inflammatory markers (C-reactive protein [CRP], serum amyloid A (SAA), fibrinogen, von Willebrand factor [vWF], and D-dimer) were measured from blood samples of 1028 patients drawn 2 months after an index myocardial infarction (MI). Patients were followed up for the composite coronary endpoint (nonfatal MI, coronary death, or unstable angina) for an average of 26 months. Cox proportional hazard models were used to assess effect modifications for the association of apoA-I and HDL-C with coronary risk by each inflammatory marker. CRP significantly modified the risk of recurrent coronary events associated with apoA-I. Among the entire population, multivariable-adjusted hazard ratios associated with each standard deviation increase in apoA-I for those with low and high CRP levels were 0.89 and 1.35, respectively (P value for interaction = .008). vWF was a significant effect modifier of the apoA-I/coronary risk association only among diabetic patients (hazard ratios were 0.56 and 1.43, for diabetic patients with low and high vWF levels, respectively; P value for interaction = .002). No effect modification was observed for the HDL-C/coronary risk association. Among stable post-MI patients, CRP modified the risk of recurrent coronary events associated with apoA-I. VWF modified this association only among the diabetic subgroup. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  3. Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation

    PubMed Central

    García-Mateo, Nadia; Ganfornina, Maria D.; Montero, Olimpio; Gijón, Miguel A.; Murphy, Robert C.; Sanchez, Diego

    2014-01-01

    Management of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood. Apolipoprotein D (ApoD) is an extracellular lipid binding protein of the Lipocalin family induced upon nervous system injury. Our previous study shows that axon regeneration is delayed without ApoD, and suggests its participation in early events during Wallerian degeneration. Here we demonstrate that ApoD is expressed by myelinating and non-myelinating Schwann cells and is induced early upon nerve injury. We show that ApoD, known to bind arachidonic acid (AA), also interacts with lysophosphatidylcholine (LPC) in vitro. We use an in vivo model of nerve crush injury, a nerve explant injury model, and cultured macrophages exposed to purified myelin, to uncover that: (i) ApoD regulates denervated Schwann cell-macrophage signaling, dampening MCP1- and Tnf-dependent macrophage recruitment and activation upon injury; (ii) ApoD controls the over-expression of the phagocytosis activator Galectin-3 by infiltrated macrophages; (iii) ApoD controls the basal and injury-triggered levels of LPC and AA; (iv) ApoD modifies the dynamics of myelin-macrophage interaction, favoring the initiation of phagocytosis and promoting myelin degradation. Regulation of macrophage behavior by Schwann-derived ApoD is therefore a key mechanism conditioning nerve injury resolution. These results place ApoD as a lipid binding protein controlling the signals exchanged between glia, neurons and blood-borne cells during nerve recovery after injury, and open the possibility for a therapeutic use of ApoD as a regeneration-promoting agent

  4. Transcriptional regulation of the apolipoprotein F (ApoF) gene by ETS and C/EBPα in hepatoma cells.

    PubMed

    Shen, Xue-Bin; Huang, Ling; Zhang, Shao-Hong; Wang, De-Ping; Wu, Yun-Li; Chen, Wan-Nan; Xu, Shang-Hua; Lin, Xu

    2015-05-01

    Apolipoprotein F (ApoF) inhibits cholesteryl ester transfer protein (CETP) activity and plays an important role in lipid metabolism. In the present study, the full-length human ApoF promoter was cloned, and the molecular mechanism of the regulation of ApoF was investigated. The ApoF promoter displayed higher activities in hepatoma cell lines, and the -198 nt to +79 nt promoter region contained the maximum promoter activity. In the promoter region of -198 nt to -2 nt there were four putative binding sites for transcription factors ETS-1/ETS-2 (named EBS-1 to EBS-4) and one for C/EBP. Mutation of EBS-2, EBS4 and the C/EBP binding site abolished the promoter activity, and ETS-1/ETS-2 and C/EBPα could interact with corresponding binding sites. In addition, overexpression of ETS-1/2 or C/EBPα enhanced, while dominant-negative mutants of ETS-1/2 and knockdown of C/EBPα decreased, ApoF promoter activities. ETS-1 and C/EBPα associated physically, and acted synergistically to activate ApoF transcription. These results demonstrated combined activation of the ApoF promoter by liver-enriched and ubiquitous transcription factors. Direct interactions between C/EBPα and ETS-1 were important for high liver-specific expression of ApoF. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Evidence for major gene inheritance of Alzheimer disease in families of patients with and without Apolipoprotein E {epsilon}4

    SciTech Connect

    Rao, V.S.; Auerbach, S.A.; Farrer, L.A.

    1996-09-01

    Apolipoprotein E (APOE) genotype is the single most important determinant to the common form of Alzheimer disease (AD) yet identified. Several studies show that family history of AD is not entirely accounted for by APOE genotype. Also, there is evidence for an interaction between APOE genotype and gender. We carried out a complex segregation analysis in 636 nuclear families of consecutively ascertained and rigorously diagnosed probands in the Multi-Institutional Research in Alzheimer Genetic Epidemiology study in order to derive models of disease transmission which account for the influences of APOE genotype of the proband and gender. In the total group of families, models postulating sporadic occurrence, no major gene effect, random environmental transmission, and Mendelian inheritance were rejected. Transmission of AD in families of probands with at least one {epsilon}4 allele best fit a dominant model. Moreover, single gene inheritance best explained clustering of the disorder in families of probands lacking E4, but a more complex genetic model or multiple genetic models may ultimately account for risk in this group of families. Our results also suggest that susceptibility to AD differs between men and women regardless of the proband`s APOE status. Assuming a dominant model, AD appears to be completely penetrant in women, whereas only 62%-65% of men with predisposing genotypes develop AD. However, parameter estimates from the arbitrary major gene model suggests that AD is expressed dominantly in women and additively in men. These observations, taken together with epidemiologic data, are consistent with the hypothesis of an interaction between genes and other biological factors affecting disease susceptibility. 76 refs., 4 tabs.

  6. A case–control study on the effect of Apolipoprotein E genotypes on gastric cancer risk and progression

    PubMed Central

    2012-01-01

    Background Apolipoprotein E (ApoE) is a multifunctional protein playing both a key role in the metabolism of cholesterol and triglycerides, and in tissue repair and inflammation. The ApoE gene (19q13.2) has three major isoforms encoded by ε2, ε3 and ε4 alleles with the ε4 allele associated with hypercholesterolemia and the ε2 allele with the opposite effect. An inverse relationship between cholesterol levels and gastric cancer (GC) has been previously reported, although the relationship between apoE genotypes and GC has not been explored so far. Methods One hundred and fifty-six gastric cancer cases and 444 hospital controls were genotyped for apoE polymorphism (ε2, ε3, ε4 alleles). The relationship between GC and putative risk factors was measured using the adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) from logistic regression analysis. A gene-environment interaction analysis was performed. The effect of the apoE genotypes on survival from GC was explored by a Kaplan–Meier analysis and Cox proportional hazard regression model. Results Subjects carrying at least one apoE ε2 allele have a significant 60% decrease of GC risk (OR=0.40, 95% CI: 0.19 – 0.84) compared with ε3 homozygotes. No significant interaction emerged between the ε4 or ε2 allele and environmental exposures, nor ε2 or ε4 alleles affected the median survival times, even after correcting for age, gender and stadium. Conclusions Our study reports for the first time a protective effect of the ε2 allele against GC, that might be partly attributed to the higher antioxidant properties of ε2 compared with the ε3 or ε4 alleles. Given the study’s sample size, further studies are required to confirm our findings. PMID:23098561

  7. Arterial spin labeling imaging reveals widespread and Aβ-independent reductions in cerebral blood flow in elderly apolipoprotein epsilon-4 carriers.

    PubMed

    Michels, Lars; Warnock, Geoffrey; Buck, Alfred; Macauda, Gianluca; Leh, Sandra E; Kaelin, Andrea M; Riese, Florian; Meyer, Rafael; O'Gorman, Ruth; Hock, Christoph; Kollias, Spyros; Gietl, Anton F

    2016-03-01

    Changes in cerebral blood flow are an essential feature of Alzheimer's disease and have been linked to apolipoprotein E-genotype and cerebral amyloid-deposition. These factors could be interdependent or influence cerebral blood flow via different mechanisms. We examined apolipoprotein E-genotype, amyloid beta-deposition, and cerebral blood flow in amnestic mild cognitive impairment using pseudo-continuous arterial spin labeling MRI in 27 cognitively normal elderly and 16 amnestic mild cognitive impairment participants. Subjects underwent Pittsburgh Compound B (PiB) positron emission tomography and apolipoprotein E-genotyping. Global cerebral blood flow was lower in apolipoprotein E ɛ4-allele carriers (apolipoprotein E4+) than in apolipoprotein E4- across all subjects (including cognitively normal participants) and within the group of cognitively normal elderly. Global cerebral blood flow was lower in subjects with mild cognitive impairment compared with cognitively normal. Subjects with elevated cerebral amyloid-deposition (PiB+) showed a trend for lower global cerebral blood flow. Apolipoprotein E-status exerted the strongest effect on global cerebral blood flow. Regional analysis indicated that local cerebral blood flow reductions were more widespread for the contrasts apolipoprotein E4+ versus apolipoprotein E4- compared with the contrasts PiB+ versus PiB- or mild cognitive impairment versus cognitively normal. These findings suggest that apolipoprotein E-genotype exerts its impact on cerebral blood flow at least partly independently from amyloid beta-deposition, suggesting that apolipoprotein E also contributes to cerebral blood flow changes outside the context of Alzheimer's disease.

  8. Arterial spin labeling imaging reveals widespread and Aβ-independent reductions in cerebral blood flow in elderly apolipoprotein epsilon-4 carriers

    PubMed Central

    Warnock, Geoffrey; Buck, Alfred; Macauda, Gianluca; Leh, Sandra E; Kaelin, Andrea M; Riese, Florian; Meyer, Rafael; O’Gorman, Ruth; Hock, Christoph; Kollias, Spyros; Gietl, Anton F

    2015-01-01

    Changes in cerebral blood flow are an essential feature of Alzheimer’s disease and have been linked to apolipoprotein E-genotype and cerebral amyloid-deposition. These factors could be interdependent or influence cerebral blood flow via different mechanisms. We examined apolipoprotein E-genotype, amyloid beta-deposition, and cerebral blood flow in amnestic mild cognitive impairment using pseudo-continuous arterial spin labeling MRI in 27 cognitively normal elderly and 16 amnestic mild cognitive impairment participants. Subjects underwent Pittsburgh Compound B (PiB) positron emission tomography and apolipoprotein E-genotyping. Global cerebral blood flow was lower in apolipoprotein E ɛ4-allele carriers (apolipoprotein E4+) than in apolipoprotein E4− across all subjects (including cognitively normal participants) and within the group of cognitively normal elderly. Global cerebral blood flow was lower in subjects with mild cognitive impairment compared with cognitively normal. Subjects with elevated cerebral amyloid-deposition (PiB+) showed a trend for lower global cerebral blood flow. Apolipoprotein E-status exerted the strongest effect on global cerebral blood flow. Regional analysis indicated that local cerebral blood flow reductions were more widespread for the contrasts apolipoprotein E4+ versus apolipoprotein E4− compared with the contrasts PiB+ versus PiB− or mild cognitive impairment versus cognitively normal. These findings suggest that apolipoprotein E-genotype exerts its impact on cerebral blood flow at least partly independently from amyloid beta-deposition, suggesting that apolipoprotein E also contributes to cerebral blood flow changes outside the context of Alzheimer’s disease. PMID:26661143

  9. A rapid flat gel isoelectric focusing method for the determination of apolipoprotein E phenotypes and its application.

    PubMed

    Eto, M; Watanabe, K; Ishii, K

    1985-06-30

    A rapid flat gel isoelectric focusing method has been developed for the determination of apolipoprotein E phenotypes. Isoelectric focusing in 5% polyacrylamide flat gel with 8 mol/l urea and 2.8% pharmalyte (pH 4-6.5) was carried out at 3,000 V and 4 degrees C for 1 h under a constant power of 30 W. The separation of apolipoprotein E isoproteins was good and the isoelectric points were determined. Using this method, the apolipoprotein E phenotype frequency was examined in the Japanese population, and a higher frequency of phenotype E3/3 and a lower frequency of phenotype E3/2 were found in Japanese than those reported for the German, American or English population. In our focusing system the cut-off point of apolipoprotein E2/E3 ratio between the phenotype E3/3 and E3/2 was assumed to be approximately 0.9. These results indicate that this method may be useful for the determination of apolipoprotein E phenotypes.

  10. Genetic variants on apolipoprotein gene cluster influence triglycerides with a risk of coronary artery disease among Indians.

    PubMed

    AshokKumar, Manickaraj; Subhashini, Navaneethan Gnana Veera; SaiBabu, Ramineni; Ramesh, Arabandi; Cherian, Kotturathu Mammen; Emmanuel, Cyril

    2010-01-01

    Apolipoprotein C3 and apolipoprotien A5 are proteins coded from the APOA1/C3/A4/A5 gene cluster. Sst I polymorphism on apolipoprotein C3 and -1131C polymorphism of apolipoprotien A5 are key variants involved in triglyceride metabolism and cause a significant cardio-metabolic risk. Here, we have evaluated these two variants for their roles in coronary artery disease in patients of the Indian population. The apolipoprotein gene cluster variants were analysed in 416 angiographically determined coronary artery disease patients and matched 416 controls using polymerase chain reaction-restriction fragment length polymorphism. The characteristics of the study subjects were analyzed statistically for their association with the polymorphisms. The alleles were combined as haplotypes and their combined risks were evaluated. The minor allele genotypes of both apolipoprotein C3 (S2) and apolipoprotien A5 (C) had a significant risk for coronary artery disease. The S2 allele genotyped patients had a significantly increased triglyceride level (P < 0.001) and increased triglycerides were observed among both patient and control CC genotype carriers. We identified the haplotype S2/C with a significant increased risk (P < 0.001) to coronary artery disease with increased levels of circulating triglycerides compared to other haplotypes in patients. We conclude that the variants on apolipoprotein C3 and apolipoprotien A5 modulate serum triglyceride levels and increase the risk of coronary artery disease.

  11. Effect of urotensin II on apolipoprotein B100 and apolipoprotein A-I expression in HepG2 cell line

    PubMed Central

    Mohammadi, Abbas; Najar, Ahmad Gholamhoseinian; Khoshi, Amirhosein

    2014-01-01

    Background: Increased apolipoprotein B100 (apo B) and decreased apolipoprotein A-I (apo A-I) production are important risk factors in atherosclerosis. Urotensin II (UII), as the most potent vasoconstrictor in human, is related with hypertension and probably atherosclerosis. Because of the relationship between the hypertension and lipoprotein metabolism in atherosclerosis, the aim of this study was to test the effect of urotensin II on apo B and apo A-I expression in hepatic (HepG2) cell line. Materials and Methods: HepG2 cells were treated with 10, 50, 100, and 200 nmol/L of urotensin II (n = 6). Relative apo B and apo A-I messenger RNA (mRNA) levels in conditioned media, normalized to glyceraldehyde-3-phosphate dehydrogenase, were measured with quantitative real-time polymerase chain reaction method. In addition, apo B and apo A-I levels were also estimated and compared with the controls using the western blotting method. Data were analyzed statistically by ANOVA and non-parametric tests. Results: The apo B mRNA levels were not increased significantly following the treatment with UII. However, apo B protein levels were increased significantly after the treatment with urotensin II, especially at 100 and 200 nmol/L. The apo A-I mRNA and protein levels in conditioned media also were not significantly changed. However, there was a significant decrease in apo A-I mRNA and protein levels at 200 nM UII. Conclusions: UII might increase apo B at protein level probably through participating factors in its synthesis and/ or stability/degradation. In addition, UII may have decreasing effect at more than 200 nM concentrations on apo A-I. PMID:24600602

  12. Peritoneal delivery of sodium pyrophosphate blocks the progression of pre-existing vascular calcification in uremic apolipoprotein-E knockout mice.

    PubMed

    de Oliveira, Rodrigo B; Louvet, Loïc; Riser, Bruce L; Barreto, Fellype C; Benchitrit, Joyce; Rezg, Raja; Poirot, Sabrina; Jorgetti, Vanda; Drüeke, Tilman B; Massy, Ziad A

    2015-08-01

    Chronic kidney disease (CKD) is generally associated with disturbances of mineral and bone metabolism. They contribute to the development of vascular calcification (VC), a strong, independent predictor of cardiovascular risk. Pyrophosphate (PPi), an endogenous inhibitor of hydroxyapatite formation, has been shown to slow the progression of VC in uremic animals. Since in patients with CKD treatment is usually initiated for already existing calcifications, we aimed to compare the efficacy of PPi therapy with that of the phosphate binder sevelamer, using a uremic apolipoprotein-E knockout mouse model with advanced VCs. After CKD creation or sham surgery, 12-week-old female mice were randomized to one sham group and four CKD groups (n = 18-19/group). Treatment was initiated 8 weeks after left nephrectomy allowing prior VC development. Uremic groups received either intraperitoneal PPi (high dose, 1.65 mg/kg or low dose, 0.33 mg/kg per day), oral sevelamer (3 % in diet), or placebo treatment for 8 weeks. Both intima and media calcifications worsened with time in placebo-treated CKD mice, based on both quantitative image analysis and biochemical measurements. Progression of calcification between 8 and 16 weeks was entirely halted by PPi treatment, as it was by sevelamer treatment. PPi did not induce consistent bone histomorphometry changes. Finally, the beneficial vascular action of PPi probably involved mechanisms different from that of sevelamer. Further studies are needed to gain more precise insight into underlying mechanisms and to see whether PPi administration may also be useful in patients with CKD and VC.

  13. Effects of pyrophosphate delivery in a peritoneal dialysis solution on bone tissue of apolipoprotein-E knockout mice with chronic kidney disease.

    PubMed

    Barreto, Fellype C; de Oliveira, Rodrigo B; Benchitrit, Joyce; Louvet, Loïc; Rezg, Raja; Poirot, Sabrina; Jorgetti, Vanda; Drüeke, Tilman B; Riser, Bruce L; Massy, Ziad A

    2014-11-01

    Vascular calcification (VC) is a risk factor for cardiovascular mortality in the setting of chronic kidney disease (CKD). Pyrophosphate (PPi), an endogenous molecule that inhibits hydroxyapatite crystal formation, has been shown to prevent the development of VC in animal models of CKD. However, the possibility of harmful effects of exogenous administration of PPi on bone requires further investigation. To this end, we examined by histomorphometry the bone of CKD mice after intraperitoneal PPi administration. After CKD creation or sham surgery, 10-week-old female apolipoprotein-E knockout (apoE(-/-)) mice were randomized to one non-CKD group or 4 CKD groups (n = 10-35/group) treated with placebo or three distinct doses of PPi, and fed with standard diet. Eight weeks later, the animals were killed. Serum and femurs were sampled. Femurs were processed for bone histomorphometry. Placebo-treated CKD mice had significantly higher values of osteoid volume, osteoid surface and bone formation rate than sham-placebo mice with normal renal function. Slightly higher osteoid values were observed in CKD mice in response to very low PPi dose (OV/BV, O.Th and ObS/BS) and, for one parameter measured, to high PPi dose (O.Th), compared to placebo-treated CKD mice. Treatment with PPi did not modify any other structural parameters. Mineral apposition rates, and other parameters of bone formation and resorption were not significantly different among the treated animal groups or control CKD placebo group. In conclusion, PPi does not appear to be deleterious to bone tissue in apoE(-/-) mice with CKD, although a possible stimulatory PPi effect on osteoid formation may be worth further investigation.

  14. Apolipoprotein B/apolipoprotein A1 ratio is a good predictive marker of metabolic syndrome and pre-metabolic syndrome in Chinese adolescent women with polycystic ovary syndrome.

    PubMed

    Yin, Qianqian; Chen, Xiaoli; Li, Lin; Zhou, Ran; Huang, Jia; Yang, Dongzi

    2013-01-01

    The apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio is well known to be related to metabolic syndrome (MS) and its components in adults of different races. There is low prevalence of MS but high occurrence of various metabolic disorders in Chinese adolescent women with polycystic ovary syndrome (PCOS). We sought to assess if the ApoB/ApoA1 ratio can be used as a predictive marker of MS and pre-MS in Chinese adolescent women with PCOS. This cross-sectional study included 160 Chinese adolescent women. Based on International Diabetes Federation criteria for MS, patients who had no less than two components of MS but did not meet the criteria for the diagnosis of MS were considered as having pre-MS. The ApoB/ApoA1 ratio was higher in obese subjects with high free androgen index (FAI). The ApoB/ApoA1 ratio increased significantly as the number of MS components increased and provided 87.5% of sensitivity and 78.9% of specificity with a threshold value of 0.63 for MS, 86.2% of sensitivity and 79.4% of specificity with a threshold value of 0.58 for pre-MS in Chinese adolescent women with PCOS. The ApoB/ApoA1 ratio was a good predictive marker of MS and pre-MS in Chinese adolescent women with PCOS. FAI could be involved in obesity-related metabolic abnormalities. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  15. Comparative study of apolipoprotein-E polymorphism and plasma lipid levels in dyslipidemic and asymptomatic subjects, and their implication in cardio/cerebro-vascular disorders.

    PubMed

    Ferreira, Cláudia N; Carvalho, Maria G; Fernandes, Ana P S M; Lima, Luciana M; Loures-Valle, Andréia A; Dantas, Julizar; Janka, Zoltán; Palotás, András; Sousa, Marinez O

    2010-01-01

    Polymorphisms in the apolipoprotein-E (apoE) gene may modulate lipoprotein metabolism at different steps and influence total and low density lipoprotein (LDL) cholesterol (LDLc) levels, as well as other lipid features. Population studies have documented significant differences in the frequency of apoE alleles which are related to the prevalence of various cardio-vascular and neuro-psychiatric diseases. In this study, the apoE genotypes and allele frequencies were analyzed in 216 individuals (109 dyslipidemic and 107 normo-lipidic subjects), and the relative contribution of apoE polymorphism on plasma lipid and lipoprotein levels, as well as risk factors was evaluated. In normo-lipidic volunteers, the frequencies of epsilon2, epsilon3 and epsilon4 alleles were 0.042, 0.832 and 0.126, while in dyslipidemic subjects 0.046, 0.835 and 0.119, respectively. No significant difference was observed among epsilon2, epsilon3 or epsilon4 and plasma lipid-lipoprotein levels in the dyslipidemic group. In normo-lipidemics, however, total cholesterol, LDLc and non-HDLc plasma levels were significantly lower in epsilon2 subjects when compared to epsilon3 and epsilon4 individuals. The allelic frequencies of apoE epsilon2, epsilon3 and epsilon4 were similar in dyslipidemic and normo-lipemic subjects, suggesting that apoE polymorphisms have no effect on plasma lipid-lipoprotein levels in dyslipidemic subjects. In contrast, in normo-lipemic subjects the epsilon2 allele showed to be associated with lower total cholesterol and LDLc levels, the mark of a better lipid profile. Depending on other co-existing factors, the epsilon2 allele, therefore, may play either a protective or pathogenic role. This elementary knowledge is a fundamental prerequisite for a possible diagnostic application of these lipoproteins as biomarkers to predict adverse cardio-vascular and/or neuro-psychiatric maladies.

  16. Effects of red grape juice consumption on high density lipoprotein-cholesterol, apolipoprotein AI, apolipoprotein B and homocysteine in healthy human volunteers.

    PubMed

    Khadem-Ansari, Mohammad H; Rasmi, Yousef; Ramezani, Fatemeh

    2010-01-01

    It has suggested that grape juice consumption has lipid- lowering effect and it is associated with a decreased risk of heart disease. We aimed to evaluate the effects of red grape juice (RGj) consumption on high density lipoprotein-cholesterol (HDL-C), apolipoprotein AI (apoAI), apolipoprotein B (apoB) and homocysteine (Hcy) levels in healthy human volunteers. Twenty six healthy and nonsmoking males, aged between 25-60 years, who were under no medication asked to consume 150 ml of RGj twice per day for one month. Serum HDL-C, apoAI, apoB and plasma Hcy levels were measured before and after one month RGj consumption. HDL-C levels after RGj consumption were significantly higher than the corresponding levels before the RGj consumption (41.44 ± 4.50 and 44.37 ± 4.30 mg/dl; P<0.0001). Also, apoB was significantly increased after RGj consumption (149.0 ± 22.35 and 157.19 ± 18.60 mg/dl; P<0.002). But apoAI levels were not changed significantly before and after of RGj consumption (154.27 ± 21.55 and 155.35 ± 21.07 mg/dl; P>0.05). Hcy levels were decreased after RGj consumption (7.70 ± 2.80 and 6.20 ± 2.30 µmol/l; P<0.001). The present study demonstrates that RGj consumption can significantly increase serum HDL-C levels and decrease Hcy levels. These findings may have important implications for the prevention of atherosclerosis in healthy individuals.

  17. Conformational studies of the N-terminal lipid-associating domain of human apolipoprotein C-I by CD and 1H NMR spectroscopy.

    PubMed Central

    Rozek, A.; Buchko, G. W.; Kanda, P.; Cushley, R. J.

    1997-01-01

    A peptide comprising the N-terminal 38 residues of human apolipoprotein C-I (apoC-I(1-38)) was synthesized using solid-phase methods and its solution conformation studied by CD and 1H NMR spectroscopy. The CD data indicate that apoC-I(1-38) has a similar helical content (55%) in the presence of saturating amounts of SDS or egg yolk lysophosphatidylcholine. A structural ensemble of SDS-bound apoC-I(1-38) was calculated from 464 NOE-based distance restraints using distance geometry methods. ApoC-I(1-38) adopts a helical structure between residues V4 and K30 and an extended C-terminus from Q31 when associated with SDS. The region K12-G15 undergoes slow conformational exchange as indicated by above-average amide resonance linewidths, large temperature coefficients, and fast exchange (< 2 h) of backbone amide protons with deuterium. The mobility of K12-G15 is reflected in the poorly defined dihedral angles of K12 and E13 in the calculated ensemble of structures. The average structure of apoC-I(1-38) is curved toward its hydrophobic face with bends of 125 degrees, centered at K12/E13, and 150 degrees, centered at K21. This curvature appears to be driven by the interaction of two hydrophobic clusters, one formed by residues L8, L11, F14, and L18, and the other by L25, I26, and I29, with the amphiphile SDS. Based on our present structural definition of apoC-I(1-38) and the previously obtained structure of the fragment apoC-I(35-53), we propose the secondary structure of intact apolipoprotein C-I. PMID:9300485

  18. An apolipoprotein A-II polymorphism (-265T/C, rs5082), regulates postprandial response to a saturated fat overload in healthy men

    USDA-ARS?s Scientific Manuscript database

    Apolipoprotein (Apo) A-II is an apolipoprotein with an unknown role in lipid metabolism. It has been suggested that the presence of the less frequent allele of a single nucleotide polymorphism (Apo A-II -265T/C, rs5082) reduces the transcription rate of Apo A-II and enhances VLDL postprandial cleara...

  19. The age dependency of gene expression for plasma lipids, lipoproteins, and apolipoproteins

    SciTech Connect

    Snieder, H.; Doornen, L.J.P. van; Boomsma, D.I.

    1997-03-01

    The aim of this study was to investigate and disentangle the genetic and nongenetic causes of stability and change in lipids and (apo)lipoproteins that occur during the lifespan. Total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein(a) (Lp[a]) were measured in a group of 160 middle-aged parents and their twin offspring (first project) and in a group of 203 middle-aged twin pairs (second project). Combining the data of both projects enabled the estimation of the extent to which measured lipid parameters are influenced by different genes in adolescence and adulthood. To that end, an extended quantitative genetic model was specified, which allowed the estimation of heritabilities for each sex and generation separately. Heritabilities were similar for both sexes and both generations. Larger variances in the parental generation could be ascribed to proportional increases in both unique environmental and additive genetic variance from childhood to adulthood, which led to similar heritability estimates in adolescent and middle-aged twins. Although the magnitudes of heritabilities were similar across generations, results showed that, for total cholesterol, triglycerides, HDL, and LDL, partly different genes are expressed in adolescence compared to adulthood. For triglycerides, only 46% of the genetic variance was common to both age groups; for total cholesterol this was 80%. Intermediate values were found for HDL (66%) and LDL (76%). For ApoA1, ApoB, and Lp(a), the same genes seem to act in both generations. 56 refs., 2 figs., 5 tabs.

  20. Decreased plasma concentrations of apolipoprotein M in sepsis and systemic inflammatory response syndromes.

    PubMed

    Kumaraswamy, Sunil B; Linder, Adam; Åkesson, Per; Dahlbäck, Björn

    2012-12-12

    Apolipoprotein M (apoM) is present in 5% of high-density lipoprotein (HDL) particles in plasma. It is a carrier of sphingosine-1-phosphate (S1P), which is important for vascular barrier protection. The aim was to determine the plasma concentrations of apoM during sepsis and systemic inflammatory response syndrome (SIRS) and correlate them to levels of apolipoprotein A-I (apoA1), apolipoprotein B (apoB), HDL-, and low-density lipoprotein (LDL)-cholesterol. Plasma samples from patients with (1), severe sepsis with shock (n = 26); (2), severe sepsis without shock (n = 44); (3), sepsis (n = 100); (4), infections without SIRS (n = 43); and (5) SIRS without infection (n = 20) were analyzed. The concentrations of apoM, apoA1, and apoB were measured with enzyme-linked immunosorbent assays (ELISAs). Total, HDL-, and LDL-cholesterol concentrations were measured with a commercial HDL/LDL cholesterol test. ApoM concentrations correlated negatively to acute-phase markers. Thus, apoM behaved as a negative acute-phase protein. Decreased values were observed in all patient groups (P < 0.0001), with the most drastic decreases observed in the severely sick patients. ApoM levels correlated strongly to those of apoA1, apoB, HDL, and LDL cholesterol. The HDL and LDL cholesterol levels were low in all patient groups, as compared with controls (P < 0.0001), in particular, HDL cholesterol. ApoA1 and apoB concentrations were low only in the more severely affected patients. During sepsis and SIRS, the plasma concentrations of apoM decrease dramatically, the degree of decrease reflecting the severity of the disease. As a carrier for barrier-protective S1P in HDL, the decrease in apoM could contribute to the increased vascular leakage observed in sepsis and SIRS.

  1. Differential expression of apolipoprotein D in male reproductive system of rats by high-fat diet.

    PubMed

    Lim, W; Bae, H; Song, G

    2016-11-01

    Apolipoprotein D, a 29-kDa secreted glycoprotein that belongs to the lipocalin superfamily, is widely expressed in various tissues and associated with lipid metabolism as a component of high-density lipoproteins. Although Apolipoprotein D binds to small hydrophobic ligands including cholesterol, little is known about effects of high-fat diet with cholesterol on expression of Apolipoprotein D in the male reproductive tract. Therefore, we investigated Apod expression in penises, prostate glands, and testes from rats fed a high-fat diet including a high amount of cholesterol. Our previous research indicated that a high-fat diet induces dyslipidemia leading to histological changes and dysfunction of male reproduction in rats. Consistent with these results, Apod mRNA expression was significantly (p < 0.001) decreased in penises and prostate glands (p < 0.01) and testes (p < 0.01) from rats fed a high-fat diet as compared with normal diet. In addition, Apod mRNA and protein were detected predominantly in urethral epithelium and penile follicle from rats. Moreover, changes in expression of specific microRNAs (miR-229b-3p, miR-423-3p, and miR-490-3p) regulating Apod in the penises and prostate glands were negatively associated with Apod expression. Collectively, results of this study suggest that Apod is a novel regulatory gene in the male reproductive system, especially in penises of rats fed a high-cholesterol diet, and that expression of Apod is regulated at the posttranscriptional level by target microRNAs.

  2. Characterization of disulfide-linked heterodimers containing apolipoprotein D in human plasma lipoproteins.

    PubMed

    Blanco-Vaca, F; Via, D P; Yang, C Y; Massey, J B; Pownall, H J

    1992-12-01

    Human plasma apolipoprotein (apo) D is a glycoprotein with an apparent molecular weight of 29,000 M(r). It is present, mainly, in high density lipoproteins (HDL) and very high density lipoproteins (VHDL). Western blot analysis of HDL and VHDL using rabbit antibodies to human apoD revealed major immunoreactive bands at 29,000 and 38,000 M(r), with minor bands ranging from 50,000 to and 80,000 M(r). Only the 29,000 M(r) band corresponding to apoD remained when the electrophoresis was conducted under reducing conditions, demonstrating that apoD is cross-linked to other proteins via disulfide bonds. The broad pattern of immunoreactivity was also observed under nonreducing conditions when the blood was collected into a solution of sulfhydryl-trapping reagents, or when these reagents were added to the isolated lipoproteins. These results indicated that the disulfide bonds were not the result of disulfide exchange during the experimental procedures. On the basis of amino acid sequencing and reactions to antibodies, the 38,000 M(r) band was identified as an apoD-apoA-II heterodimer. The apoD-apoA-II was also demonstrated in plasma. In both HDL and plasma, the apoD-apoA-II heterodimer constituted the major form of apoD. Disulfide-linked heterodimers of apoD and apoB-100 were also found in low and very low density lipoproteins, and in whole plasma. It is concluded that a fraction of human apoD, like other cysteine-containing apolipoproteins, exists as a disulfide-linked heterodimer with other apolipoproteins in all major human lipoprotein fractions.

  3. Impact of estrogens on atherosclerosis and bone in the apolipoprotein E-deficient mouse model.

    PubMed

    Fernández-Murga, María Leonor; Vinué, Ángela; Caeiro, José Ramón; Guede, David; Tarín, Juan J; Andrés, Vicente; Cano, Antonio

    2015-04-01

    The common inflammatory pathophysiology has nourished the hypothesis of a relationship between osteoporosis and cardiovascular disease. Estrogens are key agents in the modulation of both processes. We investigated whether induction of atherosclerosis affects bone and whether estrogens modulate both processes. Female apolipoprotein E-deficient mice (a well-established model of atherogenesis) were ovariectomized or falsely operated and fed either standard diet or high-fat diet (HFD). Six animals were included in each of the four groups. To clarify mechanisms, we treated preosteoblastic MC3T3-E1 cells with mouse serum. Physiological levels of estrogens in falsely operated mice limited atherosclerotic burden in the thoracic aorta, but not in the aortic arch. Bone resorption, as assessed by C-telopeptides, was increased by ovariectomy in animals fed standard diet, but not in animals fed HFD. Bone microstructural properties at the distal femur showed deteriorated trabecular architecture in bone volumetric fraction and trabecular number after ovariectomy, but trabecular pattern factor, trabecular thickness, trabecular spacing, or the structural model index remained unchanged. Changes in cortical parameters were not significant. Volumetric bone mineral density was reduced in trabecular bone, but not in cortical bone, in ovariectomized mice fed standard diet. Preosteoblastic MC3T3-E1 cells exhibited increased cellular proliferation and viability and alkaline phosphatase activity after treatment with sera from animals fed HFD. Endogenous estrogens partially reduce atherogenic burden in female apolipoprotein E-deficient mice. Ovariectomy increases bone resorption, but not under exacerbated proatherogenic conditions induced by HFD. The absence of apolipoprotein E might have an influence on the asymmetric responses of atherogenesis and bone resorption.

  4. Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease: A Meta-analysis.

    PubMed

    Neu, Scott C; Pa, Judy; Kukull, Walter; Beekly, Duane; Kuzma, Amanda; Gangadharan, Prabhakaran; Wang, Li-San; Romero, Klaus; Arneric, Stephen P; Redolfi, Alberto; Orlandi, Daniele; Frisoni, Giovanni B; Au, Rhoda; Devine, Sherral; Auerbach, Sanford; Espinosa, Ana; Boada, Mercè; Ruiz, Agustín; Johnson, Sterling C; Koscik, Rebecca; Wang, Jiun-Jie; Hsu, Wen-Chuin; Chen, Yao-Liang; Toga, Arthur W

    2017-10-01

    It is unclear whether female carriers of the apolipoprotein E (APOE) ε4 allele are at greater risk of developing Alzheimer disease (AD) than men, and the sex-dependent association of mild cognitive impairment (MCI) and APOE has not been established. To determine how sex and APOE genotype affect the risks for developing MCI and AD. Twenty-seven independent research studies in the Global Alzheimer's Association Interactive Network with data on nearly 58 000 participants. Non-Hispanic white individuals with clinical diagnostic and APOE genotype data. Homogeneous data sets were pooled in case-control analyses, and logistic regression models were used to compute risks. Age-adjusted odds ratios (ORs) and 95% confidence intervals for developing MCI and AD were calculated for men and women across APOE genotypes. Participants were men and women between ages 55 and 85 years. Across data sets most participants were white, and for many participants, racial/ethnic information was either not collected or not known. Men (OR, 3.09; 95% CI, 2.79-3.42) and women (OR, 3.31; CI, 3.03-3.61) with the APOE ε3/ε4 genotype from ages 55 to 85 years did not show a difference in AD risk; however, women had an increased risk compared with men between the ages of 65 and 75 years (women, OR, 4.37; 95% CI, 3.82-5.00; men, OR, 3.14; 95% CI, 2.68-3.67; P = .002). Men with APOE ε3/ε4 had an increased risk of AD compared with men with APOE ε3/ε3. The APOE ε2/ε3 genotype conferred a protective effect on women (OR, 0.51; 95% CI, 0.43-0.61) decreasing their risk of AD more (P value = .01) than men (OR, 0.71; 95% CI, 0.60-0.85). There was no difference between men with APOE ε3/ε4 (OR, 1.55; 95% CI, 1.36-1.76) and women (OR, 1.60; 95% CI, 1.43-1.81) in their risk of developing MCI between the ages of 55 and 85 years, but women had an increased risk between 55 and 70 years (women, OR, 1.43; 95% CI, 1.19-1.73; men, OR, 1.07; 95% CI, 0.87-1.30; P = .05). There were no significant

  5. Properties of discoidal complexes of human apolipoprotein A-I with phosphatidylcholines containing various fatty acid chains.

    PubMed

    Zorich, N L; Kézdy, K E; Jonas, A

    1987-06-02

    In this study we demonstrate that apolipoprotein A-I determined the common size classes of discoidal particles formed with numerous phosphatidylcholines, and with ether analogs of phosphatidylcholines. We show furthermore, that the nature of the lipids dictates the distribution of particles among the different size classes. These experiments were performed with discoidal complexes containing various phospholipids (phosphatidylcholines with saturated and unsaturated fatty acid chains of different lengths and the ether analog of 1-palmitoyl-2-oleoylphosphatidylcholine), cholesterol, and human apolipoprotein A-I, prepared by the sodium cholate dialysis method, and fractionated by Bio-Gel A-5m gel-filtration chromatography. The complex preparations were analyzed in terms of their average composition, spectral properties of the apolipoprotein, and the dynamic behavior of the lipid domains. Nondenaturing gradient gel electrophoresis was used to analyze the size classes of particles present in the complex preparations. Starting with reaction mixtures containing around 100:1, phospholipid/apolipoprotein A-I molar ratios, complexes were isolated with molar ratios from 40:1 to 100:1. In most complexes apolipoprotein A-I had high levels of alpha-helical structure (65-77% alpha-helix), and tryptophan residues in a nonpolar environment. The lipid domains of complexes exhibited the dynamic behavior expected of the main phospholipid components. In the average size range from 90 to 100 A diameters, discrete particle classes with 80, 87, 102, 108, or 112 A Stokes diameters were observed for all the complexes containing different phospholipids. These discrete, recurring particle sizes are attributed to distinct apolipoprotein A-I conformations and variable lipid content.

  6. No association between apolipoprotein E or N-acetyltransferase 2 gene polymorphisms and age-related hearing loss.

    PubMed

    Dawes, Piers; Platt, Hazel; Horan, Michael; Ollier, William; Munro, Kevin; Pendleton, Neil; Payton, Antony

    2015-01-01

    Age-related hearing loss has a genetic component, but there have been limited genetic studies in this field. Both N-acetyltransferase 2 and apolipoprotein E genes have previously been associated. However, these studies have either used small sample sizes, examined a limited number of polymorphisms, or have produced conflicting results. Here we use a haplotype tagging approach to determine association with age-related hearing loss and investigate epistasis between these two genes. Candidate gene association study of a continuous phenotype. We investigated haplotype tagging single nucleotide polymorphisms in the N-acetyltransferase 2 gene and the presence/absence of the apolipoprotein E ε4 allele for association with age-related hearing loss in a cohort of 265 Caucasian elderly volunteers from Greater Manchester, United Kingdom. Hearing phenotypes were generated using principal component analysis of the hearing threshold levels for the better ear (severity, slope, and concavity). Genotype data for the N-acetyltransferase 2 gene was obtained from existing genome-wide association study data from the Illumina 610-Quadv1 chip. Apolipoprotein E genotyping was performed using Sequenom technology. Linear regression analysis was performed using Plink and Stata software. No significant associations (P value, > 0.05) were observed between the N-acetyltransferase 2 or apolipoprotein E gene polymorphisms and any hearing factor. No significant association was observed for epistasis analysis of apolipoprotein E ε4 and the N-acetyltransferase 2 single nucleotide polymorphism rs1799930 (NAT2*6A). We found no evidence to support that either N-acetyltransferase 2 or apolipoprotein E gene polymorphisms are associated with age-related hearing loss in a cohort of 265 elderly volunteers. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  7. No association between apolipoprotein E or N‐Acetyltransferase 2 gene polymorphisms and age‐related hearing loss

    PubMed Central

    Dawes, Piers; Platt, Hazel; Horan, Michael; Ollier, William; Munro, Kevin; Pendleton, Neil

    2014-01-01

    Objectives/Hypothesis Age‐related hearing loss has a genetic component, but there have been limited genetic studies in this field. Both N‐acetyltransferase 2 and apolipoprotein E genes have previously been associated. However, these studies have either used small sample sizes, examined a limited number of polymorphisms, or have produced conflicting results. Here we use a haplotype tagging approach to determine association with age‐related hearing loss and investigate epistasis between these two genes. Study Design Candidate gene association study of a continuous phenotype. Methods We investigated haplotype tagging single nucleotide polymorphisms in the N‐acetyltransferase 2 gene and the presence/absence of the apolipoprotein E ε4 allele for association with age‐related hearing loss in a cohort of 265 Caucasian elderly volunteers from Greater Manchester, United Kingdom. Hearing phenotypes were generated using principal component analysis of the hearing threshold levels for the better ear (severity, slope, and concavity). Genotype data for the N‐acetyltransferase 2 gene was obtained from existing genome‐wide association study data from the Illumina 610‐Quadv1 chip. Apolipoprotein E genotyping was performed using Sequenom technology. Linear regression analysis was performed using Plink and Stata software. Results No significant associations (P value, > 0.05) were observed between the N‐acetyltransferase 2 or apolipoprotein E gene polymorphisms and any hearing factor. No significant association was observed for epistasis analysis of apolipoprotein E ε4 and the N‐acetyltransferase 2 single nucleotide polymorphism rs1799930 (NAT2*6A). Conclusion We found no evidence to support that either N‐acetyltransferase 2 or apolipoprotein E gene polymorphisms are associated with age‐related hearing loss in a cohort of 265 elderly volunteers. Level of Evidence N/A. Laryngoscope, 125:E33–E38, 2015 PMID:25155015

  8. Fractionation of apolipoproteins from human serum very low density lipoproteins by chromatofocusing.

    PubMed

    Jauhiainen, M

    1982-01-01

    1. A pooled serum from several pregnant women was used as a source of VLDL 2. VLDL and if needed other lipoproteins were fractionated by sequential flotation. 3. Lipoproteins were delipidated and lipid-free VLDL apolipoproteins were fractionated by a new chromatofocusing technique. 4. Chromatofocusing column run yielded 7 peak protein fractions and the corresponding pI values were: 6.8, 6.6, 5.7, 5.5, 5.2, 4.8 and 4.4. 5. Polyacrylamide slab gel electrophoresis of the chromatofocusing protein peaks indicated that they are different having dissimilar Rf values in urea-SDS containing slabs.

  9. Application of denaturing gradient gel electrophoresis to detect DNA sequence differences encoding apolipoprotein E isoforms

    SciTech Connect

    Parker, S.; Angelico, M.C.; Laffel, L.; Krolewski, A.S. Harvard Medical School, Boston, MA )

    1993-04-01

    Apolipoprotein E (apoE) plays an important role in plasma lipid metabolism. Three common isoforms of this protein have been identified by the isoelectric focusing method. In this report the authors describe a new method for distinguishing these isoforms. Their method employs PCR amplification of the DNA sequence of exon 4 in the apoE gene followed by denaturing gradient gel electrophoresis (DGGE) to distinguish its different melting characteristics. Identification of the ApoE isoforms through DNA melting behavior rather than protein charge differences eliminates the problems associated with isoelectric focusing and facilitates screening for additional mutations at the apoE locus. 12 refs., 2 figs.

  10. Apolipoprotein E4 influences growth and cognitive responses to micronutrient supplementation in shantytown children from northeast Brazil

    PubMed Central

    Mitter, Sumeet S.; Oriá, Reinaldo B.; Kvalsund, Michelle P.; Pamplona, Paula; Joventino, Emanuella Silva; Mota, Rosa M. S.; Gonçalves, Davi C.; Patrick, Peter D.; Guerrant, Richard L.; Lima, Aldo A. M.

    2012-01-01

    OBJECTIVE: Apolipoprotein E4 may benefit children during early periods of life when the body is challenged by infection and nutritional decline. We examined whether apolipoprotein E4 affects intestinal barrier function, thereby improving short-term growth and long-term cognitive outcomes in Brazilian shantytown children. METHODS: A total of 213 Brazilian shantytown children with below-median height-for-age z-scores (HAZ) received 200,000 IU of retinol (every four months), zinc (40 mg twice weekly), or both for one year, with half of each group receiving glutamine supplementation for 10 days. Height-for-age z-scores, weight-for-age z-scores, weight-for-height z-scores, and lactulose:mannitol ratios were assessed during the initial four months of treatment. An average of four years (range 1.4-6.6) later, the children underwent cognitive testing to evaluate non-verbal intelligence, coding, verbal fluency, verbal learning, and delayed verbal learning. Apolipoprotein E4 carriage was determined by PCR analysis for 144 children. RESULTS: Thirty-seven children were apolipoprotein E4(+), with an allele frequency of 13.9%. Significant associations were found for vitamin A and glutamine with intestinal barrier function. Apolipoprotein E4(+) children receiving glutamine presented significant positive Pearson correlations between the change in height-for-age z-scores over four months and delayed verbal learning, along with correlated changes over the same period in weight-for-age z-scores and weight-for-height z-scores associated with non-verbal intelligence quotients. There was a significant correlation between vitamin A supplementation of apolipoprotein E4(+) children and improved delta lactulose/mannitol. Apolipoprotein E4(-) children, regardless of intervention, exhibited negative Pearson correlations between the change in lactulose-to-mannitol ratio over four months and verbal learning and non-verbal intelligence. CONCLUSIONS: During development, apolipoprotein E4 may

  11. Angiotensin Type 1 Receptor Blocker Reduces Intimal Neovascularization and Plaque Growth in Apolipoprotein E–Deficient Mice

    PubMed Central

    Cheng, Xian Wu; Song, Haizhen; Sasaki, Takeshi; Hu, Lina; Inoue, Aiko; Bando, Yasuko K.; Shi, Guo-Ping; Kuzuya, Masafumi; Okumura, Kenji; Murohara, Toyoaki

    2012-01-01

    The interactions between the renin-angiotensin system and neovascularization in atherosclerotic plaque development are unclear. We investigated the effects of angiotensin II type 1 receptor antagonism in the pathogenesis of atherosclerosis in apolipoprotein E–deficient (ApoE−/−) mice with a special focus on plaque neovascularization. ApoE−/− mice fed a high-fat diet were randomly assigned to 1 of 2 groups and administered vehicle or olmesartan for 12 weeks. Quantification of plaque areas at the aortic root and in the thoracic and abdominal aorta revealed that, in all 3 of the regions, olmesartan reduced intimal neovessel density and the mRNA levels of toll-like receptor (TLR) 2 and TLR4. Olmesartan increased the levels of collagen and elastin, reduced the level of macrophages in the aortic root, and reduced the mRNA and the activity of matrix metalloproteinase (MMP) 2 in aortic roots and thoracic aortas. Aortic ring assay revealed that olmesartan-treated ApoE−/− mice had a markedly lower angiogenic response than that of untreated ApoE−/− mice. Bone marrow–derived endothelial progenitor cell-like c-Kit+ cells from olmesartan-treated ApoE−/− mice showed marked impairment of cellular functions and lower expression of TLR2/TLR4 and MMP-2 compared with those of untreated controls. MMP-2 deficiency reduced intimal neovessel density and atherosclerotic lesion formation. Olmesartan and small-interfering RNA targeting TLR2 reduced the levels of TLR2, and MMP-2 mRNA induced angiotensin II in cultured endothelial cells. Angiotensin II type 1 receptor antagonism appears to inhibit intimal neovascularization in ApoE−/− mice, partly by reducing TLR2/TLR4-mediated inflammatory action and MMP activation, thus decreasing atherosclerotic plaque growth and increasing plaque instability. PMID:21464389

  12. The A's Have It: Developing Apolipoprotein A-I Mimetic Peptides Into a Novel Treatment for Asthma.

    PubMed

    Yao, Xianglan; Gordon, Elizabeth M; Barochia, Amisha V; Remaley, Alan T; Levine, Stewart J

    2016-08-01

    New treatments are needed for patients with asthma who are refractory to standard therapies, such as individuals with a phenotype of "type 2-low" inflammation. This important clinical problem could potentially be addressed by the development of apolipoprotein A-I (apoA-I) mimetic peptides. ApoA-I interacts with its cellular receptor, the ATP-binding cassette subfamily A, member 1 (ABCA1), to facilitate cholesterol efflux out of cells to form nascent high-density lipoprotein particles. The ability of the apoA-I/ABCA1 pathway to promote cholesterol efflux from cells that mediate adaptive immunity, such as antigen-presenting cells, can attenuate their function. Data from experimental murine models have shown that the apoA-I/ABCA1 pathway can reduce neutrophilic airway inflammation, primarily by suppressing the production of granulocyte-colony stimulating factor. Furthermore, administration of apoA-I mimetic peptides to experimental murine models of allergic asthma has decreased both neutrophilic and eosinophilic airway inflammation, as well as airway hyperresponsiveness and mucous cell metaplasia. Higher serum levels of apoA-I have also been associated with less severe airflow obstruction in patients with asthma. Collectively, these results suggest that the apoA-I/ABCA1 pathway may have a protective effect in asthma, and support the concept of advancing inhaled apoA-I mimetic peptides to clinical trials that can assess their safety and effectiveness. Thus, we propose that the development of inhaled apoA-I mimetic peptides as a new treatment could represent a clinical advance for patients with severe asthma who are unresponsive to other therapies. Published by Elsevier Inc.

  13. Association of Docosahexaenoic Acid Supplementation With Alzheimer Disease Stage in Apolipoprotein E ε4 Carriers: A Review.

    PubMed

    Yassine, Hussein N; Braskie, Meredith N; Mack, Wendy J; Castor, Katherine J; Fonteh, Alfred N; Schneider, Lon S; Harrington, Michael G; Chui, Helena C

    2017-03-01

    The apolipoprotein E ε4 (APOE4) allele identifies a unique population that is at significant risk for developing Alzheimer disease (AD). Docosahexaenoic acid (DHA) is an essential ω-3 fatty acid that is critical to the formation of neuronal synapses and membrane fluidity. Observational studies have associated ω-3 intake, including DHA, with a reduced risk for incident AD. In contrast, randomized clinical trials of ω-3 fatty acids have yielded mixed and inconsistent results. Interactions among DHA, APOE genotype, and stage of AD pathologic changes may explain the mixed results of DHA supplementation reported in the literature. Although randomized clinical trials of ω-3 in symptomatic AD have had negative findings, several observational and clinical trials of ω-3 in the predementia stage of AD suggest that ω-3 supplementation may slow early memory decline in APOE4 carriers. Several mechanisms by which the APOE4 allele could alter the delivery of DHA to the brain may be amenable to DHA supplementation in predementia stages of AD. Evidence of accelerated DHA catabolism (eg, activation of phospholipases and oxidation pathways) could explain the lack of efficacy of ω-3 supplementation in AD dementia. The association of cognitive benefit with DHA supplementation in predementia but not AD dementia suggests that early ω-3 supplementation may reduce the risk for or delay the onset of AD symptoms in APOE4 carriers. Recent advances in brain imaging may help to identify the optimal timing for future DHA clinical trials. High-dose DHA supplementation in APOE4 carriers before the onset of AD dementia can be a promising approach to decrease the incidence of AD. Given the safety profile, availability, and affordability of DHA supplements, refining an ω-3 intervention in APOE4 carriers is warranted.

  14. Structural Variation in Human Apolipoprotein E3 and E4: Secondary Structure, Tertiary Structure, and Size Distribution

    PubMed Central

    Chou, Chi-Yuan; Lin, Yi-Ling; Huang, Yu-Chyi; Sheu, Sheh-Yi; Lin, Ta-Hsien; Tsay, Huey-Jen; Chang, Gu-Gang; Shiao, Ming-Shi

    2005-01-01

    Human apolipoprotein E (apoE) is a 299-amino-acid protein with a molecular weight of 34 kDa. The difference between the apoE3 and apoE4 isoforms is a single residue substitution involving a Cys-Arg replacement at residue 112. ApoE4 is positively associated with atherosclerosis and late-onset and sporadic Alzheimer's disease (AD). ApoE4 and its C-terminal truncated fragments have been found in the senile plaques and neurofibrillary tangles in the brain of AD patients. However, detail structural information regarding isoform and domain interaction remains poorly understood. We prepared full-length, N-, and C-terminal truncated apoE3 and apoE4 proteins and studied their structural variation. Sedimentation velocity and continuous size distribution analysis using analytical ultracentrifugation revealed apoE372-299 as consisting of a major species with a sedimentation coefficient of 5.9. ApoE472-299 showed a wider and more complicated species distribution. Both apoE3 and E4 N-terminal domain (1–191) existed with monomers as the major component together with some tetramer. The oligomerization and aggregation of apoE protein increased when the C-terminal domain (192–271) was incorporated. The structural influence of the C-terminal domain on apoE is to assist self-association with no significant isoform preference. Circular dichroism and fluorescence studies demonstrated that apoE472-299 possessed a more α-helical structure with more hydrophobic residue exposure. The structural variation of the N-terminal truncated apoE3 and apoE4 protein provides useful information that helps to explain the greater aggregation of the apoE4 isoform and thus has implication for the involvement of apoE4 in AD. PMID:15475580

  15. Human recombinant apolipoprotein E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cells in rats In vivo.

    PubMed Central

    Rensen, P C; Oosten, M; Bilt, E; Eck, M; Kuiper, J; Berkel, T J

    1997-01-01

    Chylomicrons have been shown to protect mice and rats against a lethal dose of lipopolysaccharide and may serve as a therapeutic means to protect against endotoxemia. However, the requisite of isolation from human lymph hampers pharmaceutical application. Recently, we developed recombinant chylomicrons from commercially available lipids and human recombinant apolipoprotein E. The current study explored the effectiveness of these apoE-enriched emulsions in redirecting LPS from Kupffer cells to liver parenchymal cells. Upon injection into rats, 125I-LPS rapidly and specifically associated with the liver (64.3+/-3.1% of the injected dose) and spleen (4.1+/-0.7%). The uptake of LPS by the spleen was four- to fivefold reduced upon incubation with the apoE-enriched emulsion or free apoE (P < 0.0001), but not with emulsion alone or Lipofundin. Within the liver, 125I-LPS mainly associated with Kupffer cells. The uptake by Kupffer cells was eight- to ninefold reduced by the apoE-enriched emulsion or apoE alone (P < 0.01), and a 19.6-fold increased uptake ratio by liver parenchymal cells over Kupffer cells was observed. The emulsion without apoE had no effect on the in vivo kinetics of LPS. LPS interacted selectively with the apoE moiety of the recombinant chylomicron. Emulsion-associated and free apoE bound approximately two molecules of LPS, possibly by its exposed hydrophilic domain involving arginine residues. We anticipate that the protecting effect of endogenous chylomicrons against LPS-induced endotoxemia may result from the apoE moiety and that human recombinant apoE may serve as a therapeuticum to protect against endotoxemia. PMID:9153287

  16. CEREBRAL ATROPHY, APOLIPOPROTEIN E ε4, AND RATE OF DECLINE IN EVERYDAY FUNCTION AMONG PATIENTS WITH AMNESTIC MILD COGNITIVE IMPAIRMENT

    PubMed Central

    Okonkwo, Ozioma C.; Alosco, Michael L.; Jerskey, Beth A.; Sweet, Lawrence H.; Ott, Brian R.; Tremont, Geoffrey

    2010-01-01

    BACKGROUND Patients with amnestic mild cognitive impairment (MCI) demonstrate decline in everyday function. In this study, we investigated whether whole brain atrophy and apolipoprotein E (APOE) genotype are associated with the rate of functional decline in MCI. METHODS Participants were 164 healthy controls, 258 MCI patients, and 103 patients with mild Alzheimer’s disease (AD), enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). They underwent brain MRI scans, APOE genotyping, and completed up to 6 biannual Functional Activities Questionnaire (FAQ) assessments. Random effects regressions were used to examine trajectories of decline in FAQ across diagnostic groups, and to test the effects of ventricle-to-brain ratio (VBR) and APOE genotype on FAQ decline among MCI patients. RESULTS Rate of decline in FAQ among MCI patients was intermediate between that of controls and mild AD patients. Patients with MCI who converted to mild AD declined faster than those who remained stable. Among MCI patients, increased VBR and possession of any APOE ε4 allele were associated with faster rate of decline in FAQ. In addition, there was a significant VBR by APOE ε4 interaction such that patients who were APOE ε4 positive and had increased atrophy experienced the fastest decline in FAQ. CONCLUSIONS Functional decline occurs in MCI, particularly among patients who progress to mild AD. Brain atrophy and APOE ε4 positivity are associated with such declines, and patients who have elevated brain atrophy and are APOE ε4 positive are at greatest risk of functional degradation. These findings highlight the value of genetic and volumetric MRI information as predictors of functional decline, and thus disease progression, in MCI. PMID:20813341

  17. Apolipoprotein E inhibits toll-like receptor (TLR)-3- and TLR-4-mediated macrophage activation through distinct mechanisms.

    PubMed

    Zhu, Yanjuan; Kodvawala, Ahmer; Hui, David Y

    2010-04-28

    Previous studies have shown that apoE (apolipoprotein E) expression in macrophages suppresses inflammatory responses; however, whether endogenously synthesized apoE acts intracellularly or after its secretion in suppressing macrophage inflammation remains unclear. The present study used the murine monocyte macrophage cell line RAW 264.7 to examine the influence of exogenous apoE on macrophage inflammatory responses induced by TLR (Toll-like receptor)-4 and TLR-3 agonists LPS (lipopolysaccharide) and poly(I-C) respectively. Results showed that exogenously added apoE suppressed the LPS and poly(I-C) induction of IL (interleukin)-6, IL-1beta and TNF-alpha (tumour necrosis factor-alpha) secretion by RAW 264.7 cells. The mechanism was related to apoE suppression of TLR-agonist-induced phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun. A peptide containing the tandem repeat sequence of the receptor-binding domain of apoE, apoE-(141-155)2, was similarly effective in inhibiting LPS- and poly(I-C)-induced macrophage inflammatory responses. Reductive methylation of lysine residues in apoE, which abolished its receptor-binding capability without affecting its ability to interact with HSPGs (heparin sulfate proteoglycans), inhibited the ability of apoE to suppress macrophage responses to LPS, but had no effect on apoE suppression of poly(I-C)-induced macrophage activation. The ability of apoE to suppress poly(I-C)-induced pro-inflammatory cytokine production was abolished by heparinase treatment of RAW 264.7 cells to remove cell-surface HSPGs. Taken together, these results indicate that exogenous apoE inhibits macrophage inflammatory responses to TLR-4 and TLR-3 agonists through distinct mechanisms related to receptor and HSPG binding respectively, and that these inhibitory effects converged on suppression of JNK and c-Jun activation which are necessary for macrophage activation.

  18. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis.

    PubMed

    Olson, Gary E; Winfrey, Virginia P; Nagdas, Subir K; Hill, Kristina E; Burk, Raymond F

    2007-04-20

    Selenium is a micronutrient that is essential for the production of normal spermatozoa. The selenium-rich plasma protein selenoprotein P (Sepp1) is required for maintenance of testis selenium and for fertility of the male mouse. Sepp1 trafficking in the seminiferous epithelium was studied using conventional methods and mice with gene deletions. Immunocytochemistry demonstrated that Sepp1 is present in vesicle-like structures in the basal region of Sertoli cells, suggesting that the protein is taken up intact. Sepp1 affinity chromatography of a testicular extract followed by mass spectrometry-based identification of bound proteins identified apolipoprotein E receptor 2 (ApoER2) as a candidate testis Sepp1 receptor. In situ hybridization analysis identified Sertoli cells as the only cell type in the seminiferous epithelium with detectable ApoER2 expression. Testis selenium levels in apoER2(-/-) males were sharply reduced from those in apoER2(+/+) males and were comparable with the depressed levels found in Sepp1(-/-) males. However, liver selenium levels were unchanged by deletion of apoER2. Immunocytochemistry did not detect Sepp1 in the Sertoli cells of apoER2(-/-) males, consistent with a defect in the receptor-mediated Sepp1 uptake pathway. Phase contrast microscopy revealed identical sperm defects in apoER2(-/-) and Sepp1(-/-) mice. Co-immunoprecipitation analysis demonstrated an interaction of testis ApoER2 with Sepp1. These data demonstrate that Sertoli cell ApoER2 is a Sepp1 receptor and a component of the selenium delivery pathway to spermatogenic cells.

  19. The Relation between Metabolic Syndrome Risk Factors and Genetic Variations of Apolipoprotein V in Relation with Serum Triglyceride and HDL-C Level.

    PubMed

    Fallah, Mohammad-Sadegh; Sedaghatikhayat, Bahareh; Guity, Kamran; Akbari, Fereshteh; Azizi, Fereidoun; Daneshpour, Maryam S

    2016-01-01

    Metabolic syndrome (MetS) is a multi-factorial disorder with five important components. A high triglyceride level combined with low HDL cholesterol has been reported to be associated with Apolipoprotein A5 (APOA5) gene variations. In this study, we aimed to determine the association of single nucleotide polymorphisms including: rs662799, rs3135506 and rs2075291 in the apolipoprotein A-V (APOA5) gene in relation to MetS component like triglyceride and HDL-C level in Tehran Lipid and Glucose Study (TLGS). Metabolic syndrome was defined according to ATPIII and phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS. Demographic, biochemical parameters and anthropometric variables were measured. Selected APOA5 gene polymorphisms were genotyped using PCR-RFLP method. From TLGS population, 947 adults, aged 19 - 70 years, were randomly selected and recruited into the study. Mean age, triglyceride and WC were higher and mean HDL was lower in MetS vs. non-MetS group. C allele in rs2075291 showed a significant association with MetS (OR: 2.38, 95% CI; 1.11 - 5.08, P = 1.5 ×10(-2)). The association was shown between higher serum triglyceride and the presence of T allele (P = 4.5 × 10(-4)) and also lower serum HDL-C and the presence of T allele (P = 1.6 × 10(-3)) in rs2075291. Also this association showed between raised waist circumference and C allele in rs3135506 (P = 3.5 × 10(-2) ) and raised systolic and diastolic blood pressure level and C allele of rs662799 (P = 4.5 × 10(-2)). According to the results, there is a relationship between lipid profile and studied polymorphism in the presence of metabolic syndrome. It seems that APOA5 rs2075291 could play an important role in triglyceride and HDL-C level in metabolic syndrome affected, while the association of APOA5 rs662799 polymorphism is still under debate.

  20. Apolipoprotein A-I Limits the Negative Effect of Tumor Necrosis Factor on Lymphangiogenesis.

    PubMed

    Bisoendial, Radjesh; Tabet, Fatiha; Tak, Paul P; Petrides, Francine; Cuesta Torres, Luisa F; Hou, Liming; Cook, Adam; Barter, Philip J; Weninger, Wolfgang; Rye, Kerry-Anne

    2015-11-01

    Lymphatic endothelial dysfunction underlies the pathogenesis of many chronic inflammatory disorders. The proinflammatory cytokine tumor necrosis factor (TNF) is known for its role in disrupting the function of the lymphatic vasculature. This study investigates the ability of apolipoprotein (apo) A-I, the principal apolipoprotein of high-density lipoproteins, to preserve the normal function of lymphatic endothelial cells treated with TNF. TNF decreased the ability of lymphatic endothelial cells to form tube-like structures. Preincubation of lymphatic endothelial cells with apoA-I attenuated the TNF-mediated inhibition of tube formation in a concentration-dependent manner. In addition, apoA-I reversed the TNF-mediated suppression of lymphatic endothelial cell migration and lymphatic outgrowth in thoracic duct rings. ApoA-I also abrogated the negative effect of TNF on lymphatic neovascularization in an ATP-binding cassette transporter A1-dependent manner. At the molecular level, this involved downregulation of TNF receptor-1 and the conservation of prospero-related homeobox gene-1 expression, a master regulator of lymphangiogenesis. ApoA-I also re-established the normal phenotype of the lymphatic network in the diaphragms of human TNF transgenic mice. ApoA-I restores the neovascularization capacity of the lymphatic system during TNF-mediated inflammation. This study provides a proof-of-concept that high-density lipoprotein-based therapeutic strategies may attenuate chronic inflammation via its action on lymphatic vasculature. © 2015 American Heart Association, Inc.

  1. Isolation and function analysis of apolipoprotein A-I gene response to virus infection in grouper.

    PubMed

    Wei, Jingguang; Gao, Pin; Zhang, Ping; Guo, Minglan; Xu, Meng; Wei, Shina; Yan, Yang; Qin, Qiwei

    2015-04-01

    Apolipoproteins, synthesized mainly in liver and intestine and bounded to lipids, play important roles in lipid transport and uptake through the circulation system. In this study, an apolipoprotein A-I gene homologue was cloned from orange-spotted grouper Epinephelus coioides (designed as Ec-ApoA-I) by rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of Ec-ApoA-I was comprised of 1278 bp with a 792 bp open reading frame (ORF) that encodes a putative protein of 264 amino acids. Quantitative real-time PCR (qPCR) analysis revealed that Ec-ApoA-I was abundant in liver and intestine, and the expression in liver was significantly (P < 0.01) up-regulated after the stimulation of LPS, Poly(I:C), Vibrio alginolyticus, and Singapore grouper iridovirus (SGIV). Recombinant Ec-ApoA-I (rEc-ApoA-I) was produced in Escherichia coli BL21 (DE3) expression system exhibited bacteriolyticactivity against Microcococcus lysodeikticus and Aeromonas hydrophila. Intracellular localization revealed that Ec-ApoA-I distributed in both cytoplasm and nucleus, and predominantly in the cytoplasm. Overexpression of Ec-ApoA-I in grouper Brain (GB) cells could inhibit the replication of SGIV. These results together indicated that Ec-ApoA-I perhaps is involved in the responses to bacterial and viral challenge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Apolipoprotein E4, cholinergic integrity and the pharmacogenetics of Alzheimer's disease.

    PubMed Central

    Poirier, J

    1999-01-01

    Recent evidence indicates that apolipoprotein E (apoE) plays a central role in the brain's response to injury. The coordinated expression of apoE and its receptors (the so-called LDL [low density lipoprotein] receptor family) appears to regulate the transport and internalization of cholesterol and phospholipids during the early phase of the re-innervation process in the adult brain. During dendritic remodelling and synaptogenesis, neurons progressively repress the synthesis of cholesterol in favour of cholesterol internalization through the apoE/LDL receptor pathway. The discovery a few years ago, that the apolipoprotein epsilon 4 allele found in 15% of the normal population is strongly linked to both sporadic and familial late-onset Alzheimer's disease (AD), raises the possibility that a dysfunction of the lipid transport system associated with compensatory sprouting and synaptic remodelling could be central to the AD process. The role of apoE in the central nervous system is particularly important in relation to the cholinergic system, which relies to a certain extent on the integrity of phospholipid homeostasis in neurons. Recent evidence obtained by 4 independent research teams indicates that apo epsilon 4 allele directly affects cholinergic activity in the brain of AD subjects. It was also shown to modulate the drug efficacy profile of several cholinomimetic and noncholinomimetic drugs used for the treatment of AD patients. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:10212558

  3. Low Density Lipoprotein Receptor-Related Protein and Apolipoprotein E Expression is Altered in Schizophrenia

    PubMed Central

    Gibbons, Andrew Stuart; Thomas, Elizabeth A.; Scarr, Elizabeth; Dean, Brian

    2010-01-01

    Our recent microarray study reported altered mRNA expression of several low density lipoprotein receptor-related proteins (LRP) associated with the first 4 years following diagnosis with schizophrenia. Whilst this finding is novel, apolipoprotein E (APOE), which mediates its activity through LRPs, has been reported by several studies to be altered in brains of subjects with schizophrenia. We used qPCR to measure the expression of LRP2, LRP4, LRP6, LRP8, LRP10 and LRP12 mRNA in Brodmann's area (BA) 46 of the dorsolateral prefrontal cortex in 15 subjects with short duration of illness schizophrenia (SDS) and 15 pair matched controls. We also used Western blotting to measure APOE protein expression in BA46 from these subjects. Amongst the LRPs examined, LRP10 expression was significantly increased (P = 0.03) and LRP12 was significantly decreased (P < 0.01) in SDS. APOE protein expression was also increased in SDS (P = 0.01). No other marker examined in this study was altered with diagnosis. Our data supports a role for distinct members of the LRP family in the pathology of schizophrenia and adds weight to the hypothesis that aberrant apolipoprotein signaling is involved in the early stages of schizophrenia. PMID:21423430

  4. Docosahexaenoic acid prevents cognitive deficits in human apolipoprotein E epsilon 4-targeted replacement mice.

    PubMed

    Chouinard-Watkins, Raphaël; Vandal, Milène; Léveillé, Pauline; Pinçon, Anthony; Calon, Frédéric; Plourde, Mélanie

    2017-09-01

    At a population level, dietary consumption of fish rich in docosahexaenoic acid (DHA) is associated with prevention of cognitive decline but this association is not clear in carriers of the apolipoprotein E epsilon 4 allele (E4). Plasma and liver DHA concentrations show significant alterations in E4 carriers, in part corrected by DHA supplementation. However, whether DHA sufficiency in E4 carriers has consequences on cognition is unknown. Mice expressing human E4 or apolipoprotein E epsilon 3 allele (E3) were fed either a control diet or a diet containing DHA for 8 months and cognitive performance was tested using the object recognition test and the Barnes maze test. In E4 mice fed the control diet, impaired memory was detected and arachidonic acid concentrations were elevated in the hippocampus compared to E3 mice fed the control diet. DHA consumption prevented memory decline and restored arachidonic acid concentrations in the hippocampus of E4 mice. Our results suggest that long-term high-dose DHA intake may prevent cognitive decline in E4 carriers. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Resonance assignments and secondary structure of apolipoprotein E C-terminal domain in DHPC micelles.

    PubMed

    Lo, Chi-Jen; Chyan, Chia-Lin; Chen, Yi-Chen; Chang, Chi-Fon; Huang, Hsien-Bin; Lin, Ta-Hsien

    2015-04-01

    Human apolipoprotein E (apoE) has been known to play a key role in the transport of plasma cholesterol and lipoprotein metabolism. It is an apolipoprotein of 299 amino acids with a molecular mass, ~34 kDa. ApoE has three major isoforms, apoE2, apoE3, and apoE4 which differ only at residue 112 or 158. ApoE consists of two independently folded domains (N-terminal and C-terminal domain) separated by a hinge region. The N-terminal domain and C-terminal domain of apoE are responsible for the binding to receptor and to lipid, respectively. Since the high resolution structures of apoE in lipids are still unavailable to date, we therefore aim to resolve the structures in lipids by NMR. Here, we reported the resonance assignments and secondary structure distribution of the C-terminal domain of wild-type human apoE (residue 195-299) in the micelles formed by dihexanoylphosphatidylcholine. Our results may provide a novel structural model of apoE in micelles and may shed new light on the molecular mechanisms underlying the apoE related biological processes.

  6. [Isolation of isoforms of apolipoprotein CIII from human serum by chromatofocusing].

    PubMed

    Fang, D; Gong, R; O, K

    1999-03-01

    This study aimed to isolate isoforms of apolipoprotein (apo) C III from human serum. 24-hour fasting serum from normal and hyperlipidemic subjects was pooled and subjected to ultracentrifugation at plasma density for 20 hours. Very low density lipoprotein (VLDL) was collected at density of d < 1.006 g/ml, and it was delipidated by ethanol and ether. The delipidated apo-VLDL was dissolved in a solution containing 7.2 mol/L urea and 20 mmol/L dithiothreitol. The insoluble apo B was removed by centrifugation. The soluble apo-VLDL was applied to PBE94 column, and eluted with elution buffer containing polybuffer 74 and 8 mol/L urea (1:8, pH4.0). After pooled, the eluted peaks of apolipoproteins were applied to column chromatography of hydroxylapatite to remove the polybuffer. The purified isoforms of apoC III and the purified apo C I, C II and E, were characterized by isoelectrofocusing and west blot. The results showed that the purified apoC III1, C III2, and C II were pure.

  7. Apolipoprotein CIII links islet insulin resistance to β-cell failure in diabetes

    PubMed Central

    Åvall, Karin; Ali, Yusuf; Leibiger, Ingo B.; Leibiger, Barbara; Moede, Tilo; Paschen, Meike; Dicker, Andrea; Daré, Elisabetta; Köhler, Martin; Ilegems, Erwin; Abdulreda, Midhat H.; Graham, Mark; Crooke, Rosanne M.; Tay, Vanessa S. Y.; Refai, Essam; Nilsson, Stefan K.; Jacob, Stefan; Selander, Lars; Berggren, Per-Olof; Juntti-Berggren, Lisa

    2015-01-01

    Insulin resistance and β-cell failure are the major defects in type 2 diabetes mellitus. However, the molecular mechanisms linking these two defects remain unknown. Elevated levels of apolipoprotein CIII (apoCIII) are associated not only with insulin resistance but also with cardiovascular disorders and inflammation. We now demonstrate that local apoCIII production is connected to pancreatic islet insulin resistance and β-cell failure. An increase in islet apoCIII causes promotion of a local inflammatory milieu, increased mitochondrial metabolism, deranged regulation of β-cell cytoplasmic free Ca2+ concentration ([Ca2+]i) and apoptosis. Decreasing apoCIII in vivo results in improved glucose tolerance, and pancreatic apoCIII knockout islets transplanted into diabetic mice, with high systemic levels of the apolipoprotein, demonstrate a normal [Ca2+]i response pattern and no hallmarks of inflammation. Hence, under conditions of islet insulin resistance, locally produced apoCIII is an important diabetogenic factor involved in impairment of β-cell function and may thus constitute a novel target for the treatment of type 2 diabetes mellitus. PMID:25941406

  8. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p < 0.05). Pathological observations showed that accumulation of cholesterol crystals in the plaque area was greater in the control group compared with the 0.40 % cacao polyphenol group (p < 0.05). Immunochemical staining in the 0.25 and 0.40 % groups showed that expression of the cell adhesion molecules (VCAM-1 and ICAM-1) and production of oxidative stress markers (4-hydroxynonenal, hexanoyl-lysine, and dityrosine) were reduced in cross-sections of the brachiocephalic trunk. These results suggest that cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  9. Lipoproteins containing apolipoprotein B isolated from patients with abetalipoproteinemia and homozygous hypobetalipoproteinemia: identification and characterization.

    PubMed

    Aguie, G A; Rader, D J; Clavey, V; Traber, M G; Torpier, G; Kayden, H J; Fruchart, J C; Brewer, H B; Castro, G

    1995-12-01

    Abetalipoproteinemia (ABL) and homozygous hypobetalipoproteinemia (HBL) are inherited disorders which are classically characterized by progressive retinal and spinocerebellar disease, fat-soluble vitamin deficiency, and absence of apolipoprotein (apo) B from the plasma. Using immunoaffinity chromatography with an anti-apo B antiserum, we isolated apo B-containing lipoprotein (LpB) particles from the plasma of 4 ABL and 2 HBL patients. The LpB particles were characterized and compared with low density lipoprotein (LDL) and LpB isolated from normal plasma. The ABL/HBL LpB particles were similar in size and charge to normal LpB particles but were relatively enriched in several other apolipoproteins. They contained alpha-tocopherol in a ratio to cholesterol that was proportionately much higher than the very low ratio of alpha-tocopherol to cholesterol in plasma. They bound saturably to fibroblasts and were internalized and degraded similarly to LDL. Hence, the molecular defects in ABL and HBL permit the secretion of a very small number of apo B-containing lipoproteins which may be important for transport of alpha-tocopherol to peripheral tissues.

  10. Monoclonal antibodies to human apolipoproteins: application to the study of high density lipoprotein subpopulations.

    PubMed

    Bustos, P; Ulloa, N; Calvo, C; Muller, D; Durán, D; Martínez, J; Salazar, L; Quiroga, A

    2000-09-01

    We produced, selected and cloned hybridomas that secrete monoclonal antibodies against human apolipoprotein (apo) A-I. All of the antibodies corresponded to the IgG(1) subclass and were named 1C11, 2B4, 2C10, 7C5, 8A4 and 8A5. The antibodies were characterized by their reactivity with whole lipoproteins, apolipoproteins, synthetic peptides and fragments generated by cleavage of the apo A-I. Three of the monoclonal antibodies studied (2B4, 2C10 and 7C5) were similarly inhibited by an amino-terminal peptide (amino acid sequence 1-20) of apo A-I, whereas antibodies 1C11, 8A4 and 8A5 had no reaction. Other results show that monoclonal antibody 1C11 recognizes an epitope located between amino acids 135-148. We evaluated the monoclonal antibody 8A4 against different HDL subpopulations by competitive displacement analysis and it showed a similar reactivity with the HDL particles: LpA-I and LpA-I:A-II. This antibody was used to standardize a sandwich ELISA to quantitate LpA-I in plasma. We conclude that these monoclonal antibodies are relevant for the study of apo A-I epitope expression and for quantitating apo A-I containing lipoparticles.

  11. Fasting apolipoprotein B48 is a marker for peripheral arterial disease in type 2 diabetes.

    PubMed

    Mancera-Romero, J; Sánchez-Chaparro, M A; Rioja, J; Ariza, M J; Olivecrona, G; González-Santos, P; Valdivielso, P

    2013-06-01

    An earlier study showed that fasting and postprandial concentrations of apolipoprotein B48 were raised in patients with type 2 diabetes (DM2) and peripheral arterial disease (PAD) as compared with persons without DM2 or persons with DM2 but not PAD. The aim of this study was to confirm the association of PAD and B48 in a larger group of patients with DM2 and the relation of B48 with the preheparin lipoprotein lipase (LPL) mass. We studied 456 patients with DM2. PAD was defined as an ankle-brachial index (ABI) <0.9. Apolipoprotein B48 was quantified by ELISA. Apo B48 was significantly higher in the group with an ABI <0.9 than the groups with ABI of 0.9-1.3 and >1.3 (10.7 ± 6.28 vs. 9.24 ± 5.5 vs. 9.17 ± 8.8 mg/L, ANOVA test, p < 0.05). B48 was independently associated with an ABI <0.9 (OR 1.053; 95 % CI, 1.013-1.094; p < 0.05), together with smoking and duration of diabetes. The preheparin LPL mass was similar in the patients with and without PAD. In conclusion, we confirmed that fasting B48 is an independent marker of PAD in patients with DM2, unrelated to the preheparin LPL mass, statin therapy or glucose lowering treatment.

  12. Pallidal neuronal apolipoprotein E in pantothenate kinase-associated neurodegeneration recapitulates ischemic injury to the globuspallidus

    PubMed Central

    Woltjer, Randall L.; Reese, Lindsay C.; Richardson, Brian E.; Tran, Huong; Green, Sarah; Pham, Thao; Chalupsky, Megan; Gabriel, Isabella; Light, Tyler; Sanford, Lynn; Jeong, Suh Y.; Hamada, Jeffrey; Schwanemann, Leila K.; Rogers, Caleb; Gregory, Allison; Hogarth, Penelope; Hayflick, Susan J.

    2015-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive movement disorder that is due to mutations in PANK2. Pathologically, it is a member of a class of diseases known as neurodegeneration with brain iron accumulation (NBIA) and features increased tissue iron and ubiquitinated protein aceous aggregates in the globuspallidus. We have previously determined that these aggregates represent condensed residue derived from degenerated pallidal neurons. However, the protein content, other than ubiquitin, of these aggregates remains unknown. In the present study, we performed biochemical and immunohistochemical studies to characterize these aggregates and found them to be enriched in apolipoprotein E that is poorly soluble in detergent solutions. However, did not determine a significant association between APOE genotype and the clinical phenotype of disease in our database of 81 cases. Rather, we frequently identified similar ubiquitin- and apolipoprotein E-enriched lesions in these neurons in non-PKAN patients in the penumbrae of remote infarcts that involve the globuspallidus, and occasionally in other brain sites that contain large γ-aminobutyric acid (GABA)ergic neurons. Our findings, taken together, suggest that tissue or cellular hypoxic/ischemic injury within the globuspallidus may underlie the pathogenesis of PKAN. PMID:26547561

  13. Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice.

    PubMed

    Barski, Oleg A; Xie, Zhengzhi; Baba, Shahid P; Sithu, Srinivas D; Agarwal, Abhinav; Cai, Jian; Bhatnagar, Aruni; Srivastava, Sanjay

    2013-06-01

    Atherosclerotic lesions are associated with the accumulation of reactive aldehydes derived from oxidized lipids. Although inhibition of aldehyde metabolism has been shown to exacerbate atherosclerosis and enhance the accumulation of aldehyde-modified proteins in atherosclerotic plaques, no therapeutic interventions have been devised to prevent aldehyde accumulation in atherosclerotic lesions. We examined the efficacy of carnosine, a naturally occurring β-alanyl-histidine dipeptide, in preventing aldehyde toxicity and atherogenesis in apolipoprotein E-null mice. In vitro, carnosine reacted rapidly with lipid peroxidation-derived unsaturated aldehydes. Gas chromatography mass-spectrometry analysis showed that carnosine inhibits the formation of free aldehydes 4-hydroxynonenal and malonaldialdehyde in Cu(2+)-oxidized low-density lipoprotein. Preloading bone marrow-derived macrophages with cell-permeable carnosine analogs reduced 4-hydroxynonenal-induced apoptosis. Oral supplementation with octyl-D-carnosine decreased atherosclerotic lesion formation in aortic valves of apolipoprotein E-null mice and attenuated the accumulation of protein-acrolein, protein-4-hydroxyhexenal, and protein-4-hydroxynonenal adducts in atherosclerotic lesions, whereas urinary excretion of aldehydes as carnosine conjugates was increased. The results of this study suggest that carnosine inhibits atherogenesis by facilitating aldehyde removal from atherosclerotic lesions. Endogenous levels of carnosine may be important determinants of atherosclerotic lesion formation, and treatment with carnosine or related peptides could be a useful therapy for the prevention or the treatment of atherosclerosis.

  14. FAD286, an aldosterone synthase inhibitor, reduced atherosclerosis and inflammation in apolipoprotein E-deficient mice.

    PubMed

    Gamliel-Lazarovich, Aviva; Gantman, Anna; Coleman, Raymond; Jeng, Arco Y; Kaplan, Marielle; Keidar, Shlomo

    2010-09-01

    Aldosterone is known to be involved in atherosclerosis and cardiovascular disease and blockade of its receptor was shown to improve cardiovascular function. It was, therefore, hypothesized that inhibition of aldosterone synthesis would also reduce atherosclerosis development. To test this hypothesis, we examined the effect of FAD286 (FAD), an aldosterone synthase inhibitor, on the development of atherosclerosis in spontaneous atherosclerotic apolipoprotein E-deficient mice. Mice were divided into three treatment groups: normal diet, low-salt diet (LSD) and LSD treated with FAD at 30 mg/kg per day (LSD + FAD) for 10 weeks. Histomorphometry of the aortas obtained from these mice showed that atherosclerotic lesion area increased by three-fold under LSD compared with normal diet and FAD significantly reduced lesion area to values similar to normal diet. Changes in atherosclerosis were paralleled by changes in the expression of the inflammation markers (C-reactive protein, monocyte chemotactic protein-1, interleukin-6, nuclear factor kappa B and intercellular adhesion molecule-1) in peritoneal macrophages obtained from these mice. Surprisingly, whereas LSD increased serum or urine aldosterone levels, FAD did not alter these levels when evaluated at the end of the study. In J774A.1 macrophage-like cell line stimulated with lipopolysaccharide, FAD was shown to have a direct dose-dependent anti-inflammatory effect. In apolipoprotein E-deficient mice, FAD reduces atherosclerosis and inflammation. However, these actions appeared to be dissociated from its effect on inhibition of aldosterone synthesis.

  15. Human leucine zipper protein promotes hepatic steatosis via induction of apolipoprotein A-IV.

    PubMed

    Kang, Minsoo; Kim, Jeonghan; An, Hyoung-Tae; Ko, Jesang

    2017-02-28

    The molecular mechanism of stress-induced hepatic steatosis is not well known. Human leucine zipper protein (LZIP) regulates the expression of genes involved in inflammation, cell migration, and stress response. The aim of this study was to determine the regulatory role of LZIP in stress-induced hepatic steatosis. We used a microarray analysis to identify LZIP-induced genes involved in hepatic lipid metabolism. LZIP increased the expression of apolipoprotein A-IV (APOA4) mRNA. In the presence of stress inducer, APOA4 promoter analysis was performed and LZIP-induced lipid accumulation was monitored in mouse primary cells and human tissues. Under Golgi stress conditions, LZIP underwent proteolytic cleavage and was phosphorylated by AKT to protect against proteasome degradation. The stabilized N-terminal LZIP was translocated to the nucleus, where it directly bound to the APOA4 promoter, leading to APOA4 induction. LZIP-induced APOA4 expression resulted in increased absorption of surrounding free fatty acids. LZIP also promoted hepatic steatosis in mouse liver. Both LZIP and APOA4 were highly expressed in human steatosis samples. Our findings indicate that LZIP is a novel modulator of APOA4 expression and hepatic lipid metabolism. LZIP might be a therapeutic target for developing treatment strategies for hepatic steatosis and related metabolic diseases.-Kang, M., Kim, J., An, H.-T., Ko, J. Human leucine zipper protein promotes hepatic steatosis via induction of apolipoprotein A-IV.

  16. Covalent structure of apolipoprotein A-II from Macaca mulatta serum high-density lipoproteins.

    PubMed

    Edelstein, C; Noyes, C; Keim, P; Heinrikson, R L; Fellows, R E; Scanu, A M

    1976-03-23

    The covalent structure of apolipoprotein A-II, isolated from the serum high-density lipoprotein of a single male Rhesus monkey (Macaca mulatta), was determined. The amino acid sequence of this 77-residue polypeptide is: less than Glu-Ala-Glu-Glu-Pro5-Ser-Val-Glu-Ser-Leu10-Val-Ser-Gln-Tyr-Phe15-Gln-Thr-Val-Thr-Asp20-Tyr-Gly-Lys-Asp-Leu25-Met-Glu-Lys-Val-Lys30-Ser-Pro-Glu-Leu-Gln35-Ala-Gln-Ala-Lys-Ala40-Tyr-Phe-Glu-Lys-Ser45-Lys-Glu-Gln-Leu-Thr50-Pro-Leu-Val-Lys-Lys55-Ala-Gly-Thr-Asp-Leu60-Val-Asn-Phe-Leu-Ser65-Tyr-Phe-Val-Glu-Leu70-Arg-Thr-Gln-Pro-Ala75-Thr-Gln-COOH. A comparison of this structure to that of the monomeric form of human apolipoprotein A-II reveals a high degree of homology except for six conservative amino acid replacements (positions 3, 6, 40, 53, 59, and 71). Of particular structural significance is the replacement of cysteine by serine in position 6. This explaines why Rhesus A-II exists in monomeric form, contrary to the established dimeric nature of the human protein.

  17. [Relationship between apolipoprotein E polymorphism and cognitive function in patients with primary hypertension].

    PubMed

    Su, Yanling; Chen, Xiaoping; Huang, Yan; Jiang, Lingyun; Huang, He

    2009-08-01

    To explore the relationship between apolipoprotein E polymorphism and cognitive function in primary hypertension patients, we collected 200 Chinese primary hypertensive patients. Blood pressure (BP), heart rate (HR), height, body weight, waistline, hip circumference were measured. The Mini Mental State Examination (MMSE) was applied to test the cognitive function and compute score. Full-automatic bio-chemistry analyzer was used to determine total cholesterol (TC) and triglyeride (TG) and fasting glucose. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RELP) was used for the analysis of the apolipoprotein E polymorphism. We found that in primary hypertension patients, the genotype frequency of epsilon3/4 and epsilon4/4 were significantly higher in the cognitive impairment group than that in the cognitive normal group. The allele frequency of e4 is obviously higher in the cognitive impairment group than that in the cognitive normal group. Age and epsilon4/4 genetype were positively correlated with hypertensive-cognitive impairment, while cultural level was negtively correlated with it. ApoEepsilon4 allele and age might be risk factors for the cognitive impairment in hypertensive patients. The epsilon4 homozygote (epsilon4/4) might be an important influencing factor for the progression of cognitive impairment.

  18. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E.

    PubMed

    Neves, Ana Rute; Queiroz, Joana Fontes; Reis, Salette

    2016-04-09

    The present study takes advantage of the beneficial effects of resveratrol as a neuroprotective compound. Resveratrol-loaded solid lipid nanoparticles were functionalized with apolipoprotein E which can be recognized by the LDL receptors overexpressed on the blood-brain barrier. Transmission electron microscopy images revealed spherical nanoparticles, dynamic light scattering gave a Z-average lower than 200 nm, and a zeta potential of around -13 mV and very high resveratrol entrapment efficiency (ca. 90 %). In vitro cytotoxic effects were assessed by MTT and LDH assays in hCMEC/D3 cell line and revealed no toxicity up to 50 μM over 4 h of incubation. The permeability through hCMEC/D3 monolayers showed a significant increase (1.8-fold higher) for resveratrol-loaded solid lipid nanoparticles functionalized with apolipoprotein E when compared to non-functionalized ones. In conclusion, these nanosystems might be a promising strategy for resveratrol delivery into the brain, while protecting it from degradation in the blood stream. Graphical abstract .

  19. Exercise training reduces severity of atherosclerosis in apolipoprotein E knockout mice via nitric oxide.

    PubMed

    Shimada, Kana; Kishimoto, Chiharu; Okabe, Taka-aki; Hattori, Miki; Murayama, Toshinori; Yokode, Masayuki; Kita, Toru

    2007-07-01

    Exercise training may protect against the development of atherosclerosis, although the precise mechanisms are still unknown. The present study assessed the hypothesis that exercise training would reduce the severity of experimental atherosclerosis in apolipoprotein-E (apoE)-deficient mice via nitric oxide (NO). ApoE-deficient mice fed a high-fat diet underwent exercise training (30 min swimming) 3 times per week for 8 weeks. The exercise group were also given oral N(G)-nitro-L-arginine methylester (L-NAME; 25 mg x kg (-1) x day(-1)), an inhibitor of NO synthase. Fatty streak plaque lesions developed in ApoE-deficient mice fed the high-fat diet, and were suppressed in the mice that underwent swimming training. In contrast, atherosclerotic lesions were not ameliorated in mice that had exercise training plus oral L-NAME treatment. Immunohistochemical analysis revealed that the expression of endothelial NO increased in mice undergoing exercise compared with the mice that did not exercise, and that the expression was suppressed in the mice having exercise plus oral L-NAME treatment. Differences in lesion area did not correlate with any significant alterations in serum lipid levels. Exercise training suppressed atherosclerosis via the NO system.

  20. Altered Energy Metabolism Pathways in the Posterior Cingulate in Young Adult Apolipoprotein E ɛ4 Carriers

    PubMed Central

    Perkins, Michelle; Wolf, Andrew B.; Chavira, Bernardo; Shonebarger, Daniel; Meckel, J.P.; Leung, Lana; Ballina, Lauren; Ly, Sarah; Saini, Aman; Jones, T. Bucky; Vallejo, Johana; Jentarra, Garilyn; Valla, Jon

    2016-01-01

    The APOE gene, encoding apolipoprotein E, is the primary genetic risk factor for late-onset Alzheimer’s disease (AD). Apolipoprotein E ɛ4 allele (APOE4) carriers have alterations in brain structure and function (as measured by brain imaging) even as young adults. Examination of this population is valuable in further identifying details of these functional changes and their association with vulnerability to AD decades later. Previous work demonstrates functional declines in mitochondrial activity in the posterior cingulate cortex, a key region in the default mode network, which appears to be strongly associated with functional changes relevant to AD risk. Here, we demonstrate alterations in the pathways underlying glucose, ketone, and mitochondrial energy metabolism. Young adult APOE4 carriers displayed upregulation of specific glucose (GLUT1 & GLUT3) and monocarboxylate (MCT2) transporters, the glucose metabolism enzyme hexokinase, the SCOT & AACS enzymes involved in ketone metabolism, and complexes I, II, and IV of the mitochondrial electron transport chain. The monocarboxylate transporter (MCT4) was found to be downregulated in APOE4 carriers. These data suggest that widespread dysregulation of energy metabolism in this at-risk population, even decades before possible disease onset. Therefore, these findings support the idea that alterations in brain energy metabolism may contribute significantly to the risk that APOE4 confers for AD. PMID:27128370

  1. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration

    PubMed Central

    Curcio, Christine A.; Johnson, Mark; Huang, Jiahn-Dar; Rudolf, Martin

    2010-01-01

    The largest risk factor for age-related macular degeneration (ARMD) is advanced age. With aging, there is a striking accumulation of neutral lipids in Bruch's membrane (BrM) of normal eye that continues through adulthood. This accumulation has the potential to significantly impact the physiology of the retinal pigment epithelium (RPE). It also ultimately leads to the creation of a lipid wall at the same locations where drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD, subsequently form. Here, we summarize evidence obtained from light microscopy, ultrastructural studies, lipid histochemistry, assay of isolated lipoproteins, and gene expression analysis. These studies suggest that lipid deposition in BrM is at least partially due to accumulation of esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles produced by the RPE. Furthermore, we suggest that the formation of ARMD lesions and their aftermath may be a pathological response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (Tabas, I., K. J. Williams, and J. Borén. 2007. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 116:1832–1844). This view provides a conceptual basis for the development of novel treatments that may benefit ARMD patients in the future. PMID:19797256

  2. Expression of human apolipoprotein B and assembly of lipoprotein(a) in transgenic mice

    SciTech Connect

    Callow, M.J.; Stoltzfus, L.J.; Rubin, E.M.; Lawn, R.M.

    1994-03-15

    The atherogenic macromolecule lipoprotein(a) [Lp(a)] has resisted in vivo analyses partly because it is found in a limited number of experimental animals. Although transgenic mice expressing human apolipoprotein (a) [apo(a)] have previously been described, they failed to assemble Lp(a) particles because of the inability of human apo(a) to associate with mouse apolipoprotein B (apoB). The authors isolated a 90-kilobase P1 phagemid containing the human apoB gene and with this DNA generated 13 lines of transgenic mice of which 11 expressed human apoB. The human apoB transcript was expressed and edited in the liver of the transgenic mice. Plasma concentrations of human apoB, as well as low density lipoprotein (LDL), were related to transgene copy number; the transgenic line with the most copies of human apoB had a >4-fold increase in LDL cholesterol compared with nontransgenics and a lipoprotein profile similar to that of humans. When human apoB and apo(a) transgenic mice were bred together, plasma apo(a) in mice expressing both human proteins was tightly associated with lipoproteins in the LDL density region. These studies demonstrate the successful expression of human apoB and the efficient assembly of Lp(a) in mice.

  3. Molecular structure of an apolipoprotein determined at 2. 5- angstrom resolution

    SciTech Connect

    Breiter, D.R.; Benning, M.M.; Wesenberg, G.; Holden, H.M.; Rayment, I. ); Kanost, M.R.; Law, J.H.; Wells, M.A. )

    1991-01-22

    The three-dimensional structure of an apolipoprotein isolated from the African migratory locust Locusta migratoria has been determined by X-ray analysis to a resolution of 2.5 {angstrom}. The overall molecular architecture of this protein consists of five long {alpha}-helices connected by short loops. As predicted from amino acid sequence analyses, these helices are distinctly amphiphilic with the hydrophobic residues pointing in toward the interior of the protein and the hydrophilic side chains facing outward. The molecule falls into the general category of up-and-down {alpha}-helical bundles as previously observed, for example, in cytochrome c{prime}. Although the structure shows the presence of five long amphiphilic {alpha}-helices, the {alpha}-helical moment and hydrophobicity of the entire molecule fall into the range found for normal globular proteins. Thus, in order for the amphiphilic helices to play a role in the binding of the protein to a lipid surface, there must be a structural reorganization of the protein which exposes the hydrophobic interior to the lipid surface. The three dimensional motif of this apolipoprotein is compatible with a model in which the molecule binds to the lipid surface via a relatively nonpolar end and then spreads on the surface in such a way as to cause the hydrophobic side chains of the helices to come in contact with the lipid surface, the charged and polar residues to remain in contact with water, and the overall helical motif of the protein to be maintained.

  4. Additive effect of LRP8/APOER2 R952Q variant to APOE ε2/ε3/ε4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study

    PubMed Central

    Martinelli, Nicola; Olivieri, Oliviero; Shen, Gong-Qing; Trabetti, Elisabetta; Pizzolo, Francesca; Busti, Fabiana; Friso, Simonetta; Bassi, Antonella; Li, Lin; Hu, Ying; Pignatti, Pier Franco; Corrocher, Roberto; Wang, Qing Kenneth; Girelli, Domenico

    2009-01-01

    Background The R952Q variant in the low density lipoprotein receptor-related protein 8 (LRP8)/apolipoprotein E receptor 2 (ApoER2) gene has been recently associated with familial and premature myocardial infarction (MI) by means of genome-wide linkage scan/association studies. We were interested in the possible interaction of the R952Q variant with another established cardiovascular genetic risk factor belonging to the same pathway, namely apolipoprotein E (APOE) ε2/ε3/ε4 genotype, in modulating apolipoprotein E (ApoE) plasma levels and risk of MI. Methods In the Italian cohort used to confirm the association of the R952Q variant with MI, we assessed lipid profile, apolipoprotein concentrations, and APOE ε2/ε3/ε4 genotype. Complete data were available for a total of 681 subjects in a case-control setting (287 controls and 394 patients with MI). Results Plasma ApoE levels decreased progressively across R952Q genotypes (mean levels ± SD = RR: 0.045 ± 0.020, RQ: 0.044 ± 0.014, QQ: 0.040 ± 0.008 g/l; P for trend = 0.047). Combination with APOE genotypes revealed an additive effect on ApoE levels, with the highest level observed in RR/non-carriers of the E4 allele (0.046 ± 0.021 g/l), and the lowest level in QQ/E4 carriers (0.035 ± 0.009 g/l; P for trend = 0.010). QQ/E4 was also the combined genotype with the most significant association with MI (OR 3.88 with 95%CI 1.08–13.9 as compared with RR/non-carriers E4). Conclusion Our data suggest that LRP8 R952Q variant may have an additive effect to APOE ε2/ε3/ε4 genotype in determining ApoE concentrations and risk of MI in an Italian population. PMID:19439088

  5. Associations of apolipoprotein B/apolipoprotein A-I ratio with pre-diabetes and diabetes risks: a cross-sectional study in Chinese adults.

    PubMed

    Zheng, Shuang; Han, Tingting; Xu, Hua; Zhou, Huan; Ren, Xingxing; Wu, Peihong; Zheng, Jun; Wang, Lihua; Zhang, Ming; Jiang, Yihong; Chen, Yawen; Qiu, Huiying; Liu, Wei; Hu, Yaomin

    2017-01-20

    Apolipoprotein B/apolipoprotein A-I (ApoB/ApoA-I) ratio is a useful predictor of cardiovascular risk. However, the association between the ApoB/ApoA-I ratio and the risk of type 2 diabetes mellitus (T2DM) is still obscure. To investigate the associations between the ApoB/ApoA-I ratio and the risk of T2DM and pre-diabetes in a Chinese population, and to assess the role of gender in these associations. A stratified random sampling design was used in this cross-sectional study which included 264 men and 465 women with normal glucose tolerance (NGT), pre-diabetes or T2DM. Serum ApoB, ApoA-I and other lipid and glycaemic traits were measured. Pearson's partial correlation and multivariable logistic analysis were used to evaluate the associations between ApoB/ApoA-I ratio and the risk of T2DM and pre-diabetes. The ApoB/ApoA-I ratios were significantly increased across the spectrum of NGT, pre-diabetes and T2DM. Women showed higher levels of ApoB/ApoA-I ratio and ApoB than men in the pre-diabetic and T2DM groups, but not in the NGT group. The ApoB/ApoA-I ratio was closely related with triglyceride, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and other glycaemic traits. Moreover, in women, the risk of diabetes and pre-diabetes in the top and middle tertiles of the ApoB/ApoA-I ratio were 3.65-fold (95% CI 1.69 to 6.10) and 2.19-fold (95% CI 1.38 to 2.84) higher than in the bottom tertile, respectively, after adjusting for potential confounding factors. However, the associations disappeared in men after adjusting for other factors. The ApoB/ApoA-I ratio showed positive associations with the risk of diabetes and pre-diabetes in Chinese women. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Abnormal histopathology, fat percent and hepatic apolipoprotein A I and apolipoprotein B100 mRNA expression in fatty liver hemorrhagic syndrome and their improvement by soybean lecithin.

    PubMed

    Song, Yalu; Ruan, Jiming; Luo, Junrong; Wang, Tiancheng; Yang, Fei; Cao, Huabin; Huang, Jianzhen; Hu, Guoliang

    2017-10-01

    To investigate the etiopathogenesis of fatty liver hemorrhagic syndrome (FLHS) and the protective effects of soybean lecithin against FLHS in laying hens, 135 healthy 300-day-old Hyline laying hens were randomly divided into groups: control (group 1), diseased (group 2), and protected (grou